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TOPOLOGICAL OPTIMIZATION OF
CONTINUUM STRUCTURE WITH GLOBAL
STRESS CONSTRAINTS BASED ON ICM
METHOD

Y.K. Sui, H.L. Ye and X.R. Peng
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100022, China

Abstract Continuum topology optimization with stresses constraints is not only important

but also complicated. Because stress is a local quantity, a large number of con-

straints must be considered, and the complication of optimization algorithm and

sensitivity analysis is also increased. A global stress constraints method based on

ICM (Independent Continuous Mapping) method, which takes minimum weight

and strain energy of structure with multi-load-case as design objective and con-

straint respectively, is suggested in this paper. Dual quadratic programming is

applied to solve the optimal model for continuum structure established in this

paper. As a result, the number of constraints is reduced and the local optimal

solution of the weight is also avoided. Two numerical examples are discussed,

and their results show that the present method is effective and efficient.

Keywords: structural topological optimization, global stress constraints, ICM method, con-

tinuum structure.

1. INTRODUCTION

Topology optimization has been extremely active since pioneering work of
Bendsoe and Kikuchi [1]; a review on this regard is given in reference [2].
ICM (Independent Continuous Mapping) method is used to analyse an op-
timization model for continuum structure where the topological variables are
independent and continuous [3]. Topological optimization for continuum struc-
tures has been extensively studied with displacement, volume and frequency
constraints which are global. However there has been relatively little research

G. R. Liu et al. (eds), Computational Methods, 1003–1014.
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done on stress constraints. The reason is that stress is a local quantity and
nonlinear with respect to the design variables. Major difficulties that topologi-
cal optimization problems with stress constraints have to deal with are a large
number of constraints, thus the complication of both optimization algorithm
and sensitivity analysis is significantly increased. The fully stressed design was
proposed to tackle such a problem without needing sensitivity analysis [4–6].
A global stress constraints method based on ICM method and the von Mises’
yield criterion, which takes minimum weight and strain energy of structure with
multi-load-case as design objective and constraint respectively, is presented in
this paper. Then a new optimal model of continuum structure is established,
and the dual quadratic programming is applied to analyse this optimal model.
As a result, the number of constraints is reduced and the local optimal solution
of the weight is avoided. Numerical examples show that the present model is
effective and efficient.

2. TOPOLOGY OPTIMIZATION OF CONTINUUM
STRUCTURE WITH GLOBAL STRESS
CONSTRAINTS

2.1 The strategy of global stress constraints

In order to reduce the complication of the sensitivity analysis and the op-
timization algorithm, the stress constraints are replaced by the strain energy
constraints. It can be found from the von Mises’ yield criterion that distortion
energy is a key variable of the bending body. Therefore it can be written as

e f
il/Vi ≤ (1 + ν)σi

2/(3E), (1)

where e f
il , Vi E, ν and σi represent distortion energy of element, volume of

element, elastic modulus of material, Poisson’s ratio, and allowable stress, re-
spectively. It is difficult to derive the form of distortion energy from the strain
energy of element. However, this drawback can be overcome in terms of the
stain energy. From the following inequality expression

e f
il < eil (2)

we can readily obtain

eil ≤ (1 + ν)σi
2Vi

/
(3E) (3)

where eil represents the strain energy of i-th element subjected to the l-th load
case.
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Whatsmore, some filter functions according to the ICM method are listed in
the following, that is

wi = fw (ti )w
0
i ; σ̄i = fσ (ti )σ̄

0
i ; ki = fk(ti )k

0
i (4)

where w0
i , σ̄

0
i and k0

i represent the natural weight, allowable stress and stiffness
of element, respectively. The stiffness filter function fk(ti ) on the left-hand side
of the Equation (3) is further introduced and that is

ev
il f v

k (ti )/ fk(ti ) ≤ (1 + v)σ̄i Vi/(3E) (5)

where superscript v represents the number of iteration. It can be obtained by
simplifying the above equations

ev
il f v

k (ti ) ≤ (1 + v)(σ̄i )
2Vi/(3E) fk(ti ) (6)

Finally it can also be gotten by summing up these equations over the whole
continuum structure

N∑
i=1

[ev
il f v

k (ti ) − (1 + v)(σ̄i )
2Vi/(3E) fk(ti )] ≤ 0 (7)

It is noted that Equation (7) can readily be derived from Equation (6). However,
the converse may not be true. Although this kind of global stress constraint
cannot guarantee the stress to be satisfied at every point, it is satisfied in a global
sense. The exact satisfaction of stress constraints can be performed by the simple
optimization such as cross-sectional or shape optimization. From Equation (7),
the local stress constraints can be transformed into global constraints, which is
critical to establish a new optimal model.

2.2 Optimal model with global stress constraints

The topology optimization model of continuum structure with multi-load-
cases, based on ICM method, can be established as follows. The weight is
taken as the design objective, and the strain energy with multi-load-cases is
considered to be the constraint:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

find t = (t1, . . . , tN )T

W =
N∑

i=1

fw (ti )w0
i → min

s.t.
N∑

i=1

[ev
il f v

k (ti ) − di fk(ti )] ≤ 0

0 ≤ ti ≤ ti ≤ 1

(i = 1, . . . , N ; l = 1, . . . , L)

(8)
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where t = (t1, . . . , tN )T denotes the design variables, and di = (1 + v)(σ̄i )
2Vi/

(3E). Define fw (ti ) = tα
i , fk(ti ) = tβ

i ,where α, β are constant parameters, as-
suming α = 1, β = 3 in our analysis. Because every element involves only one
design variable, we can conveniently use dual programming to solve this model.
Then Equation (8) can be converted into⎧⎨

⎩
find λ ∈ E L

φ(λ) → max
s.t. λ ≥ 0

(9)

where

φ(λ)| = min
ti ≤ti ≤1

{
S(t, λ) =

N∑
i=1

tα
i w0

i +
L∑

l=1

λl

N∑
i=1

(
ev

il f v
k (ti ) − di t

β

i )
)}

(10)

From the Kuhn–Tucker condition, one obtains

∂S/∂ti = αw0
i tα−1

i −
L∑

l=1

λlβdi t
β−1
i

⎧⎨
⎩

> 0 (t∗
i = ti )

= 0 (ti < t∗
i < 1)

< 0 (t∗
i = 1)

(11)

Solving Equation (10) we get

t∗
i =

⎧⎨
⎩

ti (t∗
i ≤ ti )

ti (ti < t∗
i < 1)

1 (t∗
i ≥ 1)

(12)

where

ti =
(

βdi

J∑
l=1

λl/
(
αw0

i

))1/(α−β)

(13)

An assumption na = { i | ti < t∗
i < 1} is applied. If i /∈ na is known, we would

have t∗
i = ti or t∗

i = 1 and

∂t∗
i /∂λk = 0 (14)

If i ∈ na is prescribed, we would have

∂t∗
i /∂λk = βdi (t

∗
i )β−α+1/

(
α (α − β) w0

i

)
(15)

Differentiating Equation (10) with respect to λ by using dual quadratic theory,
we get

∂φ(λ)/∂λl = hl(t
∗
i (λ)) =

N∑
i=1

(
ev

il − di fk(t∗
i )

) =
N∑

i=1

(
ev

il − di (t
∗
i )β

)
(16)
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∂2φ(λ)/(∂λl∂λk) =
N∑

i=1

(∂hl(t
∗
i )/∂t∗

i )(∂t∗
i /∂λk)

= −
N∑

i=1

diβ(t∗
i )β−1∂t∗

i /∂λk (17)

Substitute Equation (19) into Equation (21), we obtain

∂2φ(λ)/(∂λl∂λk) = −
∑
i∈na

(
d2

i β2(t∗
i )2β−α/(α(α − β)w0

i

)
(18)

In the neighbourhood of λ0, we expand φ(λ) into Taylor series and neglect all
the terms higher than second order, the following model can be derived⎧⎪⎪⎨

⎪⎪⎩
find λ ∈ EL

−φ(λ) = −
L∑

l=1

L∑
k=1

C iλlλk/2 −
L∑

l=1

Hilλl → min

s.t. λ ≥ 0 ( j = 1, . . . , J)

(19)

where Ci = − ∑
i∈na

βdi (t∗
i )β/(α − β)

Hil =
N∑

i=1

(
ev

il f v
k (ti ) − di (t

∗
i )β

) +
∑
i∈na

diβ(t∗
i )β/(α − β)

The solution of λ can be found from Equation (19). Substituting λ into Equation
(18), the corresponding t∗ can also be found, and the next structural analysis
will consequently be carried out. The numerical program will be stopped until
the following condition is satisfied.

	W = ∣∣(W (v+1) − W (v)/W (v+1)
∣∣ ≤ ε (20)

2.3 Continuous topology variable is mapped inversely
into discrete topology variable

After topology optimization, a continuous solution should be obtained,
which can be transformed into discrete solution by a defined value δ. If the
value of topology variable is in the region of (0, δ), this element denoted by
topology variable should be deleted from the entire discrete structure. Such
element is referred to as 0 element. On the other hand, if the value of topology
variable is in the region of [δ, 1], this element which is named as 1 element will
be preserved. As usual, the value δ is ranged from 0.1 to 0.5.



1008 Y.K. Sui et al.

Figure 1. The finite element model.

3. NUMERICAL EXAMPLES

It is noted that the sizes and parameters of the following examples are
dimensionless.

Example 1 A two-dimensional rectangular flat plate 120 × 60, which is fixed
at two sides and loaded, is shown in Figure 1. In the model, P1 = P2 = 2000, the
thickness is adopted to be 6.0, the density of material is used to be 1.0, the elastic
modulus of material is 2.1 × 107, and the Poisson’s ratio is 0.25. The design
domain is discretized into 60 × 30 meshes by using 4-node membrane element.
Each load case is corresponding to only one concentrated force. The allowable
stress is 155, and the weight of structure is 43200. The convergence precision
is limited to be 0.001. δ is 0.1. Then the optimal topology structure with simple
load case is given in Figures 2 and 3, and the topology structure with multi-
load-case is shown in Figure 4. The iterative number with respect to weight
is depicted in Figure 5. Furthermore some stress fringes are given in Figures
6–8. It can be seen that the distribution of stress after optimization tends to
be uniformity. There is no element which von Mises’ stress exceeds allowable
stress. The number of elements in the range of topology variables is given in

Figure 2. The optimal topology structure with load case 1.
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Figure 3. The optimal topology structure with load case 2.

Table 1. It can be seen that the value δ should be adopted in the region (0.1,
0.5). Such δ has little effect on the optimal topology structure.

Example 2 Second example is identified with the preceding one mesh of
calculation parameters, except that the central load is located on the endpoint
the right-hand side of the structure and the only left-hand side is fully fixed
(shown in Figure 9). Calculation cases are also same as the example mentioned
previously. The allowable stress is 155. The convergence precision is 0.001.
δ is 0.1. The results after topological optimization are shown in Figures 10–
13. Compared with reference [7], it can be seen the number of iteration is
decreased. And some stress fringes are given in Figures 14–16. It can be seen
that the distribution of stress after optimal topology tends to uniformly. In
addition, there are only 8 elements which maximum von Mises’ stresses are
higher than allowable stresses. It can be performed by sectional optimization to
satisfy the stress constraint. The number of elements in the range of topology
variables is given in Table 2.

4. CONCLUSION

In this paper, the global stress constraints topological optimization problem
has been investigated. Based on ICM method and the von Mises’ yield criterion,

Figure 4. The optimal topology structure with two load cases.



1010 Y.K. Sui et al.

0 10 20 30 40 50 60

5000

10000

15000

20000

25000

30000

35000

40000

45000
 load case 1

 load case 2

 multi-load-case

w
e

ig
h

t

iteration numbers

Figure 5. The iterative history of weight.

Figure 6. The stress fringe of original structure and topological structure with load case 1.

Figure 7. The stress fringe of original structure and topological structure with load case 2.

Figure 8. The stress fringe of topological structure of multi-load-cases with load case 1 and load

case 2.
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Table 1. The number of elements in the range of topology variables.

Range of variable 0.9–1 0.7–0.9 0.5–0.7 0.3–0.5 0.1–0.3 <0.1

Number Load case1 222 16 2 2 0 1558

of Load case2 222 16 2 2 0 1558

elements Two load cases 320 12 19 5 0 1444

Table 2. The number of elements in the range of topology variables.

Range of variable 0.9–1 0.7–0.9 0.5–0.7 0.3–0.5 0.1–0.3 <0.1

Number Load case1 526 20 8 7 7 1232

of Load case2 526 20 8 7 7 1232

elements Two load cases 534 89 17 8 10 1142

Figure 9. The finite element model.

Figure 10. The optimal topology structure with load case 1.

Figure 11. The optimal topology structure with load case 2.
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Figure 12. The optimal topology structure with two load cases.
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Figure 13. The iterative history of weight.

Figure 14. The stress fringe of original structure and topological structure with load case 1.

Figure 15. The stress fringe of original structure and topological structure with load case 2.
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Figure 16. The stress fringe of topological structure of multi-load-cases with load case 1 and

load case 2.

a new optimal model for continuum structure with stain energy constraints
is established. Furthermore, this model is analysed by using dual quadratic
programming. It can be seen from the result that the number of constraints is
reduced, the sensitivity analysis of structure is avoided, and the efficiency of
calculation is increased. Numerical example shows that the present model is
effective. In addition, the weight of topological structure may change when the
continuous topological variables are discretized as 0 or 1, which lead to some
gray elements are transformed into 0 or 1 element.
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TOPOLOGICAL OPTIMIZATION OF FRAME
STRUCTURES UNDER MULTIPLE LOADING
CASES∗
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Beijing 100022, Chin
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Abstract Structural topological optimization is to seek the best path of transmitting forces

for structures. The topological optimization under multiple loading cases involves

the balance of many paths of transmitting forces. Based on the Independent Con-

tinuous Mapping (ICM) method, the optimization problem under multiple loading

cases is solved under three conditions, namely local constraints, global constraints,

and their combination. In this paper, local constraints are firstly analyzed by en-

velope method and average method. Secondly, global constraints are uniformly

calculated with mathematical programming (MP). Thirdly, local and global con-

straints are processed by synthesizing above two methods. Finally, the results are

compared. From the present numerical examples, it is shown that the envelope

method and the MP or their combination can be used to efficiently model and accu-

rately simulate the topological optimization problem under multiple loading cases.

Keywords: frame structures, topological optimization, envelope method, average method,

mathematical programming.

1. INTRODUCTION

The concept of structural topological optimization was proposed by Michell
[1], but the research works were mainly concentrated on the truss and continuum

∗Supported by National Natural Science Foundation of China (10472003), Beijing Natural
Science (3042002) and Beijing Educational Committee (KM200410005019) Foundations.

G. R. Liu et al. (eds), Computational Methods, 1015–1022.
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structures [2–6]. The topological optimization of frame structures under single
loading case was studied in previous works [7, 8]. However, the topological
optimization problem under multiple loading cases is more difficult to be solved
because it involves the balance of many paths of transmitting forces [9–13].
The optimization problem for frame structure under multiple loading cases
is presented in this paper. The main idea is that our approach can deal with
three conditions, namely local constraints, global constraints and their combi-
nation. Firstly, local constraints are analyzed by envelope method and average
method. Secondly, global constraints are uniformly calculated with mathemat-
ical programming (MP). Thirdly, local and global constraints are processed by
synthesizing above two methods. Finally, the results are compared.

2. TOPOLOGICAL OPTIMIZATION MODEL
BASED ON ICM METHOD [14, 15]

The topological optimization model of frame structures with stress and
displacement constraints under single loading case is expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find ti (i = 1, . . . , n)

Make w =
n∑

i=1

wi → min

Subject to σi ≤ σ̄i (i = 1, . . . , n)
u j ≤ ū j ( j = 1, . . . , J )

0 ≤ ti ≤ 1 (i = 1, . . . , n)

(1)

where ti is the topological variable, n is the number of variables, J is the number
of displacement constraints.

Based on the Independent Continuous Mapping (ICM) method, three filter
functions for element weight, element allowable stress and element stiffness
are introduced, noted f1(t), f2(t) and f3(t). The relations of element weight,
element allowable stress and element stiffness are given by

wi = f1 (ti )w
0
i (2)

σ̄i = f2 (ti )σ̄
0
i (3)

ki = f3 (ti )k
0
i (4)

where wi , σ̄i and ki are, respectively, the element weight, element allowable
stress and element stiffness related to ti ; w0

i , σ̄ 0
i and k0

i are the same physical
quantities related to the initial topological variables.
Assuming

f1 (t) = tα, f2 (t) = tβ, f3 (t) = tγ (5)
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where α, β and γ are constant related to the structural types, which can be ob-
tained according to the relations of wi , σ̄i and ki or by numerical experiments.
For the frame structures, if the axial force is ignored, we can obtain α = 1,

β = 1.5, γ = 2.

3. OPTIMIZATION PROBLEM UNDER MULTIPLE
LOADING CASES WITH STRESS CONSTRAINTS

The stress constraint is a local constraint, which can be approached in zero-
order approximation and transformed into movable lower limits of topological
variables with the full stress criterion.

The full stress criterion gives the following relation:

σ ∗
i /σ̄i = 1 (6)

Substituting Equation (6) to Equation (3), we can obtain

σ ∗
i /( f2(t∗

i )σ̄ 0
i ) = 1 (7)

So

t∗
i = (σ ∗

i /σ̄ 0
i )2/3 (8)

where t∗
i is the continues topological variable satisfying the stress constraints.

For the problem with multiple loading cases, the envelope method and the
average method are used as following.

The envelope method takes the maximum values of the topological variables
under all loading cases, which can be expressed as

ti = max
l=1,···,L

(t∗
il) (9)

The average method takes the average values of the topological variables under
all loading cases, which can be written as

ti =
L∑

l=1

t∗
il/L (10)

4. OPTIMIZATION PROBLEM UNDER MULTIPLE
LOADING CASES WITH DISPLACEMENT
CONSTRAINTS

Unlike the stress constraint discussed previously, the displacement con-
straint is a global constraint. According to unit virtual load method, the dis-
placement with respect to the j th displacement constraint can be denoted as
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follows:

u j =
n∑

i=1

∑
e∈i

∫
e

(
My M̄ y

E Iy
+ Mz M̄z

E Iz
+ Mx M̄x

G Ip
+ μy Qy Q̄y

G A

+ μz Qz Q̄z

G A
+ N N̄

E A

)
dx (11)

Since the element stiffness is proportional to the Young’s modulus, according
to the Equation (4), Equation (11) can be simplified to

u j =
n∑

i=1

1

f (ti )
u0

i j =
n∑

i=1

1

t2
i

u0
i j (12)

where u0
i j = ∑

e0∈i

∫
e0

( My M̄ y

E Iy
+ Mz M̄z

E Iz
+ Mx M̄x

G Ip
+ μy Qy Q̄y

G A + μz Qz Q̄z

G A + N N̄
E A

)
dx is a

constant and can be derived from the results of structural analysis, e0 is the
element belonging to the i th topological variables.

Therefore we can obtain the explicit formulation:

n∑
i=1

1

t2
i

u0
i j ≤ ū j (13)

For the problem with multiple loading cases, the explicit expressions for every
loading case can be written as

n∑
i=1

1

t2
i

u0
i jl ≤ ū j (14)

where l is the number of loading cases, u0
ijl is the constant corresponding to the

j th constraint under the l th loading case.
Taking into account all the constraints in one model, we can obtain the

following optimization model:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find ti (i = 1, . . . , n)

Make w =
n∑

i=1

wi =
n∑

i=1

ti w
0
i → min

s.t.
n∑

i=1

1

t2
i

u0
ijl ≤ ū j ( j = 1, . . . , J ; l = 1, . . . , L)

0 ≤ ti ≤ 1 (i = 1, . . . , n)

(15)
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5. OPTIMIZATION PROBLEM UNDER MULTIPLE
LOADING CASES WITH STRESS AND
DISPLACEMENT CONSTRAINTS

Generally, the stress and displacement constraints are required in optimiza-
tion problem. For such a problem, the methods dealing with local and global
constraints should be combined together.

The model with stress and displacement constraints is difficult to be solved
for the stress and displacement constraints are two different types of constraints.
Thus, the stress constraints should be processed with the envelope or average
method, and transformed into the movable lower limits of topological variables
as follows:

ti ≥ t
∼i = t∗

i (16)

Therefore, we can represent the model with stress and displacement constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find ti (i = 1, . . . , n)

Make w =
n∑

i=1

wi =
n∑

i=1

ti w
0
i → min

s.t.
n∑

i=1

1

t2
i

u0
i jl ≤ ū j ( j = 1, . . . , J ; l = 1, . . . , L)

t
∼i ≤ ti ≤ 1 (i = 1, . . . , n)

(17)

where t
∼ i =

L∑
l=1

t∗
il/L (the average method) or t

∼ i = max
l=1,...,L

(t∗
il) (the envelope

method).

6. NUMERICAL EXAMPLES

A spatial frame structure with 390 beams is presented in Figure 1. The
bottom of the structure is fixed. There are two forces (F1 = F2 = 100 kN)
on the top, which are depicted as two loading cases: Case I and Case II. The
material properties are: Young’s modulus E = 200 GPa, Poisson ratio v = 0.3,
density ρ = 7800 kg/m3, allowable stress σa = 160 MPa. The initial sectional
moment of inertia of all elements is 8.333E-6 m4.
Taking structure’s weight as objective function, every beam element as indepen-
dent topological variable, the structure is optimized with different constraints
under the two loading cases (Case I and Case II).
Just with the stress constraint (the maximal stresses do not exceed the allowable
stress, 160 MPa), the problem is, respectively, solved by the envelope method
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Case II

F2
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F1

Figure 1. Spatial frame structure.

and the average method. The results for comparison are shown in Table 1 and
the optimal topology is given in Figure 2 (the left figure is obtained by the
envelope method and the right figure by the average method).
With the stress and displacement constraints (the maximal stresses do not ex-
ceed the allowable stress, 160 MPa, and the maximal displacements do not
exceed 20 mm), the problem is analyzed by combining mathematical program-
ming with the envelope method or the average method. The results for compar-
ison are shown in Table 2 and the optimal topology is given in Figure 3 (the left

Table 1. Result comparison just with stress constraints.

Methods Iteration number Maximal stress (MPa) Structural weight (kg)

Envelope method 52 104.926 7800

Average method 37 45.9477 19,188

Table 2. Result comparison with stress and displacement constraints.

Iteration Maximal Maximal Structural

Methods number stress (MPa) displacement (mm) weight (kg)

Envelope method 35 107.388 14.2865 7488

and MP∗

Average method 16 53.6709 8.61115 14,976

and MP

∗ MP is mathematical programming.
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Case II

F2 = 100kN F2 = 100kN 
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F1 = 100kN 

Case I
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Case II

Figure 2. Optimal topology just with stress constraints.

figure is obtained by combining mathematical programming with the envelope
method and the right figure by combining mathematical programming with the
average method).
From the Tables 1 and 2 and Figures 2 and 3, we can conclude that the structural
weight is much lighter and the optimal topology is more reasonable by the
envelope method and the MP or their combination.

Z

Y

X

Z

Y

X

Case II F2 = 100kN 

Case I
F1 = 100kN 

Case II

F1 = 100kN 

Case I

F2 = 100kN 

Figure 3. Optimal topology with stress and displacement constraints.
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7. CONCLUSIONS

The methods to solve the optimization problem of frame structures under
multiple loading cases are presented. Numerical examples show the envelope
method and the MP or their combination can be used to efficiently model and
accurately simulate the topological optimization problem.
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OPTIMAL DISPLACEMENT CONTROL
SIMULATION OF ELECTRIC-MECHANICAL
COUPLED TRUSSES

L.C. Long and Y.K. Sui
Numerical Simulation Center for Engineering, Beijing University of Technology, Beijing
100022, China

Abstract Finite element equations of electric-mechanical coupled piezoelectric truss struc-

tures are deduced using linear piezoelectricity and Hamilton’s principle. An op-

timal control model of piezoelectric smart trusses is established. It makes the

maximum value of the controlled nodal displacements to be minimized and sub-

jected to the strength requirements of the structure and the characteristic of the

actuators. Control variables of the model are the voltages of actuators. The model

is transformed to a sequential linear programming ultimately. For static indeter-

minate trusses in some case, the maximum stress in the structure can be decreased

to allowable limit by adjusting the length of the member if it exceeds the allowable

limit. When the number of actuators is limited, if they are distributed reasonable

and have sufficient active elongation, effective control can be realized also. The

efficiency of the control model is simulated by numerical method.

Keywords: smart truss, displacement control, electric-mechanical coupling, optimization.

1. INTRODUCTION

Smart trusses have advantages such as less weight, easy for design and
manufacture, safe and expandable on the track. It can be used as support-
ing structures of spatial apparatus. A trend penetrates to fields of mechani-
cal, automobile, robot and so forth is appeared. Piezoelectric materials have
piezoelectric effect or reverse piezoelectric effect. Using these two properties,
respectively, sensor or actuator can be made. Piezoelectric materials possess
advantages such as good controllability, stable performance and larger induced
distance and otherwise, so they are applied in broad fields. Much research work
on piezoelectric structures has been done.

G. R. Liu et al. (eds), Computational Methods, 1023–1035.
C© 2006 Springer. Printed in the Netherlands.
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Finite element method is an effective numerical analysis method for struc-
tures. Piezoelectric smart trusses include electric-mechanical coupled element,
no other than synthesized the mechanical quantity and the electricity quantity
to describe it perfectly. The relation between the input excitation and the output
response should be set in the finite element method of the piezoelectric smart
trusses.

Ha and Chang [1] analyzed composite structures containing distributed
piezoelectric sensors and actuators using electric-mechanical coupled finite el-
ement method. Tzou and Tseng [2] used piezoelectric hexahedral element in
analysis of smart continua, and Tzou and Ye [3]analyzed piezoelectric struc-
tures with laminated piezoelectric triangle shell element. Chen and Varadan
[4] deduced hybrid finite element formulation for periodic piezoelectric arrays
subjected to field loading. Lammering et al.[5] researched optimal placement
of piezoelectric actuators in adaptive truss structures based on the electric-
mechanical coupled properties of adaptive trusses. Tian et al. [6] used finite
element method analyzing buckling and post-buckling of piezoelectric plates.
Ding et al. [7] analyzed free vibration of rectangular pyroelectric plates of
transverse isotropy based on the three-dimensional coupled piezothermoelas-
ticity theory. Liu et al. [8] formulated the general electric-mechanical coupled
dynamic equations of finite element models based on piezoelectricity, elas-
tic mechanics and Hamilton’s principle. Li et al. [9] did research on electric-
mechanical coupled finite element analysis and experimental study on smart
truss structures. Sui and Shao [10] used piezoelectric actuators to strengthen
truss structures. Long et al. [11] used smart structure to improve the precision
of the structures.

Precision improvement of the spatial structures becomes important since
they may encounter stochastic external forces and have errors caused by manu-
facturing on earth or assembling on the orbits. Considering electric-mechanical
coupled properties, optimal shape control of trusses with piezoelectric ceramic
actuators is simulated in this paper. The piezoelectric ceramic actuators are
regarded as multi-layer stacks. Equations of finite element models for smart
trusses are deduced based on Hamilton’s principle. The optimal control model
of the structures takes voltages as objective.

2. ELECTRIC-MECHANICAL COUPLED FINITE
ELEMENT EQUATION

2.1 Micropiezoelectric laminate

Piezoelectric actuators are manufactured of piezoelectric laminates stacked
and glued. The sketch is shown as Figure 1. It is parallel connected in electrics
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V 

x3 

x3

x2
V

x1

Figure 1. (a) Piezoelectric laminate and (b) piezoelectric stack.

and series connected in mechanics. The polarized direction of the microlam-
inate is along the thickness and is coincided with axes x3 and its material is
transversely isotropic.

Assuming, σ 3 �= 0 and σ1 = σ2 = σ4 = σ5 = σ6 = 0, then only strain com-
ponent ε3 need to be considered since only deformation in the direction of
thickness is concerned.

For the effect of electric field, only E3 is taken into account. The other
components E1 = E2 = 0 and ∂ E3/∂x1 = ∂ E3/∂x2 = 0. If σ 3, E3 are taken as
independent variables and ε3, D3 as attributive variables, piezoelectric equa-
tions of microelement can be obtained from linear piezoelectric principle{

ε3 = cE
33σ3 + d33 E3

D3 = d33σ3 + εσ
33 E3

(1)

The formula above is the piezoelectric equation of the microelement. Intension
of electric field E = V/ lt , and from the first equation of (1), the output force
of the piezoelectric element when its displacement is zero can be expressed as

F = σ3 A = −d33 E3 A

cE
33

= −e33 AV

lt
(2)

When axial stress σ 3= 0, the output displacement of the piezoelectric microele-
ment is

δ3 = ltε3 = d33 E3lt = d33V (3)

The output displacement of the piezoelectric microelement is direct propor-
tion to voltage. The proportional constant is d33. Microelements are parallel
connected in electrics and series connected in mechanics, which piece num-
ber is n. When voltage of every piezoelectric microelement is V , the output
displacement of each one, δi is

δi = lt cE
33 Fi

A
+ d33V (4)
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On the ideal condition, each piezoelectric microelement is the same in shape
and property, and no energy consumption in it. Axial force: Fi = F . The output
displacement of each piezoelectric microelement, δi , is the same in phase and
value, then the total displacement is linear plus of which of each microelement,
i.e.,

δ =
n∑

i=1

δi = nδi = nlt cE
33 F

A
+ nd33V (5)

The output displacement of the actuator is increased to n times of ones in this
way (where n is the number of microelements). In electrics, the linear plus
relation exists also as the same for electric quantity Q.

Q =
n∑

i=1

Qi = nQi = n AD3 = nd33 Aσ3 + nεσ
33 AE3 = nd33 F + nεσ

33 AV

lt

(6)
That is

Q = n(d33 F + cs V ) (7)

where cs = εσ
33 A/ lt .

2.2 Field function of piezoelectric stack

Assuming the length, equivalent density and Young’s modulus of piezoelec-
tric stack in active members are la , ρa and Ya , respectively. The displacements
of two ends are ui and u j , respectively. The electric potentials of upper and
lower plate electrodes of every piezoelectric microelement are φb and φa , re-
spectively, as shown in Figure 2. A piezoelectric stack is formed of n pieces of
piezoelectric microelements as shown in Figure 1b. Neglecting the thickness
of the gluing layer, the plate electrode and the edge effect, the electric field in
a piezoelectric stack can be regarded as a uniform electric field. The electric
potential is linear distribution in the direction of x3. The axes x3 is coincide
with the axes of the stack.

x3 

ui 

uj φb 

φa 

Figure 2. Displacement and electric potential distribution of piezoelectric microelement.
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Assuming the displacement function u(x3) of piezoelectric stack is linear,
then

u (x3) = u j − ui

la
x3 + ui =

(
1 − x3

la

)
ui + x3

la
u j = [Nu]

{
u(a)

}
(8)

where, [Nu] = { 1 − x3/ la, x3/ la} is the displacement shape function matrix
of piezoelectric stack; {u(a)} = {ui , u j}T is the column matrix of displacement
of the stack; And 0 ≤ x3 ≤ la . Corresponding strain is

ε (x3) = ∂u (x3)

∂x3

= [Bu]
{
u(a)

}
(9)

where [Bu] = {−1
/

la, 1
/

la

}
is strain-shape function matrix.

When (k − 1)lt ≤ x3 ≤ klt , then

ϕ (x3) = φb − φa

lt
x3 − (k − 1) φb + kφa = [

Nφ

] {
φ(i)

}
(10)

where [Nφ] = {k − x3/ lt , 1 − k + x3/ lt} is electric potential shape function;{
φ(i)

} = {φa, φb}T are electric potentials of plate electrodes a and b. The elec-
tric potential is always continuous, therefore the field intensity distribution is

E3 (x3) = −∂ϕ (x3)

∂x3

= − [
Bφ

] {
φ(i)

}
(11)

where, [Bφ] = {−1/ lt , 1/ lt} is the shape function of electric field intension.
The value of E3 is unchanged in the range [0, la] except (n− 1 ) discontinuity
points (at gluing layers). Therefore the E3 is regarded as continuous in the
range [0, la]. This hypothesis is convenient for modelling and almost causes
any error.

2.3 Electric-mechanical coupled finite element equations
for piezoelectric stack element

Taking the piezoelectric part of the active bar to analysis first, and order:
gE

33 = 1/cE
33. Equation (1) transformed as{

σ3 = gE
33ε3 + cd ε̇3 − gE

33d33 E3

D3 = gE
33d33ε3 + cdd33ε̇3 + (εσ

33 − gE
33d2

33)E3

(12)

where cd is viscous damping coefficient of piezoelectric material. Substituting
Equations (9), (10) and (11) in Equation (12), we obtained{

σ3 = gE
33[Bu]{u(a)} + cd[Bu]{u̇(a)} − gE

33d33[Bφ]{	(a)}
D3 = gE

33d33[Bu]{u(a)} + cdd33[Bu]{u̇(a)} + (εσ
33 − gE

33d2
33)[Bφ]{	(a)}

(13)
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From Hamilton’ principle∫ t1

t0

δL dt +
∫ t1

t0

δ′W dt = 0 (14)

where L = T − U is Lagrangian function; T is kinetic energy of the system;
U is potential energy of the system; δ′W is virtual work done by external forces.
For piezoelectric stack element, kinetic energy is

T =
∫

la

1

2
ρa A

{
u̇(a)

}T
[Nu]T [Nu]

{
u̇(a)

}
dx (15)

Density of potential energy is

ū = 1

2
{u(a)}T [Bu]T gE

33[Bu]{u(a)} + 1

2
{u(a)}T [Bu]T cd[Bu]{u̇(a)}

+ 1

2
{u(a)}T [Bu]T gE

33d33[Bφ]{	(a)} + 1

2
{u(a)}T [Bu]T gE

33d33[Bφ]{	(a)}

+ 1

2
{u̇(a)}T [Bu]T cdd33[Bφ]{	(a)} + 1

2
{	(a)}T [Bφ]T (εσ

33 − gE
33d2

33)[Bφ]{	(a)}
(16)

Total potential energy of the system is

U =
∫

la

ū A dx (17)

Non-potential force work includes mechanical force work and electric force
work. Virtual work of the external forces is

W F = δ{u(a)}T {F (a)} (18)

where {F (a)} = {Fi , Fj }T are axial forces of the two ends. Virtual work of
electric forces is

W E = −δ{	(a)}T {Q(a)} (19)

where {Q(a)} = {nQi , nQ j }T . Substitute Equations (15), (16), (17), (18) and
(19) into Equation (14), we obtained the electric-mechanical coupled finite
element equations for piezoelectric stack element{[

M (a)
] {

ü(a)
} + [

C (a)
] {

u̇(a)
} + [

K (a)
] {

u(a)
} + [

K (a)
uv

] {
	(a)

} = {
F (a)

}
[
K (a)

vu
] {

u(a)
} + [

C (a)
uv

] {
u̇(a)

} + [
K (a)

vv

] {
	(a)

} = − {
Q(a)

}
(20)

where [K (a)
vu ] = [K (a)

uv ]T , [M (a)] is the mass matrix of element; [K (a)] is the

stiffness matrix of element; [C (a)] is damp matrix of element; [K (a)
uv ] is the
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generalized stiffness matrix; [C (a)
uv ] is the generalized damp matrix; [K (a)

vv ] is
dielectric coefficient stiffness matrix.

2.4 Electric-mechanical coupled finite element
equation for structures

2.4.1 Electric-mechanical coupled finite element equation
for piezoelectric active member

Assuming that an active member is combined of three parts which an actu-
ator in the middle and host parts at two ends, as shown in Figure 3. It can be
divided into three elements: host part elements ©1 , ©3 and piezoelectric element
©2 . Through Equation (21), the finite element equations of element ©2 can be
obtained:{

[M2]
{
ü(a)

} + [C2]
{
u̇(a)

} + [K2]
{
u(a)

} + [Kuv]
{
	(a)

} = {
F (a)

}
[Kvu]

{
u(a)

} + [Cuv]
{
u̇(a)

} + [Kvv]
{
	(a)

} = − {
Q(a)

} (21)

Assembling the mass matrix, damp matrix and stiffness matrix of elements ©1 ,
©2 and ©3 to member matrixes, respectively, then we obtained:{

[Mc]
{
üc)

} + [Cc] {u̇c} + [K c] {uc} + [
K c

uv

] {	c} = {Fc}[
K c

uv

] {uc} + [
Cc

uv

] {u̇c} − [
K c

vv

] {	c} = − {Qc} (22)

For static problem, the derivative item of Equation (22) can be removed and
then simplified as {

[K c] {uc} + [
K c

uv

] {	c} = {Fc}[
K c

uv

] {uc} − [
K c

vv

] {	c} = − {Qc} (23)

As Qi = −Q j , and assuming the electric potential of plate electrode i is 0,
i.e. φ I = 0, then, φ j = V . Condense the internal freedoms of Equation (23)
according to the equality of internal forces of node i and j , remove the middle

l r  i 

Fl Fr 

Actuator Host part 

j

1 2 3

Figure 3. Sketch of an active member.
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freedoms, and substitute Equation (22) into Equation (20), obtain the following
equations. {

[K e] {ue} + [
K e

uv

]
V = {Fe}[

K e
uv

] {ue} − [
K e

vv

]
V = − {Qe} (24)

2.4.2 Electric-mechanical coupled finite element equation
for structures

The electric-mechanical coupled finite element equation of piezoelectric
active member was obtained in the last section as Equation (24). For general
members without active part, the finite element equation for static problem
is

[K e]
{
ue

} = {
Fe

}
(25)

Assuming a structure is combined with piezoelectric active members and gen-
eral members without active part, their finite element equation of members are
Equations (24) and (25), respectively. We can obtain the electric-mechanical
coupled finite element equation of the whole structure by transforming the fi-
nite element equations of members to global coordinates and assembling them
into relative coefficient matrixes.{

[K ] {X} + [Kuv] {V } = {F}
[Kuv]T {X} − [Kvv] {V } = − [B]T

[
Kq

] {Q} (26)

where, [K ]n×m is the stiffness matrix of the structure; [Kuv]n×m is the general
stiffness matrix of the structure; {V }m×1 is the driving voltage column matrix
of active members; [Kvv]n×m is the equivalent dielectric stiffness matrix of the
structure; [B]n×m is the position matrix of active members, it is consisted of
the direction cosine of active members; [Kq]n×m is the equivalent coefficient
matrix of electric loads; {F}n is the external force column matrix and {Q}m

is the electric charge column matrix.

3. OPTIMAL DISPLACEMENT CONTROL OF
ELECTRIC-MECHANICAL COUPLED TRUSS

A programming optimal nodal displacement control model is presented uti-
lizing the electric-mechanical coupled property of piezoelectric actuator imbed-
ded, which takes control voltages as control variables and takes precision as
objective, and strength are ensured simultaneously.
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3.1 Establish the control model

3.1.1 Bring out of the control model

In a general case, a structure has n bars, p bars has imbedded actuator, and
q nodal displacement components need to be controlled. Allowable voltages of
kth actuator is −vk ≤ vk ≤ vk ; Allowable axial force of it is N k ≤ Nk ≤ N k .
A control model is established for problem as:⎧⎪⎪⎨
⎪⎪⎩

Find vk (k = 1, 2, . . . , p)

make max
∣∣u j

∣∣ → min ( j = 1, 2, . . . , q)

s.t. σ c
i ≤ σi ≤ σ t

i ; N k ≤ Nk ≤ N k ; −vk ≤ vk ≤ vk (i = 1, 2, . . . , n)

(27)

where, u j is the j th nodal displacement component to be controlled; σi is
the actual stress of i th bar; σ t

i and σ c
i are allowable tensile and compressive

stresses of i th bar, respectively. This is an undifferentiable programming. The
processing of treatment for this control model is discussed as following.

3.1.2 Treatment of the control model

Model (27) cannot be solved directly because firstly, the objective function
and stress constraint functions are implicit functions to control variables, and
secondly, the model is an un-differentiable programming. Therefore a series of
treatment is needed.

Explicit expression of nodal displacement and internal force of bars. For
a linear structure, the relation between nodal displacement and internal force
of the bar to the control voltages can be expressed as

u j = u0
j +

p∑
k=1

u jk · vk (28)

in which, u jk = ∂u j/∂vk is sensitivities of displacement; u0
j denotes nodal

displacement component while all voltages are 0. Internal force of the bar is

Ni = N 0
i +

p∑
k=1

nik · vk (29)

where, nik = ∂ N e
i /∂vk is Sensitivities of internal force; N 0

i denotes internal
force of element while all the voltages are 0.

Treatment of objective function. In order to transform the undifferentiable
programming to an easy solved differentiable programming, treat the objective
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function of model (27). Introduce a new variable ε, make

−ε j ≤ u j ≤ ε j ( j = 1,2, and q) (30)

For whole structure,

ε = max
( j∈q)

(ε j ) (31)

Transformation of constraints. Assume the allowable tensile and compres-
sive stresses of host part material of i th bar are σ t

i and σ c
i , respectively, on

account of the axial force of the host part of an active bar can be expressed as
the product of stress and sectional area, σi · Ai , the allowable axial force of an
active bar is {

N t
i = min

{
σ t

i · Ai , N i

}
(Ni ≥ 0)

N c
i = max

{
σ c

i · Ai , N i

}
(Ni < 0)

(32)

The stress constraints and axial force constraints of actuators are transformed
as

N c
i ≤ N 0

i +
p∑

k=1

nik · vk ≤ N t
i (33)

3.1.3 Formation of the control model

Through the deducing and transforming above, substitute explicit expres-
sion of constraints into control model (27), yields⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find vk, ε (k = 1, 2, . . . , p)
make ε → min

s.t.
p∑

k=1

u jk · vk − ε ≤ −u0
j ; −

p∑
k=1

u jk · vk − ε ≤ u0
j ( j = 1, 2, . . . , q)

p∑
k=1

nik · vk ≤ N t
i − N 0

i ; −
p∑

k=1

nik · vk ≤ −N c
i + N 0

i (i = 1, 2, . . . , n)

vk ≤ vk, −vk ≤ vk, ε ≥ 0 (34)

Model (34) is a standard linear programming model, through which ε and vk

can be obtained.

4. NUMERICAL EXAMPLE AND DISCUSS

A 10-bar static indeterminate truss is shown in Figure 4. For the material in
the host part of the bars, the Young’s modulus is E = 70 Gpa. The allowable
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Figure 4. 10-bar static indeterminate truss.

tensile and compressive stresses are σ t = 30 MPa and σ c = −30 MPa, respec-
tively. The cross-sectional area of each bar is 1cm2. The Young’s modulus of
the piezoelectric material is E = 63 GPa. The piezoelectric actuator is formed
of 400 piezoelectric pieces. The thickness of each one is 0.5 mm. The allowable
tensile and compressive axial forces of it are 3 kN and −3 kN, respectively. The
nodal displacement component of node 1 along y-direction requires to be min-
imized. Maximum allowable voltage is 500 V. Two cases are considered here:
(1) Built-in actuators are installed in all bars. (2) Only one bar has a built-in
actuator. The main results are listed in Table 1 and Table 2.

In case (1), when there is no actuator in the structure, the nodal displacement
component of node 1 along y-direction is 0.3101 mm, maximum stress in the
structure is 14.0 MPa. Main results are listed in Tables 1 and 2.

Table 1 shows that when built-in actuators are installed in all bars, the
control model can make the controlled nodal displacement to be zero. The
maximum stress in the structure is decreased. When only one built-in actuator
in the structure and its maximum allowable voltage is limited in 500 V, the
effect of the control varies with the position of the actuator. Table 2 shows that,
it has the best control effect when the actuator is installed in bar ©7 . Next, when
the actuator at certain position, some improvement of precision may cause

Table 1. Main results of case 1.

Max value of

controlled nodal

Max control voltage Max stress in the displacement

of actuators/(V) structure/(MPa) component/(mm)

Before control 0 14.0 0.3101

After control 357 13.5 0
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Table 2. Controlled results when only one actuator in the structure.

Controlled Max stress

Controlled disp. Max stress disp. when when max

when defm. of the when defm. of max voltage of voltage of the

Actuator at the actuator is no the actuator is the actuator is actuator is 500

bar number limited/(mm) no limited/(MPa) 500 V/(mm) V/(MPa)

1 0 24.9 0.2765 13.8

2 0 25.2 0.2677 14.2

3 0 25.2 0.2541 14.2

4 0 24.9 0.2636 13.8

5 0 24.9 0.2765 13.8

6 0.2756 30.0 0.3055 12.5

7 0 15.1 0.2020 12.4

8 0 27.9 0.2580 16.3

9 0 28.6 0.2598 11.8

10 0 18.7 0.2049 15.6

the maximum stress increasing. If the control voltage of the actuator is not
limited or the piezoelectric constant can changes as needed to make the active
deformation of the actuator large enough, the controlled nodal displacement
component can be reduced to zero by one actuator except when the actuator is
at the position of bar ©6 . But the maximum stress in the structure increases to
different extent.

5. CONCLUSION

An optimum control model was constructed, which takes the maximum
controlled displacement component of piezoelectric truss as objective, and takes
the controlled voltage of actuators as variables, subjects to strength requirement
of the structure and characteristic of the actuator. When the number of actuator
is limited but distribution of it is rational and the actuator has enough active
deformation, the optimal control can be realized still. The models can realize
displacement control of single point or multiple points effectively. For static
determinate structure, control will not cause varying of stresses.
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Abstract To solve the complicated non-linear mode-sorting problem of protein secondary

structure prediction, the chapter proposed a new method based on radial basis

function neural networks and learning from evolution. It also discussed the influ-

ence of data selection and structure design on the performance of the networks.

The results indicate that this method is feasible and effective.

Keywords: protein secondary structure, radial basis function neural networks, evolutionary

information, amino acids sequence.

1. INTRODUCTION

Protein secondary structure prediction is one of the most important tasks in
bioinformatics. Sequence determines structure determines function. Polypep-
tide chains can fold into complicated 3D structure in correspondence to its
function. The key step in predicting the folding of a protein is to predict its
secondary structure. Unfortunately, experiments aimed at extracting such in-
formation cannot keep pace with the rate at which raw sequence data are being
produced. Computational techniques allow for biological discovery based on
the protein sequence itself or on their comparison to protein families. Given
a protein sequence, the secondary structure prediction problem is to predict
whether each amino acid is in a helix, strand or neither. H, E and C repre-
sent helix, strand and non-routine structure, respectively. Some stretches of
sequence show a particular preference to be in one of these three states.

G. R. Liu et al. (eds), Computational Methods, 1037–1043.
C© 2006 Springer. Printed in the Netherlands.
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One of the most popular secondary structure prediction algorithms is PHD.
Using BP networks, the algorithm takes multiple alignments of protein se-
quences as input. The gaining upon ability, sorting ability and learning velocity
of radial basis function neural networks are all better than BP networks. This
study discussed how to use radial basis function neural networks to predict
protein secondary structure. Further, it analysed how to use evolutionary infor-
mation to enhance the prediction accuracy.

2. EVOLUTIONARY INFORMATION

There is long-range information in multiple sequence alignments. Some
residues can be replaced by others without changing structure. However, not
every amino acid can be replaced by any other. On the contrary, one evolu-
tionary step (exchange of one residue) can destabilize a structure. Residues
substitution patterns observed in protein families are highly specific for a par-
ticular structure, and thus, contain more information about structure than single
sequence.

Multiple alignments can produce position specific profiles. Profiles are,
quite simply, a numerical representation of a multiple sequence alignment.
Imbedded within a multiple sequence alignment is intrinsic sequence informa-
tion that represents the common characteristics of that particular collection of
sequences, frequently a protein family. By using a profile, one is able to use
these imbedded, common characteristics to find similarities between sequences
with little or no absolute sequence identity, allowing for the identification and
analysis of distantly related proteins. In the predictive methods using evolution-
ary information such as PHD, the prediction accuracy is improved effectively.

3. METHODS

3.1 Constructing appropriate database

Constructing a database for this study is very important because of the fol-
lowing two points. First, the records in PDB are in detail, so the corresponding
part must be extracted. Second, since the training and testing sets must be big
enough, a number of proteins must be chosen from PDB. Choosing effective
training set is the basis of this research. Some sequences mainly consist of
one type of the structures, so we must be careful when choosing the training
set. To achieve higher prediction accuracy, the training set must be big enough
and include all kinds of structures in proportion. In this study 106 proteins
were chosen to construct the training and testing set. Prediction of secondary
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structure makes sense for proteins, which are not homologous to any other
proteins with known 3D structure; otherwise, the secondary structure can be
predicted by homology with higher accuracy than by any existing secondary
structure prediction algorithm.

3.2 A prediction method using second level RBFNN

Radial basis function neural networks are feed-forward networks. RBF net-
works stand for a class of neural network models, in which the hidden units
are activated according to the distance between the input units. RBF networks
combine two different types of learning: supervised and unsupervised. In this
study we use supervised learning. Radial basis functions are characterized by
the fact that their response decreases (or increases) monotonically with distance
from a central point. The hidden neurons represent computing units that per-
form a non-linear transformation on the input vector by means of radial basis
functions that constitute a basis for this transformation.

Basically there are twenty kinds of amino acids. Before feeding the amino
acids sequence into neural networks, they need to be changed into binary code
of 21 units (each unit representing one of the amino acids or spacer). The
training of the cluster layer is carried out first. Once completed, the output layer
is subjected to supervised learning as used in the feed-forward network with
backpropagation. In order to train the network, several parameters need to be
specified. The maximum learning rate parameter (Lmax) ranging between 0 and
1, the minimum learning rate parameter (Lmin) ranging between 0 and 1 and the
maximum number of epochs used for training (N). They are used to establish
the learning gradient. This gradient is needed to update the weights of a cluster
node whose input weight vector has the minimum squared Euclidean distance
to the input vector pattern. The maximum learning rate also serves as the initial
learning rate. In updating the weight of each dimension, the following formula
is applied:

Wnew = Wold + [L × (Ivalue − Wold)] (1)

indent Wold represents the weight before updating. Wnew represents the updated
weight. L is learning rate. Ivalue is input pattern value. After all input patterns
have been run through the network (this constitutes an epoch), the learning rate
itself is updated via:

Lnew = G × Lold (2)

G is learning gradient. The gradient is determined by the following fomula:

G = Lmax − Ecomplete × (Lmax − Lmin) (3)
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Figure 1. Simplified demonstration of the method based on second level RBFNN.

Ecomplete means epochs completed. The weight correction wij of neuron i
and j is calculated by backpropagation:

wij = Lconstant × Glocal × Ij (4)

The learning rate constant Lconstant and the non-normalized minimum aver-
age squared error of BP algorithm must be specified. Glocal represents local
Gradient. Ij means input Signal of neuron j.

Window size is an important parameter, which means the number of residues
entering the networks every time. In order to take more consideration of
the correlation between adjacent residues, second level RBF neural networks
is introduced. The first level changes sequences into structure. The second
level uses the output of the first level as input, changing structures into final
results.

Figure 1 is simplified demonstration, in the actual predicting process each
amino acid in the sequence should be changed into 21 units, not just P and S as
shown in the figure. That is to say, the 20 kinds of amino acids and a spacer are
simplified into two kinds. Let’s see the rectangle area first. In demonstration
the window size is 5, but actually the window size is 15. Every time adjacent
15 residues enter the sub-network as a group. The output is the corresponding
secondary structure of the central residue, in Figure 1 S. Now see the whole
figure. In the first level window size of the 3 sub-networks (in Figure 1 it is
3, actually it is 11) is all 15 and their output is the central residue (from top
to bottom S, P, S). In the second level there are 11 structures of adjacent 11
residues as input, again the output is the secondary structure of the central
residue (shown in Figure 1 the residue P with a black circle around it). In
the actual predictive process the sequences slide through the window, every
adjacent 15 × 11 residues are as an whole input group. For every group of
15 × 11 residues the corresponding output represents H, E or C – the secondary
structure of the central residue.



Protein Secondary Structure Prediction Methods Based on RBF Neural 1041

Figure 2. Feeding evolutionary information into a neural network system.

3.3 Using evolution information

Multiple alignments can produce position specific profiles, which describe
crucial information about structure and reflect evolutionary constraints. The
multiple alignment is converted into a profile: for each position, the vector of
amino acid frequencies is calculated based on the alignment. The neural net
is applied sequentially to all protein sequence positions to predict secondary
structure in every position as a state from three possible alternatives. Prediction
at a given position depends on amino acid frequencies (in the profile) at that
position and neighbouring positions within a range defined by the window for
which inputs are collected.

Use profile as input instead of binary code this time. When similar sequences
are found, a profile-base multiple sequence alignment is generated.

Figure 2 is also simplified demonstration. A sequence family is aligned
(shown are the sequence of unknown structure and three aligned relatives). For
each sequence position of profile is compiled that gives the percentage of S
or P in the alignment (shown in centre for window of five adjacent residues).
Instead of using binary input units (0 or 1), now the profile is fed into the first
neural network. Then the output is again fed into a second level network. The
following steps are the same as I have explained before (same as Figure 1).

4. RESULTS

The first step of this chapter is to use second level RBF neural networks
to predict protein secondary structure. The window size of the second layer
is decided by experimenting. The results show that the performance does not
always become better with the increasing window size. When the window size
of the sub-networks in the first layer is 15 and the window size of the second
layer is 11, the performance is the best. When the window size is too small, the
performance will be influenced. Table 1 shows the results of the method based
on second level RBF neural networks.
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Table 1. The prediction results of second level RBFNN.

Second level RBF neural networks

Prediction accuracy Cα Cβ Ccoil

68.9% 0.56 0.42 0.46

Table 2. The enhanced prediction results by using profiles.

Second level RBFNN using profiles

Prediction accuracy Cα Cβ Ccoil

71.7% 0.64 0.51 0.49

This study also tried to use evolutionary information to improve predic-
tion accuracy. The second step, use PSI-BLAST program to produce pro-
files that are fed into the neural networks. It can improve the prediction
accuracy by several percent. The window size of layer is also decided by
experimenting.

5. SUMMARY

This chapter used radial basis function neural networks to develop the pro-
tein secondary structure prediction system and has made some achievements.
The results show that consulting more evolutionary information can improve
the overall performance. The prediction accuracy of the model averaged about
72%, showing the feasibility and validity of the algorithm.
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PROBLEM
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Abstract Our problem is about a routing of a vehicle with pickup and delivery of product

with time window constraints. This problem requires to be attended with large

scale instances (nodes ≥ 100). A strong active time window exists (≥90%) with a

large factor of amplitude (≥75%). The problem is NP-hard and for that reason the

application of an exact method is limited by the computational time. We propose

a hybrid methodology which offers good solutions in computational times that do

useful its application.

Keywords: logistics, genetic algorithms, time windows, NP-hard.

1. PROBLEM DEFINITION

The delivery and pickup of product with time window constraints can be seen
in two principal variants. We have the variant for one single vehicle (SPDP-TW)
and by the other hand we have the problem for multiple vehicles (MPDP-TW),
Savelsbergh 1995 [1]. Our problem is focused on the first case (SPDP-TW).
The PDP-TW is more difficult to be solved than the VRP-TW due to the PDP-
TW is a generalization of the VRP-TW, Palmgren 2001 [2]. The objective is to
determine the optimal route for a distribution vehicle. A route is defined as the
arrival sequence that we require to reach a group of clients. An optimal route
is obtained if we achieve to visit all the clients with a minimal cost (or distance
or time). The problem constraints are as follows:

a. We have a vehicle leaving from a distribution center. This vehicle attends a
group of geographically scattered clients and then returns to the origin point.

b. Each client visited has a requirement of product to be delivered and a load
to be collected. We have to observe a finite load capacity for the vehicle all
the time.

G. R. Liu et al. (eds), Computational Methods, 1045–1050.
C© 2006 Springer. Printed in the Netherlands.
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c. We define a cost matrix which identifies the time or distance required to go
from each client to all others. The delivery and pickup time for each client
is a constant.

d. It is not permitted to arrive before the opening hour neither after the closing
hour.

The bibliographical review of routing problems includes Applegate et al.
[3]; Dumas & Solomon [4]. The outlined problem is combinatoric in nature and
is catalogued as NP-Hard, Tsitsiklis [5]. Regarding routing application aspect,
the less investigated variant is the one which has to do with the physical product
distribution, Mitrovic [6]. The difficulty for the SPDP-TW depends strongly on
the structure of the time windows that are defined for each customer. We refer
here the work presented by Ascheuer et al. [7] for the TSP-TW problem. They
proved that this problem is particularly difficult to be solved for instances with
more than 50% of active nodes with time window constraints. They tested with
instances up to 233 nodes. All the instances greater than 70 nodes required more
than 5 hours of computational time. Base on their computational experience,
they conclude that the instances on the limit up to 70 nodes can be solved to
optimality by Branch & Cut algorithms (B&C).

2. METHODOLOGY PROPOSED

Our methodology proposes six routines. We have four preprocessing rou-
tines, then the Genetic Algorithm and finally one routine for post-processing.
Below we expose:

1. Network topology decomposition phase based on a ‘shortest path algorithm
(SPP):’ we consider here the topology corners that are required to model
the traffic constraints for the network. We can establish that, if we setup a
network with N1 nodes, we would obtain only N2 nodes, where N1 ≈ 4N2.
The constant ‘4’ related with the quantity of network arcs that we require
to model a common street corner. With this in mind, we avoid to include on
the network as many nodes as street corners. Instead of the previous thing,
we use an SPP algorithm to pre-calculate the optimal sub-tour required to
move from each customer to all the others. All these preprocessed sub-tours
fill the N2 cost matrix that will be used in the next phases.

2. Compressing and clustering phase through a ‘neighbourhood heuristic’: the
N2 nodes are grouped to setup a reduced quantity of N3 meta-nodes (where:
N3 < N2). We require some compatibility for the time window structures of
the N2 nodes that are considered to be grouped in a meta-node. Starting from
a group of nodes to be grouped in a meta-node, the time window structure
of this meta-node is defined by the latest opening time and by the earliest
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closing time. We use in the algorithm a 50% compression factor for the
grouping phase which means that N2 = 2 ∗ N3.

3. Discriminate compressing phase through a ‘k nearest nodes heuristic’: the
network arcs with greater cost are eliminated from the matrix. The logic
of the previous thing is because of those arcs have a smaller probability to
appear in the optimal solution. For each N3 node in the network, we maintain
only the ‘k’ arcs with the smallest cost, where k << N3. We use a conservative
20% discriminate factor in order to maintain the optimal solution within the
search space. This empirical assumption means that the matrix that will be
transferred to the next phase will be dimensionally reduced and defined by
N4 × N3, where N4 = 20% ∗ N3.

4. Aggressive Branch and Cut phase: starting with N3 meta-nodes, the objec-
tive is to find as quickly as possible, the first feasible solution that cover
the time window and vehicle capacity constraints. The logic that we apply
here is to iteratively generate cuts within a Branch and Cut scheme. For
that purpose we identify in the incumbent solution, the node that has the
greater deviation in relation to the time window and/or the vehicle capacity
constraint. This node is named ‘pivot node’. Then we verify the nodes of the
tour that can be identified as ‘related’ in order to re-sequence the position of
the pivot node within the tour. The logic that we apply here to generate the
cut assures that the pivot node ‘k’ use at least one of the arcs that connect it
to one of the related nodes ‘j’. This procedure continues until is found the
first feasible solution.

� I = {1..N3}(network notes)

K ∈ I (pivot node)

j ⊆ I {1..m}(related nodes to k)

�m
j=1(x jk + xk j ) ≥ 1 ∀k ⊆ I

5. Evolutionary phase: our objective here is to approximate the optimal solution
for the compact version of the network. Maintain in the pool of constraints a
cut unnecessarily, means to take out the optimal solution or at least a better
solution, from the search space. Our computational experience indicates
that the quantity of cuts that get to be accumulated in the pool is meaningful
(15–40 cuts). The goal is to identify which cuts of the pool are necessary
to be eliminated. Identify which cuts must be eliminated, can be seen as a
combinatoric sub-problem. We propose an evolutionary strategy to attend
this sub-problem. A binary codification permits to represent the elimination
(0) and the presence (1) of a cut in the pool. The GA reproduction method
applies two random crossing points throughout the chromosome length. The
mutation factor is initialized with a 5% value and it is auto-adjusted. Upon
increasing the degeneracy level in the population we apply an exponential
growth curve in the mutation factor with 50% as an asymptotic limit.
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6. Uncompressing phase to disaggregate the proposed route for the original
network: Here we have two routines. The first routine is focused in deter-
mining the optimal sequence in which the N3 meta-nodes should be disag-
gregated to return to the N2 nodes obtained in phase 2. The previous thing
is achieved through a low scale scheduling algorithm which mathematically
can be solved to optimality in a feasible time. This problem is referred as a
low scale because we treated only with those valid arcs that must be modeled
in order to take advantage of the previous meta-nodes sequencing. Starting
from a selected meta-node, we construct only the valid arcs to the previous
and to the next meta-node. In that sense, if we deal with the first 3 meta-
nodes of the network, for example we could identify 2, 5 and 3 nodes that
are grouped in those meta-nodes respectively. That means that our math
formulation should constraint that the first 2 nodes must be scheduled in
the first 2 positions, the next 5 nodes in the next 5 positions and so on. The
second routine makes use of the topology information generated in the first
phase of our methodology. Its objective is to substitute the sequence of the
tour defined by the N2 nodes according to the cardinal movements that are
required to obtain the N1 nodes of the original network.

3. EXPERIMENTAL DEVELOPMENT
AND RESULTS

We propose that our methodology (GA) is viable to find good solutions
(optimali t y ≥ 90%) and with a low computational cost (minutes ≤ 5) to
solve the SPDP-TW problem. We calculate a ‘percentage of optimality’ which
is measured taking in mind the solution registered by a B&C Algorithm (Control
Group) as follows:

optimality % = 1 − GA solution - Lower Bound

Lower Bound

where Lower Bound = Best solution reached by
B & C within 5 hours limit

Our hypothesis will be attended through a ‘T’ Student test of means differences.

Ho : μ Experimental GA ≤ 90% (μControl Group)
Ha : μ Experimental GA > 90% (μControl Group)

t = D−μD
SD√

n

, where : D =

n∑
i=1

Di

n , y SD =

√√√√√
n∑

i=1

(Di − D)2

n−1
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Table 1. Matrix Computation for the T statistic values.

Algorithmic instruments to be compared

Proposed Genetic Algorithm

P(x > 90%) P(x > 92.5%) P(x > 95%)

B&C Basic Basic

Algrithm Genetic Genetic

(Control Algorithm Algorithm

Group) (Evolver) (Frontline)

Measurements 3th Minute NA –0.4039 –0.5581 2.4261 1.0688 –0.0911

made after ‘x’ 5th Minute –2.4260 –0.1159 –0.3068 3.3130 1.5392 0.1111

Computational 8th Minute –1.2800 0.1616 0.3173 4.8510 4.1050 0.8300

Time 10th Minute –0.7001 0.4001 0.9030 6.2980 5.5770 1.3277

We applied an ‘Experimental Design’ through the use of four instruments:

(a) B&C Algorithm: optimality reference used as control group.
(b) Steady Sate Genetic Algorithm #1: Evolver c©engine Ver 6.0 (Palisade).
(c) Generational Genetic Algorithm #2: Solver c©engine Ver 4.0 (Frontline).
(d) Proposed Genetic Algorithm #3.

The ‘percentage of optimality’ was applied on minute 3, 5, 8 and 10. Only the
B and C instrument was limited up to five hours of computational time. The
experimental design was applied for a sample of 40 instances. We define: (1)
Mean sampling (m) and (2) Standard deviation sampling (s). The T Student test
‘P(x > 90%)’ applied for each element (mi j , si j ) calculates the probability that
the algorithmic instrument ‘j’ in the time interval ‘i’ obtains at least a 90% of
optimality. We tested instances with more than 70% of active time windows and
with a minimal wide of 75%. The dimension of the tested instances are defined
by w , where (100 ≤ w ≤ 120). The parameters applied for the implementation
of the GA’s # 1, 2 and 3 were fixed empirically to the same values. Table 1
shows the values calculated for the ‘T’ statistic. Table 2 shows the probability
coefficients ‘P’.

Table 2. Matrix Computation for the T statistic values.

Algorithmic instruments to be compared

Proposed Genetic Algorithm

P(x > 90%) P(x > 92.5%) P(x > 95%)

B&C Basic Basic

Algrithm Genetic Genetic

(Control Algorithm Algorithm

Group) (Evolver) (Frontline)

NA 34% 29% 99% 85% 46%

<1% 45% 38% 100% 93% 54%

10% 56% 62% 100% 100% 79%

24% 65% 81% 100% 100% 90%
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4. DISCUSSION AND CONCLUSIONS

(a) The B and C obtains better solutions than any of the GA’s and when the
time is allowed the optimal solution to the problem (38 of 40). We report
times below three minutes for instances with less than 70 nodes and with
less than 60% of active time windows.

(b) “Out of the shelf” GA’s (1 and 2), are inferiors since these never surpass
90% of optimality before the 10th minute. At the end of the 3rd minute GA
#1 offers better performance. The GA #2 obtains better solutions before
the 10th minute. Our proposed GA #3 obtains better solutions than the two
others. We take advantage of the generational reproduction method of the
GA # 2 and furthermore our methodology exposed in Section 2 speeds up
the generation of good solutions in early iterations.

(c) We establish that the proposed methodology reaches a percentage of opti-
mality ≥90% in a computational time ≤5 minutes (100% confidence).

(d) The proposed GA offers solutions within an acceptable optimality range
and with computational times that make feasible its implementation in
business environment:

➢ Optimality ≥90% in a computational time ≤3 minutes (99% confidence).
➢ Optimality ≥92.5% in a computational time ≤5 minutes (93% confi-

dence).
(e) However, our methodology can assure only 54% of confidence when is

required to reach a percentage of optimality ≥95% in a computational time
≤5 minutes.
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Abstract In this paper, a neural network (NN) model was designated to identify the geo-

metric parameters of drawbead in sheet forming processes. The genetic algorithm

(GA) was used to determine the neuron numbers of the hidden layers of the neural

network, and a sample design method with the strategy of updating training sam-

ples was also used for the convergence. The NN model goes through a progressive

retraining process and the numerical study shows that this technique can give a

good result of the parameter identification of drawbead.

Keywords: drawbead, neural network, genetic algorithm, sample design.

1. INTRODUCTION

In sheet forming processes, the drawbeads play an important role in control
of the material flow. Traditional drawbead design mainly depends on design-
ers’ experience. Moreover, the drawbead still needs to be adjusted to obtain
the proper restraining force during die try-out, which is time-consuming. The
precise drawbead design can be solved using the finite element method (FEM).
Previous work on the simulation of drawbead in finite element analysis can be
classified into two kinds. One is to build the real geometric model of the draw-
bead. The other is to employ the equivalent drawbead model instead of the real
one. The equivalent drawbead model is added to finite element model through
a series of discrete nodes along a drawbead curve. These discrete nodes, on
which the applied forces were drawbead resistance force (DBRF) and upward

G. R. Liu et al. (eds), Computational Methods, 1051–1056.
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force, were attached to die or binder. Many researchers have been working
on this subject to find empirical [1] or analytical formulas [2,3] for drawbead
restraining forces. Other researchers have also made studies on the influence
of geometric parameters [4] and process parameters [5] of drawbead to sheet
metal forming.

In this work, the geometric parameters of drawbeads are obtained in an
inverse way. The neural network combined with GA is introduced to iden-
tify the geometric parameters of drawbead. As we know, the computational
cost mainly depends on the structure of NN model and the number of training
samples. In the past, many studies focused on the optimization of NN models
and proposed pruning algorithm [6], constructive algorithm [7] and evolution
neural network [8]. For the problem of samples training, the equations [9,10]
were proposed to calculate the needed number of training samples for good
generalization. The calculated results are very large. Thus, we proposed a sam-
ple design method with the strategy of updating training samples for the fast
convergence.

2. FORWARD SOLVER

The corner backstop of the front floor of a truck shown in Figure 1a was
considered in this study. The explicit dynamic finite element method was
employed as the forward solver. The die used in this process is shown in Figure
1b, in which the circular drawbead was placed. The equivalent drawbead model
was used in this study [13]. Figure 2 shows a half model of the drawing process
of the corner backstop forming used in the finite element analysis using a
commercial package (LS-DYNA 3D). The binder, the die and the punch were
modelled as three separate rigid surfaces and the frictional influences between

(a) (b)

Figure 1. The corner backstop of front floor of a truck and its drawing die.
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Binder  

Punch 

Sheet 
Die

A  

A  

Figure 2. Finite element model of drawing process of corner backstop.

each pair of the contacting surfaces were taken into account. A coulomb
friction law was assumed with friction coefficient μ = 0.1 and the thickness of
sheet is 1.2 mm. The material was isotropic elastic-plastic following the Barlat
yield criterion and isotropic strain hardening. The elastic properties were set
as, Young’s modulus E = 207 GPa, and Poisson’s ratio ν = 0.28. The plastic
behaviour of the material was modelled using a power law relation with a
hardening coefficient K of 650 MPa and a hardening exponent n of 0.26. The
binder force was 100 kN and the velocity of the punch and binder was set as
5 m/s.

3. NEURAL NETWORK

3.1 NN structure and initial training samples

In this work, the two hidden layer NN model of three inputs and two out-
puts was adopted, as shown in Figure 3. The modified back-propagation (BP)
algorithm [11] was employed as the learning algorithm. The maximal effective
stress, maximal effective strain and maximal thinning ratio of sheet thickness,
expressed as x1, x2 and x3, respectively, were used as the inputs for the NN
model. The outputs of the NN model were radius of the male bead and ra-
dius of the female bead, expressed as y1 and y2. The initial neuron numbers of
first and second hidden layers, n1 and n2, corresponding to the initial training
samples were 12 and 12, respectively. In this study, the initial training samples
consist of 25 sets of inputs and outputs. The search ranges of the drawbead geo-
metric parameters, were given as follows: the radius of female bead y1 = 4 ∼8
mm, the radius of male bead y2 = 2 ∼6 mm. In the initial training samples, the
combination of desired outputs of NN, y1 and y2, with five levels totalling to
25 set of samples were generated, and simulation results were calculated from
a commercial finite element package, LS-DYNA 3D. Thus, the initial train-
ing samples have been obtained. The inputs and outputs of all these training
samples were normalized from 0.2 to 0.8.
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Figure 3. A two-hidden layer NN model.

3.2 Strategy of updating samples and optimization
of NN structure

A sample design strategy of updating training samples with optimized NN
structure was proposed for the fast convergence in this work. The strategy can
be described as follows. The NN model starts to be trained using the initial
training samples. According to the training results, the sample with maximum
calculated error is removed from the current training samples and another two
new samples located at the region near the removed one will be added instead.
Thus, an updated training sample is obtained. Then, retraining of NN, with
the structure optimized using IP-μ GA [12], starts using the updated training
samples. The optimization is aimed to minimize the mean square error (MSE) of
NN outputs. The NN model would go through a progressive retraining process
till the outputs of the NN model are sufficiently close to the desired ones.

4. RESULTS AND DISCUSSION

Table 1 shows partial training datum using the strategy mentioned above.
It could be observed that the calculated error of the NN model decreases as
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Table 1. Partial training datum using this strategy.

Updating number of training samples

1st 2nd 3rd 4th 22nd

MSE 1.7E-3 1E-3 3.4E-4 2.9E-4 8E-5

the updating number of training samples increases. Up to the 22nd updating,
the calculated error of the NN model was very small. It can be seen that the
accuracy of output from the NN model increases with the increasing of the
number of retraining cycles. The required accuracy can be, therefore, obtained
by repeating the retraining process.

5. CONCLUSIONS

In this paper, we presented a progressive NN model with structure optimized
using GA dynamically to inversely identify the radius of the female and male
bead. The method of updating training samples by increasing samples at local
region gradually, accompanied with optimal structure of the NN model, is used
to speed up the training process and improve the simulating degree of the NN
model. This method is especially suitable for the case of sample datum obtained
by finite analysis automatically. It has been found from the numerical results
that the proposed method could be used to identify the geometric parameters
of drawbead.
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Abstract An improved Immune Genetic Algorithm was proposed to solve the Flow Shop

Problem. Basing on the standard Immune Genetic Algorithm, the vaccination

technique and a novel method for calculating the affinity between the antibodies

was added. Finally the algorithm was test with standard benchmark problems,

and the experiment result shows the validity of the algorithm.

Keywords: Immune Genetic Algorithm, vaccination, affinity, flow shop scheduling problem

1. INTRODUCTION

The Flow Shop Scheduling problem is a well-known NP hard problem. It
concerns using M equipments to process N products. At any time, one equip-
ment can process only one product. The process sequence of one product on all
the equipments was the same, but the time of each product on all the equipments
was not necessary the same.

Inspired by the evolution of the life, Genetic Algorithm was designed as
a random heuristic global optimization algorithm; simulating the capacity of
the Immune System can recognize various antigens, Immune Algorithm was
designed as a multi-model searching algorithm [1]. Basically, Genetic Algo-
rithm has not the ability or searching multi-model problem. It is appropriate to
adopt the Immune Algorithm for searching the local optima of the multimodel
functions. But Immune Algorithm did not perform as well as the Genetic Algo-
rithm concerning the capacity of searching the global optima. Immune Genetic
Algorithm was proposed to make up the defects of the above two algorithms.

G. R. Liu et al. (eds), Computational Methods, 1057–1062.
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The crossover and mutation operator in the Genetic Algorithm were added to
improve the efficiency of the algorithm.

2. SOLVING FLOW SHOP PROBLEM BASED ON
THE IMMUNE GENETIC ALGORITHM

2.1 Coding strategy

Flow Shop Scheduling Problem was an ordered problem because the value
of the object function was not only related to the value of the solution, but also
related to the position in the coding string. Traditional binary coding was not
intuitive and increased the difficulty of coding and decoding. So the integer
coding method was adopted in this paper. According to the characteristic of
the Flow Shop Problem, each character was denoted to a product, each product
should appear once and only once in the code string. The order of the appearance
of the character in the code string was the order of processing the products.

2.2 Affinity calculation

In the Flow Shop Problem, the affinity between antibody and antigen was
the reciprocal of the time when the corresponding solution of the antibody
was adopted to fulfill the task, that is, the reciprocal of the time when product
numbered as 1 entered the first equipment until the product numbered as N left
the M-th equipment [2].

The affinity of Antibody v and Antibody w represents the similarity of the
two antibodies. The Information entropy in the classic immune algorithm was
not adopted in this paper. A new concept was proposed to describe the affinity
between antibodies; it is called permutation times in this paper. One antibody
can always become another antibody after some permutation operations. For
example, see Table 1.

In [0], the node 3 and node 2 was swapped in antibody 1; after one permu-
tation, in [1] node 6 and node 4 was swapped in antibody 1; so the result after

Table 1. The transformation procedure.

Times [0] [1] [2]

Antibody 1 5 3 1 6 2 4 5 2 1 6 3 4 5 2 1 4 3 6

Antibody 2 5 2 1 4 3 6 5 2 1 4 3 6 5 2 1 4 3 6
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two permutation operations was antibody 1 was transformed into antibody 2
in [2], and the permutation times was 2. The formula of the affinity between
antibodies was (v and w are two antibodies):

av,w = 1

1 + permutation times
(1)

2.3 The Description of the Algorithm

Step 1: Generate the candidate Solution Randomly: A sequence that is made
up of the number 1 to N was used to represent a schedule solution. First
L such sequences were generated randomly as the candidate solutions,
and these sequences were used to fulfill the later operations.

Step 2: The crossover and mutation operator in the classic genetic algorithm
was acted on the L antibodies. PMX crossover operator was taken here,
and the mutate probability was 0.01.

Step 3: Calculate the affinity between each antibody and antigen; calculate the
affinity between antibodies.

Step 4: Judging the offspring antibody generated by the crossover and mutation
operator, if the affinity of this antibody to the antigen is lower than a
threshold (the minimum value of the affinity to the antigen in the origin
parent antibodies namely), the retrogression has happened during the
crossover and mutation, and the antibody should be deleted from the
offspring antibodies.

Step 5: The antibody that has the best affinity to the antigen in the L antibod-
ies was saved as the bacterin in this generation and was acted on the
other antibodies; this is called vaccination (The detailed operation was
described in 2.4).

Step 6: Delete the antibodies according to the descending order of the con-
centration of the antibody, the delete operation was stopped until L
antibodies was left in the new antibody population, the left L antibod-
ies composed a new generation population of antibodies. The formula
of calculating the concentration of the antibodies was as follows:

Cv =

∑
w

av,w = 1

L
(2)

Step 7: If the number of the iterations has exceeded a predefined integer num-
ber, the algorithm stopped, if not, GOTO Step 2.

Step 8: In the memory cell, select the antibody that has the max affinity to the
antigen as the global optima solution
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Table 2. The vaccination procedure.

bacterin 7 3 5 2 6 9 8 1 4

order 2 1 3 5 4

target antibody 2 5 4 1 7 8 9 3 6 2 5 4 1 7 9 8 3 6

order 2 1 3 4 5 2 1 3 5 4

N = 10, select two random numbers as the start and end point of the acting area: (3,8)

2.4 Vaccination

When Immune Genetic Algorithm was used to solve Flow Shop Problem,
if the antibody was created only with the crossover and mutation operation, the
new antibody population may not better than the old population with regard
to the affinity to the antigen. To solve this problem, it is necessary to select
an excellent antibody to guide the generation of the new antibody. This is the
destination of the vaccination. Meanwhile, it should be avoided that all the
antibodies trend to the direction of the bacterin. It should keep the diversity of
the population and prevent the algorithm trapping into local optima.

In this paper, a vaccination method aiming at Flow Shop Problem was,
proposed, the experiment shows this method can accelerate the speed of finding
the optima, and guarantee the correction of the global optima, for example:

3. EXPERIMENTS AND ANALYSIS

The experiments are made on PC (Pentium IV 2.8 GHz CPU, 512M RAM,
WinXP OS, VC++6.0). The results of Flow-shop 12∗5(7964)[3] are shown in
Figure 1 (L = 50, iteration times = 100), and the shortest time = 8516 (2, 3,
5, 1, 4, 2); the results of Flow-shop 8∗9(8815)[3] are shown in Figure 2, and
the shortest time without vaccination operator is time = 9455 (9, 4, 6, 1, 2, 5,
3, 7, 8), and with it is time = 9011 (8, 3, 2, 1, 5, 6, 7, 9, 4).

Table 3 shows the performance of four different algorithms for solving
four Benchmark problems [3]. IGA denotes the standard Immune Genetic Al-
gorithm, Inc denotes the vaccination operator, NAC denotes the new affinity
calculation.

4. CONCLUSION

Flow Shop Problem is often encountered in real world application. For
better improving the efficiency, reducing the idle time of the equipments, a
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Table 3. Performance comparison.

IGA IGA+Inc IGA+NAC IGA+Inc+NAC

11∗5 (7038)

Time 7964 7549 7582 7356

Deviation 13.16 7.22 7.73 4.52

8∗8 (8366)

Time 9246 8917 9148 8816

Deviation 10.52 6.59 9.35 5.38

20∗15 (1930)

Time 2187 2096 2145 2054

Deviation 13.32 8.6 11.14 6.42
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rational process sequence is fairly important, and it plays an important role
in improving the economic benefits. Basing on the standard Immune Genetic
Algorithm for solving Flow Shop problem, the vaccination techniques and new
method of calculating the affinity between antibodies was adopted to improve
the Immune Genetic Algorithm. Experiment results show the validity of the
algorithm.
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Abstract A discrete particle swarm optimization (PSO)-based algorithm for travelling

salesman problem (TSP) is presented by re-designing the ‘subtraction’ opera-

tor. To accelerate the convergence speed, a crossover eliminating technique is

also added. Numerical results of some benchmark instances show that the size of

solved problems could be increased by using the proposed algorithm compared

with those of the existing PSO-based algorithms.

Keywords: particle swarm optimization, travelling salesman problem, swap operator.

1. INTRODUCTION

Particle swarm optimization (PSO) algorithm, originally developed by
Kennedy and Elberhart [1], is a method for optimization on metaphor of social
behaviour of flocks of birds and/or schools of fish. The PSO system is initialized
firstly in a set of randomly generated potential solutions, and then performs the
search for the optimum one iteratively. It finds the optimum solution by swarms
following the best particle. Presently PSO has attracted broad attention in the
fields of evolutionary computing, optimization and many others [2, 3]. Though
PSO is developed for continuous optimization problems initially, there have
been some reported works focused on discrete problems recently [4].

The travelling salesman problem (TSP) is a well-known and extensively
studied benchmark for many new developments in evolutionary computation
[5–7]. Furthermore, Hendtlass [8] and Wang et al. [9] proposed different PSO
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methods for solving TSP problems. Though the PSO method could be applied
to TSP, the size of solved problems reported by Hendtlass [8] and Wang et al.
[9] are both smaller than 15. It seems that the size of solved TSP problems
using algorithms of PSO is limited.

In this paper, the ‘subtraction’ operator between two particle positions is
modified and a discrete PSO method is constructed for TSP. The crossover
eliminating technique is also executed in the proposed method. Numerical
results show that the proposed method could improve the size of resolvable
TSP problems.

2. PARTICLE SWARM OPTIMIZATION
ALGORITHM

First, the standard PSO algorithm is introduced briefly. Suppose that the
searching space is D-dimensional and m particles form the colony. The
i th particle represents a D-dimensional vectorXi (i = 1, 2, . . . , m). It means
that the i th particle locates at Xi = (xi1, xi2, . . . , xi D)(i = 1, 2, . . . , m) in
the searching space. The position of each particle is a potential solution.
We could calculate the particle’s fitness by putting its position into a desig-
nated objective function. When the fitness is higher, the corresponding Xi is
“better”. The i th particle’s ‘flying’ velocity is also a D-dimensional vector,
denoted as Vi = (vi1, vi2, . . . , vi D) (i = 1, 2, . . . , m). Denote the best position
of the i th particle as Pi = (pi1, pi2, . . . , pi D), and the best position of the
colony Pg = (pg1, pg2, . . . , pgD), respectively. The PSO algorithm could be
performed by the following equations:

Xi (k + 1) = Xi (k) + Vi (k + 1)�t (1)

Vi (k + 1) = w Vi (k) + c1r1(Pi − Xi (k))/�t + c2r2(Pg − Xi (k))/�t (2)

where i = 1, 2, . . . , m, w is the inertia coefficient which is a constant in interval
[0, 1]; c1 and c2 are learning rates which are nonnegative constants; r1and r2 are
generated randomly in interval [0, 1]; �t is the time interval, and commonly is
set as unit; vid ∈ [−vmax, vmax], and vmax is a designated value. The termination
criterion for the iterations is determined according to whether the maximum
generation or a designated value of the fitness of Pg is reached.

3. ALGORITHM OF THE DISCRETE PSO
ALGORITHM FOR TSP

By adding a memory capacity to each particle in the PSO algorithm, Hend-
lass [8] applied PSO algorithm to solve small-size TSP problems, and improved
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its performance. While Wang et al. [9] redefined the PSO operators by intro-
ducing the concepts of ‘Swap operator’ and ‘Swap sequence’, therefore the
TSP problems could be solved by PSO in another way. Coincidentally, both
of them selected Burma14 (a benchmark problem in TSPLIB with 14 cities)
as simulated samples. That is to say, the size of cities is rather limited in their
algorithms. To expand the scale of the solved problem, inspired by the concept
of ‘Swap operator’, we consider adding an uncertainty searching strategy and
propose a discrete PSO algorithm for TSP. In the traditional PSO algorithm, the
distance of the positions between different particles’ or between different mo-
ments of the same particle is employed to update the velocity of a particle [see
Equation (2)]. Wang et al. [9] expressed the distance by the ‘swap sequence’.
While in this paper the ‘distance’ between two particle positions is estimated
by their fitness, and the ‘distance function’ is defined as

dis fit(Xi , X j ) = | f (Xi ) − f (X j )| (3)

where Xi and X j are the positions of particles, f (Xi ) and f (X j ) are
their corresponding fitness values, respectively. Denote the coding of Xi as
xi1, xi2, . . . , xim and that of X j as x j1, x j2, . . . , x jm , respectively, where m is
the number of cities, xik ∈ [1, m]. Then Xi represents the travelling circle of
xi1 → xi2 → · · · → xim → xi1. Similar to the algorithm of Wang et al. [9], we
define a ‘swap operator’ denoted by SWAP(Xi , X j , k) as follows:

1. Search the kth bit of Xi and the bit of X j whose value is equal to the kth bit
of Xi ;

2. Search the first pair bits with different values following them one by one in
both Xi and X j ;

3. Swap the bits of Xi whose values are equal to the different values.

The swapping process is described as follows: when updating a position of
a particle, an index number k is selected randomly, then the swap operator
SWAP(Xi , X j , k) is executed, where Xi is the code of the particle, X j is
the corresponding Pg or Pi code. The number of swapping times depends on
the value of dis fit (Xi , X j ) and should be increased with the increasing of the
value of dis fit(Xi , X j ). Therefore, the number of swap times is selected as

number swap =
{

n dis if (n dis ≤ n max)
n max else

(4)

n dis = int
(
k · dis fit(Xi , X j )/ f (X j ) + 1.5

)
(5)

where int(·) is the truncation function in C Language, k is a scale parameter,
and n max is a given maximum number for swapping times, respectively.

To speed up the convergence, a process is added to delete the crossover of
travelling lines. Denote line[i] representing the travelling line between the i th
node and the (i + 1)th node of a particle position X . Then the pseudo-code of
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the delete-crossover process could be illustrated as follows:

for each line[i] and line[ j]

if line[i] and line[ j] is crossed

for (k = 0; k < ( j − i)/2; k + +)

swap(x j−k, xi+k+1).

In the PSO program, all particles should learn from Pg, therefore the delete-
crossover process is performed on Pg in each of iterations. The process is
performed only to one particle, therefore, will obviously lead to time-saving.
On the other hand, the improvement of Pg affects all particles, so the delete-
crossover is fairly effective.

In summary, the proposed discrete PSO algorithm for TSP can be described
as follows:

1. Initialize the particle swarm: including the initialisations of each particle’s
position and the evaluation of the fitness of each particle. At this stage, Pg

is also searched and Pi of each particle is set as its initial position.
2. Apply PSO processes to each particle:

i. Execute the swapping process for each particle;
ii. Execute the delete-crossover process for Pg;

3. Judge the stop criterion, namely whether the iteration reaches the given
number or the best fitness reaches the designated value. If the criterion is
satisfied then stop the program, else go to step 2.

4. NUMERICAL RESULTS

To verify the validity of the proposed discrete PSO algorithm, some in-
stances from TSPLIB library [10] are selected for simulations. The experiments
are performed on a PC with 2 GHz processor and 128 M memory.

Table 1 presents the numerical results. The first column stands for the names
of the test instances, the second for the best known optimal tour length for each

Table 1. Results of the proposed algorithm for TSP problems.

Problem Opt Best result Average Err(%)

EIL51 426 437 444.6 4.366

BERLIN52 7542 7700 7960.2 5.54

ST70 675 712 733.2 8.62

EIL76 538 580 587.4 9.18

PR76 108159 113505 115144.2 6.46
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Figure 1. Suggested tour of the benchmark problem EIL51.

problem, the third for the best result obtained, the fourth for the average result
and the fifth for the relative error (Err), respectively.

Table 1 shows that the proposed discrete PSO method can be used to solve
TSP effectively. From Table 1 it can be seen that among five test problems, the
maximum relative error is 9.18% (of the test problem EIL76) and the average
relative error of all is easily calculated to be 6.83%. Figure 1 shows the travelling
circles for the calculate results of problems EIL51. From Figure 1 it can be seen
that the results are fairly good when the problem sizes are ranged from 50 to 80.
Whereas the results from the existing PSO-based algorithms of Hendlass [8]
and Wang et al. [9] show that the sizes of solved TSP problems were only 14.
It is obvious that the proposed algorithm has advantage on the solved problem
size compared with the existing algorithms.

5. CONCLUSIONS

Focused on the TSP problem, a novel discrete PSO algorithm is presented
by adding an uncertain strategy into the approach. Some benchmark problems
are tested to examine the effectiveness of the proposed algorithm. Numerical
results show that the proposed algorithm is effective. It has also been shown
that the proposed algorithm can solve larger size problems than those solved
using the existing algorithms.
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Abstract In this paper, we propose a search method for finding a simple Nash Equilibrium

in a 2-player game and execute it on 24 classes of games. The result shows that

our algorithm performs better than the classical Lemke–Howson algorithm.

Keywords: game theory, 2-player game, nash equilibrium computing.

1. INTRODUCTION

Non-corporative game theory has been tightly combined with Computa-
tional Methods, in which the Nash Equilibrium (NE) is undoubtedly the most
important solution concept.

While players face several Nash Equilibriums, their most pragmatic strategy
may not be the most optimal one [1], but one they prefer for other reasons.
Players may choose a sub-optimal strategy instead of a more optimal but more
complex one which might be difficult to learn or to implement. In one word,
players prefer strategies as simple as possible.

The problem is whether there exists a simple NE in a 2-player game, and if
so, how to find it. To solve this problem, this paper proposes a search method.
Comparing with finding a NE, it is much easier to compute whether a NE
exists in a special support for each player. Based on this, our algorithm repeats
checking the existence of NE in a limited and ordered support space until a
NE is found. There are three important steps in our algorithm: first limiting
the search space; second ordering the search space; lastly, checking in turn
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(according to the order) whether there exists a NE with this support for each
player.

We are not the first ones who search support space to find a NE. Dickhaut
and Kaplan [2] proposed an algorithm to find all Nash Equlibria. Porter et al.
[3] designed an algorithm to find a sample NE. However, the innovation in this
paper is on pruning the search space. Our pruning rules are (1) no conditionally
dominant strategies in any NE, (2) there exists such a NE whose support is less
than k + 1(k is the rank of corresponding payoff matrix). These rules ensure
that our search space is smaller than that of Porter et al. [3], but the disadvantage
is that ranks of payoff matrixes must be computed.

The rest of this paper is structured as follows: first we formulate the problem
and give the relevant definitions, and then we describe the algorithm. After that,
we compare the execution of our algorithm and the Lemke–Howson algorithm
[4]. In the final section, we conclude our work.

2. NOTATIONS AND DEFINITIONS

The necessary notations and definitions are shown in this section.
The set of players is noted as N = {1, 2}.
The sets of pure strategies of player 1 and 2 are noted as S1 = {s11, s12, . . . ,

s1m} and S2 = {s21, s22, . . . , s2n}.
The payoff matrixes of player 1 and 2 are noted as (U1)m×n and (U2)n×m ,

respectively.

Definition 1. The i th row of matrix Um×n is conditionally dominant, if ∃ 1 ≤
j ≤ m, ∀k ∈ {1, . . . , n}, s.t. uik ≤ u jk and ∃ 1 ≤ t ≤ m, s.t. uit < u jt .

S′
1 = {s1i ∈ S1| the i th row of matrix U1 is conditionally dominant}

S′
2 = {s2i ∈ S2| the i th row of matrix U2 is conditionally dominant}

The strategies in S′
1 and S′

2 are called conditionally dominant strategies.

Definition 2. A mixed strategy for a player is a probability distribution over
the set of his pure strategies and will be represented by a vector x = (x1, x2, . . . ,
xm), where xi ≥ 0 and

∑m
i=1 xi = 1. Here xi is the probability that the player

will choose his i th pure strategy. The support of x (Supp(x)) is the set of pure
strategies that it uses.

Definition 3. A profile of mixed strategies (p, q) for a 2-player game is bal-
anced, if |Supp(p)| = |Supp(q)|.
Theorem 1. For any Nash Equilibrium (x∗, y∗), Supp(x∗) ∩ S′

1 = �,
Supp(y∗) ∩ S′

1 = �.
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Proof. Using proof by contradiction.

Theorem 2. (U1)m×n , (U2)n×m are payoff matrixes, respectively, for player 1
and 2 in a 2-player game. rank(U1) ≤ k, rank(U2) ≤ d. ∃ a NE (x , y), s.t.
|Support(x)| ≤ k + 1, |Support(y)| ≤ d + 1.

Proof. See Lipton et al. [5].

3. ALGORITHM

The following is a feasible program for finding a NE in a special support
for each player, where U1 and U2 correspond payoff matrixes of 2 players, and
St

1, St
2 correspond the special support for each player.

Vectors p1 ∈ Rm, p2 ∈ Rn correspond Nash Equilibrium (if they exist), and
ci ≥ 0 are real numbers.

p−1 ∈ Rm, p−2 ∈ Rn are vectors satisfying constraints 1, 2 and 4.

Feasibility program 1.
Input: (U1)m×n , (U2)n×m , St

1, St
2.

Output: pi , ci , i = 1, 2 s.t.
Constraints: ∀i = 1, 2

(1)
∑

si j ∈St
i

p±i (si j ) = 1, and
0 < p±i (si j ) ≤ 1, if si j ∈ St

i
p±i (si j ) = 0, if si j /∈ St

i

(2) ∃si j ∈ St
i , st. pi (si j ) �= p−i (si j )

(3) p1 · Ui · pT
2 = ci

(4) p(−1)i ·1 · Ui · pT
(−1)i+1·2 ≤ ci

See Chvatal [6] for solving feasible program 1.

Definition 4. Suppose that x and y are positive integers. G = {1, 2, . . . , x} ×
{1, 2, . . . , y}, (x1, y1), (x2, y2) ∈ G. The simple and balanced order (G, ≤) is
defined as follows: (x1, y1) ≤ (x2, y2) if and only if one of following conditions
are satisfied:

(1) |x1 − y1| < |x2 − y2|
(2) |x1 − y1| = |x2 − y2| and min{x1, y1} ≤ min{x2, y2}

The following algorithm is for finding a simple NE in a 2-player game.
Search space of Algorithm 1: according to Theorem 1, there are no condi-

tionally dominant strategies in any Nash Equilibrium; according to Theorem 2,
there exists a Nash Equilibrium whose support of mixed strategies is less than
k + 1 (k is the rank of corresponding payoff matrix). The search space is based
on these two theorems.
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Algorithm 1.
// computing a NE in a 2-player game, 1 and 2 are players

Input: S1and S2 (sets of pure strategies), (U1)m×n and (U2)n×m (payoff ma-
trixes)

S′
1 ←{s1i ∈ S1| the i th row of matrix U1 is conditionally dominant}

S′
2 ←{s2i ∈ S2| the i th row of matrix U2 is conditionally dominant}

SA ← S1 − S′
1, SB ← S2 − S′

2

k ← rank(U1), d ← rank(U2)
x ← min {k + 1, |SA|}
y ← min {d + 1, |SB |}
FOR all (x ′, y′) where x ′ ∈ {1, 2, . . . , x}, y′ ∈ {1, 2, . . . , y}, and
(({1, 2, . . . , x} × {1, 2, . . . , y}),≤) is a simple and balanced order
FOR all St

1 ⊆ SA, s.t. | St
1 | = x ′ DO

FOR all St
2 ⊆ SB, s.t. | St

2 | = y′ DO
IF ∃(p, c), which satisfies feasible program 1 for (St

1, St
2) THEN

RETURN p // p is the found equilibrium

4. ASSESSMENT (EVALUATION)

Several comparisons were committed between the performance of Algo-
rithm 1 and that of the Lemke–Howson algorithm implemented in Gambit [7]
to assess our algorithm.

We follow the idea of Ryan et al. (2004) and use GAMUT (GAMUT can
generate games from a wide variety of classes of games found in the literature)
to generate 24 different classes of games. Both algorithms are executed on 100
2-player 300-action games drawn from each class (i.e., 2400 games as sample
games). The comparisons are made on median runtimes; percentage of samples
solved, and average runtime. It has been shown that both the median runtime
and the conditional average runtime of Algorithm 1 are much shorter than
that of Lemke–Howson on all the 24 classes. Furthermore, our algorithm finds
Nash Equilibrium in more sample games on several distributions, and only the
solving percentage on distribution six is a little lower than Lemke–Howson.

5. CONCLUSIONS

In this paper, we present a search method for finding a simple Nash Equilib-
rium in a 2-player game. We analyse the payoff matrix of each player to prune
the support space, and order the support space to ensure the simple and balanced
NE can be found as fast as possible. After testing our algorithm on 24 classes
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of games and comparing it with the classical Lemke–Howson algorithm, the
results show our algorithm performs better.
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Abstract Both GA and PSO are typical evolution algorithm with their own advantages. In

this paper, a new evolution algorithm is introduced based on GA and PSO. The

total population are divided into several tribes, which one Hero individual and

several common particles are included in each tribe. The movement velocity of

each hero is calculated by global peak point and local best point among this tribe

just like PSO. Other common particles will search neighbourhood of hero using

recombination method of GA. Hero algorithm will converge fast and escape from

local peak inheriting advantages of GA and PSO. These conclusions are proven

from experiment of some familiar Benchmark functions.

Keywords: Hero, genetic algorithm, particle swarm optimization

1. INTRODUCTION

The Particle Swarm Optimization (PSO) algorithm was originally intro-
duced by Kennedy and Eberhart [1]. As a new Evolutionary Algorithm, the
PSO was inspired by insect swarms. It has been proved to be an effective
method to solve some optimization problem.

PSO is a typical global optimization algorithm compared with the traditional
genetic algorithm (GA). The population of these two algorithms is initialled
randomly. And the searching is carried on with the fitness of all individuals.
Relatively speaking, PSO has the characteristics as follows: high speed in con-
vergence, few adjustable variables, is insensitive to the size of population. At
the same time, it also has some shortcomings: in the early period of running,
low precision, is liable to diverge, is apt to miss the global best solution; In
the later stage, similarity of all the particles is very obvious, and the speed of
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convergence is slow down, is very easy to sink into local peak point. Generally,
PSO performs well in the early iterations, but has problems reaching a near
optimal solution.

Some researchers have already made a lot of improvements of PSO algo-
rithm. The inertia weight was brought out by Shi and Eberhart [2], and the
constriction coefficient was advanced by Clearc [3]; Spatial neighbourhoods
and other improvements were proposed by some scholars in order to increase the
diversity of population. Combining PSO and GA, we can synthesize the advan-
tages of these two algorithms, so the effect is brought to. An explicit selection
operator in PSO is used by Angeline [4]. It is shown that the capability of local
search is improved, but simultaneously the ability of global search is reduced.
In addition, recombination and reproduction is also introduced by Lovbjerg [5].
The result shows that, for the function with multi-model local peaks, the speed
of convergence is accelerated, and better solution can be found.

A new Hero EA models is constructed in this paper by hybridized merits of
PSO and GA algorithms. Some particles are called Hero in the population. And
the velocity of movement is similar to the PSO, both of them are decided by
the global peak point and local peak point. There are several common particles
around each Hero are evolved with recombination of GA. These particles are
used to search the neighbourhood of Hero, and the information of local peak
point is applied. Thus the aptitude of high speed convergence of PSO is played;
simultaneously the capability of global search is assured to a certain degree so
that local peak is jumped out.

The next section presents the models of the new Hero EA. Section 3 de-
scribes the experimental settings and results of some benchmark functions. The
experimental results and conclusion are discussed in Section 4 finally.

2. MODEL

Here, a new model hybridizing from PSO and GA is proposed. In this model,
total population is divided into several tribes, while one Hero individual and
several common particles are included in each tribe. The speed and direction
of each hero’s movement is decided by global peak point and local best point
among this tribe (includes the points that hero has searched and the points that
common particles have searched) just like PSO. On one hand, every common
particle evolves in accordance with recombination method of GA; on the other
hand, remove with the same speed of the hero in this tribe.

The equation of hero individual movement shows below:{ �vi = χ∗(w �vi + c1
∗ rand() ∗ ( �pi − �xi ) + c2

∗ rand() ∗ ( �pg − �xi ))

�xi = �xi + �vi
(1)
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Inside of tribe, offspring particles are recombined with probabilitypb. The
parent particles are replaced by their offspring particles. Note that the fitness is
not used when selecting particles for recombination. After recombination, in
order to search the neighbourhood of hero, offspring should move their position
according to the velocity of hero.

The arithmetic crossover of positions in the search space is one of the
most commonly crossover methods with standard real valued GAs, placing
the offspring within the hypercube spanned by the parent particles. The main
motivation behind the crossover is that offspring particles benefit from both
parents and searches in neighbourhood around hero point. In theory, having
two particles on different suboptimal peaks breed could result in an escape
from a local optimum or find a new peak, and thus aid in achieving a better
one.

At the initial phases, the positions of every hero and common particles are
distributed randomly, and the velocity are zero. Along with the evolvement of
algorithm, common particles will close to Hero.

The structure of the standard model is illustrated as below.
Begin

initialize
while (not terminate-condition) do
begin

evaluate every particles and heroes.
Update global best point, local best point of each tribe and the best

position of hero.
calculate new velocity vectors of heroes and move.
For each tribe do
Begin

Recombine particles to make offspring
Move offspring according to the velocity vector of hero

end
end

end

3. EXPERIMENTAL SETTINGS

For the sake of validating performance of Hero algorithm, four familiar
benchmark problems are tested as the Table 1. The detail formula can be found
in other papers. The first and second function are unimodel, and other two are
multi-model with many local minima. All these functions are designed such
that their global minimum are the origin of the search space. These functions
are commonly used in performance evaluation on GA and PSO.
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Table 1. Function name, search ranges and dimension of problems.

Index Function name Search range Dimension

f1 DeJong F1 −100 < xi < 100 100

f2 DeJong F2 −30 < xi < 30 50

f3 Griewank −600 < xi < 600 50

f4 Rastrigin −5.12 < xi < 5.12 20, 30, 50

Table 2. The experiment parameters.

Algorithm Parameter Value

GA pcrossover 0.7

pmutation 0.15

PSO Inertia weight 0.8

constriction 1.0

ALL Population size 60

Iteration turns 1000

Table 3. The best solution.

Function Dim GA PSO Hero

F1 100 13.27 42.7 23.88

F2 50 493.2 820.7 665.9

F3 50 1.12 1.31 0.95

F4 20 10.25 21.22 3.25

30 25.39 37.01 26.61

50 36.98 109.01 122.21

The experiment parameters are shown in Table 2. Notice that in Hero algo-
rithm, there are 20 tribes (or heroes) and three common particles in each tribe
just like 60 individuals. Each algorithm will run 10 times independently and
record average results.

The best solution found in this experiment of these function is shown in
Table 3. Figures 1–4 shows the fitness curves of every problem and every
algorithm. From these data and graph, it is shown that the Hero algorithm can
converge fast than GA and PSO, specially on high-dimension problem.

4. CONCLUSION

In this paper, a new Hero evolution algorithm is introduced based on GA
and PSO. The total population is divided into several tribes, which one Hero
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Figure 3. The Griewank function F3.

individual and several common particles are included in each tribe. The move-
ment velocity of each hero is calculated by global peak point and local best
point among this tribe just like PSO. Other common particles will search neigh-
bourhood of hero using recombination method of GA. It is shown that the Hero
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Figure 4. The Rastrigin function F4 (N = 20).

algorithm is effective on some high-dimension problem from experiment of
some familiar Benchmark functions. In future, this principle will be introduced
into other evolutionary algorithm.
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Abstract Data collection mechanism is the crucial factor that affects the performance of

intrusion detection system (IDS). Simple random sampling technique of statistics

is introduced to the procedure of data collection of IDS, and a new data collection

model for IDS is provided. Formulas used to calculate the sample size of packets

under both normal conditions and special conditions where there is a small amount

of network traffic with attack signature are presented. Experimental results show

the model is able to improve the efficiency of data collection and strengthen the

processing performance of IDS with little devaluation of detection precision of

IDS.

Keywords: intrusion detection system, data collection, sampling, performance.

1. INTRODUCTION

With the increasing number of computer security events every year, more
attention has been paid on network security. Intrusion detection system (IDS)
has become an indispensable part of computer security (Denning, 1987). It is
necessary for IDS to collect data with an effective and reliable manner. However,
it is impossible for IDS to capture all packets due to the limitation of computer
resources, especially in the large-scale network with heavy traffic. In addition,
the proportion of network traffic with attack (intrusion) signature is commonly
small, and capturing the whole traffic will degrade the efficiency of network
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bandwidth utilization. Therefore, a more reasonable network traffic collection
mechanism should be applied to IDS.

Sampling is an effective technique to monitor network traffic in real time, and
has been applied to various network engineering and management applications,
such as traffic report (Duffield and Grossglauser, 2001) and attack (intrusion)
detection or analyses (Kodialam and Lakshman, 2003). In this chapter, simple
random sampling technique of statistics is introduced to the procedure of data
collection of IDS, and a new data collection model for IDS is provided.

2. DATA COLLECTION MODEL BASED ON
SIMPLE RANDOM SAMPLING

Simple random sampling is the basic sampling technique where we select a
group of subjects (a sample) for study from a larger group (a population). Each
individual is chosen entirely by chance and each member of the population has
an equal chance of being included in the sample.

2.1 Symbol token

In this chapter, all the packets in the network are treated as population, and
individual packet is treated as population unit.

Assume the number of population unit is N , and let Y1, Y2 . . . YN repre-
sent the measurements of these population units. The total number of packets
with attack signature in the population is A. Let Yi = 1 if the packet (Yi) with
attack signature, otherwise Yi = 0(i = 1, 2 . . . N ). Then P = A/N represents
the population attack strength, and A = ∑N

i=1 Yi represents the population at-
tack quantity.

Assume the sample size is n, and let y1, y2 . . . yn represent the measurements
of these sample units. The total number of packets with attack signature in
the sample is a. Let yi = 1 if the packet (yi ) with attack signature, otherwise
yi = 0(i = 1, 2 . . . n), then p = a/n represents the sample attack strength, and
a = ∑n

i=1 yi represents the sample attack quantity.

2.2 Sampling size calculation

It is a very important matter for sampling technique to calculate the sample
size. In the same condition, sampling error will decrease with the increasing
sampling size. There is an inverse proportion relation between sampling error
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and the square root of sample size, and sampling error tends to stable after
given phases. It is obvious unworthy to reduce sampling error by increasing the
sample size. At this point, we can greatly reduce the sample size with slightly
degradation of precision. In this chapter, it is the key matter for intrusion detec-
tion system to reduce data collection quantity as possible with little degradation
of detection precision. The following part presents our effort on how to cal-
culate the sample size of packets. The sampling theorem shows that when the
sample size is big enough, the distribution of sampling error will be approx-
imately a standard normal distribution. Give the parameter θ and its estimate
θ̂ , the variance of this estimate θ̂ is V (θ̂ ) and the standard deviation is S(θ̂ ).
Let parameter θ is the proportion of packets with attack (intrusion) signature
in the whole network traffic, i.e. population attack strength P , and parameter
θ̂ is proportion of packets with attack (intrusion) signature in the sample, i.e.
sample attack strength p. From sampling theorem, we have

V (p) = P Q

n

N − n

N − 1
(1)

where Q = 1 − P = N − A

N
, and the absolute error

d = t
√

V (p) = t

√
P Q

n

N − n

N − 1
(2)

or the relative error

r = t

√
V (p)

P
= t

P

√
P Q

n

N − n

N − 1
(3)

so

n =
t2

P Q

d2

1 + 1

N

(
t2 P Q

d2
− 1

) (4)

or

n =
t2

Q

r2 P

1 + 1

N

(
t2 Q

r2 P
− 1

) (5)

we can first calculate

n0 = t2 P Q

d2
or n0 = t2 Q

r2 P
(6)
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if
n0

N
< 0.05, then n is approximately equal to n0, otherwise n0 needs to be

modified as

n0 = t2 P Q

d2
or n0 = t2 Q

r2 P
(7)

If P is in the range of [0.2, 0.8], we can make a conservative estimate of
the sample size according as P Q will be maximum value given P = Q = 0.5,
then calculate the sample size using preceding formula (6) based on t , d and
P Q = 0.25. If n0/N cannot be neglected, then we need to modify the sample
size.

2.3 Inverse sampling

If the proportion of network traffic with attack (intrusion) signature is very
small, i.e. population attack quantity P is very small, relative error r will be
better than absolute error d . While we just know that P is likely very small, but
we can’t reckon the exact range of P . Given the different estimated value of P ,
the calculated sample size of packets will appear marked difference. To handle
this problem, we make use of inverse sampling method as shown in the work
by Haldane (1945), that is, determine an integer m (m > 1), sample packet one
by one until the number of packets with attack (intrusion) signature is equal to
m. It can be proved that the mean of sample size n is

E(n) = m

P
(8)

Therefore, if the proportion of network traffic with attack (intrusion) signa-
ture is extraordinary small, the sample size n is actually very big. For example,
given P = 0.00001, m = 27, then the mean of n = 2700000.

3. EXPERIMENTS

We use IXIA400T (a special network test facility of IXIA Crop) to gener-
ate the large-scale background traffic in 1000M Ethernet, and insert specific
attack traffic. The sample size of packets is calculated according to the pre-
ceding formulas, and corresponding detection ratio is recorded, compared with
the detection ratio by capturing the whole network traffic in order to verify
the detection precision of IDS. The population total is around 6,000,000. Re-
alSecure is selected to detect attacks (intrusions) in our experiments, for its
important role in security fields, and its detection ratio by capturing the whole
network traffic is 93.75%. Considering the randomicity of sampling, we conduct
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Table 1. Detection ratio with various sample sizes.

Sample size Detection ratio

38,032 87.5% 89.6% 85.4%

76,448 89.5% 87.5% 89.5%

15,3280 91.7% 93.75% 91.7%

sampling three times separately for every sample size. The detection results of
RealSecure are as given in Table 1.

4. CONCLUSIONS

This model is able to reduce data collection quantity, improve the utilization
ratio of network bandwidth, decrease the detection time, and raise the efficiency
of detection with little degradation of detection precision. Especially in the
large-scale network with heavy traffic, this model can strengthen the processing
performance of IDS by the means of replacing dropping packets passively with
sampling packets actively.
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Abstract Modal logics are good candidates for a formal theory of agents, the efficiency

of reasoning method in modal logics is very important, because it determines

whether or not the reasoning method can be used widely in the systems based on

agent. Theorem proving based on the extension rule we presented is a new method.

Firstly, this paper gives the version of non-clausal extension rule algorithm. Next,

we present the extension rule in proposition modal logic K, namely we provide a

new proof method for modal logics. And then we give the proof of its soundness

and completeness.

Keywords: theorem proving, extension rule, modal logics, destructive.

1. INTRODUCTION

Since the pioneering publications of the 1950s, automated theorem proving
has been matured into one of the most advanced areas of computer science.
Extension rule based approach is a new theorem proving method we presented
recently [1]. For a number of years, modal logics have been applied outside
pure logic in areas such as formal methods, theoretical computer science and
artificial intelligence. In all of those modal systems, the idea of context is
explicit or implicit in various systems proposed for modal logics. In a Kripke
model, occurrences of the same literal may not mean the same thing in different
contexts. One solution has been to introduce notation for context, via prefixes
or world paths [2]. Another solution is destructive method [3]. It is called
destructive method because it looses information during a context shift. Logics
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amenable to such treatment tend to be those Kripke models do not involve
symmetry.

In Section 2, we give several reduction rules at first. Moreover, we give a
version of non-clausal extension rule algorithm and prove its soundness and
completeness. In Section 4, we present the extension rule method in proposition
modal logic K and prove its soundness and completeness. In addition, we give
the concrete algorithm. A conclusion is drawn in the final part.

2. NON-CLAUSAL EXTENSION RULE

We write P, Q, . . . for propositional variables, X, X1, . . . for arbitrary formu-
las. Formulas are divided into two categories: α formulas and β formulas. In
a similar way the modal cases are divided up into ν formulas and π formulas
[3]. We will treat [X1, . . . , Xn] as synonymous with X1∨. . . ∨Xn and 〈 X1, . . . ,
Xn〉 as synonymous with X1∧. . . ∧Xn. If X1, . . . , Xn are formulae, we will refer
to [X1, . . . , Xn] as a clause. Likewise if each Ci is a clause, we will refer to
< C1, . . . , Cn > as a clause list. Finally, if L1, . . . , Ln are clause lists, we call
[L1, . . . , Ln] a block.

The extension rule method uses the inverse of resolution together with the
inclusion–exclusion principle to solve TP problems. The details can be found
in Ref. [1].

Definition 1. Given a clause C and a set M: C′ = {C∨a, C∨¬a | ‘a’ is an atom,
a ∈ M, ‘¬a’and ‘a’ does not appear in C}. We call the operation proceeding
from C to C′ the extension rule on C. We call C′ the result of the extension rule.

Definition 2. We say C1, C2 is a partition of the clause C if C1 and C2 are disjoint
and the members of C1together with those of C2 are exactly the members of C.

The extension rule algorithm, we give in this paper does not require a previ-
ous reduction to clause form. Namely the destructive extension rule method is
a non-clause style system, it combine reducing to normal form with checking
the unsatisfiability and does them alternately. This will be of more importance
when we come to the modal case later on. Also, blocks are present, they will
become significant when we introduce modal rules in the next section. Now, the
rules for deriving one block from another are as follows. Double Negation Rule
(RDN): An occurrence of a formula ¬¬Z may be replaced by an occurrence
of Z. Conjunction Rule (RC): If an α formula occurs in a clause C, the clause
C may be replaced by two clauses, C1 and C2, which are like C except that C1

contains α1 in place of α and C2 contains α2 in place of α. Disjunction Rule
(RD): An occurrence of a β formula may be replaced by the two formulas β1

and β2. Special Case Rule (RSC): If a clause list L contains a clause C, and C1,
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C2 is a partition of C, then L can be replaced by two clause lists, L1 and L2,
where L1 is like L except that it contains C1in place of C, and L2 is like L but
with C2in place of C. Let R = {RDN, RC, RD}. Now we give the non-clause
style Extension-Rule algorithm NCER in proposition logic.

Algorithm NCER:.

1. Set F is the formula we want to prove, k = 2
2. while there are no >= k clauses which have no connectives in F

Loop
F1 = the clause list got by using R to reduce F

If F = = F1then return satisfiable
Else F = F1

Endloop
3. Let � = {C1, C2, . . . Cm} be the set of the clauses having no connectives in

F, |�| = m. Call the ER1Algorithm to check �’s satisfiability.
4. If � is unsatisfiable then return unsatisfiable

Else k = m + 1; go to step 2

Lemma 1. Let clause list L′ be derived from a clause list L by the Double
Negation Rule, the Conjunction Rule and the Disjunction Rule. Then L is
satisfiable if and only if L′ is satisfiable.

Lemma 2. Let B′ be derived from the block B by the Special Case Rule. Then
B is satisfiable if and only if B′ is satisfiable.

Theorem 1. Algorithm NCER is sound and complete for proposition logic
theorem proving.

3. EXTENSION RULE IN PROPOSITION MODAL
LOGIC K

Definition 3. For each clause C we define two related clauses as follows. C#

consists of all formulas ν0 such that ν is in C. Cb consists of all formulas π0

such that π is in C.

The extension rule system we propose includes all the rules of Section
2, including the Special Case Rule, together with one more Reduction Rule.
K-π Rule (RKπ ): Suppose L is a clause list containing a clause C consisting
entirely of π formulas. Then L may be replaced by the clause list L′ containing
the following clauses: Cb and, for each clause S in L consisting entirely of ν

formulas, the clause S#. Now, we give the destructive extension rule algorithm
DMKER in proposition modal logic K.
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Lemma 3. Let the clause list L′ be derived from a clause list L by the K-π
Rule. So if L is satisfiable then L′ is satisfiable.

Theorem 2. In propositional modal logic K, theorem proving based on the
destructive extension rule is sound and complete.

Algorithm DMKER (F):.

1. Set F is the modal formula we want to prove, k = 2.
2. while there are no >= k clauses which have no connectives in F

Loop
a. F1 = the clause list got by using R to reduce F
b. F2 = F1

c. If we can use the RSC to reduce F1 then
a) Denote the returned clause lists by FS1, FS2

b) If DMKER(FS1) = = unsatisfiable and DMKER(FS2) = = unsatis-
fiable then return unsatisfiable
Else return satisfiable

d. If F1 includes clauses consisting entirely of π formulas then
a) Choose a clause C
b) F2 = the clause list got by using the Kπ on the clause C to reduce F1

c) F1 = delete C from F1

Else if F1 just includes clauses consisting entirely of ν formulas then F2 = the
clause list got by using the Kπ to reduce F1

e. If F = = F2 and F1 does not include the clause consisting entirely of π

formulas then return satisfiable
Else if F = = F2 then F = F1; K = 2;go to step d

f. F = F2;
Endloop

3. Let � = {C1, C2, . . . Cm} be the set of the clauses having no connectives in
F, |�| = m. Call the ER1Algorithm to check �’s satisfiability.

4. If � is unsatisfiable then return unsatisfiable
Else k = m + 1; go to step 2

4. CONCLUSIONS

Agents have become necessary due to the vast extent and scattered nature
of the information have landscape. It is accepted that multi-agent systems are
important to many areas in computer science, starting from specifying and ver-
ifying multi-threading systems and multi-processor computers to modelling
populations of robots that have animal or human-like behaviour. Now there has
been a lot of deep research on this aspect, including reasoning methods [4], in-
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teractions [5], general frameworks [6], etc. Concerning the automated theorem
proving in modal logics, there are approximately three ways at present. One
is the method based on tableaux [7]. The other is extending the resolution to
modal logics directly [8]. The third is the method based on translation [9]. We
introduce extension rule into modal logic directly by the destructive method
in this paper, because it has an advantage of simplicity, that is, it is easier to
understand. We strongly urge a multiplicity of approaches, and the full inves-
tigation of all. Limited by the space, we only discuss the things in proposition
modal logic K, we will consider the destructive extension rule in modal logic
T, K4, S4 and S5 as well as in the first-order modal logics in another paper.
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Abstract The goal of this article is to develop an efficient scheduling method based a pro-

posed novel discrete particle swarm optimization (PSO) for the job-shop schedul-

ing problem (JSSP). This paper also introduces a novel concept for distance and

velocity of particles in the PSO to pave the way for the JSSP. The proposed

method effectively exploits the capabilities of distributed and parallel computing

systems. Simulation results show that the proposed algorithm can obtain high

quality solutions for typical benchmark problems.
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1. INTRODUCTION

The job-shop scheduling problem (JSSP) is a very important practical prob-
lem in both fields of production management and combinatorial optimization
[1]. Because JSSP is among the worst members of the class of NP-complete
problems there remains much room for improvement in current techniques and
exploitation of new methods. In this paper, a new scheduling algorithm based
on the principles of the particle swarm optimization (PSO) is proposed. PSO
[2] is an evolutionary computation technique based on swarm intelligence. It
follows a collaborative population-based search. PSO effectively exploits the
distributed and parallel computing capabilities, and it has great capability of
escaping local optima.
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2. JOB-SHOP SCHEDULING PROBLEM

In JSSP, n jobs have to be processed on m different machines, where the
processing of each job consists of m operations performed on these machines in
a specified sequence. The operation of job i has to be performed on machine j
with an uninterrupted processing time tij. A schedule defines the time intervals in
which the operations are processed, but it is feasible only if it complies with the
constraints that each machine can process only one operation each time and the
operation sequence is respected to each job. The goal for optimization is to find
the sequence of n jobs to be completed on m machines such that the makespan
is minimized. The solution to the JSSP can be represented as the operation
permutation of the jobs on each machine. The total number of all possible
schedules is (n!)m . Obviously, it is impossible to exhaust all the alternatives for
finding the optimal solution. So it is necessary to restrict the searching space
and guide the searching process. There are three types of feasible schedules
in JSSP, namely inadmissible, semi-active and active schedules. The optimal
schedule is guaranteed to be an active schedule. So we only need to search the
optimal solution in the set of active schedules.

3. SCHEDULING ALGORITHM BASED ON PSO

3.1 Representation and bilevel encoding

In solving JSSP by PSO, each particle is requested to represent a potential
solution of the problem, namely a scheduling. In this paper, an operation-based
representation is adopted. By scanning the permutation from left to right, the
kth occurrence of a job number refers to the kth operation in the technologi-
cal sequence of this job. The prominent advantage of the representation is to
eliminate the ‘deadlocks’, but notice that, while each individual is related to a
unique active scheduling by the process of decoding discussed in the following
section, a scheduling can be related to more than one individual. In other words,
there is some redundancy in the search space. The job sequence of a machine
can be obtained easily by scanning a particle from left to right to find out the
job order for the same machine. Repeating the scanning for every machine,
we can obtain a new permutation which is called the bilevel encoding of the
particle. If the bilevel encoding expressions of two particles are the same, then
their corresponding schedules are just the same. If a particle is redundant, we
swap two operations of different jobs randomly until it is larruping. The inten-
tion of the bilevel encoding is to eliminate the redundancy, and we still use the
operation-based representation in the PSO. The initial population is produced
using the algorithm proposed by Giffler and Thompson.
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3.2 Objective function and fitness function

The objective function most largely used currently for the JSSP is the min-
imization of the makespan. Mathematically, the JSSP is to search a scheduling
such that

min(T (J M)) = min{max[T (1), T (2), . . . , T (i), . . . , T (m)]}, (1)

where T (i) is the final completion time of machining on machine i , T (J M) is
the final completion time of all the jobs. The fitness of particle i is evaluated
by the formulation that fi = 100 × opt/Ti (JM), where opt is the most optimal
makespan known. The value of the objective function can be obtained by the de-
coding process that assigns operations to the machines at their earliest possible
starting time by the technological order of each job, scanning the permutation
from left to right. But the scheduling acquired is only a semi-active. Then the
active decoding is applied, which checks the possible blank time interval be-
fore appending an operation at the last position, and fills the first blank interval
before the last operation.

3.3 The formulation of proposed novel PSO algorithm

In this section, we describe the formulations of the proposed novel PSO
algorithm for the JSSP. Firstly, the concept of the difference is extended. We
present the similarity measure of two particles. Let the i th and the j th particles
in a D-dimensional space be represented as Xi = (xi1, . . . , xid, . . . xi D) and
X j = (x j1, . . . , x jd, . . . x j D), respectively. Define functions

s(k) =
{

1 if xik = xjk

0 if xik �= xjk
and S(Xi , X j ) =

D∑
k=1

s(k) (2)

where S(Xi , X j ) is called the similarity measure between particle Xi and
particleX j . The difference of the locations between two particles, namely
‘distance’, is redefined by the following equation:

dis(Xi − X j ) = k · [α · | f (Xi ) − f (X j )|/100 + β · (D − S(Xi , X j ))/D], (3)

where f (Xi ) and f (X j ) are the fitness values of the particles Xi and X j re-
spectively, D is the dimension of particles, k is an acceleration coefficient, α

and β are positive weights. Correspondingly, the concept of velocity is also
extended. The velocity is defined the times of ‘adjustment’. The brief outline
of the adjustment algorithm is as follows.

Let X = (x1, . . . , xk, . . . , xD) and Y = (y1, . . . , yk, . . . , yD) be two parti-
cles in a D-dimensional space.
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Step 1: Select an index k of location and set an indicator m = 0, if xk = yk = s,
where s is the number on location k, go to Step 2, else, namely xk = s and
yk �= s, go to Step 3.

Step 2: Scan set X ′ = {xi |1 ≤ i < k} and set Y ′ = {yi | 1 ≤ i < k} from left to
right respectively to find out the times that s appears, and denote them as tx

and ty respectively. If tx > ty go to Step 4; if tx < ty , go to Step 5; if tx = ty ,
go to Step 6.

Step 3: Select a location index j in the particle Y randomly, which satisfies
y j = s and y j �= x j . Swap y j and yk , and set the indicator m = 1, then go
to Step 2.

Step 4: Swap s (which appears after location k) and y j (which satisfies y j �= x j ,
y j �= s and j < k) until tx = ty , then go to Step 7.

Step 5: Swap s (which appears in the front of location k) and y j (which satisfies
y j �= x j , y j �= s and j > k) until tx = ty , then go to Step 7.

Step 6: If m = 0, reselect an index k randomly; if m = 1, go to Step 7.
Step 7: Terminate.

Denote ‘⊕’ as the adjustment operation, then the proposed novel PSO al-
gorithm could be performed by the following equations:

vid = int[wvid + c1r1dis(pid − xid) + c2r2dis(pgd − xgd)], (4)

xid = xid ⊕ vid, (5)

where int[·] is the truncation function, dis(·) can be computed by Equation (3).
Besides, two heuristic operations are used to speed up the convergence. For
each particle, swap the locations of λ different elements randomly, and replace
the original particle by the best one. If there is no improvement of the best
solution for a certain number of iterations, then re-randomize some particles
in the population by a certain percentage.

4. NUMERICAL SIMULATION RESULTS

The performance of the proposed PSO-based algorithm for JSSP is exam-
ined by the well-known 6 × 6 benchmark problem, which is known that the
minimal makespan is 55. The following particle is an optimal solution obtained
by the proposed algorithm:

(3,3,3,2,2,2,1,1,4,4,3,5,6,6,6,6,1,4,4,2,5,5,3,3,5,1,1,2,2,4,4,5,5,6,6,1)

and the makespan obtained by the active decoding is equal to the best solution
found so far. Table 1 shows the start and end time of each operation of the jobs.
Figure 1 shows the Gantt chart of the active scheduling obtained by the particle.
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Table 1. An optimal schedule for the 6 × 6 benchmark problem.

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 Machine 6

Job Start End Start End Start End Start End Start End Start End

1 6 9 16 22 5 6 30 37 49 55 42 45

2 38 48 0 8 8 13 48 52 13 23 28 38

3 18 27 27 28 0 5 5 9 30 37 9 17

4 13 18 8 13 22 27 27 30 37 45 45 54

5 48 51 22 25 13 22 52 53 25 30 38 42

6 28 38 13 16 49 50 16 19 45 49 19 28

 0 10 20 30 40 50 time

job 2 job 3 job 1 job 4  job 5

machine

6

5

4

3

2

1

job 6

Figure 1. The Gantt chart of an optimal schedule.

5. CONCLUSIONS

A promising novel particle swarm optimization-based algorithm for job-
shop scheduling problem is proposed. Numerical experiment results are en-
couraging and show the real potential of the algorithm. It indicates a novel
approach to the combinatorial optimization problems, even if the hard NP-
complete problems. Investigation on further testing the performance of the
technique as well as theoretical study is in progress.
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Abstract This paper focuses on the visual servo control for an uncalibrated robotic arm

with an eye-in-hand camera. Without a priori knowledge of the robotic arm’s

kinematic model or camera calibration, the control system can track a moving

object through visual feedback. Two methods are proposed to resolve the output

constraint of control. The joint angle feedback is used to correct the calculating

values of the joint angles in the first control method. The output of controller is

re-scaled to ensure that the output constraint of controller is not violated in the

second method. The performances of the proposed control methods are illustrated

by the computer simulations.

Keywords: robotic arm, visual servoing, uncalibration, feedback control.

1. INTRODUCTION

The visual servoing control has been an active area of research for many
years. There has been significant progress on visual servoing control since 1973
[1]. There are two basic approaches to visual servo control, Position-Based
Visual Servoing (PBVS) and Image-Based Visual Servoing (IBVS). In PBVS
system, the object’s 3D pose is recovered through computer vision and the error
between the current pose and the desired pose is computed in the Cartesian task
space. In IBVS system, the error is measured between the image features in
two images and it is mapped directly to actuator commends. The placement of
camera can be put on the robot (“eye in hand”) observing the object, or fixed
in the environment and observing the object and the robot. A priori knowl-
edge on the kinematical structure and the camera parameters is required in the

G. R. Liu et al. (eds.), Computational Methods, 1099–1104.
C© 2006 Springer. Printed in the Netherlands.

1099



1100 Zhang Qizhi et al.

model-dependent visual servoing system. Recently, an uncalibrated eye-in-
hand visual servoing system has been proposed [2]. This method does not
require calibrated kinematics and camera models, so it is robust to the signal
noise and calibration errors. The robot control is achieved by quasi-Newton
method and estimating the composite Jacobian matrix by Broyden’s method at
each step. However, the desired joint angles may cause saturation of the speed
and/or the torque delivered by the joint actuators. This saturation may occur
in the initial stage of the tracking process, in which the end-effector of robot
is always far from the moving target point. Large joint angles increments are
required to track the moving target. Because no joint angles feedback is used in
the visual servoing control algorithm, the joint angles calculated by the control
algorithm will be drifted with the saturation of the joint actuators. In this pa-
per, two methods are proposed to improve the performances of visual servoing
control system, in which the saturation of the joint actuators is considered. The
joint angle feedback is used to correct the calculating values of the joint angles
in the first control method. The output of controller is re-scaled to ensure that
the output constraint of controller is not violated in the second method.

2. UNCALIBRATED CONTROL FOR
EYE-IN-HAND VISUAL SERVOING

Assume that the desired behaviour of the robot is to track a simple target.
In the image plane, the moving target is at position y∗(θ, t), the end-effector of
the robot is at position y(θ, t). The error function in the image plane is

f (θ, t) = y(θ, t) − y∗(θ, t) (1)

where θ represents the joint angle and t represents time. Minimizing the squared
error, one has [2]

θk+1 = θk − ( Ĵ T
k Ĵ k)−1 Ĵ T

k

(
fk + ∂ fk

∂t
ht

)
(2)

where fk = f (θk, tk) is the error at time tk and Ĵ k represent the kth approxima-
tion to Jacobian Jk = ∂ fk

∂t and hk = tk − tk−1 is the time increment. According
to Equation (2), the desired changes in joint angles can be computed. The pa-
rameters in Equation (2) can be estimated by Partitioned Broyden’s method as
follows [2]

J̃ k = J̃ k−1 + (� f − J̃ k−1h̃)(λ + h̃T P̃k−1h̃)−1h̃T P̃k−1 (3)

P̃k = 1

λ
(P̃k−1 − P̃k−1h̃(λ + h̃T P̃k−1h̃)−1h̃T P̃k−1) (4)
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Varying the weighting parameter λ between 0 and 1 we can change the memory
of the scheme. An algorithm for the combination of the Partitioned Broyden’s
method and Gauss-Newton controller given by Equations (1–4) can be found
in [2]. In every interval, the limitations of the increments of the joint angles
are not considered in the algorithms, but the maximum accelerations of joint
angles are limited in a real robotic system. If the desired changes of joint angles
exceed the limits of the robotic system, the values of the desired joint angles
will be drifted from the actual position.

3. CONSTRAINT VISUAL SERVOING CONTROL

The individual joint level controller in Equation (2) can be rearranged as

θk+1 = θk + �θ (5)

where �θ = −( Ĵ T
k Ĵ k)−1 Ĵ T

k ( fk + ∂ fk

∂t ht ) is the increment of the joint angle.
Firstly, the joint angles feedback can be introduced to solve this drawback

of the desired joint angles drifted from the actual position

θk+1 = θ
p

k + �θ (6)

where θ
p

k are the measurements of the joint angles. Because the joint angles
feedback are used, the desired joint angles θk+1 are corrected in each interval,
and the drift will not be taken place. The second method is to re-scale the
increment of the desired joint angles to ensure the joint actuators not to be
saturated

θk+1 = θk + θmax�θ/ ‖�θ‖ (7)

where θmax is the maximum increment of the robotic joint angles in each in-
terval. Because the desired joint angles do not exceed the ability of the joint
actuators, the desired joint angles will not be drifted.

4. SIMULATIONS AND RESULTS

The proposed new controllers are implemented on a two link planar robot
using the Matlab. Both lengths of link 1 and link 2 are 0.6 m. In the sim-
ulations, the target point is given a circular motion in a plane (x, y, z) =
(0.5 + 0.3 cos (kω/ fs), 0.5 + 0.2 sin (kω/ fs), 1). Where k is the iteration
number, ω = 0.8 rad/s is the frequency and fs = 20 H z is the sampling fre-
quency. The image is projected using a simulated camera with 640-pixels/m.
Uniformly distributed random image noise between ±1 pixels is added to the
image feature point of the target object. The maximum increment of the robotic
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Figure 1. Tracking target by IBVS.

joint angles in each interval is selected as θmax = 0.1 rad. The forgetting factor
is selected as λ = 0.99 in all the simulated examples.

The tracking trajectory using IBVS controller is shown in Figure 1, and the
result using the increment re-scaled is shown in Figure 2. The Image error for
using IBVS controller is shown in Figure 3, and the result using IBVS controller
with the increment re-scaled is shown in Figure 4. Comparing Figures 1–4, it
can be seen that, for a moving target, the fast and accurate tracking can be
achieved using different controllers. But at the initial stage of the tracking, the

Figure 2. Tracking target by new IBVS.
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Figure 3. Image error for IBVS control.

Figure 4. Image error for new IBVS.

image errors for IBVS controller are very large. After 10 iterations, the average
RMS tracking image error is about 5 pixels.

5. CONCLUSIONS

In practice, the desired joint angles may cause saturation of the joint actu-
ators, and the joint angles calculated by the control algorithm will be drifted
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with the saturation of the joint actuators. Two methods are proposed to improve
the performances of the visual servoing control system, in which the saturation
of the joint actuators are considered. The joint angle feedback is used to correct
the calculating values of the joint angles in the first control method. The output
of the controller is re-scaled to ensure that the increment of desired joint angles
does not exceed the ability of robotic actuators in the second method.
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Abstract Interflation of the function f (x1, . . . , xn) of the n variables with help of the its

traces (and traces of its derivatives of order ≤ N ) on the M surfaces the dimension

m is recovery (possible, exactly) f. If m = 0 this is interpolation on M points (for

n ≥ 1). If m = 1 (for n ≥ 2) it is interlineation (blending function interpolation)

on M lines. In this paper the review of last achievements and some applications

interflation, interlineation functions and blending approximation functions for

construction the economical algorithms in the approximation theory is given.

Keywords: interpolation, interlineation, interflation, blending function interpolation.

1. INTRODUCTION.

Interflation can be used in approximation theory, in methods LIDE and
NIDE (methods of the reduction to the systems of the ordinary linear or non
linear-integro-differential equations) the solution of the boundary value prob-
lems, in cartography, in computer tomography, in signals processing, for the de-
scription of surfaces of automobiles, planes, space bodies, etc. References in [1].

2. SOME DEFINITIONS

Let n, M ∈ N, m, N ∈ 0

N—are given numbers; �k, k = 1, M—are
given m–dimensional surfaces in Rn (0 ≤ m < n); ϕk,p(x)|�k = Lk,p f (x)|�k ,

G. R. Liu et al. (eds.), Computational Methods, 1105–1109.
C© 2006 Springer. Printed in the Netherlands.
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Table 1. Comparison interpolation, interlineations and interflation.

The Approximation Method Kind of the used information

Interpolation of the functions The values of the f (x) and its derivatives

one or more variables (until fixed order) on some given points

Interlineation of the functions The traces of the f (x) and its derivatives

two or more variables (until fixed order) on some given lines

Interflation of the functions The traces of the f (x) and its derivatives

three or more variables (until fixed order) on some given surfaces

k = 1, M, p = 0, N are given traces of some function f (x) and traces of some
operators Lk,p f (x). Function f can be the unknown. Lk,p f (x) can be partial

derivatives or normal derivatives Lk,p f (x)|�k = ∂ p f (x)/∂v
p
k |�k , p = 0, N

for case m = n − 1 and so on; ‖ · ‖ = ‖ · ‖C .

Definition 1. Operators O({ϕk,p}; x) := O({Lk,p}, {�k}, {ϕk,p}, x) we
shall name the interflation operators if L�,q O({ϕk,p}, x)|��

= ϕ�,q(x)|�, � =
1, M, q = 0, N . If m = 0, then O({ϕk,p}, x) are interpolation operators on M
points. If m = 1, n ≥ 2 then �k are lines in Rn , O({ϕk,p}, x) are interlineation
operators.

Definition 2. Let O({ϕk,p}, x) = ∑M
�=1

∑N
q=0 γ�,q({ϕk,p}, x)h�,q(x), where

h�,q(x) = h�,q({Lk,p}, {�k}, {x)—some auxiliary functions, which are inde-
pendence from approximating function f (x) and γ�,q({ϕk,p}, x) = γ�,q({Lk,p},
{�k}, {ϕk,p}, x) are linear operators of functions ϕk,p, k = 1, M, p = 0, N .
Then we shall call O({ϕk,p}, x) linear, interflation (interlineations, interpola-
tion) operators. In another case there are non-linear interflation (interlineation,
interpolation) operators.

Definition 3. Let auxiliary functions h�,q(x) = h�,q({Lk,p}, {�k}, x) are ra-
tional, polynomial, trigonometrical or spline—functions or functions, which
are using R-functions. Then we shall call O({ϕk,p}, x) rational, polynomial,
trigonometrical, spline and so on interflation (interlineation, interpolation)
operators.

Definition 4. If f (x) ∈ Cr (Rn), r ≥ N ≥ 1 and O({ϕk,p}, x) ∈ Cr (Rn) then
we shall call that operators O({ϕk,p}, x) preserve of the class differentiabil-
ity Cr (Rn) of the function f (x). In another case we shall call that operators
O({ϕk,p}, x) not preserve of the class Cr (Rn) differentiability of the function
f (x).
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Definition 5. If ∃�, q : L�,q O({ϕk,p}, x)|��
�= ϕ�,q(x)|��

that O({ϕk,p}, x) are
rational, polynomial, trigonometrical, spline and so on blending approximation
operators.

3. SOME SELECTED RESULTS

1. Interlineation operators without preserving of the class Cr (R2), r ≥ 1.
1.1. Rational interlineation operators on M lines. Let n = 2 and

�k : ωk(x) : = ak x1 + bk x2 − γk = 0, k = 1, M, a2
k + b2

k = 1

ϕk,s(x) = ∂s f/∂vs
k(x)|�k = ∂s f/∂vs

k(x1, (γk − ak x1)/bk)

if bk �= 0; vk = ∇ωk(x) = (ak, bk)

or ϕk,s(x) = ∂s f/∂vs
k(x)|�k = ∂s f/∂vs

k((γk − bk x2)/ak, x2)

if ak �= 0

Ok,N f (x) =
N∑

s=0

ϕk,s(x − ωk (x)∇ωk(x))
ωs

k(x)

s!

Hk(x) =
M∏
i=1
i �=k

ωN ∗
i (x)

/ M∏
�=1

M∏
i=1
i �=�

ωN ∗
i (x), N ∗ = N + 1,

if N = 2q + 1, q ∈ 0

N and N ∗ = N + 2,

if N = 2q, q ∈ 0

N ;

Theorem 1. Operator OM,N ({ϕk,s}, {�k}, x) =
M∑

k=1

Ok,N f (x)Hk,N (x)

has properties

∂s OM,N ({ϕk,s}, {�k}, x)/∂vs
k(x)|�k = ϕk,s(x)|�k , k = 1,M, s = 0,N .

Remark 1. If �k : ωk(x) = 0, k = 1, M are arbitrary set lines or sur-
faces in Rn, n ≥ 2 and ∂ pωk(x)/∂v

p
k |�k = δ0,p, p = 0, N then state-

ments of the theorem 1 are valid.
1.2. Polynomial, trigonometrical and spline—interlineations on a set mu-

tually perpendicular straight lines. Let G = I 2, I = [0, 1], 0 = sk,0 <

· · · < xk, Mk = 1, k = 1, 2; ∂sk f (x)/∂xsk
k |xk=xk,ik = ϕk,ik,sk(x3 − k),

Bk f (x) =
Mk∑

ik=0

N∑
sk=0

ϕik ,Sk (x3−k)hMk , N,sk (xk), h(q)
Mk ,ik ,sk

(xk, j ) = δq,ik δik , j ,

q, sk = 0, N ; ik, j = 1, Mk hMk ,N,sk (xk) are basic polynomial, trigono-
metrical or spline interpolation system.
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Theorem 2. Operator Of (x) = (B1 + B2 − B1 B2) f (x) has next
properties

∂ p Of (x)/∂x p
k = ∂ p f (x)/∂x p

k = ϕk,ik ,sk (x3−k), xk = xk,ik ,

p = 0, N , ik = 0, Mk, k = 1, 2,

r12 f (x) := (I − O) f (x) = (1 − B1)(1 − B2) f (x),

i.e., R12 f (x) = O(ε2) if (I − Bk) f (x) = O(ε), ε → 0, k = 1, 2. The
polynomial case on arbitrary set straight lines (for n = 2) and planes
(for n = 3) [1].

1.3. Economical polynomial, trigonometrical and spline—interpolation op-
erators with help corresponding interlineation operators. In gen-
eral these operators has the form O f (x) = (B1 + B2 − B1 B2) f (x).
Operators Bk f (x) are receiving from Bk f (x) by make substitution
ϕik ,sk (x3−k) ≈ 
ik ,sk (x3−k) in Bk f (x), where 
ik ,sk (X3−k) are polyno-
mial, trigonometrical or spline – interpolation operators with properties
‖ϕik ,sk (x3−k) − 
ik ,sk (x3−k)‖ = o(ε2).

Theorem 3. The interpolating operator O f (x) uses smaller quantity
the values of function f (x), than the operator B1 B2 f (x) (if they both
approximate f (x) with error O(ε2)).

2. Interlineation and interflation operators with preserving of the class
Cr (Rn), r ≥ 1. If N ≥ 1 then we recommend to using the operators, which
are preserving the class Cr (Rn), r ≥ 1. These operators are using the solu-
tions of the some differential equations with partial derivatives [1].

3. 3D interpolation operators with help 3D interflation operators. Let

f (x) ∈ Cr,r,r (I 3), r = 1, 2, uk,ik (x) = f (x)|xk=Ik/M ,

0 ≤ ik ≤ M, k = 1, 3,

Lk,M f (x) =
M∑

ik=0

uk,ik (x)h(Mxk−ik ), h(t) = (|t − 1| − 2|t | + |t + 1|)/2

Theorem 4. Operator Of (x) = (L1,M + L2,M + L3,M − L1,M L2,M − L1M

L3,M − L2,M L3,M + L1,M L2,M L3,M ) f (x) has properties O f (x)|xk= jk/M =
f (x)|xk= jk/m, jk = 0, M, k = 1, 3, ‖ f − O f ‖ = O(M−3r )∀u ∈ Cr,r,r (I 3),
r = 1, 2

Theorem 5. Let we make substitution

u1,i1
(x) = f (i1/M, x2, x3) ≈ ū1,i1

(x)

=
M3/2∑
j2=0

M3∑
j3=0

f
(
i1/M, j2/M3/2, j3/M3

)
h

(
M3/2x2 − j2

)
h

(
M3x3 − j3

)
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+
M3∑

j2=0

M3/2∑
j3=0

f
(
i1/M, j2/M3, j3/M3/2

)
h

(
M3x2 − j2

)
h

(
M3/2x3 − j3

)

−
M3/2∑
j2=0

M3/2∑
j3=0

f
(
i1/M, j2/M3/2, j3/M3/2

)
h

(
M3/2x2 − j2

)
h

(
M3/2x3 − j3

)

Analogously substitutions make also for another functions two and one
variables in Of. Then we receiving operator O f (x) with properties:
1)‖ f − O f ‖ = O(M−3r ); 2)O f (x) used Q = 6(M + 1)(M3/2 + 1)(M3 +
1) = O(M5.5) values function f . Note, that classical three—linear in-
terpolation operators L1,M3 L2,M3 L3,M3 f (x) has the same error and used
Qclassic = (M3 + 1)3 = O(M9) values function f . The statements of the
theorem 5 is valid also for splines more high order.

4. Economical approximation operators with help blending function ap-
proximation operators. Let f (x) ∈ Cr (G), x = (x1, x2), Bk,N f (x), k =
1, 2; N ≥ 2 are one dimensional approximational operators, which worked
to variable xk and other variable is as parameter. Then BN f (x) = (B1,N +
B2,N − B1,N B2,N ) f (x) are blending approximation operators with prop-
erty: ‖ f − Bk,N f ‖ = O(ε), ε → 0, k = 1, 2 ⇒ ‖ f − BN f ‖ = O(ε2).
The economical approximation operators has the form (B N f (x) = (B1,N +
B2,N − B1,n B2,N ) f (x). Operators Bk,N f (x) are receiving from Bk,N f (x) by
make substitution ϕik ,sk (x3−k ≈ 
ik ,sk (x3−k) where 
ik ,sk (x3−k) are Fourier’s,
Fejer’s, Bernstein’s, Haar’s and so on approximation operators with proper-
ties ‖ϕik ,sk )(x3−k) − 
ik ,sk (x3−k)‖ = o(ε2).

Theorem 6. The approximating operators B N f (x) uses smaller quantity
of values of Fourier’s, Fejer’s, Haar’s coefficients, than the classical 2D op-
erators B1 B2 f (x) (if they both approximating f (x) with the same error
O(ε2)).

This results can be extended for case n ≥ 3.

4. CONCLUSIONS

Author think approximation theory in 21st century will be joint with in-
terflation of the functions many variables. The area of its applications will be
expanded.
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Abstract Independent component analysis (ICA) has attracted much interest in dynamic

contrast-enhanced (DCE) neuroimaging, as it allows for blind separation of the

brain haemodynamic patterns (components). However, the exact number of com-

ponents is always unknown in practice. In this work, numerical simulation study

was carried out to compare the performance of ICA by using the principle com-

ponent analysis (PCA) to reduce the number of components. Oscillatory indices

method and kurtosis method are also discussed for automatically selecting the

components of interest.

Keywords: DCE image processing, ICA, PCA, component of interest.

1. INTRODUCTION

Dynamic contrast-enhanced imaging involves the intravenous injection of
a contrast agent (tracer) and sequential imaging to simultaneously monitor the
changes of tracer concentration over time. When the tracer reaches the tissues
of scanning layer, the captured image will show enhancement due to the pres-
ence of tracer. The enhanced signals on different brain tissues represent distinct
haemodynamic patterns that caused by the difference of local microvasculature
and functions of the brain. Therefore, the measured signals may be looked as a
summation of the brain haemodynamic behaviour and some artificial processes,
like subtle head movements, physiological pulsations and machine noise. By as-
suming the spatial independence of those haemodynamic patterns and artificial

G. R. Liu et al. (eds.), Computational Methods, 1111–1116.
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processes, independent component analysis is able to separate those mixed
signals without any priori knowledge.

Application of ICA on functional neuroimaging (fMRI) was firstly carried
out by McKeown et al [1] to extract the task-related brain information. While
in DEC neuroimaging, as the areas affected by abnormal brain function like
tumour should be unrelated to those affected by other artificial factors, it is
able to reveal the brain haemodynamic abnormalities by using the spatial ICA
technique.

2. METHOD

Each frame of the series of DCE image is first converted into a 1-D signal
vector Xi (i = 1, . . . , m), here m is the total number of frames. The length
of the signal vector p equals the number of pixels per frame. The signal Xi is
considered as a linear combination of the independent components Ci . Assume
the number of components is

n, we have : Xi = M1C1 + M2C2 + . . . + MnCn (1)

The entire image data can then be expressed as:

X = M · C (2)

where X is the m × p matrix of image pixels (data), M is the m × n mixing
(linear combination) matrix and C is the n x p component matrix. Each row
of the component matrix, Ci , represents one independent component. Both
the mixing matrix, M, and the component matrix, C, can be estimated by
iterative attempts to minimize redundancy between components (Infomax) and
updating the element of weight matrix, W, where W = M–1. The vector Ci is
then reformed into 2-D to obtain the component map. Those maps are fixed
over time, while the relative contribution of each map changes with a unique
associated time course (column of mixing matrix, M).

In practice, the exact number of independent components is always un-
known. Different settings of the components number can get different ICA
results. McKeown and Sejnowski [2] suggested that the component number
can be reduced by first preprocessing the data with the PCA technique. How-
ever, the cutoff point for the eigenvalues may not be obvious and should be
selected carefully. In this work, numerical simulation study was carried out to
compare the performance of ICA by using PCA to reduce the number of com-
ponents. Oscillatory indices method and kurtosis method were also discussed
for the selection of components of interest.
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Figure 1. (a) Synthetic brain mask. 1-artery, 2-vein, 3-tumour, 4-artery (delayed), 5-vein

(delayed), 6-grey matter, 7-ischaemic area, 8-ventricles, 9-white matter. (b) Simulated concen-

tration signals used in synthetic dynamic images.

2.1 Numerical simulation study

The synthetic dynamic images consisted of 50 images of 63 × 63 pixels
with a time interval �t of 1 s. Totally 9 types of haemodynamic signals were
applied on a synthetic brain mask to discriminate their locations, as shown in
Figure 1a and b. Those signals were obtained from the DCE CT images of
a patient with brain tumour and ischaemic stroke. Smoothing preprocess was
applied on those signals before constructing the synthetic dynamic images.
Gaussian noise was then added to the synthetic images to generate the signal-
to-noise ratios (SNRs) that is typical of the modern imaging modalities. Similar
to previous work [3], a preprocessing step of smoothing with a 3 × 3 median
kernel was applied to those synthetic images. The Infomax ICA scheme [1] was
then used to separate the synthetic images into spatial independent components.
The number of components was set to 50 (full ICA) and 5, 10 and 20 with PCA
preprocessing.

3. RESULTS AND DISCUSSIONS

In most of our simulation experiments, the tumour, artery, vein and ventricle
related component maps were observed. However, the grey matter, white mat-
ter and ischaemic area were not clearly seen even when SNR increases to 50.
The tumour related component maps show existence of artery and vein partly
(Figure 2a). The vein signal and its 2s delayed signal show combination on the
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Figure 2. Typical independent component maps at different noise level. (a) Tumour related map

at SNR 20; (b) Vein related map at SNR 20; (c) 2 s delayed vein-related map at SNR 50; (d) Vein

related-map at SNR 50.

corresponding component map (Figure 2b). However, when SNR increases to
50, those signals were completely separated (Figure 2c,d). The normalized tu-
mour related, artery related and vein related time courses show consistency with
their respective original signal even at a high noise level (Figure 3). The inter-
pretable component maps and their corresponding time courses did not change
abruptly with the decrease of components amount. Even when the number of
components was reduced to 5, the strong signal related components were still
recognizable, although more severe combination was observed. In fact, the
PCA preprocessing step remains the large variance of the data, so the strong
signal related components could be essentially unchanged with the reduction
of components amount. The PCA preprocessing step also diminishes the noise
effect, which hence improves the ICA result. Firstly, in full ICA, the ventricle
signal was split into two components at low noise level, and was missed at high
noise level. While with PCA preprocessing, such situation was successfully
avoided. Secondly, using PCA to reduce the data dimension saves the computa-
tion load. In real brain disease diagnosis, this can be a very meaningful factor.
Table 1 shows the average computation time of 12 simulation runs with different
components number on a Pentium IV personal computer. The small amplitude
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Figure 3. Time course of delayed vein- related component at high noise level

and similarity between each other make the weak signals inseparable in our
simulation. Part of the weak signal information that corresponding to the small
eigenvalues may be discarded during the PCA preprocessing step. However, in
full ICA, those weak components were still inseparable as they were corrupted
by the components split and noise effect. One way to solute this problem may
be removing the strong components and run the ICA iteratively [4].

In real application, the selection of meaningful component maps is mainly
done by human visualization. Such task can be very tedious, as a large majority
of component maps are non-interesting especially when the number of compo-
nents is fairly large. In our previous work [3], an oscillatory indices method was
proposed to select the components of interest automatically. The basic idea is
that the haemodynamic signals are always steadily, while the noise effect can be
very unpredictable. Therefore, the time course of the physiological components
should be relative smoother than that of the noise components. The statistical
kurtosis of the components may also be useful, as the noise components always
have a kurtosis near zero (Guassian distribution). In addition, some components
of interest may not have smooth enough time courses when the components
split is severe. However, the computation of kurtosis is much more complex
than that of the oscillatory indices.

Table 1. Average computation time.

Components number 50 20 10 5

Computation time (s) 99.7 20.3 12.9 7.1
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4. CONCLUSIONS

Independent component analysis with dimension reduction by PCA shows a
satisfactory performance in our simulation. It not only reduces the noise effect
but also saves the computation time.
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Abstract We transform the geometric constraint solving into the numerical optimization

solving. A new hybrid algorithm is proposed which combines the merits of global

search of the genetic algorithm (GA) and the good property of local search of the

conjugate gradient approach. This algorithm uses GA to search the area where

the best solution may exist in the whole space, and then performs fine searching.

When the algorithm approaches to the best solution and the search speed is too

slow, we can change to the effective local search strategy—the conjugate gradient

algorithm in order to enhance the ability of the GA on fine searching. It makes

the algorithm get rid off the prematurity convergence situation. We apply this

algorithm into the geometric constraint solving. The experiment shows that the

hybrid algorithm has the effective convergence property and it can find the global

best solution.

Keywords: geometric constraint solving, conjugate gradient, genetic algorithm, hybrid

algorithm, convergence.

1. INTRODUCTION

Many scholars worked over the constraint solving by numeric computing
approach, artificial intelligence approach, degree of freedom approach and
graph-based approach. To conclude there are whole solving, sparse matrix
solving, joint analysis solving, constraint diffuse solving, symbolic algebra
solving and guides solving [1].

In recent years, the genetic algorithm (GA) attracts many researchers’ atten-
tion in many areas. But in these areas the algorithm may get into the local best

G. R. Liu et al. (eds.), Computational Methods, 1117–1121.
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solution because of its poor local searching capability. Conjugate gradient al-
gorithm is a common algorithm used in non-constraint optimization problems.
It was also indicated that the more dimensions of the function, the longer time
spending on calculating differential and the time spending on every iteration is
also much longer.

Integrated the advantages and disadvantages of these algorithms above all,
the hybrid GA based on conjugate gradient algorithm is proposed [2]. This
algorithm uses GA to search the area where the best solution may exist in
the whole space, and then performs fine searching. When the algorithm ap-
proaches to the best solution and the search speed is too slow, we can change to
the effective local search strategy—the conjugate gradient algorithm in order
to enhance the ability of the GA on fine searching. In reference [3], a hy-
brid algorithm based on dropped method is introduced. It makes the algorithm
get rid off the prematurity convergence situation. Because of the operations
of coding and decoding all the iterations, the convergence speed of this al-
gorithm becomes very slow. As a try, a new hybrid optimization algorithm is
introduced that integrates the conjugate gradient algorithm and the improved
GA in this paper. Compared to GA, this new algorithm adds a conjugate gra-
dient, which can improve the ability of the local fine adjustment and avoid
getting into early convergence situation. In the other hand, this method adds
GA compared with the conjugate gradient algorithm, which has strong global
search ability and provides a good original point that improves the calculating
efficiency.

2. GEOMETRIC CONSTRAINT SOLVING

Geometric constraint can be defined as the inherent relationships among the
geometric elements in a geometric constraint system. It can reflect the shape and
location of the geometric body directly. The geometric constraint includes two
kinds of geometric constraint, structure constraint and dimension constraint.
The former is the geometric topological relationships, which describes the rel-
ative location in the space and connection manner. The values of parameter
attribute do not change in the process of parameterization. The dimension con-
straint describes the constraint by the label of the dimension on the graph, such
as distance, angle and so on. The label of the dimension in engineering drawing
is a direct and natural describer of the geometry. It gives a best modification
manner of geometry. The aim of dimension driving is to modify the drawing by
the changing label of dimension but maintains the relationships of topological
not changed in the whole process. The constraint problem can be formalized as
(E , C) [4], here E = (e1, e2, . . . , en), it can express geometric elements, such
as point, line, circle, etc; C = (c1, c2, . . . , cm), ci is the constraint set in these
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geometric elements. Usually, one constraint is represented by an algebraic equa-
tion, so the constraint can be expressed as follows. X = (x0, x1, . . . , xn), Xi

are some parameters. Constraint solving is to get a solution x to satisfy
formula (1).

⎧⎪⎨
⎪⎩

f1(x0, x1, x2, . . . , xn) = 0
...

fm(x0, x1, x2, . . . , xn) = 0

(1)

F(X j ) =
m∑
1

| fi | (2)

Apparently if X j can satisfy F(X j ) = 0 then X j can satisfy formula (1). Then
the constraint problem can be transformed to an optimized problem and we
only need to solve min (F(X j )) < ε, ε is a threshold. In order to improve the
speed of the algorithm, we adopt the absolute value of fi not the square sum to
express constraint equation set.

3. HYBRID ALGORITHM

3.1 Improved genetic algorithm

Improved GA can be expressed as follows:

Step 1. Initialization: produce an original group at random.
Step 2. Calculate each individual’s adaptation value in according to adaptation

function.
Step 3. Choose father generation according to the proportion information of

each chromosome. In order to quicken the convergence speed, in every
generation the solution that has a maximal adaptation value will be trans-
ferred to the next generation compulsively, and not influenced by the choice
process.

Step 4. Carry out the crossover operation to two individuals selected at ran-
dom by the method which associates one-point crossover and two-point
crossover, fixed pc and self-adaptive pc.

Step 5. Carry out the variation operation to every individual in every generation
by the method which associates general variation and big variation, fixed
pm and self-adaptive pm .

Step 6. If the stop rule can be satisfied, we can acquire the global best solution
and the algorithm is convergent, otherwise turn to step 2.
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3.2 Conjugate gradient algorithm

A common conjugate gradient algorithm can be written as follows:

Step 1. Choose the initial value x (0) in s and the precision ε > 0;
Step 2. Compute g0 = ∇ f (x (0)), s(0) = −g0, k = 0;
Step 3. x (k+1) = x (k) + λks(k), gk+1 = ∇ f (x (k+1)), in the formula λk = arg min

f (x (k) + λks(k));
Step 4. If, ‖gk+1‖ ≤ ε, the iteration will stop, otherwise turn to step 5;
Step 5. If k < n−1, compute μk+1 = ‖gk+1‖2/‖gk‖2, s(k+1) = −gk+1 +

μk+1s(k), assume k = k + 1, turn to step 3, if k = n − 1, assume x (0) = x (n),
turn to step 2.

3.3 Hybrid algorithm

Step 1. Initialize the colony;
Step 2. Carry out iteration by the GA, search the best individual. If after some

generations the best individual has not appeared, then turn to step 3.
Step 3. If after some steps search by Conjugate Gradient Algorithm there is no

better points than, then stop; otherwise assuming to find a point y whose
function value is better than, then produce a colony including y, return
step 2.

We can realize from Figure 1. that once a user defines a series of relations, the
system will satisfy the constraints by selecting proper state after the parameters
are modified.

(a) A design instance (b) solving

Figure 1. The result of the experiment result.
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4. RESULT

From the study in the chapter, we can come to a conclusion: conjugate
gradient algorithm can help the GA avoid the earlier convergence condition.
Compared to GA, this new algorithm adds a conjugate gradient, which can
improve the ability of the local fine adjustment and avoid getting into early
convergence situation. On the other hand, this method adds GA compared with
the conjugate gradient algorithm which has strong global search ability and
provides a good original point that improves the calculating efficiency. This
algorithm can achieve the global optimization solution finally.
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Abstract Image mosaic plays an important role in producing panoramic image. We pro-

posed an automated seamless mosaics algorithm. In our proposal, firstly, we use

particle swarm optimization (PSO) to find a certain area which contains sufficient

objective characters, then we use pattern matching method to search the matching

patch in another image and adjust image; at last, we make use of feathering blend-

ing to provide a smooth transition between overlapping areas and get automated

seamless mosaics of images.

Keywords: image mosaics, seamless mosaics, particle swarm optimization, feathering.

1. INTRODUCTION

Panoramic image is a method to make use of realistic images to get a full
view panoramic space [1–3]. Image mosaics algorithms can be divided into:
registration algorithms based on correlation and registration algorithms based
on characters [1, 4, 5]. Image automated seamless mosaics involve many fields,
such as module identification, optimization and so on. Actually, automatically
searching overlapping areas of images can be described as follows: there are
two rectangular areas A and B, how to search the position of A2 in image B,
where B contains the area A2 and area A and area A2 are identical modules. In
this chapter, we make use of Particle Swarm Optimization [6] (PSO) to find an
area which contains sufficient objective characters in one image and find corre-
sponding area in another image using module matching, and then adjust these
images. At last, we make use of feathering blending to provide a smooth transi-
tion between overlapping areas and get automated seamless mosaics of images.

G. R. Liu et al. (eds.), Computational Methods, 1123–1128.
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2. MATCHING MOSAICS

2.1 Optimized characteristic block extraction based
on PSO

Two adjacent images can be overlapped by each other by 50% because
tripod might not be completely horizontal and cameras might be sloping or
facing upwards. Thus, the first job of image mosaics is to exactly allocate the
overlapping areas of two images. And the second one is to adjust the lightness,
since the light intensity of two images from different points might be of great
difference.

In the first image, if we can confirm area A, then we can easily get area
B using module matching methods in the other image, according to image
overlapping theory, taking acceptable range of error into consideration. The
more objective characters we are searching in area A, the much difference is
required between this area and surrounding areas, and the better. Distance L2

is simplest and most frequently used distance function to compare the degree
of similitude of two areas. The value of L2 is small when two areas are very
similar to each other, and vice versa. For a certain area S, we can calculate
four values of L2 by comparing itself with its surrounding up, down, left and
right four areas of the same size, denoted as f1, f2, f3, f4. The bigger of sum
of f1, f2, f3, f4, the more difference between area S and its surrounding areas.
We denote evaluation function of area S as:

F = f1 + f2 + f3 + f4 (1)

The distance L2 of according areas is:

fi = sqrt

{
k∑

m=1

l∑
n=1

[(R(pmn
S ) − R(pmn

Si
))2 + (G(pmn

S )

−G(pmn
Si

))2 + (B(pmn
S ) − B(pmn

Si
))2]

}
(2)

Where, S, Si are target area and its surrounding areas, respectively; k, l are the
width and height of the area. R(), G(), B() are values of three primary colours
of pixels. pmn

S is the pixel with the coordinate value (m, n) in area S and pmn
Si

is the pixel with the coordinate value (m, n) in area Si .
For any area S in the right half of the first image, the bigger of value F ,

the easier we can find an area with sufficient information needed for matching
searching. How to find an area S containing sufficient objective characters is a
better problem and we just need a satisfied result. Therefore, we can use particle
swarm optimization (PSO) [6] to searching for area S.
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PSO is an intelligent optimized methods based on iteration and was firstly
proposed by Kennedy and Eberhart [6]. In PSO, particle swarm is searching in
an n-dimension space for new solution by constantly adjusting its position X ,
where the position of each particle is a solution of the problem. Each particle
can record the best solution it has found, denoted as Pid , and the best position
of the whole particle swarm ever passed, i.e., the best solution at the present,
denoted as Pgd .The speed of each particle is denoted as V :

V ′
id = Vid + η1r and ()(Pid − Xid) + η2r and ()(Pgd − Xid) (3)

Where, Vid is the spend of particle i on the dth dimension. η1, η2 are parameters
to adjust the relative importance of Pid and Pgd , normally, η1 = η2 = 2. Thus,
we can calculate the next position of the particle by:

X ′
id = Xid + Vid (4)

From (3) and (4), we can get that the moving direction of particles is determined
by three fractions: its velocity Vid , the distance between current location and
the best location (Pid − Xid), and the distance from the best location of the
particle swarm (Pgd − Xid).

When mosaicking two images with overlapping areas, we randomly dis-
tributed 10 particles in the right half of the first image. The initial position is
the coordinate of several pixels and we define an initial velocity of these par-
ticles. Each particle is moving in the solution space. We can find a matching
area with certain characters, by adjusting the moving direction and velocity
of particles using fitness function. Each particle can decide an area of 20∗20,
which is used to search for areas with multiobjective characters.

Figure 1(a) demonstrated how to find area S with sufficient characters in one
image using PSO algorithm. The area in the green square is the area S we get.

Figure 1. (a) is characteristic patch we found using PSO algorithm and (b) is the matching patch

based on this characteristic patch.
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2.2 Image registration

Because the light intensity of the same scene in different photos might be
different and the distributions of lightness are not identical, we might not find
matching areas when we mosaicking images. So we have to adjust the images
to ensure the general identity of the luminance histograms of these images. In
this paper, we use the method proposed by Hertzmann [7] to process the first
image. We can use the following formula to calculate the lightness of each pixel
in the first image:

Y (p) = σ̄in

σout
(Y (p) − μout ) + μ̄in; σ̄in = 1

n

n∑
i=1

σi ; μ̄in = 1

n

n∑
i=1

μi (5)

Where σi,μi and σout,μout are the standard deviations of the luminance and
mean luminance in the first image and the second image, respectively.

In the first image, if area S has been determined, we apply range of errors
in the second image and then obtain a certain searching space. In this search
space, we compare area S with another area of the same size, and the area
with the smallest value is the area we are searching for, if we use L2 distance
formula in formula (2) as our evaluation function. Figure 1 demonstrates how
to find matching areas, in which, (a) is characteristic patch we found using PSO
algorithm at original images with overlapping areas, and (b) is the matching
patch based on this characteristic patch at original images with overlapping
areas. The area in red square is the matching space we used for searching and
the area in green square is the matching patch we get.

3. SMOOTHING PROCESSING

After image allocation, if we simply mosaic two images together, there
might be a seam at the splicing tape. To avoid this, we can fix the colours using
feathering [1] methods in order to get a smooth combined image with high
quality. We can do feathering process in the correcting areas of two images,
which is within 10 pixels away from the central matching area. We demote the
correcting area of the first image as R1, G1, B1 and that of the second one
as R2, G2, B2 and the correcting area after feathering as R, G, B. We use the
following formula to feather the pixels in the correcting area:

R = R1 ∗(1 − p) + R2 ∗p; G = G1 ∗(1 − p) + G2 ∗p;

B = B1 ∗(1 − p) + B2∗ p (6)
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Figure 2. Seamless image mosaics after feathering.

Where, p is the tapering factor, which is related to the overlapping distance to
the horizontal direction between images, changing from 1 to 0 in the range of
(0, 1). We can achieve seamless image mosaics after feathering, as shown in
Figure 2.

4. CONCLUSION

In this chapter, we proposed a new fast image mosaics algorithm based on
PSO to achieve full view panoramic image. It combined PSO can speed up
image searching and find the areas containing multiobjective characters. We
make use of feathering blending to provide a smooth transition between over-
lapping areas and get automated seamless mosaics of images. The advantage
of our algorithms is that ghost phenomenon might occur when there are mov-
ing objects in the mosaicking areas, that is, the algorithm is not suitable for
the circumstance when characteristic areas are at the boundary of the moving
objects.
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Abstract In this article, we investigate the problem of checking consistency in a hybrid

formalism which combines two essential formalisms in qualitative spatial rea-

soning: topological formalism and cardinal direction formalism. First the general

interaction rules are given, and then, based on these rules, an improved con-

straint propagation algorithm is introduced to enforce the path consistency. The

results of computational complexity of checking consistency for CSPs based

on various subsets of this hybrid formalism are presented at the end of this

article.

Keywords: computational complexity, constraint propagation algorithm, qualitative spatial

reasoning, binary constraint satisfaction problem, consistency checking.

1. INTRODUCTION

Combining and integrating different kinds of knowledge is an emerging
and challenging issue in Qualitative Spatial Reasoning (QSR). The work by
Gerevini and Renz [1] has dealt with the combination of topological knowledge
and metric size knowledge in QSR, and the work by Isli et al. [2] has combined
the cardinal direction knowledge and the relative orientation knowledge. In
this paper, we are devoted to investigating the computational problems in the
formalism combining topological and cardinal directional relations. We first
introduce the two formalisms of topological and cardinal directional relations,
respectively.
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1.1 Topology formalism

Topology is perhaps the most fundamental aspect of space. Topological rela-
tionships are invariant under topological transformations, such as translation,
scaling and rotation. Examples are terms like neighbour and disjoint [3]. RCC8
is a formalism dealing with a set of eight jointly exhaustive and pairwise disjoint
(JEPD) relations, called base relations, denoted as DC, EC, PO, EQ, TPP, NTPP,
TPP−1, NTPP−1, with the meaning of DisConnected, Extensionally Connected,
Partial Overlap, EQual, Tangential Proper Part, Non-Tangential Proper Part and
their converses. Exactly one of these relations holds between any two spatial
regions. In this chapter, we will focus on RCC8 formalism.

1.2 Cardinal direction formalism

The work by Goyal and Egenhofer [4] introduced a direction–relation model
for extended spatial objects that considers the influence of the objects’ shapes. It
uses the projection-based direction partitions and an extrinsic reference system,
and considers the exact representation of the target object with respect to the
reference frame. The reference frame with a polygon as reference object has
nine direction tiles: north (NA), northeast (NEA), east (E A), southeast (SEA),
south (SA), southwest (SWA), west (WA), northwest (NWA) and same (BA).
The cardinal direction from the reference object to a target is described by
recording those tiles into which at least one part of the target object falls. We
call the relations where the target object occupies one tile of the reference object
single-tile relations, and others multi-tile relations. We denoted this formalism
by CDF for brevity.

2. INTERACTION RULES BETWEEN RCC8
AND CDF

The internal operations, including converse and composition, on RCC8 can
be found in Ref. [5]. The internal operations on CDF have been investigated
in Refs. [6, 7]. In order to integrate these two formalisms, we must investigate
interaction rules between them.

To facilitate the representation of the interaction rules, we denote a basic
cardinal direction relation by a set SB which includes at most nine elements,
i.e., the nine single-tile cardinal direction relations. For example, a relation
B:S:SE:SN can be denoted by {B, S, SE, SN}. The general cardinal direction
relation can be regarded as a set GB, whose element is the set SB. So we have
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Table 1. The interaction table from the atomic relations of RCC8 to CDC relations.

Atomic RCC8 relation DC EC, PO, TPP−1 or NTPP−1 TPP, NTPP or EQ

Induced cardinal direction relation U ∀SB ∈ G B : B ∈ SB {{B}}

Table 2. The interaction table from the basic relations of CDF to RCC8 relations.

Basic cardinal

direction relation ∃R ∈ B I N : R ∈ SB ∩ B ∈ SB
(SB) {B} or BIN B /∈ SB

RCC8 relation DC ∨ EC ∨ PO ∨ TPP ∨
NTPP ∨ EQ ∨ TPP −1

DC ∨ EC ∨ PO ∨ TPP −1∨ NTPP −1 DC

the relation: SB ∈ G B. The universal relation is the set BIN = {B, N, NE,
E, SE, S, SW, W, NW}, and the universe, i.e., the set of all possible cardinal
relations, is denoted by U. The interaction rules are presented in Tables 1
and 2.

3. TERMINOLOGIES AND DEFINITIONS

Definition 1. Binary Constraint Satisfaction Problem (BCSP). If every one
of the constraints in a Constraint Satisfaction Problem (CSP) involves two
variables (possibly the same) and asserts that the pair of values assigned to those
variables must lie in a certain binary relation, then the constraint satisfaction
problem is called Binary Constraint Satisfaction Problem.

Definition 2. We define an RCC8-BCSP as a BCSP of which the constraints
are RCC8 relations on pairs of the variables. The universe of a RCC8-BCSP is
the set �2 of regions. Similarly we can define CDF-BCSP as a BCSP of which
the constraints are CDF relations on pairs of the variables and the universe is the
set �2 of regions, and RDF-BCSP as a BCSP of which the constraints consist
of a conjunction of RCC8 relations and CDF relations on pairs of the variables
and the universe is the set �2 of regions.

Definition 3. An n-by-n constraint matrix M is path-consistent if M ≤ M2.
M is path-consistent just in case Mi j ⊆ Mik ◦ Mkj . We must note that path
consistency is the necessary, but not sufficient, condition for the consistency
of a BCSP. The constraint propagation algorithm in Ref. [8] can be adapted to
achieving path consistency by enforcing the above rules, and the computational
complexity is obviously O(n3).



1132 H. Sun et al.

4. COMPLEXITY OF CONSISTENCY CHECKING
IN RDF–BCSP

We use T to denote the set of general RCC8 relations, Tb the set of basic
RCC8 relations including universal relation, C the set of general CDF relations
and Cb the set of basic CDF relations in RDF–BCSP.

The work by Renz and Nebel [9] and Renz [10] identified three maximal
tractable subsets, i.e., C8, Q8 and Ĥ8, of the relations in RCC8 that contains
all base relations and showed that path-consistency is sufficient for deciding
consistency for these subsets. The work by Skiadopoulos and Koubarakis [11]
have presented the first algorithm for checking the consistency of a set of
cardinal direction constraints and proved that the consistency checking of a set
of basic cardinal direction constraints can be performed in O(n5) time while
the consistency checking of an unrestricted set of cardinal direction constraints
is NP-complete.

Theorem 1. The complexity of checking the consistency of RDF–BCSP based
on set S = Tb ∪ Cb is O(n5).

Proof. Checking the consistency of RCC8-BCSP based on Tb is polynomial
[9], and checking the consistency of CDF–BCSP based on Cb has been shown
to be O(n5) [11]. From Table 2, all possible CDF basic relations can only entail
DC∨EC∨PO∨TPP∨NTPP∨EQ∨TPP−1, DC∨EC∨PO∨TPP−1∨NTPP−1 or
DC relations, which belong to the maximal tractable subset

∧
H8(see Appendix

B of [9]) of RCC8. So checking the consistency of RDF–BCSP based on the
union of Tb and Cb is polynomial. First we can run the improved constraint
propagation algorithm to enforce the path consistency, and then the algorithm in
Ref. [11] will be employed to check the consistency for CDF–BCSP component.
Obviously the complexity is O(n5).

Because checking the consistency of RCC8–BCSP based on the set T is
N P-Complete (see Theorem 22 of [9]) and checking the consistency of CDF–
BCSP based on the set C is N P-Complete (see Theorem 3 of [11]), we have
the following theorem: QED

Theorem 2. Checking the consistency of RDF–BCSP based on the set S =
T ∪ Cb or Tb∪C or T ∪C is N P-Complete.

5. CONCLUSIONS

In this paper, we have combined two essential formalisms in qualitative
spatial reasoning, i.e., RCC8 and cardinal direction formalism. The interaction
rules have been given and they can be embedded into the propagation algorithm
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to enforce the consistency of BCSP based on the new hybrid formalism, and then
the results for the complexity of checking consistency based on various subsets
of this new formalism are given. The complexities for other combinations of
formalisms in QSR should be investigated in the future, and the computational
problems in Fuzzy QSR should be also interesting.
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Abstract In this paper, we propose a new perceptual digital watermarking scheme based on

ICA-SCS denoising and the orthogonal vectors. In the watermarking detection

process, the independent component analysis (ICA)-based on sparse code shrink-

age (SCS) technique is employed to denoise and making using of the orthogonal

vectors’ property. By hypothetical testing, the watermark can be extracted ex-

actly. The experimental results show that our method successfully survives image

processing operation, image cropping, noise adding and the JPEG lossy compres-

sion. Especially, the scheme is robust towards noise adding, image sharpening and

image enhancement.

Keywords: ICA-SCS denoising, orthogonal vectors, watermarking, robustness.

1. INTRODUCTION

The digital watermarking has been proposed as a solution to the problem of
copyright protection of multimedia data in a networked environment. Several
techniques have been developed for watermarking mainly in spatial domain
and frequency domain. In Ref. [1], three coding methods for hiding electronic
marking in document are proposed. In Refs. [2–4], the watermarks are applied
on the spatial domain. The major advantage of the spatial domain method is
sample and the major disadvantage of spatial domain watermarking is that a
common picture cropping operation may eliminate the watermark. On the other
hand, the frequency domain method is more robust than the spatial domain
method. So many researchers focus their attentions on this method.
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2. OUR APPROACH

2.1 Watermarking permutation and embedding

We use a binary meaningful image of size 64 × 64. In order to resist crop-
ping operation, a fast two-dimensional (2D) pseudo-random number traversing
method is used to permute the watermark to disperse its spatial relationship.

During the detection process, we can extract W ′, and then reverse W ′ to W.

First we set two orthogonal vectors P0 and P1:

P0 = [0100111100011100] (1)

P1 = [1011000011100011] (2)

P0 and P1 are selected by the zig–zig scan and then projected to one dimension,
which can warrant this method has a good virtue towards JPEG compression.
Patterns P0 and P1 are so selected as to be symmetric and orthogonal to each
other. The embedding process follows:

1. For each 8 × 8 block we apply 1-level DWT, then we get three detail sub-
bands H L , L H, H H, and one approximate sub-band L L .

2. Selecting one detail sub-band of size 4 × 4, for example H L . The coeffi-
cients are modified:

W̄ (i, j) =
{

HL(i, j) + alpha ∗ JND(i, j) ∗ P0((i − 1) ∗ 4 + j)i f W ′ = 0
HL(i, j) + alpha ∗ JND(i, j) ∗ P1((i − 1) ∗ 4 + j)i f W ′ = 1

}
i, j = 1 . . . 4 (3)

3. Where alpha is a positive number controlling the trade-off between percep-
tion and the robust of the watermark. The JND can refer Ref. [5]. For an
image of size 512 × 512 we can embed 64 × 64 bits information.

4. Performing the IDWT and forming the watermarked image Ī .

2.2 Watermarking detection

The watermarking detection process needs the original image. In the water-
mark detection process, two steps are used.

1. First the PSNR of a given possibly corrupted image Ĩ is calculated. If PSNR
is smaller than a given threshold PSNR0, then the independent component
analysis (ICA)-based sparse code shrinkage (SCS) technique [6, 7] is em-
ployed to model the denoising problem. Therefore, the noisy image Ĩ can
be denoted as:

Ĩ = I + N = As + N . (4)
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Supposing only the observed data is given, the basis matrix and the ICs can
be obtained by first finding a separating matrix W (with W −1 = A) via sparse
coding [6]. Then, can be determined by s = W X. After sparse coding, the
noisy image Ĩ can be transformed by means of W, and a noisy independent
component, s + Ñ (in the ICA transformed domain), can finally be derived
as follows:

W Ĩ = W I + W N = W As + W N = s + Ñ (5)

Then, we can shrink s + Ñ by means of g and then get the cleaned version
of s, which is represented as s̄, where

s̄ = g(s + Ñ ) (6)

In general, the shrinkage function is explicitly defined [7] based on the
sparse density distribution of noisy independent components to have the
effects that small arguments are set to zero and the absolute value of large
arguments are reduced by an amount depending on the noise level. In the
third step, the approximated host image Ī can be derived by an inverse ICA
transformation: Ī = As̄. After the estimated host image is determined, it can
be used for watermarking detection.

2. After the pre-processing, we then can extract the watermark from image Ĩ ,
for each bit the algorithm includes the following steps:
For each 8 × 8 block of the original image I and the water-
marked image Ī , we apply 1-level DWT. we get detail sub-bands
H L , L H, H H, H̄ L , L̄ H, H̄ H and approximate sub-bands L L , L̄ L using:

PH 0 = ABS(SUM((H L − H̄ L) ∗ P0)) (7)

PH 1 = ABS(SUM((H L − H̄ L) ∗ P1)) (8)

W̃ (i, j) = 0 if P H0 − P H1 ≥ 0 (9)

W̃ (i, j) = 1 if P H1 − P H0 > 0 (10)

One bit information can be extracted.
Then we can extract 64 × 64 bits information. So the extracted watermark
W̄ ′ can be obtained by

W̄ ′ = InvPermute (W̃ , K ey(K )) (11)

We define the similarity measurement between the referenced watermark W
and the extracted watermark W̄ ′ as

NC =
∑

i

∑
j (W (i, j) ⊕ W̄ ′(i, j))

M × N
(12)

Where M × N is the size of the watermark.
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3. EXPERIMENTAL RESULTS

3.1 Performance comparison

We compare our method with the method proposed by Hsu and Wu [8].
The noise adding experiences of our method can get the value of NC about
0.88, and the method proposed by Hsu and Wu [8] can only get the value of
NC about 0.65. The strongly enhanced contrast experiences of our method
can get the value of NC is 1, and the method proposed by Hsu and Wu [8]
can only get the value of NC is 0.97. When sharpening experiences, the NC
value of our method is 1, and the method proposed by Hsu and Wu [8] not
mentioned. Our method has a better performance than the method proposed
by Hsu and Wu [8], especially under noise adding and signal enhancement
attacks.

4. CONCLUSIONS

In this chapter, we propose an adaptive watermarking algorithm based on the
ICA-SCS denoising. The algorithm is evaluated from the transparency point of
view and the robustness against some common attacks, such as JPEG compres-
sion, filtering, noise corruption and cropping. The results show the desirable
features of the algorithm, especially for signal enhancement. In addition, the
performance of our algorithm is compared with the algorithm proposed by Hsu
and Wu [8]. The comparison results show the advantage of our algorithm over
the algorithm proposed by Hsu and Wu [8].
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Abstract Web pages are defined by the HTML. Web pages can be linked by hyper links,

so as to construct a hyper media system. For web mining, there must be a data

model to describe the rules of interest relation among web pages. In this paper,

we simplify the WWW data model that can be used for web mining.

Keywords: WWW, web mining, WWW data model.

1. GENERALIZATION

As the Internet develops increasingly fast, data on the net become richer,
but knowledge in the data resources has not been fully mined and used by
now. Because web is unstructured and dynamic, the complexity of web pages
is much greater than that of text files. There are many index-based web search
engines that search the web. However, current keyword-based search engines
suffer from several deficiencies. The coverage rate is limited. In addition, they
can’t provide special services for individual users. A way to solve the problem
is to combine traditional data mining technology with web for web mining. Web
mining is the application of data mining or other information process techniques
to WWW, to find useful patterns. People can take advantage of these patterns
to access WWW more efficiently.

Because the web has many semi-structured data and data mining must be
based on the structured data, we need to analyse web pages to get a simplified
data model.

This paper is to abstract a simplified WWW data model from complex web
pages, which can be used as the database for web mining. The data model
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abstracts most useful data hidden in web pages, such as page content, page
attribute, link, access time of the log and so on, and structurizes them in the
database, so as to facilitate web mining.

2. DEFINITION OF SIMPLIFIED WWW
DATA MODEL

Web mining is generally defined as abstracting interesting useful models
and implicit information from the related www resources and actions.

Web is defined by the HTML. Web pages are linked by hyper links, so as to
construct an interlinked hyper media system. To predict user actions, there must
be a data model to describe the interest association rules among web pages well.
To make web mining easy, the new data model is defined—simplified WWW
data model. Firstly the definitions are given as follows:

Definition 1. Page node is represented by three tuples (Pid, P, time), in which
Pid identifies with a page node uniquely, P is the attribute set, time is the latest
access time,

P = {pi |pi is the attribute, i = 1, 2, . . . n}. (1)

Page node is the general web page; attribute can be relative URL, type, set of
linknodes, content, modifying time and so on. According to the existence and
direction of link in the web page, page nodes can be divided into isolated page
node, source page node and target page node. Isolated page node is one without
any link. Page node with link is called source page node of the link. Page node
that the link points to is called target page node of the link. Apparently, for
different links, the page node can be both source page node and target page
node as well.

Definition 2. Linknode of the page is represented by three tuples (Lid, string,
target node id), Lid identifies with a linknode uniquely, string describes the
linknode’s displaying information, target node id is the Pid of the target node
that the linknode marked by Lid points to.

Definition 3. Linknode in the page is represented by three tuples (source node,
L, target node), in which source node is the source page node. L is the linknode
of source node and target node is the target node.

For the need of data mining, we describe a simplified WWW data model by
page nodes, linknodes and links.
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Figure 1. Simplified WWW data model.

Definition 4. Simplified WWW data model can be represented by three tu-
ples (Page node set, Page linknode set, Link set), Page node set is the set of
Page nodes, Page linknode set is the set of linknodes, Link set is the set of
links.

As is shown in Figure 1, page nodes N1–N5 represent different web pages,
respectively, which can be interlinked by oriented edges. These oriented edges
represent directly the links between pages.

3. IMPLEMENTATION OF SIMPLIFIED WWW
DATA MODEL ON DATABASE

To implement simplified WWW data model on database easily, there should
be some modifications about it, so we define three tables on the database as:

Table PageContent (Table 1) stores the content of page node (represented
by mainly).

Table Link node (Table 2) stores linknodes and link information.
Table Page node (Table 3) stores the node information of the page.
Pid of table Page node is quoted as foreign key by SourceID of table

Link node and Pid of table PageContent. Page node.Pid as the unique iden-
tifier of page node can be represented as follows: ip of the web site of the page

Table 1. PageContent.

Pid Keyword

Page node identifier Keyword of the page node

Table 2. Link node.

Pid URL UpdateTime AccessTime

Unique identifier of The relative URL of The last modifying The latest access

the page node the page node time of the page time of the page
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Table 3. Page node.

SourceID Lid String TargetID

Source page node of Linknode identifier Displaying Target page node

the linknode information of the that the linknode

linknode point to

and relative route of the page. While Link node.Lid is represented by number
as to its appearance order in the page.

The modified WWW data model—simplified WWW data model is concise,
clear and applicable.

4. DATA COLLECTION

Data collection is to read a web file (This program takes Html file as the
reading object), then analyse the unformatted data of the file, store useful
information in the specific data structure and lastly write it into the database in
the form of simplified WWW data model constructed as above.

For writing into the database easily, we define several data structures, which
are implemented in the form of class in the programme, the relationship between
them is shown in Figure 2.

1. Class PageInfo is a class that represents web node (as is shown in
Figure 3), whose super class is Object. Its four data members (pageId, url, up-
dateTime, accessTime) correspond to the four arranges of table Page node,
respectively.

2. Class LinkInfo is a class that represents linknode (as is shown in Figure 4),
whose super class is Object. Its four data members (sourceID, linkID, con-
tent, targetID) also correspond to the four arranges of table Link node,

Figure 2. Classes of the program.
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Figure 3. Class PageInfo composition.

Figure 4. Class LinkInfo composition.

respectively. It has a constructor function and a member function write
2DB(), which has the same function as PageInfo.write2DB described above.

3. The function of class IPTools is to get ip of the local computer and some
given remote server.

4. Class WebModel is the main program of the system, with a main function
of main. In the function, firstly it uses function GetFromFile.GetData() de-
scribed above to read data from a Html file, then calls function processData()
to process the data just read from the file, the processed datas are stored in
two ArrayList formed by the objects of PageInfo and LinkInfo, then estab-
lishes a link to the database, using iterative device to write the content of the
two ArrayList into database at a time, lastly closes the link to the database.

5. CONCLUSIONS

From simplifying the WWW data model to constructing the database of
a data model and a data collection tool for filling data into the database, this
system provides a graphical user interface, which is concise and applicable as
one can use the model to do web mining and make high-level management
decisions easily.
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AN EXTENSION OF EARLEY’S ALGORITHM
FOR EXTENDED GRAMMARS
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Abstract Most programming languages use some variants of EBNF (Extended Backus-

Naur Form) to define the grammars of these languages since EBNF can make

grammars more compact. Usually, these language parsers can be generated auto-

matically by parser generators such as YACC. However, these parser generators

can only work indirectly on EBNF by translating EBNF grammars into equivalent

sets of BNF productions. This paper presents an extension of Earley’s algorithm

which can work on any EBNF grammar directly without grammar conversion.

Finally, the time bounds and space bounds are discussed.

Keywords: Earley parsing, extended grammar, ATLAS, operator state machine.

1. INTRODUCTION

The parsing algorithm invented by Earley [1] is a highly practical tech-
nique for all context-free grammars (CFGs), especially when handling large
languages because the grammars of large languages are often too complex to
satisfy the constraints of normal parsing such as LL(1) or LR(1). An excellent
parser generator—ACCENT [2] which can generate a parser for an arbitrary
context-free grammar is implemented on Earley’s algorithm. Later, people im-
proved the algorithm from many aspects, such as: (1) Combine LR method and
Earley’s method and obtain a faster parser [3]; (2) Give a simple solution to the
problem of ε-rule [4].

These algorithms work very well on context-free grammars. But lots of pro-
gramming languages are defined with EBNFs due to their powerful expression
and simple forms [5, 6], and unfortunately, Earley’s algorithm can not work on
them directly. ACCENT can deal with several extended operators in grammar
such as star closure, but in fact it converts extended operators to BNF form first

G. R. Liu et al. (eds.), Computational Methods, 1147–1152.
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and then works on the generated BNF, so it is a ‘disguised’ parser for EBNF
grammars. The problem of ACCENT is if there are lots of extended operators
in a grammar, it will waste plenty of time to convert them and lead to a lower
efficiency. This paper gives a parsing method for EBNF grammars based on
Earley’s algorithm and a parsing for a concrete grammar of ATLAS-EBNF [7]
(a powerful EBNF notation defined in the grammar of ATLAS—a large test lan-
guage) exemplify the process. The method seems to be useful because we can
design a parser for large EBNF grammar directly without grammar translation,
thus we can get a faster development of compiler.

2. ATLAS-EBNF GRAMMAR

In this section, ATLAS-EBNF grammar which includes several powerful
operators is defined. It will be our working grammar in later sections.

Definition. An ESE (Extended String Expression) is defined as below:

(1) a ∈ ESE, if a ∈ VT is a terminal.
(2) A ∈ ESE, if A ∈ VN is a nonterminal.
(3) {κn (S1, S2, . . . , Sn)} ∈ ESE, if Si ∈ ESE (1 ≤ i ≤ n), κn ∈ VK is a n-ary

operator. For example, {A | {B#C}} is a legal ESE. The ESE with operators
must enclosed by ‘{‘ and ‘}’ to decide the computing order.

Definition. An extended grammar GESE based on some ESE is a quintuple
<VT, VN, VK, S, P> where VT is a set of terminals, VN is a set of nonterminals,
VK is a set of operators, S is the start symbol of grammar and P is a set of
productions. Each production is of the form A → X1X2. . . Xn where Xi ∈ ESE
(1 ≤ i ≤ n).

Definition. The language defined by some extended grammar GESE = <VT,
VN, VK, S, P> is denoted as L(GESE) where

L(GESE) = {�(β) | S ⇒∗ β, β ∈ (VT ∪ VK)∗}
where � is a function on (VT ∪ VN ∪ VK)∗ → (VT ∪ VN)* whose defi-
nition depends on the definition of the corresponding ESE. For some β ∈
(VT ∪ VK)*, we can conclude �(β) ∈ VT*. The symbol ⇒∗ is the closure of
derivation.

Definition. ATLAS-EBNF grammar: Gatlas = (VT,VN,VK,S,P), where VT is
a set of terminals, VN is a set of nonterminals, VK = {∗, %, ◦, |, #, +, {}, []},
the definition of each ESE on the right-hand side of productions and the corre-
sponding function � are shown in Table 1.



Earley’s Algorithm for Extended Grammars 1149

Table 1. Definition of ATLAS-EBNF grammar.

E → a Terminal �(a) = {a}
|A Nonterminal �(A) = {A}
|E* Zero or more repetition of E �(E*) = � (E)*

|E% One or more repetition of E �(E%) = � (E)+

|E1|E2 E1 or E2 �(E1|E2) = � (E1)|� (E2)

|E1#E2 List of E1 separated by E2 �(E1#E2) = � (E1)� (E2E1)*

|E1 + E2 E1 or E2 or E1E2 �(E1 + E2) = � (E1)|� (E2)|� (E1E2)

|{E} To group elements �({E}) = � (E)

|[E] Zero or one occurrence of E �([E]) = {ε} |� (E)

|E1◦E2 Sequence of E1 and E2, E1E2 for short �(E1E2) = � (E1)� (E2)

3. STATE MACHINE OF OPERATOR

Definition. An ESE is called a simple ESE if it contains only one operator.

Definition. The simple ESE {κn (S1, S2, . . . , Sn)} with a dot at some position
is called a state of operator κ, which is of the form: {X1. . . �Xi. . . Xm}, Xi ∈
{κ, Sj} (1 ≤ j ≤ n). The initial state of κ is a state with a leftmost dot, while the
final state is a state with a rightmost dot. For instance, { �A#B} and {A#B} �are
states of operator #.

Definition. If Ai is a state of operator κ, the following rules define the state’s
transition of κ when Ai sees a symbol Y (namely Y is the symbol after dot).

1. If Y ∈ {‘κ’, ‘{’, ‘}’}, then a transition occurs. We draw an edge labelled Y
from Ai to Aj if the state reached is Aj.

2. If Y is a terminal or nonterminal, the state isn’t changed but the dot moves
over one symbol to indicate that that symbol has been scanned.

Definition. The state machine of operator κ is built by following steps: (1)
Draw all states of κ; (2) Draw all edges between states according to the meaning
of κ.

Definition. The state machines of operators in ATLAS-EBNF grammar are
shown in Figure 1 according to their meanings (only list one due to the space
limitation).

Where every box except dashed ones represents a state, the digit in left top
corner of box with a subscript operator denotes the state number and double-
line boxes are final states. Dashed boxes denote substates which can only see
terminals and nonterminals, so the transition from one substate to another isn’t
a state transition. Thus, according to the state machine graph, given a state
of some operator, we can compute its successors. If the structure of state is
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Figure 1. The state machine of #.

SM(#) : (1) Trans(<1# j>, , ‘{ )

= {<2#, j+1>} 

(2) Trans(<2#, j>, ‘#
,
)

= {<3#, j+1>, <4#, j+|β2|+2>}

(3) Trans(<3#, j>, ‘}
,
) 

= {<2#, j-|β1|-|β2|-1} 

,

Figure 2. The equations of state machines.

<Sn, Dot> where Sn denotes state number and Dot denotes a position of dot,
a state machine graph can also be described by several transition equations. In
Figure 2 (only list one), SM(κ) denotes the state machine of operator κ, Trans
is a transition function and |β| denotes the number of symbols in β.

4. EARLEY PARSING FOR EXTENDED
GRAMMARS

The following is a precise description of the parsing algorithm for input
string X1. . . Xn and grammar G. We define the same notation as Earley’s in his
paper. Number the productions of grammar G arbitrarily 1, . . . ,d − 1, where
each production is of the form Dp → Cp1 . . . Cpp’ (1 ≤ p ≤ d − 1) where p’
is the number of symbols on the right-hand side of the pth production. Add a
0th production D0 → R 
 where R is the root of G, and 
 is a new terminal
symbol denoting the end of the input.

Definition. An item i is a quadruple <p, j, f, t>, where p, j and f are integers
(0 ≤ p ≤ d −1) (0 ≤ j ≤ p’) (0 ≤ f ≤ n + 1), t is a stack and i is the number of
the item. In fact, p denotes the number of a production, j represents a position
in the rule’s right-hand side and f is a pointer to item set Sf.

Definition. An item i: <p, j, f, t> is final if j = p’ (the dot is at the end of
the rule). We add a state to a set by putting it last in the ordered set unless it is
already a member.
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The recognizer of ATLAS-EBNF grammar is a function of two arguments
REG(G, X1. . . Xn|) computed as follows:

� Let Si be empty (0 ≤ i ≤ n + 1)
� Add initial item 1: <0, 0, 0, nil> to S0
� For i ← 0 until n step 1 do

Begin
� Process the items of Si in order, performing the following two steps (1)

and (2) on each item m:<p, j, f, t>∈ Si.

1. Perform one of the following four operations on item m.
(a) Predictor: If m is non-final and Cp(j+1) is a nonterminal, then for

each q such that Dq = Cp(j+1), add m’:<q, 0, i, nil> to Si where
m’ becomes the number of last item in Si.

(b) Completer: If m is final, then for each k:<p1, j1, f1, t1 >∈ Sf such
that Cp1(j1+1) = Dp add m’: <p1, j1 + 1, f1, t1 > to Si.

(c) Scanner: If m is non-final and Cp(j+1) is a terminal, then if Cp(j+1)

= Xi+1, add m’: <p, j+1, f, t> to Si+1.
(d) Extender: If m is non-final, Cp(j+1) is neither a terminal nor a

nonterminal (namely an operator or ‘{’ or ‘}’) and t = u:t’ where
u is the top element of t, then for each <sn,dot> ∈ Trans(<u, j>,
Cp(j+1)) add m’: <p, dot, f, sn:t’> to Si.

2. For each new item m’: <p’, j’, f ’, t’>, perform the following steps in
order.
(a) If top(t) is a final state of some operator, then pop it.
(b) If the item processed by step (a) is of the form m”: <p’, j’, f ’,

t”> and Cp(j+1) is ‘{’ which means an ESE of some operator κ is
to be processed, then push the initial state of κ− 1κ into stack t”,
thus m” is changed to m”: <p’, j’, f ’,1κ: t”>.

� If Si+1 is empty, return rejection.
� If i = n+1 and Si+1 = {<0, 2, 0, nil>}, return acceptance.

End.

5. CONCLUSION

Our parser can work on extended grammars directly. For an arbitrary EBNF,
we can design its parser by defining the corresponding operator state ma-
chines. However, there exists precedence and associativity between operators
in ATLAS-EBNF grammar, which are not considered in this paper, so one of
the future works seems to be how to implement them. Another work is how to
implement the performance of the semantic actions embedded in an extended
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grammar. In BNF case, we can get a unique derivation when finish parsing a
sentence with Earley’s algorithm, thus the performance order of actions can be
decided. But how about in EBNF case?
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Abstract With the rapid development of Mobile IP and PBNM applying PBNM in Mo-

bile IP network is a new management blue print of Mobile IP network. The

management blue print is hoped to effectively resolve registration management,

QoS management and security management questions of Mobile IP network. The

registration management of mobile terminals is the base of other managements.

Policy-based registration mechanism of mobile terminals in Mobile IPv4 network

is different from that in Mobile IPv6 network. The COPS-MIP which has been

defined supports policy-based registration of mobile terminals in Mobile IPv4

network. So the paper gives the COPS-MIPv6 which is a new protocol extending

from COPS. It is used to support policy-based registration of mobile terminals in

Mobile IPv6. There is an analysis about COPS-MIPv6. Also an example is given

to explain the application of the COPS-MIPv6.

Keywords: mobile terminals, COPS, COPS-MIP, COPS-MIPv6, PBNM.

1. INTRODUCTION

PBNM [1] (Policy-Based Network Management) is the outcome which
adapts the complex and dynamic task object of network management. IETF
and DMTF define Policy Core Information Model [2] and its spread, and they
raise the frame [3] of PBNM system. PBNM system has begun to take shape.
Through the research and development of decades, many products have already
come out, and AppDrrvN of the IBM Company is one of that.

Mobile IP [4] makes the mobile hosts maintain communication in the con-
stant movement of different network under the prerequisite of present Internet
based network prefix and is a solve scheme of offering mobility support based
on network layer in Internet.
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The increase of mobile handle official business crowds accelerates the de-
velopment of Mobile IP network. The users of many mobile equipments hope
to maintain the access to Internet and continuous communication in the process
of movement, and obtain the same network QoS (Quality of Service) as this of
immobile access. This inducts the problem of Mobile IP network management,
especially QoS management. Applying PBNM in Mobile IP network will be a
new management blue print. The first part mostly discusses policy-based regis-
tration mechanism of mobile terminals in Mobile IP network. The second part
gives an analysis of COPS-MIPv6 which is extended from COPS. The last part
gives an example of COPS-MIPv6’s application.

2. POLICY-BASED REGISTRATION MECHANISM
IN MOBILE IP NETWORK

The main character of Mobile IP network is that there are many mobile nodes
in the immobile network. When a mobile node moves to a new network, it must
finish the registration to home network, namely notify home agent its Care-of
address. In October of 2000, IETF has raised COPS [5] usage for Mobile IP
(MIP) [6] draft. The draft raises policy-based registration mechanism in Mobile
IPv4 network. Policy-based registration process of mobile terminals is shown
in Figure 1 [6].

The step is interpreted as follows [6]:

1. MN (Mobile Node) sends a Registration Request to FA (Foreign Agent);
2. FPEP (Foreign Policy Enforcement Point) and FPDP (Foreign Policy Deci-

sion Point) interact for policy decisions for Registration Request;
3. FA relays Registration Request to HA (Home Agent);
4. HPEP (Home Policy Enforcement Point) and HPDP (Home Policy Decision

Point) interact for policy decisions;
5. HA sends Registration Reply to FA;
6. FPEP and FPDP interact for policy decisions for Registration Reply;
7. FA forwards Registration Reply to MN.

1 

7

3 

5

4

MN
FPEP

(FA) 

HPDPFPDP

2, 6

HPEP

(HA)

Figure 1. Typical policy control registration in mobile IPv4 network.
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Mobile IPv6 needn’t configure a special router as foreign agent as Mobile
IPv4 does. So mobile terminals of Mobile IPv6 network only has a Care-
of address type—Co-located Care-of Address. COPS-MIP doesn’t fit policy-
based registration of mobile terminals in Mobile IPv6 network. A new protocol
must be introduced to solve the question. Chaouchi has extended a new protocol
COPS-mt [7]. The key of extending protocol is defining new objects.

3. AN ANALYSIS OF COPS-MIPv6

COPS-MIP is an extension of COPS, and it supports policy-based regis-
tration mechanism of mobile terminals in Mobile IPv4 network. For Mobile
IPv6 network, we need to extend a new protocol from COPS. COPS not only
supports the address format of IPv4, but also IPv6, which can make extension
easy. We name the new protocol as COPS-MIPv6. There are several aspects to
be discussed as follows:

1. COPS has a very good expansibility. By adopting different client type, it can
support much more abundant management functions. Client-type in Com-
mon Header of COPS [7] is a 8-bit byte, and identifiers which management
information type COPS message is transmitting. COPS regulates that the
client type of COPS-RSVP [9] is ‘1’, the client type of COPS-PR [10] is
‘2’ and the client type of COPS-MIP is ‘COPS-MIP’. So the client type of
COPS-MIPv6 can be defined ‘COPS-MIPv6’. All messages between PDP
and PEP identify different client type with Client-type value after finishing
client open/accepted messages.

2. In the registration progress, both request messages and decision messages
of COPS include one or many Context-Object. The object depicts network
events that spring the request. The R-Type field of Context-Object depicts
base types of events touched off. In the registration process, also two events
can be touched off: Incoming-Message request and outgoing-Message re-
quest. The other M-Type field of Context-Object identifies which message
type registration messages that touches off the request is, whether binding
update message or binding acknowledgement message.

3. COPS messages can encapsulate diversified information format. COPS mes-
sages can transmit all kinds of length-alterable, self-defined and opaque data.
ClientSI (Client Specific Information) of COPS-MIPv6 is one of that. All
objects which are in registration message are encapsulated in the ClientSI
object. Some objects will be defined, and these objects can be used in the
ClientSI object, the Client Specific Information object and the Replacement
Data Object.
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Table 1. The format of COPS-MIPv6 objects.

Length S-Num S-Type

Value. . . . . .

The parameter format is the same as that of COPS-MIP. Some objects are
shown as follows:

1. Fixed-length Portion Object (FLO) for binding update message. S-Num =
1, S-Type = 1, this object contains the fixed-length portion of the binding
update message;

2. Fixed-length Portion Object (FLO) for the binding acknowledgement mes-
sage. S-Num = 1, S-Type = 3, this object contains the fixed-length portion
of the binding update message;

3. Mobile Option Object. S-Num = 2, S-Type = 1, this object is used to take
Mobile Option of the registration message;

4. Specific Error Object for Mobile Option. This object is used to show spe-
cific error object for Mobile Option. This object indicates that the PDP has
encountered a list of mobile option that it does not recognize. The value of
parameter is uniform to that of COPS-MIP [6];

5. Error Specific Data object. This object contains error specific information.
The definition is uniform to that of COPS-MIP [6]. The error code values
that are used in the S-Type are shown as follows: Registration denied by the
FPDP [6]; Registration denied by HPDP [11].

4. AN EXAMPLE

We support that the policy information model has been defined. There are
HomeAddress class and Care-ofAddress class in the policy information model.
There is such a strategy in the policy depository of the foreign subnet: IF
HomeAddress > 10.30.84.0) and (HomeAddress < 10.30.84.254) then (Allow).
There is such a strategy in the policy depository of the home subnet. IF (Care-
ofAddress > 10.60.60.0) and (CareofAddress < 10.60.60.254) then (Allow).

When the mobile terminal (we suppose that the mobile terminal is policy-
aware, namely a PEP) whose home address is 10.30.84.130 moves to the foreign
subnet. It will obtain a Care-of address—10.60.60.60 and a home agent address.
The mobile terminal sends the binding update message. The source address is
the Care-of address, and the destination is the home agent. There is home
address in the mobile option. The binding update message is sent to the TFPDP
through COPS-MIPv6.The TFPDP adopts the corresponding policy and makes
a decision that allows the mobile terminal whose home address is 10.30.84.130
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accesses the foreign subnet. The mobile terminal (TPEP) forwards the binding
update message to the THA (THPEP). The commutation protocol between the
THPEP and the THPDP is COPS-MIPv6. The THPDP make an affirmative
decision according the upper policy. The THA sends the binding acknowledge
to the mobile terminal. The registration process has finished.

5. CONCLUSION

From the paper, we can realize that policy-based registration mechanism
of mobile terminals in Mobile IP network can solve the registration problem
of mobile terminals to home network. Once the registration succeeded, PBNM
system can fleetly and successfully management mobile terminals. The example
of the paper distinctly explains the progress of policy-based registration of
mobile terminals, at the same time indicates the registration mechanism can
effectively assure the registration of mobile terminals. Previously, we have
finished the research and realization of PBNM system in immobile network.
Now we solve the policy-based registration problem of mobile terminals in
mobile IPv6 network. These are the base of making the research on policy-
based management of QoS, security aspects, etc. in Mobile IP network. We will
make a deep research on policy-based management of QoS, security aspects,
etc. in Mobile IP network.

REFERENCES

1. Jean-Christophe Martin (1999), Policy-Based Networks.
2. B. Moore, E. Ellesson, J. Strassner and A. Westerinen (2001), Policy Core Information

Model—Version 1 Specification, RFC3060.
3. Li Jin-Ping and Gao Dong-Jie (2002), The research and design of policy-based network

management software platform. Computer Engineering and Application, pp. 177–9.
4. Sun Li-Min, Gan Zhi-Gang, ect. (2003), Mobile IP Technology. Electronic Industries book

concern, Beijing.
5. J. Boyle (2000), The COPS (Common Open Policy Service) Protocol, D. Durham (ed.),

RFC 2748.
6. M. Jaseemuddin and A. Lakas (2000), COPS usage for Mobile IP, Internet draft.
7. H. Chaouchi (2004), A new policy-aware terminal for QoS, AAA and mobility manage-

ment. International Journal of Network Management, 14, pp. 77–87.
8. J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Raja and A. Sastry (2000), COPS usage for

RSVP, RFC2749.
9. K. Chan, J. Seligson, D. Durham, ect. (2001), COPS usage for Policy Provisioning (COPS-

PR), RFC3084.
10. D. Johnson, C. Perkins and J. Arkko (2004), Mobility Support in IPv6, RFC3775,

pp. 141–2.



OPERATIONAL SEMANTIC TO THE
EXECUTION OF THE PROCESS MODEL

Fu Yan-ning, Liu Lei and Li Bo
College of Computer Science and Technology, Key Laboratory of Symbolic Computation
and Knowledge Engineering of Ministry of Education of P.R. China
Jilin University, Changchun, 130012, P.R. China

Abstract The procedure of process models executing in workflow engine is described using

operational semantic. The formalized description of process instances and activity

instances lead directly to the realization of workflow engine. Therefore, it provides

a unified processing procedure for the realization of the workflow engine software,

which makes it convenient for the cooperation among heterogeneous workflow

engines.

Keywords: workflow engine, process model, process instance, activity instance, operational

semantic.

1. INTRODUCTION

The so called ‘Process meta-model’ is the model about model which de-
scribes the process model [1]. It defines the structures and rules of semantic
model, and is mainly used to describe the fundamental components of process
model and the mutual quoting relation as well as the those elements’ attributes
[2]. The process model shows how to represent a real running business struc-
ture as a work procedure [3]. When the process model operates in a workflow
engine, in the light of the description file of the process model and other rel-
evant information, the workflow engine generates the corresponding process
instances and activity instances and controls their creation, activation, suspen-
sion and termination. This is a significant function of the workflow engine.
Workflow Management Coalition (WfMC) defines the running state of process
instance and activity instance, and it also provides the conditions for transiting
such state [4], as Figure1 and Figure 2 illustrate.
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Suspended  Terminated
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Restart
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1or more activity
instances

Iterate through
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Figure 1. State transitions for process instances.

Therefore, the existent workflow standard provides unified interface and
definition file for the product of workflow. But since the overall structures and
the realizing methods vary, so do the processing of process instances and activ-
ity instances in different workflow engines. The realization of workflow engine
will become more explicit if we can completely and specifically describe the
processing steps of process instances and activity instances in the workflow en-
gine with a descriptive tool that is irrelevant to the programming language. Then
it’s possible to exchange these instances among different workflow engines. As
a result, coordinating in those different engines will be much easier and faster.

Formalization and exactness form a major characteristic of the operational
semantic, which allow for an exact description of the semantic meaning of a
certain language [5]. If the definition file of process model can be viewed as a
program of a given computer language, and the workflow the abstract engine,
we can draw the operational semantic into the description of workflow in order
to give a full picture of the execution of process model running in a workflow
engine.

2. THE FORMALIZED DESCRIPTION OF
WORKFLOW ENGINE

In the first place, design the abstract engine of process instances and activity
instances. Furthermore, define the running rules of the process instances. The

Suspended

Inactive  Active  Complete  

Suspended/
Resume

Start 

(has Work Item) 

Figure 2. State transitions for activity instances.
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initial state of process instance is settled when a certain process model is given.
And it will transit in accordance with state transition rules until the terminal
state appears.

2.1 Process instance

The process instance can be replaced by sextuple, namely,
(S0, E0, ActiSet, CurASet, TranSet, RDSet)

S0 stands for start activity
E0 stands for end activity
ActiSet stands for activity set
CurASet stands for current activity set
TranSet stands for transit set
RDSet stands for relevant data set

Note: ‘S0, E0, ActiSet, TranSet’ belong to the static environment and they
can be required by parsing file XPDL. ‘CurASet, RDSet’ belong to the dynamic
environment, and they will change in accordance with the operation of process
instances.

RDSet = { id → val }, the relevant data is represented as ‘id’ in the workflow
and the corresponding values is represented as ‘val’.

TranSet = { Ti j | conditions to transit from Si to S j , i,j = 0,1,2, . . . }
ActiSet = { Si | i = 0,1,2, . . . }
CurASet = { S j | j = 0,1,2, . . . }

2.2 Activity instances

Activity instances can be described by sextuple, namely, (precondition, post-
condition, state, application, followSet, preSet).

Note: Every ‘S’ that belongs to the current activity set, namely S(S ∈
CurASet), must be in accordance with the sextuple mentioned above. The cor-
responding values of each element of sextuple should be:

1. S.precondition = AND/OR
2. S.postcondition = AND/OR

These two attributes stand for the precondition and postcondition of an
activity respectively, and their values can be either AND or OR. An activity
may denote the action of ‘join’ and ‘split’ under a certain confining condition.
If the precondition is set as AND, this activity doesn’t operate until all the
previous parallel activities terminate. On the contrary, if the precondition is
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set as OR, this activity will operate as long as any one previous activity has
finished. Meanwhile, if the postcondition is AND, all the relevant post activities
have to be fulfilled, whereas if it is OR, only those activities that comply with
the condition can be executed [6].

3. S.state=R(run)/S(suspension)/T(terminate)/W(wait)

As is illustrated by Figure 2, there are four states of activity, namely, R(run),
W(wait), S(suspension) or T(terminate).

4. S.application

It refers to the external application that the activity has to invoke.

5. S.followSet

It refers to the post activity set where ‘S’ shifts to, (i = 0,1,2 . . . ), and for
every activity in workflow, there is Si .followSet = { S j |ti j ∈ TranSet }.

6. S.preSet

It refers to the pre-activity set whose activities can shift to ‘S’, (i =
0,1,2 . . . ), and for every activity in the workflow, there is S j .preSet = { Si |ti j ∈
TranSet }.

2.3 Rules for transition of states

2.3.1 The initialization of process instances and activity instances

When the description file of workflow is submitted to the workflow engine,
the corresponding initial sextuple of process instance is:

(S0, E0, ActiSet, CurASet, TranSet, RDSet)
S0, E0, ActiSet, TranSet can be parsed through the description file of process

model, CurASet = { S0}, and the value of sextuple in RDSet can be set in
reference to the relevant data in the file.

The sextuple corresponding to activity ‘S’ are:
(precondition, postcondition, state, application, followSet, preSet)
‘Precondition, postcondition, application’ can be parsed through the de-

scription file of process model, and set ‘state = W, followSet = { Si |t0i ∈
TranSet }, preSet= ={ }’.

2.3.2 Executing changes of process instances and activity instances

When operating, each activity in the current activity set(CurASet)equals to
only one item of the workflow task list, that is, for ‘∀ S∈CurASet’, there is:
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1 If S.state= =R, for the sextuple of process instances, there is
(S0, E0, ActiSet, CurASet, TranSet, RDSeti ) →
(S0, E0, ActiSet, CurASet, TranSet, RDSet j )

Note: When the activity is in the state of execution, only do the
relevant data change in response to the external application, namely,
RDSet j =S.application(RDSeti ). While the sextuple of the activity intance takes
no change, there is:

(precondition, postcondition, state, application, followSet, preSet)→
(precondition, postcondition, state, application, followSet, preSet)
2 If S.state==S or S.state==W, it shows the activity is in the state of suspen-

sion or waiting for resources, therefore, there is no change in neither process
instances nor activity instances.

For process instances, there is:
(S0, E0, ActiSet, CurASet, TranSet, RDSet)
For activity instance, there is:
(precondition, postcondition, state, application, followSet, preSet)
3 If S.state==T, it shows the external applications that the activity is to invoke

are ended, so the workflow engine has to transit the activity in accordance with
the relevant data, for process instances, there is:

(S0, E0, ActiSet, CurASeti , TranSet, RDSet)→
(S0, E0, ActiSet, CurASet j , TranSet, RDSet)
If the activity instance is ended, CurASet will change.
Suppose PostSet refers to the next set of activity instances that the activity

shifts to, and AddSet refers to the set of activity instances that should be added,
then:

PostSet={ Si | Si ∈ S.followSet,t ∈ TranSet,t(S,Si )==true }
Now, make the relevant changes of the activity instance Si , (Si ∈ PostSet).
Set Si .PreSet = Si .PreSet-{ S },
AddSet={ Si | Si ∈ PostSet, (Si .precondition==AND ∧Si .PreSet=={ })

∨(Si .precondition==OR)}
if S.postcondition==AND, then set S.followSet=S.followSet—
PostSet
if S.postcondition==OR or S.postcondition==AND&S.
followSet=={ }, then

CurASet j =CurASet - {S} ∪ AddSet
if S.postcondition==AND&S.followSet !={ },then CurASet j =CurASet ∪
AddSet

2.3.3 Termination of the process instances

During the operation, the executing of process instances terminate only if
CurASet=={ E0}. Then the whole process instances terminate.
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3. CONCLUSION

Operational semantic has its own merits of formalization and exactness [7].
It can accurately depict each step of process instances functioning in a workflow
engine. Therefore, it not only guides the realization of workflow engine soft-
ware, but also makes it more convenient to coordinate among the heterogeneous
workflow engines. Next, we will aim at the description of operational semantic
to heterogeneous workflow engines, in the hope of making those engines more
flexible.
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Abstract We have developed an interactive Web application implemented by Java

Server Pages technology for executing the fuzzy c-means clustering method

on the input data given by users from client side. On the server side the

Tomcat application server dispatches the requests, produces the answers and

presents them on the client side. The server machine is not a robust computer

(Intel Pentium II category). All of the instaled softwares are under free licence

policy.

Keywords: fuzzy c-means clustering, JSP technology, Web application.

1. INTRODUCTION

In general, the cluster analysis (or simply clustering) refers to a lot of meth-
ods which try to subdivide a data set X into C subsets (or into C clusters) which
are pairwise disjoint, all non-empty, and they reproduce X set via union. In this
case, the clusters are termed hard (non-fuzzy) c-partition of set X. The hard
methods do not mirror the native substructure of the data set. This problem is re-
solved by fuzzy clustering. The idea of fuzzy set and membership function was
introduced by Zadeh [1]. The values of this function are called memberships.
Each individual sample point will have memberships in every cluster. The sum
of the memberships for each sample point must be equal to 1. If we have a data
set which contains N sample points xk ∈ Rn and we want to separate them into
‘C’ fuzzy clusters, the result of fuzzy clustering is a membership matrix which
has N rows and C columns. The criteria on memberships is formulated in the
Fuzzy C-means clustering model formulas (1) and (2). We have to minimize
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the extended squared error criterion function Jm (1), subject to the conditions
(2).

Jm(U, V) =
N∑

k=1

C∑
i=1

(uik)m ‖xk − vi‖2
A (1)

C∑
i=1

uik = 1 1 ≤ k ≤ N,

N∑
k=1

uik > 0 1 ≤ i ≤ C (2)

U is the matrix of uik memberships, V denotes the matrix of cluster centres
(means), m > 1 weighting exponent, xk is a feature vector of sample point k
in the n-dimensional data set X, vi vector denotes the mean vector of sample
points in cluster i, A positive definite scaling matrix to induce different norms.

To acquaint people with fuzzy c-means clustering method and give them
opportunity to use it via Internet we begun the work on the project. The aim of
our project was to develop an interactive Web application based on this model
implemented by the JSP technology.

Why did we choose the JSP technology? Prior to this project we created
a C language program [3] executing a fuzzy c-means algorithm published by
Bezdek et al. [2]. It runs on single PC with OS DOS/Win98. We had practical
experience in Java programming and the conversion of the C code was not so
hard. The Java technologies are platform-independent. The all softwares we had
were under free software licence. To implement the aimed services we needed
softwares being free of charge as well.

In the next sections, we describe the development work.

2. PREPARING STEPS

At start of the project the hardware and software tools consist of the PC
server machine (Intel Pentium II category), with Debian GNU/Linux 3.0 OS,
MySQL3.23.37 database server, Apache1.3.39 Web server, networked on the
Internet at the College.

We made the following steps to extend the environment for development
and execution:

1. Downloading and instaling the Java2 Standard edition developmentkit
(j2sdk1.3.1) from http://java.sun.com/j2se/. After running the binary exe-
cutable we had to set up the environment variables: JAVA HOME and PATH.

2. Creating a new database for fuzzy application. In our software architecture,
we created the ‘Fuzzy’ mysql database and its tables granted limited privi-
leges to tomcat@localhost user. In the database, we granted permission to
create and manipulate its own data: like users and calculations.
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3. Downloading and instaling Tomcat Application Server (v.3.3.1) from
http://jakarta.apache.org. The instalation was very easy. We had only to
unpack the downloaded binary packed file. The key directories inside the
TOMCAT HOME are: /bin; /conf, /log; /doc; /webapps. The next step was
a little bit complicated, we needed to configure the global settings of the
Tomcat server (conf/server.xml). We configured the Tomcat’s database
Realm which is the resource of the authentication in the mysql database
server and the previously created fuzzy database.

4. Downloading and Instaling Apache Ant development tool (v.1.4) from
http://ant.apache.org. We notice that this tool was used on Windows
platform.

3. DEVELOPING STEPS

3.1 Designing

At the design time we organized our application into private and public
sections with ‘/demo’ and ‘/full’ parts to handle our user’s rights with the
container managed authentication and role. These requirements are fulfilled
in this architecture by the code hierarchy and the Web application security
standards [4].

3.2 Creating the fuzzy clustering Web application

Writing codes:

� Web components:
� JSP components: index.html, input.jsp, compute.jsp, validate.jsp, etc.
� Java Bean components: Fuzzy.java, Registration.java, Monitor.java, etc.
� build.xml, web.xml

Deployment:
In our case, we chose the packaged file structure for the deployment. We

packaged our application into the archive file ‘fuzzy.war’ using the Ant war
task.

Both the compilation and deployment was made by Ant using the build.xml
at the development environment.

Later at the execution environment the Tomcat’s auto-deploy was used from
the fuzzy.war file. Before starting the Tomcat we had copied the fuzzy.war into
the directory $TOMCAT HOME/webapps.
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index html

stilus.css

Figure 1. The top hierarchy of the application.

After starting of the Tomcat on the server computer we had got the appli-
cation file structure under the ‘/fuzzy’ application root directory (Figure 1).

3.3 Running the application

To execute our deployed application you have to use the context/fuzzy in
the URL. In this case to run the fuzzy clustering Web application you need to
write:
http://pingvin.nyf.hu:8080/fuzzy/index.html the URL address on the client
side. In the Figure 2, you can see one of the ‘faces’ of our Web application.

Figure 2. Results of the fuzzy clustering.
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4. CONCLUSIONS

We managed to develop a modern Web application system by using the
JSP technology. The JSP was useful for separating the presentation from the
dynamic (business logic) part of the application, creating a scalable, real multi-
tier, platform-independent Web application, based on industry standards and
freeware software. Additionally, we were able to develop and to serve the system
on different platforms being at different towns. From the other aspect the Java
technology was available for telework successfully.
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Abstract Although many methods for feature selection and text classification have been

applied to English web documents, relatively few studies have been done on

Chinese web documents. This paper introduces a term weighting method based

on inverse document frequency, html tags and length of Chinese phrase, provides

an algorithm for web text classification based on improving on lattice machine

approach. The experiments show this method is effective in feature reduction and

text classification.

Keywords: text classification, data-mining, information retrieval, web-mining.

1. INTRODUCTION

Both Web text feature selection and text classification require automatically
extracting a set of keywords describing the web text and assigning one or mul-
tiple predefined category labels to the web page. A difficult problem with text
classification is that there are too many different words occurring in documents
to be analysed effectively by learning algorithm, a prior study has proven that
the existing feature selection methods have some limitation [1]. Now, extensive
ranges of methods have been applied to English text classification [2, 3], rela-
tively few have been benchmarked for Chinese text classification. No approach
is known to be the best classifier [3]. Many approaches can assign to fit one to
a web page, but some web pages belong to multiple category.

In this paper, we provide an algorithm for web text classification. The idea
is as follows: firstly, transform synonyms with a synonym lexicon and compute
the weight of terms based on inverse document frequency, html tags and length
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of Chinese phrase; secondly, select web text feature based on a messy genetic al-
gorithm; lastly, extend lattice machine approach for assigning web text multiple
categories by using these features.

2. EXTENDING LATTICE MACHINE AND
TEXT CLASSIFICATION FOR WEB
TEXT CLASSIFICATION

Lattice machine [4], is a general framework for supervised learning. In
this method, any data-mining algorithms can be regarded as a process of data
reduction; data reduction is to find the interior cover of given data in the lattice
of universal hyper relations. All data in the interior cover are equilabelled. This
method has been used to structured data-mining and text classification. Since
a web page can belong to multiple categories, we extend this method for web
text classification.

We represent web text corpus by the feature vector as in Table 1 where
category labels come from “The Method of Classing Chinese Archive” [5]. It
can be regarded as a decision system that the cardinality of decision attributes
d(Class) is greater than 1. All decision rules in Table 1 are consistent as a text
that can be assigned multiple predefined category labels.

In the original lattice machine the partially ordering relation and the least
upper bound are given. In the context of web text classification, the documents

Table 1. A feature vector representation of web text corpus.

Doc Text feature Class

1 Weather equipment, mapping, earthquake, measure TB25, TB7, D193

2 Agro technique, aquatic product processing, control flood

and improve soil structure, grassland egis,

stockbreeding

MA25, MA416, MC424

3 Landform measure, weather equipment, earthquake

disaster research, measure

TD3, TB25

4 Aquatic product processing, rural economics,

stockbreeding, shelter belt

MA416, JA11111, MA1

5 Democratic parties, congress, mental civilization A51, A121, FC1212

6 Congress, conference summary, dismiss sb. from his post A121, FC1212, A1.26

7 Agrotechnique, tending of woods, control flood and

improve soil structure, grassland egis

MA25, MB33, MC424

8 Weather equipment, ocean, measure, earthquake TB25, TB7, HA7145

9 Democratic parties, conference summary, consolidate the

party organization and rectify the working style of the

party

A51, A46, A1.26
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are assigned as the same category labels have large number of common fea-
ture elements. We use ⊇ to substitute ⊆ to define the ordering relation and
accordingly to substitute ∩ for ∪. The ordering relation is given as follows:

doc1 ≤ doc2 ⇔
set o f words(doc1) ⊇ set o f words(doc2)

where set of words(doci ) is the set of features in doci , and the least upper
bound is given by doc1∨doc2 = set of words (doc1)∩set of words(doc2). This
amounts to classifying a web text by using a subset of the features in the
document. Since the decision entry of a hyper tuple is a hyper entry, the concept
of equilabelled in the original lattice machine is not fit for this kind of text
classification, so we extend the concept of decision system as follows.

Definition 1. A decision system for multiple categories D ≤ U, � = C ∪
d, Vx > x ∈ � is an extending for information system as above, where C is a
nonempty finite set of condition attributes, d is a decision attribute, C ∩ d = φ,
Vx is the domain of x ∈ � and the power set of Vx is Px ,d : R →→ Px is a map-
ping, called a labelling of R. For all t ∈ U , the label of t , d(t), is a hyper
entry, denoted all the same by {D1, . . . ,DK}. For all i and j , Di ∩ D j can be
nonempty.

The decision system for multiple categories is a natural extending for the
decision system. if ∀t ∈ U, ∀x ∈ �, |t(x)| = 1, it will degenerate into the de-
cision system. All elements of dataset R have a label and all elements of V\R
have not any label. Since the domain lattice is algebra, we can generalize the
concept of equilabelled by intersection labelled to the elements in the lattice
that is covered with R to solve the problem of assigning a label to a new element.

Definition 2. In the domain lattice 〈T ≤〉, t ∈ T is labelled with d(t) �= φ,
t is called intersection labelled with respect to Dq , if ∀ai ∈↓ t , i= 1, . . . ,k,
d(a1) ∩ d(a2)∩. . . . . . ∩d(aK ) = d(t) = Dq . In other words, the intersection of
all labelled elements covered by t is a nonempty set, and uses the intersection
Dq to label t .

In the domain lattice, the concept of the intersection labelled can be used
to label a sublattice. The unlabelled elements in a sublattice can be assumed
that have the same labeling as the maximal intersection labelled element in
the sublattice as a generalization, so the labelling of the maximal intersection
labelled element is contained by labelling of each element in the labelled sub-
lattice. Accordingly, E-set contains all intersection labelled elements that are
maximal, and supported by R. This generalization can be used to assign a label
to a new web page in web text Classification. For document corpus R(�,d),
where � is an attribute denoting the set of features in a document, d is a label
attribute. Algorithm, below, discovers all E-set:
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Algorithm. Discovery of E-set

Input: The labelled corpus R(�,d)

Output: B: all E-set

Method:
A ← R �X ← R �B = φ

While A �= φ

{get a ∈ A, A = A\{a}
C = X\{a}, x = a
While C �= φ

{get g ∈ C, C = C\{g}, s = d(a) ∩ d(g)

If s �= φ and �(a) ∩ �(g) �= φ then

{a = a ∨ g
for all p ∈ C

If d(a) ∩ d(p) = s and �(a) ∩ �(p) �= φ then a = a ∨ p
endfor

B = B∪(a,s)}
a = x

}
}

2.1 Experiments

For validating the effect of extended lattice machine, we apply it to those
Chinese web corpus in our experiments. We assign one or multiple category
labels to the corpus according to The Method of Classing Chinese Archive
with Comparison Table of Indexing Descriptors and Classification Labels; then
generalization classification rules are discovered with the above algorithm; our
experiments show that these rules are validated and this method acts well.
Table 2 is the generalization rules from Table 1.

Table 2. The intersection labelled set from Table 1.

From Text feature Class

1∨3∨8 Weather equipment TB25

1∨8 Weather equipment, measure, earthquake TB25 � TB7

2∨4 Aquatic product processing,

stockbreeding

MA416

2∨7 Agrotechnique, control flood and

improve soil structure, grassland egis

MC424 � MA25

5∨6 Congress A121, FC1212

5∨9 Democratic parties A51

6∨9 Conference summary A1.26
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3. CONCLUSIONS

Feature selection is a NP-complete problem. We introduce term weighting
method based on inverse document frequency, html tags and length of Chinese
phrase, and report our method to select web text feature based on a messy genetic
algorithm. For multi-class multi-label text categorization tasks, we improve
lattice machine and provide the concept of intersection labelled to extend the
concept of equilabelled. Our experiments show that the method is efficient.
For further research: terms in a document have in coordinate relativity to the
category labels of the document, so it should introduce the significance of the
term for assigning a label to a document.
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Abstract Resource-constrained scheduling problem is one kind of typical real-life discrete

optimization problems, which is one of the strongest application areas of con-

straint programming. In the constraint programming toolkit ‘Mingyue’, which

embed constraints in the object-oriented language C++, we design a new logic-

based method for handling the constraints in the resource-constrained scheduling

problem. In this paper, we propose a way of describing those constraints with the

discrete-variable logic formula. Based on this model, a resolution algorithm is

designed for filtering the discrete variables’ domain. Comparisons with other con-

straint handling approaches and related literature clearly show that our approach

can describe the constraints in the high level and solve the resource-constrained

scheduling problem in the logic framework.

Keywords: scheduling, constraint handling, logic, discrete optimization.

1. INTRODUCTION

Constraints are powerful tools for handling many real-world problems. Con-
straint programming (CP) [1] is based on the idea of describing the problem
declaratively by means of constraints and, consequently, finding a solution
satisfying all the constraints, i.e., assigning a value to each unknown from its
respective domain. CP has a big advantage over other frameworks in declarative
modeling capabilities. The modeling capabilities of CP are really fascinating
and the constraint models are very close to the description of discrete opti-
mization problems. This simplifies the maintenance of the models as well as
the introduction of domain dependent heuristics necessary to solve large-scale
problems such as Resource-Constrained Scheduling Problem (RCSP), which
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is one of the strongest application areas of CP [2]. The reason of such success
can be found in a similar character of both scheduling problems and Constraint
Satisfaction Problems (CSPs) [3].

Our system ‘Mingyue’ CB-Scheduler [4, 5] is one kink of CP toolkits,
which embed constraints in the object-oriented programming language C++.
Other constraint-solving toolkits are also quite popular, such as ILOG solver
and scheduler. However, in the typical CP toolkit, constraint handling is to
list all the assignment combinations of variables directly in the CSP model. In
this paper, we propose handle the constraints in RCSP by using the formula of
discrete-variable logic, which is more general and brief.

In this chapter we omit the description of the system ‘Mingyue’ CB-
Scheduler and emphasize the constraint handling method in the system. In
Section 2, we first describe the definition of constraint domain and CSPs and
then we present a generic CSP model of RCSP. The details about handling con-
straints in the discrete-variable logic way are showed in Section 3. In Section 4,
we give one of the resolution algorithms for filtering the constraint variables’
domain in RCSP. Finally, we draw a conclusion on this new method.

2. RESOURCE-CONSTRAINED SCHEDULING CSP
MODEL

Partially based upon the scheduling problems we encountered in the in-
dustry, we define a generic (and necessarily incomplete) typology of resource-
constrained scheduling as follows:

Given are a set of n tasks T = {T1, . . . , Tn} and a set of m resources R
= {R1, . . . , Rm}. Each task Ti has its certain time-window [ri, di] (ri denotes
the release-date, di denotes the due-date) and needs some amount of resource
throughout their execution. Each resource Ri has its certain capacity. The tasks
may be interrupted or non-interrupted. There exists temporal constraints Ct

and resource constraints Cr between the tasks, which can be binary or n-ary. A
solution schedule is a set of integer execution times for each task so that all the
temporal and resource constraints are satisfied.

2.1 Constraint domain and CSPs

The legitimate forms of constraint and their meaning is specified by a con-
straint domain, which specifies the ‘syntax’ of the constraints. That is, it spec-
ifies the rules for creating constraints in the domain. It details the allowed
constraints, functions and constraint relations as well as how many arguments
are placed. The constraint domain also determines the values that variables
can take. Finally, the constraint domain determines the meaning of all these
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symbols. It determines what will be the result of applying a function to its
arguments and whether a constraint relation holds for given arguments.

There are three various constraint domains, including real arithmetic con-
straints, tree constraints and finite domains [6]. The finite constraint domains
are constraint domains in which the possible valued that variable can take are
restricted to a finite set, such as Boolean constraints and integer constraints.
Finite constraint domains are widely used in CP. Many real-life problems, no-
tably scheduling, routing and timetabling, are simple to express using finite
constraint domains, since essentially, they involve choosing amongst a finite
number of possibilities. In the artificial intelligence community, satisfaction
of constraint problems over finite domains has been studied under the name
‘constraint satisfaction problems’.

The finite domains constraint satisfaction problems consists of the follow-
ing: Given are a set of n variables Z = {X1, . . . , Xn}with discrete, finite domains
D = {D1, . . . , Dn} and a set of m constraints C = {c1, . . . , cm} that are predi-
cates ck (Xi , . . . , X j ) defined on the Cartesian product Di × . . . × Dj. If ck is
true, the valuation of the variables is said to be consistent with respect to ck,
or equivalently, ck is satisfied. A solution is an assignment of a value to each
variable, from its respective domain, such that all constraints are satisfied.

2.2 Task and resource

A RCSP can be encoded efficiently as a CSP: two variables, sti and fti, are
associated with each task Ti; they represent the start time and the finish time of
Ti. The smallest values in the domains of sti and fti are called the release-date
and the earliest finish time of Ti (ri and efti). Similarly, the greatest values in
the domains of sti and fti are called the latest start time and the due-date of Ti

(lsti and di). The processing time of the task is an additional variable pti, that
is constrained to be lower than or equal to the difference between the end and
the start times of the task (most often, processing time is known and bound to
a value duri).

No loss of generality, the scheduling problem we consider is the preemptive
scheduling problem (tasks can be interrupted at any time). One can either
associate a set variable (i.e., a variable the value of which will be a set) set(Ti)
with each task Ti, or define a 0–1 variable W(Ti, t) for each task Ti and time t;
set(Ti) represents the set of times at which Ti executes, while W(Ti, t) assumes
value 1 if and only if Ti executes at time t. Ignoring implementation details, let
us note that:

� the value of W(Ti, t) is 1 if and only if t belongs to set(Ti).
� sti and fti can be defined, in the preemptive case, by sti = mint∈set(Ti )(t) and

fti = maxt∈set(Ti )(t + 1); such variables are often needed to connect tasks
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together by temporal constraints. Notice that in the non-preemptive case,
set(Ti) = [sti, fti), with the interval [sti, fti) closed on the left and open on the
right so that |set(Ti)| = fti − sti = pti.

In the following, capacity (Ri) denotes the constant used to represent the initial
capacity of the resource Ri. Based on the value of capacity (Ri), unary resource
(capacity (Ri) = 1) and discrete resource (capacity (Ri) > 1) are distinguished.

2.3 Constraints in RCSP

The constraints appearing in RCSP can be classified into several groups.
We classify the constraints using their role in the RCSP into two categories:
temporal and resource constraints.

� Temporal constraint (Ct) can be expressed by linear binary constraints be-
tween the start and finish variables of tasks. By analysing all Ct, we can
construct the temporal constraint network. Note that time-windows [ri, di] of
task is special case of temporal constraint.

� Resource constraint (Cr) defines how a given task T will require and affect
the availability of a given resource R. It consists of a tuple {Ti, Ri, cap}
where cap is an integer decision variable or constant defining the quantity of
resource Ri required by task Ti.

We introduce constant cap(T, R) to denote the quantity of resource R required
by task T. We name this kind of task T C-task (Constant Task). We introduce
variable cap (T, R, t) (cap(T, R, t ) ≤ capacity(R)) to denote the quantity of
resource R required by task T at time-point t (ri ≤ t ≤ di). We name this kind
of task T V-task (Variable Task). Let us consider a set K of tasks, subjected
to both release-dates and due-dates, to be sequenced on resource R (unary or
discrete) with initial capacity capacity (R) in a RCSP. |K| denotes the num-
ber of tasks in set K. energy(R, t) is a variable that represents the availabil-
ity quantity of the resource R at time t (rK ≤ t ≤ dK, rK = {minimum (ri) |
Ti ∈ K}, dK = {maximum (di) | Ti ∈ K}). The initial value of energy(R,t ) is
capacity (R).

3. LOGIC-BASED CONSTRAINT MODELING
IN RCSP

Based on the CSP model of RCSP, the general method of modeling con-
straints in it is to list all the assignment combinations of variables directly.
We propose describe the constraint by using the formula of discrete-variable
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logic. In the framework of discrete-variable logic, the scheduling problem can
be solved in the method of multivalent resolution on finite sets.

3.1 Discrete time modeling in RCSP

Many discrete optimization problems are readily expressed using variables
that assume a finite number of discrete values. The clearest example is schedul-
ing problem in which tasks or some other set of objects must be arranged in
a sequence. The RCSP falls into this class. In the RCSP, the domains of the
time variables (sti and fti) are really finite and discrete, which is caused by the
discrete time modeling in RCSP.

Task in scheduling deals with time as one of the parameters. Therefore
modeling of time is necessary in most scheduling applications. In RCSP, a
common modeling situation requires that resource consumption be monitored
continuously over time. For example, it may be possible to process several
tasks simultaneously, provided that their consumption of resources at no point
exceeds a maximum. This is difficult to model using 0–1 variables because one
must keep track of which tasks are still in process at any given moment. This
is usually done by discretizing time. Our way of modeling time is to divide
the time-line into a sequence of discrete time intervals with the same duration.
We call such intervals time slices. The duration of the time slice defines the
resolution of the schedule.

It is expected that the behaviour of the resource within the time slice is
homogenous, i.e., the important events like the change of task appear at the
time point between two time slices only. Consequently, if we model tasks using
discrete time then the duration of the time slice must respect the duration of
all the tasks. More precisely, the duration of the time slice must be a common
divisor of the duration of all tasks. If we work with tasks that have no restrictions
about their start and finish time then this requirement may lead to a huge number
of time slices (high resolution) even if the duration of the tasks is long (low
resolution). In the discrete time model the variables describe the situation either
at the time points or at the time slices.

3.2 Formulas of discrete-variable logic

We name the time variables xi in RCSP multivalent variables, which have
the finite and discrete domains. An elementary extension of propositional logic
can be developed for multivalent variables. In propositional logic, the primitive
unanalysed terms are atomic formulas yj. The analysis can be carried slightly
deeper by supposing that atomic propositions are themselves predicates that
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say something about discrete variables x1, . . . , xn, which can be regarded as the
time variable in RCSP. For instance, a predicate may have the values x j can
assume. Special cases would be x j = v and x j �= v, where v is a constant. A
number of useful predicates can be defined in terms of more primitive notation,
just as equivalence ≡ and implication ⊃ are defined in terms of ∨ and ¬ in
propositional logic.

The resulting logic is still bivalent in that propositions have one of two
truth-values. The variables, however, are multivalent.

Whereas a limited repertory of connectives appear to be useful in proposi-
tional logic, multivalued variables multiply the possibilities. The all-different,
element, distribute, and cumulative predicates have proved especially useful.
The idea of a logical clause is also readily generalized.

4. FORMULAS AND SEMANTICS

The atomic propositions yj of propositional logic are replaced with predi-
cates P(x) = P(x1, . . . , xn) in discrete variable logic. Predicates can be combined
with logical connectives in the same way as logical propositions. one primitive
predicate will be sufficient to define all others, namely P(x) = (x j ∈ X j ) for
X ⊂ D j .

The semantics are slightly different than in propositional logic. In the latter,
the meaning of a molecular formula is given by the Boolean function it repre-
sents. In discrete logic, a formula’s meaning is given by a truth function f(x)
of the discrete variables x = (x1, . . . , xn), where each x j ∈ D j . In particular,
each predicate is defined by the function f(x) it represents. For example, the
function f(x) for x j ∈Y j takes the value 1 if the value assigned x j belongs to
X. Once the truth-values of the predicates are determined, the truth-values of
the formulas containing them are computed in the normal propositional way.

5. MULTIVALENT CLAUSES

Multivalent clauses are a straightforward generalization of propositional
clauses and are completely expressive in an analogous sense.

A multivalent clause has the form

m∨
j=1

(x j ∈ X j ) (1)

where each X j ⊂ D j . If X j is empty, the term (x j ∈ X j ) can be omitted from
(2), but it is convenient to suppose here that (2) contains a term for each j. If
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X j = D j for some j, then (2) is a tautology. Note that the literals of a multivalent
clause contain no negations. This brings no loss of generality, since ¬(x j ∈ X j )
can be written x j ∈ D j\X j .

Any truth function f(x) = f(x1, . . . , xn) can be expressed as a conjunction of
multivalent clauses. This is done simply by ruling out the values of y for which
f(x) = 0. Thus, if f(x) = 0 for x = v1, . . . , vk, then f(x) is represented by the
formula

k∧
i=1

n∧
j=1

(
x j �= vi

j

)
(2)

which can be formally written as a multivalent clause:

k∧
i=1

n∧
j=1

(
x j ∈ D j\{vi

j }
)

(3)

Because any constraint over finite domains represents such a function f(y), it
is equivalent to a finite set of multivalent clauses.

One multivalent clause ∨ j (x j ∈ X1 j ) implies another ∨ j (x j ∈ X2 j ) if and
only if the one absorbs the other; that is, X1 j ⊂ X2 j for each j. Equivalent
multivalent clauses are identical. Prime implications are defined precisely as
for classical clauses.

Any formula of discrete logic can be converted to a conjunction of multiva-
lent clauses by using De Morgan’s laws, distribution, double negation, and the
fact that ¬(x j ∈ X j ) means (x j ∈ D j\X j ).

6. MULTIVALENT RESOLUTION

Resolution is easily extended to the logic of discrete variables. Unit reso-
lution also has an analog. Resolution plays the same role in computing projec-
tions as it does in propositional logic. The resolution algorithm for multivalent
clauses is related to Cooper’s algorithm for obtaining k-consistency for a set of
constraints [7]. Given a set of multivalent clauses,{

n∨
j=1

(x j ∈ Xi j ) | i ∈ I

}
(4)

the resolvent on xk of these clauses is(
xk ∈ ∩

i∈I
Xik

)
∨ ∨

j �=k

(
x j ∈ ∪

i∈I
Xi j

)
(5)

Ordinary bivalent resolution is a special case. The clauses in the set (4) are the
parents of the resolvent (5).
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A unit resolution algorithm for multivalent clauses  

Let S be a set {Ci | i∈I} of multivalent clauses, 

where each Ci has the form )(
1 ijj

n

j
Xx ∈∨ =

 

For all i∈I and j=1,…,n let Xij=Xij∩Dxj, 

where Dxj is the current domain of xj. 

For i∈I: 

Let χi be the collection of nonempty sets Xij. 

If χi=∅ then stop; S is unsatisfiable. 

For j=1,…,n let Sj={Ci | Xij∈χi}. 

Let U be the set of pairs(Ck, jk) for which Ck is a unit clauses; 
that is , χk={ kkjX }. 

While U is nonempty: 

Remove some pair (Ck, jk) from U. 

Remove Ck from kj
S

. 

For all Ci ∈
kj

S : 

Let 
kijX =

kijX ∩
kkjX . 

If 
kijX =∅ then:  

Remove 
kijX from χi. 

If χi =∅ then stop; S is unsatisfiable. 

If |χi|=1 then add Ci to U. 

Figure 1. A unit resolution algorithm for multivalent clauses.

A unit resolution algorithm for multivalent clauses appears in Figure 1.
It is very similar to classical unit resolution. When a clause Ck becomes a
unit clause x j ∈ Xkj , the domain of x j can contain only elements that oc-
cur in Xkj . The clause Ci is deleted and the clauses containing x j adjusted
accordingly.

To speed processing, the algorithm keeps track of which literals remain in
each clause. Thus χi contains the nonempty sets Xi j . It also maintains a list
Sj of the clauses that still contain x j ; that is, the clauses Ci for which Xi j is
nonempty. Whenever Xkj in some clause Ck becomes empty, Xkj is removed
from χk. If this makes Ck a unit clause, then every Xi j in the constraint set must
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be updated so that it lies in Xkj. The list Sj makes it possible to locate quickly
the Xi j ’s that might be affected. The clause Ck is deleted from the problem and
removed from Sj.

Example. The three clauses below

(x1 ∈ {1, 4}) ∨ (x2 ∈ {1})
(x1 ∈ {2, 4}) ∨ (x2 ∈ {2, 3}) (6)

(x1 ∈ {3, 4}) ∨ (x2 ∈ {1})
resolution of the first and third clauses of (6) on x1 to yields

(x1 = 4) ∨ (x2 = 1) (7)

This clause absorbs three other clauses in (6), resulting in the clause set

(x1 ∈ {2, 4}) ∨ (x2 ∈ {2, 3}) (8)

(x1 = 4) ∨ (x2 = 1)

Resolution of these on x2 produces

x1 ∈ {2, 4} (9)

This and (7) are the prime implications of (6).

7. CONCLUSION

Our work focuses on handling the constraints in the logic way. In the discrete-
variable logic, any constraint over finite domains in RCSP can be represented
as a finite set of multivalent clauses. Using the discrete-variable formula to
describe constraints can heighten the modeling capabilities of CP. Based on
this model, we designed a resolution algorithm in the form of constraint-based
search in the logic framework. In sum, logic-based modeling not only heightens
the problem modeling capability but also exploits the problem solving method.
Scheduling is really a process of getting the constraints right. However, design-
ing a constraint model that can be used to solve real-life large-scale problems
is also the biggest challenge of current Constraint Programming.
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PARTICLE SWARM OPTIMIZATION METHOD
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130012, China

Abstract In this paper, we suggest to use particle swarm optimization (PSO) in pixel-based

texture synthesis. It can search better matching pixels from the sample texture and

paste them onto the result texture. High-quality textures can be generated by this

method in short time, especially in dealing with narrow textures and arbitrary-

shaped images that out of the region of patch-based methods theoretically. The

stimulate experiment results shows its efficiency and practicability.

Keywords: pixel-based texture synthesis, patch-based texture synthesis, particle swarm

optimization (PSO), L-shaped neighborhood.

1. INTRODUCTION

Many applications of computer graphics, vision and image processing can
benefit from texture synthesis algorithm, because textures can describe a wide
variety of natural phenomena. In 1999, Efros and Leung [1] developed a very
good method by growing texture using non-parametric sampling based on
Markov Random Field (MRF). And most recent works on texture synthesis
are all based on it. Wei and Levoy [2] improved it by using a multi-resolution
image pyramid based on a hierarchical statistical method. Methods mentioned
above are all pixel-based methods.

In recent years, patch-based algorithms were presented. Ashikhmin [3] made
an intermediate step towards copying patches. Liang, Liu, Xu, Guo and Shum
[4] and Efros and Freeman [5] copy patches of input texture at a time. Praun,
Finkelstein and Hoppe [6] present a similar approach to create textures covering
a 3D model.

G. R. Liu et al. (eds), Computational Methods, 1187–1192.
C© 2006 Springer. Printed in the Netherlands.
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Figure 1. Pixel-based texture synthesis.

2. OUR APPROACH

2.1 Particle Swarm Optimization (PSO)

J. Kennedy and R. C. Eberhart [7] proposed the original idea of PSO. The
particle uses the following formulae to update its location and velocity:

V (t + 1) = V (t) + rand() × cl × (pBest(t) − present(t))

+ rand() × c2 × (gBest(t) − present(t)) (1)

present(t + 1) = present(t) + V (t + 1) (2)

2.2 Pixel-based Texture Synthesis

This method is a Markov Random Field based method and it synthesizes
new texture one pixel at a time. Figure 1 gives the process of this method: given
a sample texture image I , a new image O is being synthesized one pixel at a
time. To synthesize a pixel, the algorithm first finds all neighbourhoods N in
the sample image that are similar to the pixel’s neighbourhood N ′ in B and
then randomly chooses one neighbourhood and takes its center to be the newly
synthesized pixel [1].

2.3 Pixel-based Texture Synthesis using PSO

Patch-based methods improved the synthesis speed, but theoretically it has
a serious limitation that it can be only used to synthesize broader and rectangle
sample texture images. So pixel-based methods is more appropriate to be used
to synthesize arbitrary-shaped and narrower sample texture image. We present
a pixel-based texture synthesis method by using PSO algorithm to search for



Particle Swarm Optimization Method 1189

an approximate best pixel from a sample image to a result image. This method
is based on Efros and Leung’s [1] method and its speed is almost comparable
with patch-based methods’.

Now we apply the PSO algorithm to pixel-based texture synthesis. First
randomly set a number of pixels in input image I and treat them as particles.
Each particle determines an L-shaped neighbourhood. User can define size of
neighbourhood. When the particles travel through the image we compare their
neighbourhoods with the being synthesized pixel’s and find an approximate
best match pixel. Details about how to apply PSO are as below:

All particles have their locations and velocities property. As particles trav-
elling through I , we calculate the Fitness Function of each location they pass
through. We denote the fitness as the distance between the neighbourhoods of
particle and the being synthesized pixel’s. Define D as neighbourhood of just
being synthesized pixel and S as the neighbourhood of the current particle’s
location. The formula for calculating fitness between two neighbourhoods D
and S is as follows:

d(D, S) =
√√√√ k∑

i=1

{[r (Di ) − r (Si )]2 + [g(Di ) − g(Si )]2 + [b(Di ) − b(Si )]2}
(3)

Where r (), g(), b() are the RGB value of a pixel. Di means the i-th pixel
in D, Si means the i-th pixel in S and k means the amount of pixels in the
neighbourhoods. We set n particles on the sample texture. Denote Pi as the
location of particle i and Li as the best fitness location of particle i , with
best fitness Bi . The global fitness g is the best fitness among all n particles
so g = min(B1, B2, . . . Bn). The location of the particle, which has best global
fitness, is recorded as G. Each particle will be given an initial velocity vector Vi .

Now we update the particles using the following formulae:

Vi = Vi + rand() × cl × (Li − Pi )

+ rand() × c2 × (G − Pi ), Pi = Pi + Vi (4)

In search process, a threshold value function dtv should be defined to determine
the location. If the difference between neighborhoods of a pixel (particle) and
the being synthesized pixel’s is less than dtv then we get the location, stop the
iteration and paste the pixel onto the output texture.

dtv =
√√√√λ ×

k∑
i=1

[
r (Di )2 + g(Di )2 + b(Di )2

]
(5)

Where k is the number of pixels in the neighbourhood and Di represents the
value of the i-th pixel in the neighbourhood of the just being synthesized
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pixel. λ is the error tolerance and it is set to 0.2 in our algorithm, this value is
most suitable for keeping the randomness while ensuring synthesis quality and
avoiding repetition.

The algorithm can be processed into two steps:
First, randomly set value of each pixel in output texture image O , start

synthesize at the lower left corner of O . For the pixels on the edge of O that
their neighbourhoods are smaller than the size of user defined, we should make
up it with the boundary pixels on the other edge of image.

And then, if PSO algorithm found a location with fitness less than dtv
then we paste the pixel value at the location to O . Otherwise we terminate the
iteration when it exceeds the maximum iteration number and have found the
best solution so far. Blend the corresponding pixel and paste it to O; repeat this
step until O is filled.

3. RESULTS OF ALGORITHMS AND
PERFORMANCES COMPARISON

3.1 Results of Algorithms

Figure 2 gives a group of the synthesis results using the algorithm in this
paper and other texture synthesis methods. (a) is the sample image, (b) is result
of Efros and Leung’s [1] method and (c) is generated by Liang’s method. We

Figure 2. Results of several algorithms.
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(a) (b)

Figure 3. Synthesis result of an arbitrary-shaped sample.

(a) (b)

Figure 4. Synthesis result of a narrow image.

use 40 particles, and obtain result (d). Size of the input sample is 64 × 64. Sizes
of the output images are all 128 × 128. From visual inspection, our method is
as good as the other two methods. Figures 3 and 4 respectively give synthesis
results of an arbitrary-shaped and a narrow image by using our algorithm, which
can’t be processed by patch-based methods theoretically.

3.2 Performance Comparison

We used several existed methods and ours to synthesize sample textures
with size 64 × 64 to new textures with size 128 × 128 and get computing
time of them, which is listed in Table 1. They are performed on a DELL PC
with 2G CPU. It is clear that our method using 40 particles performs much
faster than Efros and Leung’s [1]; it is almost comparable with Efros and
Freeman’s [5].
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Table 1. Performances comparison.

Method Synthesis Time(seconds)

Efros & Leung (1999) 959

Efros & Freeman (2001) 9

our method 14
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Abstract ATLAS is a standard test language, which is extensively used in military and

electronic tests. In the implementation of ATLAS, we transformed it into C++,

and this paper presents the formal methods of the transformation from the core

statements of ATLAS into C++ program. The non-signal statements are directly

transformed into their semantic equivalent in C++. Meanwhile, other statements,

which describe the concrete test and communication process, including the single-

action statements, the multiple-action statements and the bus statements, have no

equivalent signal-oriented statements in C++. Thus, the single-action statements

and the bus statements are transformed into a series of actions that mainly include

codes for allocating device, calling drivers and maintaining device states. And we

transform each multiple-action signal statement into a sequence of single-action

statements, since they are equal in function.

Keywords: ATLAS, test language, program transformation, formal method.

1. INTRODUCTION

A program transformation is a meaning-preserving mapping defined on
a programming language [1]. The program transformation methodology pro-
vides thinking tools for the development of programs from specifications [2]
and program verification [3]. The program transformation techniques provide
mechanical tools for program optimization [4, 5], software customization [6]
and compilation [7].

ATLAS (Abbreviated Test Language for All Systems) is designed to de-
scribe tests in terms that are independent of any specific test system, and has

*This research is funded by the Key Laboratory of Symbolic Computation and Knowledge
Engineering of Ministry of Education of P.R.China.
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been constrained to ensure that it can be implemented on ATE (Automatic Test
Equipment) [8]. This language is designed to describe tests in terms that are
independent of any specific test system, and has been constrained to ensure that
it can be implemented on ATE (Automatic Test Equipment). This language has
some traits when it is compared with traditional programming languages as
follows. (1) Device independency, namely only test requirement will appear
instead of any devices in the ATLAS programs written by users. (2) Signal
correlation, programs written in ATLAS are all faced to signal. (3) Expansibil-
ity, ATLAS provides an extensibility mechanism that allows users to introduce
new nouns, noun modifiers and pin descriptors as required accommodating new
signal types. (4) Parallelism and timing function, some events appearing in bus
statements must occur concurrently, and some test statements should be started
at some given time. (5) Syntax is closed to natural language, and the restriction
of the grammar is not so strict.

Since the language is very complex, it is difficult to design its compiler
directly. Thus, we transformed the language into C++ in the implementation of
ATLAS. However, C++ language has no statements to do the operation on bus
and signal. Thus the signal and bus statements of ATLAS should be transformed
into a series of actions that mainly include codes for allocating device, calling
drivers and maintaining device states. According to the characteristics of AT-
LAS, this paper presents the formal methods of its transformation from ATLAS
to C++. This formalization lays the theoretic foundation for the implementation
of ATLAS [9].

The remainder of this paper is organized as follows. In Section 2, we provide
the abstract syntax definition of the language discussed in this paper. Section 3
is devoted to the formal methods of the transformation from the test language
ATLAS to C++. We also give a summary of this paper in section 4.

2. LANGUAGE DEFINITION

ATLAS not only owns the control structure of traditional programming
language, but also defines a complete set of signal and bus statements related
to test. This leads to the huge complexity of ATLAS. In the following parts,
we will only study the selected core statements, which can perform most of the
test process.

2.1 Abstract syntax

ATLAS ::= DECL STML

STML ::= STM | STML $ STM

STM ::= SETUP | CONNECT | DISCONN | ARM | FETCH | CHANGE |
RESET | APPLY | ENABLE | DISABLE | DO | ...
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We will separately provide the abstract syntax of each discussed statement in
the following formal specifications.

2.2 Definition of transformation function

Tp:

DEC∗×STM∗ →CDEC∗×CSTM∗

Td: DEC→CDEC∗

Ts: STM→CSTM∗

Te: EXP→CEXP

Where Tp is the function that transforms an ATLAS program into C++ whose
specific work is implemented by Td, Ts and Te; Td transforms ATLAS dec-
larations into C++ declarations; Ts transforms ATLAS statements into C++
statements and Te transforms ATLAS expressions into C++ expressions. The
notation ⊕ in the following transforming specifications denotes concatenation
of strings and � denotes the operation of adding an element into a list.

3. TRANSFORMATION METHODS

Converting the main program structure into the main() function of C++ as
follows:

Tp DECL STML = main() {Tdl DECL ; Tsl STML }
Tdl DECL = (DECL=null →"", let dec � DL=DECL in Td dec ⊕ Tdl DL )

Tsl STML = (STML=null→"", let stm � SL=STML in Ts stm ⊕ Tsl SL )

The non-signal statements of ATLAS have their equivalent in C++, thus their
transformation is only the structural equivalent mapping. Due to the space lim-
itation, only the transformation rules of signal and bus statements are provided
in the following sections.

3.1 Single-action statements

Single-action signal statements relate to the commuting signal in the test
process and there are no statements in C++ performing the similar function.
Thus, the transformed statements should include the codes of device allocation,
calling driver and state transition.

Simply stated, device allocation means finding a suitable device in ATE
system to test the UUT (Unit Under Test). In the following transforming de-
scriptions, the predefined function DevAlloc() is used to show the allocating
process. In the transformed C++ program, sequences of device drivers are com-
bined to perform the function of a single-action signal statement of ATLAS.
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And, with the execution of the ATLAS program, the state of the active device
in the ATE system will change and this lead to different available operations
for the device. Therefore, the state transition of active device should be taken
into consideration.

3.1.1 SETUP statement

The SETUP statement is used to allocate a virtual resource and to control
them so as to generate or receive a defined signal. The permitted SETUP path for
sources goes through the CONNECTED state to the PREPARED state, while
the permitted path for loads or sensors goes through the UNALLOCATED state
to the SET state.

Ts SETUP, [(MCML),] NOUN, SCL, CONN =

let device = DevAlloc(NOUN, SCL, CONN) in

let mcmFunclist = Tfunc device, [MCML] in

let stmcFunclist = Tfunc device, SCL in

let StateStm = Tstate device in mcmFunclist ⊕ stmcFunclist ⊕
StateStm

Tfunc device, list = let (id, devinfo)=device in case devinfo of

(SOURCE, CONNECTED):

(SENSOR/LOAD, UNALLOCATED): Tlist id, list

other: "" end

Tlist id, list = (list=null→"",

let elem � list1=list in SetupDrive(id, Te elem ) ⊕ Tlist id,

list1 )

Tstate device = let (id, devinfo)=device in let (kind, state)=

devinfo in case devinfo of

(SOURCE, CONNECTED): state= PREPARED

(SENSOR/LOAD, UNALLOCATED): state= SET

other: "" end

Where SetupDrive() is the device driver of SETUP.

3.1.2 CONNECT statement

The CONNECT statement fastens or joins together the interface points of the
UUT and the interface points of the source, sensor or load device and to initiate
the signal between the virtual resource and the UUT. The permitted CONNECT
path for sources goes through the UNALLOCATED or CONNECTED state;
while the permitted CONNECT path for loads goes through the PREPARED
or SET state. The path for sensors is similar to loads’ except that the sensors
can only go through the SET state.

Ts CONNECT, [(MCML), NOUN, [SCL,] CONN]=

let (id, devinfo) = DevAlloc(NOUN, [SCL,] CONN) in
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let (kind, state)=devinfo in case devinfo of

(SOURCE, UNALLOCATED/CONNECTED):

ConnectDrive(id, CONN) ⊕ state = CONNECTED

(LOAD, SET/PREPARED):

ConnectDrive(id, CONN) ⊕ state = PREPARED

(SENSOR, SET): ConnectDrive(id, CONN) ⊕ state = PREPARED

other: "" end

Where ConnectDrive() is the device driver of CONNECT.

3.1.3 DISCONNECT statement

The DISCONNECT function is to disconnect the interface points of the
UUT and the interface points of the source, sensor or load device. Multiple
connections of a source or a load resource to separate UUT interface points
are permitted. Thus, DISCONNECT actions will keep the load resource in the
PRAPARED state unless all UUT interface connections of the resource are
disconnected – in which case the state changes to the SET state. Likewise,
the source resource will stay in the CONNECTED state, where multiple con-
nections could have been made until the last connection is opened – at which
time the state changes to the UNALLOCATED state. IsEntirelyDisconn() in
the following description is a predefined function which decides whether all
UUT connections are disconnected.

Ts DISCONNECT, [(MCML),] NOUN, [SCL,] CONN =

let (id, devinfo)=DevAlloc(NOUN, [SCL,] CONN) in

let (kind, state)=devinfo in

case devinfo of

(SOURCE, CONNECTED):

let bRet=IsEntirelyDisconn(id, CONN) in

DisconnDrive(id, CONN) ⊕
(bRet=true→state=UNALLOCATED, state=CONNECTED)

(SENSOR, PREPARED):

let bRet=IsEntirelyDisconn(id, CONN) in

DisconnDrive(id, CONN) ⊕
(bRet=true→state=SET, state=PRAPARED)

(LOAD, PREPARED): DisconnDrive(id, CONN) ⊕ state=SET

other: ""

end

Where DisconnDrive() is the device driver of DISCONNECT.

3.1.4 ARM statement

The ARM statement is used only with sensor type resource and induces a
measurement cycle by a sensor during which the results of the measurement will
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be determined before transfer by the associated FETCH statement. The state of
active sensor changes from PRAPARED to MEASURED with the execution
of ARM statement.

Ts ARM, (MCML), NOUN, SCL, CONN =

let (id, devinfo)=DevAlloc(NOUN, SCL, CONN) in

let (kind, state)=devinfo in

case devinfo of

(SENSOR, PREPARED): ArmDrive(id) ⊕ state=MEASURED

other: ""

end

Where ArmDrive() is the device driver of ARM.

3.1.5 FETCH statement

The FETCH statement function is to wait for the completion of a mea-
surement cycle induced by an ARM statement and to transfer the measured
value(s) into any id in the MC branch. This statement is available for sensor
type resource.

Ts FETCH, (MCL), NOUN, SCL, CONN =

let (id, kind, state)=DevAlloc(NOUN, SCL, CONN) in

case (kind, state) of

(SENSOR, MEASURED): Tmcl id, MCL ⊕ state=PRAPARED

other: ""

end

Tmcl id, MCL = let mc � MCL1=MCL in let (mcm, var)=mc in case MCL1

of

null: FetchDrive(id, &var)

other: FetchDrive(id, &var) ⊕ Tmcl id, MCL1

end

Where FetchDrive() is the device driver of FETCH.

3.1.6 CHANGE statement

The CHANGE statement is used to alter some of the characteristics of a
test requirement that are active in the testing of a UUT. This statement causes
a virtual resource (source, load or sensor) to remain in the same state.

Ts CHANGE, [(MCML),] NOUN, SCL, CONN =

let (id, kind, state)=DevAlloc(NOUN, SCL, CONN) in

(state=PRAPARED→Tscl id, SCL , "")

Tscl id, SCL = (SCL=null→"",

let sc � SCL1=SCL in ChangeDrive(id, sc) ⊕ Tscl id, SCL1

Where ChangeDrive() is the device driver of CHANGE.



Formal Method in Implementation of ATLAS Language 1199

3.1.7 RESET statement

The RESET statement causes a signal to return to its quiescent state and
to make its virtual resources available for re-use in a SETUP or multiple-
action signal statement. The permitted RESET path for sources goes through
the PRAPARED state to the CONNECTED state, while the permitted path for
loads or sensors goes through the SET state to the UNALLOCATED state.

Ts RESET, [(MCLM),] NOUN, SCL, CONN =

let (id, devinfo)=DevAlloc(NOUN, SCL, CONN) in

let (kind, state)=devinfo in

case devinfo in

(SOURCE, PRAPARED): ResetDrive(id) ⊕ state=CONNECTED

(SENSOR/LOAD, SET): ResetDrive(id) ⊕ state=UNALLOCATED

other: ""

end

Where ResetDrive() is the device driver of RESET.

3.2 Multiple-action statements

Multiple-action statements are functionally equivalent to sequences of
single-action signal statements and other non-signal procedural statements,
and therefore we can transform a multiple-action statement into a sequence of
single-action statements. For different type resources, the sequence of every
single-action statement varies. The transformation of APPLY and MEASURE
statements exemplifies the process.

Ts APPLY, NOUN, [SCL,] CONN =

let ConnStm=Ts CONNECT, NOUN, NULL, [SCL,] CONN in

let SetupStm=Ts SETUP, NOUN, NULL, [SCL,] CONN in

let kind=GetDevKind(APPLY, noun) in

case kind of

SOURCE: ConnStm ⊕ SetupStm

SENSOR/LOAD: SetupStm ⊕ ConnStm

end

Where GetDevKind() is the predefined function that returns the kind of device.

3.3 Bus statements

3.3.1 ENABLE EXCHANGE statement

This statement’s function is to enable a set of protocols and to initialize them
for the subsequent statements and to connect them to the correct UUT pins.
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Making the transformation of this statement is to allocate several databuses
according to these protocols and do the initialization. Meanwhile, the mapping
relationship between these allocated databuses and the identifiers exc-config
should be established to enable the upcoming bus statements find the needed
bus. Predefined function BusAlloc() is used to show this process.

Ts ENABLE, EXC-CONFIG exc-config, PROTOCOLL = case PROTOCOLL of

null: ""

other: let protocol � PROTOCOLL1=PROTOCOLL in

let (b, p, conn)=protocol in

let id=BusAlloc(exc-config, b, p, conn) in

BusInit(id) ⊕ BusConn(id, conn) ⊕
Ts ENABLE, exc-config, PROTOCOLL1

end

Where BusInit() is the driver of initializing databus.
BusConn() is the driver that connects UUT to databus.

3.3.2 DISABLE EXCHANGE statement

This statement’s function is to render an active exc-config inactive, and
BusClose() driver does this job in the following descriptions. The predefined
function GetBusDev() used in transformation descriptions means finding a
suitable one from the devices allocated by the ENABLE statement.

Ts DISABLE, EXC-CONFIG exchange-config =

let buslist=GetBusDev(exchange-config, all) in

let clause=Tlist buslist in clause

Tlist buslist =(buslist=null→"",

let id � buslist1=buslist in BusClose(id) ⊕ Tlist buslist1 )

3.3.3 DO statement

Several statements support the testing of UUTs that utilize buses. Herein,
the DO statement permits the actual traffic on the bus in terms of exchanges
and specifies the type of test device participation in each exchange. The trans-
formation of DO statement is to make the decision of performing bus receiving
or sending data according to the different roles and/or modes and call the bus
receiving or sending driver function to transmit data on the bus. Meanwhile,
we decide whether the bus communication needs to be monitored according to
the value of TRANS field.

Ts DO, EXCHANGE, USING exc-config, PEXCL =

let pexc � PEXCL1=PEXCL in let (protocol,exc)=pexc in

let id=GetBusDev(exc-config, protocol) in

(PEXCL1=null→Texc id, exc ,Texc id, exc ⊕ Ts exc-config, PEXCL1 )
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Texc id, MODE, talker, listener, comm, data, status, ROLE, TRANS =

let result=SendOrRecv(MODE, talker, listener, ROLE) in

let bRet=NeedMonitor(TRANS) in case (result, bRet) of

(recv, true): let (mc, md, ms) = TRANS in

ReceiveDrive(id, Te comm , Te data , Te status ) ⊕
ReceiveDrive(id, Te mc , Te md , Te ms )

(recv, false):ReceiveDrive(id, Te comm , Te data , Te status )

(send, true): let (mc, md, ms) = TRANS in

SendDrive(id, Te comm , Te data , Te status ) ⊕
ReceiveDrive(id, Te mc , Te md , Te ms )

(send, false):SendDrive(id, Te comm , Te data , Te status )

end

Where predefined function GetBusDev() means getting a suitable one from
the allocated devices, SendOrRecv() is a predefined function, which decides
whether bus receive or send data. NeedMonitor() is a predefined function, which
decides whether bus need to monitor or not. ReceiveDrive() and SendDrive()
are drivers of databus.

4. SUMMARY

In this paper, we present the formal transformation methods from the test
language ATLAS to C++. Since there are equivalents in C++ for the non-signal
statements of ATLAS, their transformation is only the one-to-one mapping from
ATLAS to C++. The statements relating to signal and bus are transformed into
a series of actions that mainly include codes for allocating device, calling driver
and state transition in C++. According to the formal methods, we implemented
a transformation system from ATLAS to C++. Although it is a complicated
process to convert the signal and bus statements into C++, this paper solves
most of this kind problem. And the future work lies in study of complex signal,
event-based signal and the digital test.
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Abstract A topic driven crawler chooses the best URLs to pursue during web crawling. It

is difficult to evaluate what URLs downloaded are the best. This paper presents

some important metrics and an evaluation function for ranking URLs about pages

relevance. We also discuss an approach to evaluate the function based on GA.

The best combination of the metrics’ weights can be discovered by GA evolving

process. The experiment shows that the performance is exciting, especially about

a popular topic.

Keywords: topic driven crawler, genetic algorithm, real-coded, relevant pages.

1. INTRODUCTION

A crawler is a program that retrieves web pages for a search engine, which
is widely used today. The WWW information is distributed, also the informa-
tion environments become complex. Because of limited computing resources
and limited time, topic driven crawler (also called focussed crawler, retrieve
web pages relevant a topic) has been developed. Topic driven crawler carefully
decides which URLs to scan and in what order to pursue based on previously
downloaded pages information. Some evaluation methods for choosing URLs
[1] and several special crawlers, Naive Best-First crawler and DOM crawler
[2] do not have satisfying adaptability. In this paper, we present an approach to
evaluate a function about pages’ relevance based on genetic algorithm (GA).
We use GA to evolve some weights of the metrics. GAs are general purpose
search algorithms which use principles inspired by natural genetic popula-
tions to evolve solutions to problems [3, 4]. In our approach, not as usual, an
individual is a combination of the real-coded metrics’ weight, and it’s more
natural to represent the optimization problem in the continuous domain.

G. R. Liu et al. (eds.), Computational Methods, 1203–1208.
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2. THE EVALUATION FUNCTION (METRICS)

Not all pages which crawler observed are ‘relevant’ during crawling. For
instance, if a crawler builds a specialized database on a particular topic, then
pages referring to that topic are more important, and should be visited as early
as possible. Similarly, If a page points to lots of authority pages, then the page
is a high hub score page [5]. If the crawler cannot visit all the pages, then it is
better to visit those ‘important’ pages, since this will give the end-user higher
ranking results. We define the evaluation function I (u), u is the URL that the
crawler will be pursued, p is the parent page of u. The evaluation function is a
weighted combination of followed metrics:

1. sim(p, q) (similarity of page p to topic q): A topic q drives the crawling
process, and sim(p, q) is defined to be the textual similarity between p and
q , this is shown in the work by the authors [6].

sim(p, q) =

(
r∑

j=1

q j × l j × ω j

)

(|ω′| × |p|) (1)

where ω′ = (ω1 × l1, . . . , ωr × lr ); ω j : the weight of the j th word;
l j : the inverse document frequency (idf ) of the j th word;

2. hub(p) (the evaluation of hubs property): Hub pages are defined to be web
pages which point to lots of ‘important’ pages relevant a topic.

hub(p) = |L p|∑N
i=1 |Li |

N

(2)

where |L p|: the number of outlinks of page p;∑N
i=1 |Li |

N
: the average number of outlinks of the pages that are already

downloaded.
3. bc(p) (backlink count): the number of links to p

bc(p) = |Pp|
M

(3)

where M is a parameter provided by user.
4. uts(u, q) (similarity of URLs text to topic p):

uts(u, q) = sim(u, q) + thesaurus(u, q) (4)

where thesaurus(u, q) is uses the thesaurus dictionary of topic q, this ex-
perimentation does not take the metric(the future work I will do).
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5. pagerank(p): a page p that is pointed at by pages t1, . . . , tn , and ci is the
number of links going out of page ti . d is a damping factor [1].

pagerank (p) = (1 − d) + d

(
pagerank (p1)

c1

+ · · · + pagerank (pn)

cn

)
(5)

I (u) = ω1 × sim(p, q) + ω2 × hub(p) + ω3 × bc(p) + ω4 × uts(u, q)

+ ω5 × pagerank(p) (6)

where
∑5

i=1 ωi = 1. A high I (u) value indicates u links more relevant page
to the topic.

3. EVOLVE THE WEIGHTS WITH GENETIC
ALGORITHM

The weights of the metrics (6) are evolved with genetic algorithm. The
individuals are real-coded, because that the representation of the solution could
be very close to the natural formulation of our problem. Since the amount of the
weights equals to 1, the weight ωi is coded into the gene, ci , and ci is defined
by

ci =
i∑

j=1

ω j , i = 1, . . . , 4 (7)

Each individual in the population is the combination of c1, . . . , c4. Obviously,
there must be a restriction of any individual, xi ≥ x+1, to ensure the individual
could be decoded into the weights.

The standard fitness proportional model, which is also called roulette wheel
selection, is used as the selection method to select the individuals for repro-
duction. The probability of an individual to be selected is Pi = fi/

∑n
j=1 f j ,

n is the population size [7]. Individuals are crossed using simple crossover
method [8]. We can assume that C1 = (c1

1, . . . , c1
5) and C2 = (c2

1, . . . , c2
5) are

two chromosomes selected for the crossover operator. The single crossing po-
sition j ∈ {1, . . . , 3} is randomly chosen and the two new chromosomes are
built as

C ′
1 = (

c1
1, c1

2, . . . , c1
i , c2

i+1, . . . , c2
5

)
C ′

2 = (
c2

1, c2
2, . . . , c2

i , c1
i+1, . . . , c1

5

)
Of course, due to the restriction of the individual which is referred before,

the genes of C ′
1, C ′

2 must be sorted according to the sort ascending. If an
individual is chosen for the mutation operator, one of the randomly chosen gene
ci will change to c′

i ∈ (ci−1, ci+1) which is a random value, and we assume that
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c0 = 0, c5 = 1. Finally, all of the individuals, including new and old ones, are
sorted by their fitness, and the best fit individuals become the new population
in the next generation. We set the probability of crossover to be 0.8, and the
probability of mutation to be 0.05. After 50 generations, we finish the evolving
process, choose the individual with the highest fitness of the population, and
decode the genes to the weights as the result.

4. THE EXPERIMENTS AND RESULTS

In the experiment, we built a virtual crawler, and crawled the web starting
from 200 relevant URLs (Seed URLs) simultaneously. After crawling 18,000
pages, all the crawler threads stop. We choose the best individual based on the
metric of fitness.

fitness = 1

N
·

N∑
i=1

xi , xi =
{

1, sim(pi , q) ≥ θ

0, sim(pi , q) < θ
(8)

θ is a parameter provided by user, N is the number of crawled pages.
Table 1 shows the best weight combination of the different topics.

Figure 1 shows the percent of the relevant pages on the topic of ‘computer’.
The dashed represents every weight ωi = 0.2 fixed. The real line represents the
best individual weight. Figure 2 on the topic of ‘drama’.

Table 1. The best weight combination.

Topics w1 w2 w3 w4 w5

Computer 0.218 0.207 0.106 0.353 0.116

Drama 0.175 0.226 0.103 0.371 0.125
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Figure 1. Topic of computer.
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5. CONCLUSIONS

In this paper, a topic driven crawler based on GA has a good performance
during crawling. According to the two figures above, popular topic ‘computer’
has a better fitness than topic ‘drama’. After GA evolving, the results of above
experiment is significant, and this is just what we expected. We will perfect our
work, metrics thesaurus(u, q) etc., in future.
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Abstract In this paper, we propose a boundary method to speed up constructing the optimal

hyperplane of support vector machines. The boundary, called key vector set,

is an approximate small superset of support vector set which is extracted by

Parzen window density estimation in the feature space. Experimental results on

Checkboard data set show that the proposed method is more efficient than some

conventional methods and requires much less memory.

Keywords: support vector machines, Parzen window, key vector, feature space.

1. INTRODUCTION

Support vector machine (SVM) is a powerful machine learning method
based on Statistical Learning Theory, which is introduced by Vapnik et al. [1].
The main difference between SVM and the traditional learning method lies in
that: SVM learning approaches to map the input data into a higher dimensional
feature space, and then attempts to construct the optimal separating hyperplane
using the Structural Risk Minimization rule (SRM ) in order to make less mis-
takes. This optimization problem is known to be challenging when the number
of data points exceeds thousands [2]. Though having no theory to guarantee
samples in higher dimensional feature space would be certainly linear divi-
sion, a large number of experimental results have indicated the assumption that
searching optimal separating hyperplane in higher dimensional feature space is
feasible [3]. As a traditional feature selection method, Parzen window density
estimation has been widely applied to many pattern recognition problems [4].

G. R. Liu et al. (eds), Computational Methods, 1209–1213.
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In this paper, a small approximate superset of support vectors set, called
Key Vector set, is presented in order to speed up training SVM. Extracting key
vector set is based on the distribution character of large number of training
samples in feature space by Parzen window density estimation.

2. STANDARD SVM

Let (xi , yi ), i = 1, . . . , m be the training set, where xi ∈ Rn, yi ∈ (−1, 1).
Training a SVM is equivalent to solving a linearly constrained quadratic pro-
gramming problem: min

α
W (α) = 1

2
αT Qα − eT α, s. t. αT y = 0, 0 ≤ α ≤ C ,

where C is a regularization constant, the matrix Q is defined by Qi j =
yi y j K (xi , x j ) , i, j = 1, . . . , m. Then the separating rule, based on the opti-
mal hyperplane, is the indicator function: f (x) = sgn

[∑
i αi yi K (x, xi ) + b

]
,

where K is a kernel function, xi with nonzero αi are the support vectors.
In kernel designs, we employ the idea to transform the input patterns into the

reproducing kernel Hilbert space (feature space) by a set of mapping functions
ϕ(x), and ϕ(xi ) · ϕ(x j ) = K (xi · x j ) must satisfy the Mercer condition, usually
a RBF Gaussian kernel: K (x, x ′) = exp(−||x − x ′||2/2σ 2) [1].

3. PARZEN WINDOW DENSITY ESTIMATION

The Parzen window density estimation can be used to approximate the prob-
ability density p(x) of a vector of continuous random variables X . Given a set
of n dimensional samples (x1, . . . , xn), the probability density estimate by the
Parzen window is given by p(x) = ∑n

i ω(x − xi , h), where ω is a window func-
tion and h is the window width parameter. Parzen showed that p(x) converges
to the true density if ω and h are selected properly [4].

4. KEY VECTOR SET

Definition 1. The vector located on the boundary of the same clusters in feature
space is called Key Vector (KV).

Definition 2. The set of key vectors is called Key Vector Set.

As the definition of key vector, it can be assumed that the probability density
of a KV must be low. So the proposed key vector set is extracted as follows:

1. Calculate the feature space distance Dij between two vectors. For linear clas-
sification we have Di j = ||xi − x j || = √

xi · xi + x j · x j − 2∗(xi · x j ) and



A Boundary Method to Speed Up Training Support Vector Machines 1211

for nonlinear kernel classifier we have

Di j = ||ϕ(xi ) − ϕ(x j )|| =
√

ϕ(xi ) · ϕ(xi ) + ϕ(x j ) · ϕ(x j ) − 2∗(ϕ(xi ) · ϕ(x j )).

Note that ϕ(xi ) · ϕ(x j ) = K (xi · x j ), it follows that

Dij = √
K (xi · xi ) + K (x j · x j ) − 2∗K (xi · x j ) .

2. Calculate DLimit = 1
n2 R

∑n
i=1

∑n
j=1 Di j , where constant R restricts the

range of density.
3. Estimate the intensity ω(Di j ) of two points using Parzen window function

ω(Di j ) =
{

1 Di j ≤ DLimit

0 Di j > DLimit
, j ∈ [1, . . . , m] ,

which is a rectangle function to get sample density, or ω(Di j ) =
e−D2

i j /2ρ2

, Di j ≤ DLimit , j ∈ [1, . . . , m] , which is a Gauss function to get

probability density. And set ρ = DLimit

2
· 1

(2 ln 2)1/2 to make the points in DLimit

2

ranges to influence its density greatly [5].
4. Calculate density DENSi of each vector:

DENSi =
∑

j

ω(Di j ) , i, j ∈ [1, . . . , m] .

5. Make up the key vector set by the corresponding vector xi , which DENSi

is smaller than the threshold or proportional value Par. In our following
Checkboard experiment, we set Par and DENSi as DENSi ≤ min(DENS j ) +
Par ∗(max(DENS j ) − min(DENS j )).

5. TRAINING SVM USING KEY VECTOR SET

As the assumption that samples in the feature space would be linear divi-
sion [3], the KV set would be an approximate superset of support vectors set.
Training SVM using Key Vector set could be implemented as follows:

1. The key vector set can be extracted by the proposed algorithm.
2. Then to obtain the optimal hyperplane by SVM from the key vector set using

the same related kernel function.

6. IMPLEMENTATION AND RESULTS

In order to examine the speed and effectiveness of the presented algorithm,
we apply the proposed algorithm to Checkerboard data set, which has 1000
samples in two clusters [6]. From Table 1, it can be seen that the running time
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Table 1. Comparison of different Par values for Checkerboard, R = 3, σ = 20, C = 100, RBF.

Par value Key vector Running time (s) Training accuracy SV (>1E−6)

1(standard SVM) 500 + 500 1976.37 98.9% 126(81)

0.3 230 + 224 162.64 97.7% 97(63)

0.2 133 + 117 14.39 94.0% 78(59)

0.1 44 + 37 0.33 71.2% 49(46)

Figure 1. Checkerboard experiment results of several Par values (�, ∇ key vector, O support

vector,—optimal hyperplane).

of the proposed method is shorter greatly than that of the conventional method
(spends almost 2000 seconds), the training accuracy is preferable too. And the
experimental results can be seen from Figure 1. The experiments have been
performed on a PC (P3 1GHz, 128M, Matlab6.5) and take about 40 seconds to
get KV set.

7. CONCLUSIONS

In this paper, a boundary method to speed up SVM is presented. We extract
the key vector set, an approximate superset of support vector set, to construct
the optimal hyperplane and have obtained better results. Future research of this
topic is to find a more effective method of extracting key vector set and to
choose the parameters according to the information of kernel function.
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A FAST ALGORITHM FOR GENERATING
CONCEPTS USING AN ATTRIBUTE TABLE

Ming Lu, Chengquan Hu, Hong Qi, and Liang Zhao
The College of Computer Science and Technology, Jilin University, China 130012

Abstract As an unsupervised learning technique for conceptual clustering, Formal Concept

Analysis has been widely used in many areas including machine learning and data

mining. This paper organizes the search space for concepts as a prefix tree, and

employs a new data structure called Attribute Table to map and prune the tree.

Thus, the procedures of conceptual clustering can be carried out only in a few

valid subspaces. A fast algorithm for generating concepts is proposed in this

paper. Experimental evidence shows that our algorithm performs very well for

generating concepts on both dense and sparse contexts.

Keywords: formal concept analysis, conceptual clustering, prefix tree, attribute table.

1. INTRODUCTION

As an unsupervised learning technique for conceptual clustering, Formal
Concept Analysis has been widely used in many areas including machine learn-
ing [1] and data mining [2]. Several algorithms have been proposed to generate
concepts or a lattice structure, called concept lattice [3–6]. Some researches
show that the algorithms based on the computation of closures and the test for
canonicity will represent better performance than others when the contexts (or
databases) are large and dense [6]. Unfortunately, such algorithms are still very
time-consuming.

Our work is to design a new fast algorithm for the use of generating concepts
for large and dense formal contexts. Our method is to organize the search
space for concepts as a prefix tree (also called a trie) named Concept Trie. A
new data structure called Attribute Table is used to map the information of the
trie and further to prune the trie. By these means, the procedures of conceptual

G. R. Liu et al. (eds.), Computational Methods, 1215–1219.
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clustering are carried out only in some valid subspaces. In each valid subspace,
at least one canonical concept can be found while there is no canonical concept
in any invalid subspace. As a result, concept lattice is generated in a most small
subset of the original search space because it is just composed of all canonical
concepts.

Readers can learn from [7] for the details of Formal Concept Analysis, such
as formal context, Galois connection, closure operator, formal concept and
canonical closure.

2. CONCEPT TRIE

Considering a linear order on M that m1 < m2 < . . . <m|M |, each subset of
M could be represented as a string. The whole search space for concepts can
be organized as a prefix tree, also called a trie, and named Concept Trie. Each
subtree is exactly a subspace. A subtree is called an invalid subtree if and only
if there are no canonical concepts (or closures) on it, or a valid one. Invalid
subtrees can be cut off.

Let A = B ∪ {r} and r ∈ M\B, we can directly draw an obvious conclu-
sion that A′′ is a canonical closure if and only if A′′ is one node of the subtree
whose root is A. Instead of computing A′′, we give a more convenient method
to check the validity of a subtree.

Conclusion 1. Let A = B ∪ {r} and r ∈ M\B, we write rB ′ = B ′ ∩ {r}′. The
subtree with root A can be cut off if any of two statements mentioned below
becomes true:

1. ∃m ∈ B, rB ′ ∩ m B ′ = Ø, and ∃ n ∈ M\B, n < r .
2. ∃m ∈ M\B, fulfilling m < r and rB ′ ⊆ m B ′ .

Proof 1. m ∈ B ⇒ A′ ⊆ m B ′ ⇒ A′ ⊆ m B ′ ∩ rB′ ⇒ A′ = Ø ⇒ A′′ = M ⇒
n ∈ A′′ ⇒ A′′ is not canonical; 2. (A′ ⊆ rB ′) ∧ (rB ′ ⊆ m B ′) ⇒ A′ ⊆ m B ′ ⇒
A′ ⊆ {m}′ ⇒ m ∈ A′′ ⇒ A′′ is not canonical.

Meanwhile, considering performance, we generate canonical closures just
in company with subtree validity checking according to the conclusion below.

Conclusion 2. Let A = B ∪ {r} and A′′ be canonical. For each attribute m that
r < m, m ∈ A′′ if and only if rB ′ ⊆ m B ′ .

Proof 2. rB ′ ⊆ mB ′ ⇒ (B ∪ {m})′′ ⊆ (B ∪ {r})′′ ⇒ m ∈ A′′; 2. (m ∈ A′′) ∧
(B ′ ∩ {r}′ ⊆ B ′) ⇒ {B ∪ {r}}′ ⊆ {m}′ ⇒ B ′ ∩ {r}′ ⊆ {m}′ ⇒ B ′ ∩ {r}′ ⊆
B ′ ∩ {m}′ ⇒ rB ′ ⊆ m B ′ .
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Conclusion 3. If A′′ is canonical, then A′′ = B ∪ {r} ∪ {m|(r < m) ∧ (rB ′ ⊆
m B ′)}.

3. ATTRIBUTE TABLE AND THE ALGORITHM

We design an a ttribute table to prune the Concept Trie and extract concepts
at the same time. The information held in the table map a subset of the Trie.
Given a formal context K = (G, M, R), the Attribute Table is AT = (B, r, C,
T). B ⊂ M is the base set (initialized as G ′), and is the father of the current
subtree. r ∈ B is a reference attribute. B ∪ {r} is the root of current subtree.
C = M\B is the candidate set (initialized as M). The body of the table is T :
C × C → 2|G|, and AT[m1, m2] = m1B ′ ∩ m2B ′ . We call the set consisting all
AT [mi , mi ](∀mi ∈ C) the diagonal of the table.

We can perform two operations on the Attribute Table. Algorithm UpdateAT
(Table 1) is used to update an original Attribute Table, by which means we
can cut off some invalid subtrees and get some concepts. Another operation
is DeriveAT (see algorithm 2 in Table 2). By this operation, a new Attribute
Table is created for the used of mapping a valid subtree that will be considered

Table 1. Algorithm UpdateAT.

Algorithm 1 UpdateAT

Input: an original Attribute Table

Output: a filled Attribute Table and some concepts

FOR EACH m j ∈ AT.C that m j <AT.r DO

FOR EACH mi ∈ AT that AT.r <mi DO

IF AT [m j , m j ]⊆ AT [mi , mi ] THEN remove mj from AT.C ENDIF

ENDFOR

Remove mj from AT.C.
ENDFOR

C := AT.C;

WHILE there is unmarked attribute in C DO

mi := the smallest unmarked attribute in C ;

Intenti := AT.B∪{mi }
FOR EACH m j ∈ C fulfilling mi < m j and AT[m j , m j ] ∩ AT [mi , mi ]�= Ø DO

IF AT[mi , mi ] = AT[m j , m j ] THEN Intenti := Intenti ∪ {m j }, remove m j from C
ELSEIF AT[mi , mi ]⊂ AT[m j , m j ] THEN Intenti := Intenti ∪ {m j }
ELSEIF AT [m j , m j ]⊂ AT [mi , mi ] THEN mark m j ENDIF

ENDFOR

(AT [mi , mi ], Intenti ) is a concept

C :=C\{mi};

ENDWHILE
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Table 2. Algorithm DeriveAT and Table.

Algorithm 2 DeriveAT Algorithm 3 TABLE

Input: an unmarked mi and its Intenti Input: an original Attribute Table

related to the context K
Output: DAT, mapping the subtree whose root

is Intenti

Output: all concepts on K

DAT.r = mi ; DAT.B = Intenti ; DAT.C = Ø; UpdateAT(AT)

FOR EACH m j ∈AT.C and m j �= mi DO FOR EACH unmarked attribute m in

AT.C DO

IF AT[mi , m j ] �= Ø THEN DAT = DeriveAT(m)

DAT.C: = DAT.C ∪ {m j } TABLE(DAT)

DAT [m j , m j ] = AT[mi , m j ] ENDFOR

ENDIF

ENDFOR

next. The complete algorithm for generating concepts is named TABLE (see
algorithm 3 in Table 2).

4. CONCLUSIONS

We implemented our algorithm using C++ and compared it with the famous
NextClosure algorithm on the platform of Pentium IV 2.6 GHz, with main
memory of 512 MB.

Two types of data are taken into account. For one thing, we used a real appli-
cation test data, MUSHROOM [8]. Results are shown in Table 3. For another,
we designed several random generated test data and focused our attentions on
the following three parameters, the number of objects, the number of attributes
and the number of relations [9]. Comparison results show that our algorithm
performs much better than NextClosure on both dense and sparse contexts,
especially on the real application data.

Table 3. Evaluation results for MUSHROOM database.

No. of objects Table (s) NextClosure (s) No. of concepts

1000 10.48 56.67 32,514

2000 22.70 170.80 58,983

3000 34.27 361.81 80,902

4000 49.56 581.55 104,105

5000 79.95 >600.00 136,402

8124 180.06 >600.00 238,710
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Abstract The General Packet Radio Service (GPRS) provides the predictive services for

the users by applying the similar algorithm in the QoS management mechanisms

used by the ATM. Research shows that a connective Measurement-Based Admis-

sion Control (MBAC) algorithm is more adaptable to and efficient for the GPRS

network than other admission control algorithms. Based on sufficient analysis of

the characteristics of GPRS, a MBAC algorithm is presented which is suitable

for GPRS using a worst-case delay calculation model with a priority queue, and

equivalent leaky bucket approximation and delay normalization. The most char-

acteristic of this algorithm is that it used both bandwidth and delay at the same

time for the control admission. The emulation result shows that this algorithm

can achieve a rate of as high as 80% resource utilization while satisfying the

requirements of GPRS QoS.

Keywords: GPRS, predictive service, QoS management mechanisms, MBAC algorithms.

1. INTRODUCTION

The GPRS developed on the GSM network aimed for the burst data packet
transmission is a transitional scheme providing data and multi-media service
[1]. In order to provide the users with an end-to-end packet transmission model,
GPRS adds two key components to the original GSM system: a Gateway GPRS
Support Node (GGSN) and a Serving GPRS Support Node (SGSN). The QoS
management mechanisms of a GPRS network include the description of traf-
fic characteristics, the CAC (Call/Connection Admission/Acceptance Control)
[2–8], the shaping/policing and the packet scheduling and so on. The CAC
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algorithm is the most important part of QoS, which determines whether or not
there are sufficient resources in the network to meet the demands of the con-
nected QoS. Since the MBAC [9–11] obtains the users’ resource requirements,
and performs real-time measurements of the system, it is more adaptable to a
network environment varying frequently.

2. MODELLING ASSUMPTION AND DELAY
NORMALIZATION

First, the basic model of the research is presented. This paper only focuses on
a single cell in which the GPRS provides the service, instead of considering the
handoff among cells. The data service of packet switching within a cell can use
eight channels: ‘0’ channel serves as the main channel, and the other channels
are the subordinate ones. MS may use several channels when necessary. Every
channel operates at 9.05 Kb/s and MS encodes at half of the rate. The bandwidth
of the cell is 72.4 Kb/s. The time difference from entering a cell to leaving it is
called the end-to-end delay, which can be measured between Um (air interface)
and Gi (between GGSN and external PDN).

Using the leaky bucket model [12] to describe each predictive service flow
p with class i and priority k, each leaky bucket has two parameters: the token
producing rate and the depth of the leaky bucket (r p, bp). For every type of
predictive service, the cell preserves the bandwidth superimposed volume v̂i ,

the real queue delay D̂k and the predefined restrain delay Dk. The scheduling
principle adopts delayed-requirement based priority distribution scheduling
algorithm [13].

2.1 Delay calculation model

A system with many different priorities presumes: (1) the source’s peak
value rate is infinite; (2) the service principle of each class is FIFO (First in
First Out); and (3) the total bandwidth of the system is u. It has been proved
that the most worst-case delay of class j is:

D∗
j =

∑ j
i=1 bi

u − ∑ j−1
i=1 ri

(1)

Now, use formula (1) as the basic equation to compute the influence caused
by admitting new flow to existed predictive service flow. D∗

k is defined as the
delay. Regard all flows of the same class as one flow conforming to leaky
bucket parameter (vi , bi ). After admitting a new flow with parameters (r p

k ,
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bp
k ), the leaky-bucket parameters of present class can be considered as (vi +

r p
k , bi + bp

k ). According to the above assumptions, it can be summarized as
follows:

(1) the effect on the flows of the same priority after admitting a new one
is:

D∗′
k =

∑k−1
i=1 bi

u − ∑k−1
i=1 vi

+ bk + bp
k

u − ∑k−1
i=1 vi

= D∗
k + bp

k

u − ∑k−1
i=1 vi

(2)

(2) the effect on the flows of low priority after admitting a new one is:

D∗′
j =

∑k−1
i=1 bi + bk + bp

k + ∑ j
i=k+1 bi

u − ∑k−1
i=1 vi − vk − r p

k − ∑ j−1
i=k+1 vi

= D∗
j

u − ∑ j−1
i=1 vi

u − ∑ j−1
i=1 vi − r p

k

+ bp
k

u − ∑ j−1
i=1 vi − r p

k

(3)

2.2 Delay normalization

The packet length of GPRS is variable, while the packet delay is relative to
the length of packets. Since the delays of packets, which have different lengths,
are incomparable and they cannot be simply added together. To measure them,
the delay normalization is needed. The concrete method is as follows:

Di,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5 × l

128
, i = 1, l ≤ 128,

0.5 + 1.5 × l

1024 − 128
, i = 1, l > 128,

5 × l

128
, i = 2, l ≤ 128,

5 + 10 × l

1024 − 128
, i = 2, l > 128,

50 × l

128
, i = 3, l ≤ 128,

50 + 25 × l

1024 − 128
, i = 3, l > 128.

(4)

According to the Table 1, a delay requirement can be obtained from formula (4),
where Di,l : the packet delay required with i as service class and l as length
of packets. The ratio of measurement packet delay to Di,l is defined as the
normalized delay.
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Table 1. The delay requirement classes.

Predictive service

1.0 2.0 3.0
Service classes Best-effort transmission

Delay classes 4

Packet sizes 128 octets Average 0.5 5.0 50.0 No description

95% 1.5 2.5 150.0

1024 octets Average 2.0 15.0 75.0

95% 7.0 75.0 375.0

Now define the real delay of the measurement as D′
i,l , the delay normalized

as D�
i,l , then it shows that:

D�
i,l = D′

i,l

Di,l
(5)

The average normalized delay of every class is:

D̄�
i,l =

[
n∑

p=1

(
D�

i, j

)
p

]/
n, 1 ≤ i ≤ 3 (6)

3. ALGORITHM DESCRIPTION

3.1 Basic admission control principles

(1) If the sum of the present bandwidth and the bandwidth required by new
flow exceeds the available bandwidth of the system, the request of flow p will
be refused.

vu > r p
k +

3∑
i=1

v̂i (7)

where v is available bandwidth factor. When system load is heavy, the square
deviation of the delay grows bigger and the MBAC algorithm will not be ef-
fective. So MBAC cannot make full use of the bandwidth. Therefore, an object
factor of the bandwidth whose value is decided by the characteristics of con-
nection flow should be set up. When the source rate of each flow compared
with the total connection ability of system is very low and the period of burst
data is short, the object factor should be bigger. Otherwise, its value should be
smaller. Because the retransmission rate is very high and is effected by handoff
in GPRS, the value of ‘v’ cannot be too high though the period of burst data is
short. In this paper, its value is 0.8.
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(2) If the same priority class can destroy the delay restriction after admitting
flow p, then the flow p should be refused:

Dk > D̂k + bp
k

u − ∑k−1
i=1 v̂i

(8)

Or if the low priority class can destroy the delay restriction after admitting flow
p, the request of flow p will be refused too:

D j > D̂∗
j

u − ∑ j−1
i=1 v̂i

u − ∑ j−1
i=1 v̂i − bp

k

+ vp
k

u − ∑ j−1
i=1 v̂i − r p

k

, (9)

After the delay being normalized, the formula (8), and (9) become as follows,
respectively:

1 > D̄�
k + bp

k

u − ∑k−1
i=1 v̂i

× 1

Dk, j
(10)

1 > D̄�∗
j

u − ∑ j−1
i=1 v̂i

u − ∑ j−1
i=1 v̂i − bp

k

+ bp
k

u − ∑ j−1
i=1 v̂i − r p

k

× 1

D j,l
, k < j ≤ 3

(11)

(3) If formula (7), (10) and (11) are all satisfied, this flow can be admitted.

4. TIME WINDOW MEASUREMENT ALGORITHM

4.1 Bandwidth measurement

To estimate the bandwidth to be used, one time window can be divided into
10 sample periods. The average bandwidth used, v̂s

j (sample period is s), of
predictive service of every class j in every sample period should be calculated.
The estimated bandwidth should be updated under the following four scenarios:
(1) when time window is to its end, maximum v̂s

j is the estimated bandwidth; (2)
when a new flow is admitted, the estimated bandwidth should be updated and
restart the time window; (3) when v̂s

j exceeds the estimated bandwidth, v̂s
j is the

estimated value; and (4) when any flows leaves, the estimated bandwidth should
be updated and restart time window. The updating formula of the estimated
bandwidth is:

v̂′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MAX(v̂s
j ), while time window to be end,

v̂s
j , if v̂s

j > v̂ (v̂ is the average bandwidth used in S),

v̂ + r p, while admitting one new flow P ,
v̂ − βr p, while one of flows P leaves (β is bandwidth

decreasing factor).

(12)
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4.2 Delay measurement

To estimate the delay, the queue delay of each frame is measured. The
estimated delay should be updated under the four scenarios: (1) when time
window is to its end, the maximum D� is the estimated delay; (2) when
new flow is admitted, the estimated delay should be updated and restart time
window; (3) when D� exceeds estimating delay, λ timing D� is taken as
the estimated delay; and (4) when one of the flows leaves, the time win-
dow is restarted immediately. The updating formula of estimating delay is as
follows:

D̄�′
j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MAX(D�), while time windows to be end,

λD�, if D� > D̄�
j (λ is delay increasing factor),

the right sides of the while admitting one new flow P,

(10) and (11),
no change, while one of flows P leaves.

(13)

There are four variables in the course of time window measurement:

(1) Delay increasing factor (λ): When the queuing delay of frames exceeds
the maximum delay estimated, the bigger maximum delay (the result of
increasing factor multiplied by queuing delay of frames) should be used.
In this paper, this value is 2.

(2) Sample period (S): The sample period controls the sensitivity of measure-
ment to data rate. The shorter the sample period is, the more sensitive to
burst data it is. In this paper, there are 54 TDMA circulations in one sample
period. The value of S is 996.84 ms.

(3) Time window (T): The size of time window controls the adaptability of
measurement algorithm. The smaller the size of time window is, the more
adaptable the algorithm is, but the bigger the size of time window is, the
more stable the algorithm is. And it should be the multiple of sample period.
Having admitted a new flow, a time window should be restarted to collect
the information of the new flow. In this paper, there are 10 sample periods
whose value is 9.9684 s in one time window.

(4) Bandwidth decreasing factor (β): When any flow leaves the network, the
estimated bandwidth used should be decreased. The decreased amount
approximately equals to the equivalent bandwidth of that flow. The in-
dividual value of β can be determined differently according to different
flows. To simplify the algorithm, the definite value of β is set at 1 in this
paper.
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5. EMULATIONS

5.1 Three data source models

Three models are all supposed to be Poisson arrival process, the interval
conforms to the exponential distribution, with average of interval of 15 s (except
downstream channels in the WWW Model). The length of packet is described by
the following three statistical models. The maximum frame length is 1600 bytes.
The packets whose frame length is bigger than it are divided into more frames.

5.2 FUNET model

This model is produced based the statistical data from emails by the Fin-
ish University and Research Network (FUNET). The probability distribution
function of this model can be considered to conform to Cauchy distribution
with parameter (0.8, 1) approximately, M is maximum of packet size (10 KB),
0 < x < M (Table 2).

f (x) = Cauchy (0.8, 1) = 1

π (1 + (x − 0.8)2)
(14)

5.3 Mobitex model

This model is generated from the statistical data used in Mobitex Wireless
Data Network based on the application of management ships in Sweden. The up-
stream channel: 30 + random (−15, 15) bytes; the downstream channel: 115 +
random (−57, 57) bytes.

5.4 WWW model

It is supposed that the available time slot number n of MS varies in the
scope 1, 2, 3, 7. The transmission rate of each time slot is 9.05 KB (CS1). The
different delay classes and time slots are assigned to three different applications,

Table 2. The distribution of FUNET model.

Packet size (K) <0.5 <1 <1.5 <2 <3 <5 <10

Percent 10 36 54 67 79 87 91
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Table 3. The types and ratio of different groups.

Semanteme 1 2 3 4 5 6 7 8 9 10 11

Service class 1 1 1 1 1 2 2 3 3 3 3

Delay class 1 1 2 3 4 1 1 1 1 2 2

Time slot 1 2 1 1 2 1 2 3 7 3 7

Ratio 1/24 1/24 1/12 1/12 1/12 1/6 1/6 1/12 1/12 1/12 1/12

E-mail (service class 1), Fleet management (service class 2) and www browse
(service class 3), then 11 types of data packets are obtained. Table 3 illustrates
the concrete description. When data packets are generated, the generation of
data source chooses one of 11 types of data packets in a random order according
to the ratio indicated in Table 3.

5.5 Emulation results

The results of the several CAC algorithms for GPRS network are com-
pared with each other in experiments using the same data source, the same
scheduling mechanism and the same emulating environment. The leaky bucket
algorithm is used to describe the resource requirements in all three algorithms,
and the time window measurement algorithm is employed in two MBAC al-
gorithms. The time window size is 9.9684 s including 10 sample periods. The
MBAC algorithm presented adopts the bandwidth equation and the delay equa-
tion at the same time. It can achieve higher resource utilization rate. Some
necessary system parameters are recorded in the experiments. According to
those records, every CAC’s accuracy can be given through the emulation, and
a perfect MBAC algorithm is presented right now. Figures 1 and 2 illustrate
the emulation comparisons of the four CAC algorithms for GPRS. It can be
concluded:

(1) The efficiency of CAC algorithm basing on peak rate (SSAC) is the worst.
The average usage rate only runs as high as 40%. Furthermore, the multi-
plexing among the data sources is not to be considered, so the adaptability
to variance of load is worse. Therefore, the traffic passed will soon come
to its maximum while loads increasing upon a specific value.
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1 SSAC     2: Bandwidth MBAC     

3: New MBAC   4: Perfect MBAC 

Figure 1. The comparisons of four algorithms under different loads.
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Figure 2. The emulation comparisons of four algorithms.

(2) Compared with the SSAC, the MBAC algorithm only using bandwidth can
achieve resource utilization rate of about 70% and it is more adaptable to
the variance of load. But the delay increases fast because it is not taken
into consideration.

(3) The new algorithm considering both bandwidth and delay at the same
time can improve the accuracy of admitting new flow and achieve resource
utilization rate of about 80%, which is 5% lower than the perfect MBAC
on it’s performance.
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6. CONCLUSIONS

The large amount of research shows that MBAC is more adaptable to a
network environment varying frequently. Based on sufficient analysis on the
characteristics of GPRS, this paper offers a MBAC algorithm adaptable for the
GPRS with the CAC equations and measurement procedure using a worst-case
delay calculation model of a priority queue as well as the equivalent leaky
bucket approximation and the delay normalization. The major characteristics
of the algorithm is to apply both bandwidth and delay techniques to achieve
the admission control. The emulation results show that the algorithm not only
can satisfy the demands of GPRS QoS, but also achieve as high as 80% source
utilization rate.
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Abstract Automobile panel surface is a kind of complicated 3-D free-from surface. Accord-

ing to the characteristic of the shape of the panel surface, a surface recognition

scheme describing the surface in the primary inertia axes coordinate system is

proposed. In the coordinate system, the surface equation will keep invariant when

the surface is translated or rotated. After extracting the surface’s outline projec-

tion curve and section curves, the curve’s eigenvectors are calculated with an

improved invariant moment method. At last, the similarity between two surfaces

is figured out based on the similarity between the section curves extracted from

the two surfaces separately.

Keywords: surface recognition, invariant moment, intelligent CAD, case-based reasoning.

1. INTRODUCTION

Up to now, since there has been no complete die design theory, it depends
on the engineer’s experience to design the automobile panel dies. Nowadays,
the number of experienced designers is decreasing, while the competition be-
tween factories is becoming more and more drastically. To improve the design
automatism and make the design more independent from the design specialist,
it is necessary to develop the intelligent CAD system. Case-based reasoning
(CBR) is one of the major research focuses in the artificial intelligence fields.
When working, the CBR system does not reason from the scratch line, but
resolve the new problem according to the existing experience and successful
design cases. CBR performs much better than rule-based system in the fields
where experience plays an important role.

G. R. Liu et al. (eds.), Computational Methods, 1231–1238.
C© 2006 Springer. Printed in the Netherlands.

1231



1232 Ping HU et al.

The main idea of case-based intelligent CAD for automobile panel die
structures is that: creating the relation between the automobile panel and the
whole set of stamping die, then constructing case models of the die assembly
structures, finally designing dies according to the relation and the case model
[1]. How to describe the case and how to retrieve the useful case that are
the two most important technologies to CBR system. Auto recognition of the
automobile panel surface is the key of retrieval of case in case-based intelligent
computer aided die design.

To compare two automobile panel surfaces, first we describe the surfaces
in a local coordinate system, then we extract some section curves and the
boundary curves from each surface, finally we calculate the similarity between
the corresponding curves on the two surfaces separately and get the similarity
between the two surfaces based the curve’s similarity.

2. PRIMARY INERTIA AXES
COORDINATE SYSTEM

There are two kinds of methods to compare two surfaces. The main idea
of the first kind of method is to align the two surfaces before we compare
them. ICP (Iterative Closet Point), which is proposed by Schütz and Hügli
[1], is a representative algorithm to align two surfaces. It is time exhausting
to search the orientation in which two surfaces match best. The second kind
of method is comprised of two steps, first extracting the eigenvectors from
every surface separately, then getting the similarity between the two surfaces
by calculating the Euclidean distance of the two surface’s eigenvectors. Chua
and Jarvis [2] proposed points with the biggest principal curvature. The above
methods show their validity, however, obvious shortcomings of the methods
on representative ability are still visualized. Johnson and Hebert [3, 4] pre-
sented a new method, in which spin–image is used as eigenvector. He estimate
the similarity between the new surface and the model one, according to the
similarity between the spin–images. Their experiments have get quite good re-
sults. But the spin–image method needs large-scale calculation, which is time
exhausted.

The primary inertia axes are the surface’s intrinsic characteristic, which
keep invariant when the surface is translated and rotated. The automobile panel
surface often has a ‘flat’ shape, between whose three primary inertia moments
there is a great difference. We define the three primary inertia axes as x , y and z
axis separately according to the corresponding primary inertia moments. That
means that we assign the primary inertia axis about which the surface has the
biggest moment as y axis, and the primary inertia axis about which the surface
has the smallest moment as x axis, the left primary inertia axis as z axis. We also
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Figure 1. The principal inertia axes coordinate system of a face.

assign the centroid of the surface as the origin point. Thus we get the primary
inertia axes coordinate, in which the surface’s equation keeps invariant when
been translated or rotated. The example of the surface’s primary inertia axes
coordinate is illustrated in Figure 1.

The angular moment of a 3-D body with respect to the origin of the coordi-
nate system can be expressed as

H =
⎡
⎣Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤
⎦ · ω (1)

Equation (1) shows that the angular moment H might have different direction
with the angular velocity ω. There exits a direction in which H is parallel with
ω. Under this condition, we can get

H =
⎡
⎣Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤
⎦ · ω = Iω (2)

From the above equation, we obtain⎡
⎣Ixx − I Ixy Ixz

Iyx Iyy − I Iyz

Izx Izy Izz − I

⎤
⎦ · ω = 0 (3)

Obviously, the angular velocity ω in Equation (3) is the eigenvector of the
inertia moment matrix in equation (1), and ω is one of the primary inertia axes
of the 3-D object, I is the object’s inertia moment about the axis of rotation.
That is to say, we can get a 3-D object’s three primary inertia axes though
calculating the three eigenvectors of the inertia moment matrix. The three axes
and the object’s centroid build up the primary inertia axes coordinate system.
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3. SCALE INVARIANT MOMENT

There are global and local descriptors to represent the eigenvectors of the
curves, for example, Fourier descriptor, auto-regressive model and corner in-
variant. Invariant moment, which was proposed by Hu [5] is a broadly used
method to extract image’s eigenvector in image pattern recognition. In this
paper, some improvements are made on invariant moment method to get the
scale invariant moment, which is used to recognize surfaces’ section curves
and boundary curve projections. The new method has some excellent features:
(1) Each section curve of a surface may consist of many segments, even de-
tached segments. Other methods except for scale invariant moment cannot deal
with such condition. (2) Surfaces will keep invariant when they are translated
or rotated in the primary inertia axes coordinate system, so section curves need
the kind of descriptor, which keeps invariant only when the curves are scaled.
Scale invariant moment is designed for such request. (3) Section curves are
open curves and boundary curves are close curves. Invariant moment method
can deal with open curves and close curves with the same steps, which make
programming easier.

There are two curves with similar shape but different size, the (p, q) degree
of moment relative to origin of the segment between a and b is

M p,q
ab = x p

a yq
a sab ≈ x p

a yq
a | ab | (4)

The (p, q) degree of moment relative to origin of the segment between c and
d is

M p,q
cd = x p

c yq
c sab ≈ x p

c yq
c | ab | (5)

Supposing that the proportion between the two curves’ size in Figure 2 is r ,
that is to say, r = | oa |/| oc |, we can get the proportion value between the two

a(xa,ya) 

b(xb,yb)

c(xc,yc) 

d(xd,yd)

o 

Figure 2. Two curves with the same shape and the different size.
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moments relative to the origin

M p,q
ab

M p,q
cd

=
(

xa

xc

)p

·
(

ya

yc

)q

· | ab |
| cd | = r p+q+1. (6)

Obviously, if normalizing the moments relative to the origin with r p+q+1, the
scale invariant moment can be written as follows

M p,q = x p yq�s√
x2 + y2

p+q+1
. (7)

The scale invariant moment of the whole curve is

M p,q =
n−1∑
i=1

x p
i yq

i

√
(xi+1 − xi )2 + (yi+1 − yi )2√

x2
i + y2

i

p+q+1
(8)

The above formula gives a moment, which keeps invariant when the curve
is scaled and does not need the points locating on the curve with proportional
spacing.

In this present paper, the authors calculate seven scale invariant moments for
each curve as the eigenvector, the selected moments are M1,2, M2,2, M1,4, M3,2,
M2,4, M4,2 and M1,6. Generally, Euclid distance between two eigenvectors is
used to evaluate the similarity between two curves.

D =
√∑

( f1(i) − f2(i))2 (9)

The Euclidean distance between two eigenvectors usually does not keep
a linear relation with people’s sense about the difference between two curve
shapes. This is an open issue in the sense science field. In this paper, the
following formula is defined to calculate similarity between curves:

Scurve = e−D2/scale. (10)

The variable ‘scale’ in Equation (10) is a coefficient, which is adjusted to make
Scurve as close to people’s sense about the difference between curves as possible.

Figure 3 illustrates a tank shell’s section curves and its boundary curve
projection. Figure 4 shows a beam shell’s section curves and its boundary curve
projection. We select four section curves from the tank shell: ‘ys1,’ ‘ys2,’ ‘ys3’
and ‘ys4’, the boundary curve projection: ‘ye.’ We select four section curves
from the beam shell: ‘ls1,’ ‘ls2,’ ‘ls3’ and ‘ls4,’ the boundary curve projection:
‘le.’ The similarity between the selected curves is calculated with Equation (10)
(scale = 1) and illustrated in Table 1. It is seen from Table 1 that the result is
consistent with the similarity between the curves’ shape, which shows that
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Figure 3. Tank shell’s sections and outline projection.
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Figure 4. Beam shell’s sections and outline projection.
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Table 1. The similarity between the selected curves.

Similarity Ys1 ys2 ys3 ys4 ye ls1 ls2 ls3 ls4

ys2 .43 − − − − − − − −
ys3 .49 .87 − − − − − − −
ys4 .51 .84 .96 − − − − − −
Ye .24 .37 .38 .39 − − − − −
ls1 .04 .07 .07 .08 .18 − − − −
ls2 .01 .02 .02 .02 .02 .01 − − −
ls3 .11 .24 .21 .21 .45 .08 .01 − −
ls4 .07 .17 .15 .14 .28 .05 .01 .63 −
Le .24 .37 .37 .39 .58 .18 .02 .45 .28

the scale invariant moment method is a valid method to evaluate the curves’
similarity.

In the primary inertia axes coordinate system, a series of planes located
alone the y-axis are evenly selected (14 planes are appointed in this paper),
which are perpendicular to the y-axis. When these planes intersect with the
surface, a set of section curves and the boundary curve projection are ob-
tained by projecting the surface’s boundary curve to the y–z plane. Examples of
section curves and boundary curve projections are illustrated in Figure 3 and
Figure 4.

The similarity between two surfaces is calculated based on the similarity
between the corresponding section curves and boundary curve projections be-
longing to the two surfaces separately.

Sface = 1

15
(Scurve(proj1 + proj2) +

14∑
i=1

Scurve (sec1i , sec2i )) (11)

One often gives more emphases on some critical section curves. Under such
circumstance, we can assign different weights to each section curves and get
the new similarity equation:

Sface = 1

15
(wproj · Scurve (proj1 + proj2) +

14∑
i=1

wi · Scurve (sec1i , sec2i ))

(12)
The similarity between the corresponding section curves belonging to the tank
shell and the beam shell separately is shown in Table 2.

Table 2. The similarity between the corresponding section curves.

Section 1 2 3 4 5 6 7 8 9 10 11 12 13 14

curves

imilarity .11 .24 .21 .21 .08 .02 .19 .14 .15 .02 .09 .27 .33 .32
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The similarity between the tank’s boundary curve projection and the beam’s
boundary curve projection is 0.58. We can get the similarity between the tank
shell and beam shell is Sface = 0.19.

4. CONCLUSIONS

Free form surface recognition is a critical technology in the case-based
intelligent CAD for automobile panel. The primary inertia axes coordinate
system, the scale invariant moment and the method to recognize free form
surface based on the section curve identification are presented in this paper.
The calculation examples have gotten good results. The method proposed here
is also useful in other fields where surface recognition is needed.
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Abstract Artificial neural network can be categorized according to the type of learning, that

is, supervised learning versus unsupervised learning. Unsupervised learning can

find the major features of the origin data without indication. Adaptive resonance

theory can classify large various data into groups of patterns. Through analysing

the limit of adaptive resonance theory, a dynamic clustering algorithm is provided.

The algorithm not only can prevent from discarding irregular data or giving

rise to dead neurons but also can cluster unlabelled data when the number of

clustering is unknown. In the experiments, the same data are used to train the

adaptive resonance theory network and the dynamic clustering algorithm network.

The results prove that dynamic clustering algorithm can cluster unlabelled data

correctly.

Keywords: artificial neural network, adaptive resonance theory, dynamic clustering, unsu-

pervised learning.

1. INTRODUCTION

Artificial neural networks provide a neurocomputing approach for solving
complex problems that might otherwise not have a tractable solution. Applica-
tions of neural networks include prediction and forecasting, associative mem-
ory, function approximation, clustering, data compression, speech recognition
and synthesis, nonlinear system modelling, nonlinear control, pattern classifica-
tion, feature extraction, combinatorial optimization, solution for matrix algebra
problems, blind source separation and solution of differential equations. Arti-
ficial neural networks have the ability to learn from their environment and to
adapt to it in an interactive manner similar to their biological counterparts. The
ability to learn by example and generalize are the principal characteristics of
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artificial neural networks. A neural network is trained by presenting several
patterns that the network must learn according to a learning rule. The knowl-
edge that has been learned during the training process is stored in the synaptic
weights of the neurons.

Neural networks can be classified according to the type of learning, that is,
supervised learning and unsupervised learning. Unsupervised learning involves
the frequent modification of the network’s synaptic weights in response to a set
of input samples. The weight modifications are carried out in accordance with a
set of learning rules. After repeated applications of these samples to the network,
a configuration emerges that is of some significance. Competitive learning is
the main method of unsupervised learning. A special of self-organizing neural
network is based on competitive learning. In competitive learning networks,
the output neurons compete among themselves to determine a winner. There
are three basic types of neural networks: the Kohonen self-organizing map
(SOM) [1, 2], learning vector quantization (LVQ) [3] and adaptive resonance
theory (ART) [4, 5] networks. In conventional competitive learning, when initial
conditions are far from the final solutions, some neurons tend to be under-
utilized, that is, dead neurons. The problem of these dead neurons is one of
the serious problems in conventional competitive learning. Therefore, there
have been many attempts to solve the dead neuron problem [6–12]. To solve
this problem and cluster correctly, this paper proposes a dynamic clustering
algorithm, which is based on ART.

2. ASSOCIATIVE LEARNING

An association is any link between a system’s input and output such that
when a pattern A is presented to the system it will respond with pattern B. When
two patterns are linked by an association, the input pattern is often referred to
as the stimulus. Likewise, the output pattern is referred to as the response. Two
basic rule of associative learning is recognition rule and recall rule.

2.1 Recognition rule

A recognition neuron is presented in Figure 1. The input/output expression
for the neuron is

a = f (wp + b) (1)

The neuron will be active whenever the product between the weight vector and
the input is greater than or equal to −b. For two vectors of constant length,
the product will be largest when they point in the same direction. Based on
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Figure 1. Recognition neuron.

these arguments, the neuron will be active when p is close to w. By setting
the bias b appropriately, we can select how close the input vector must be to
the weight vector in order to activate the neuron. The larger the value of b, the
more patterns there will be that can activate the neuron, thus making it the less
discriminatory. Based on the Hebbian postulate the leaning rule is:

wi (n) = wi (n − 1) + αa(n)pi (n) (2)

To get the benefits of weight decay, while limiting the forgetting problem, a
decay term that is proportional to a(n) is added:

wi (n) = wi (n − 1) + αa(n)pi (n) − γ a(n)wi (n − 1) (3)

by setting γ equal to α and when the neuron is active a(n) = 1, Equation 3 can
then be written

wi (n) = (1 − α)wi (n − 1) + αpi (n) (4)

in vector form:

w(n) = (1 − α)w(n − 1) + αp(n) (5)

When the neuron is active, the weight vector is moved towards the input vector
along a line between the old weight vector and the input vector. The distance
the weight vector moves depends on the value of α.

2.2 Recall rule

The recall neuron is shown in Figure 2. The input–output expression for
this neuron is

a = f (wp) (6)

where the input p is scalar and the output a is vector. It can perform recall by
associating a stimulus with a vector response. In the recognition rule, forgetting
is limited by making the weight decay term of the Hebbian rule proportional
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Recall rule 
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Figure 2. Recall neuron.

to the output of the neuron. Conversely, the recall rule makes the weight decay
term proportional to the input of the neuron:

wi (n) = wi (n − 1) + αai (n)p(n) − γ p(n)wi (n − 1) (7)

If the decay rate γ is set equal to the learning rate α

w(n) = w(n − 1) + α(a(n) − w(n − 1))p(n) (8)

In recall neuron, learning occurs whenever p is nonzero. When learning occurs,
weight vector w moves towards the output vector.

3. COMPETITIVE LEARNING

Competitive learning comprises one of the main classes of unsupervised
artificial neural networks, where only one neuron or a small group of neurons,
called winning neurons, are activated according to the degree of proximity of
their weight vectors to the current input vector. This type of algorithm is used
in tasks of pattern recognition and classification, such as clustering and vector
quantization. In these applications, the weight vectors are called the prototypes
of the set input patterns. The basic structure of competitive neuron is shown in
Figure 3. The basic competitive algorithm is Winner-Take-All (WTA). In WTA
type learning, after an input sample is presented, only one neuron (the winner)

p
W

S × R
S × 1

n
C 

a

Input
Output

R × 1 R × 1

Figure 3. Competitive neuron.
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in the competitive network will remain active (or switch on) after a number of
iterations (or a single iteration, depending on which type of network is used)
and its corresponding long-term memory will be updated.

ai =
{

1, i = i∗

0, i �= i∗ (9)

where i∗ is the winner neuron.
The modifications of WTA are frequency sensitive competitive learning

(FSCL) and rival penalized competitive learning (RPCL) [10, 11, 13]. FSCL’s
idea is ‘the winner neuron learns, the losers are frozen’:

ai =
{

1, if d(x, wi ) = min(d(x, wk))
0, otherwise

(10)

where d( ) is the distance function. RPCL is ‘the winner and the first loser learn,
the remaining neurons are frozen’:

ai =
⎧⎨
⎩

1, if d(x, wi ) = min(d(x, wk))
−β if d(x, w j ) = min(d(x, wk)) and k �= i
0, otherwise

(11)

4. DYNAMIC CLUSTERING ALGORITHM

4.1 Adaptive resonance theory

Adaptive resonance theory (ART), developed by Carpenter and Grossberg,
overcomes the stability/plasticity dilemma by accepting and adapting the stored
prototype of a category only when the input is sufficiently similar to it. When an
input pattern is not sufficiently similar to any existing prototype, a new category
is formed with the input pattern as the prototype using a previously uncommitted
output unit. There are three basic types of unsupervised ART networks: ART1
(binary-valued input vectors), ART2 (continuous-valued input vectors), and
fuzzy ART (both binary and continuous-valued input vectors).

The basic ART architecture is shown in Figure 4. ART consist of three parts:
Layer 2 to Layer 1 expectations, the orienting subsystem and gain control. The
equation of operation of Layer 1:

ε
dn1(t)

dt
= −n1(t) + (+b1 − n1(t))(p + W21a2(t)) − (n1(t) + −b1)(−W1a2(t))

(12)
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Figure 4. ART architecture.

The learning rule for weight matrix is

dw21
j (t)

dt
= a2

j (t)(−w21
j (t) + a1(t)) (13)

The equation of operation of Layer 2 is

ε
dn2(t)

dt
= − n2(t) + (+b2 − n2(t))(+W2f2(n2(t)) + W12a1)

− (n2(t) + −b2)(−W2f2(n2(t))) (14)

The learning rule for weight matrix is

d(i w12(t))

dt
= a2

i (t)(k(+b − i w
12(t))(+Wa1(t)) − (i w

12(t) + −b)(−Wa1(t)))

(15)
One of the key elements of the ART architecture is the Orienting Subsystem.
Its purpose is to determine if there is a sufficient match between the L2-L1
expectation and the input pattern. When there is not enough of a match, the
Orienting Subsystem should send a reset signal to Layer 2. The reset signal
will cause a long-lasting inhibition of the previous winning neuron, and thus
allow another neuron to win the competition. The equation of operation of the
Orienting Subsystem is

ε
dn0(t)

dt
= −n0(t) + (+b0 − n0(t))(+W0p) − (n0(t) + −b0)(−W0a1) (16)

4.2 Dynamic clustering algorithm

In ART learning, after an input sample is presented, only one neuron (the
winner) will remain active after a number of iterations and its corresponding
long-term memory will be updated. It has been known for a long time that
some long-term memory of the output neurons simply cannot learn. These
neurons are usually referred to as dead neurons. It is found that a sensitivity
or conscience parameter λ (which can be implemented as a winner frequency
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counter) can be included to prevent such dead neurons from occurring. The
sensitivity parameter counts the number of times that a certain neuron wins. If
that node wins more frequently than other neurons, it will reduce its chances
from winning in future iterations. Thereby, giving other less frequently won
neurons opportunities to learn.

Unfortunately, dead neurons may still arise if the number of output neurons is
more than the number of clusters or the neurons are unfairly initialized. In these
cases, the dead neurons will usually position themselves near the boundaries of
the desired clusters or somewhere around their initial location. And some times
the sensitivity parameter leads to wrong results because it destroys the normal
learning. To solve these problems, this paper proposes a dynamic clustering
algorithm, which add neuron when the input sample is not sufficiently similar
to any existing neuron and delete neuron whose wins time below a threshold
value θ. The dynamic clustering algorithm is

Step 1. Initialize the weight matrices w21
i j = 1, w12

i j = k
k+S1−1

;

Step 2. Present an input pattern to the network a1
i = pi ;

Step 3. Compute the input to Layer 2, n j = ( j w12)T a1;
Step 4. Activate the neuron in Layer 2 with the Winner-Take-All rule,

a2
i =

{
1, if ((i w12)T a1 = max(n j ))
0, else

,

if no matching neuron, go to Step 10;
Step 5. Compute the L2-L1 expectation, w21

j = W21a2;

Step 6. Adjust the Layer 1 output to include the L2-L1 expectation, a1 =
p ∩ w21

j ;
Step 7. The Orienting Subsystem determines the degree of match between the

expectation and the input sample,

a0 =
⎧⎨
⎩1, if

S1∑
i=1

a1
i

/
S1∑

i=1

pi < ρ

0, else

;

Step 8. If a0 = 1, then set a2
j = 0, inhibit it until an adequate match occurs, go

to Step 2, else continue;
Step 9. The win times of neuron j is added and update column j of W21 and

row j of W12, w21
j = a1,

j w
12 = (1 − α) j w12 old + αp

S1∑
i=1

(1 − α) j w12
i old + αpi

,

go to Step 11;
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Step 10. Add a new neuron, W21 add one column and W12 add one row, w21
p =

p, pw12 = 1/
∑S1

i=1 p1
i ;

Step 11. Restore all inhibited neurons in Layer 2, and return to Step 2 with a
new input sample.

5. EXPERIMENTS

     
     
     
     

     
     
     
     

     
     
     
     

     
     
     
     

The patterns we want to train are shown to the below. They represent the
digits {0, 1, 2, 3} displayed in a 6 × 5 grid. We need to convert these digits to
vectors, each white square will be represented by a ‘0’, and each dark square
will be represented by a ‘1’. Then, to create the input vectors, we will scan
each 6 × 5 grid one column at a time. For example, the digit ‘0’ will be p0 =
{011101000110001100011000101110}.

First, train an ART1 network and present the vectors in the order 0-1-2-3. Use
the learning law parameters ξ = 2, vigilance ρ = 0.6 and category parameter
S2 = 3. We begin by initializing the weight matrices. The initial W21 matrix is
an 30 × 3 matrix of 1’s. The initial W12 matrix is normalized, therefore it is an
3 × 30 matrix, with each element equal toξ/(ξ + S1 − 1) = 2/(2 + 30 − 1) =
0.0645. The training results are shown in Figure 5.

Second, use the same sample and present in the same order to dynamic
clustering network. The vigilance is set 0.6 and the training results is shown in
Figure 6.

Input W1 W2 W3 Input W1 W2 W3 

1 
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7 

6 

5 

2 

3 

4 

W1 learning

W2 learning

W3 learning

discard 

W1 learning

W2 learning

W3 learning

discard

Figure 5. The results of ART.
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Learning failed, add W2 

Learning failed, add W3 

Learning failed, add W4 

5 W1 learning 

Figure 6. The results of dynamic clustering.

We can find that in ART the digit ‘3’ is covered by digit ‘2’, but in dynamic
clustering all the digits are learned.

6. CONCLUSIONS

In this paper, a dynamic clustering algorithm based on adaptive resonance
theory is proposed. The algorithm uses unsupervised learning and updates the
weight vectors by associative learning rule. To overcome the problem of dead
neurons, the dynamic clustering algorithm add new neurons when the input
sample is not sufficiently similar to any existing neuron and delete neuron whose
wins time below a threshold value θ. The algorithm makes the clustering of
unlabelled data more correctly. Finally, the algorithm is applied to train digits
and compare it with ART network. The results prove that dynamic clustering
algorithm can correctly clustering and prevent from giving rise to dead neurons.
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Abstract Current Semantic Web community has popularized ontology research. However,

ontology building by hand has proven to be a very hard and error-prone task and

become the bottleneck of ontology acquiring process. WordNet, an electronic

lexical database, is considered to be the most important resource available to re-

searchers in computational linguistics. The paper proposes an ontology learning

approach, which uses WordNet lexicon resources to build a standard OWL ontol-

ogy model. The approach will help the automation of ontology building and be

very useful in ontology-based applications.

Keywords: ontology learning, WordNet, OWL.

1. INTRODUCTION

Ontologies in fact turn out to be the backbone technology for the Semantic
Web; Tim Berners-Lee [1] has portrayed Semantic Web as a layered architec-
ture where ontology layer lies in the middle of the other layers. Research in
ontologies to date has mainly addressed the basic principles, such as knowledge
representation formalisms, devoting only limited attention to more practical is-
sues such as techniques and tools aimed at ontology’s actual construction and
acquisition. We propose an ontology learning approach in this paper, which
uses WordNet lexicon resources to build a standard OWL ontology. The ap-
proach will help the automation of ontology building and will be very useful
in ontology-based applications.

The paper is organized as follows. We first give some preliminary knowledge
about ontologies, OWL and WordNet system in Section 2, then describe how

G. R. Liu et al. (eds.), Computational Methods, 1249–1253.
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we can use the ontology mapping approach to get OWL ontologies with the help
of WordNet lexicon in Section 3. Section 4 discusses our overall framework
for ontology learning. After an analysis of current related works on the subject,
we conclude our research work and give some ideas for future works in the last
section.

2. PRELIMINARY

2.1 Ontology approach and OWL language

Tom Gruber [2] has defined ontology as ‘a specification of a conceptualiza-
tion’. Ontologies provide a deeper level of meaning by providing equivalence
relations between concepts; they can standardize meaning, description, rep-
resentation of involved concepts, terms and attributes; capture the semantics
involved via domain characteristics, resulting in semantic metadata and ‘onto-
logical commitment’ which forms basis for knowledge sharing and reuse. On-
tologies can provide a domain theory using an expressive language for capturing
the domain. One of the properties of ontologies is that all relevant knowledge
has been made explicit; this constitutes in the necessity of specifying many
relationships that are otherwise left implicit and are only made explicit in the
applications developed for working with the ontology.

A number of ontology definition languages have been developed over the
past years. Among them, the Web Ontology Language (OWL) [3] is the newly
emerging standard proposed and supported by W3C for defining ontologies
in Semantic Web. It is based on description logic, a subset of first-order logic
that provides sound and decidable reasoning support. The OWL Web Ontology
Language is designed for use by applications that need to process the content of
information instead of just presenting information to humans. OWL facilitates
greater machine interpretability of Web content than that supported by XML,
RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with
a formal semantics.

2.2 WordNet system

WordNet is an on-line lexical database, which was developed at the
Cognitive Science Laboratory at Princeton University under the direction
of George Miller [4]. The design of WordNet is inspired by current psy-
cholinguistic theories of human lexical memory. WordNet is considered to
be the most important resource available to researchers in computational
linguistics, text analysis and many related areas. Its design is inspired by
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current psycholinguistic and computational theories of human lexical memory.
English nouns, verbs, adjectives and adverbs are organized into synonym
sets, each representing one underlying lexicalized concept. Different relations
link the synonym sets including: antonymy, hypernymy, hyponymy, holonymy,
meronymy, synonymy, troponymy etc. A web interface to WordNet is available
at: http://www.cogsci.princeton.edu/cgi-bin/webwn.

3. A MAPPING FROM WORDNET TO OWL

WordNet system uniquely identifies a word sense in two ways: with a set
of terms called synset and a textual definition called gloss. For example, for
the third sense of ‘transport’, the synset list would consist of the words ‘trans-
portation’, ‘shipping’, and ‘transport’. The gloss textual definition of that third
sense would be ‘the commercial enterprise of transporting goods and materials’.
WordNet codes other types of semantic relations as well, such as kind-of, part-
of and several types of similarity relations. Based on the analysis above, we
give an illustration of the meta-model of WordNet system in OWL format.

<owl:Class rdf:ID="Synset">

</owl:Class>

<owl:Property rdf:ID="synsetRelation">

<rdfs:domain rdf:resource="#Synset"/>

<rdfs:range rdf:resource="#Synset"/>

</owl:Property>

<owl:Property rdf:ID="antonym">

<rdf:type rdf:resource="&owl; SymmetricProperty"/>

<rdfs:subPropertyOf rdf:resource="#synsetRelation"/>

</owl:Property> ......

<owl:FunctionalProperty rdf:ID="typeOfSynset">

<rdfs:domain rdf:resource="#Synset"/>

<rdfs:range rdf:resource="#TypeOfSynset"/>

</owl:FunctionalProperty>

Synset, typeOfSynset and word of WordNet are defined as OWL concepts;
antonymy, hypernymy, hyponymy, holonymy, meronymy etc. are defined as
OWL properties between synsets. These properties have different characteris-
tics: antonymy is symmetric; other properties such as hypernymy, hyponymy,
holonymy and meronymy are transitive. These characteristics encoded in OWL
can support ontology reasoning tasks. The initialized elements of the mapping
process are words, for every word in the input word set, we lookup Word-
Net lexicon through calling API and get the semantic resources including its
synsets, antonymy, hypernymy, hyponymy, holonymy, meronymy etc., then An
OWL ontology definition will be generated based on the meta-model above.
The overall architecture will be presented in the next section.
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4. AN ONTOLOGY LEARNING FRAMEWORK

The input for the framework is domain or application free texts corpus; the
framework uses a language analyzer to extract terminology from the corpus,
the linguistic knowledge such as the grammar, morphological rules and some
syntactic and semantic templates are used to do the natural language process-
ing in this process. Words or lexical tokens will be generated after the natural
language processing. Next, we use the WordNet lexical knowledge bases to
retrieve semantic concepts and relations of the terms. Based on the mapping
described in the last section, the words or lexical tokens are mapped into OWL
ontologies with the help of WordNet lexicon. It is a domain/application inde-
pendent framework and can learn lexical and ontological knowledge for general
and specific domains.

5. RELATED WORKS

Alessandro Lenci et al. [5] have researched in formalizing the EuroWordNet
Synsets and Top Ontology in RDF and writing semantic frames in RDF/S as
basis for interlingua representations. However, RDFS has unclear semantics,
no clean separation between: Instances, Ontologies and meta-ontologies (e. g.
RDFS language itself); moreover, RDFS has no inference model which is of cru-
cial importance for automatic tasks. Our mapping are targeted to OWL, which
has clear semantics bringing by description logic systems; OWL can distin-
guishes between Instances and ontologies etc.; OWL also enjoys a well-founded
inference model from some particular description logics (SHOQ(D) [6]. There
are many other research works intended to extend WordNet or to achieving a
formal specification of WordNet. The focus of paper [7] is to guide and ease
the representation, retrieval and sharing of general knowledge; the focus of
paper [8] is the extension and axiomatization of conceptual relations in Word-
Net. Neither of them uses mapping approaches as illustrated in this paper, and
their resulting ontologies are not target at OWL.

6. CONCLUSION AND FUTURE WORKS

In this paper, we propose an ontology learning approach and framework
based on the mapping from WordNet lexicon to OWL ontologies. Synset, type-
OfSynset and word of WordNet are defined as OWL concepts; antonymy, hy-
pernymy, hyponymy, holonymy, meronymy etc. are defined as OWL properties
between synsets. This approach will help the automation of ontology building
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and be very useful in ontology-based applications. We plan to study Chinese
ontology learning with the support of Chinese Concept Dictionary (Liu et. al.,
2002) in our future works.
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Abstract Phylogeny reconstruction is a difficult computational problem, because the num-

ber of possible solutions increases with the number of included taxa. For this

reason, phylogenetic inference methods commonly use clustering algorithms or

heuristic search strategies to minimize the amount of time spent evaluating non-

optimal trees. Even heuristic searches can be painfully slow, especially when com-

putationally intensive optimality criteria such as maximum likelihood are used. I

describe here a genetic programming to heuristic searching that can tremendously

reduce the time required for maximum-likelihood phylogenetic inference, espe-

cially for data sets involving large numbers of taxa, and we confirm its availability

by experiments.

Keywords: genetic programming, phylogenetic tree, phylogeny, maximum likelihood.

1. INTRODUCTION

Phylogenetics [1] is a method widely used by biologists to investigate evolu-
tionary pathways followed by organisms currently or previously inhabiting the
Earth. Given a data set that contains a number of different species, each with
a number of (phenotypic or genetic) attribute values, phylogenetics software
constructs phylogenies, which are representations of the possible evolutionary
relationships among the given species. A phylogeny is a tree structure: The root
of a tree can be viewed as the common ancestor, the leaves are the species, and
subtrees are subsets of species that share a common ancestor. Each branching
of a into subtrees represents a divergence in one or more attribute values of the
species within the two subtrees.
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A typical phylogenetics approach uses a deterministic hill climbing method-
ology to find phylogenies for a given data set, saving one or more ‘best’ phylo-
genies as the result of the process, where ‘best’ is defined by the specific metric
used (in this work, we are using parsimony). The phylogeny-building approach
adds each species into the phylogeny in sequence, searching for the best place
to add the new species. The search process is deterministic, but different phy-
logenies may be found by running the search with different random orderings
of the species in the data set. For example, a Phylip search for a most parsi-
monious phylogeny consists of specifying the number of random orderings of
the data set (called ‘jumbles’) to search with. Each of these searches proceeds
independently, and each will end when the search has added all species into
the phylogeny and thereby reached a local optimum. In contrast, an EA [2, 3]
search is able to explore multiple phylogenies in parallel, and by recombining
these, has the potential to jump from one region of the search space to another.

In this paper, I describe here a genetic programming to heuristic searching
that can tremendously reduce the time required for maximum-likelihood phy-
logenetic inference, especially for data sets involving large numbers of taxa,
and we confirm its availability by experiments.

2. ALGORITHM

2.1 Initialization

Here, we give n sequences, and code them from 1 to n as a set. We select
two sequences with minimum distance to build a subtree, and delete them from
the set, then insert the subtree to set as an element. Repeat the procedure until
no element in the set, we build a tree with all sequence. Based the tree, random
arrange the leaves, we get some trees. These trees are initial population.

2.2 Fitness

The fitness lies on original value of individual and maximum original value
of population. Equation (1) is the original value:

f =
∑

(Dij − dij) × (Dij − dij)/(Dij × Dij) (i �= j) (1)

Dij is the distance of leaf node i and j , dij is the path length of i and j . In order
to calculate dij, we use fast minimum-evolution method [4]. If dij is negative,
we evaluate it as 0, because the length of branch could not be zero.

Nf = (1.5 − f/Max) × 100 (2)
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In Equation (2), Nf is the fitness value and Max is the maximum original
value of the generation.

2.3 Selection

In a generation, one son individual is copy from father generation, which
has max fitness, and the others decided by roulette.

2.4 Crossover

We select two trees (individual) from father generation. From tree1, we
select a subtree N1 from tree1, and get subtree N2 from tree2, then cross the
two subtrees, and gained two new trees. In crossover, we use two methods to
select cross node. We get a random value M . If M ≥ 0.5, we use method 1,
otherwise we use method 2.

Method 1 is random select node to cross method 2 is depth equality method.
In method 2, every node has a value. At the same floor, the values of node are
same. We regard the sum value of one floor is W , and the number of floors is
L . Firstly, we get a random value between 0 and W × L , then from leaves, add
up the value of those node. When the first node which cumulate value is bigger
than or equal to the random value, the node is cross node.

For new individual, in order to avoid node repeat or lose, we need adjust
them with insert or delete. During delete, we delete the leaf node and his father
node, the other subtree (or leaf node) which has the same father node with
deleted leaf node, need to connect with his grandfather node. For insert, we
find the min distance subtree with the inserted leaf, and use the new subtree
replace originally leaf node.

3. RESULT AND DISCUSSION

We select 20 amino acid sequences from http://pir.georgetown.edu/pirwww.
Sequence alignments run by http://www.ebi.ac.uk/clustalw, and obtain phylo-
genetic tree by genetic programming.

Population size is 100, and generation is 1000, crossover probability is
75%. We build phylogenetic tree for the populations with maximum-likelihood
genetic programming, Fitch–Margoliash and least-squares distance methods.
The result is seen from Figures 1 and 2. In every figure, (a) and (b) are all
pictures of the tree.
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Figure 1. Maximum-likelihood genetic programming.

Fitch–Mar

Figure 2. Fitch–Margoliash and least-squares distance methods.
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4. CONCLUSIONS

From the above introduction, we can clear to see from it, the process of
building phylogenetic tree is to select the best tree from population, and this
came from characteristic of GP. Compared with other method, building tree by
maximum-likelihood genetic programming can reduce time of the procedure,
and the veracity is improved too. And we should research new operators to
improve the result of experiment and to avoid becoming trapped in local optima.
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Abstract In general, there is a preference order on the domain of an attribute in preference-

ordered data, but most data mining approaches ignore it. Such attribute is a

criterion. In fact, such rules are useful for prediction: if the mathematics score

of a student goes up then his/her physics score will go up. Such rules are called

dominance association rules here. Based on criteria, a preference-ordered data

table can be transformed into a tri-value data table, in which dominance associ-

ation rules can be mined. Dominance association rules uncover the correlation

between criteria and reflect when values of a set of criteria change, how val-

ues of another set of criteria change. One use of dominance association rules is

to predict the unknown values of criteria in an object by comparing with other

objects.

Keywords: association rule, criterion, dominance association rule

1. INTRODUCTION

In general, there is a preference order on the domain of an attribute (es-
pecially of a quantitative attribute) in preference-ordered data, but most data
mining approaches ignore it. Such attribute is a criterion. Association rule
mining designed for basket data [1] mines association rules and further re-
search was carried out aiming at quantitative attributes and categorical attributes
[2, 3]. Although association rule mining in preference-ordered data [4] was pro-
posed, the rule form couldn’t reflect the correlation between criteria. In fact,
such rules are needed for prediction: if the mathematics score of a student goes
up then his/her physics score will go up. Such rules are called dominance as-
sociation rules here, which can be mined from a preference-ordered data table.

G. R. Liu et al. (eds.), Computational Methods, 1261–1266.
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They uncover the correlation between criteria and reflect when values of a set
of criteria change, how values of another set of criteria change. One use of
dominance association rules is to predict the unknown values of criteria in an
object by comparing with other objects. We describe the prediction method
with an example.

2. PREFERENCE-ORDERED DATA TABLE

Each object in a data table is often described by attributes and attributes’
values. The attribute on whose domain there is a preference order is called
a criterion, otherwise called a regular attribute. The domains of criteria are
called preference scales (increasing or deceasing). For each criterion c,Vc is a
preference scale of c. The preference scale Vc of each criterion c induces a
preference relation ≥c. For values c1, c2 ∈ Vc, c1 ≥c c2 means c1 >c c2 or
c1 =c c2, but can’t be the both.

Definition 1. A preference-ordered data table PDT = (U, C), where U is a
non-empty finite set of objects, C is a non-empty finite set of criteria and for
each c ∈ C : U → Vc, c(x) is the value of criterion c in object x ∈ U .

Definition 2. Given a preference-ordered data table PDT = (U, C), c ∈ C,

P ⊆ C and x , y ∈ U , a binary dominating relation on U is defined as: x �c y
if and only if c(x) �c c(y); x �P y if and only if x �c y for all c ∈ P . A
binary dominated relation on U is defined as: x �c y if and only if c(y) ≥c c(x);
x �P y if and only if x �c y for all c ∈ P .

3. MINING DOMINANCE ASSOCIATION RULES

Definition 3. φ → ψ is a dominance association rule, where φ = (c1,�)
∧ . . . ∧ (cs ,�) ∧ (cs+1,�)∧ . . . ∧ (cm ,�) and ψ = (cm+1,�)∧ . . . ∧ (ct ,�)
∧(ct+1,�)∧ . . . ∧ (cn ,�).∀ci ∈{c1, . . . ,cn} is a criterion and ci �= c j for i �= j .
(ci ,�) or (ci ,�) is a dominance item, the compound of k dominance items is
denoted k-dominance itemset.

The approach proposed mines dominance association rules as the following
steps.

Step 1. Transform algorithm in Figure 1 transforms the preference-ordered data
table PDT = (U , C) to a tri-value data table PDT+ = (U+, C) where U+ =
(U × U ) − {(x, x) |x ∈ U}. Each row, a record of PDT+, corresponds to
a pair of objects in PDT. A record label i is added to the i th row/record
so that AprioriTid algorithm can be used to discovery frequent dominance
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Algorithm Transform
Input: PDT=(U,C)

Output: PDT=(U,C)

(1)    Begin

(2)    For each record x in U do
(3)        For each record y in U (y≠x)do

(4)          For each criteria c in C do
(5)                Insert record r in U 

(6)                    If c(x)  >r C(y)   then c(r) =2
(7)                    If c(x)  =r C(y)   then c(r) =1

(8)                    If c(x)  =r C(x)   then c(r) =0

(9)           End  for

(10)      End  for
(11) End  for

(12) End  

Figure 1. Algorithm Transform.

itemsets. Table 1 is a preference-ordered table. Table 2 is the tri-value data
table corresponding to Table 1.

Step 2. Dominate AprioriTid algorithm in Figure 2 discoveries all frequent dom-
inance itemsets satisfying minsup defined by user. For a tri-value data table
PDT+ = (U+,C), ci ∈ C and a pair (x, y) ∈ U+, (x, y) supports (ci ,�) if
and only if ci ((x, y)) = 2 or ci ((x, y)) = 1; (x, y) supports (ci ,�) if and
only if ci ((x, y)) = 0 or ci ((x, y)) = 1; (x, y) supports a dominance itemset
φ if and only if (x, y) supports each dominance item in φ. The ratio between
amount of pairs supporting φ in U+ and |U+| is the support of φ, denoted
sup(φ). If sup(φ) is not less than minsup, then φ is a frequent dominance
itemset. After discovering the frequent dominance itemsets of length 1, we

Table 1. A preference-ordered data table.

Object a1 a2 a3

X1 5000 Medium Medium

X2 7500 Low High

X3 10,000 High Low

X4 3000 Low High

Table 2. A tri-value data table.

Object pairs a1 a2 a3 Object pairs a1 a2 a3

1 (X1,X2) 0 2 0 7 (X3,X1) 2 2 0

2 (X1,X3) 0 0 2 8 (X3,X2) 2 2 0

3 (X1,X4) 2 2 0 9 (X3,X4) 2 2 0

4 (X2,X1) 2 0 2 10 (X4,X1) 0 0 2

5 (X2,X3) 0 0 2 11 (X4,X2) 0 1 1

6 (X2,X4) 2 1 1 12 (X4,X3) 0 0 2
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Algorithm Dominate_AprioriTid
Input: PDT+=(U+,C), minsup
Output:  DARS(Dominance Association rules)

        (1)    Begin

        (2)    For each record x in U+ do
        (3)        For each criteria c in C do

        (4)             If c(r) =2 or c(r) =1

        (6)            If c(x) =1 or c(r) =0

        (9)   End  for,

        (10) L
1
={frequent 1-dominance iternset}

        (11) Apply AprioriTid (L
1
,minsup)

        (12) End  

        (5)            Then add lablel of r to (c,   ).tidllist

        (7)            Then add lablel of r to (c
2
,  ).tidllist

        (8)        End for

Figure 2. Algorithm Dominate AprioriTid.

can iteratively generate the frequent dominance itemsets of length (k + 1)
from the dominance itemsets of length k. AprioriTid algorithm can be ap-
plied here.

Step 3. Generating dominance association rules satisfying minconf from the
frequent dominance itemsets. For a frequent dominance itemset � , we can
generate a dominance association rule φ → ψ , φ ∪ψ = � and φ ∩ ψ = Ø.
Its support is sup(φ → ψ) = sup(φ ∧ ψ) and its confidence is conf (φ →
ψ) = sup(φ ∧ ψ)/sup(φ).

The time complexity of mining dominance association rules is O(N 2). Given
minsup = 5/12 and minconf = 80%, part of dominance association rules mined
from Table 2 are listed in Table 3.

4. DOMINANCE ASSOCIATION RULES
FOR PREDICTION

Definition 4. ci and c j are positive correlated criteria, if and only if the confi-
dences of (ci , �) → (c j , �) or (ci , �) → (c j , �) is 1; ci and c j are negative

Table 3. Dominance association rules.

Dominance association rule Confidence

(a1,�) → (a2,�) 5/6

(a1,�) → (a3,�) 5/6

(a2,�) → (a3,�) 1

(a3,�) → (a2,�) 1

(a1,�) ∧ (a2, �) → (a3, �) 1

(a1,�) ∧ (a3, �) → (a2, �) 1
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correlated criteria, if and only if the confidences of (ci , �) → (c j ,�) or
(ci , �) → (c j ,�) is 1.

Positive correlation of ci and c j means that for an object x , increasing the
value of ci in x will not decrease the value of c j in x and decreasing the value
of ci in x will not increase the value on c j in x . Negative correlation of ci and
c j means that increasing the value of ci in x will not increase the value of c j in
x and decreasing the value of ci in x will not decrease the value of c j in x .

For simple to describe how to predict the unknown value of one criterion
in an object, a preference-ordered decision table is considered. A preference-
ordered decision table is a decision table in which the condition attributes and
the decision attributes are all criteria. Assume Table 1 is a preference-ordered
decision table, in which a1 and a2 are condition criteria and a3 is the decision
criterion. And for an object y, the value of a2 in y is low, but the value of a3 in
y is unknown. Because the value of a2 in X1 is medium, the value of a3 in X1 is
medium, a3(y) should be greater than or equal to medium based on (a2,�) →
(a3,�). At the same time because the value of a2 in X3 is high, the value of a3

in X3 is low, a3(y) should be greater than or equal to low based on (a2,�) →
(a3,�). So a3(y) should be greater than or equal to max({low, medium}), i.e.,
greater than or equal to medium. The predict algorithm is omitted here.

5. CONCLUSIONS

A domain of an attribute is often preference-ordered in real world. By
transforming the preference data table into a tri-value data table, Dominance
association rules can be found and used for predicting unknown value of objects’
(decision) criterion. Dominance association rules also can be used to measure
which condition criteria is more significant to decision criteria in a preference-
ordered decision table. So in future it can be a new measurement and can be
combined with other measurements.
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Abstract It is well recognized that sequential pattern mining plays an essential role in

many scientific and business domains. In this paper, a new extension of sequential

pattern, ordinal pattern, is proposed. An ordinal pattern is an ordinal sequence

of attributes, whose values commonly occur in ascending order over data set.

After each record in data set is transformed into an ordinal sequence of attributes

according to their ordinal values, ordinal patterns can be mined by means of

mining sequential patterns. One use of ordinal patterns is to identify possible

error records in data cleaning, in which the values of attributes are inconsistent

with the ordinal patterns which most of the data conform to. Experiments verify

the high efficiency of the method presented.

Keywords:Keywords: sequential pattern, ordinal sequence, ordinal pattern, data cleaning.

1. INTRODUCTION

It is well recognized that sequential pattern mining plays an essential role
in many scientific and business domains [1, 2], such as customer shopping
behaviour prediction, medical treatment, etc. In this paper, ordinal values (for
example, numerical value) of attributes are focused on. A new extension of
sequential pattern, ordinal pattern, is proposed and applied in detecting possible
error records in data cleaning. After each record in data set is transformed into
an ordinal sequence of attributes according to their ordinal values, ordinal
patterns can be mined by means of mining sequential patterns, for example,
GSP algorithm is used the to discovery ordinal patterns. An ordinal pattern
is an ordinal sequence of attributes, whose ordinal values commonly occur
in ascending order over data set. Ordinal patterns can identify possible error

G. R. Liu et al. (eds.), Computational Methods, 1267–1272.
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records efficiently in data cleaning, which deals with detecting and removing
errors and inconsistencies from data in order to improve the quality of data
set. The error records detected by our method are inconsistent with the ordinal
patterns which most of the data conform to. Until now few similar methods
directly tackle this problem automatically [3, 4]. The approach of the paper
gives a useful, practical and automatic approach, which can deal with multiple
attributes.

2. MINING ORDINAL PATTERNS FOR
DATA CLEANING

Assume data set R is composed of records and each record r is described
by attributes {a1, a2, . . . , am} and their values, ai (r ) (1 ≤ I ≤ m). Usually ai

has an ordinal domain, in which any two values c1 and c2 meet c1 < c2, or
c1 = c2, or c1 > c2. Sometimes values of different attributes can be com-
pared. For example, the attributes of the glass, the weight percent of Na
and Mg, can be compared to know which value is greater. In the follow-
ing discussion, assume (1) ∀ai ∈ {a1, a2, . . . , am} has an ordinal domain; (2)
∀ai , a j ∈ {a1, a2, . . . , am}(ai �= ai ), v1 from the domain of ai , and v2 from the
domain of a j can be compared.

Definition 1. A record r corresponds to an ordinal sequence os(r ) =
{s1, s2, . . . , sl} (1 ≤ l ≤ m), meeting (1) si is a set of attributes; (2) ∀as and
∀at in si , as(r ) = at (r ) is true; (3) ∀as in si and ∀at in s j (1 ≤ i < j ≤ l),
as(r ) < at (r ) is true. l is the length of os(r ). If there exist integers i1 ≤ i2 such
that as ⊆ si1, at ⊆ si2 in {s1, s2, . . ., sn}, then as precedes at , or else as succeeds
at .

In Table 1, any two values of attributes of a, b, c and d can be compared, but
those of a and f are not comparable. So what we focus on is only {a, b, c, d}
in R, not {a, b, c, d, e}. While sorting record r2 based on ascending order of
values of a, b, c and d , the result is a(r2) < d(r2) < b(r2) = c(r2). Actually the
ordinal sequence {{a}, {d}, {b, c}} is enough to express the ordinal relationship

Table 1. A data set R.

a b c d e

r1 4 2 1 5 Green

r2 3 3 1 2 Blue

r3 2 4 2 1 Red

r4 3 4 1 2 Green
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Algorithm FOP
Input: data set R, minsup
Output ordinal patterns 

1  For each record r in data set
2  Normalize or convert r
3  Sort attributes based on their values. 
4  Generate ordinal sequence os(r).
5  End for
6  Generate ordinal patterns by GSP. 

Figure 1. Algorithm FOP.

between the values of a, b, c and d in r2. By the same method, each record in
R can be transformed into ordinal sequences.

Definition 2. An ordinal sequence {a1,a2, . . . , an} is a subsequence of another
{b1,b2, . . . , bm} if there exist integers i1 ≤ i2 ≤ · · · ≤ in such that a1 ⊆ bi1,
a2 ⊆ bi2, . . . , an ⊆ bin .

Record r in R is said to support an ordinal sequence s if s is a subsequence
of os(r ). The ratio between those records supporting s and |R| is the support
of s, denoted sup(s). Given a minimum support threshold minsup, the problem
of mining ordinal patterns is to discovery common ordinal sequences whose
sup(s)s are not less than minsup. After each record in R is transformed into an
ordinal sequence, ordinal patterns can be mined by means of mining sequen-
tial patterns. The algorithm FOP in Figure 1 discovering ordinal patterns first
normalizes the data if necessary and then sorts every record. Only one scan of
the data set is required. A temporary file with the results of sort is generated.
FOP uses the algorithms GSP for mining sequential patterns in [1]. Assume
m is the number of attributes, and then the complexity of sorting m attributes
is m2. Therefore the complexity of this algorithm is O(N*m2), where N is the
number of records in data. The results of this algorithm are written to another
temporary files for use in data cleaning.

Now the problem is given a set of ordinal patterns, how can we judge whether
r is error or not in data cleaning? Further, what should we take to measure the
inconsistency between an ordinal patternp and an ordinal sequence os(r )?

Definition 3. Given an ordinal pattern p and an ordinal sequence os(r ), if ai

precedes a j in p(ai �= a j ), but ai succeeds a j in os(r ), then 〈aj , ai 〉 is an anti-
pair between p and os(r). Let AP (p,os(r )) denote all anti-pairs between p and
os(r ) and |p| is the length of p, the inconsistency between p and os(r ) can be
defined as:

inconsistency = |AP(p, os(r ))|/C2
|P|
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Table 2. Ordinal sequences.

Sequences

os(r1) c, b, a, d
os(r2) c, d, {a, b}
Os(r3) d , {a, c}, b
os(r4) c, d, a, b

Algorithm Error
Input:  an ordinal sequence os(r), 

an ordinal pattern p. 
Ouput: inconsistency 

(1) begin 
(2) for attribute a and b in p do
(3)   if a proceeds b in p, but a succeeds b in os(r)
(4) then anti-pairs=anti-pairs+1
(5) end if   
(6) end for 

(7) inconsistency = anti-pairs/ 2
|p|C  

(8) end 

Figure 2. Algorithm Error.

Algorithm Error-Detect
Input: a data set R, an ordinal patterns set P, 

 a threshold τ
Ouput: a set of error records E
(1) begin 
(2) for os(r) of each record r in R do 
(3) sum=0 count=0
(4)    for each ordinal patterns p in P
(5)   sum=sum+ Error(os(r),p), count=count+1
(6)    end for 

(7)    if sum/count >τ then E=E+r end if
(8)    end for 
(9) end 

Figure 3. Algorithm Error-Detect.

Given an ordinal pattern p = {(a), (b), (c), (d)} and an ordinal sequence
os(r ) = {(d), (a), (b), (c)}, there are three anti-pairs (〈d,a〉, 〈b,a〉, 〈c,a〉) be-
tween p and os(r ). Because 3/C2

4 = 3/6 = 1/2, os(r ) is 50% possibility incon-
sistent with p. So r may be an error record with 50% possibility based on p
(Table 2).

Figure 2 shows the algorithm Error that computes the inconsistency between
an ordinal pattern p and os(r ). Figure 3 shows the algorithm Error-Detect
that computes the average inconsistency based on of a set of ordinal patterns
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and judging whether a record r is an error or not. If the average is not lower
than a threshold τ chosen by user, it maybe an error record. The precedent
work [4] focuses on using only two attributes. But our work takes into account
ordinal patterns involving multiple attributes. The time complexity of this step
is O(N* C2

m).

3. EXPERIMENTS

Experiments are designed to prove the performance of Error-Detect. The
Glass Identification Database including 214 instances from UCI data is used.
The nine attributes used are RI (refractive index), the weight percent of Na,
Mg, Al, Si, K, Ca, Ba and Fe in corresponding oxide. We generate x error
records, which does consistent to the data in the database, and add them to the
database. In fact, the records in the database are a little inconsistent. Even if
we run FOP and Error-Detect only on itself, there are a few records identified
as error records. Assume Error-Detect detects error records from x records
and source records from the database. Define the accuracy of Error-Detect
as: Accuracy = error/(x + source) × 100%. The parameters, minsup, τ and
x , affect the result. The results show that threshold τ plays a more important
role in identifying error records. And the results are independent of the data
distribution. Let λ = x /(x + 214) × 100%, when minsup ≤ 1 − λ, the accuracy
gets high values, or else, the accuracy is low. In Tables 3 and 4, the bold parts

Table 3. Accuracy when x = 40.

Accuracy

τ = 0.1 τ = 0.15 τ = 0.2

λ = 15.74%

minsup

70% 93% 100% 70%

75% 93% 100% 70%

80% 93% 100% 70%

85% 93% 70% 70%

90% 70% 70% 70%

Table 4. Accuracy when x = 20.

Accuracy

τ = 0.1 τ = 0.15 τ = 0.2

λ = 8.55%

minsup

75% 87% 100% 70%

80% 87% 100% 70%

85% 87% 70% 100%

90% 100% 70% 70%

95% 70% 70% 70%
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are those tests, in which minsup ≤ 1 − λ. So if we can know λ according to the
related information then the performance can get better. But when minsup is 1,
no error records can be detected. Is it right? Yes. Because the ordinal patterns
found with minsup = 1 are hold by each record, Error-Detect can detect none
error record. The results of other experiments are omitted.

4. CONCLUSIONS

By extension to ordinal patterns, sequential pattern mining proves to be
useful in identifying ordinal patterns that uncover error records in data set for
data cleaning. An ordinal pattern reflects a kind of ordinal relationships between
attributes that commonly occur over the data. One use of ordinal patterns is
to identify possible error records, whose attributes do not conform to those
uncovered orderings. The experiments show that our method can accurately
identity most of the error records in data set.

ACKNOWLEDGEMENTS

This research has been supported by NNSF under grants no. 60173006.

REFERENCES

1. R. Srikant and R. Agrawal, Mining sequential patterns: Generalizations and performance
improvements. In: EDBT’96.

2. R. Agrawal and R. Srikant, Mining sequential patterns. In: ICDE’95, 3–14, Taipei, Taiwan.
3. H. Galhardas, D. Florescu, D. Shasha and E. Simon (1999), An extensible framework for

data cleaning, Institute National de Recherche en Informatique ét en Automatique.
4. A. Marcus, J.I. Maletic and Lin (2001), Ordinal association rules for error identification

in data sets. In: CIKM01, pp. 589–591.



USER ASSOCIATION MINING BASED
ON CONCEPT LATTICE

H. Qi, D.Y. Liu, L. Zhao and M. Lu
College of Computer Science and Technology, Jilin University, P. R. China

Abstract The problem of mining user association from rating table plays an essential role

in rule-based recommender system. Using the closure of the Galois connection,

we define two user association bases: the exact base (i.e., for all rules with a

100% confidence) and the approximate base (i.e., with confidence <100%) from

which all valid user association rules with support and confidence can deduced.

These user association bases are characterized using frequent closed itemsets and

their reductions within concept lattice. Algorithm for extracting these two bases

is presented and experimental evaluated on real-life databases. The results show

that the proposed user association bases can considerably reduce number of rules

in user association and do not loss any information.

Keywords: user association, concept lattice, user association base, recommender system.

1. INTRODUCTION

With the development of data mining, association rule-based recommend
technique, which makes recommendation by using both item association and
user association mined from the rating table, becomes a new interesting research
topic. Fu et al. [1] developed a recommender system SurfLen, which uses
Apriori algorithm to make web page recommendation for users online. Sarwar
et al. [2] proposed a Top-N algorithm which first selected the users that are
the most similar to the current user, and then mined association rules on these
users. Lin et al. [3] proposed an adaptive-support algorithm ASARM which use
the current user to limit the association rule’s form and increase the efficiency
of recommendation.

Recent research show that concept lattice is an efficient tool for associa-
tion rules mining, since the set of all closed frequent itemsets can be orders
of magnitude smaller than the set of all frequent itemsets and any information
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do not be lost. Bastide et al. [4] define two bases for association rules which
union is a generating set for all valid association rules with support and con-
fidence. Zaki et al. [5] present a new framework for associations based on the
concept of closed frequent itemsets. Stumme et al. [6] mine association rules
by constructing Iceberg Concept Lattices.

Using the idea of concept lattice based association rules mining we define
two user association bases from which all valid user association rules with
support and confidence can deduced. These user association bases are char-
acterized using frequent closed itemsets and their reductions within concept
lattice.

2. SEMANTIC FOR ASSOCIATION RULE
BASED ON CONCEPT LATTICE

In FCA [7] a formal context is a triple of K = (O ,I ,R), where O is a set
of object, I is a set of item and R ⊆ ×I is a binary relation. The inclusion
(o, i) ∈ R is read as ‘object o and item i has relation’. For X ⊆ O , we define
ϕ (X ) = {i ∈ I |∀o ∈ X , (o,i) ∈ R}; and for Y ⊆ I , we define dually ψ (Y ) =
{o ∈ O | ∀I ∈ Y , (o,i) ∈ R}. Then γ = ϕoψ is a closure operator on I . A
formal concept is a pair (X ,Y ), with X ⊆ O , Y ⊆ I , ϕ (X ) = Y , ψ (Y ) = X . X
is called extent and Y is called intent of the concept. The set of all concepts of a
formal context K together with the partial order (X2, Y2) ≤ (X1,Y1) ⇔ Y1 ⊆ Y2

(which is equivalent to X1 ⊇ X2) is a complete lattice, called concept lattice
of K .

A set of items l ⊆ I is called an itemset. The support of an itemset l is the
percentage of objects in O containing l: sup (l) = |ψ(l)|/|O|. l is a frequent
itemset if sup(l) ≥ minsupport. A frequent itemset l ⊆ I is a frequent closed
itemset iff γ (l) = l. An itemset g ⊆ I is a reduction of a closed itemset l iff
γ (g) = l and ¬∃ g′ ⊂ g such that γ (g′) = l.

An association rule r is an implication between two frequent itemsets l1,
l2 ⊆ I of the form l1 → (l2\ l1) where l1 ⊂ l2. The support and confidence of
r are defined as: sup(r ) = sup (l2), conf(r ) = sup (l2) / sup (l1).

3. USER ASSOCIATION MINING BASED
ON CONCEPT LATTICE

Recommender system first collects all users’ rating information about kinds
of recourse to form the rating table. The rating table is usually expressed by a
table, in which the value in the i th row and the j th column is the rating that the
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j th user remarks on the i th resource. If the value is 1 it means that the j th user
likes the i th resource, otherwise it means no rating about the i th resource.

In recommender system based on user association, given the current user
Uc, all association rules of the form ∧Ui → Uc (sup,conf ) (called as a user
association about Uc, where Ui are users in the system, Ui �= Uc, and sup and
conf are support and confidence of the rule) first be found, then the common
interest of the users in the condition of the user association is suggested to the
current user Uc.

The exact user associations are rules of the form r : ∧Ui ⇒ Uc and conf(r ) =
100%. Therefore sup (∪Ui ∪ Uc) = sup (∪Ui ), that is Ui and Uc appear in
the intent of the same concept. Hence, we only need to consider the concept
containing the current user to mine exact user association. Here we use G+ to
denote the set of nodes containing the current user.

Definition 1. Exact User Association Base is: EB = {r : g ⇒ Uc|Uc ∈ f ∧
g ∈ Gf ∧ Uc /∈ g}, where f is a frequent closed itemset containing Uc, Gf is
the reduction set of f .

Proposition 1. All valid exact user associations, their supports and their con-
fidences (that are equals to 100%) can be deduced from the rules of the exact
user association base and their supports.

The approximate user associations are rules of the form r : ∧Ui → Uc and
conf(r ) < 100%. Therefore the node containing Ui is the ancestor of the node
containing Uc. Since the ancestors containing Uc have been considered in exact
base we only need to consider relationship between nodes that are in G+ and
have ancestors not in G+ (denoted by Gb).

Definition 2. Approximate User Association Base is: AB = {r : g → Uc|Uc ∈
f ∧ g ∈ G∧ γ (g) ⊂ f }, where f is a frequent closed itemset containing Uc,
G is the reduction set of all frequent closed itemset.

Proposition 2. All valid approximate user associations, their supports and their
confidences can be deduced from the rules of the approximate user association
base and their supports.

Algorithm: UAM
Algorithm: UAM (User Association Mining)
Input: Concept lattice G constructed from rating table D, current user Uc,
support threshold min sup and confidence threshold min conf.
Output: Exact user association base EB and approximate user association base
AB.

1. construct G+(Uc, min sup) and Gb(Uc,min sup)
2. For H ∈ G+ do
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3. Gf ← int red (H . f )
4. For g ∈ Gf and Uc /∈ g do
5. EB ← EB ∪ {r̀ : g ⇒ Uc(H .c/|O|, 1)}
6. End for
7. If H ∈ Gb then
8. push (stack, H )
9. While not empty (stack) do

10. N ← pop (stack)
11. For each parent Pof N do
12. If P /∈ G+ and not mark(P) and P . f �= ∅ and H .c/P .c ≥ min conf then
13. G f ← int red (P . f )
14. For g ∈ G f do
15. AB ←AB ∪ {r : g → Uc (H .c/|O|, H .c/P .c)}
16. End for
17. push (stack, P)
18. mark (P)
19. End if
20. End for
21. End while
22. End if
23. End for

4. EXPERIMENTAL RESULT AND CONCLUSION

We use the MovieLens dataset of GroupLens Research Project as test-bed
of our approaches, which contains ratings from 943 users for 1682 movies. The
number of rules for different support threshold and confidence threshold are
presented in Table 1 in which ‘Ers’ is exact rules and ‘Ars’ is approximate rules.

Table 1. Number of exact and approximate user associations extracted.

min sup = 10%

min sup = min sup = min conf = min conf = min conf =
10% 20% 30% 70% 90%

Uc EB Ers EB Ers AB Ars AB Ars AB Ars

6 138 262 0 0 810 14,593 657 11,349 210 1758

49 366 4456 10 54 834 6217 798 6203 462 4016

55 439 3199 5 14 692 8517 525 7869 220 3592

97 344 3696 1 6 857 7337 782 7126 343 3670

182 58 1139 0 0 743 12,842 454 10,298 153 2044
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The experiments on real-life databases show that the proposed user association
bases can considerably reduce number of rules in user association and are easily
usable from the point of view of the users.
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Abstract Workflow management systems (WFMSs) are used to coordinate and streamline

business processes. The feedback iteration occurred frequently in very large pro-

cess instances, thus bring on the high cost. In this paper, the issue that process

modelling based on product lifecycle management (PLM) is studied and a parallel

model – PLM-Based Parallel Workflow Model is proposed. By using the model,

the complexity of process definition is reduced. In addition, the adhoc access con-

trol policies can be created within each phase of lifecycle, so the access control

requirement of least privilege can be satisfied. Finally, we give two algorithms

used to parse role.

Keywords: product lifecycle management, workflow, parallel model.

1. INTRODUCTION

Since the concepts of product lifecycle management (PLM) were proposed
firstly by Eean [1] and Levirt [2], the intension and extension of PLM are chang-
ing and developing at all times. Up to now, it really contains completely the
whole process of product. The product data management (PDM) is a typical
application of PLM. As a driver, workflow is one of the most important func-
tional components of PDM system. Based on the WfMC reference model [3]
and the requirement of workflow management in PDM [4], we proposed a life-
cycle oriented parallel workflow model (LOPWM). LOPWM can decompose
the process definition with complex structure into relative simple subprocess of
lifecycle phase that can execute parallelly, and have the capability of creating
adhoc access control and parsing roles to tasks participants. Figure 1 shows the
comparison between Sequential and Parallel.

G. R. Liu et al. (eds.), Computational Methods, 1279–1284.
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Concept

Design

Product 

Prepare 

Prototype 

Support 

Concept Design   Prepare   Prototype    Product       Support    

Parallel model

Figure 1. The comparison of sequential and parallel.

2. TEAM-ROLE MANAGEMENT

Definition 1. An object is called team managed if it can be associated
with a team-role object. Only lifecycle object is team managed in the
paper.

RBAC96 is both important and popular access control model [5], but
RBAC96 do not define the user group and authorization about data object.
We extend the RBAC0 of RBAC96 to eRBAC and we use the eRBAC as the
team-role management model.

Definition 2. Team-role = [U, R, G, P, O, U, G, U − G, RoP], where

(1) User set U ; Role set R; Group set G; Permission set P; Object
set O;

(2) U : U → R, the mapping for user to role. r = U (u) is a role that u plays.
The number of roles that one user can play is limited to one, but one role
can be played by different users, hence U is of many to one relationship.

(3) G : G → R, the mapping for group to role. r = G(g) is a role that g plays,
i.e., every member in g plays role r . similar to U , G is also a many to one
relationship.

(4) U − G ⊆ U × G, the membership of users and group. A group can have
many members, and one user can be the member of more than one groups.
Hence it is a many to many relationship.

(5) RoP ⊆ R × O × P . (r , τ o, p) ∈ RoP, means that role r is granted access on
object o of type τo with privilege p. The connection between permission and
user is made by role. According to Definition 2, u has the privileges that the
privileges of his roles plus the privileges of his groups. The privilege set of
u is {p|r = U (u) ∧ (r, τo, p) ∈ RoP} ∪ {p|(u, g) ∈ U − G ∧ r = G(g) ∧
(r , τo, p) ∈ RoP}.



A Plm-Oriented Workflow Model 1281

is a phase that consists of roles map, adhoc acl and process definition 

is a route that consists of process definition and promotion criterion

Concept Design Product Release 

Figure 2. An example of lifecycle model.

3. PRODUCT LIFECYCLE MANAGEMENT

3.1 Lifecycle management

Definition 3. An object is called lifecycle managed if the object has different
lifecycle states and different access control policies in different state, i.e., it can
associate with a lifecycle object.

The lifecycle managed objects in this paper is document, part and engineer-
ing change. Lifecycle object manages the creating, modifying and auditing
and release of part, administrates the reviewing of document, and controls the
change requisition, change order and change activity.

3.2 The element of lifecycle model and relationship

A lifecycle is a series of phase states that lifecycle managed object has to
pass through. One phase consists of a state and a route, shown in Figure 2.

Definition 4. lifecycle = [phase1, phase2, . . . , phasen], the phasei is defined as:

phasei =< state, route >, ifi �= n.

phasen = staten, ifi = n.

State: is a lifecycle phase of lifecycle managed object. The state should
associate with a workflow process if object in the state will be processed to
achieve some goals. Otherwise there is not.

Route: is an estimate step inserted between phases that checkouts the object
and make a decision whether the object should be promoted to the next phase.
A state and a route can associate with a workflow process respectively.

3.3 The special requirement about lifecyclemanagement

Besides the workflow associated with the state or route, the role mapping,
the adhoc access control policies and the promotion criterion also should be
defined.
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Algorithm 1  The 2-level roles parse algorithm 
INPUT:  1) A  lifecycle = [phase1, phase2, ...  , phasen] 

i ≠ n, phase i = < statei , routei > 

i = n, phasen =staten  

       2) A  team-Role=<U, R, G, P, O, U, G, U-G, RoP>,where |R|=m. 
OUTPUT: roleMap[][] 

1.  for i from 1 to n 
for j from 1 to m 

  set  roleMap[i][j] as null 
endfor 

     endfor 
2.  for each statei 
  for j from 1 to m 

if ( Σ i(rj)=r′∈R ) , then roleMap[i][j]= {u|u∈U ∧ U(u)=r′}∪ 

{g|g∈G ∧G (g)=r′}; 

else i f (Σ i(rj) ∈ U ∪G), then roleMap[i][ j]= Σ i(rj);  

else roleMap[i][j]= {u|u∈U ∧ U(u)=rj}∪{g|g∈G ∧G (g)=rj}  
           endfor 
   endfor

Figure 3. 2-Level role parse algorithm.

Role mapping: �i : R → 2S . If �i (r ) ⊆ U ∪ G, then we get the partici-
pants of workflow activity directly. If � I (r ) ⊆ R, then we parse the partic-
ipants of workflow activities by team-role object. According to definition 2,
we know S = U ∪ G ∪ R. The 2-level role parse algorithm is shown in
Figure 3.

Adhoc access control: for r ∈ R, suppose o′ is the object processed by
workflow in statei and the adhoc privileges of r is Pi (r ), then Pi (r ) ∩ ({p
|r = U (u) ∧ (τo, r , p) ∈ RoP} ∪ {p|(u,g) ∈ U − G ∧ r = G(g) ∧ (τo, r , p) ∈
RoP}) is the permissions for r access on o′.

4. PROCESS MANAGEMENT

Process management includes workflow modelling, workflow engine and
worklist-handler. We suppose that object managed by workflow must be man-
aged by lifecycle, but it is not true conversely.

Definition 5. An object is called workflow managed if it can be processed by
a workflow instance.

4.1 Process modelling

The model element of process definition is defined as follows:
processDefinition =<procType, procDepAttr, procNorAttr> where:
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Algorithm 2  The 3-level roles parse algorithm
INPUT:    1)  assignedActivityk .Participants

2) statei

3) teamRole = [U, R, G, P, O, U, G, U-G, RoP]
OUTPUT: roleMap[] 

1. for j from 1 to m
set  roleMap[ j] as null 

endfor
2. for j from 1 to m

if Πk (rj) ∈ U ∪G then roleMap[ j]= Πk(rj) 

 else if Πk(rj)=r′′∈R ∧Σ i
(r′′)=r′∈R then roleMap[ j]=

{u|u∈U ∧ U(u)=r′}∪{g|g∈G ∧ G (g)=r′} 

else if Σ i(r′′ )∈U ∪G then roleMap[ j]= Σ i(r′′) 
else roleMap[ j]= {u|u∈U ∧ U(u)=rj}∪{g|g∈G ∧G (g)=rj} 

endfor

Figure 4. 3-Level role parse algorithm.

1. procType: is the goal of process, e.g., business planning, change manage-
ment, customer services, human resource and quality control, etc.

2. procDepAttr: is the dependent attributes, e.g., goal constraints, input data,
output data, pre- and post- activity conditions, start conditions, execution
conditions, transition conditions, deadline and except, etc.

3. procNorAttr: is normal attributes. e.g., the process ID and the goal descrip-
tion.

4. ActNorAttr: is the normal activity’s attributes that can be used to identify the
activity, e.g., the name of activity and the task description.

Lets �k : R → S is the mapping from R to S, S = U ∪ G ∪ R. (there is a
hypothesis that limit one activity can associate with one team-role only). We
give the 3-level role parse algorithm for the former shown in Figure 4.

4.2 Workflow engine

The workflow engine provides environments of workflow enactment, inter-
prets the process definition, controls the creating, activating, suspending and
terminating of process instance, take charge of the states transition of process
and activities, navigates the activities running, maintains the relevant data and
control data, and invoke the external applications.

4.3 Worklist-handler

The task in worklist corresponds to the AssignedActivity. The user’s worklist
is managed by worklist-handler which transmits messages of state transition
between users and workflow systems and monitor interacting between users
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and workflow engine. The manner that task is completed by participants is:
selecting a workitem, reassigning a workitem, notifying the completed of task,
updating the deadline of selected workitem and invoking external facilities or
applications.

5. RELATED WORK AND CONCLUSION

Up to now, researches about the PLM more focus on the concepts and actions
[6]. It is importance for enterprise informatization to research the model of
PLM deeply and integrate PLM with workflow. It is also one of the trends for
enterprise informatization. At present, there are several commercial software
systems in the marketplace [7].

LOPWM is a flexible model to define the task participants for the complex
business process, we can softly define process by assigning participants to roles
not to user or groups, then use the roles parsing algorithm to parse the final
participants to complete the tasks.
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Abstract Although there are some approaches to formally describe the authorization con-

straints, such as role-based access control models, they are not adequate to model

such WFMSs’ constraints. To address this issue, this paper analyzes the existing

methods and proposes a workflow authorization constraints model which includ-

ing an authorization specification language named RWAL (role-based workflow

authorization language) used to specify both static and dynamic authorization

constraints. Its basic elements, syntax and semantics are discussed. It is the ex-

panded version of Bertino’s and more intuitionistic. The expression power of the

language is better than the Bertino’s in that it can not only represent both static au-

thorization constraints and dynamic authorization constraints but also can capture

the historical information of authorizations.

Keywords: workflow, workflow management systems (WFMSs), authorization, constraints,

security policy.

1. INTRODUCTION

The security management of large system is very hard. To simplify the
complexity of security administration, it is common practice to allocate a role
to each activity in the process and then assign one or more users to each role, i.e.,
the authorization is for the roles not for the users [1]. Security policies are often
expressed as constraints (or rules) upon users and roles, e.g., the separation of
duties [2]. Unfortunately, the existing role-based authorization models are not
adequate to model WFMSs’ constraints.
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In the fields of role-based authorization, Sandhu et al. proposed several
types of authorization constraints [3]. Jonscher et al. modeled the constraints
resulting from the separation of duties using the activation conflict relation and
the association conflict relation [4]. However, these attempts are not sufficient to
model all the constraints required in WFMSs because they failed to capture the
history of events. The significant work in this orientation owes to Nyanchama
and Osborn [5] and Ahn and Sandhu [6]. But this research did not attempt to
specify access control in terms of activities or tasks, so it is inadequate for
WFMSs.

As regards workflow security authorization, Atluri et al. have proposed
an authorization model suitable for workflows, called Workflow Authorization
Model (WAM) [7]. WAM ensures that the tasks are executed only by authorized
users or processes (subjects). One significant work in this direction is due to
Bertino and Ferrari [8]. But this language is insufficient for supporting the role
hierarchy and the number of rules is very large resulting in the higher cost for
checking the constraints consistency.

2. THE RCL2000 AND THE AUTHORIZATION
CONSTRAINTS OF WFMSs

The RCL2000, proposed by Ahn and Sandhu, used to represent the con-
straints formally, consists of two parts. One is the basic elements and system
functions on which RCL2000 is based, the other is the additional elements and
system functions. Another formal language proposed by Bertino uses several
rules to represent an authorization constraint, so it can express formally autho-
rization constraints as clauses of a logic program. Restricted by the size of this
paper futher details are omitted.

3. THE BASIC REQUIREMENTS OF RWAL

3.1 The Authorization Model of Workflow System

The constraints on role and user assignments to tasks in a workflow are
categorized into three main categories by Bertino according to the time at
which they can be evaluated. (1) Static constraints (SC) can be evaluated
without executing the workflow. (2) Dynamic constraints (DC) can be eval-
uated only during the execution of the workflow. (3) Hybrid constraints (HC).
Constraints whose satisfiability can be partially verified without executing the
workflow.
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Definition 1 (The WFMSs Authorization Model). Symbol U, R, T, C and
UA denotes the users set, roles set, workflow tasks set, authorization constraints
set and user/role relationships respectively. RH denotes roles hierarchies, ≤r

for briefly.
role: T → R, for ∀ ti ∈ T, role (ti ) ∈ R represents the role executing the ti .
user: T → U, for ∀ ti ∈ T, user (ti ) ∈ U represents the user executing the task
ti , and (user(ti ), role(ti )) ∈ U A.
roles: U → 2R, for ∀ ui ∈ U, roles (ui ) = {r ∈ R | (∃r′ ≥r r) ∧ (ui , r′) ∈ U A} is
the set of roles that the user ui belongs to.
users: R → 2U, for ∀ ri ∈ R, user (ri ) = {u|(∃r′ ≥r ri ) ∧ (u, r′) ∈ U A} repre-
sents the set of users that belong to the role ri .
tasks: U → 2T, for ∀ ui ∈ U, tasks (ui ) represents all tasks executed by the user
ui .

3.2 K-level Role Function

RH is a partial order in RBAC models. The lowest roles in RH correspond
to the bottom staves in an organization. The higher the role is in RH , the more
senior he is in the organization, so we define the roles level in RH as follow:
the level of lowest role r in RH is defined 0, denoted as level (r ) = 0, and level
(r ′) = 1 where r ′ is r’s direct superior role, and the like. The highest level of
RH is defined as level (RH).

Definition 2 (k-level role function). For ∀ ri ∈ R, we define the k-level role
function of ri as RLk : R → 2R:

� When k > 0, if ∃r ∈ R, such that level (ri ) + k ≤ level (RH ), then RLk(ri ) =
{r | (r >r ri ) ∧ (level (r) – level (ri ) = k)}, otherwise RLk(ri ) = φ or say that
RLk (ri ) is not exist.

� When k < 0, if ∃ r ∈ R, such that level (ri ) + k ≥ 0, then RLk(ri ) = {r | (ri

>r r) ∧ (level (r) + k = level (ri ))}, otherwise RLk(ri ) = φ or say that RLk

(ri ) is not exist.
� When k = 0, Rk (ri ) = {ri}.

In the following, we always assume Rk (ri ) �= φ, i.e., Rk(ri ) is existing.

3.3 Workflow Specification and Conflicting Tasks

Definition 3 (The Specification of Workflow). A workflow W is defined for-
mally as W = [TRS1, TRS2, . . . , TRSn]. Where TRSi = (ti , PRi , role (ti ), user
(ti )), ti ∈ T is a workflow task, RSi ⊆ R is candidate roles set authorized to
execute the task ti . Role (ti ) ∈ RSi is the actual role executing the task ti . User



1288 Wan-Jun Yu et al.

(ti ) is the accrual user executing the task ti .
From the definition 1 we have role (ti ) ∈ roles (user (ti )) and user (ti ) ∈ users

(role (ti )).

Definition 4 (The Tasks Partial relation TH). We call T H ⊆ T × T as a par-
tial order relation on tasks set T, denoted as ≤t .

The meaning of conflicting role (CR) and conflicting user (CU) is as the
same as in RCL2000. Conflicting task (CT) represents that two or more tasks
would not be executed by the same role or user.

Definition 5 (The Conflicting Tasks in Workflow System). The conflicting
tasks of a workflow W is the set CT (W ) = {CT1, CT2, CT3, . . . , CTm}, where
CTi ⊆ T, for ∀ ti , t j ∈ CTi , we have role (ti ) �= role (t j ) and user (ti ) �= user (t j ).

4. CONSTRAINTS SPECIFICATION
LANGUAGE-RWAL

4.1 The Essential Elements of RWAL

Definition 6 (Essential Elements of RWAL). The essential elements of
RWAL consist of constant, variable symbols, function symbols and predicate
symbols.

(1) Constant: U: users set, R: roles set, T: tasks set, C: constraints set and N:
natural number set.

(2) Variable symbols: Arbitrary element of U, R, T, C and N denoted as VU,
VR, VT , VC and VN .

(3) Function symbols: The set of function symbols is {role, user, roles, users,
tasks, OE(X), AO(X), RLk}. The symbols listed above are called term.

(4) Predicate symbols: The set of predicate symbols consists of four sets:

� A set of binary comparison predicates. Its elements are:

(1) Equation (x1, x2): if Equation (x1, x2) is true, then x1 equal to x2 (x1,
x2 ∈ N);

(2) Greater (x1, x2);
(3) Less (x1, x2). The semantics of last two is similar to the first.

� A set of membership predicates. Its elements are: Belong To (x, X): if
Belong To (x, X) is true, then the individual x is an element of X.

� A set of capturing the effect of a workflow execution. Its elements are:

(1) User Success Done (ui , t j ): User Success Done (ui , t j ) is true if user
ui executed task t j successfully. Where ui ∈ U, t j ∈ T;
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(2) Role Success Done (ri , t j );
(3) User Execut Abort (ui , t j );
(4) Role Execut Abort (ri , t j ). The semantics of last three is similar to first

one.

� A set of expressing authorization predicates.

(1) User Must Execute (ui , t j ): User Must Execute (ui , t j ) is true if user
ui is authorized to execute task t j . Where ui ∈ U, t j ∈ T.

(2) Role Must Execute (ri , t j );
(3) User Cannot Do (ui , t j ):
(4) Role Cannot Do (ri , t j ): Role Cannot Do (ri , t j ). The semantics of last

three is similar to the first one.

4.2 The Rules of RWAL

Definition 7 (rules of RWAL). rules of RWAL is an expression of the form:
H ← L1, . . . , Lm (m ≥ 0), where H called head of the rule is an atom, L1, . . . ,
Lm called the rule body are literal. The rule H ← represents the fact.

4.2.1 The Consistency of The Rules Set

Definition 8 (Consistency of Rules Set). The Rule-Set (W) is called consis-
tence if Rule-Set (W) satisfies the following two conditions at the same time.
(1) for ∀rule (i, j) ∈ Rule-Set (W ), if tp ∈ rule(i, j).head, tq ∈ rule(i, j). body,
then tp ≤t tq .
(2) for ∀rule (i, j) ∈ Rule-Set (W ) and ∀rule(m, n) ∈ Rule-Set (W ), if tp ∈ rule
(i, j). head, then tp /∈ rule (m, n).body and if tp ∈ rule (m, n).head, then tp /∈
rule (i, j).body.

4.2.2 The Authorized Roles and Users and Prevented Roles
and Users for a Task ti

The Authorized roles and users and the prevented roles and users for every
task ti can be evaluated after the C-Rule-Set (W ) is obtained. For ∀ti ∈ T, the
authorized roles set permitted-users (ti ), authorized users set permitted-users
(ti ), prevented roles set denied-roles (ti ) and prevented users set denied-users
(ti ) of ti are defined respectively as follow:

permitted-roles (ti ) = ∪ {r | Role Must Execute (r, ti ) ∈ C-Rule-Set (W )}
permitted-users (ti ) = ∪ {u | User Must Execute (u, ti ) ∈ C-Rule-Set (W )}
denied-roles (ti ) = ∪ {r | Role Cannot Do (r, ti ) ∈ C-Rule-Set (W )}
denied-users (ti ) = ∪ {u | User Cannot Do (u, ti ) ∈ C-Rule-Set (W)}
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5. CONCLUSIONS

This paper proposed an authorization specification language which intended
to specify both static and dynamic authorization constraints. The definition of
consistency of rules set and checking algorithm are also given. It is the expanded
version of Bertino’s and is more intuitive. It can not only represent both static
authorization constraints and dynamic authorization constraints but also can
capture the history information of authorization.
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Abstract This paper is focused on semantic spatial information in workflow. The spatial

relations is described by Description Logic, the ontologies is then constructed

using the RDF Schemas and OWL Capabilities. These theories and methods are

enclosed in a middleware, and the middleware was embedded in workflow system

of the government in Jilin province.
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1. INTRODUCTION

Workflow technology continues to be subjected to on-going development
in its traditional application areas of business process modeling and business
process coordination, and now in emergent areas of component frameworks
and inter-workflow, business-to-business interaction. Addressing this broad and
rather ambitious reach, a large number of workflow products, mainly workflow
management systems, are commercially available [0]. The research of spatial
information process quickly developments in the past 10 years. Since many
information are interrelated with its location (or spatial properties), spatial in-
formation manage are also necessary for workflow systems, especially in some
special domains such as cadastre management. To embed spatial information
management in applications, nowadays there are many enterprise-scale spatio-
temporal (or simply spatial) middleware products. They have different roles
in future componentized OpenGIS architectures. In workflow systems or other
applications, users need more semantic information. But the OpenGIS technol-
ogy based productions can only handle the syntax spatial information, not the
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semantic one. As we all known, Ontologies and semantic web are the proper
technologies for managing semantic information. This paper is focused on
semantic spatial information in workflow. The spatial relations was described by
Description Logic, the ontologies was then constructed using the RDF Schemas
and OWL Capabilities. These theories and methods are enclosed in a middle-
ware, and the middleware was embedded in workflow system of the government
in Jilin province.

2. SEMANTIC WEB ONTOLOGIES WITH
DESCRIPTION LOGIC

The current web aims to expand the quantity but the semantic web, known
as a trust web, means an expansion of quality. The semantic web appears correct
to be called an evolution of the Web than calling it a reformation of the web.
The semantic web will enable intelligent services such as information brokers,
search agents, information filters etc. Such intelligent services on the knowl-
edgeable web should surpass the currently available versions of these services,
which are limited in their functionality, and only work as stand-alone services
that do not interoperate. Two things constituting the semantic Web are ontology,
which represents the semantic constitution, and markup language, which rep-
resents well-defined information. Humans and machines should communicate
with each other in order to realize the semantic web to process and interpret
information. The languages for representing information are XML for repre-
senting information structures and RDF, DAML, and OWL for representing the
information meaning, have been developed and standardized in various ways
using W3C [0,0,0].

The main idea of this paper is to handle the spatial relationships that occur
when web ontologies are constructed. The existing methods for representing
the relationships do not have the capability to manage the spatial relationships.
These are five steps of building a web ontology.

Step 1: Collect all the concepts related to spatial regions.
Step 2: Classify the collected concepts.
Step 3: Define the relationship between concepts using the existing represen-

tation method. Most concepts are possible to define use of ‘subClassOf
relationship.
(ex) Enyu subClassOf Yushu.

Step 4: Define the relationship by RCC and direction relations.
(ex) Enyu EC Gongpeng, Gongpeng SW Yumin.

Step 5: Build the web ontology on the nations using the OWL language.
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3. IMPLEMENT AND APPLY TO WORKFLOW
MANAGEMENT SYSTEM

The above theories and methods are enclosed in a middleware: Spatial Se-
mantic Web Ontologies Middleware (SSWOM for short). Middleware is a class
of software technologies designed to help manage the complexity and hetero-
geneity inherent in distributed systems. It is defined as a layer of software above
the operating system but below the application program that provides a common
programming abstraction across a distributed system. In doing so, it provides
a higher-level building block for programmers than Application Programming
Interfaces (APIs) such as sockets that are provided by the operating system.
This significantly reduces the burden on application programmers by relieving
them of this kind of tedious and error-prone programming.

SSWOM consists of four parts:

(1) Ontology Editor: By applying the above methods, Ontology Editor gener-
ates new ontology which is available to be browsed by the end user.

(2) Ontology Base: The ontology is described by OWL, the format of OWL
document is like the sample of step 5.

(3) Mediator: Mediators look for spatial information and translate it into a
format understandable by the end user.

(4) Ontology Server: The ontology server has a central role in SSWOM because
it provides the control of other components.

Figure 1 is the architecture of SSWOM. The lowest layer is Spatial Database
Interface which directly interacts with GIS platforms or Spatial Databases.
The upper component is the Application Interface which provide API or

Workflow Management  System

Spatial Database

Ontology
Server

SSWOM

Mediator Ontology Base Ontology
Editor

Ontology

Data

Figure 1. Spatial semantic web ontologies middleware.
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Workflow Applications

Workflow

Execution Service

Workflow

Execution Service

Object Transaction Service

CORBA Object Request  BrokerBrowser

SSWOM

Figure 2. Distributed workflow management system structure.

CORBA based interaction with workflow systems. SSWOM was embedded in
workflow management system of the government in Jilin province of China. The
government always deal with many location relative affairs like that cadastre
management, irrigation works and city planning. SSWOM gives the semantic
spatial information interpretation to the workflow, thus the workflow manage-
ment system is more efficient.

The whole distributed workflow management system structure is shown in
Figure 2. The browser is a Java capable browser. The most important compo-
nents of the system are the two transactional services, the workflow repository
service and the workflow execution service. These two facilities make use
CORBA Object Transaction Service. The SSWOM is directly interacts with
the Workflow Applications layer. Graphical user interface to these applications
has been provided by making use of Java applets which can be loaded and run
by any Java capable Web browser.

4. CONCLUSION

We put forward a new method which using semantic web ontologies for
workflows. This method successfully solves the problem of handling semantic
spatial information in workflow management system. While other works based
on ALCRP(D) only contains partial RCC topological relations[0], both full
RCC relations and direction are considered in this paper. A future research will
aim to define more complex spatial relationships such as distance.
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Abstract It is a significant thing that generating specified texture picture in specified po-

sition. This paper proposed a novel texture synthesis method based upon multi-

sample of texture. particle swarm optimization was applied to carry out single-

sample texture synthesis, and then it was applied to constrained multi-sample

texture synthesis in extension. The users can generate new pictures according to

their own demands. Experiment shows that the algorithm is satisfied in the aspect

of speed and quality.

Keywords: texture synthesis, particle swarm optimization, constrained multi-sample texture

synthesis.

1. INTRODUCTION

Texture synthesis is of great importance to computer vision and graphics.
It has remained an active research topic for years and many algorithms have
been proposed. In the study of texture synthesis, most synthesis algorithm is
only suitable for single-sample texture synthesis; however, it is considered very
important that generating specified texture in specified position. There are many
methods for controlling the growth of the texture. The simplest way is using the
existent photo or simple design texture as object picture, in the guidance of the
objective photo to implement the final synthesis result. Based on the schemes
proposed in previous work by the authors [1–5], this paper presents constrained
multi-sample texture synthesis. The users can generate new pictures according
to their own demands.
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2. PARTICLE SWARM OPTIMIZATION-BASED
TEXTURE SYNTHESIS

Kennedy and Eberhart [6] proposed a particle swarm optimization (PSO) al-
gorithm. This algorithm tends to find a best solution for the swarms by optimize
each particle’s solution according to the swarm’s solution.

Texture synthesis should look like the sample texture and keep the random-
ness of textures. The PSO algorithm will either give us the best location or an
approximate best location. Now we apply the PSO algorithm to texture synthe-
sis [7]. Randomly set a number of positions in input image I and treat these
points as virtual particles. These particles can be thought as virtual points of
the image and each particle determine a patch by setting the left upper corner
of the patch as the position of this particle. When the particles travel through
the image we compare the patches they determine with the synthesized area
and find the best-match patch.

Each particle will travel through I according to its location and velocity
function. At each location we need to calculate the fitness of the current location.
The fitness is then the distance between the boundary zone A determined by
particle and boundary zone B, which is the patch just synthesized. The formula
for calculating fitness between two patches A and B is as follows:

d(A, B) =
[

1

M

M∑
i

(pi
A − pi

B)2

]1/2

(1)

where M is the number of pixels in the boundary zone. pi
A and pi

B present
the values (greyscale or colour) of the i th pixel in the boundary zone A
and B.

Texture synthesis is performed in 2D space, so we need to adjust the original
formula to 2D space. We define n particles on the sample texture. The location
of a particle i will be recorded as Presenti . The best fitness location of particle
i is marked as Lbesti , with best fitness LBesti . The global fitness is the best
fitness among all n particles so GBest = min(LBest1,LBest2, . . . LBestn). The
location of the particle, which has best global fitness, is recorded as Gbest.
Each particle will be given an initial velocity vector Vi . We define another two
vectors Li and Gi .

Li = Lbesti − Presenti , Gi = Gbest − Presenti . (2)

Now we update the particles using the formula 2.
The PSO algorithm is an iteration process. We will terminate the iteration

when the program find an approximate best location. In the former case it gives
an appropriate location. A function dmin is used to determine the best location.
If the difference between a patch and the synthesized area is less than dmin
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then we get the best location and stop the iteration.

dmin = ε

[
1

M

M∑
i=1

(pi
B)2

]1/2

. (3)

Where M is the number of pixels in the boundary area and pi
B represents

the value of the i th pixel in the boundary zone of the just synthesized patch. ε

is the error tolerance and it is set to 0.2 in our algorithm because as Liang [2],
this error threshold is most suitable for keeping the randomness while ensuring
synthesis quality and avoiding repetition.

3. CONSTRAINED TEXTURE SYNTHESIS

A normal texture synthesis technique synthesizes textures in an image or a
surface. The constrained texture method synthesizes textures on a specific area,
which can be used in many ways, e.g., photo repair, designing and image filling.
Ashikhmin [1] proposed a constrained texture synthesis method using a single
texture sample. However sometimes we need two or more textures or pictures as
input. In previous work by the authors [5], they did multi-sample constrained
texture synthesis based on Ashikhmin [1]. However, his method synthesizes
textures one pixel at a time and thus is very computationally expensive. We
have extended swarm intelligence-based texture synthesis method to be used
in multi-sample constrained texture synthesis.

We take n + 1 images as input: an target image D and several texture sam-
ples S1,S2, . . . , Sn . Then we synthesize texture on different areas from different
sample textures. Basically, we first synthesize n temporary textures of suitable
size from the sample textures S1,S2, . . . , Sn . Then we render one of the tempo-
rary textures to a specific area according to the user’s need.

Figure 1 shows two example of constrained texture synthesis. For these
applications, we take three images as input: one is a target image D and the
others are two texture samples S1 and S2. D has a clearly defined background
and foreground so that they are filled by textures synthesized from S1 and S2.
We first generate two temporary texture S′

1 and S′
2 from the two sample textures.

They both have the same size as D. Then we take any point from D and set it
as background. Convert it to the YIQ system [8] and call the Y value of this
point. For each pixel, we check whether the Y value of this pixel is within some
tolerance. If it is, then we render S′

1 texture to this pixel, otherwise we render
S′

2 texture to this pixel. We keep doing this until the entire image has been
filled.

In previous work by the authors [4] the texture-by-numbers was processed
by employing the method of image analogies, and the algorithm demonstrated
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(a) (b)

(c) (d)

Figure 1. Constrained texture synthesis. (a), (b) are two sample textures; (c) is the target picture

and (d) is the synthesized result.

some effect. However, the main idea is still utilizing the texture synthesis al-
gorithm based on pixel. We improved the above algorithm, adopted the swarm
intelligence-based texture synthesis to fulfil the texture-by-numbers. For an in-
put sample texture p, we numbered the each part of the texture with different
colours manually and generated a tab graph T1, then we analyse the colour
distribution of the tab graph T1 and design the tab graph T2 as a object graph
to carry through constrained synthesis. Through the swarm intelligence-based
texture synthesis, the texture, which has the same colour as the tag graph in the
input sample texture p, was synthesized to the texture with the same size as tag
graph T2, and was stored in a temporary picture. The number of the temporary
pictures is the same as the number of the colours in tag graph T1. Then ac-
cording to the constrained multi-sample texture synthesis algorithm, the pixel
corresponded to colour position in tag graph T2 was filled with corresponded
colour, thus to realize the texture-by-numbers. Finally, we use feathering to
attain the effect of the seamless mosaics between various textures. The result
was shown in Figure 2.

4. CONCLUSION

This paper proposed a constrained texture synthesis algorithm based upon
swarm intelligence which can generate new texture for multi-sample texture,
thus to extend the application area of texture. We can design various new graphs
according to the user’s demand; we can also edit the existing photo to attain the
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(a)

(c)

(b)

(d)

Figure 2. Texture-by-numbers. The source image (a) was painted by hand to annotate (b). The

target image (c) was created in a paint program and refined with our interactive editor; the result

is shown in (d).

seamless mosaics effect between textures. The speed of the algorithm is fast
and the implement is simple.
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Abstract Data mining, i.e., clustering analysis, is a challenging task due to the huge amounts

of data. In this paper, we propose a general incremental hierarchical clustering

method dealing with incremental data sets in data warehouse environment for data

mining to reduce the cost further. As an example, we put forward ICHAMELEON,

the improvement of CHAMELEON, which is a hierarchical clustering method,

and demonstrate that ICHAMELEON is highly efficient in terms of time com-

plexity. Experimental results on very large data sets are presented which show the

efficiency of ICHAMELEON compared with CHAMELEON.

Keywords: hierarchical clustering method, ICHAMELEON, incremental method.

1. INTRODUCTION

Clustering in data mining is a discovery process that groups similar data
into one set [1], which can be used in enterprises’ marketing, such as identify-
ing customers, adopting market tactics, raising the percentage of market shares,
etc. Clustering on several million customers’ data would consume several hours
long, which is intolerable for On-Line Analysis Mining (OLAM). We discover
that the data stored in data warehouse are incremental upgraded regularly and
timely. It is hopeful to improve the clustering speed by a large margin if an algo-
rithm can combine the historical clustering result with ‘incremental’ data items.
A general incremental hierarchical clustering method dealing with incremental
data items is proposed according to this situation. As an example, we put for-
ward ICHAMELEON, the improvement of CHAMELEON, and demonstrate
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that ICHAMELEON is highly efficient in terms of time complexity. Experi-
mental results on very large data sets show the efficiency of ICHAMELEON
compared with CHAMELEON.

2. GENERAL INCREMENTAL HIERARCHICAL
CLUSTERING METHOD

The hierarchical method, such as AGNES [2], CURE [3] and
CHAMELEON [4], is a very important kind of clustering algorithms. A hi-
erarchical method makes up data items on a tree of clustering and executes
agglomerative or divisive hierarchical clustering. Therefore, if data items are
represented by the points of n-space, and the weighted value on arc linking two
points is the similarity measurement; the clustering process is the process of
merging connected subgraphs.

General incremental hierarchical clustering method includes two processes:
first, incremental data set which may add new data items to and/or delete data
items from the original data set, is combined together with historical cluster-
ing result which produces sub-clusters represented by connected sub-graphs;
second, each two connected sub-graphs are merged continuously until suitable
clusters are gotten.

Added data items as a whole form some sub-clusters. Different hierarchical
algorithm has its choice, for example, CHAMELEON may use a graph par-
titioning algorithm to cluster k-nearest neighbour graph which is composed
of the added and original data items, into a large number of relatively small
sub-clusters; while AGNES may merge several times from every added data
items as a cluster.

Deleted data items affect the historical clustering result. Original clusters
may be preserved or divided according to the connectivity of graphs. Examples
are shown in Figures 1 and 2. We may adopt depth or width priority searching
algorithm to judge the connectivity of graphs.

Based on the general incremental hierarchical clustering method above,
we improve the CHAMELEON algorithm with incremental feature. An

before after

delete

Figure 1. Example of undivided Cluster.
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before after

delete

Figure 2. Example of divided Cluster.

incremental CHAMELEON algorithm—ICHAMELEON is presented in the
following section.

3. ICHAMELEON ALGORITHM

3.1 ICHAMELEON Algorithm

//input: k: the number of items’ nearest neighbours; DataSet: InPointSet; α:the
weight of RC;
//HisResult: HistoryCluster; T: the threshold of RI(Ci , C j )∗ RC(Ci , C j )α

//output: the incremental clustering result
ICHAMELEON(int k, double α, DataSet InPointSet, HisResult:HistoryCluster)
Begin

Step 1. InDataNearestGraph = ConstructSparseGraph(InPonitSet, k);
// construct k-nearest neighbour graph.

Step 2. InDataSubClusters = PartitionGraph(InDataNearestGraph);
// initial sub-clusters are obtained by partitioning k-nearest neigh-

bour graph.
Step 3. DelSubCluster = GraphSearch (InPonitSet);

//judge the connectivity of graph.
Step 4. //the number of sub-clusters is InM

MaxRIRC < –0;
while (1) {

for (i=1, i<=InM−1; i++)
for(j=i+1;j<=InM, j++) {

Compute RI and RC;
if MaxRIRC< RI(Ci , C j )

∗ RC(Ri , C j )
α

MaxRIRC= RI(Ci , C j )
∗ RC(Ci , C j )

α ;
}
if MaxRIRC>T { MergeCluster(C i , C j ); InM–; MaxRIRC<–0;}
else break; //final clusters are obtained }

End;
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3.2 Performance Analysis

Let n1, n2 and n3 respectively be the number of added items, original data
items and deleted items, n = n1 + n2. Let m1 be the number of sub-clusters
produced by added items.

It has been shown that for n1 added data items, the average cost of inserting
based on k-d trees [5], as well as the expected k-nearest neighbour search time
is O(log n), leading to an overall complexity of Step I is O(n1 log n).

To simplify the analysis, we assume that (i) each sub-cluster consisting of
added items has the same number of nodes n1/m1; (ii) during each successive
merging step, ICHAMELEON selects only a single pair of clusters to merge,
and (iii) each cluster includes the same number of data items after division of
historical clusters.

The amount of time required of the Step II of ICHAMELEON depends
on the amount of time required by hMETIS [6]. Given a graph G = (V, E),
hMETIS requires O(|V| + |E|) time to compute a bisection. Thus, the overall
computational complexity of Step II is O(n1 log (n1/m1)) which is bounded by
O(n1 log n1).

Let n f be the number of historical clusters. The time complexity of the
Step III of ICHAMELEON is O(n3 log (n2/n f )) [7]. Let m f be the number
of intermediate sub-clusters after Step III. The time complexity of Step IV is
O(m2

f log m f + nm f ).
Above all, when n2 >> n1 and n2 >> n3, the overall time complexity of

ICHAMELEON is O(m2
f log m f + nm f + n1 log n).

3.3 Experimental Results

ICHAMELEON and CHAMELEON are tested by data from a company’s
data warehouse. Beginning with 100,000 initial data items, increments are 10%,
20% . . . 70% the number of initial items. Testing environment includes DELL
OPTIPLEX GX260, Intel Pentium4 2.4 GHz CPUs and 1G PC266A DDR
memory. The real execution time of the two is presented in figure 3, which
shows the ICHAMELEON algorithm reduces the time of clustering largely.

4. CONCLUDING REMARKS

We propose a general incremental hierarchical clustering method in this
paper by taking ICHAMELEON, the incremental version of CHAMELEON,
as an example. ICHAMELEON keeps the dynamic clustering characteristic of
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Figure 3. Comparison of two algorithms.

CHAMELEON; moreover, it utilizes the historical clustering result to expedite
the clustering process. Experimental results on very large data sets show that
ICHAMELEON is especially suitable for incremental clustering analysis in
data warehouse environment.
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Abstract OLAP (on-line analytical processing) systems support decision-making process

by providing dynamic analytical operations on high volumes of data. Usually, the

operations require dimensions to be regular, however, in real-world applications,

many complex dimensions fail to meet the requirement. In this paper, we first

propose a new conceptual model, compared with traditional multidimensional

models, this model extends the surjection between the domains of two levels to

the partial mapping. Afterwards, we present a transforming algorithm to prove

that the model offers a practical way for handling irregular dimensions in OLAP

systems.

Keywords: irregular dimension, model, partial mapping, OLAP.

1. INTRODUCTION

In OLAP systems, drill-down and roll-up are the two basic analysing oper-
ations. In previous work by the authors [1–3], dimensions are formally defined
on the basis of the surjection between the domain of a child level and the do-
main of a parent level. Therefore, the two operations usually require dimension
hierarchies to be onto and covering. However, in real-world applications, many
irregular dimensions fail to meet this requirement, and they could be non-onto,
non-covering or non-balanced [4].

Some models for handling irregular dimensions have appeared in recent
work by the authors [5,6]. Pedersen et al. [4] propose a model to mainly deal
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with many-to-many relationships between facts and dimensions, and he also
concerns the modeling of irregular dimensions. However, the partial order in the
model is not defined based on the mappings between dimension levels. Jensen
and Kligys [5] present a new approach to the modeling of partial containment
relationships among elements of spatial dimensions; while we mainly concern
the modeling of relationships among levels in irregular dimensions. Therefore,
they should be modeled separately. Jagadish and Lakshmanan [6] propose the
SQL(H ) model that allows the designer to use multiple tables to represent a
single level. Thus, it would be very complicated to execute an aggregation
query, for we couldn’t know in advance which table should be used to join with
the fact table.

In this paper, we propose a new conceptual model to handle irregular dimen-
sions by defining the partial mapping between the domains of two dimension
levels, and we impose closeness on the domain of a dimension to ensure correct
aggregation paths. Therefore, the model offers a practical way for implementing
OLAP operations on irregular dimensions. The rest of the paper is organized
as follows. In Section 2, we formally define the conceptual model. In Sec-
tion 3, based on the conceptual model, we present an algorithm to transform a
dimension into a relational table.

2. CONCEPTUAL MODEL

In this section, we define a new conceptual model by extending the surjection
between the domains of two dimension levels in previous work [1–3] to the
partial mapping. Then, to handle irregular dimensions, we define two partial
orders ≺ and ≤ on the basis of the partial mapping. And, to ensure correct
aggregation paths in a dimension, we require the domain of a dimension to be
closed w.r.t. the partial order ≤.

Definition 1. Given D = {l1,l2, . . . ,lk}, where li denotes a set and dom(li) =
Ai (1 ≤ i ≤ k). Let ≺ be a bi-relationship on D, for any li, lj ∈ D (1 ≤ i, j ≤ k),
li ≺ lj if ≺ satisfies the following conditions:

1. For subsets P ⊆ dom(li), Q ⊆ dom(lj), there is an surjection σ : P→Q.
2. If there is another surjection τ : R→S, then R ⊆ P, S ⊆ Q.

In fact, function σ is the partial mapping from dom(li) to dom(lj). We call ≺
the aggregation relationship (AR) on D, and there are four cases for the possible
relationships between P, Q and dom(li), dom(lj):

1. If P ⊂ dom(li) and Q ⊂ dom(lj), then li,lj satisfy the relationship ≺ in a
‘weak–weak’ way, written li(w ≺ w) lj.
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2. If P = dom(li) and Q ⊂ dom(lj), then li,lj satisfy the relationship ≺ in a
‘strong–weak’ way, written li(s ≺ w) lj.

3. If P ⊂ dom(li) and Q = dom(lj), then li,lj satisfy the relationship ≺ in a
‘weak–strong’ way, written li(w ≺ s) lj.

4. If P = dom(li) and Q = dom(lj), then li,lj satisfy the relationship ≺ in a
‘strong–strong’ way, written li(s ≺ s) lj.

Let ≺′ be the reflexive and transitive closure of ≺, and substitute ≺′ for ≺ as
the AR on D. Based on ≺′, we define a partial order on ∪

1≤i≤k
dom(li) as follows.

Given D = {l1,l2, . . . ,lk} and the AR ≺′ on D, let E = ∪
1≤i≤k

dom(li) and ≤ a

bi-relationship on E, we call ≤ the element aggregation relationship (EAR) on
E, if it satisfies the following conditions:

1. Given li, lj ∈ D(1 ≤ i, j ≤ k), such that li ≺′ lj, let σij be the corresponding
mapping from P to Q , where P ⊆ dom(li), Q ⊆ dom(lj). For any a ∈
dom(li), b ∈ dom(lj), if the pair (a, b) ∈ σij, then we say that a, b satisfy the
relationship ≤, written a ≤ b.

2. Given li,lj ∈ D(1 ≤ i, j ≤ k), for any a ∈ dom(li), b ∈ dom(lj), if a ≤ b, then
li ≺′ lj.

In fact, ≤ = ∪
1≤i, j≤k

σij. Given an element a ∈ E, if no other element b ∈ E

satisfies a ≤ b or b ≤ a, then a is called an isolated element in E. For any
element a ∈ E, if there is always another element b ∈ E satisfying a ≤ b or
b ≤ a, then we say that (E, ≤) is closed, or E is closed w.r.t. ≤. To model a
dimension, two special levels are also needed, i.e., the common top-level All
and the minimal level denoted by Atomic here. Then a dimension can be defined
as follows.

Definition 2. Given D = {l1, . . . lk,lk+1}, where dom(li) = Ai (1 ≤ i ≤ k + 1)
and lk+1 All. Let E = ∪

1≤i≤k+1
dom(li), ≺′ the AR on D, ≤ the EAR on E, if there

is a unique level Atomic in D and (E, ≤) is closed, then d = (D,≺′) is called a
dimension, where li is a level attribute, d is called the dimension attribute, and
let dom(d) = E.

In fact, (D, ≺′) is the schema of dimension d. In a dimension, ≺′ describes
the aggregation path between two levels, and ≤ shows the aggregation path
between two elements. And, the closeness is used to ensure correct aggregation
paths in dimension hierarchies. A dimension hierarchy is defined as follows.

Definition 3. Given a dimension d = (D,≺′), where D = {l1, . . . lk,lk+1}, let
H = {l′1, . . . ,l′m} a totally ordered subset of D, if All ∈ H and Atomic ∈ H, then
h = (H,≺′) is called a hierarchy, where h is the hierarchy attribute, and let
dom(h) = dom(l′1) ∪ dom(l′2) ∪ . . . ∪ dom(l′m).
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Given a dimension d, and two levels li,lj ∈ D, suppose all mappings on D
are onto and covering except the mappings related with li and lj, and only the
mapping between li and lj is concerned here, then dimension d and the four
cases in definition 1 could have the following relationships:

1. If the first case is true, then d is non-covering and non-onto.
2. Else if the second case is true, then d is non-onto if li = Atomic, otherwise,

it is non-covering and non-onto.
3. Else if the third case is true, then d is non-covering because of the closeness.
4. Else if the fourth case is true, then d is regular or at most non-balanced.

A data cube is constructed with a set of dimensions and a set of facts, and
it consists a collection of cells. Then a data cube is defined as follows.

Definition 4. A data cube is defined as C = (D, M, f ), where:

1. D = {d1, . . . ,dn} is a set of dimensions, and di = (Di,≺′
i) (1 ≤ i ≤ n),

2. M = {m1, . . . , mk} is a set of facts, and mj = (Mj,agrj) (1 ≤ j ≤ k) is a fact,

Mj is a numeric set, agrj is a function: 2Mj�Mj and let dom(mj) = Mj.
3. let dom(D) = dom(d1) × . . . × dom(dn), dom(M) = dom(m1) × . . . ×

dom(mk), then dom(C) = dom(D) × dom(M).
4. f is a mapping: P� dom(M), where P ⊆ dom(D) and P �= φ.

In the definition, (D, M) describes the schema of cube C, written
schema(C) = (D, M), and f defines the domain of cube C. Obviously, the cube
model allows members of multiple levels in the same cube, thus it can han-
dle various complex hierarchies, e.g., non-onto hierarchies and non-covering
hierarchies.

3. TRANSFORMING ALGORITHM

In this section, we devise an algorithm to transform a dimension into a
relational table on the basis of the data model. Formal descriptions of the
algorithm are given below.

1. Schema transformation:
Given a dimension d = (D,≺′), let R = (Tname, A, f, g) be the structure of the
transformed table, where Tname = d is the table name, A = {Name, Parent,
Level, Type} is the schema of the table, f is a functional dependency in A:
Parent�Name and g defines the domains of Level and Type: dom(Level) =
D, dom(Type) = {leaf, middle, root}.

2. Domain transformation:
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Given a dimension d, the EAR ≤ on dom(d), and R = (Tname, A, f, g), let
TR denote the domain of R, according to the schema A in R, TR = {(n, p, v,
t)|n ∈ dom(d), p ∈ dom(d) and n ≤ p, especially if n = ‘All’ then p = ‘All’,

v =

⎧⎪⎪⎨
⎪⎪⎩

′leaf ′, if n ∈ Atomic
′root′, else if n =′ All ′, t = li if li ∈ D (1 ≤ i ≤ k + 1) and n ∈

dom(li)}.
′middle′, else

4. CONCLUSIONS

In this paper, we focus on irregular dimension modeling, and propose a new
conceptual data model, compared with traditional multidimensional models,
this model extends the surjection between the domains of two levels to the
partial mapping. And we impose closeness on the domain of a dimension to
ensure correct aggregation paths in irregular dimensions. We also present a
transforming algorithm to prove that the model can provide an effective way
to handle irregular dimensions in building data cubes. As future work, we plan
to define dimension operations and cube operations, and model many-to-many
relationships between facts and dimensions.
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Abstract In this paper a new point-based computational method of intersection for ray

tracing is presented. With global illumination we gain a higher rendering speed

of ray tracing compared with previous methods. During pre-process, an impor-

tant attribute is added to each point. During rendering, an intersection algorithm

different from previous ones has been demonstrated to yield satisfactory results.

Keywords: points, neighbour radius, ray tracing, global illumination.

1. INTRODUCTION

Recently a significant trend in 3D modelling has been the shift towards using
points as representing primitives. Point-based rendering [1] which is actually
an old idea revisited [2] is receiving a growing amount of attention. A direct
ray tracing algorithm for point-sets has been developed by Schaufler and Wann
Jensen [3]. They define the intersection of a ray and the point set as follows: at
each point a disc is constructed using the point normal. A cylinder around the
ray is intersected with the discs. The intersection is computed as a weighted
average of discs whose centres are inside the cylinder. Point set surfaces (PSS)
[1] are a smooth manifold surface approximation from a set of sample points.
The surface definition is based on a projection operation that constructs lo-
cal polynomial approximations and respects a minimum feature size. In Ref.
[4], Adamson and Alexa study techniques for ray tracing PSSs. Due to the
lengthy projection procedure ray tracing PSSs leads to slower speed. A surface
approximation technique that is based on an iterative ray-surface intersection
algorithm is proposed in Ref. [5]. The improved approach is comparable in
speed to Schaufler and Jensen’s approach.

G. R. Liu et al. (eds.), Computational Methods, 1315–1320.
C© 2006 Springer. Printed in the Netherlands.

1315



1316 Q. Yong et al.

2. PRE-PROCESS OF POINT DATA

The pre-process here mainly refers to the process of computing point
attributes. In this paper we add an important attribute that we call ‘three-
dimensional neighbour radii’ to sample point. Thus point attributes comprise
position, normal, material and neighbour radii. Our emphasis is the computation
of neighbour radii.

First we would like to explain the concept of ‘neighbour radius’. To decide
if a ray intersects a point is to decide if the shortest distance between the ray and
the point is within the scope of tolerance. Suppose coordinates of current point
is P(x ,y,z), coordinates of starting point and another point of the ray respectively
are P1(x1,y1,z1), P2(x2,y2,z2). Then the square of distance between point P
and ray P1P2 is:

d2 = (x − x1)2 + (y − y1)2 + (z − z1)2 − [(x2 − x1)(x − x1)

+ (y2 − y1)(y − y1) + (z2 − z1)(z − z1)]/[(x2 − x1)2 (1)

+ (y2 − y1)2 + (z2 − z1)2]

When d2 < ε, we assume that the ray intersects the point. Moreover, we
still need to decide if the point is within valid part of the ray. Here, ε is a small
positive value given by us. Each sample point on object surface corresponds
to a this kind of positive value. We call the small positive value ε ‘nighbour
radius’ of point. Commonly, we look on viewpoint as starting point of the ray
and we choose one point on projection screen (different from display screen)
as another point of the same ray. Thus intensities of points on object surface
can be displayed on projection screen by ray tracing.

Actually, in order to accelerate the speed of intersection algorithm and
make boundary processing of image easier, we extend the original meaning
of neighbour radius and afterwards improve the intersection method. After
extending the meaning of neighbour radius, each point corresponds to not one
small positive value, but three small positive values. One is for x direction,
one is for y direction and the rest one is for z direction. This is what we called
‘three-dimensional neighbour radii’.

Next, we will show how to compute neighbour radius. We may have three
methods for computation. The first one is to let neighbour radius of each point
be a proper positive value. We can usually get it according to experience. The
second method is to compute neighbour radius of current point according to den-
sity of points spatially around it. The third method is to use ‘three-dimensional
neighbour radii’. For regular object, there is little difference between images
rendered respectively using the three methods. This is because density of points
on regular surface doesn’t vary much. For irregular object, sometimes density
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of points varies much. This may lead to quite different rendering effects be-
tween the three methods. So, we are inclined to use the second method or the
third method. Consider that effect of boundary processing of the third method
is better than the second one. This paper adopts the third method.

The main idea of the second method is: we make ‘neighbour radius’ smaller
where there are more points and make it larger where there are fewer points.
Suppose current point is P0. We manage to get position vectors of n points
which are the nearest to P0. After that, we can calculate position vector of point
that is the farthest from P0 among those n points. Suppose the farthest point
among those n points is P1. Then the distance between P0 and P1 is regarded
as the neighbour radius of point P0.

The main idea of computing neighbour radius in this paper is: we make
‘neighbour radii’ smaller where there are points whose parallel projections are
dense on the planes x = k, y = k and z = k (k is an arbitrary real number) and
make them larger where there are points whose parallel projections are sparse
on the same planes. Suppose current point is P0. Then we manage to get n
points which are the nearest to P0. Suppose P1, P2, . . . , Pn are the n points we
have found and ε denotes three-dimensional neighbour radii. Then we compute
ε in x direction as follows:

εx = max{|P1.x − P0.x |, P2.x − P0.x |, . . . , |Pn.x − P0.x |} (2)

ε in other two directions can be computed in a similar way.

3. RENDERING BASED ON POINT AND
NEIGHBOUR RADIUS

In this paper a new computational method of intersection based on point
and neighbour radius is presented. In the course of ray tracing, each ray is
tested for intersection against points. In Algorithm 1, we just use neighbour
radii of x direction and y direction as an example. Actually, neighbour radii
of two directions are chosen based on the largest component of the incident
ray’s direction vector. For example, if z is the largest component, then we chose
neighbour radii of x direction and y direction. In order to accelerate further the
speed of intersection computation, this paper presents a simplified method that
narrates how to calculate intersection between a ray R and a surface point P. It
is concretely described as Algorithm 1.

Algorithm 1. dx and dy are temporary variables. nerax and neray respectively
denote neighbour radii of x direction and y direction. Current ray is R. Current
point is P. The largest component of current ray’s direction vector is z.
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(a) 

(b) (c)

 

Figure 1. Rendering effects of our method.

obtain coordinates P(x1,y1,z1) of current point.
compute intersection point Q(x2,y2,z1) between current ray R and
plane z = z1
dx = absolute value of (x1 − x2)
dy = absolute value of (y1 − y2)
if dx < P.nerax and dy < P.neray then
decide that ray R intersects point P and return P
else decide that there are no intersection between R and P.

4. IMPLEMENTATION AND CONCLUSIONS

All the cases were tested on a PC with a Pentium 4 processor of 2 GHz
and 256 MB RAM. We have implemented our approach on four models: the
Cyberware Isis, the Cyberware Venus, the Stanford bunny and the Stanford
horse. Figure 1a shows the Cyberware Isis and the Stanford horse rendered
using our approach. Figure 1b shows rendering effect of refraction. In Figure
1b, we place a bunny made of glass in front of a wooden plane. Figure 1c shows
reflection of the Venus model on a sphere surface. We compared our approach
in rendering time with the approach in Ref. [3]. The statistics of performance
are shown in Table 1. In the table we take the horse and the Venus as examples
and use Approach 1 to denote Schaufler and Jensen’s approach. From Ref.
[5], we know that the approach in Ref. [3] is about two orders of magnitude
faster than ray tracing point set surfaces Ref. [4]. This is why we use only
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Table 1. Comparison in rendering time.

Model Horseb Venusc

Number of points 48,485 134,345

Rendering time of our approach (s) 18.5 23.2

Rendering time of approach 1 (s) 25.1 33.6

Note. b and c respectively denote 5 and 6 octree levels.

Schaufler and Jensen’s approach for comparison in Table 1. Note that speed is
inversely proportional to time. From the table we can know that our approach is
about 1.4 times faster. For reducing the number of intersection an octree [6] is
used.

In this paper we have presented a new point-based method for rendering
with global illumination. During pre-process we add an important attribute that
we call ‘three-dimensional neighbour radii’ to each point. Due to the simplifica-
tion of our intersection algorithm, we gain a higher rendering speed compared
with previous methods. Our approach is faster than the approach in Ref. [3]
and thus much faster than the approach in Ref. [4]. We directly use point prim-
itives to represent objects and thus surfaces we use needn’t be parameterized.
Compared with approach in Ref. [1], ours avoids the process of reconstructing
the underlying surface. In Ref. [3], a fixed radius is used to locate neighbouring
points. In this paper variation of neighbour radii of a certain point is related to
points around it. We consider it to be advantageous to vary neighbour radii of
points according to the local density of them.
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Abstract An implementation scheme for solving complicated multi-restriction optimiza-

tion problems of decision of agile virtual enterprise partners selection is pre-

sented based on particle swarm optimization (PSO) algorithm. The particle-flying

space, objective function and fitness function are constructed. Experiments are

performed to examine the proposed approach. Comparisons with the analytic

hierarchy process (AHP) and genetic algorithm (GA) show that the proposed

method is effective and feasible.

Keywords: agile virtual enterprise, partners selection, particle swarm optimization.

1. INTRODUCTION

Agile virtual enterprise (AVE) is the main manufacture pattern in the future.
It was proposed in the report of the 21st century manufacture developmental
strategy by USA gov in 1991 [1]. AVE emphasizes how to improve enter-
prise’s adaptive abilities to the variable market. To develop new product or new
management opportunity, AVE dynamically sets up the virtual organization
around the world. The reason to develop AVE is that the chief enterprise is
lack of resources, so it has to divide the main project into several sub-projects
according to the manufacturing process of production. Some of these sub-
projects are done by the partners selected after comprehensive consideration
on the relationship between sub-projects and the capability, location and time
cost of these partners. The AVE partners selection represents one category
of decision on complex combinational optimization problems. The decision
directly affects the efficiency of the AVE foundation. In this paper, the AVE
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partners selection is handled using the particle swarm optimization (PSO) based
algorithm.

2. DESCRIPTION ON THE PARTNER CHOICE

The formalization definitions are as follows:

P = {mi/ i ∈ {1, 2, . . . , NUM(P)}} = CMS ∪ PMS, (1)

SMRS = {ri/ri ∈ Rel(P)};
Rel(P) = {[m1, m2, . . . , mk, S]/k ∈ {1, 2, . . . , NUM(P)}}, (2)

PGS = {pgi/pgi ∈ PGC}, (3)

CES(mi ) = {CE1, CE2, . . . , CE{NUM(CES(mi ))}, (4)

OCR = {[mi , CE j ]/mi ∈ PMS, CE j ∈ CES}. (5)

Where definition (1) represents that project P consists of several sub-
projects mi which are executed by the chief enterprise (CMS) or partner en-
terprise (PMS) and NUM(P) is the number of sub-projects of AVE project P .
Definition (2) represents that there are multiple relationships between mi and
mj , such as the development period, cost restriction and control, where ri is a
certain relationship, S is the type of relationship. Definition (3) represents the
goal set, where pgi is one of goals, such as minimum time or minimum cost,
etc., and PGC is the type of goal. Definition (4) is the candidate enterprise set
of sub-project mi , where CEi is the candidate enterprise. Definition (5) is the
enterprise optimization combination result. The number of enterprise combi-

nation is
∏NUM(MS)

j=1 (CES(m j )), it increases exponentially with the increase of
the number of sub-projects and enterprises.

3. PARTNERS SELECTION ALGORITHM BASED
ON PSO

3.1 Design of D-dimensional flying space

In PSO, the particle flying space is the solution space [2]. Each location in
the space is a potential solution to the problem. pBest is the optimal location
of a particle, while gBest is the optimal location in all particles. Particle up-
dates its speed and location continuously according to its pBest and gBest, and
searches the optimal solution. To solve the problem of AVE partners selection,
D-dimensional flying space is designed. In NUM(P)-dimension space, each
dimension in the space is a sub-project mi and each dimension space length
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could be different with length unit of 1 and each unit as a candidate enterprise
CEi j .

3.2 Variety of flying speed and location

The velocity of the particle affects the convergence of the algorithm and
the ability of searching the optimal solution. In PSO algorithm, each particle is
described by (xid, vid, pid), where xid is the current location, vid is the current
speed, pid is the optimal location that the particle has experienced. Each particle
has a fitness value, which is determined by the optimal fitness function f (xid).
The PSO method produces initial particle swarm randomly, and searches the
optimal solution through iterations. The particles are updated by the following
equations:

vn+1
id = ωvn

id + c1rn
1 (pn

id − xn
id) + c2rn

2 (pn
gd − xn

id), (6)

xn+1
id = xn

id + vn+1
id , (7)

pid = f (xn+1
id ) i f f (xn+1

id ) < f (xn
id). (8)

Where ω is the parameter of inertia weight, which describes the effect on current
velocity by the former one, pn

id is the particle’s best location in the n iterations,
pn

gd is the best location that all particles have encountered in the n iterations,
c1 and c2 are positive constants and rn

1 and rn
2 are generated randomly in (0, 1).

3.3 Objective function

The goal of the partners selection is to obtain the best combination of AVE.
The combination of AVE is determined by the objective of the project and the
relationship between sub-projects, such as minimum cost, minimum venture,
etc. Therefore, the objective function is a multi-object function. For example,
the cost function is:

Min(C) = Min(C MS + C EMS + C Link)

= Min

(
NUM(MS)∑

i=1

C(mi ) +
NUM (EMS)∑

j=1

C(mj )

+
NUM(MS)∑

i=1

NUM(EMS)∑
j=1

CL(mi , mj , T, E)

)
(9)

Where C MS is the cost of the chief enterprise manufacture, C EMS is the
cost of the candidate enterprise manufacture and C Link is the immanent cost
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when the AVE is constituted, which includes the organization and management
of AVE, the distribution of manpower resource and equipment resource. Con-
sidering that the algorithm may not make all objects be optimal, the weighted
processing technique could be used.

3.4 Fitness function

The fitness function is determined by the PGS and the intensity of the
relationship among the sub-projects. The definition of the fitness function is as
follows:

f (x1, x2, · · · , xNUM(P)) =
∑

pgl∈PGS

∑
x p=xq

kpgl × pgl(I (xp, xq))

/

( ∑
x p �=xq

I (x p, xq) +
∑

s∈SMRS

∑
x p �=xq

ks Gs Rs(x p, xq)

)
(10)

Where pgl is one of the project objects, kpgl the weighted value of pgl ,
pgl(I (x p, xq)) the sum of the objective values when the object is pgl and sub-
project mi selects enterprise x p, sub-project m j selects enterprise xq , I (x p, xq)
the relative intensity values between mi and mj , ks the weighted value of re-
lationship type S, Gs the penalty weighted value of relationship type S which
chooses a relative larger value according to

∑
I (x p, xq) and

Rs(x p, xq) =
(

0 IF (x p, xq) satisfies SMRs(mi , m j )
1 ELSE

)
(11)

means that if enterprises x p and xq satisfy the relationship between sub-projects
mi and m j , then it takes 0, else it takes 1.

4. EXPERIMENTAL RESULTS

The performance of the proposed PSO-based algorithm is examined by an
AVE partners selection problem. The experimental results are compared with
those obtained from the analytic hierarchy process and genetic algorithm. One
part of the experiment data are obtained from Ref. [3], which is the basic re-
quirement attribute of sub-projects. The experiment data among the sub-project
relationship are shown in Table 1. The figures in parentheses represent the cost
relationship requirement and the figures outside of parentheses represent the
time relationship requirement. The time requirement represents that mi is com-
pleted before mj n time unit, and the cost requirement represents that the sum
of mi and m j cost must be within n cost unit. Project calculates minimum cost
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Table 1. Sub-project relationship requirement.

Time\(cost) s-p1 s-p2 s-p3 s-p4 s-p5 s-p6 s-p7 s-p8

s-p1 0 1\(25.2) 4.33 3.7 1.58 1.64 1 1

s-p2 0 1 5.67 (17.5) 7.37 4.76

s-p3 0 6\(31.96) 10.13 (18.3)

s-p4 0 20.37

s-p5 0 15 (20)

s-p6 0

s-p7 0

s-p8 0

object and minimum time object. The relative weighted value is 1:1 and the
corresponding penalty weighted value is Gc = 500 and Gt = 50. The range of
the velocity updating is [−3,3], the size of the particle swarm is 30, and the
number of permitted iterations is 1000.

The PSO-based algorithm has a steady fitness value when it iterates around
165 times. The results are satisfied. The best location in the global space is (1,
2, 17, 4, 11, 1, 5, 9). The partners combination is (0, 12, 33, 39, 47, 0, 61, 73)
and the fitness value is 0.016773. The time for the development is 58 and the
expended cost is 137. The GA has a steady fitness value when it iterates around
232 times. The results obtained from the proposed PSO-based algorithm are
the same as those from the GA. When the AHP is used, the weighted estimates
should be performed and the ratio of the cost and time is 1:1. A relative good
partners combination is (0, 12, 27, 37, 47, 0, 59, 73). The development time
is 60 and the cost is 153. Experimental results show that the AHP algorithm
could transfer to a completely quantitative analysis when the stable param-
eter weight vector is determined. The estimates for the weighted relationship
among parameters are determined totally by experts’ experience or simple eval-
uation rules and formulae. The proposed PSO-based algorithm has the same
functions as GA, however, the coding in the PSO-based algorithm is quite
simple and the implementation is much easier. When the decision objects in-
crease, the speed of convergence of the proposed algorithm is superior to that of
the GA.

5. CONCLUSIONS

A PSO-based approach to solve the partners selection is proposed aiming at
the partners selection when the AVE is constituted. The decision efficiency can
be improved and the requirement of the speediness can be suited. Experimen-
tal results show the effectiveness and feasibility of the proposed PSO-based
algorithm.
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Abstract A novel filtering algorithm called adaptive directional weighted median (ADWM)

filtering is proposed in this paper. The ideas of the directional filtering and the

weighted median filtering are combined to construct the ADWM filter. The use of

the variance of the moving window and the base variance support the adaptivity

of the ADWM filter. The experimental results show that the ADWM filter can

both reduce random noise and preserve details.

Keywords: ADWM filtering, directional filtering, filter, median filtering.

1. INTRODUCTION

Median filtering is quite popular, employed in various applications of image
smoothing, because median filters provide excellent noise-reduction capabil-
ities, with considerably less blurring than linear smoothing filters of similar
size. Especially, they are particularly effective in the presence of impulse noise.
There are also such problems for median filtering as the damaging of thin lines
and sharp corners in the image, the blurring fine details in the presence of
Gaussian noise. Some improved and hybrid methods are developed. A combi-
nation of adaptive techniques [1–4] and order statistic filter [5] has been applied
for noise suppression in images [6, 7].

In this paper, we propose a filtering algorithm called adaptive directional
weighted median (ADWM) filtering by combining the ideas of the directional
filtering and the weighted median filtering. The ADWM filtering can be ac-
complished by computing the variance of the moving window and the base
variance, comparing between the two, and determining the corresponding di-
rectional sub-window and the weight of the centre pixel.

G. R. Liu et al. (eds.), Computational Methods, 1327–1331.
C© 2006 Springer. Printed in the Netherlands.
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2. ADAPTIVE DIRECTIONAL WEIGHTED
MEDIAN FILTER

In directional filtering [8], the directions of sub-windows vary depending
on the change of directional edges. Directional filtering has the capability of
preserving thin lines. Generally, possible sub-windows consist of five, four for
directional filtering and one for nondirectional filtering. The sub-windows are
defined as follows [8]

W 0
(n1,n2) = {(n1 + l1, n2 + l2) | − N ≤ l1, l2 ≤ N }

W 1
(n1,n2) = {(n1 + l, n2) | − N ≤ l ≤ N }

W 2
(n1,n2) = {(n1 + l, n2 + l) | − N ≤ l ≤ N }

W 3
(n1,n2) = {(n1, n2 + l) | − N ≤ l ≤ N }

W 4
(n1,n2) = {(n1 + l, n2 − l) | − N ≤ l ≤ N }

(1)

where N determines the length of the linear sub-windows. By using the sub-
windows defined above, we select the most uniform sub-window out of the five
at each pixel according to a criterion of uniformity [8], and perform filtering
in the sub-window. Directional filtering along the edge avoids spatial blurring
to a large extent. Therefore, it is very suitable for such applications as image
smoothing for the images with obvious texture.

The ADWM filter is defined within the set of sub-windows W j
(n1,n2) for j =

0, 1, 2, 3, 4 as follows

ŝ(n1, n2) = Med
({

wi1,i2,k♦g(n1, n2)
} ∪ {g(i1, i2)|

× (i1, i2) ∈ W k
(n1,n2), (i1, i2) �= (n1, n2)

})
(2)

k = arg min
j

{
uniformity criterion

(
W j

(n1,n2)

)}
(3)

where Med is the median operator, performing median filtering; k♦g(n1,n2)
denotes the k-times repetition of g(n1,n2); the weight of the pixel (n1,n2) is
given by

wi1,i2,k = [2L · R(n1, n2)] + 1 (4)

where [•] is a round operator, L is a convenient measure and satisfies that
2L + 1 equals to the number of the pixels within the sub-window, and R(n1,n2)
is a normalized measure of the noise level in the window around pixel (i1,i2),
given by

R(n1, n2) = 1 − V 2
n

/
V 2

x (n1, n2) (5)
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Vn
2 is a sort of base level for the variance in the whole area of the image.

Just by resetting negative values to 0, R(n1,n2) can be assured to satisfy 0≤
R(n1,n2) ≤1. R(n1,n2) varies between 0 and 1, resulting in the weight of the
centre pixel changing over the range from 1 to 2L , which will directly influence
the resulting value.

When one has no a priori value at hand, a method for getting an estimate of
Vn

2 is to find the median for the entire image and then compute the RMS about
the median. This strategy works well only if the image has been flat-fielded. In
the usual case, however, where no flat field is perfect, we have to turn to the
variance of the entire image for noise estimation.

When determining the criterion of uniformity, the variance of pixels within
each sub-window may be considered as a selection criterion. If the variance of
the pixels within the nondirectional window is the smallest, we decide that there
is no edge crossing that pixel. If an edge is present at the pixel, the sub-window
with the lowest variance indicates the most likely edge orientation at that pixel.

3. CAPABILITIES OF ADWM FILTERING

As denoted in Equation (5), R(n1,n2) has relations with Vn
2 and Vx

2. In
smooth, slowly varying parts of the image, if the window’s variance V 2

x is
similar to the base varianceVn

2, the current window is dominated by random
noise rather than signal, and R(n1,n2) approximately equals to 0. In the extreme,
when R(n1,n2) = 0, the weight of the centre pixel is 1, and the ADWM filter can
be reduced to the straight median filter, which is a stronger ‘central indicator’.
Since the median filtering is hardly affected by a small number of discrepant
values among the pixels in the window, it is very effective at removing various
kinds of noise. As a result, the output is the median of the window’s values, and
noise is strongly suppressed.

Although this strong smoother is very effective in removing salt and pepper
and impulse noise because they do not depend on values that are significantly
different from typical values in the window, its disadvantage is also very evident.
The straight median filter destroys fine detail in the image as a result of the
presence of image details relatively small in size compared to the size of the
relative flat background. These details will have minimal affect on the value of
the median filter, and so will be filtered out. In fact, median filtering is often
used just for this purpose. This is an obvious drawback if one is interested in
the fine detail.

Fortunately, by adaptively adjusting R(n1,n2), we can achieve the goal of
retaining image details and other signal of high frequency. When the window’s
variance Vx

2 is large compared to the base value Vn
2, the current window is in

a strongly varying part of the image. Then the centre pixel’s value is strongly
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weighted, more or less, depending on how far the window variance is above
the base variance. When R(n1,n2) approaches or equals to 1, the weight of
the centre pixel is approximately 2L + 1, which equals to the weight of the
entire rest of the window. In this case, the value of the centre pixel is assured
of being the output of the median operation. The ADWM filter turns out to be
the identity filter, since the output equals to the input.

Therefore, the ADWM filter can be varied over the range from the median
filter to the identity filter just by adaptively varying the central weight. This
corresponds to going from strong noise and detail removal (much smoothing)
to none. In other words, the definition and use of R(n1,n2) enable the ADWM
filter to achieve its adaptivity.

4. EXPERIMENTS AND RESULTS

In this experiment, we use median filter, directional filter and ADWM filter
for comparison purposes. The noise considered in this paper is a combination
of Gaussian noise (zero mean and 0.5 variance for intensity images whose
intensity ranges from 0 to 1) and ‘salt and pepper’(2%). Figure 1(a) is the
noise-free image; (b) is the noisy one and (c–e) are corresponding outputs
using different filters. The corresponding MSE is listed in Table 1. Table 1
shows the applicability and the robustness of the novel filter as compared to the
other three filters.

Table 1. Results of comparison (5 × 5 window).

Noisy Median Directional ADWM

Output image filtering filtering filtering

Normalized 0.010381 0.0045971 0.0069207 0.004431

MSE

SNR 18.649 102.87 73.305 78.539

PSNR 68.953 385.52 324.35 306.52

(a) (b)                             (c)                              (d)                            (e)

Figure 1. (a) Original image, (b) noisy image, (c) output of median filter, (d) output of directional

filter and (e) Output of ADWM filter.
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5. CONCLUSIONS

In this paper, we propose the ADWM filter, which is an efficient and con-
venient nonlinear smoothing method that reduces the blurring of edges. The
ADWM filter has the features of directional filtering and centre weighted me-
dian filtering. The employment of narrow sub-windows can achieve edge preser-
vation efficiently and contribute to keeping a basic feature oriented from blur-
ring. The novel filter can both remove noise and preserve detail via adaptively
determining the weight of the centre pixel according to the lowest variance of
pixels within all sub-windows.
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Abstract In order to solve the problems of low description ability and interactivity in

current workflow management systems, an interactive workflow management

function model (IWMFM) is proposed. On the basis of using IWMFM to model

the business process in the method of hierarchies, an algorithm of workflow

process interaction based on the event-driven mechanism is put forward. Com-

bining IWMFM and a formalized orgnization-role model, an algorithm of role

analysis based on responsibility is given to implement the flexible role analysis

during the interaction. Practical application shows that the proposed model has

some advantages in enhancing description ability, reducing modelling complex-

ity, strengthening interactivity between processes and improving flexibility in role

analysis.

Keywords: workflow, function model, interactive, event-driven, role analysis.

1. INTRODUCTION

Nowadays, many enterprises want to extend the application of information
technology into much more complicated and larger business processes. How
to model these processes in an easy way become a key problem [1]. Based
on the WfMC reference model [2] and the requirement of workflow man-
agement, we proposed an interactive workflow management function model
(IWMFM). IWMFM can decompose the complex process definition into sim-
ple subprocesses by using a description method of hierarchies. Figure 1 shows
a disassembled process definition. Through event-driven mechanism, the de-
composed processes can interact with each other. During the interaction, we
need to analyse the tasks participants in the decomposed processes from role to

G. R. Liu et al. (eds.), Computational Methods, 1333–1338.
C© 2006 Springer. Printed in the Netherlands.
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s A1 A2 A3 A4 E

 P

s B1 B2 E

s C1 C2 C3 C4 E

 P1

  P2

Figure 1. A decomposed process definition.

user or team according to the information included in the event. In this way, the
same business logic as the former complicated process is completed and the
modelling process is simplified. IWMFM combines with an orgnization-role
model to implement the flexible role analysis during the interaction.

2. PROCESS MANAGEMENT

Process management mainly includes workflow modelling, workflow en-
gine, event manager and organization manager and worklist handler.

2.1 Process modelling

The model element of process definition is defined as follows:

Definition 1. procDef = [procName, procAttr], where

(1) procName: is the name of the process template, event manager maintain it
in the type linkage item.

(2) procAttr: is the process’s attributes, e.g., process ID, description, global
variables, router type, transition conditions, creator, deadline, etc.
Lets δ: N → D is the mapping from N to D, where

(3) procName set N ; procDef set D;
(4) d = δ(n) is a process definition that has the name of n. The number of

process definitions that have the name of n is limited to one and each
process definition can own one unique name, hence δ is of one to one
relationship.
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2.2 Event manager

Event is the occurrence of a special status or condition which is significative
to some workflow processes, e.g., changement of a process state, complement of
an activity, generation of a business object, etc. The event is defined as follows:

Definition 2. evt = [evtName, evtParas, procName], where

(1) evtName: is the name of the event. It is unique in the system.
(2) evtParas: is the information that the event receiver need to handle, e.g., the

information for role analysis, business object, etc.
(3) procName: is the name of the process definition that generates the event.

Event manger is responsible for dispatching the event to the event receiver
(a process instance) when the event is generated and the maintenance of the
type linkage item.

2.3 Workflow engine

The workflow engine is the core of the workflow management system, in-
terprets the process definition, controls the creating, activating, suspending and
terminating of process instance, takes charge of the states transition of pro-
cess and activities, navigates the activities running, records history events and
manages transactions.

3. WORKFLOW INTERACTION

After modelling a complex business process by the method of hierarchies,
the decomposed subprocesses in different level need to interact with each other
to complete the same business logic as the former complicated process. In
IWMFM, the interaction is achieved by event manager. Through the mechanism
of publish-subscribe [3], event manager knows the generation of the events,
searches for the corresponding receiver. Because the event is published by a
process instance and the receiver is a process definition, the workflow process
interaction is implemented. The relationship between the event and the receiver
is maintained in a type linkage item. The type linkage item is defined as follows:

Definition 3. typeLinkage = [evtName, procName, status], where

(1) evtName: is the name of a event.
(2) procName: represents a receiver and is the name of the process definition

that receive the event.
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Algorithm WPI(evt)
/*the workflow process interaction algrithm*/
WPI1 [Initialization]

FOR i =1 TO n
tpLks[i] ← Λ. 

  WPI2 [Workflow process interaction]
FOR j =1 TO n
(IF (ζ (evt)[j] ∈ TL ANDζ(evt)[j].status = 1) THEN  

( tpLks[j] ←ζ(evt)[j].

 procName1 ← tpLk[j].procName.

 procDef1 ←δ (procName1).
   IF (procDef 1≠ Λ ) THEN  
(//RBRA is the reponsibility-based role 
// analysis algorithm and is defined later. 

roleMap←RBRA(evt.evtParas.item,
evt.evtParas.value,orgRole).  

//start a workflow instance 
StartWf(procDef1,roleMap)

) 
) 

Figure 2. Workflow process interaction algorithm.

(3) status: identifies whether the linkage item is active or not.

Lets ζ : E →TL is the mapping from E to TL, E is a evt set, TL is a typeLinkage
set. Obviously, ζ is of one to many relationship. We give the workflow process
interaction algorithm in the language of ADL [4] in Figure 2.

4. ORGANIZATION-ROLE MANAGEMENT

Orgnization-role management in IWMFM mainly implements the flexible
role analysis during the interaction. RBAC96 is an accepted and important
access control model [5], but RBAC96 does not define the authorization about
data object and user team which can simplify the mapping from role to user.
We extend the RBAC0 of RBAC96 to xRBAC and use the xRBAC as the
organization-role management model and give a role analysis algorithm based
on responsibility.

Definition 4. organization-role = <U , R, T , P , O , θ , α, β, γ , λ, Σ>, where

(1) User set U ; Role set R; Team set T ; Permission set P; Object set O .
(2) θ : U → R, is the mapping from U to R. r = θ (u) is a role that u plays.

The number of roles that one user can play is limited to one, but one role
can be played by different users, hence θ is of many to one relationship.

(3) α: T → R, is the mapping from T to R. r = α(t) is a role that t plays,
i.e., every member in t plays role r . Similar to θ , α is also a many to one
relationship.
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(4) β: T → U , is the mapping from T to U . U ′ = β(t) is the user set in which
every user is the member of t .

(5) γ : U → T , is the mapping from U to T . T ′ = γ (u) is the team set in which
u belongs to every team.

(6) λ ⊆ R × O × P . (r , o, p) ∈ λ, means that role r is granted access on
object o with privilege p. The connection between permission and user
is made by role. According to Definition 4, u has the privileges that the
privileges of his roles plus the privileges of his teams. The privilege set of u
is {p|r = θ (u) ∧ (r , o, p) ∈ λ}∪ {p|T ′ = γ (u) ∧ t ∈ T ′ ∧ r = α(t) ∧ (r ,
o, p) ∈ λ}.

(7) Σ : R → 2A. A = U ∪ T ∪ R. If 	(r ) ⊆ U ∪ T , then we get the partici-
pants of workflow activity directly. If Σ(r ) ⊆ R, then we analyse the par-
ticipants by orgnization-role object.

Responsibility is the duty of an agent which refers to a user, a role or a team,
e.g., if the sum of an order is over $5000, the manager has the responsibility
to deal with it. Otherwise, the employer can handle the order. The judgment
condition of responsibility is defined as follows:

Definition 5. condition = [item, operator, scale], where

(1) item: identifies the content to judge, e.g., the sum of the order, the leave
time, etc.

(2) operator: is the operator to use in judgment, e.g., >, <,=, etc.
(3) scale: is the standard value to compare with the item’s actual value.

Lets ψ : I → C is the mapping from item to condition, I is an item set, C
is a condition set. ψ is a one to many relationship.

Definition 6. responsibility: �: C → A is the mapping from C to A, condition
set C, A = U ∪ T ∪ R. (There is a hypothesis that limit one agent can associate
with one condition only and the standards of different conditions that have
the same item are identical.) We give the responsibility-based role analysis
algorithm in Figure 3.

5. CONCLUSION

IWMFM can softly model a complex business process in a structure of
hierarchy and the different process instance can conveniently interact with each
other by using the workflow interaction algorithm. Moreover, the responsibility-
based role analysis algorithm can be used to implement the flexible role
analysis during the interaction. IWMFM was applied in JQ/cERP and was
proved to satisfy the workflow management requirements in the manufacturing
enterprises.
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Algorithm RBRA(item,value,orgRole.roleMap)
RBRA1 [Initialization]

 FOR i = 1 TO n DO
roleMap[i] Λ . 

RBRA2 [Get the condition to use]
tc (item)[0].
st  tc.scale. 

 //compare the value with the scale
op Compare(value,scale).  

c ⇐ <item,op,st>. 
RBRA3 [Role analyzing based on responsibility] 

IF (Π (c) ∈ U ∪T) THEN

roleMap Π (c). //role analysis

ELSE IF (Π(c)= r′′∈R ∧ S
θ

(r ′′)=r′∈R) THEN

roleMap {u|u∈U ∧ (u)=r′}∪{t|t∈T ∧α
S

(t)=r′}.

ELSE roleMap[j].= (r′′) 

←

←
←

←

←

←

ψ

Figure 3. Responsibility-based role analysis algorithm.
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PACKET FAIR SCHEDULING ALGORITHM
BASED ON WEIGHTS DYNAMIC
COMPENSATION

Zhang Wei, Liu Yan-heng, Yu Xue-gang and Xie A-lian
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of Education, Jilin University, Changchun, China

Abstract PFQ is approximation of GPS in packet switching networks and it can provide

packet flows with QoS and fairness. Based on research of fairness of GPS and

details of WFQ and WF2Q, this paper implements CFQ algorithm with the idea

of maintaining the proportional fairness as GPS. CFQ introduces the concept of

deflection ratio and uses it in computing of timestamp. During scheduling, system

makes micro-adjustment to weight according to flow’s deflection ratio. Analysis

and NS2 simulation show that CFQ reduces the fairness difference among flows

with different QoS requirement obviously and provide bounded QoS performance

similar to GPS.

Keywords: IntServ, packet fair queuing, weighted fairness, compensation.

1. INTRODUCTION

GPS [1] based on bit stream has ideal fairness. In packet networks, current
PFQ algorithms [2, 3] can provide performance similar to GPS by simulat-
ing the service curve of GPS. WFQ [1] and WF2Q [4] are the most excellent
PFQ algorithms. Based on fairness analysis of GPS, the performance evalua-
tion criteria [2] and wireless compensation models [5], this paper introduces
CFQ (Compensation-based weighted Fair Queuing) algorithm with the idea of
maintaining the proportional fairness of service as GPS.

G. R. Liu et al. (eds.), Computational Methods, 1339–1344.
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Table 1. Deflection ratio statistic of WFQ/WF2Q during time slots.

Time slots (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7) (0, 8) (0, 9) (0, 10)

WFQ �1 13.99 24.24 32.09 38.28 43.29 47.43 50.91 53.87 56.43 58.65

WFQ �2 −1.4 −2.43 −3.21 −3.83 −4.33 −4.74 −5.09 −5.39 −5.64 −5.86

WF2Q �1 18.18 0 5.19 0 3.19 0 2.30 0 1.8 0

WF2Q �2 −1.4 57.58 50.91 29.09 27.75 18.19 17.49 12.12 11.70 8.26

2. DEFINITION OF DEFLECTION RATIO

When all flows are continually backlogged, flow’s weight and received ser-
vice of GPS have relation as follows:

Wi (τ, t)

Wj (τ, t)
= �i

�j
i, j ∈ B(t) (1)

where W symbolizes service received by flow during time slots, � symbolizes
scheduled weight value and B symbolizes set of busy sessions. This formula
shows that received services of flows are strictly proportional to their weights.
It’s proportional to fairness [2]. Packets are not dividable that will destroy this
fairness and result in deflection during some time slots. A ladder variational
deflection ratio � is defined as follows to show the extent of fairness deflection:

�i

(
t j

) = �
Wi

φi
=

Wi

φi
− 1

NB

NB∑
k=1

Wk

φk

NB∑
k=1

Wk

φk

× 100% (2)

where NB symbolizes the number of busy flows and j symbolizes the number
of events occurring during time slots from time zero to now. According to
scheduling order of WFQ and WF2Q in Ref. [4], deflection ratio statistics is
listed in Table 1. It’s obvious that there exists a large difference among flows
with different weight.

3. DYNAMIC WEIGHT COMPENSATION UNDER
RESTRICTION OF DEFLECTION RATIO

GPS’s ideal fairness was based on the attribute that stream is infinitely
dividable, and we consider that weight value is also infinitely dividable. During
packet scheduling, the fairness deflection can be fed back to weight, and then
make a micro-adjustment to weight according to their deflection ratio. Because
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weight participates in computing of virtual time stamp, so it can be assured that
flows with fairness damaged during previous time slots can obtain advantageous
deflection in choice of next packet. It shows as following, formula (3):

�i

(
tj
) = �i × (

1 − �i

(
tj
))

(3)

where � is a decimal between 0 and 1. This scheme names CFQ. In this scheme,
the virtual time V and timestamp Fk

i are computed as following, formula (4)
and (5). Where, the δ called compensation index, which has the form as (6):

V (0) = 0, V
(
t j−1 + μ

) = V
(
t j−1

) + μ · r∑
i∈B j

�i

(
t j−1

)μ ≤ t j − t j−1,

j = 2, 3, . . . (4)

Sk
i,CFQ = max

{
Fk−1

i,CFQ, V
(

Ak
i

)}
Fk

i,CFQ = δ j · Fk−1
i,CFQ + Lk

i

φi

(
t j

) (5)

δ j = φi

(
t j−1

)
φi

(
t j

) if Sk
i,CFQ = Fk−1

i,CFQ else δ j = 1 (6)

The scheduling process of CFQ is described as follows:

S1. Initialize weight registers and service register. Set flow weights with defined
parameters corresponding to classes.

S2. Check the state of busy session aggregation B. If B changes, go to S7, or
continue.

S3. If a packet Ak
i arrives, record the values of i , k and packet length L .

S4. If a packet dequeues:
a) Add Ltm/Lmax to service register Wi .
b) Update weight register φi .

c) Update timestamp Fk
i of HOL packets.

S5. Round robin and choose HOL packet with least timestamp.
S6. Go to S2.
S7. End and exit.

4. NS2 SIMULATION AND PERFORMANCE
ANALYSIS

According to packet arrival in Ref. [4], the CFQ scheduling order is shown
in Figure 1. It’s obvious that the dequeuing order just accords with the original
intention, namely, compensation mechanism works.

Figure 2 is the topology of NS2 simulation. It’s a simple scene with only
three flows.
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Figure 1. CFQ scheduling order.

Bottleneck link: 5MB/s 2ms

0.5

0.2   Sink

Queue/ CFQ

  0.3

S 

Figure 2. NS2 network topology.

4.1 Analysis of deflection ratio

The compare of deflection ratio is shown in Figure 3. WFQ and WF2Q have
obvious deflection to certain flows and CFQ has a notable action of compen-
sation. According to long-term fairness definition [2], generalized by formula
(7), the CFQ has better fairness.

Fδ,i = 1

�t

∫ t+�t

t
fδ,i (δi,1, δi,2, . . . , δi,n; t) (7)
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Figure 3. Deflection ratio analysis.
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Figure 4. Long-term service curve.

4.2 Service curve

When weights are 0.5, 0.2 and 0.3, the service summation illustrates in
Figure 4. CFQ can simulate the proportional fairness of GPS accurately during
long-term.

4.3 Curve of fairness maintaining

According to service curve, the fairness curve of CFQ, namely formula (1),
changes with time slots is plotted in Figure 5. The Figure 5(a) is in CFQ and
Figure 5(b) is in WFQ. It’s evident that CFQ obviously reduces the fairness
difference among flows with different class and QoS requirement.

(a) (b) 

Figure 5. Fairness compare.
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5. CONCLUSION AND FUTURE WORK

This paper implements CFQ algorithm based on the idea of maintaining the
proportional fairness of service of GPS, introduces the concept of deflection
ratio and uses it in computing of timestamp as an effect factor. NS2 simulation
result shows that CFQ can obviously reduce fairness difference among flows
with different QoS requirement. Wireless QoS scheduling is a hot topic in
recent years. Adopting CFQ as reference algorithm and combining it with
compensation model are the future work.
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Abstract In this paper, a relatively flexible filter model called extended adaptive weighted

averaging (EAWA) filter model is proposed, by which some particular filters can

be designed via selecting an appropriate pixel of interest (POI) and defining a

weight distribution function for the filter according to some specified require-

ments.

Keywords: AWA filter, filter, image sequence, pixel of interest.

1. INTRODUCTION

The classical AWA filter [1, 2] is a motion compensated filter, which com-
putes a weighted average of the image values within the spatio-temporal support
along the motion trajectory. The filter is therefore particularly well suited for
efficient filtering of sequences containing segments with varying scene contents
due to rapid zooming and changes in the view of the camera.

In this paper, we propose the extended adaptive weighted averaging (EAWA)
filter model based on the former AWA filter used for noise filtering. The reason
that the EAWA filter is called a model is that the EAWA filter can turn to be a
practical filter only when some quantities (functions, parameters and domain)
are defined definitely; otherwise, the filter is indefinite. The EAWA filter model
supplies some possibilities to design filters. The following factors strengthened
the flexibility and the generality of the model: (1) the weight distribution func-
tion to control the distribution of the weights; (2) the pixel of interest (POI) to
position the center of weight distribution; (3) the boundary threshold T to dis-
tinguish the desirable pixels from the undesirable ones; (4) the plateau threshold
ε to influence the ability of noise reduction and the adaptivity of the weight

G. R. Liu et al. (eds.), Computational Methods, 1345–1349.
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distribution. Therefore, the flexible model is able to facilitate transforming itself
to some practical filters.

2. MODELLING

Based on the method of AWA filtering, the EAWA filter is defined within
the support Sn1,n2,k as follows

ŝ(n1, n2, k) =
∑

(i1,i2,l)∈Sn1,n2,k

w(i1, i2, l )g(i1, i2, l) (1)

where g(i1, i2, l) is the noisy pixel within the support Sn1,n2,k , ŝ(n1, n2, k) de-
notes the estimate of the ideal image s(n1, n2, k) applying this model, and

w(i1, i2, l ) = hn1,n2,k(i1, i2, l ) ·
⎛
⎝ ∑

(i1,i2,l )∈Sn1,n2,k

hn1,n2,k(i1, i2, l )

⎞
⎠

−1

(2)

are the weights within the support Sn1,n2,k , and

hn1,n2,k(i1, i2, l ) = f (max{ε, |C(n1, n2, k) − g(i1, i2, l )|}) (3)

The quantity ε(ε ≥ 0) is the parameters of the filter. C(n1, n2, k) denotes
the value of the POI within the support Sn1,n2,k . Which pixel is defined as the
POI within the support Sn1,n2,k can reflect what kind of values of signal (or
pixels) is desirable to be preserved after filtering noise. f (x) is nonnegative
within its domain (x ≥ 0) and nonincreasing as x increases (see Figure 1),
which determines the distribution of the weights, called the weight distribution
function. Now, the above definition is noted with such properties as follows:

1. Take C(n1, n2, k) = g(n1, n2, k) and f (x) = 1/(1 + ax2), where a (a > 0)
is a penalty parameters [1], the AWA filter can be formed. Therefore, the
AWA filter is just one case in this model, and the EAWA filter is an extension
to the AWA filer.

(a) Graph of f(x) (b) Graph of f(max(e,ΔΔ ΔΔ))

0
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x

)
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m

a
x

(εε
,ΔΔ
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Figure 1. Illustration of the weight distribution function f (x) (T is a boundary threshold, ε is a

plateau threshold, � = |C(n1,n2,k) − g(i1,i2,l)|).
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2. The EAWA filter enhances the ability to control the weights of pixels within
the support Sn1,n2,k . In some cases, the weight of zero is desirable because
it can eliminate the interference of undesirable pixels. Unfortunately, the
weights within the support Sn1,n2,k of the AWA filter is always positive. By
defining an appropriate weight distribution function f (x) for an EAWA filter,
it is possible to settle the problem. Distributing positive weights to the desir-
able pixels, and zero weights to the undesirable ones is one of the simplest
ways. Hence, the EAWA filter is considered to be more flexible in selecting
the desirable pixels and rejecting the undesirable. In addition, the curve of
the weight distribution of the AWA filter is fixed, whereas the EAWA filter
escapes the confine of the fixed weight distribution function, and allows us
to define the weight distribution function as we require. Therefore, in dif-
ferent applications the weights can be adjusted by designing and adopting
different weight distribution function f (x). The flexibility of defining f (x)
is not confined to the existing of enough matching pixels within the sup-
port Sn1,n2,k . Here, an example for f (x) is given in Figure 1a, where T is a
constant, and serves as a boundary threshold, by which the desirable pixels
can be distinguished from the undesirable ones. f (x) with the threshold T
divides Sn1,n2,k into two parts, the subsupport Un1,n2,k , given by

Un1,n2,k = {(i1, i2, l)|(i1, i2, l) ∈ Sn1,n2,k, |g(i1, i2, l)

− C(n1, n2, k)| ≤ T } (4)

and its complement within the support Sn1,n2,k . If f (x) is not a function with
a compact support, the boundary threshold T is considered to be infinity.

3. The same weight distribution function does not necessarily result in the
same filter. The POI is also influential on the model. For the AWA filter,
high weights are fixedly distributed around the centre pixel. In contrast, by
allowing to define POI C(n1,n2,k), the EAWA filter model makes it more
flexible to distribute the weights around its POI, which may be an arbitrary
value, probably even not any value of existing pixels. When we change the
POI, actually we also alter the centre of the weight distribution. Besides, the
procedure of selecting the POI can be considered as a pre-filtering stage.
So we say that the identical weight distribution function does not mean the
identical filter, and that the filters vary depending on their POIs and their
subsupport Un1,n2,k .

4. By appropriately selecting the parameter ε, for instance, setting ε equal to
the value of the standard deviation of noise, ε can be used as a criterion of
the consistent intensity of POI to measure whether a region is stationary or
nonstationary. According to the criterion, the EAWA filter model distribute
high weights among the pixels whose intensities are consistent with POI
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(stationary image regions), and to distribute low ones among the pixels
beyond the consistent intensity of POI (nonstationary image regions).

At the same time, the parameter ε as a plateau threshold (see Figure 1b) plays
an important part in the relationship of the efficiency of noise suppression
and the adaptivity of the weight distribution. ε controls the ability of the two
aspects. When ε approaches the boundary threshold T , the ability of noise
reduction increases, whereas the adaptivity decreases. When ε approaches zero,
the situation is just the reverse. Note that Ref. (3) can be written as follows:

hn1,n2,k(i1, i2, l ) =
{

f (ε) if |C(n1, n2, k) − g(i1, i2, l )| < ε

f (|C(n1, n2, k) − g(i1, i2, l )|) otherwise
(5)

It can be shown that if the difference between the values C(n1, n2, k) and
g(i1, i2, l) is less than ε, all the weights attain the same value f (ε). However, if
the difference is greater than ε, the contribution of g(i1, i2, l) is weighted down

Table 1. Application of the EAWA filter model.

Gradient inverse weighted smoothing

scheme [3]

C(n1, n2) = g(n1, n2)

f (x) =
⎧⎨
⎩

1 if 0 ≤ x < 1

1/(V x) if 1 ≤ x ≤ T
0 otherwise

where

V = ∑
(i1,i2)∈Vn1,n2

1
|C(n1,n2) − g(i1,i2)|

Vn1,n2 = {(i1, i2)|(i1, i2) ∈ Sn1,n2, (i1, i2) �=
(n1, n2)}

and the support Sn1,n2 is a 3 × 3 square region.

Edge-preserving filter [5]

C(n1, n2) = g(n1, n2)

f (x) =
{

1 if 0 ≤ x ≤ σmin

0 otherwise
where σmin = min5

j=0{σ (U j
n1,n2)}, U 0

n1,n2 is an

n × n square region, and

U 1
n1,n2 = {(i1, i2)|(i1, i2) ∈ U 0

n1,n2,

(i1 − n1) − (i2 − n2) = 0}
U 2

n1,n2 = {(i1, i2)|(i1, i2) ∈ U 0
n1,n2,

(i1 − n1) + (i2 − n2) = 0}
U 3

n1,n2 = {(i1, i2)|(i1, i2) ∈ U 0
n1,n2,

i1 − n1 = 0}
U 4

n1,n2 = {(i1, i2)|(i1, i2) ∈ U 0
n1,n2,

i2 − n2 = 0}

k-Nearest neighbour averaging filter [4]

C(n1, n2) = g(n1, n2)

f (x) =
{

1 if 0 ≤ x ≤ σmin

0 otherwise
where σ min denotes the minimum standard

deviation with respect to the neighbour-

hoods Ek . And Ek refers to the k neigh-

bourhood in an n × n square region around

a point P , whose standard deviation is con-

sidered as an index of the uniformity in the

local region.

Order-statistic filter

Cmax(n1, n2, k) = max
(i1,i2,l)∈Sn1 ,n2 ,k

{g(i1, i2, l)}
Cmed(n1, n2, k) = med

(i1,i2,l)∈Sn1 ,n2 ,k

{g(i1, i2, l)}
Cmin(n1, n2, k) = min

(i1,i2,l)∈Sn1 ,n2 ,k

{g(i1, i2, l)}

f (x) =
{

1 if 0 ≤ x ≤ T
0 otherwise

When T approaches zero, we can obtain a

maximum, a median and a minimum filter

corresponding to three POIs, respectively.
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by f (|C(n1, n2, k) – g(i1, i2, l)|) < f (ε) in that f (x) is a nonincreasing function.
Therefore, the parameter ε should be selected carefully through experiments.

3. APPLICATION

With the model, we can design some particular filters via defining an appro-
priate POI C(n1, n2, k) and an appropriate weight distribution function f (x). We
give some examples to demonstrate its generality and flexibility (See Table 1).
These examples describe some classic noise filters in the form of the EAWA
filter model. We note that designing and defining f (x) and C(n1, n2, k) for the
EAWA filter will directly determine its performance for a specific filtering.

4. CONCLUSION

A filter model called the EAWA filter model derived from the AWA filter
is introduced in this paper. The EAWA filter model is a relatively flexible
and general filter model, by which some particular filters can be designed via
selecting an appropriate POI and defining a weight distribution function for the
filter according to some specified requirements to perform a specific filtering.
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Abstract Microarray technologies have made it straightforward to monitor simultaneously

the expression pattern of thousands of genes. So an important task is to cluster

gene expression data to identify groups of genes with similar patterns and hence

similar functions. In this paper, an improved quantum-inspired evolutionary algo-

rithm (IQEA) is first proposed for minimum sum-of-squares clustering. We have

suggested a new representation form and added an additional mutation operation

in IQEA. Experiment results show that IQEA appears to be much more robust in

finding optimum or best-known solutions and be superior to conventional k-means

and self-organizing maps clustering algorithms even with a small population.

Keywords: gene expression, clustering, quantum-inspired evolutionary algorithm.

1. INTRODUCTION

In the field of bioinformatics, clustering algorithms have received renewed
attention due to the breakthrough of microarrays data. Microarrays experiments
allow for the simultaneous monitoring of the expression patterns of thousands
of genes. Since a huge amount of data is produced during microarray experi-
ments, clustering methods are essential in the analysis of gene expression data.
The goal is to extract the fundamental patterns inherent in the data and to
partition the elements into subsets referred to as clusters. In gene expression,
elements are usually genes. The vector of each gene contains its expression
levels under each of the monitored conditions. Several clustering algorithms
have been proposed for gene expression data analysis, such as hierarchical
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clustering, self-organizing maps, k-means, and some graph theoretic ap-
proaches. In this paper, we propose an improved quantum-inspired evolution-
ary algorithm (IQEA) for clustering gene expression data. The IQEA has been
shown to perform well and be superior to k-means and self-organizing maps
clustering algorithms even with a small population.

2. MINIMUM SUM-OF-SQUARES CLUSTERING

Clustering can be considered as a combinatorial optimization problem, in
which an assignment of data vectors to clusters is desired, such that the sum of
distance square of the vectors to their cluster mean (centroid) is minimal. Let
Pk denote the set of all partitions of X with X = {x1, . . . , xn} denoting the data
set of vectors with xi ∈ Rm and Ci denoting the i th cluster with mean xi . Then
we can formulate the problem as the search for an assignment p of the vectors
to the clusters with Ci = j ∈ {1, . . . , n}|p[ j] = i . Thus the objective function
becomes:

minp

∑
d2(xi , x̂ p[i]). (1)

This combinatorial optimization problem is called the minimum sum-of-
squares clustering (MSSC) problem as shown in the work by Merz [1] and
has been proven to be NP-hard. Since the novel quantum-inspired evolutionary
algorithm has been shown to be effective as compared to the conventional
genetic algorithm, the application of QEA to the MSSC appears to be promising.

3. QUANTUM-INSPIRED EVOLUTIONARY
ALGORITHM

Quantum-inspired evolutionary algorithm (QEA) is based on the concept
and principles of quantum computing such as a quantum bit and superposition
of states. Like other evolutionary algorithms, QEA is also characterized by
the representation of the individual, the evaluation function and the population
dynamics. A Q-bit is defined as the smallest unit of information in QEA, which
is defined with a pair of numbers (α, β). It may be in the ‘1’ state, in the ‘0’
state, or in any superposition of the two. A Q-bit individual is a string of Q-bits.
The state of a Q-bit can be changed by the operation with a quantum gate, such
as NOT gate, Rotation gate, and hadamard gate, etc. Rotation gate is often used
to update the Q-bit as follows:[

α′
i

β ′
i

]
=

[
cos (�θi ) −sin (�θi )
sin (�θi ) cos (�θi )

] [
αi

βi

]
. (2)
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Table 1. The angle parameters used for rotation gate.

xi bi f(x) ≥ f(b) �θi xi bi f(x) ≥ f(b) �θi

0 0 false θ1 1 0 false θ5

0 0 true θ2 1 0 true θ6

0 1 false θ3 1 1 false θ7

0 1 true θ4 1 1 true θ8

The angle parameters used for rotation gate are shown in Table 1. Where xi and
bi are the ith bit of the best solution b and the binary solution x respectively.
The structure of QEA is shown in previous work by Han [2].

4. THE GENE EXPRESSION DATA SETS

The first data set denoted as HL-60 is described in the work by Tomayo [3]
and it contains data from macrophage differentiation experiments. It consists
of 7229 genes and expression levels at four time points. We apply a variation
filter which discarded all genes with an absolute change in maximum and
minimum expression level less than 30. The number of genes which pass the
filter is 2792. The vectors are then normalized to have mean 0 and variance 1.
The second data set denoted as Yeast is described in the work by Cho [4]. It
consists of 6602 yeast genes measured at 17 time points over two cell cycles.
The 90-minute and 100-minute time points are excluded because of difficulties
with scaling. Afterwards, we use a variation filter to discard all genes with
an absolute expression level change less than 100, and an expression level of
max/min <2.0. The number of genes that pass the filter is 2947. Again, the
vectors are normalized to have mean 0 and variance 1.

5. IQEA FOR CLUSTERING GENE
EXPRESSION DATA

In the experiments, we compare the improved IQEA with k-means and
self-organizing maps (SOM) algorithms. IQEA and k-means algorithms are
implemented in Matlab 6.5. The self-organizing maps algorithm is available in
the software package Gene Cluster 2.0.

5.1 Initialization, Representation and Fitness Function

The k-means algorithm is first run ten times and so ten initial solutions are
produced for each data set. Each solution is composed of n mean vectors where



1354 W.G. Zhou et al.

n is the number of clusters. Given the mean vectors, the cluster memberships
can be calculated by calculating the nearest distance of each gene vector with all
mean vectors. The representation used in the IQEA is straightforward. There
are n∗10 mean vectors in all for the ten initial solutions. Then we number
each mean vector as 1, 2, 3 . . . n∗10 and put them into the set V where V =
(v1,v2, . . . ,vn∗10). So n∗10 Q-bits are used in each Q-bit individual. A Q-bit
individual has the following form in the tth generation:⎡

⎢⎣
αt

1 αt
2 · · · αt

n αt
n+1 · · · αt

2×n · · · αt
9n+1 · · · αt

10×n

| | | | | | | | | |
β t

1 β t
2 · · · β t

n β t
n+1 · · · β t

2×n · · · β t
9n+1 · · · β t

10×n

⎤
⎥⎦ (3)

where α is initially given as a random number between 0 and 1 initially and β

could be computed according to Equation (2). The fitness function used in the
IQEA is the MSSC error provided in Equation (1).

5.2 Make and Repair Operation

To obtain the binary string, the step of ‘Make(x)’ by observing the states of
Q-bit can be implemented for each Q-bit individual as follows:

If (random (0, 1) < |βi |2 && k < n) then x(i) ← 1; k ← k + 1;

else x(i) ← 0;

where the variant k is used to guarantee that the number of ‘1’ in each binary
string must be less than or equal to n. Afterwards, if the number of ‘1’ is less
than n in some strings, an additional mutation operation ‘Repair (x)’ should
be performed to be sure that there should be and only be n ‘1’ in each binary
string as follows:

while k < n do

randpos ← random (1, n∗10); if x (randpos) = 0 then x (randpos)

← 1; k ← k + 1;

end

5.3 Evaluated and Updated Operation

Then the evaluated operation is executed to calculate the fitness value ac-
cording to Equation (1) for each Q-bit individual and so the best individual
can be selected. The updated operation is used to update Q-bit states of each
individual by rotation gate in Equation (3). The angle parameter in Table 1 is
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Table 2. Experiment results for the two data sets.

Dataset Algorithm Best obj Avg obj Excess

HL-60 IQEA 1514.3 1598.5 5.56%

K-means 1514.6 1604.3 5.92%

SOM 1523.2 1624.0 6.62%

Yeast IQEA 15741.0 15860.0 0.76%

K-means 15752.0 15905.0 0.97%

SOM 15801.0 16002.0 1.27%

set as follows according to experiment observation:

If α∗β > 0 then θ3 = 0.01 π ; θ5 = 0.01 π ;

If α∗β < 0 then θ3 = 0.01 π ; θ5 = 0.01 π ;

6. EXPERIMENT RESULTS

In all experiments, IQEA is run with a population size of 20. The k-means
and IQEA algorithms are all terminated when the maximum generation of 50 is
arrived. The three algorithms are all run 10 times, and the best and the average
objective value (fitness value) are produced. In Table 2, the results are displayed
for the described two data sets. Excess value is the percentage of the average
objective value above the best objective value. It is obvious that IQEA performs
better than the other two algorithms.

7. CONCLUSIONS

In this paper, an improved quantum-inspired evolutionary algorithm (IQEA)
by using a new representation form and adding an additional mutation opera-
tion is proposed for clustering gene expression data. We present experimental
evidence that the proposed algorithm is effective and produces better solutions
than the conventional k-means and self-organizing maps clustering algorithms
even with a small population.
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AUTOMATIC BUFFER OVERFLOW DETECTION
BASED ON OPERATION SEMANTIC
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Abstract Buffer overflow is the most dangerous attack method that can be exploited. Ac-

cording to the statistics of CERT (Computer Emergency Readiness Team), buffer

overflow accounts for 50% of the current software vulnerabilities, and this ratio

is going up. Considering a subset of C language and Mini C, this paper presents

an abstract machine model that can realize buffer overflow detection, which is

based on operation semantic. Thus, the research on buffer overflow detection can

be built on strict descriptions of operation semantic. Not only the correctness can

be assured, but also the system can be realized and extended easily.

Keywords: buffer overflow detection, abstract machine, program analysis.

1. BUFFER OVERFLOW DETECTION
TECHNOLOGY

Buffer overflow detection approaches can be divided into two categories:
static approaches and dynamic approaches. Both dynamic approaches, such as
StackGuard [1] and StackShield [2], and static approaches, such as ITS4 [3] and
Rats [4], have their own disadvantages and limitations. Dynamic approaches
increase the system operation spending, and could become a service rejected
attack easily. This paper presents an approach to eliminate vulnerabilities of
buffer overflow on the source code level, which investigates the problem from
a static point of view.

A buffer is a piece of continuous space allocated in the memory. In general,
buffer overflow could occur at anytime if the program writes more informa-
tion into the buffer than the space where it is allocated. In order to detect a
buffer overflow, a buffer is defined as (Alloc, NullPos). Alloc represents the

G. R. Liu et al. (eds.), Computational Methods, 1357–1361.
C© 2006 Springer. Printed in the Netherlands.

1357



1358 D. Zhao and L. Liu

size of the buffer. NullPos represents the relative address in the buffer, whose
initial value is zero. A dual set (IDE, Offset) is defined for each pointer. IDE
represents the buffer, which the pointer points to. Offset represents the offset
to the beginning address of the buffer, which the pointer points to. If there are
operations on buffers, pointers or strings, the possible changes of the integer
couple (Alloc, NullPos) of each buffer and the dual set (IDE, Offset) of each
pointer are tracked. If NullPos ≥ Alloc, there could be an occurrence of buffer
overflow.

Char arrays, pointers and string operation functions in C language are the
main elements, which result in buffer overflow. The Name of a char array can
be handled as a pointer, so operations on the buffer can be implemented by
pointer operations. Based on this idea, an abstract machine model is applied
to detect buffer overflow, which enables the research on buffer overflow detec-
tion to base on strict operation semantic descriptions. This approach not only
assures the correctness of the buffer overflow detection, but also simplifies the
implementation and extension of the system.

2. AN ABSTRACT MACHINE BASED
DETECTION APPROACH

2.1 The definition of an abstract machine

An abstract machine (MS) consists of seven parts. They are programs (Prog),
buffers (BBuffer), pointers (PPointer), a reservation (Reserv), a static environ-
ment (SEnv), a dynamic environment (DEnv) and alarms (Alarm). If p, μ, θ,
r, ε, σ and α represent these seven parts, MS = (p, μ, θ, r, ε, σ, α). A detailed
definition is as follows:

MS ::= Prog × BBuffer × PPointer × Reserv × SEnv × DEnv × Alarm
BBuffer ::= (IDE�Alloc × NullPos)∗

PPointer ::= (IDE�IDE × Offset)∗

Reserv ::= ((LAB|VLAB) × STAT)∗

SEnv ::= (IDE�var (TYPE) + func (PARAM ∗ × BLOCK × SEnv))∗

DEnv ::= (IDE�int (INT) + bool (BOOL))∗

Alarm ::= INT

Because redirection statements need to be considered, virtual labels are used to
describe statements without labels. These virtual labels (VLAB) assure every
statement has a label. If an initial state is MS0 = (PROG0,[],[],[],[],[],[]), the
final state is MS = ([], , , , , ,α).
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2.2 Main state transfer rules of an abstract machine

2.2.1 Variable declarations

An array declaration generates a buffer and its pointer. The size of the buffer
is the size of the array. The position of the end note is zero. The pointer points
to the beginning address of the generated buffer.

(strdec(IDE×N×DIM1×. . . ×DIMn) : VDECL : FUNCL,μ,θ,r,ε,σ,α)�
(VDECL : FUNCL,μ ⊕ (IDEk�DIMn× 0),

θ⊕(IDEk�IDEk×0),r,ε(IDEk�STRING), σ, α ) k = 1..DIM1×. . . ×DIMn−1

When a pointer is declared, the pointed buffer is marked as NULL and the
Offset is initialized as zero.

(pointdec(IDE):VDECL:FUNCL,μ,θ,r,ε,σ,α)
�(VDECL:FUNCL,μ,θ ⊕ (IDE♦NULL × 0),r,ε(IDE�POINT),σ,α)

If there are other variable declarations, only the relevant static environments
need to be changed.

(otherdec(IDE×TYPE):VDECL:FUNCL,μ,θ,r,ε,σ,α)
�(VDECL:FUNCL,μ,θ,r,ε(IDE�TYPE), σ,α)

2.2.2 Function declarations

(func(FIDE×PARAM*×BLOCK): FUNCL,μ,θ,r,ε,σ,α)�
(BLOCK:FUNCL,μ, θ,r,ε(FIDE�func(PARAM*×BLOCK×ε)),σ,α)

2.2.3 Statements

(skip:COMML,μ,θ,r,ε,σ,α)� (COMML,μ,θ,r,ε,σ,α)
(label(LAB):COMM:COMML,μ,θ,r,ε,σ,α)

�(COMM:COMML, μ,θ, (LAB×COMM): r, ε,σ,α)
(expr(EXPR):COMML,μ,θ,r,ε,σ,α)

�(EXPR:COMML, μ,θ, (VLAB×expr(EXPR)): r, ε,σ,α )
(if(EXPR×COMML1×COMML2):COMML,μ, θ,r,ε,σ,α)
�(expr(EXPR)�(COMML1:COMML,μ,θ,
(VLAB×if(EXPR×COMML1×COMML2)):r,ε,σ,α),

(COMML2:COMML,μ,θ,
(VLAB×if(EXPR×COMML1×COMML2)):r,ε,σ,α))

(while(EXPR×COMML1):COMML, μ,θ,r,ε,σ,α)
�(exp(EXPR)�(COMML1:while(EXPR×COMML1):



1360 D. Zhao and L. Liu

COMML,μ,θ,(VLAB×while(EXPR×COMML)): r,ε,σ, α),
(COMML, μ,θ, (VLAB×while(EXPR×COMML1)):r,ε,σ,α))

(goto(LAB):COMML,μ,θ,r,ε,σ,α)
�(lab(LAB,COMML), μ,θ,(VLAB×jmp(LAB)):r,ε,σ,α)

2.2.4 Expressions

(const(CONSTANT):COMML, μ,θ,r,ε,σ,α)� (COMML, μ,θ,r,ε,σ,α)
(var(IDE):COMML, μ,θ,r,ε,σ,α)� (COMML, μ,θ,r,ε,σ,α)
(cal(EXPR):COMML, μ,θ,r,ε,σ,α)� (EXPR:COMML, μ,θ,r,ε,σ,α)
((assspec(VAR×EXPR):COMML, μ,θ,r,ε,σ,α)� (COMML,μ’,θ’,r,ε,σ’,α’)

Where (μ’,θ’,σ’,α’)=UpdateAss(VAR×EXPR)

If there are other assign statements, the states need to be updated. Details are
omitted.

((assother(EXPR1×EXPR2):COMML,μ,θ,r,ε,σ,α)�
(COMML, μ,θ,r,ε, σ’,α)

(call(PIDE×EXPR*):COMML,μ,θ,r,ε(PIDE×PARAM*×BLOCK×ε),σ,α)
�((assother(PARAM×EXPR))*:BLOCK:ENDFUNC:

COMML,μ�μ1,θ�θ1,r,ε�ρ,σ�β,α)
(call(STRPIDE×EXPR):COMML, μ,θ,r,ε,σ,α)� (COMML, μ’,θ,r,ε,σ’,α’)

Where (μ’, σ’,α’)=UpdateFunc(STRPIDE×EXPR*)
(ENDFUNC:COMML,μ�μ1,θ�θ1,r,ε�ρ,σ�β,α)� (COMML,μ,θ,r,ε,σ,α)

3. A BUFFER OVERFLOW DETECTION EXAMPLE

The approach of Wagner et al. [7] cannot detect buffer overflow in the
following code, however, the approach described in the paper can detect the
buffer overflow properly.

The program code is as follows.

char s[20], *p, t[10]; strcpy(s,“Hello”); p = s + 5; strcpy(p,“world!”);
strcpy(t,s);

According to NullPos > Alloc of t, it can be detected that the statement strcpy
(t, s) results in buffer overflow of t.

4. CONCLUSIONS

This paper presents an abstract machine model for buffer overflow detection
from operation semantic point of view. The strict operation semantic description
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eliminates different meanings, simplifies the implementation and extension of
the system and assures the correctness. Following the approach presented in
this paper, we developed a prototype system, which is benefit from Flex and
Accent. This prototype system primarily proves the correctness and feasibility
of this approach.
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Abstract A novel quantum coding mechanism is proposed to solve the travelling salesman

problem (TSP) based on the quantum-inspired evolutionary algorithm. It adopts

Q-bit individual to encode the visited sequence of the cities and employs the

quantum rotation gate to adjust the population dynamically. Experimental results

of 14 cities show that the proposed approach is feasible and effective for small-

scale TSPs, which indicates a promising novel approach for solving TSPs.

Keywords: quantum-inspired evolutionary algorithm, Q-bit individual, quantum computing,

travelling salesman problem.

1. INTRODUCTION

Quantum computing was proposed by Benioff and Feynman in the early
1980s. Quantum computing can solve many difficult problems in the field of
classical computation based on the concepts and principles of quantum theory,
such as superposition of quantum states, entanglement and intervention. Due
to its unique computational performance, the quantum computing has attracted
extensive attention of researchers [1, 2]. Han [3] proposed the quantum-inspired
evolutionary algorithm (QEA), inspired by the concept of quantum computing.
Like other evolutionary algorithms, QEA is also characterized by the represen-
tation of the individual, the evaluation function and the population dynamics.
However, instead of binary, decimal or symbolic representation, QEA used a
Q-bit, defined as the smallest unit of information and a Q-bit individual as
a string of Q-bits. Besides, a Q-gate is introduced as a variation operator to
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promote the optimization of the individuals. Han and Yang [4, 5] have applied
the QEA to some optimization problems. The results show that the performance
of the QEA is better than the traditional evolutionary algorithm.

Travelling salesman problem (TSP) is a well-known NP-hard combinatorial
optimization problem, which is the generalization and simple form of many
complicated problems in different fields. It is easy to be described but hard to
deal with. In this chapter, a novel quantum coding mechanism is proposed to
solve it, in which the Q-bit is adopted to represent the population diversity, the
observation process is used to obtain a binary string and the Q-gate is applied
to update the population. The best solution can be given when the termination
condition is satisfied. The binary strings in the observation process represent
the visited sequence of the cities. The test results show that it is feasible to
apply the QEA to solve the TSP.

2. THE PROPOSED APPROACH

2.1 Brief introduction to QEA

In QEA, the smallest unit of information is called a Q-bit [3], which is

defined as

[
α

β

]
, where α and β are complex numbers that specify the proba-

bility amplitudes of the corresponding states. The moduli |α|2 and |β|2 are the
probabilities that the Q-bit exists in state ‘0’ and state ‘1’, respectively, which
satisfy that |α|2 + |β|2 = 1. A Q-bit individual as a string of m Q-bit is defined
as [

α
1

β
1

∣∣∣∣ α
2

β
2

∣∣∣∣ · · ·
· · ·

∣∣∣∣ αn

βn

]
, where |αi |2 + |βi |2 = 1 (i = 1, 2, . . . , n).

The state of a Q-bit can be changed by operating a quantum gate. There are
several quantum gates. It can be chosen according to the problem. In this chapter,
the quantum rotation gate is adopted.

2.2 Quantum coding of TSP

According to the characteristic of the TSP, the quantum population is defined
as P(t) = {

pt
1, pt

2, . . . , pt
k

}
where t is the number of the generation and k is the

scale of population. pt
i = qi1qi2 . . . qim where i = 1, 2, . . . , k, m is the number

of the cities. qi j is a Q-bit individual. We adopt the coding mechanism of

Han [3] to define qi j as

[
αi j1
βi j1

∣∣∣∣ αi j2
βi j2

∣∣∣∣ · · ·
· · ·

∣∣∣∣ αi jn
βi jn

]
where n is the number of
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Q-bit, i.e., the string length of the Q-bit individual, j = 1, 2, . . . , m,
∣∣αi js

∣∣2 +∣∣βi js

∣∣2 = 1 and s = 1, 2, . . . , n. m and n satisfy that 2n ≥ m.

2.3 Fitness function

The solution is obtained by observing the individuals. When observ-
ing the state of pt

i , qi j will be represented by a binary string Xi j =
(x j1x j2 . . . x jn), where the value x js(s = 1, 2, . . . , n) is 0 or 1 determined
by the probability

∣∣αi js

∣∣ or
∣∣βi js

∣∣ , respectively.Xi j denotes the visited se-
quence of the j th city. Then the individual pt

i is described as Xi1 Xi2 . . . Xim .

Sorted Xi1 Xi2 . . . Xim, we get the sequence X = Xic1
Xic2

. . . Xicm where ct =
1, 2, · · · m(t = 1, 2, . . . m). Then the solution is a binary string of length m*n
defined as X. The sequence of the visited cities is c1 → c2 → · · · → cn. The
cost is Td = ∑n−1

i=1 d(ci , ci+1) + d(cn, c1) where d(ci , c j ) denotes the distance
between city ci and city c j . The fitness function is taken as f = −Td .

2.4 Implementation

The procedure of the proposed approach based on QEA is summarized as
follows:

1. Generate an initial population randomly, and encode each individual with
the proposed quantum coding mechanism.

2. Calculate the fitness value of each individual.
3. Replace the local best value with the arising better one and find the global

best value from the local ones.
4. Update the population by QEA until the maximum iterative times are

reached.

3. EXPERIMENTAL RESULTS

The performance of the proposed algorithm for TSP is examined by the
benchmark problem with 14 nodes from the standard TSPLIB [6]. The experi-
ment is implemented on a PC (PentiumIV-2.6GHz, 512M RAM, Windows XP,
Matlab6.5). The related parameters of the approach are set as follows: k = 20,
m = 4, n = 14.

The obtained optimal solution is

1 → 10 → 9 → 11 → 8 → 13 → 7 → 12 → 6 → 5 → 4 → 3 → 14 → 2
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Figure 1. (a) Initial solution. (b) The best solution.

and its cost is 30.8785, which is equal to that obtained by Wang and Huang
[7]. The initial random solution with cost 49.7073 and the best one obtained
by using the proposed algorithm are shown in Figures 1a and b, respectively.

The performance of the proposed algorithm is finally analysed to show its
validity clearly. The scale of the solution space for the benchmark problem
is 14!/(14*2) = 3,113,510,400 while the scale of the searched space is the
product of the number of the individual, the Q-bit individual and the running
iterations, which is equal to 56*20*2000 = 224,000. It is easy to conclude that
the searched space is only 0.072% of the solution space, which shows the high
convergent efficiency of the proposed algorithm.

4. CONCLUSIONS

A novel quantum coding mechanism on the travelling salesman problem
is proposed based on the QEA in this chapter. The test results show that the
proposed approach can obtain the best solution by searching a small-size pro-
portion of the solution space. The behaviour of the performance shows worse
when the number of the cities increases. We ascribed this to the binary string
coding which we used to represent the visit orders of the cities. The study on
the limitation of the binary coding is in progress.
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Abstract A modified coevolution algorithm is proposed and applied to fuzzy modelling.

Two populations are evolved in the evolutionary processes with parallel running:

membership functions by genetic algorithm (GA) and rule sets by genetic pro-

gramming (GP). Based on rough set theory, the significance of the attributes of

the sample data sets is used to benefit the evolution. Moreover, a tree-pruning

operator is introduced in GP to limit the code bloat.

Keywords: fuzzy modelling, coevolution, significance of attribute, tree pruning.

1. INTRODUCTION

Coevolution refers to the simultaneous evolution of two or more species with
coupled fitness. It favours the evolutionary problems with some of the following
features: (1) the solution is complex, (2) the problem is clearly decomposable,
(3) the genomes of the components are different types of values, (4) strong
interdependencies among the components of the solution and (5) component-
ordering drastically affects the fitness. Potter [1] developed a model, where a
number of populations explore different decompositions of the problem. Each
species represents a subcomponent of a potential solution. The fitness of each
individual depends on how well it cooperates with the individuals of other
species to solve the problem.

Mendes et al. [2] discovered fuzzy classification rules with genetic pro-
gramming and coevolution, where the individual encoding schema incorporates
several syntactical restrictions . Pena-Reyes and Sipper [3] applied cooperative
coevolutionary approach to fuzzy modelling. These algorithms deal with the
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simultaneous search for two species: the operational and the connective pa-
rameters of a fuzzy inference system. The operational parameters evolved by
genetic algorithm (GA) define the membership functions, and the connective
parameters evolved by genetic programming (GP) or GA define the rule set.
These two species are separate but coupled. Coevolutionary approach performs
well in fuzzy modelling.

Genetic fuzzy system, which integrates the fuzzy logic and evolutionary
algorithm, has been widely applied to the problems in classification and control
[4]. The main problem of fuzzy system is the curse of dimensionality. As a
powerful methodology of soft computing, rough set theory has been a useful tool
of attribute reduction [5]. In this paper, we introduce the attribute significance
concept based on the rough set theory to the evolving process, and also introduce
a tree-pruning operator into GP to limit the code bloat.

2. COEVOLUTIONARY FUZZY MODELLING

As mentioned above, two cooperating species are separately created in co-
evolutionary fuzzy modelling. Like the work of Mendes [2], the individuals of
the first GA species define the membership functions. Each variable is asso-
ciated with its own trapezoidal membership functions. Every individual tree
in GP species corresponds to a set of rule antecedents encoded in disjunctive
normal form (DNF), and the rule consequents are implied. The non-terminal
nodes express the logical functions of {OR, AND, NOT}, and the terminal
nodes express the conditions of the form: ‘Vali is Labij’.

The pseudo-code of the algorithm is given below.

begin Coevolution for Fuzzy Modelling
g := 0
S := 1, initialize GA population Ps(0)
S := 2, initialize GP population Ps(0) with P1(0)
Evaluate P1(0), P2(0)
While not done do

g := g + 1;
For each species s(s = 1,2)

Es(g) = elite-select Ps(g − 1)
Ps’(g) = Select[Ps(g)]
Ps”(g) = ApplyGeneticOperators[Ps’(g)]
Evaluate population Ps”(g), and prune tree if s = 2
Ps(g) = Introduce[Es(g),Ps”(g)]

End for
End while

End
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In the algorithm, while initializing, each GP individual is associated with a GA
individual. We use the GA individual for the fuzzy discretization of attribute
(variable in fuzzy system) values. Then we evaluate the significance of the
variables by a rough set theory algorithm [5]. In our algorithm, some attributes
are removed from the variable set if their significance smaller than a threshold
Ts . Besides, the variables with higher significance are more possible to appear
in the GP individuals’ terminal nodes.

3. GENETIC OPERATORS AND FITNESS
FUNCTION

We use the tournament selection and elite strategy. Crossover and muta-
tion of GA species are conventional. In GP species, crossover and mutation
must guarantee that the generated offspring is always syntactically-valid. In the
evolving process, we adopt a new mutation operated on GP species based on
the significance of the variables. While mutating a GP individual, a GA indi-
vidual is randomly chosen from the GA cooperators, and is used to evaluate
the significance of the attributes. Then in the GP individual, the terminal nodes
having variables with low significances are replaced by a new generated tree
only having the variables with high significances.

The fitness of the individual depends on Fi , the fitness of the fuzzy systems
combined this individual with the i th cooperators of another species. Some of
the cooperators are the fittest individuals of the population, and the others are
selected randomly. The fitness Fi bases on two criteria: (1) sensitivity Se, or
true-positive ratio; (2) specificity Sp [6]. The fitness of fuzzy system is given by

Fi = Se ∗ Sp (1)

The fitness of the individual is F = ∑n
i=1 Fi/n, where n is the number of

cooperators.

4. TREE PRUNING

Code bloat in GP greatly affects the performance of the system [7]. A tree-
pruning operator is designed to counteract it. This operator also can speed up
the evolution and improve the intelligibility of the GP result. In the pruning
operator, if all of the extents to which the cases match one condition part in the
individual are smaller than a threshold Tv, the node representing this condition
part is marked with 0, otherwise 1. The operator is applied to the individuals
whose fitness are higher than T f with the probabilityPh . The process is shown
below:
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Figure 1. Tree pruning.

1. Before evaluating the GP individual, mark each function node with 0.
2. In the evaluating process, if the extent to which a case matches one node is

higher than the threshold Tv, mark the node with 1.
3. After evaluating, search for the node P satisfying the following conditions:

(1) Marked with 0
(2) The number of descendants is higher than a thresholdCv

4. Prune the tree as the method shown in Figure 1. If P is a single-branch node
(refer to the left figure), the subtree rooted at P is replaced by a randomly
generated new terminal node N; if not (refer to the right figure), then P’s
father node F, P and the subtree are replaced by P’s sibling node.

5. EXPERIMENTS

We apply the improved algorithm to the sleep apneas problem. It has 150
cases, each of which is described by 15 variables: age, weight, height, blood
pressure, rhythm of the heart, etc. The data set was divided into a training
set and testing set. Our system gets a best fuzzy rule set with five variables.
Considering that parameters of accuracy (Acc), positive predictive value (PPV )
and average rule size (Ars) could be used to measure the performance of the
algorithms [3], we also use them to examine the validation of the system.
The results listed in Table 1 show that the improved method increases the
accuracy and the PPV of the fuzzy system, and also decreases the size of the rule
set.

Table 1. Performance comparison.

Method Acc PPV Ars

Cooperation 76.85% 61.15% 14

Improved cooperation 79.54% 65.24% 5
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6. CONCLUSIONS

In this paper we describe an improved coevolution algorithm for fuzzy mod-
elling. The system uses two evolutionary algorithms: a genetic algorithm (GA)
evolving the membership function population and a genetic programming (GP)
evolving the fuzzy rule set generation. The significance of attributes and the
tree pruning to the algorithm are introduced. The effectiveness of the proposed
algorithm is examined using a medical data set.
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A COMPUTATIONAL METHOD FOR
SOLVING CAUCHY PROBLEMS OF
ELLIPTIC OPERATORS

Y.C. Hon, T. Wei and L. Ling
Department of Mathematics, City University of Hong Kong, Hong Kong SAR, China

Abstract In this talk we combine a meshless method of fundamental solution (MFS) with

different regularization methods to solve Cauchy problems of elliptic differen-

tial operators. The main idea of MFS is to approximate the unknown solution

by a linear combination of fundamental solutions whose singularities are located

outside the computational domain. Three regularization methods based on the sin-

gular value decomposition with four different choice strategies for regularization

parameters are proposed.

Keywords: method of fundamental solution, discrete ill-posed problem, inverse problem.

1. INTRODUCTION

The method of fundamental solutions (MFS) is a technique for finding
the numerical solution of certain elliptic boundary value problem. MFS be-
long to the general class of boundary collocation methods. The unknown so-
lution is represented as a linear combination of fundamental solutions with
their source points located outside the computational domain. The bound-
ary conditions are satisfied by collocation or by least squares fitting. Un-
like finite element method (FEM) and boundary element method (BEM),
the MFS does not involve integral evaluation and hence provides an effi-
cient computational alternative for problems in higher dimension with irregular
domains.

MFS has recently been used extensively for solving linear partial differ-
ential equations of various kinds; for examples, Laplace equation [1, 2], har-
monic equation [3], biharmonic equations [4], elastostatics problems [5] and
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wave scattering problems [6, 7]. Moreover, MFS was applied to the solution of
non-homogeneous linear and non-linear Poisson equations [8–11]. Details can
be found in the review papers of Fairweather and Karageorghis [12] and Golberg
and Chen [13]. All these studies focus on the well-posed forward problems in
which the Dirichlet or Neumann data on the whole boundary are known. On
the other hand, boundary conditions are usually complicated and incomplete
for inverse problems. The truly meshfree MFS is an excellent candidate for
solving these problems.

The Cauchy problem is a typical inverse problem which is severely ill-posed
in nature. That is, the solution does not depend continuously on the boundary
data. A small error in the given data may result in an enormous error in the
numerical solution. The Cauchy problem arises from many branches of science
and engineering such as non-destructive testing [14], steady-state inverse heat
conduction problem [15], electro-cardiology [16] and steady-state inverse heat
conduction [15]. For the Cauchy problem for the Laplace equation, a number
of numerical methods have been researched over the past years [17–23]. When
boundary collocation method is employed for MFS, the resultant linear systems
will be severely ill-conditioned and standard numerical techniques for solving
linear algebraic equations do not work well. Special techniques are required to
solve such problems [24].

In this paper, numerical methods based on fundamental solution and regu-
larization techniques are proposed to solve the ill-posed Cauchy problem. The
outline is as follows: in ‘Section 2’, the Cauchy problem is introduced. The
key ideas of MFS are reviewed in ‘Section 3’ and we show how MFS can
be used to solve the Cauchy problem with noise-free data. In ‘Section 4’,
the coupling of MFS with regularization techniques for noisy data are
considered.

2. CAUCHY PROBLEMS FOR
ELLIPTIC OPERATORS

Let � be the Laplace operator in Rd . Three elliptic differential operators
are investigated:

Laplace: Lw = �w,

Helmholtz: Lw = �w + k2w, (1)

Modified Helmholtz: Lw = �w − k2w,

for some wave number k > 0. Let � be a bounded and simply connected domain
in Rd for d = 2, 3 with Lipschitz boundary ∂� and let � ⊂ ∂� be an open part
of the boundary. Let L be a second order elliptic operator in Rd .
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Figure 1. Cauchy Problem for two domains � . Dots (•) are collocation points for Dirichlet data,

stars (∗) represent collocation points for Neumann data and circles (◦) are source points.

The Cauchy problem aims to find a distribution function w ∈ C2(�) ∩
C1(�̄) which satisfies,

Lw = 0, in �, (2)

w |� = ϕ, and
∂w

∂n
|� = ψ, (3)

from discrete (and noisy) observed Dirichlet and Neumann boundary data ϕ

and ψ on part of the boundary �, see Figure 1. In (3), ∂w
∂n denotes the outward

normal derivative of w .
It is well known that the Cauchy problem presented above is extremely

ill-posed. That is, any small noise to the given data may induce an enormous
error to the numerical solution. However, a solution that continuously depends
on the given data can be obtained under additional a priori conditions. This is
commonly referred as conditional stability for Laplace’s equation [25, 26].

3. MFS FOR CAUCHY PROBLEMS

A fundamental solution to the differential operator L is a functional G such
that

LG(P, Q) = δ(P − Q),

where δ is a Dirac-delta function. From [27], the fundamental solutions to
the elliptic operators in (1) are given in Table 1 where P and Q are points
in Rd and |P − Q| denotes their Euclidean distance Rd . In Table 1, H 2

0 and
H 2

1 are Hankel functions of the second kind with order 0 and 1, respectively;
K0 and K1 are modified Bessel functions of the second kind with order 0
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Table 1. Fundamental solutions for elliptic operators in R2 and R3.

L R2 R3

Laplace:
1

2π
log |P − Q| − 1

4π |P − Q|
Helmholtz:

i

4
H 2

0 (k|P − Q| ) − exp(−i · k|P − Q|)
4π |P − Q|

Modified Helmholtz: − 1

2π
K0(k|P − Q| ) − exp(−k|P − Q|)

4π |P − Q|

and 1, respectively. When the singular source point Q /∈ �̄ is located outside
the domain, the fundamental solution satisfies the elliptic equation in �.

The idea of MFS [28] is to express the unknown solution w in (2) as a linear
combination of fundamental solutions,

w ≈ W :=
M∑

i=1

λ j G(·, Q j ), in � ∪ ∂ �, (4)

where λ := {λ j }M
j=1 are expansion coefficients to be determined and {Q j }M

j=1 is

a set of M source points in the exterior of �̄. By construction, W satisfy (2) in the
interior, �, for any λi ∈ C. The values of λ in (4) can then be determined merely
from the boundary conditions (3) by using the methods of direct collocation,
linear least-squares fit or integral fit of residual. Since the source points Q can
be placed anywhere outside of the domain �, the MFS is truly meshfree. A
comparison between MFS and the general class of meshfree methods can be
found in [29].

When the boundary conditions are given over the whole boundary, the prob-
lem is well-posed. In this case, Cheng [30] gave a convergence result of MFS
on a circular domain in R2. Unlike forward problem, the boundary data in
the Cauchy problem are known only on part of the boundary. Suppose that
there are ND and NN exact Dirichlet and Neumann data available on �. Let
N = ND + NN . We choose a set of N collocation points {Pk}N

k=1 on � where
M ≤ N . The unknown expansion coefficient λ can then be determined from the
following linear system by using direct collocation (M = N ) or least-squares
fit (M < N ) :

W (Pk) =
M∑

i=1

λ j G(Pk, Q j ), for all k = 1, . . . , N . (5)

In matrix form, (5) can be expressed as

Aλ = b, (6)
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where

A =
⎛
⎝ G(Pk1

, Q j )

∂G

∂n
(Pk2

, Q j )

⎞
⎠ and b =

(
ϕ(Pk1

)

ψ(Pk2
)

)
, (7)

for k1 = 1, . . . , ND, k2 = ND + 1, . . . , N and j = 1, . . . , M.

The main analysis tool here is the singular value decomposition (SVD), see
[31] for instance. The reduced SVD of an overdetermined N -by-M matrix A
is of the form

A =
M∑

i=1

uiσiv
∗
i = U�V ∗, (8)

where U = [u1, u2, . . . , uM ]is the N -by-M left singular matrix, V =
[v1, v2, . . . , vM ] is the M-by-M right singular matrix and � = diag (δ1 . . . , δM )
is a M-by-M diagonal matrix with non-negative and non-increasing diagonal
elements such that

σ1 ≥ . . . ≥ σM ≥ 0.

The numbers δi are the singular values of A whereas the vectors ui and vi

are the left and right singular vectors of A respectively. The vector v∗
i is the

Hermitian or complex conjugate transpose of v. From (8), the solution to (6) is
given by

λ =
M∑

i=1

(
u∗

i b

σi

)
vi . (9)

The above procedure also applies to the case when M = N , i.e., (6) is
a square matrix system. Once the values of λ are determined, the numerical
solution to the Cauchy problem (2)–(3) is given by (4).

4. METHODOLOGY FOR NOISY DATA

In practical application, the data are observed as noisy values ϕ̃ and ψ̃ that
satisfy

|ϕ̃(P) − ϕ(P)| ≤ ρ and |ψ̃(P) − ψ(P)| ≤ ρ, for all P ∈ �, (10)

instead of the exact values given in (3). Here, ρ denotes the noise level of the
measurement. Throughout the paper, we reserve the notation ‘∼’ to indicate
the presence of noise. Since the Cauchy problem is ill-posed, most standard
numerical methods fail to produce meaningful solution in solving the directly
Equation (6) in the presence of noise. It is necessary to employ some techniques
to stabilize the numerical solution.
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Let b̃ be the observed data and b be the exact data in (7). From (10), we have
the noise vector ε := b̃ − b and ‖ε ‖≤ ρ . The resulting error in the numerical
solution due to the presence of noise is

λ̃ − λ =
M∑

i=1

(
u∗

i ε

σi

)
vi . (11)

From (11), we can see that the error corresponding to the small eigenvalues
will be magnified—a solution to this problem is using the regularization method
having the following general form:

λ̃α =
M∑

i=1

fi

(
u∗

i ε

σi

)
vi , (12)

where fi = fi (α) is referred as the filter factors that takes value 0 and 1 when
α → 0 and α → ∞, respectively. Regularization methods always include a
so-called regularization parameter α ∈ (0, ∞) which controls the degree of
approximation. Let λ̃α be the regularized solution to the noisy Cauchy problem
with regularization parameter α. The idea is to decompose (11) into

λ̃α − λ =
M∑

i=1

( fi − 1)
u∗

i b

σi
vi︸ ︷︷ ︸

(a)

+
M∑

i=1

fi
u∗

i ε

σi
vi .︸ ︷︷ ︸

(b)

(13)

The first term (13a) is the error introduced by the regularization method
whereas the second error term (13b) is due to the noise in the given bound-
ary data. The filter factors of the regularization methods we investigated are
listed in Table 2. When α → ∞ or fi = 1 for all i , (13) becomes (11) and no
regularization is needed. Conversely, a full regularization will minimize (13b)
but maximize (13a) in the same time. The determination of a suitable value of
the regularization parameter α is crucial and is still under intensive research.
References for these methods can be found in [24] for TR, [32] for DSVD and
[33] for TSVD.

Table 2. Filter factors of the regularization methods.

Regularization method Filter factors

Tikhonov Regularization (TR) fi = σ 2
i

(σ 2
i + α2)

Damped SVD (DSVD) fi = σi

(σi + α)

Truncated SVD (TSVD) fi =
{

1 if σi ≥ α

0 otherwise
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The TSVD methods are a discrete regularization method. The condi-
tion σi ≥ α in Table 2 can be replaced by i ≥ m for some positive integer
m = m(α), 1 ≤ m ≤ M. The integer m is often referred as the discrete regu-
larization parameter. The continuous dependence on (discrete) regularization
parameter plays an important role in many methods for choosing the ‘optimal’
parameter. In this case, discrete computed values are interpolated by spline
curve and the optimal regularization parameter is the point closest to the con-
tinuous solution.

Four experimental methods for choosing the regularization parameters are:

Discrepancy principle (DP)

Based on some a priori estimate on the error level ρ in (10), the DP method
[34] gives the optimal regularization parameter such that

∥∥A λ̃α − b̃
∥∥ = ρ.

An overestimate or underestimate of ρ will result in an overregularized
or underregularized solution. The following three methods do not require any
knowledge of ρ but rely on information at the right-hand vector b̃.

L-curve criterion (LC)

This method was firstly introduced by Lawson and Hanson [35]. Hansen and
O’Leary [20] investigated the properties of regularized systems under different
values of the regularization parameter α and defined the L-curve by

(
log

(∥∥ λ̃α

∥∥2
)

, log
(∥∥A λ̃α − b̃

∥∥2
))

for α > 0. (14)

An optimal regularization parameter is then corresponding to the ‘corner’
of the L-curve. For computational purpose, the point with maximum curvature
will be chosen.

Generalized cross-validation (GCV)

The GCV method [36] determines the optimal regularization parameter by
minimizing the following continuous GCV function

G(α) =
∥∥A λ̃α − b̃

∥∥2

(trace (IN − AA⊕
α ))2

for α > 0, (15)

where A⊕
α is the generalized pseudoinverse for the employed regularization

methods, i.e., the M-by-N matrix that produces the regularized solution λα =
A⊕

α b̃.
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Quasi-optimality criterion (QO)

Similar to GCV, the QO method [34] minimizes the following function to
obtain the optimal regularization parameter:

Q(α) = α

∥∥∥∥ d

dα
λ̃α

∥∥∥∥ =
⎛
⎝ M∑

i=1

(
fi (1 − fi )

u∗
i b̃

σi

)2
⎞
⎠

1/2

for α > 0. (16)
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NUMERICAL DETERMINATION OF THE
RESONANCE FREQUENCIES AND
EIGENMODES USING THE MFS

Carlos J.S. Alves and Pedro R.S. Antunes
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Abstract In this work we present a numerical algorithm for the determination of the eigen-

values and eigenfunctions associated to the Dirichlet problem for the Laplacian, in

a bounded or in an exterior domain. The determination of higher eigenfrequencies

is a well-known numerical problem, that has been addressed with other numeri-

cal methods. Here we propose to use the method of fundamental solutions. Since

the MFS produces highly ill conditioned matrices, a particular technique was de-

rived to overcome the difficulty of determining accurately those eigenfrequencies.

Extensive numerical simulations will be presented.

Keywords: eigenfrequencies, resonance, acoustic waves, method of fundamental solutions.

1. INTRODUCTION

The determination of the eigenvalues and eigenfunctions associated to the
Laplace operator in a bounded domain � is a well-known problem with appli-
cations in acoustics. For simple shapes, such as rectangles or circles in 2D, this
leads to straightforward computations, without the need of a numerical algo-
rithm. However, when the shape is non-trivial, that computation requires the
use of a numerical method for PDEs. A standard finite differences method can
produce good results when dealing with a particular type of shapes defined on
rectangular grids, while for other type of shapes the finite element method or the
boundary element method are more appropriated [1]. These classical methods
require extra computational effort; in one case, the construction of the mesh and
the associated rigid matrix, and in the other, the integration of weakly singular
kernels. Here we propose to use the method of fundamental solutions (MFS).
The MFS has been mainly applied to boundary problems in PDEs, starting in
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the 1960s [2]. The application of the MFS to the calculation of the eigenvalues
has been introduced by Karageorghis [3], and applied for simple shapes. In that
work it is presented a comparison with the boundary element method used by
Mey [1], and the results obtained for simple shapes (circles, squares), show a
better performance for the MFS. The application of other meshless methods to
the determination of eigenfunctions and eigenmodes has also been subject to
recent research, mainly using radial basis functions [4].

In this work we consider the application of the MFS to general shapes. In
that case the choice of the source points in the MFS becames more important
to retrieve higher eigenfrequencies. We are able to obtain good results with a
particular algorithm associating the source points to the shape. Having deter-
mined an approximation of the eigenvalue, we apply an algorithm based on the
MFS to obtain the associated eigenmodes.

2. DETERMINATION OF EIGENFREQUENCIES

Let � ⊂ R
2 be a bounded connected domain with regular boundary ∂�.

For simplicity we will consider the 2D-Dirichlet eigenvalue problem for the
Laplace operator. This is equivalent to obtain the resonance frequencies κ that
verify the Helmholtz equation{

�u + κ2u = 0 in �,

u = 0 on ∂�,
(1)

for a non-null function u. As an application, this corresponds to recover the
resonance frequencies κ >0 associated with a particular shape of a drum �. A
fundamental solution �κ of the Helmholtz equation verifies (� + κ 2)� = −δ,
where δ is the Dirac delta distribution. In the 2D case, we take �κ (x) =
i
4

H (1)
0 (κ|x |) where H (1)

0 is the first Hänkel function. A density result in [5]
allows to justify the approximation of a L2(∂�) function using a sequence of
functions

um(x) =
m∑

j=1

αm, j�κ (x − ym, j ) (2)

that converges to u|	 in L2(∂�). Definining m collocation points xi ∈ ∂� and
m source points ym, j ∈ 	̂, we obtain the system

m∑
j=1

αm, j�κ (xi − ym, j ) = 0 (xi ∈ ∂�). (3)
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Therefore a straighforward procedure is to find the values κ for which the
m × m matrix

A(κ) = [�κ (xi − y j )] [α j ]m×m (4)

has a null determinant. However, an arbitrary choice of source points may lead
to worst results than the expected with the MFS applied to simple shapes. We
will choose the points x1, . . . . , xm ∈ ∂� and y1, . . . . , ym ∈ 	̂ in a particular
way. Given the m points xi on ∂�, we take m point sources

yi = xi + ñi

where ñi is approximately normal to the boundary ∂� on xi . To obtain the vector
ñi we just consider τ− = xi − xi − 1, τ+ = xi − xi + 1 and calculate n−, n+

which are normal to τ− and τ+ (respectively) and pointing outwards �. Then
we take ñi = 1

2
(n− + n+). By some experimental criteria, we will usually take

|ñi | = β. Source points taken too far from the boundary only presented better
results in some particular cases, using simple shapes. The components of the
matrix A(κ) are complex numbers, so the determinant is also a complex number.
We consider the real function g(κ) = |Det[A(κ)]|. It is clear that the function
g will be very small in any case, since the MFS is highly ill conditioned and the
determinant is quite small. To avoid machine precision problems the code was
built in Mathematica. If κ is an eigenfrequency, κ is a point of minimum where
g(κ) = 0 and therefore the derivative changes sign. We will make use of the
rough approximation g′(w) ≈ g(w)−g(w−ε)

ε
for a small ε > 0. To approximate

the eigen-frequencies, where a clear change on the sign of the derivative g′

is attained, we used the simple bissection method, which revealed to be quite
accurate in the search of high eigenfrequencies.

3. DETERMINATION OF EIGENMODES

To obtain an eigenfunction associated with a certain resonance frequency
ω we use a collocation method on n + 1 points, with x1, . . . , xn on ∂� and an
extra point xn+1 ∈ �. Then, the approximation of the eigenfunction is given by

ũ (x) =
n+1∑
k=1

αk�ω(x − yk). (5)

To exclude the solution ũ(x) ≡ 0, the coefficients αk are determinated by the
resolution of the system ũ(xi ) = δi,n+1, i = 1, . . . , n + 1 where δi, j is the delta
of Kronecker.
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Figure 1. Plots of the 22th eigenmode and nodal domains associated to �.

4. SIMULATION WITH DIRICHLET
BOUNDARY CONDITION

We consider a domain � with a non-trivial boundary given by the param-
etrization

t �−→
(

cos (t) − cos (t) sin (2t)

2
, sin (t) + cos (4t)

6

)
.

In Figure 1 we present the plot of the eigenfunction and nodal domains
associated to the 22th eigenvalue.

5. CONCLUSIONS

In this brief account we presented the MFS method with an algorithm for the
choice of source points. The single example for a particular situation of mixed
Dirichlet/Neumann illustrates the good results already obtained for other type
of boundary conditions and non simply connected domains.
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Abstract In standard equispaced finite difference (FD) formulas, symmetries can make the

order of accuracy relatively high compared to the number of nodes in the FD

stencil. With scattered nodes, such symmetries are no longer available. Thus, the

number of nodes in the stencils can be relatively large compared to the resulting

accuracy. The generalization of compact FD (CFD) formulas that we propose for

scattered nodes and radial basis functions (RBFs) achieves the goal of reducing

the number of stencil nodes without a similar reduction in accuracy. We analyze

the accuracy of these new compact RBF–FD formulas by applying them to some

model problems, and study the effects of the shape parameter that arises in, for

example, the multi-quadric radial function.

Keywords: radial basis functions, partial differential equations, compact finite difference

method, mesh-free.

1. INTRODUCTION

An obvious approach for circumventing the geometric inflexibility of the
standard finite difference method (FDM) for solving partial differential equa-
tions (PDEs) is to allow the nodes of the FD stencils to be placed freely, so that
a good discretization of the physical domain of the problem can be obtained.
However, this natural mesh-free idea raises questions of how the weights of
the resulting scattered node FD formulas should be computed. It has recently
(and what appears to be independently) been proposed by Shu et al. [1], Tol-
stykh et al. [2], Cecil et al. [3] and Wright [4] that RBF interpolants be used
for computing these weights. We refer to this idea as the RBF–FD method.
The following are some reasons for using RBFs: (1) for the appropriate choice
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of radial function φ(r ), the RBF interpolation method is well-posed in all di-
mensions (unlike polynomial interpolation); (2) RBF interpolants can be very
accurate at approximating derivatives; and (3) certain types of radial functions
φ(r ) feature a ‘shape’ parameter ε that allows them to vary from being nearly
flat (ε → 0) to sharply peaked (ε → ∞). The recent work of, for example,
Fornberg et al. [5] shows that all classical FD formulas can be recovered by
‘flat’ RBF interpolants (when the nodes are arranged accordingly).

In standard equispaced finite difference (FD) formulas, symmetries can
make the order of accuracy relatively high compared to the number of nodes in
the FD stencil. With scattered nodes, such symmetries are no longer available.
Thus, the number of nodes in the stencils can be relatively large compared to the
resulting accuracy. To circumvent this problem, we propose a generalization of
compact finite difference (CFD) formulas first introduced by Collatz [6]. The
basic idea behind this method is to keep the stencil size fixed and to also include
in the FD formula a linear combination of derivatives of u at surrounding nodes.
In the case of 1-D and equispaced nodes, the weights for these CFD formulas
are typically derived using Padé approximants. For scattered nodes in one and
higher dimensions, and for RBFs, this Padé approach is no longer available.
Instead, we propose a method based on Hermite RBF interpolation.

Without loss of generality, we limit the discussion to RBF–FD and RBF–
CFD formulas for the d-dimensional Laplacian �2.

2. HERMITE RBF INTERPOLATION

Since the RBF–CFD formulas are ultimately obtained from Hermite RBF
interpolants, we review in this section a method for solving the Hermite inter-
polation problem. We note that the standard RBF–FD formulas are ultimately
obtained from standard RBF interpolants, which turn out to be a special case
of Hermite RBF interpolants.

Let σ be a vector containing some combination of m ≤ n distinct numbers
from the set {1, . . . , n}. Given a set of distinct data points xi ∈ R

d, i = 1, . . . , n,

and corresponding (scalar) data values u(xi ), i = 1, . . . , n, and �2u(xσi
), i =

1, . . . , m, the Hermite RBF interpolation method we consider is to find an
interpolant of the form

s(x) =
n∑

i=1

λiφ(||x − xi ||) +
m∑

j=1

α j �2 φ(||x − xσ j
||) + β. (1)

Here φ(r) is some radial function and || · || is the standard Euclidean norm.
This method is similar to the Hermite–Birkhoff method proposed by Wu [7].
Imposing the Hermite interpolation constraints and the additional constraint
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�n
i=1λi = 0 leads to the following symmetric linear system of equations (in

block form)

⎡
⎣ 	 ∇2	 1

∇2	 ∇4	 0

1 0 0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎢⎣

λ

α

β

⎤
⎥⎦ =

⎡
⎢⎣

u

∇2u

0

⎤
⎥⎦ . (2)

For the appropriate choice of φ, A is guaranteed to be non-singular [8]. Note
that for m = 0, the Hermite problem reduces to the standard RBF interpolation
problem.

In this study, we focus on the multi-quadric (MQ) radial function, φ(r) =√
1 + (εr )2, since it can produce very accurate interpolants, and it features a

free shape parameter ε that can be adjusted to significantly improve the resulting
accuracy of the interpolants. We note also that the linear system (2) is guaranteed
to be non-singular for the MQ radial function (and ε non-zero).

3. RBF–FD FORMULATION

In this section we describe how to generate the RBF–FD and RBF–CFD
formulas. Without loss of generality, we consider a stencil consisting of n
(scattered) nodes x1, . . . , xn and are interested in approximating ∇2u(x1). Here
we let ∇2u(x1) := ∇2u(x)|.

For RBF–FD formulas the goal is to find weights ci such that, ∇2u(x1) ≈
�n

i=1ci u(xi ). This is accomplished by solving the linear system

A[c|μ]T =
[

∇2φ(||x − x1||) · · · ∇2φ(||x − xn||)︸ ︷︷ ︸
B(x)

| 0
]T

, (3)

where A is the matrix in (2) (with m = 0) and μ is a dummy value related to β

in (1).
For the RBF–CFD formulas the goal now is to increase the accuracy of

the approximation without increasing the stencil size. We accomplish this by
using nodes where u and ∇2u are given exactly. Let σ be a vector containing
some combination of 0 < m < n distinct numbers from the set {2, . . . , n}, then
we seek to find weights ci and c̃σ j such that ∇2u(x1) − �m

j=1c̃σ j ∇2u(xσ j
) ≈

�n
i=1ci u(xi ). This is accomplished by solving the linear system

A[c|c̃|μ]T = [
B(x) | ∇4φ(||x − xσ1

||) · · · ∇4φ(||x − xσm
||) | 0

]T
, (4)

where A is the matrix in (2) and B(x) is given in (3).
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For small (in magnitude) values of the shape parameter ε, the linear systems
(3) and (4) will be extremely ill-conditioned. To bypass this problem, we use
the Contour-Padé algorithm [9], which allows for the stable computation of the
RBF–FD and RBF–CFD weights for all ε ≥ 0.

4. APPLICATION: POISSON’S EQUATION

To illustrate the improved accuracy of the RBF–CFD formulas, we apply
them to the model problem

∇2u = f in 
 = {
(x, y) | x2 + y2 < 1

}
and u = g on ∂
. (5)

Note that ∇2u is given analytically as f in the interior. For the experiment that
follows, f and g are computed from the known solution

u(x) = u(x, y) = 25

25 + (x − 0.2)2 + 2y2
. (6)

The domain is discretized using the N = 200 points shown in Figure 1 (a). To
measure the error (which depends on ε), we use E(ε) = maxi=1,...,N |u(xi , ε) −
u(xi )| (i.e., the max norm), where u is the approximate solution. We call the ε

where E(ε) reaches a minimum the ‘optimal’ ε.
Figure 1 (b) contains the results using the n = 9 (m = 0) node RBF–FD

formulas, and the RBF–CFD formulas using n = 9 m = 5, and n = 10 m = 9.
Looking at the error for the standard n = 9 solution and the compact n = 9
m = 5 solution, we see that the accuracy is vastly improved. As we should ex-
pect, the accuracy can be further improved by increasing n and m, as illustrated

Figure 1. (a) 200 point unstructured discretization of the unit disk. (b) The error as a function

of ε for various numerical solutions of (5).
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by the n = 10 m = 9 solution. For this example, however, any improvements
appear to be lost for ε approximately > 0.5. The figure also illustrates that the
optimal value of ε is small (in magnitude), and non-zero, as is typically the case
for the RBF interpolation problem. Also included in the figure (see the dotted
lines) are the results for the standard FD solutions based on a uniform polar
mesh with approximately the same number of boundary and interior points as
the unstructured mesh. FD2 marks the results for the standard 5-node second-
order FD scheme, while CFD4 marks the results for the standard compact
9-node fourth-order FD scheme. Comparing the non-compact FD2 and n = 9
RBF–FD solution, we see that approximately for ε < 0.48, the RBF solution is
clearly better. Comparing the CFD4 solution and the n = 9 m = 5 RBF–CFD
solution, which both happen to use the same number of nodes and derivative
values in their respective stencils, we see that the RBF solution is better for all
values of ε approximately <1.05.

In all cases, the RBF–FD and RBF–CFD solutions to this problem were
computed using successive over-relaxation (SOR). Once the optimal relaxation
parameter was found, this iterative method turned out to be quite computation-
ally effective.
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Abstract The Smoothed Particle Hydrodynamics (SPH) method is used to simulate the

dynamics of the underwater explosion (UNDEX) surrounded by an iron wall.

One-dimensional vertical elastic oscillation of an iron stick and oscillation of

an explosive gas caused by UNDEX surrounded by rigid walls are examined to

verify the solid model and the UNDEX model focusing on the interaction between

the explosive gas and the surrounding water, and the results agree well with the

theoretical value and the previous study. In the simulation result, the shock wave

impacts the iron wall, and the wave propagates in the iron wall and reflects at the

interface. The SPH method qualitatively reproduces the dynamics of UNDEX

surrounded by the iron wall. A potential of the SPH method for a prediction of

the explosion damage is demonstrated in the present study.

Keywords: smoothed particle hydrodynamics, particle method, underwater explosion, under-

water shock wave, structural analysis, coupled problem.

1. INTRODUCTION

The SPH method has the following nice features; meshfree, Lagrangian
and particle method. These features allow us to treat heterogeneous states;
detonation gas, water and solid. The SPH method has been used for a simulation
of UNDEX [1] which mainly focused on the interaction between the explosive
gas and the surrounding water, or the high velocity impact (HVI) [2] UNDEX
is now used in broad fields: medical, industrial and military field. For the
purpose of these applications of UNDEX, it is important to predict the damage
of a structure caused by UNDEX. The objective of the present study is to
indicate a potential of the SPH method for a prediction of the explosion damage.
For verification of the accuracy into the simulation result, one-dimensional
vertical elastic oscillation of an iron stick and oscillation of an explosive gas
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caused by UNDEX surrounded by rigid walls are examined in advance of
main topic.

2. GOVERNING EQUATIONS

Following inviscid compressible equations reproduce UNDEX
phenomenon.

Dρ

Dt
= −ρ∇ · v,

Dv

Dt
= 1

ρ
�σ,

De

Dt
= 1

ρ
σ : ∇ ⊗ v, P = P(ρ, e) (1)

ρ, e, σ, v and t represent density, internal energy, stress tensor, velocity and time
respectively. The stress tensor appearing in Equations (1) is defined in terms
of an isotropic part which is the pressure P and the deviatoric stress S(σ =
−PI + S). I represents an unit tensor. The following equation is a constitutive
equation of elastic material.

DS

Dt
= 2μ

(
ε̇ − 1

3
T r (ε̇) I

)
+ w · S − S · w (2)

S, ε̇, w and μ represent deviatoric stress tensor, strain rate tensor, rotation tensor
and share module respectively. The plastic flow regime is determined by the
von Mieses criterion.

3. EQUATION OF STATE

Each equation of states for detonation gas, water and iron are the JWL
equation [3], the Mie–Gruneisen equation for water [4] and the Mie–Gruneisen
equation for solid [2], respectively. See references for each parameter of these
equations.

The JWL equation:

P = A

(
1 − ωη

R1

)
e− R1

η + B

(
1 − ωη

R2

)
e− R2

η + ωηρ0e (3)

The Mie–Gruneisen equation for water:{
P = a1μ + a2μ

2 + a3μ
3 + (b0 + b1μ + b1μ

2)ρ0e, μ > 0
P = a1μ + (b0 + b1μ)ρ0e, μ < 0

(4)
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The Mie–Gruneisen equation for solid:

P =
(

1 − 1

2
�μ

)
PH (ρ) + �ρe,

PH =
{

a0μ + b0μ
2 + c0μ

3, μ > 0
a0μ, μ < 0

(5)

4. NUMERICAL VERIFICATIONS

An iron stick supposed elastic material impacts into the rigid wall at 100
m/s as shown in Figure 1. Initially, 2525 particles located as 25 in x direction
and 101 in y direction are distributed at equal intervals. The impact causes
vertical elastic oscillation of the iron stick. Figure 2 shows a displacement of a
particle located at x = 0.0, y = 0.5. The exact solution is obtained by following
equation.

dx(x, t) = 8lxv

cπ2

∞∑
m=1

1

(2m + 1)2
sin(2m + 1)

πct

2lx
sin(2m + 1)

πx

2lx
(6)

c = √
E/ρ, lx = 0.24, ly = 1.0, x = 0. In Figure 2 the result of the large

artificial viscosity (blue line) shows good agreement with the exact solution
about the oscillation and the phase until 0.13 ms. However the oscillation peak

Figure 1. Initial distribution.
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Figure 2. Displacement of a particle at x = 0.0, y = 0.5.

becomes small at 0.13 ms and 0.23 ms. These errors are caused by artificial
viscosity because the result of the smaller artificial viscosity (red line) is closer
to the exact solution.

A square shaped TNT charge (0.1 m × 0.1 m) explodes as a high-density
gas in water surrounded by rigid walls in two-dimensional space as shown
in Figure 3. Initially, 1,0201 particles located as 101 in each direction are
distributed at equal intervals. Gas particles are 121 (11 × 11) at the center in
the computational domain and the other particles are used for water. In this
examination, the strong shock wave propagates through water and is reflected
from the rigid walls. The gas bubble expands within the surrounding water and
is compressed by a reflection shock wave from the rigid walls. Figure 4 shows a
radial oscillation of an explosive gas bubble. From this figure the SPH solution
shows good agreement with the Dytran solution [1].

Figure 3. Initial distribution.
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Figure 4. Explosive gas bubble evolution.

5. DYNAMIC SIMULATION THAT THE
SHOCK WAVE CAUSED BY UNDEX IMPACTS
AN IRON WALL

A square shaped TNT charge (0.05 m × 0.05 m) explodes as a high-density
gas in water near an iron wall as shown in Figure 5. Initially, 1,0201 particles
located as 101 in each direction are distributed at equal intervals. Gas particles
are 36(6 × 6) at the center in the computational domain, and iron particles are
2525(101 × 25) at left side, and the other particles are used for water. The
initial conditions are listed in Table 1. Figure 6 shows the pressure distribution
of shock waves in water and the iron wall caused by the impact of UNDEX.
An initial shock wave propagating outwards, a reflection wave from the iron
wall, an elastic–plastic wave in the iron wall and a TNT/water interface can all
be seen from this figure. With the shock wave propagating through water, the

Figure 5. Initial distribution.
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Table 1. Initial condition.

TNT (Gas) Iron (Solid) Water (Liquid)

ρ0(kg/m3) 1630 7850 1000

P0(GPa) 8.38 1 × 10−4 1 × 10−4

E0(MJ/kg) 4.29 0.25 0.25

GPa
0.5

0.4

0.3

0.2

0.1

0.0

Figure 6. Pressure distribution at 0.14 ms.

gas bubble expands within the surrounding water. The shock wave reaches the
iron wall at 0.1 ms, and is reflected from it. At the same time the elastic–plastic
wave propagates in the iron wall at higher speed than the underwater shock
wave. Figure 7 shows x–t diagram of the pressure distribution at the center
line (y = 0.5) of the computational domain. It shows that a compression wave
propagating within the iron wall towards the left end is caused by the impact
of UNDEX, and reflects to become a tensile wave at 0.15 ms. The present

wateriron

ms
0.3

0.2

Reflection shock wave

Tensile wave

Compression wave

Shock wave
0.1

0.0
0.0t

x
0.5 1.0 m

Figure 7. x–t diagram of pressure distribution.
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simulation result indicates a potential of the SPH method for a prediction of
the explosion damage.

6. CONCLUSIONS

A series of simulation were carried out to clarify the ability of the SPH
method for the dynamics that the shock wave caused by UNDEX impacted the
iron wall. Two kinds of examinations were performed to confirm the reliability
of the simulation; one is one-dimensional vertical elastic oscillation of an iron
stick, and the other is oscillation of an explosive gas caused by UNDEX sur-
rounded by rigid walls. The examined results agreed well with the theoretical
value and the previous study. In the simulation result, the pressure distribution
in the computational domain showed that the strong shock wave caused by
UNDEX impacts the iron wall to lead the elastic–plastic wave in the iron wall
and the reflection wave in water respectively. The x–t diagram showed that the
compression and tensile wave propagates one after the other in the iron wall.
In conclusion, we were confident that the SPH method was one of the leading
methods in dynamic explosion simulation.
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Abstract This paper presents an investigation of effects of various parameters used in

3D SPH simulation of classical Taylor-bar test. The investigation focuses on den-

sity evolution approaches, material strength models, smoothing length adaptation

schemes and sensitivity of artificial viscosity constants. Based on the comparisons

on the numerical results obtained, some conclusions are made which are useful

in future SPH applications to solid impact and penetration problems.

Keywords: SPH, impact, Taylor-bar test, numerical simulation, high velocity impact.

1. INTRODUCTION

The meshfree methods have attracted much attention in recent decades, due
to their flexibility in solving some challenging problems, such as crack prop-
agation. Among various meshfree methods, the SPH [1, 2] is a potential and
promising alternative for many problems, such as high velocity impacts. The
classic Taylor-bar impact test is revisited in this paper by 3D SPH calcula-
tion, in hopes of providing informative data for formulation options in future
SPH.

2. SPH FORMULATIONS WITH VARIATIONS

The meshfree and Lagrangian nature makes the SPH a good candidate tool
to solve the hypervelocity impact (HVI) problems for material with strength.
In HVI situations, the solid materials behaviour like fluids, which is governed
by the conservation laws of hydrodynamics. Following the standard procedure

G. R. Liu et al. (eds.), Computational Methods, 1405–1409.
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[3], a set of formulation can be written as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dρi

Dt
=

N∑
j=1

m j

(
vβ

i − vβ

j

)∂Wi j

∂xβ

i

Dvα
i

Dt
=

N∑
j=1

m j

(
pi

ρ2
i

+ p j

ρ2
j

)
∂Wi j

∂xβ

i

−
N∑

j=1

m j

(
Sαβ

i

ρ2
i

+ Sαβ

j

ρ2
j

)
∂Wi j

∂xβ

i

Dei

Dt
= 1

2

N∑
j=1

m j

(
pi

ρ2
i

+ p j

ρ2
j

) (
vβ

i − vβ

j

)∂Wi j

∂xβ

i

+ 1

ρi
Sαβ

i ε̇
αβ

i

Dxα
i

Dt
= vα

i

(1)

where the summation convention is adopted. Dependent variables include the
scalar density ρ, pressure p, specific internal energy e, velocity vector vα,

strain rate tensor ε̇
αβ

i and traceless deviatoric stress tensor Sαβ

i , while the spa-
tial coordinates x and time t are the independent variables. The equations are
revolved as time steps forward in the moving Lagrangian frame.

It is worth noticing that the calculation of work done by the traceless devi-
atoric stress in the energy revolution equation is only valid in the elastic range.
However, the plastic yielding can be dominant in an HVI problem. Therefore,
one must calculate incremental plastic work during every time step and incor-
porate it into the energy equation. For this calculation, a yield criterion, such
as von Mises, is necessary. A simple way to calculate this plastic work is first
to estimate the effective plastic strain increment �ε

p

eff
as:

�ε
p

eff
= (σ ∗

eff − Y0)/3G (2)

where σ ∗
eff

, Y0 and G are the provisional von Mises flow stress, yield strength

and shear modulus, respectively. One can then estimate the incremental plastic
work during the current time step n using

�W n
p = 1

2

(
σ n+1

eff
+ σ n

eff

)
�ε

p

eff

(
m/ρn+1/2

)
(3)

where σ n+1

eff
are the effective stress calculated from deviatoric stress Sαβ

i .

In the course of solution, an appropriate material strength model, such as
Johnson–Cook model [4], is of importance in the SPH application to solid
mechanics. Also, an Equation of State (EOS), such as Mie-Gruneisen EOS
[5], is required to establish the relationships between temperature, volume and
pressure for a given substance. In addition, the Radial Return Method [6] can
be used to scale back the deviatoric stress to yield surface.

However, an SPH simulation can be performed in many different settings.
In this paper, some variations are examined to reveal some of the important
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effects. The Johnson–Cook yield model and the perfectly plastic yield model
are both tested; the density is evolved with using either summation or continuity
approach; the smoothing length evolution schemes include the one proposed by
Benz [7] and Monaghan and Lattanzio [8]; and the sensitivity of the artificial vis-
cosity parameters in the Monaghan type artificial viscosity is also investigated.

3. NUMERICAL INVESTIGATION

We consider a cylindrical bar, made of oxygen-free high-conductivity
(OFHC) copper or Armco iron, impacts perpendicularly onto a flat rigid sur-
face. The original length of cylinder was 2.54 cm, and the initial diameter was
0.76 cm. The cylinder was initially, travelling at a speed of 221 m/s, in contact
with the rigid surface, while the time at conclusion of the test was set to be 90 μs
since the kinetic energy was almost dissipated by then. All material constitutive
constants in the testing follow those given in Johnson and Holmquist [9]. Cases
of simulation with different combinations of variations were detailed in Table 1.

Table 1. Case definition.

Artificial

viscosity

Case Density Smoothing parameters

no. Material evolution Yield model length α β

1 Armco iron Summation Johnson–Cook Constant, 0.64 mm 1.0 1.0

2 Armco iron Continuity Johnson–Cook Constant, 0.64 mm 1.0 1.0

3 Armco iron Continuity Perfectly plastic Constant, 0.64 mm 1.0 1.0

4 OFHC Continuity Perfectly plastic Constant, 0.64 mm 1.0 1.0

5 OFHC Continuity Johnson–Cook Constant, 0.64 mm 1.0 1.0

6 OFHC Continuity Johnson–Cook Variable, Benz 1.0 1.0

7 OFHC Continuity Johnson–Cook Variable, d = 2.5% 1.0 1.0

8 OFHC Continuity Johnson–Cook Variable, d = 2.0 1.0 1.0

9 OFHC Continuity Johnson–Cook Variable, d = 1.5 1.0 1.0

10 OFHC Continuity Johnson–Cook Variable, d = 0.8 1.0 1.0

11 # OFHC Continuity Johnson–Cook Variable, d = 1.0 1.0 1.0

12 OFHC Continuity Johnson–Cook Variable, d = 1.0 1.0 0.5

13 OFHC Continuity Johnson–Cook Variable, d = 1.0 1.0 2.0

14 OFHC Continuity Johnson–Cook Variable, d = 1.0 0.5 1.0

15 OFHC Continuity Johnson–Cook Variable, d = 1.0 2.0 1.0

16 OFHC Continuity Johnson–Cook Variable, d = 1.0 0.5 0.5

17 OFHC Continuity Johnson–Cook Variable, d = 1.0 2.0 2.0

Note: Only the highlighted cells contain the variations taken during that comparison, i.e., other

choices are identical. Variations with associated cases are indicated below: 1–2: Density evolu-

tion; 2–5: Yield model; 5–11: Smoothing length; 11–17: Artificial viscosity.
#: Standard case.
%: Smoothing length Monaghan-Lattanzio Scheme based on the particle density.
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4. RESULTS AND CONCLUSIONS

3D rendering of the SPH calculated cylinders at some selected durations are
given in Figure 1 for the standard case 11. The comparisons made conclusions
obtained from all other cases are summarized below, in terms of the scheme
variation proposed.

1. The plastic work can be dominant during energy evolution in the SPH appli-
cation to solid impact problems which involves significant plastic yielding.

2. For solid problems with strong discontinuity, e.g., HVI, the continuity den-
sity approach is preferred since it yielded better ability to handle material
boundaries, in terms of deformed cylinder shapes; and had a much better
computational efficiency, in terms of CPU time logged.

3. While more physically based strength models are pursued, the empirical
Johnson–Cook models yielded satisfactory results during this numerical
investigation, compared to the simplified plastic yield model.

(b) 5 us(a) Initial (c) 10 us (d) 20 us

(e) 40 us (f) 60 us (g) 90 us 

Figure 1. 3D rendering of deformed cylinders.



Classic Taylor-Bar Impact Test 1409

4. Benz’s particle adaptation scheme is easier to implement but with a similar
accuracy, compared to Monaghan type in which smoothing factor has a
significant influence on both accuracy and efficiency of the final solution.

5. The numerical results are sensitive to the artificial bulk viscosity parameter
(α) while the change of shear viscosity parameter (β) does not make much
difference in the final shape of cylinders. The suggested values go to their
recommendations of one.
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Abstract A mesh free method based on an optimization technique and the moving least-

squares approximation is presented. In this method, the problem domain is mod-

elled by a set of properly scattered points. Approximation functions are used to

represent field variables and their derivatives. Like other mesh free methods, no

mesh of elements is required. The other advantages are: prescribed displacements

and tractions are imposed directly as a result of the minimization procedure, and

there is no need to integrate the governing equations. The theory is developed

for two-dimensional problems. As numerical examples of the proposed scheme,

a cantilever beam and a Poisson equation are considered. The numerical results

compare very well with the analytical solutions for these examples.

Keywords: optimization technique; MLS approximation; mesh free methods.

1. INTRODUCTION

The finite element method (FEM) is the most widely used method for the
numerical solution of partial differential equations. There are, however, some
shortcomings in using the FEM: the need to generate a discretised geometry
(mesh) and the requirement that the elements must satisfy certain shape crite-
ria, can limit its usefulness. In recent years, many researchers have focussed
their attention on the element free or mesh free method, as it does not require a
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structured mesh, and the approximate solution is constructed in terms of a set
of scattered nodes, at least for field variable interpolation. There have been a
number of mesh free methods developed so far [1–3]. In mesh free methods,
approximation functions are constructed using techniques such as the moving
least-squares (MLS) approximation, in which the influence of a node emanates
from a weight function defined on an arbitrary compact subset of the domain.
Because the MLS approximation function lacks the Kronecker delta function
property, the implementation of prescribed boundary values often gives diffi-
culties. Several methods have been introduced for the imposition of prescribed
boundary conditions [3–5]. In the present work, nodal displacements are de-
termined which minimize, in a least square sense, the error in the equilibrium
equations, boundary displacements and boundary loads. The MLS procedure is
employed to approximate field variable and their derivatives. As no background
mesh is needed to perform the numerical integration, this new approach can
be classed as a ‘truly’ mesh free method. In the following section, a brief
description of the MLS approximation will be given. The formulation of the
new method in two dimensions will then be described. Numerical examples
will be presented and finally conclusions will be drawn about the scope of this
work.

2. MOVING LEAST-SQUARES APPROXIMATION

The moving least-squares (MLS) approximation [6] is used to approximate
field variables and their derivatives. In a domain�, the MLS approximation
uh(x) of the field variable u(x) in the vicinity of a point x̄ is given as

uh(x) =
m∑

j=1

p j (x)a j (x̄) = pT(x)a(x̄) (1)

wherep j (x), j = 1, 2, . . . m is a complete basis function in the space coordi-
nates bi x and a j (x̄) are its coefficients. At each point x̄, a j (x̄) is chosen so as
to minimize the weighted residual L2 − norm:

J =
N∑

I=1

w(x̄ − xI )[pT(xI )a(x̄) − û I ]2 (2)

where N is the number of nodes I in the neighborhood of x̄ for which the
weight function w(x̄ − xI ) �= 0, and û I refers to the nodal parameter of u at
x = xI . The minimum of J with respect to a(x̄) gives the standard form of MLS
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approximation as

uh(x) =
N∑

I=1

φI (x)û I = �(x)û, (3)

3. FORMULATION

The following two-dimensional problem of solid mechanics in domain �

bounded by � is considered:

∇ · σ + b = 0,σ · n = t̄ On �t , u = ū On �u (4)

The residual or error function is defined as:

R =
∑
xk∈�

2∑
j=1

(σi j,i + b j )
2
(xk )+

∑
xk∈�t) σ̄11

(σ11−σ̄11)2
(xk ) +

∑
xk∈�t)σ̄22

(σ22−σ̄22)2
(xk )

+
∑

xk∈�t)σ̄12

(σ12−σ̄12)2
(xk )+

∑
xk∈�ū

(u − ū)2
(xk )

+
∑

xk∈�v̄

(v − v̄)2
(xk )

(5)

where subscript (xk) indicates the quantity at point xk, �t)σ̄i j refers to the bound-
ary with prescribed traction σ̄i j , �ū and �v̄ refer to the boundaries with the pre-
scribed displacement values ūand v̄, respectively. In this equation, the internal
stress tensor σi j has been assumed to be symmetric and so σ12 = σ21. The MLS
approximation is used to approximate displacements and its derivatives at each
nodal point xk, for example:

u =
N∑

I=1

φI u I , u,1 =
N∑

I=1

φI,1uI (6)

Where N is the number of nodes in the domain of influence of point xk, u is the
nodal displacement and u,1 = ∂u/∂x . In this work, the following technique is
used to approximate the second derivative of field variables, for example:

u,1 =
N∑

I=1

φI u I,1, u,11 =
N∑

I=1

φI,1uI,1 (7)

The main advantage of this technique is that when writing the second deriva-
tive of field variables, only the first derivative of MLS approximation functions
is used. The system of algebraic equations is obtained by minimizing the er-
ror function (5) with respect to the unknown nodal displacement values. This
satisfies the equilibrium equations at all nodal points and also the prescribed
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Figure 1. Cantilever beam.

displacement and load boundary conditions:

∂ R

∂u
= 0 ⇒ Cu = d ⇒ u = C−1d, uT = [u1 v1 u2 v2 . . . un vn]

(8)
n is the total number of nodes in domain �. The unknown nodal displacement
parameters are obtained by Equation (8). The true value of the field variables
should be retrieved using Equation (3).

4. NUMERICAL EXAMPLES

The first example is a cantilever beam subjected to a parabolic traction at the
free end as shown in Figure 1. The exact solution is given by Timoshenko and
Goodier [7]. The beam has a unit thickness and is solved with dimensionless
parameters E = 1000, ν = 0.3, P = 6, D = 2 and L = 12. A uniformly dis-
tributed nodes, 671 nodes (Nx = 61, Ny = 11), and a complete basis functions
with m = 10 are used. Figure 2 shows a good agreement between the analytical
and numerical results.

Figure 2. (a) Deflection of the beam along y = 0; (b) Shear stress at the section x = L/2; (c)

and (d) Comparison between the analytical displacements and those calculated by the present

method.
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Figure 3. Comparison between the analytical results and those calculated by the present method.

As the second example a Poisson equation is considered as follows:

∇2u = −2(x + y − x2 − y2) in � = [0, 1] × [0, 1] and u = 0 on ∂�

(9)

whose analytical solution is given by u(x, y) = (x − x2)(y − y2). A uniformly
distributed nodes, 256 nodes (Nx=16, Ny=16), and a complete basis functions
with m = 10 are used. Figure 3 shows an excellent agreement between the
analytical and numerical results.

5. CONCLUSION

A truly mesh free method based on optimization techniques and the moving
least-squares approximation has been proposed. The advantages of the new
technique can be summarized as follows: (a) Prescribed boundary displace-
ments and loads can be imposed directly and there is no need to use the La-
grange multiplier, penalty constant or coupling with the BEM or FEM methods,
(b) The method does not involve integration, therefore there is no need for any
background mesh. Since the method does not require a mesh, nodal points can
be selected simply on the basis of the accuracy of solution that is required from
place to place in solving the physical problem under consideration. Numerical
examples, a cantilever beam and a Poisson equation, have been presented to
evaluate the accuracy of the present method. The calculated results are in good
agreement with the analytical solutions.

REFERENCES

1. B. Nayroles, G. Touzot and P. Villon (1992), Generalizing the finite element method:
diffuse approximation and diffuse elements. Computational Mechanics, 10, pp. 307–318.



1416 H. Dalayeli et al.

2. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl (1996), Meshless methods:
an overview and recent developments. Computer Methods in Applied Mechanics and
Engineering, 139, pp. 3–47.

3. G.R. Liu (2002), Mesh Free Methods: Moving Beyond the Finite Element Method. CRC
Press, Boca Raton, USA.

4. G.R. Liu and K.Y. Yang (1998), A penalty method for enforcing essential boundary con-
ditions in element free Galerkin method. In: The Proceedings of the 3rd HPC Asia’98,
Singapore, pp. 715–721.

5. G.R. Liu and Y.T. Gu (2000), Coupling of element free Galerkin and hybrid boundary
element methods using modified variational formulation. Computational Mechanics, 26,
pp. 166–173.

6. P. Lancaster and K. Salkauskas (1981), Surfaces generated by moving least square methods.
Mathematics of Computation, 37, pp. 141–158.

7. S.P. Timoshenko and J.N. Goodier (1970), Theory of Elasticity, 3rd ed. McGraw-Hill, New
York.



FREE VIBRATION ANALYSIS OF TIMOSHENKO
BEAMS BY RADIAL BASIS FUNCTIONS

A.J.M. Ferreira
Departamento de Engenharia Mecânica e Gestão Industrial, Faculdade de Engenharia da
Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Abstract A study of free vibration of Timoshenko beams is presented. The analysis is based

on the radial basis function method. Clampled and simply supported boundary

conditions are considered. Various approaches for computing eigenvalues using

radial basis functions are presented and discussed. Numerical results are presented

and discussed for various thickness-to-length ratios.
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1. INTRODUCTION

Vibration of beams is an important subject in the design of mechanical,
civil and aerospace applications. The thickness of most part of beams makes
the transverse shear and the rotary inertia not negligible as in classical theo-
ries. Therefore the thick beam model of Timoshenko should be considered in
general analysis. The analysis of free vibration of Timoshenko beams cannot
be performed by analytical methods, with exception of few simple cases. Nu-
merical techniques have been applied to this type of problems. The differential
quadrature method [1–3], the boundary characteristic orthogonal polynomials
[4] and the pseudo-spectral method [5] were used in recent years. The finite
element method also proved to be very adequate for this type of problems. The
number of references is too large to reference here.

The present paper addresses the free vibration analysis of Timoshenko
beams by the radial basis function method. This is a truly meshless method
where discretization of the equations of motion and boundary conditions (nat-
ural or essential) does not require a mesh. The method is simple to code and
provides good solutions. In particular, the imposition of boundary conditions is
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very simple. Although powerful and simple, the method has not been applied to
structural mechanics with sufficient impact. The author used the multiquadric
radial basis function method in the static analysis of composite beams and
plates [6–8]. In the present work we illustrate the application of the radial basis
function [9,10] to the eigenvalue analysis of Timoshenko beams.

2. TIMOSHENKO BEAMS

The equations of motion of a rectangular cross-section homogeneous beam
based on the Timoshenko beam assumptions are

∂ M

∂x
+ V = ρ I

∂2�

∂t2
,
∂V

∂x
= ρh

∂2W

∂t2
(1)

where W (x, t) and �(x, t) are the transverse displacement and the rotation
of the normal, ρ is the mass density, h is the thickness of the beam, I is the
second moment of area per unit width, and M and V are the moments and shear
resultants defined as

M = E I
∂�

∂x
, V = αGh

(
∂W

∂x
− �

)
(2)

where E is the modulus of elasticity, G is the shear modulus, and α is the shear
coefficient. Assuming a sinusoidal motion in time

�(x, t) = θ (x) cos ωt, W (x, t) = w(x) cos ωt (3)

The substitution of (2) into (1) produces the equations of motion in terms of
generalized displacements

E I
d2θ

dx2
+ αhG

(
dw

dx
− θ

)
= −ω2ρ Iθ, −αhG

dθ

dx
+ αhG

d2w

dx2
= −ω2ρhw

(4)

3. NUMERICAL RESULTS

We tested this method on the Timoshenko beam problem, described in
(1)–(3). We computed eigenmodes in a linear beam of unit length. We used
multiquadric RBFs φ(r ) = √

c2 + r2, with c = 2/
√

N . We denote the j th
eigenvalue by lambda( j), 0 < λ(1) ≤ λ(2) ≤ . . . In Table 1, we run a conver-
gence check of the eigenvalues of the Timoshenko beam with clamped–clamped
boundary conditions for h/L = 0.01. The number of collocation points varies
from 10 to 40. The results are compared with analytical (Euler–Bernoulli beam)
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Table 1. Convergence test of the non-dimensionalized frequency parameter λi of the

Timoshenko beam as the number of the collocation points N increases (clamped/clamped

boundary condition, ν = 0.3, α = 5/6, h/L = 0.01).

Mode Model N = 10 N =15 N = 20 N = 25 N = 30 N = 35 N = 40

1 [5] 4.72840 4.72840 4.72840 4.72840 4.72840 4.72840 4.72840

Present 4.8734 4.7551 4.7358 4.7308 4.7293 4.7287 4.7287

2 [5] 7.84691 7.84690 7.84690 7.84690 7.84690 7.84690 7.84690

Present 8.1295 7.9063 7.8629 7.8522 7.8488 7.8478 7.8472

3 [5] 10.9827 10.9800 10.9800 10.9800 10.9800 10.9800 10,9800

Present 11.4545 11.0600 11.0030 10.9880 10.9830 10.9820 10,9807

4 [5] 14.1132 14.1062 14.1062 14.1062 14.1062 14.1062 14.1062

Present 14.8013 14.2180 14.1390 14.1180 14.1110 14.1080 14,1070

5 [5] 18.1397 17.2246 17.2246 17.2246 17.2246 17.2246 17,2246

Present 19.3222 17.3170 17.2570 17.2380 17.2300 17.2290 17,2257

6 [5] 21.5723 20.3422 20.3338 20.3338 20.3338 20.3338 20,3338

Present 31.0880 20.4180 20.3620 20.3490 20.3410 20.3370 20,3355

7 [5] 38.0443 23.4481 23,4325 23.4325 23.4325 23.4325 23,4325

Present 44.0440 23.3960 23.4290 23.4440 23.4400 23.4390 23,4345

8 [5] 42.2513 27.1739 26.35192 26.5192 26.5192 26.5192 26,5192

Present 60.5741 26.5670 26,4550 26.5250 26.5280 26.5250 26.5219

9 [5] 30.4163 29.6033 29.5926 29.5926 29.5926 29,5926

Present 29.6940 29,4020 29.5780 29.6000 29.5990 29.5964

10 [5] 40.1211 32,6684 32.6515 32.6514 32.6514 32.6514

Present 34.7720 32,2530 32.6030 32.6580 32.6610 32.6558

11 [5] 43.8761 36,2185 35.6947 35.6946 35.6946 35.6946

Present 46.2410 35,0390 35.5720 35.6950 35.7000 35,7045

12 [5] 79.1294 39,3662 38.7331 38.7209 38.7209 38,7209

Present 58.8870 37,7880 38.4770 38.7120 38.7420 38,7258

13 [5] 83.0320 46.4220 41.7474 41.7294 41.7293 41,7293

Present 77.6700 40.8370 41.2290 41.6990 41.7370 41,7527

14 [5] 49,8430 45.1366 44.7191 44.7189 44.7189

Present 44,0980 43.8660 44.6410 44.7830 44.7070

15 [5] 68.0861 48.1952 47.7008 47.6888 47.6888

Present 48.9380 46.2550 47.5270 47.6740 47.6948

and pseudo-spectral results of Lee and Schultz [5]. This table shows clearly a
rapid convergence of the radial basis function method. In the following tables
we use N = 35, due to good results using such number of collocation points,
but also to compare with [5]. Values in Tables 1 and 2 are non-dimensional
frequency parameters λi , defined as

λ2
i = ωi L2

√
m

E I
(5)

where m is the mass per unit length of the beam and L is the length of the
beam. In all results we fixed Poisson’s ratio and the shear coefficient of the
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Table 2. Non-dimensionalized frequency parameter λi of the Timoshenko beam

(pinned/pinned boundary condition, v = 0.3, α = 5/6, N = 35).

Classical

Mode theory Model h/L

1 3.14159 [5] 3.14158 3.14153 3.14133 3.14053 3.13498 3.11568 3.04533

Present 3.14080 3.14090 3.14120 3.14020 3.13510 3.11580 3.04540

2 6.28319 [5] 6.28310 6.28265 6.28106 6.27471 6.23136 6.09066 5.67155

Present 6.28620 6.28500 6.28220 6.27520 6.23160 6.09080 5.67160

3 9.42478 [5] 9.42449 9.42298 9.41761 9.39632 9.25537 8.84052 7.83952

Present 9.43070 9.42770 9.41790 9.39750 9.25560 8.84060 7.83960

4 12.5664 [5] 12.5657 12.5621 12.5494 12.4994 12.1813 11.3431 9.65709

Present 12.5746 12.5688 12.5520 12.5003 12.1814 11.3430 9.65700

5 15.7080 [5] 15.7066 15.6997 15.6749 15.5784 14.9926 13.6132 11.2220

Present 15.7136 15.7046 15.6740 15.5792 14.9924 13.6129 11.2219

6 18.8496 [5] 18.8473 18.8352 18.7926 18.6282 17.6810 15.6790 12.6022

Present 18.8535 18.8396 18.7932 18.6278 17.6803 15.6785 12.6019

7 21.9911 [5] 21.9875 21.9684 21.9011 21.6443 20.2447 17.5705 13.0323

Present 21.9862 21.9664 21.8977 21.6427 20.2435 17.5700 13.0323

8 25.1327 [5] 25.1273 25.0988 24.9988 24.6227 22.6862 19.3142 13.4443

Present 25.1167 25.0902 24.9925 24.6193 22.6847 19.3140 13.4443

9 28.2743 [5] 28.2666 28.2261 28.0845 27.5599 25.0111 20.9325 13.8433

Present 28.2406 28.2046 28.0759 27.5535 25.0098 20.9336 13.8432

10 31.4159 [5] 3l.4053 31.3498 31.1568 30.4533 27.2263 22.4441 14.4378

Present 31.3508 31.3089 31.1364 30.4466 27.2262 22.4481 14.4378

11 34.5575 [5] 34.5434 34.4697 34.2145 33.3006 29.3394 23.8639 14.9766

Present 34.4613 34.4059 34.1873 33.2870 29.3430 23.8756 14.9769

12 37.6991 [5] 37.6807 37.5853 37.2565 36.1001 31.3581 25.2044 15.6676

Present 37.5265 37.4733 37.2114 36.0971 31.3686 25.2248 15.6677

13 40.8407 [5] 40.8174 40.6962 40.2815 38.8507 33.2896 26.0647 16.0241

Present 40.6156 40.5433 40.1637 38.8280 33.3168 26.0647 16.0269

14 43.9823 [5] 43.9531 43.8021 43.2886 41 5517 35.1410 26.2814 16.9584

Present 43.5748 43.5349 43.2015 41.5892 35.1917 26.2814 16.9583

15 47.1239 [5] 47.0880 46.9027 46.2769 44.2026 36.9186 26.4758 17.0019

Present 46.6156 46.5579 45.7626 44.1734 37.0548 26.5454 17.0096

beam as ν = 0.3 and α = 5/6, respectively. In Table 2 we compare eigen-
values with classical theory and [5] for pinned/pinned boundary conditions.
The eigenvalues are calculated for different thickness-to-length ratios, from
h/L = 0.002 to 0.2. Our results are in good agreement with the pseudo-spectral
results of Lee and Schultz [5], using a regular node arrangement. Results show
excellent agreement with classical solutions for h/L < 0.01. For larger h/L
values Timoshenko theory produces eigenvalues with differences to the Euler-
Bernoulli results. The convergence of the pseudo-spectral method is somewhat
faster than the present method.
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4. CONCLUSION

In this paper we used the multiquadric radial basis function method to
analyse free vibrations of Timoshenko beams. The first-order shear deformation
theory set of equations define a eigenproblem which can be solved by various
algorithms. The results of eigenvalues are compared with a pseudo-spectral
method and are found to be in excellent agreement with this recent method.
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Abstract SPH using the moving least square (MLS) approximation and fixed kernel func-

tion is proposed and is applied to large deformation elasto-plastic analysis. SPH is

one of the particle methods and is a powerful tool for large-scale hydro dynamics

analysis. SPH is, however, not efficient when the kernel functions are calculated

at every step and the spatial approximation is less accurate due to only the 0-th

order consistency. In this study, Fixed Kernel method in which the kernel is cal-

culated only at the original configuration is utilized in order to reduce numerical

cost and MLS approximation is applied for the spatial approximation to improve

accuracy. Furthermore, the Poisson’s equation for pressure is solved to take ac-

count of incompressibility in plastic state. Numerical analysis of elastic problem

and elasto-plastic problem are demonstrated to validate the present method.

Keywords: SPH, moving-least-square, fixed kernel, incompressibility.

1. INTRODUCTION

A particle method is one of the mesh free methods and is often utilized
for dynamic analyses of large-scale problems. SPH is the most widely used
particle method originally developed for astrodynamics problems [1] and has
been applied to various engineering fields including elasto-plastic problems
[2]. The conventional SPH is not efficient when the kernel functions are
calculated at every step and the spatial approximation is less accurate due
to only the 0-th order consistency. In this research, therefore, Fixed Kernel
method in which the kernel is calculated only at the original configuration is
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utilized in order to reduce numerical cost and MLS approximation is applied
for the spatial approximation to improve accuracy. Furthermore, the Poisson’s
equation for pressure is solved to take account of incompressibility in plastic
state.

2. IMPROVED SPH USING MLS
AND FIXED KERNEL [3]

In SPH, the approximate value f (x) of a function f at a point x is given
by

〈 f (x)〉 =
N∑

j=1

m j

ρ j
f (x j )W (x − x j ) (1)

where W (x – x j ) is kernel function, m is mass, ρ is density.

2.1 Moving least square [4]

Although the Equation (1) is used for approximation in SPH, it is known
that it has only the 0-th order accuracy. In order to improve this deficiency, in
this research, the moving least squares (MLS) approximation is utilized for the
approximate value f (x) of a function f . In MLS, a function is approximated
so as to minimize the following weighted functional.

J =
N∑

j=1

W (x − x j )(u
h(x j ) − u j ) (2)

where u j is a value in each particle. W is a weight function in an influence
domain and uh is a basis function and a polynomial function is usually used for
uh . In case a linear polynomial function is used, the obtained approximation
function has at least the 1st order accuracy and can recover a linear function.
As not only the function but its spatial derivative obtained by MLS becomes
continuous, the accuracy of SPH may be improved. Finally, in MLS, a function
uh and its derivative can be expressed as follows. Where φ is shape function
obtained by MLS.

uh(x j ) =
N∑

j=1

φ j u j , ∇uh(x j ) =
N∑

j=1

∇φ j u j (3)
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2.2 Fixed kernel

As particle configuration changes with time, in SPH, the kernel is recom-
puted out using current configuration at t0 = t every time. In this research,
therefore, the fixed kernel to the initial configuration at t0 = 0 (Fixed Kernel)
is used for computational efficiency. In Fixed Kernel method, the shape of
influence domain deforms according to the change of particle configuration,
however, the kernel estimate can be computed once at the initial configuration.

In order to use Fixed Kernel, the law of conservation of momentum ex-
pressed with initial configuration should be solved. The law of conservation of
momentum in MLS–SPH is given by

dVi

dt
= 1

ρ0

N∑
j=1

(Πi + Π j − Qi j I) · ∇φ (4)

where i is a particle at an evaluation position and j is a particle within an
influence domain,V is velocity vector, ρ0 is density at initial time, � is the 1st
Piola-Kirchhoff stress, Qi j is artificial viscosity.

2.3 SMAC method

Even if metal solid is compressible in elastic state and small deformation, it
becomes nearly incompressible in plastic state and large deformation. To assure
stable solution in incompressible state, the pressure is modified according to
SMAC scheme, which is occasionally used for analysis of incompressible flow,
as shown in Equation (5). Equation (5) is the modified Poisson’s equation with
the effect of elastic deformation.

∇2 P ′ − ρ

κ�t2
P ′ = ρ

�t
∇ · V′ (5)

where P ′ is pressure corrections (Pn+1 = Pn + P ′), �t is time increment, κ

is bulk modulus, V′ is velocity estimated explicitly.

3. NUMERICAL EXAMPLES

3.1 Axial vibration of bar

A two dimensional free axial vibration analysis of an elastic bar is conducted.
One end of the bar is fixed and impact velocity is applied to all particles. The
Length of bar is 0.5 m, the Young’s modulus is 200 GPa, the Poisson’s ratio
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Figure 1. Displacement history.

is 0, the density is 7890 kg/m3, the number of particles is 105, the number of
steps is set to 6000. Impact velocity is 1.0 m/s.

The analysis results with theoretical solution of displacement history at
x = 0 are shown in Figure 1. Normalized computational time is shown in
Figure 2. Comparing the result by MLS–SPH with that by SPH, MLS–SPH
gives better accuracy. It is also found that Fixed Kernel method gives identical
results by the conventional SPH, and SMAC with the conventional SPH never
deteriorate the accuracy. On the other hand, the computation time by MLS–
SPH using Fixed Kernel is greatly reduced compared with that by MLS–SPH
referring the current configuration.

3.2 Cylinder impact

In order to compare the conventional SPH and SPH extended by SMAC
scheme, a two-dimensional large deformation elasto-plastic analysis is carried
out. The analysis conditions are the Young’s modulus is 200 GPa, the Poisson’s
ratio is 0.3, the yield stress is 500 MPa, the density is 7.89 g/cm3, the length is

SPH 

F.Kernel SPH 

MLS-SPH 

F.Kernel MLS-SPH  

0 0.5 1 1.5 2

Normalized computational time

Figure 2. Computational time.
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Figure 3. Conventional SPH.

0.012 m, the width is 0.006 m, the number of particles is 496, and the impact
velocity is 221 m/s. Figures 3 and 4 show the deformation of cylinder and the dis-
tribution of equivalent stress at the time of 50 μs. As results, The stable deforma-
tion and stress distribution of cylinder are obtained by SPH with SMAC scheme.

4. CONCLUSION

SPH using the moving least square approximation and fixed kernel function
was proposed and was applied to the linear elastic and the large deformation
elasto-plastic analysis. It was demonstrated through the numerical examples
that firstly the accuracy and the computational efficiency of the present method

500 

400 

300 

200 

100 

0 

MPa 

Figure 4. SPH with SMAC scheme.
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were improved and secondly the modification of pressure field by solving the
Poisson’s equation to take account of incompressibility in plastic state was
effective for the stabilization of the numerical solution.
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Abstract The scaled boundary method is an excellent way to model unbounded domains.

However, it is limited to linear problems. Many soft-ground geotechnical problems

require both non-linear constitutive behaviour for the soil, to capture pre-failure

deformations, and the presence of an unbounded domain. Adaptive meshfree

methods are ideally suited to such problems. This paper couples a meshless lo-

cal Petrov–Galerkin method for the near field with a meshless scaled boundary

method of similar type for the far field. The method presented is novel as the de-

grees of freedom of all nodes in the support of the interface nodes are coupled to

the stiffness of the unbounded domain, rather than just the nodes on the interface.

Keywords: meshfree method, scaled boundary method.

1. INTRODUCTION

While meshless methods are increasingly seen as future replacements for
the conventional finite element method, they retain the shortcomings of the
conventional finite element method when modelling singularities or infinite
boundaries. Both features can, however, be dealt with efficiently using the
Scaled Boundary Method (SBM) although this method cannot incorporate non-
linear material behaviour unlike meshless methods. This paper describes the
coupling of a meshless method to the SBM to yield a numerical method ideal
for problems in areas such as geomechanics where both non-linear constitutive
behaviour and accurate modelling of infinite boundaries are required.

In this study we use the Meshless Local Petrov–Galerkin (MLPG) method
[1]. This method is based on a moving least squares (MLS) approximation
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for the displacement field, as are other popular meshless methods. The SBM
is semi-analytical and was developed relatively recently by Wolf and Song
[2, 3]. Understanding and interest in the SBM has since increased partly due to
publication of a virtual work derivation of the method for elastostatics [4]. In
its simplest form, a point in a domain is assigned a scaling centre, from which
radiators are defined along which the displacement field is an analytical (i.e.,
closed-form) solution. In the circumferential direction the displacement field
is approximated by conventional finite element type shape functions.

2. COUPLING THE METHODS

The coupled method is shown in Figure 1 for the case of a footing problem
(later used to demonstrate the hybrid method). The MLPG method is used in
the near field (i.e., close to an applied load or prescribed displacement con-
dition). SBM elements are used along the material boundary of the meshless
region, thus the remainder of the infinite domain is covered. Doherty and Deeks
[5] have already combined the SBM with conventional finite elements. In that
case coupling was relatively simple as the same shape functions are used in
each method along the interface between the two zones. A first step in cou-
pling the MLPG method and the SBM is to reformulate the SBM using the
same shape functions in the circumferential direction as used in the MLPG
method to produce a SBM without elements. This is also straightforward as

x

y

2B

SBM elements

MLPG  
zone

Footing
traction

SBM domain

Figure 1. Hybrid method applied to the smooth footing problem.
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the approximation is one-dimensional, along the boundary s. The procedure is
described in detail in Deeks and Augarde [6].

Having produced an ‘elementless’ SBM it would seem to be straightforward
to then couple MLPG with this method. However complications arise as the
MLPG returns fictitious nodal values {ûm} to which the MLS approximation
is fitted rather than actual nodal values, {uu} as returned by the SBM. This
feature of meshless methods leads to difficulties in enforcement of essential
boundary conditions, as highlighted elsewhere [7]. Along the SBM ‘side’ of
the boundary the approximation is governed by nodes on the boundary. On the
MLPG side, however, the approximation is influenced in addition by nodes in-
side the meshless domain. For these reasons, direct coupling is not possible and
a penalty approach is used to couple the two methods. The SBM approximation
is more restricted than the MLPG approximation to which it must be coupled,
since at any point the latter is by definition based on fewer nodes. Therefore the
MLPG approximation is restricted to the SBM values, rather than the other way
round.

In brief, the coupling is implemented as follows. If �i is the interface be-
tween the zone then equilibrium is satisfied in a weak sense in the meshless
zone if

[K ]{ûm} −
∫
�i

[
N 2(x, y)

]T {t}d�i = { f } (1)

where [K ] is the stiffness matrix for the meshless region, [N 2(x, y)] is a matrix
containing meshless test functions, {t} are the tractions along the interface
between the zones and { f } are the externally applied forces (assumed not to
occur along the interface). A similar equilibrium expression can be written for
the SBM zone in terms of both {uu} and {ûm}, recalling that along the interface
the two displacements are kept separate. Two further equations are obtained
from enforcing compatibility along the interface. Derivation for the meshless
zone begins from

[N 1(s)]{uu} = [N 1(x, y)]{ûm} over �i (2)

where [N 1(s)] is a matrix of shape functions for the SBM (note the single
coordinate, s) and [N 1(x, y)] is the corresponding matrix for the meshless
region. Combining the equilibrium expression for each zone with its corre-
sponding compatibility condition (the latter weighted with a penalty parameter
α � 0) leads to a system of 2(nu + nm) linear equations in 2(nu + nm) un-
known nodal values (where nu is the number of nodes on the interface and nm

is the total number of nodes in the meshless region). Following solution for dis-
placements, stresses can be recovered in both zones. A full derivation is given
elsewhere [8].
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Figure 2. Results for the footing problem. Vertical displacements (a) and (b) in close up; vertical

stresses (c) and (d) in close up.

3. AN EXAMPLE

The hybrid method outlined above is demonstrated on a simple elastostatics
problem, namely a plane strain smooth footing of width 2 units on an elastic half-
space (Figure 1). A uniform traction is applied in the negative y-direction over
the footing width. Only one half of the problem is modelled due to symmetry;
the symmetric boundary is the y-axis. A coarse irregular grid of 97 nodes
covers the meshless region, which is square of size 2 units. (Grid spacing
is based on Gauss–Lobatto intervals). Thirteen SBM nodes are used along
the interface. Displacement and stress results are shown in Figure 2 for the
meshless area (where the nodes are also shown) and in the infinite domain for
(0 ≤ x ≤ 6; −4 ≤ y ≤ 2).

The plots show that the penalty method is successful in enforcing the cou-
pling between the methods on the boundary as displacements are smooth across
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the interface. The resulting stress field derived from processing the meshless
displacements and the SBM displacements separately is also seen to produce
an acceptable result, although there are minor discrepancies between the zones
visible along the interface which could be reduced by refinement along the
interface.

4. CONCLUSIONS

A hybrid method has been described and demonstrated that couples a mesh-
less method with the Scaled Boundary method thereby potentially allowing non-
linear behaviour in the near-field with infinite boundaries, and the economies
that produces. Further work is in progress to test and extend this hybrid method
particularly for use in geomechanics problems.
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BASIC DISCUSSION OF BOUNDARY
CONDITION OF SMOOTHED PARTICLE
HYDRODYNAMICS FOR ANALYSIS OF
CEREBRAL CONTUSION

S. Hagihara and S. Motoda
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Abstract Analysis of cerebral contusion using the smoothed particle hydrodynamics (SPH)

method is presented. When a human head is subjected to external impacts in cases

of crashing with cars in traffic accidents, a person falling down and etc., damage

is often observed in the brain. It is called cerebral contusion which means damage

of the brain of the human head. Although cerebral contusion which is called coup

is usually observed at an impacted side of the head, it may be also observed at an

opposite side, which is called contrecoup. There is no reasonable explanation of

contrecoup.

The smoothed particle hydrodynamics method, which is one of the meshfree

methods, can calculate impact analyses including fracture.

In the present paper, we analyse the damage of the head using the SPH method

and obtain the stress distribution of the brain when the head collides with a glass

of a car. We obtain the distribution of stress to cause cerebral contusion.

Keywords: smoothed particle hydrodynamics, cerebral contusion, impact, human head.

1. INTRODUCTION

When a cars crush and a person falling down occur, the human head crashes
to the front window shield or a ground. When the human head is subjected to
external impact, the bone of the head is sometimes broken and the damage of the
brain is caused due to the impact. Damages are often observed in the brain. It is
called cerebral contusion which means damage of the brain of the human head.
Although cerebral contusion is usually observed at an impacted side damage
which is called coup, it may be also observed at an opposite side damage which
is called contrecoup [1]. There is no reasonable explanation of contrecoup.
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Smoothed particle hydrodynamics (SPH) was developed to be applied to
astrophysical and cosmological problem Lucy and Gingold and Monaghan.
After that, SPH had been studied in the field of compressible fluid dynam-
ics. Recently, SPH was extended to simulate the dynamic structural problems
including failure, which was proposed by Libersky et al. [2]

SPH does not require a grid and a special mesh, which is truly meshfree
method based on the Lagrangian calculation. When the large deformation oc-
curs, Eulerian calculation is used in the analysis. The Lagrangian calculation
is more accurate than the Eulerian one because there is not the convection term
in the equations written in the moving Lagrangian frame.

It is difficult to simulate failure and fracture phenomena for the finite element
method. Since SPH is assembly of particles which are smoothed by a kernel
function, it can also treat failure of structural problems. Therefore, SPH is
appropriate to apply the analysis of cerebral contusion with breaking a skull or
a front glass shield of a car.

In the present paper, SPH is applied to an analysis of cerebral contusion to
analyse the cause of the damage in the brain including skull and font window
shield when cars crash in a traffic accident.

2. METHOD OF ANALYSIS

The conventional formulation of SPH is interpolated by physical quantities
of discrete particles smoothed using a kernel function. An approximate function
〈 f (x)〉 at a point x is represented by a kernel function W which has a influence
domain radius h shown in Figure 1 as following equation.

〈 f (x)〉 =
∫

f (x′)W (x − x′, h)dx ′ (1)

where x − x′ is a smoothing distance within a domain influence. The discrete

j

2h

i

x-x’

Figure 1. Typical concept of SPH.
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form of the smoothed approximate function of Equation (1) is represented by
the following equation.

〈∇ f (x)〉 = −
N∑

j=1

m j

ρ j
f (x j )∇W (x − x′, h) (2)

The conservation equations of continuum are following set of discrete SPH
equations.

dρi

dt
= ρi

n∑
j=1

m j

ρ j

(
Uβ

i − Uβ

j

)
Wi j,β (3)

dUα
i

dt
= −

n∑
j=1

m j

(
σ

αβ

i

ρ2
i

+ σ
αβ

j

ρ2
j

+ �i j I

)
Wi j,β (4)

d Ei

dt
= −

n∑
j=1

m j

(
Uα

i − Uα
j

) (
σi

ρ2
i

+ 1

2
�i j I

)
Wi j,β (5)

where U and σ are velocity and stress respectively. �i j is artificial viscosity
shown as following equations. The conventional formulation of stress, pressure,
time integration is used in the present analysis.

3. RESULTS AND DISCUSSION

A human head is subjected to impact when it collides with a front shield
glass of a car in a traffic accident as shown in Figure 2. The figure is analysis
model of collision between the human head and the glass. The human head
collides with the glass in speed of 9 m/s (60 km/h). The material properties of
the skull, the brain and the glass are summarized in Table 1.

The time dependence of distribution of Y-stress of the brain after the impact
are shown in Figure 3. After the impact, the higher stress is observed due to

Figure 2. Schematic model of collision of head.
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Table 1. Material properties.

Brain Skull Glass

Density (kg/m3) 1.456E + 03 1.456E + 03 2.5E + 03

Parameter C (m/s) 9.0E + 03 6.0E + 03 6.5E + 03

Parameter S (–) 1.5 1.5 1.5

Gruneisen parameter (–) 1.55 1.55 1.70

Shear modulus (Pa) 3.48E + 05 3.47E + 09 30.2E + 09

Young modulus (Pa) 11.14E + 05 8.35E + 09 74.1E + 09

the coup of the head. After the stress wave propagate to the opposite side of
the head, the higher stress is caused by the contrecoup of the head in 0.3 ms.
The cerebral contusion sometimes is observed due to not only coup but also
contrecoup. It is consider the damage of the brain of the contrecoup can be
simulated by the SPH method. The analysis performed by the SPH method will
be able to take account of the failure criterion of glass and skull.

0.02 msec    0.12 msec 

0.30 msec    0.50 msec 

Figure 3. Time dependence of stress distribution of brain
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4. CONCLUSIONS

The SPH method is applied to analysis for the damage of the brain when the
human head is subjected to impact due to a traffic accident. The higher stress is
observed in both the impacted side and opposite side. The SPH can be applied
to the cerebral contusion in skull caused by coup and contrecoup. The SPH will
be able to calculate the cerebral contusion including the failure of glass, skull
and etc.
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Abstract This chapter investigated the irreversible adsorption of colloidal particles from

pressure driven flow in a microchannel under the influence of colloidal (DLVO)

interactions and external forces such as gravity. A theoretical model was devel-

oped on the basis of the stochastic Langevin equation, incorporating the Brownian

motion of particles. Brownian dynamics simulation technique was employed to

calculate the particle surface coverage. To validate the proposed theoretical model,

experiments were carried out using the parallel plate flow cell technique, enabling

direct Videomicroscopic observation of the deposition kinetics of polystyrene la-

tex particles in NaCl electrolyte solution. The theoretical predictions were com-

pared with experimental results and a good agreement was found.

Keywords: colloidal particle deposition, microchannel flow, Brownian dynamics simulation.

1. INTRODUCTION

Deposition of colloids, macromolecules, and bioparticles onto a solid sur-
face is of great significance to many technological processes such as filtration,
water treatment, biofouling of transplants and artificial organs etc. Hence it is
vital to understand the underlying mechanisms in order to unravel and control
these phenomena. There are two theoretical approaches of modeling deposi-
tion of colloidal particles onto the collector surface, namely Lagrangian method
and Eulerian method. In the Eulerian method, the particle deposition onto the
collector surface is governed by the convection diffusion equation, while the
Lagrangian method determines the trajectory of the particle under the effect of
colloidal and external forces. The governing equation is the stochastic Langevin
equation, including the random Brownian motion of the particles. Adamczyk,

G. R. Liu et al. (eds.), Computational Methods, 1441–1445.
C© 2006 Springer. Printed in the Netherlands.

1441



1442 H.N. Unni and C. Yang

Siwek and Syzk [1] used the sequential Brownian dynamics simulation method
to model the kinetics of particle adsorption in an impinging jet cell. Hutter
[2] identified the coagulation time scales in colloidal suspensions using the
Brownian dynamics simulation technique for various solid content ratios. In
addition, Sholl et al. (2000) used Brownian dynamics simulations to numeri-
cally simulate TIRM (Total Internal Reflection Microscopy) experiments for
the motion of a sphere in a viscous fluid near to a wall.

However, to the author’s best knowledge, no attempt has been made yet to
study the transport and deposition of colloidal particles from pressure driven
flow in parallel plate microchannels, which possess interesting applications
in BioMEMS (BioMicroelectromechanical systems). The goal of this chapter
is therefore to investigate the kinetics of particle deposition in parallel plate
microchannels using the Brownian Dynamics Simulation technique. The effect
of electrolyte concentration and flow velocity on the particle surface coverage
is studied.

2. THEORY

The colloidal particle trajectory is governed by the Langevin equation, given
as

dri = Dij (t) · Fi (t)

kT
�t + ∇ · Dij (t)�t + U (r i )�t + (�r )B (1)

where Di j is the mutual diffusivity of the i th particle, U (r i ) is the particle ve-
locity, Fj is the total force acting on the particle, (�r )B is the random Brownian
displacement and kT is the thermal energy.

The mutual diffusivity of the particle is computed using the expression [3],

Di j = Di I + kT
N∑

j=1

Mi j (2)

where Di is the self diffusivity of the particle, I is the unit tensor and Mi j

is the mobility tensor. N is the nearest neighbors to the i th particle. Tensor
expressions for Mi j are given in [3]. The flow in the channel was assumed to be
fully developed and the particle velocity was corrected from the fluid velocity
by using hydrodynamic correction functions [3]. The total force on the particle,
Fi is comprised of

Fi = FVDW + FEDL + FG (3)

where FVDW, FEDL and FG represent the DLVO (van der Waals, EDL) and grav-
ity forces respectively. The expressions for the particle-wall and interparticle
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van der Waals and EDL forces were obtained from [3], and are given by

FVDW = −Aλap(λ + 22.22h)

6h2(λ + 11.11h)2
+

N∑
j=1

−A jλap(λ + 22.22h j )

12h2
j (λ + 11.11h2

j )
(4)

FEDL = 32πεκap

(
kT

e

)2

tanh

(
zeζp

4kT

)
tanh

(
zeζw

4kT

)
[2 exp(−κh) + exp(−κh j )]

(5)

A is the Hamaker constant, λ is the retardation wavelength, ε is the permit-
tivity, κ is the Debye parameter (dependent on electrolyte concentration) and
h and h j are the particle—wall and interparticle separations, respectively. N
is the number of nearest neighbors of a particle. ζp and ζw are particle and
wall zeta potentials. These parameters for the simulation were selected from
[4].

The Random Brownian motion of the particle was determined from a
Gaussian distribution with zero mean and variance depending on the mutual
diffusivity of the particle.

The particle transport was simulated in a cubic simulation cell containing
216 particles. Periodic boundary conditions [3] were applied on all the faces
of the cell to eliminate the surface effects associated with the finite size of the
cell. The particle positions were computed according to equation (1) using a
modified Euler approach, described elsewhere [2]. Once the particle position
has reached the primary energy minimum [1], it is assumed to be irreversibly
adsorbed on the surface. The particle surface coverage is calculated using the
expression,

θ = πa2
p Nd

�S
(6)

where Nd is the number of deposited particles, and �S is the surface area of
the simulation cell. The dimensionless time (τ ) is defined as the ratio,τ = t/ts ,
where ts is the total simulation time.

3. EXPERIMENT

Videomicroscopic experiments were performed using monodisperse sus-
pensions of latex particles (0.5 and 1μm diameter, Duke scientific) in NaCl
electrolyte solution flowing in a glass microchannel (300 μm depth). Particle
images were captured by a digital camera (Leica DC300), which was con-
nected to a PC. The image processing and particle counting were performed by
software (Leica ImagePro). The particle surface coverage from experiments is
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Figure 1. Surface coverage at Re = 30.

determined as

θ = πa2
p Nc

�A
(7)

Nc is the counted particle number and �A is the imaging area chosen in
experiment.

4. RESULTS AND DISCUSSIONS

Figure 1 shows the effect of electrolyte concentration on particle deposition
rate. As is evident from the figure, the surface coverage increases at higher
electrolyte concentrations. This can be attributed to the repulsive double layer
interactions between the similarly (negative) charged latex particles and glass
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Figure 2. Surface coverage (vs) Re plot.
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wall. The magnitude and range of EDL interaction decreases with increase in
electrolyte concentration, resulting in higher deposition. The Simulation results
are in good agreement with the experimental results, indicating the validity of
the model approximation.

Figure 2 shows the variation of surface coverage with Reynolds number for
three different electrolyte concentrations. The deposition rate decreases signifi-
cantly with increase in Reynolds number. The difference in the surface coverage
values at the three different concentrations is non-uniform at lower flow inten-
sities, due to the reduced EDL interactions. At higher Reynolds numbers, the
gap between the curves tend to decrease as convection predominates and most
of the particles are transported without contacting the surface.

REFERENCES

1. Z. Adamczyk, B. Siwek and L. Szyk (1994), Flow induced surface blocking effects
in adsorption of colloidal particles. Journal of Colloid and Interface Science, 174,
pp. 130–141.

2. M. Hutter (1999), Brownian dynamics simulation of stable and coagulating colloids in
aqueous suspension. Ph.D dissertation, Swiss Federal Institute of Technology, Zurich.

3. M. Elimelech, J. Gregoy, X. Jia and R.A. Williams (1995), Particle Deposition and
Aggregation—Measurement, Modeling and Simulation, Butterworth-Heinemann, USA.

4. R.J. Hunter (2000), Foundations of Colloid Science, Oxford University press, UK.
5. D.S. Sholl, M.K. Fenwick, E. Atman and D.C. Prieve (2000), Brownian dynamics simu-

lation of the motion of a rigid sphere in a viscous fluid very near a wall. The Journal of
Chemical Physics, 113, pp. 9268–9278.



S SHAPE PARAMETERS OF MULTIQUADRICS
IN THE HEAVISIDE WEIGHTED
MLPG METHOD

J.R. Xiao1, B.A. Gama11, J.W. Gillespie Jr.1 and E.J. Kansa2

1Center for Composite Materials, University of Delaware, Newark DE 19716, USA
2Department of Physical Sciences, Embry-Riddle Aeronautical University,
7700 Edgewater Dr., Oakland, CA 94621

Abstract Radial basis functions (RBFs) have shown excellent interpolation properties and

great promise in meshless methods for solving partial differential equations. How-

ever, the accuracy of the RBF meshless method is found to depend on the shape

parameters, c, of RBFs; too large a value of c leads to severe ill-conditioning. In

this paper, the selection of shape parameters of Multiquadrics (MQ) used in the

Heaviside weighted MLPG meshless method has been investigated and a rela-

tionship between the parameter c and the nodal distance is proposed for solving

the stress analysis of two-dimensional solids.

Keywords: MLPG meshless, multiquadrics, shape parameter, stress analysis.

1. INTRODUCTION

RBFs have been popularly employed in solving partial differential equations
[1] and meshless methods [2–4]. The shape functions based on RBFs satisfy
the delta function property. In the previous research [4], the extended multi-
quadrics g(r ) = (r2 + c2)β for constructing trial functions was applied to the
local Heaviside weighted MLPG method for the analysis of two-dimensional
solids. There are many advantages in the so developed method: no domain
integration is needed, no element matrix assembly is required and no special
treatment is needed to impose the essential boundary conditions. However, we
faced the problem of how to select a good value for the shape parameters to
prevent severe illconditioning. Xiao and McCarthy [4] have conducted a prelim-
inary study on selection of shape parameters of MQ in the Heaviside weighted
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MLPG method. They found for the problems considered that both 1.03 and
1.99 are optimal values for the parameter β and the parameter c is sensitive to
nodal distance. The present paper aims to provide further exploration on the
selection of shape parameter.

2. LOCAL HEAVISIDE WEIGHTED MLPG
FOR 2D SOLIDS

The two-dimensional solid mechanics problem is considered here:

σi j, j + bi = 0, ti = σi j n j = t̄i on �t , ui = ūi on �u (1)

A local weak form of Equation (1), over a local subdomain �s bounded by �s ,
can be obtained using the weighted residual method with a weighted function
vi : ∫

�s

σi jvi, j d� −
∫

�si

tivi d� −
∫

�su

tivi d� =
∫

�st

t̄ivi d� +
∫

�s

bivi d�

(2)
where �st is the intersection of �t and the boundary �s , and �su is the inter-
section of �u and the boundary �s . When a Heaviside step function is used as
the test function, the local weak form (2) can be rewritten as:∫

�si

ti d� −
∫

�su

ti d� =
∫

�st

t̄i d� +
∫

�s

bi d� (3)

It can be seen that only the regular boundary integral along the sub-domains
boundaries is involved in the weak form (3).

3. DISCRETIZATION USING RADIAL
BASIS FUNCTIONS

An interpolation of a continuous function u(x) from the neighbouring nodes
of a point xQ within the domain � ,using RBFs with a polynomial basis can be
given as:

u(x) =
n∑

i=1

gi (x)ξi (xQ) +
m∑

j=1

p j (x)ζ j (xQ) = GT ξ + PT ζ (4)

with the constraint condition
n∑

i=1

p j (xi , yi )ξi = 0, j = 1, 2, . . . m, where gi (x)

is the radial basis function, p j (x) is a monomial.
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The constructed shape function φk(x) and their derivatives using the ex-
tended Multiquadrics (MQ) can be found in Xiao and McCarthy [4]. Substi-
tution of interpolation into the weak form (3) yields the following discrete
equation for each node:

n∑
j=1

Ki j u
j = fi (5)

4. NUMERICAL EXAMPLES AND SELECTION
OF SHAPE PARAMETER C

For the purposes of error estimation, the displacement norm and the energy
norm are defined as follows:

displacement norm =
{∫

�

(uNum − uExact)T (uNum − uExact) d�

}1/2

(6)

energy norm =
{

1

2

∫
�

(εNum − εExact)T (σ Num − σ Exact) d�

}1/2

(7)

In this section, effects of shape parameters of MQ on the performance of
the present method and the selection of the parameter c are investigated with
the cantilever beam problem shown in Figure 1(a). The analytical solution is
available in Timoshenko and Goodier [5]. The beam parameters are taken as
E = 30.0 × 106, ν = 0.3, D = 5, L = 8 and P = 1000.

The previous study [4] shows that the sensitivity of c to nodal distance
can be demonstrated by a linear relationship between c and nodal distance:
c = λd , where λ is a coefficient to be determined and d is the characteristic

(a) Regular 187 nodes (b) Irregular 353 nodes 

D 

L 

P 

Figure 1. Cantilever beam with a parabolic-shear end load and different nodal arrangements.
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Figure 2. Effect of shape parameter c in cantilever beam (187 nodes).

nodal distance. Figure 2 shows the effects of varying c on displacement norm
and energy norm with 187 regularly spaced nodes and the characteristic nodal
distance d is 0.5 here. The results of relevance here are the m = 0 values given
by the open symbols (no polynomial terms) and m = 3 for the effects of (only
linear) polynomial terms. From Figure 2, we find that values of λ ranging from 4
to 7 result in a displacement norm of less than 0.0000315 [i.e. Log(displacement
norm) less than −4.5] and an energy norm of less than 0.01 [i.e. Log(energy
norm) = −2]. It is also seen that polynomial terms do not change optimal values
for parameter c but increase the accuracy for all β values used. Further study
(not shown here) with d reduced to 0.25 resulting in refined nodal pattern gives
similar result that better accuracy is achieved when λ ranges from 4 to 7. The
beam problem with an irregular node distribution as shown in Figure 1(b) was
also analysed. After several calculations using different irregular nodal patterns,
we found that the accuracy is more sensitive to the minimum nodal distance
dmin. In this case, dmin = 0.167 is used as the characteristic nodal distance, one
has good results for λ ranging from 4.1 to 7.6 which is remarkably consistent
with the values extracted from the cases with regular nodes.

5. CONCLUSION

The selection of shape parameters of MQ in the Heaviside weighted MLPG
method has been presented. For any given value of β, the higher the parameter
c, the greater the condition number. However, if the condition number becomes
too high it may result in unstable solutions. The preconditioning developed by
Ling and Kansa [6] may provide better solution of the present method, which is
under investigation. The effect of polynomial terms has also been studied and
it has been found that the accuracy can be increased substantially, and there is
minor effect of polynomial terms on the selection of the parameter c. In this
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research we assume the problem domain is represented by properly scattered
nodes, i.e. the nodal pattern and the ratio between the maximum nodal distance
and the minimum nodal distance are reasonable. Favorable accuracies were
found for c values in the range of 5d–7d, and c = 6d is recommended for
two-dimensional solids.
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Abstract The aim of this research is to investigate the effect of basis functions order,

on the error norm, in EFG method. For this purpose, a cantilever elastic beam

is considered. To get rid of the singularity, the essential boundary conditions,

based on analytical solution, are applied by using both Lagrange Approach and

Penalty Function, separately. In this research, the effect of some parameters like

radius of support, order of basis functions, number of points within the domain

of influence and density of background mesh on the computational error has

been investigated. The sensitivity of the accuracy criteria, i.e. energy norm and

displacements, corresponding to the different values of penalty factor and also

the order of basis functions has been examined.

Keywords: EFG method, basis functions order, essential B.C., Penalty Function.

1. INTRODUCTION

Finite Element Method (FEM) is robust and has been thoroughly developed
for many practical engineering problems related to solids and structures, as
well as fluid flows. However, there are some difficulties with this method. A
close consideration of these problems reveals that the root of these difficulties
is in using elements, which are the building block of FEM. Therefore, the idea
of eliminating the elements and hence the mesh has been proposed, in which
the domain of the problem is represented by a set of scattered nodes (regular or
irregular). Element Free Galerkin method (EFG) is one of the most important
methods, developed on Diffuse Element Method (DEM) by Belytschko [1].
DEM was originated by Nayroles [2]. In EFG method, MLS approximation is
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employed for constructing the shape functions [3]. Galerkin weak form is used
to develop the discretized system equations. In using EFG method, essential
boundary conditions cannot be enforced directly and easily. For overcoming
this problem, some techniques such as Lagrange Multiplier Approach (LMA)
or Penalty Function are used. In most published papers, for example [2–5],
the use of LMA and also first order basis functions are emphasized. In this
work, the main purpose is to investigate the effect of increasing the order of
basis functions on errors. As a numerical example, a cantilever elastic beam
is considered. To impose essential boundary conditions, Penalty Function and
LMA are implemented separately and alternately for comparing the results to
each other. To evaluate errors, both the deflection of beam at the free end and
Error in Energy Norm criteria have been used for obtaining a better view on
the total error within the domain of problem.

2. MOVING LEAST SQUARE
APPROXIMATION (MLS)

In MLS approximation, a set of points in the vicinity of a selected node is
used to approximate field variable(s) at that point. For this purpose, a set of linear
independent functions is used to make the local approximation around the cen-
tral point. These series of functions, called basis functions, are usually selected
from complete order polynomials. Selecting proper weight function and also
basis functions are two essential items in MLS approximation. Weight function
is selected so that at a limited domain around the nodes, called the domain of
influence, to be non-zero. The domain of influence can be either circular or
rectangular. In this paper, circular support along Cubic Spline weight functions
are used to produce the shape functions. In MLS technique, the unknown coeffi-
cients of the basis functions are computed by minimizing the difference between
the approximated values of the field function and the nodal parameters [3, 4].

3. ENFORCING BOUNDARY CONDITIONS
IN EFG METHOD

As mentioned above, in EFG method MLS approximation is used to form
shape functions. These shape functions do not satisfy Kronecker Delta func-
tion properties. This problem arises some difficulties in directly enforcing the
essential boundary conditions. For removing this problem the following solu-
tions are usually suggested:

A. Applying the Constrained Galerkin Weak Form by using Lagrange Multi-
plier Approach [1, 4].
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Figure 1. Cantilever beam. VA = Vertical displacment at end (A).

B. Applying the Constrained Galerkin Weak Form by using Penalty Function
[5, 6].

Each of above techniques can be used to result in the discretized system equa-
tions. EFG method, like the other Mesh Free methods, uses a set of nodes
scattered within the problem domain as well as sets of nodes scattered on the
boundaries of the domain to represent the problem domain and its boundaries.
For this aim, the shape functions, obtained by MLS approximation, are sub-
stituted in to the Constrained Galerkin Weak Form. By using EFG method,
therefore partial differential governing equations can be approximated by a set
of algebraic equations for each node. The system of algebraic equations for the
whole problem domain can be formed by assembling sets of algebraic equations
for all integral points [4, 5].

4. NUMERICAL EXAMPLE

In this paper, a shear force with parabolic distribution is enforced at the
free end of a cantilever beam. All used parameters are shown in Figure 1. The
analytical solution of this problem has been given in [4]. To apply the EFG
method for this problem, a uniform rectangular background mesh has been
used while a monotonic sample point distribution is adapted to it. Actually,
increasing the number of nodes causes the density of background mesh, to be
increased as well.

5. RESULTS AND DISCUSSION

In this paper, the penalty factor (P.F.) in X and Y direction is considered to
have the same value. To obtain a dimensionless value of Error in Energy Norm
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Figure 2. Error percent of energy norm v.s. penalty factor for different orders.

criterion, the following formula is used:

Error Percent of Energy Norm

=
{∫

�

(εNum − εExact)TD(εNum − εExact)

(εExact)TDεExact
d �

}1/2

× 100 (1)

According to the obtained results, the following cases are concluded:

1. As shown in Figure 2, increasing the order of the basis function decreases
the sensitivity of responses relative to changes in penalty factor and also
increases the accuracy of solution.
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Table 1. Effect of basis functions order on error percent of VA (3 < Ratio < 6).

Order 1 2 3

55 nodes (5 × 11) Minimum Error Percent 5.5E-1 5.2E-4 6.8E-5

Average Error Percent 8.3E-1 6.5E-2 2.3E-2

85 nodes (5 × 17) Minimum Error Percent 8.6E-1 1.4E-3 6.5E-5

Average Error Percent 9.8E-1 3.2E-2 2.3E-3

175 nodes (7 × 25) Minimum Error Percent 1.0E0 7.3E-4 1.1E-6

Average Error Percent 1.0E0 1.7E-2 1.4E-3

2. According to Figure 3a and b, by increasing the order of basis function, it is
possible to obtain the maximum available accuracy. This result is achieved
in a less support radius ratio. With selecting a proper value for penalty factor,
the accuracy of solution is increased and converges to the ones corresponding
to the Lagrange Multiplier Approach.

3. As shown in Table 1, by increasing the order of the basis function, it is
possible to obtain a high accuracy with rather less nodes. For a better under-
standing, the Table 2 in [4] can be compared with the Table 1.
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AN ADAPTIVE MESHFREE COLLOCATION
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NONLINEAR PROBLEMS
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Abstract In this paper, an adaptive algorithm using meshfree strong-form collocation meth-

ods for nonlinear partial differential equations is proposed. The meshfree method

uses polynomial point interpolation method and radial point interpolation method

to form shape functions, and applicable for both static and dynamic problems.

The adaptivity of the scheme relies on rules of both refinement and coarsening

of scattered nodes. An error estimation based on solution interpolation is used

for static and time-dependent partial differential equations. The nodal refinement

scheme in each adaptive step is performed using Delaunay triangulation and

Voronoi diagram. The numerical examples confirm the good performance of the

present adaptive meshfree collocation method.

Keywords: meshfree methods, adaptive methods, radial basis functions.

1. INTRODUCTION

Meshfree methods have been proposed and achieved remarkable progress
in recent years [1, 2]. As its name implies, meshfree methods evaluate field
variables entirely based on a group of discrete nodes and require no pre-
defined nodal connectivity. In meshfree methods, nodes in the problem do-
main are unstructured. They can be inserted, moved or deleted conveniently—
this advantage makes these methods extremely attractive for adaptive
analysis.

There are some adaptive meshfree methods have been developed so far.
For example, Liu [1] has proposed an adaptive procedure based on weak-form
meshfree methods for static problems. Behrens et al. [3, 4] have developed
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an adaptive meshfree method based on strong form and characteristic line
approach for dynamic problems. In this paper, we present a general adaptive
meshfree method based on strong-form formulation for both static and dynamic
problems. The algorithm uses a meshfree point collocation method and radial
basis functions created using nodes in local support domains. Error estimation
is performed based on solution interpolation at each step to adaptively modify
nodes at each step. Numerical examples are presented to demonstrate the present
procedure.

2. RADIAL POINT INTERPOLATION
METHOD (RPIM)

Consider a field function u(x) defined in a domain �, which is represented by
a set of N nodes at xi (i = 1, 2, . . . , N ). It is assumed that only the surrounding
nodes in the local domain around the point xQ have effects on u(x). This local
domain is called the support domain of xQ . RPIM interpolates u(x) using its
values at nodes in it local support domain and radial basis functions augmented
with polynomial reproduction in the following form

uh(x, xQ) =
n∑

i=1

ri (x)ai +
m∑

j=1

p j (x)b j = rT (x)a + pT (x)b (1)

where ri (x) and p j (x) are, respectively, radial and monomial basis functions of
coordinates x; n is the number of nodes in the local support domain of xQ ; m
is the number of selected monomial terms. m = 3 is used to construct shape
function with linear polynomial reproduction. There are a number of radial
basis functions. In this paper, we use two radial basis functions:

Thin plate spline (TPS): ri (x, y) = rη (2)

Logarithm thin plate spline (LTPS): ri (x, y) = rη log r (3)

Follow the standard procedure described in Section 5.7 in the meshfree method
book by Liu [1], we arrive at

uh(x) = Φ(x)Us (4)

where Φ(x) is the matrix of shape functions, and Us is the nodal values for all
the nodes in the support domain.

Performing simple collocation at all nodes in the problem domain using
Equation (4), we finally obtain

KU = F (5)
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Figure 1. Number of nodes at each iteration (left), final nodal distribution (middle) and the error

L∞ at each iteration (right).

where K is the global stiffness matrix, U = {u1, u2, . . . , uN }T is the nodal
values for all the nodes in the entire problem domain, and F is the nodal ‘force’
vector. Since local support domains are used, the matrix K is sparse and banded.

Solving Equation (5), one can obtain the values of the field variable at all
the nodes.

3. ADAPTION RULES

The adaptive algorithm uses the following error estimate based on solution
interpolation to perform nodes coarsening and refinement at each step [4].

ηi =
∣∣∣uN̄

i − ui

∣∣∣ (6)

where ui is the value of a field variable xi ; uN̄
i is the value of the field variable

obtained by an interpolation using nodal values at the nodes in the domain
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excluding node i , i.e., N̄ ≡ N\ {xi } . We note that, if N̄ ≡ N , then ηi ≡ 0. In
addition, the value η will also vanish whenever u is linear around x.

In order to balance the accuracy of the solution and the computational cost,
we add new nodes into regions where value of η is large (refinement), and
remove nodes from regions where value of η is small (coarsening). In our
refinement procedure, new nodes are either added directly on Voronoi points
or on the middle of edges or centre of Delaunay triangles.

4. NUMERICAL EXAMPLES

Example 1. (‘High gradient’ 2D problem)
We consider the following Poisson’s equation

∇2u(x, y) = [−400 + (200x − 100)2 + (200y − 100)2
]

e−100(x−0.5)2−100(y−0.5)2

(7)
defined in the square domain � ≡ [0, 1] × [0, 1], with boundary condition of
u(x, y) = 0 on all boundaries.

We use TPS radial basis function in this problem. The initial nodes are
at 10 × 10 regularly distributed. At each refinement, we consider to refine up
to 5% the number of available nodes. No coarsening rule was applied and
the refinement rule is based on Voronoi diagram. The stopping criteria is set
at L∞ ≤ 1 × 10−2, which normally can be obtained by a 729 nodes regularly
distributed using the same meshfree method. The final solution is achieved after
10 iterations and L∞ = 1 × 10−2. The final mesh contains only 579 irregular
distributed nodes.

Example 2. (Burger’s equation and Buckley–Leverett equations)
Burger’s equation and Buckley–Leverett equation have the form

∂u

∂t
+ ∇ f (u) = 0 (8)

the flux term f (u) is defined as f (u) = 1
2
u2 · r and f (u) = u2

u2+μ(1−u)2 · r
(Burger equation and Buckley–Leverett equation, respectively), and r is the
direction of the flux. These problems have also been studied by Behrens et al.
[4]. For these problems, we prefer to work with an alternative form, so that our
solution will be entropy-satisfied.

∂u

∂t
+ ∇ f (u) = ε · �u (9)

where ε > 0 is the artificial viscosity coefficient. We prefer to work with ε =
8 × 10−3 for Burger equation and ε = 4 × 10−3 for Buckley–Leverett equation.
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Figure 3. Solutions and nodal distribution of Buckley–Leverett equation at t = 15τ , 66τ , 132τ ,

264τ .

The LTPS radial basis function is used for these problems. We note that
more nodes were added in the model in order to capture the moving shock. The
result is compared with reference solutions from Behrens et al. [4] and good
agreed is observed.

Due to the appearance of the shock wave, regular nodal distribution has
failed to give acceptable solutions for both above examples. The solution is
unstable after a first few steps after the shock wave has been formed. We can
also use a very finer model for these problems, but the cost of computation for
such model is very expensive.

5. CONCLUSIONS

The developed adaptive procedure using strong-form meshfree collocation
methods gave very good solutions for high-gradient problem (static problems)
and moving-shock problems (time-dependent problems). Numerical examples
confirm the good performance of the present procedure.

REFERENCES

1. G.R. Liu (2002), Meshfree Methods: Moving Beyond the Finite Element Method. CRC
Press.

2. G.R. Liu and M.B. Liu (2003), Smooth Particle Hydrodynamics: A Meshfree Particle
Method. World Scientific Publishing, Singapore.
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Abstract The meshless natural neighbour method (MNNM) is a truly meshless method,

which does not need the Delaunay tessellation of the whole domain to construct

the Laplace interpolation. At the same time, some difficulties in other meshless

methods, such as the imposition of essential boundary conditions, the treatment

of material discontinuities and the choice of weight functions are avoided. The

governing equations of elasto-plastic for MNNM are obtained to apply the MNNM

to the analysis of two-dimensional elasto-plastic problems. The numerical results

indicate that the theory and programmes are accurate and effective.

Keywords: meshless, natural neighbour, natural element, elasto-plastic analysis.

1. INTRODUCTION

Meshless methods are newly developed numerical methods in the last
decade. As the approximation/interpolation functions are constructed in terms
of scattered nodes, they do not need any mesh structures in the formulation.
Because of the mesh-free property, some problems brought by mesh generation,
mesh distortion and mesh motion are avoided. More and more engineers and
computational mechanics researchers have paid their attentions to this kind of
methods.

According to the definition of the shape functions, meshless methods can be
mainly grouped into three classes: meshless methods based on kernel function
approximation [1–4,], meshless methods based on least square approxima-
tion [5–13], and meshless methods based on natural neighbour interpolation
[14–20]. In addition, there are some more general meshless methods such as
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meshless method based on collocation with radial basis function developed by
Zhang et al. [21]. They are not ranged into the classification, but the aforemen-
tioned three types of meshless methods can be deduced from them.

The representative method of the first class of meshless methods is the
Smooth Particle Hydrodynamics (SPH) [1], which was proposed by Lucy and
Gingold in 1977. This method has high computational efficiency, but as a result
of collocation method used in the discretization of equilibrium equation, the
solution of SPH is instable. To improve the stability of SPH, Liu et al. developed
a modified kernel function method, the Reproducing Kernel Particle Method
(RPKM) [2].

The family of meshless methods based on least square approximation has
the most members, which is represented by the Element-free Galerkin Method
(EFG) developed by Belytschko et al. [5]. The family also includes the Finite
Point Method (FPM) [9], Hp Clouds method [10], and Local Boundary Integral
Equation method (LBIE) [11] etc. These methods have better compatibility
and stability. But due to more time consuming, this kind of methods are not so
preferable as SPH-like methods in nonlinear large deformation analysis field.

The above-mentioned two classes of methods are the most popular meshless
methods at present. Compared to conventional numerical methods (such as
FEM), they have many advantages. Unfortunately, many difficulties arise in the
computational time, the enforcement of boundary conditions and the treatment
of discontinuities, which limit the research within theoretic scope.

The third type of meshless methods are based on the natural neighbour
concept to define the shape function. The representative one is Natural Element
Method (NEM) proposed by Braun and Sukumar [13, 14]. By constructed in
meshless way, the natural neighbour shape function shares several advantanges
of the FEM, thus avoids the drawbacks of the previous meshless methods.
However, the Delauney tessellation of the distinct points in the whole analysis
region is needed to construct the natural neighbour shape function, NEM can
hardly be recognized as a meshless method. There are fewer research papers
about NEM, and it is not as well known as some other meshless methods, such
as EFG and SPH.

Recently, a truly meshless method, Meshless Natural Neighbour Method
(MNNM) was proposed by our research group. This method adopts the means
similar to EFG to seek the natural neighbour points of the integral points and the
Delaunay tessellation of the whole region is avoided consequently. Therefore,
its shape function takes full advantages of natural neighbour shape function
and almost all the advantages of EFG. The objective of the present work is to
apply the MNNM to the analysis of two-dimensional elasto-plastic problems.
The governing equations of elasto-plastic for MNNM are described, and results
of several standard examples are compared with FEM or analytical solutions
to verify this.
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2. THEORY OF MESHLESS NATURAL
NEIGHBOUR METHOD

2.1 Search for natural neighbours

In order to solve the differential equations of boundary value problems in
MNNM, a set of distinct nodes N = {n1, n2, · · ·, nm} should first be set up at
the arbitrary geometry shape of domain � (see Figure 1).

Suppose that sample point p(x) is an arbitrary numerical integral point of
domain �, the algorithm for the neighbour-search in MNNM is based on the
locally Delaunay triangles. Let the initial influence nodes M = {m1, m2, . . .}
of the point p be confined within the dashed lines of the square as shown in
Figure 2.

The next step is to directly determine the natural neighbours of the point p
by using the empty circumcircle criterion—if DT(nI , n J , nK ) is any Delaunay
triangle of the nodal set N, then the circumcircle of DT contains no other nodes
of N. Find the node 1 which is the nearest to the sample point p from the nodal
set M. Starting with edge p − 1 and using the empty circumcircle criterion, we
form a set of locally defined triangles {p, 1, 2}, {p, 2, 3}, {p, 3, 4}, {p, 4, 5},
and {p, 5, 6} , where the nodes 1–6 are selected from the nodal set M in Figure 2.
Now, the nodes 1–6 are just the natural neighbours of the point p..

The natural neighbours of the given point p are unique after the nodal set
N has been set up at the domain �. The size of the square edges 2r in Figure 1
will not and cannot influence the definition of the natural neighbours of point
p. The purpose of the restriction of the influence nodes to the square region is
to reduce the time for searching for the natural neighbours. Hence, the size of

r p(x)

Figure 1. Discrete model of region � and its arbitrary integrate point p(x).
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Figure 2. Natural neighbour of the point p.

the length r must be large enough to contain all the natural neighbours of point
p, and should be small enough to save the time consume of the neighbour-
search. Of course, the nodal set N of domain � can be regarded as the initial
influence nodal set M of the point p, but the neighbour-search will be much
more expensive and can not be afforded.

2.2 Laplace interpolation

Natural neighbours provide a means to define a robust approximation for
scattered nodes in � according to the relative spatial density and position of
nodes. Silbson and Laplace (non-silbson) natural neighbour interpolations are
differently used in NEM and NNM. In 2D, the Laplace shape function defined
by the ration of length measures [16], whereas the Silbson shape function is
based on the ration of areas [14]. The compuational cost and algorithm are
more favorable in Laplace interpolant than in Silbson interpolant. In this paper,
we choose Laplace interpolant to develop the MNNM.

In Figure 3,C12p, C23p, C34p, C45p, and C61p are the circumcentres of the
triangles {p, 1, 2}, {p, 2, 3}, {p, 3, 4}, {p, 4, 5} , and {p, 5, 6} , respectively.
Connecting the points

{
C12p, C23p, C34p, C45p, C61p

}
by sequence, we can

form the voronoi cell of the point p. If the point p(x) has n natural neigh-
bours (6 neighbours in Figure 3), then the Laplace shape function for node i is
defined as:

φi (x) = αi (x)
n∑

j=1

α j (x)

, α j (x) = s j (x)

h j (x)
, x ∈ R2 (1)
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Figure 3. Computation of Laplace interpolation of the natural neighbours.

Where α j (x) is the Laplace weight function, s j (x) is the length of the voronoi
edge associated with point p and node i, and h j (x) is the Euclidean distance
between point p and node i (Figure 3).

The derivatives of the coordinates are obtained by differentiating Equation
(1):

�i, j (x) = αi, j (x) − �i (x)α, j (x)

α(x)
,

α(x) =
n∑

k=1

αk(x), α, j (x) =
n∑

k=1

αk, j (x) (2)

The global forms of displacement approximations uh(x) of point p(x) can be
written as

uh(x) =
n∑

i=1

φi (x)ui (3)

where ui (i = 1, · · ·, n) are the vectors of nodal displacements at the n natural
neighbours of point p, and �i (x) are the shape functions associated with each
node.

By defining of the shape function given in Equation (1), the following
properties are self-evident.

n∑
i=1

�i (x) = 1 x ∈ � (4)

{
0 ≤ �i (x) ≤ 1
�i (x j ) = δi j

x ∈ � (5)
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From Equation (5), it can be seen that the Laplace interpolation passes through
the nodal values, which is in contrast to most meshless approximations, where
the nodal parameters ui are not nodal displacements. Also, the Laplace shape
function is C0 at nodal locations as well as on the boundary of the support. These
properties make the Laplace interpolant the only meshless data interpolation
that will exactly satisfy the (linear) essential boundary conditions. A more
detailed discussion of the Laplace interpolation and its application to PDEs
can be found in Sukumar et al. [16] and the references therein.

It is noted that if the position of the point p is the same as an arbitrary
node i, the algorithm in Equation (1) will fail because of the Euclidean distance
h j (x) = 0 and the Laplace weight function αi (x) = ±∞. This situation never
arises when the triangular finite elements are used as integral cell so that all
integration points are interior to the triangles. But when the regular cells similar
to the EFG method are used to the integral scheme, this computational difficulty
is encountered. A generally applicable method to overcome this numerical
difficulty is to randomly move nodes by a small distance (e.g.1e–10) before
computing.

3. THE INCREMENT METHOD FOR
ELASTO-PLASTIC ANALYSIS

When the elasto-plastic material has reached the plastic state, the stress–
strain relationship is,

{dσ } = [D]ep{dε} (6)

This relationship is nonlinear. The step-up loading method can be chosen to
linearize the nonlinear problem. At a certain stress and strain level, another
loading will produce stress increment {	σ } and strain increment {	ε}. As
long as the incremental load is small enough, the Equation (6) can be expressed
approximately as follows,

{	σ } = [D]ep{	ε} (7)

in which [D]ep is elasto-plastic matrix, e.g., [D]ep = [D]e − [D]p, which is
only dependent on the stress level at the beginning of loading.

The common solution methods of elasto-plastic problem include incremen-
tal tangent stiffness method, incremental initial stress method and incremental
initial strain method. As the time consume is longer than conventional finite
element method, the incremental initial stress method is used in this paper to
avoid generating and decomposing of the stiff matrix in every iterate step. In
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this way, the stiff matrix which is generated and decomposed at the beginning
of solution, can maintain unchanged in the subsequent increments.

4. DISCRETE EQUATIONS

We consider the two-dimensional problem with small displacements on the
domain � bounded by 
. The equilibrium equation and boundary conditions
are given as follows:

∇ · σ + b = 0, in � (8a)

σ · n = t̄, on 
t (8b)

u = ū, on 
u (8c)

where σ is the stress tensor which corresponds to the displacement filed u; b is
the body force vector; the superposed bar in Equations (8b) and (8c) denotes
prescribed boundary values, and n is the unit normal to the domain.

The variational form of Equation (8) is posed as follows∫

t

δu · td
 −
∫

�

δε · σd� +
∫

�

δu · bd� = 0 ∀δu ∈ H 1
0 (9)

The discretized system can be obtained by substituting Equation (1) into (9)

K · D = f (10)

where

KIJ =
∫

�

BT
I · DE · BJd�

∫
(11)

fI =
∫


t

�I · td
 +
∫

�

�I · bd� (12)

where DE is the elasticity matrix, BI is the strain matrix.
From the above deducation, we can know that the numerical results obtained

by NNM [16] and the proposed MNNM are the same because the algorithm
for the neighbour-search is the only difference in NNM and MNNM.

5. NUMERICAL EXAMPLES

The MNNM is coded in standard C++. Cases are run in order to examine
the MNNM in two-dimensional elastostatics.
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Figure 4. Computational model and plastic area.

5.1 Thick cylinder

Consider an axially restrained thick cylinder of inside diameter a = 10 mm,
and outside diameter b = 20 mm, which is subjected to internal pressure p = 12
kPa. The material is perfectly elasto-plastic with Young’s modulus E = 85570
kPa and Poisson’s ratio μ = 0.3. The Von-Mises yield criterion is adopted and
the tensile yield limit σs is equal to 10 kPa. The problem statement is given in
Figure 4.

The comparison in Figures 5 and 6 show that, with the same nodes distribu-
tion, the results obtained by MNNM are in good agreement with the analytical
solutions and much better than those obtained by triangular FEM.
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Figure 5. Comparison of normal stress.
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Figure 6. Comparison of shear stress.

Figure 7. Computational model and plastic area for cantilever beam problem.

5.2 Cantilever beam

The second example considered here is a rectangle cantilever beam of length
l = 40 m and height h = 10 m as shown in Figure 7. The beam is fixed at one end
and subjected to concentrated load P = −11k N at the free end. The material is
perfectly elasto-plastic and obeys the Von-Mises yield criterion. The material
parameters are E = 86670 kPa, μ = 0.3 and σs = 10 kPa. With the same nodes
distribution, the comparison of σx , the normal stress in x direction, is shown
in Figure 8.

6. CONCLUSION

The Meshless Natural Neighbour Method, which is a truly meshless method
similar to EFG, can treat material discontinuities conveniently and keep some
advantages of FEM. In this paper, by combining MNNM and incremental ini-
tial stress method, a general C++ programme has been worked out and ap-
plied into elasto-plastic analysis, in which perfectly elasto-plastic model and
Von-Mises yield criterion is adopted. Although only several simple examples
were presented in this chapter, it is expected that the proposed method can be
used to solve some more complicated problems in geotechnical engineering,
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as well as problems with large deformation such as landsliding and pile
penetration.
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18. S.R. Idelsohn, E. Oñate, N. Calvo and F.D. Pin (2003), The meshless finite element method.
International Journal for Numerical Methods in Engineering, 58, pp. 893–912.

19. E. Cueto, N. Sukumar, B. Calvo, M.A. Martı́nez, J. Cegoñino and M. Doblaré (2003),
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A MESHLESS LOCAL PETROV–GALERKIN
METHOD FOR ELASTO-PLASTIC PROBLEMS

Y.B. Xiong1, S.Y. Long1, K.Y. Liu1, and G.Y. Li2
1Department of Engineering Mechanics, Hunan University, Changsha, Hunan, China 410082
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Abstract A meshless local Petrov–Galerkin method (MLPG) is presented for solving the

elasto-plasticity problem in the paper. It is a truly meshless method using the mov-

ing least square (MLS) approximation as a trial function and the MLS weighted

function as a test function in the weighted residual method. The incremental

tangent stiffness method is applied in computation. Numerical examples show

that the local Petrov–Galerkin method is applicable and effective for solving the

elasto-plasticity problem.

Keywords: elasto-plastic problem, MLPG, MLS, increment tangent stiffness method.

1. INTRODUCTION

Atluri and Zhu [1] originally proposed a MLPG method which is one of
meshless methods. The MLPG method requires only nodal information and
no element connectivity is needed, which leads to a simple and convenient
preprocess. The MLPG method has many advantages over traditional numer-
ical methods such as FEM and BEM. It is attracting many researches’ at-
tention. Atluri and Zhu [1] solved Laplace equations and Poisson equations,
and Long [2, 4] solved the elasticity problems and thin plates by the MLPG
method. In this paper, the MLPG method is extended to solve elasto-plastic
problems.
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2. MLPG FORMULATIONS FOR
ELASTO-PLASTIC PROBLEMS

The meshless local Petrov–Galerkin integral equation is given as follows
for 2-D geometrically elasto-plastic problems∫

�s

σ̇ijvi, j d� −
∫

�su

ṫivi d� + α

∫
�su

u̇ivi d�

=
∫

�st

¯̇t ivi d� + α

∫
�su

¯̇uivi d� +
∫

�s

ḃivi d� (1)

where σ̇ij is the rate of stress tensor and vi the test function. The quantity α

is a penalty factor used to impose essential boundary conditions, whose value
is usually suggested to be 105–108 times of Young’s modulus. ṫ i is the rate of
surface traction and u̇i the velocity. The subdomain �s is a circle of radius
r0 for a two-dimensional problem. The local boundary ∂�s is further divided
into three parts and ∂�s = Ls ∪ �su ∪ �st, where no boundary conditions are
specified on Ls , tractions are prescribed on �st and displacements are prescribed
on �su.

Using MLS interpolation function [5] to approximate the velocity u̇h

(x) = ∑n
i=1 �i (x) ˆ̇ui , the discretization equation can be written in matrix

form

n∑
j=1

K Ij
ˆ̇u j = ḟ I (2)

where

K Ij =
∫

�s

GT
I S j dΩ + α

∫
�su

W Iϕ j d� −
∫

�st

W I ψ j d� (3)

fI =
∫

�s

W I ḃ d� +
∫

�st

W I ṫ d� + α

∫
�su

W Iu̇ d� (4)

where,

G I =
⎡
⎣w I,x 0

0 w I,y

w I,y w I,x

⎤
⎦, W I =

[
w I 0
0 w I

]

�i (x) =
[

ϕi (x) 0

0 ϕi (x)

]
, Si = DBi = E

1 − v2

⎡
⎢⎢⎣

ϕi,x vϕi,y

vϕi,x ϕi,y

1 − v

2
ϕi,y

1 − v

2
ϕi,x

⎤
⎥⎥⎦
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ψi = nSi = E

1 − v2

⎡
⎢⎣ n1ϕi,x + 1 − v

2
n2ϕi,y n1vϕi,y + 1 − v

2
n2ϕi,x

n2ϕi,x + 1 − v

2
n1ϕi,y n2ϕi,y + 1 − v

2
n1ϕi,x

⎤
⎥⎦

(5)

During the solving process, the incremental tangent stiffness method [6] is
adopted.

3. NUMERICAL EXAMPLES

Example 1. A cantilever beam is now studied with a parabolic-shear end
load, as shown in Figure 1. The geometric and material parameters are given
as: l = 8 m, h = 1 m, one unit thickness, P = 1 N, E = 105 Pa, μ = 0.25,
σs = 25 Pa. The linear hardening model is used here and the material be-
haviour obeys the V. Mises yield condition with Et = 0.2E and H ′ = E Et/

(E − Et ). 102(17 × 6) nodes in the global domain are regularly distributed. In
MLS approximation the cubic basis function and the weighted function recom-
mended by the authors [3] are employed, and the radius of a support domain is
equal to 4.0. The quartic spline weighted function is used as the test function in
the weighted residual method. The radius of a local subdomain is equal to 0.1
m. 10 gauss points and 36(6 × 6) gauss points are used on local boundary ∂�s

and in local subdomain �s , respectively. The MLPG results for part of nodal
displacements are listed in Table 1 and compared with the finite element method

Table 1. Vertical displacements of a cantilever

beam subjected to a concentrated load at the

free end.

Coordinate (m) FEM (mm) MLPG (mm)

(2.0, 0.0) 2.947 2.906

(3.5, 0.0) 7.807 7.791

(5.0, 0.0) 13.926 13.824

(6.5, 0.0) 20.854 20.546

(8.0, 0.0) 28.183 28.227

y

x

P

h

l

Figure 1. A Cantilever beam subjected to a concentrated force at the free end.
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Table 2. Vertical displacements of a simply

supported beam subjected to a uniformly

distributed load.

Coordinate (m) FEM (mm) MLPG (mm)

(1.0, 0.0) 3.911 3.882

(2.5, 0.0) 8.657 8.568

(4.0, 0.0) 10.601 10.547

(5.5, 0.0) 8.657 8.568

(7.0, 0.0) 3.911 3.882

(FEM) solution computed with the same nodes. Table 1 shows that the MLPG
and the FEM results virtually coincide. Figures 3 and 4 display respectively
the contours of effective stress at the concentrated load P = 1 N computed by
MLPG method and FEM. The numbers in the contours of the figures are the
value of effective stress. The figures indicate that the difference between the
MLPG and the FEM results are small. The relative error of effective stress is
less than 2.73%. The situation can be improved by increasing the number of
nodes. Example 2: A simply supported cantilever beam is discussed that under
a uniformly distributed load q = 1 N/m, as shown in Figure 2. All data are
the same as Example 1. The MLPG results for part of nodal displacements
listed in Table 2 are compared with the FEM solutions computed with the same
node distribution. Table 2 again shows that the MLPG and the FEM results
agree well. Figures 5 and 6 display, respectively, the contours of effective stress

qy

x

h

l

Figure 2. A simply supported beam subjected to a uniformly distributed load.

Figure 3. The contour of the effective stress by MLPG method at the concentrated load

P = 1 N.
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Figure 4. The contour of the effective stress by FEM at the concentrated load P = 1 N.

Figure 5. The contour of the effective stress by MLPG method at the uniformly distributed load

q = 1 N/m.

Figure 6. The contour of the effective stress by FEM at the uniformly distributed load q =
1 N/m.

obtained by MLPG method and FEM. The relative error of effective stress is
less than 2.19%. Similarly the situation can be also improved by increasing the
number of nodes.

4. CONCLUSIONS

In this paper, MLPG is applied to solve elasto-plastic problems. The nu-
merical experiments show that MLPG method is applicable and effective in
solving the elasto-plastic problem and it is easily extended to solve more com-
plex non-linear problems and nonhomogeneous mediums problems.
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PARTICLE-PARTITION OF UNITY
METHODS IN ELASTICITY

Michael Griebel and Marc Alexander Schweitzer
Institut für Numerische Simulation, Universität Bonn, Wegelerstrasse 6, D-53115
Bonn, Germany

Abstract We consider discretizations of problems in elasticity using the particle–partition

of unity method (PUM). We focus on discretization issues and fast solution tech-

niques. Numerical results for applications in two and three dimensions also for

obstacle problems are presented.

Keywords: meshfree method, partition of unity, multi-level solvers, Nitsche’s method.

1. INTRODUCTION

The particle–partition of unity method (PUM) [1–6] is a meshfree Galerkin
method for the numerical treatment of partial differential equations (PDE).
In essence, it is a generalized finite element method (GFEM) which employs
piecewise rational shape functions rather than piecewise polynomial functions.
The PUM shape functions, however, make up a basis of the discrete function
space unlike other GFEM approaches which allows us to construct fast multi-
level solvers in a similar fashion as in the finite element method (FEM).

The paper is organized as follows: In Section 2 we shortly review the con-
struction of PUM spaces, the Galerkin discretization of a linear elliptic PDE
using our PUM as well as the fast multi-level solution of the arising linear
system. Then we present some numerical results with respect to approximation
as well as fast solution techniques in two and three space dimensions obtained
with our PUM for the numerical solution of the Navier–Lamé equations in
Section 2.4. The discretization of constrained minimization problems like the
obstacle problem is the subject of Section 3. Then, some numerical results for
the obstacle problem in two space dimensions are given in Section 3.2. Finally,
we conclude with some remarks.
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2. PARTITION OF UNITY METHOD

In the following, we shortly review the construction partition of unity spaces
and the meshfree Galerkin discretization of an elliptic PDE, see [1, 2] for
details. Furthermore, we give a summary of the efficient multi-level solution
of the arising linear block-system, see [3] for details.

2.1 Construction of Partition of Unity Spaces

In a partition of unity method, we define a global approximation uPU simply
as a weighted sum of local approximations ui ,

uPU(x) :=
N∑

i=1

ϕi (x)ui (x). (1)

These local approximations ui are completely independent of each other,
i.e., the local supports wi := supp(ui ), the local basis {ψn

i } and the order of

approximation pi for every single ui := ∑
un

i ψ
n
i ∈ V pi

i can be chosen inde-
pendently of all other u j . Here, the functions ϕi form a partition of unity (PU).
They are used to splice the local approximations ui together in such a way that
the global approximation uPU benefits from the local approximation orders pi

yet it still fulfils global regularity conditions. Hence, the global approximation
space on � is defined as

V PU :=
∑

i

ϕi V
pi

i =
∑

i

ϕi span
〈{

ψn
i

}〉 = span
〈{

ϕiψ
n
i

}〉
. (2)

The starting point for any meshfree method is a collection of N independent
points P := {xi ∈ R

d | xi ∈ �, i = 1, . . . , N }. In the PU approach we need to
construct a partition of unity {ϕi } on the domain of interest � to define an
approximate solution (1) where the union of the supports supp(ϕi ) = ωi covers

the domain � ⊂ ∪N
i=1ωi and ui ∈ V pi

i (ωi ) is some locally defined approxima-
tion of order pi to u on wi . Thus, the first (and most crucial) step in a PUM
is the efficient construction of an appropriate cover C� := {wi }. Throughout
this paper we use a tree-based construction algorithm for d-rectangular covers
C� presented in [2, 6]. Here, the cover patches wi are products of intervals
(xl

i − hl
i , xl

i + hl
i ) for l = 1, . . . , d. With the help of weight functions Wk de-

fined on these cover patches wk we can easily generate a partition of unity by
Shepard’s method, i.e., we define

ϕi x = Wi (x)∑
wk∈Ci

�
Wk(x)

, (3)
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where Ci := {ω j ∈ C� | ωi ∩ ω j �= ∅} is the set of all geometric neighbors of
a cover patch ωi . Due to the use of d-rectangular patches ωi , the most natural
choice for a weight function Wi is a product of one-dimensional functions, i.e.,

Wi (x) = ∏d
l=1 W l

i (xl) = ∏d
l=1 W(

x−xl
i +hl

i

2hl
i

) with supp (W) = [0, 1] such that

supp (Wi ) = ωi . It is sufficient for this construction to choose a one-dimensional
weight functionW with the desired regularity which is non-negative. The parti-
tion of unity functions ϕi inherit the regularity of the generating weight function
W . Throughout this paper we use a linear B-spline as the generating weight
function W .

In general, a partition of unity {ϕi } can only recover the constant function on
the domain �. Hence, we need to improve the approximation quality to use the
method for the discretization of a PDE. To this end, we multiply the partition
of unity functions ϕi locally with polynomials ψn

i . Since we use d-rectangular
patches ωi only, a local tensor product space is the most natural choice. Here,
we use products of univariate Legendre polynomials as local approximation

spaces V pi
i , i.e., we choose

V pi
i = span

〈{
ψn

i | ψn
i =

d∏
l=1

Ln̂l
i , ||n̂||1 =

d∑
l=1

n̂l ≤ pi

}〉
,

where n̂ is the multi-index of the polynomial degrees n̂l of the univariate

Legendre polynomials Ln̂l
i : [xl

i − hl
i , xl

i + hl
i ] → R, and n is the index associ-

ated with the product function ψn
i = �d

l=1Ln̂l
i .

For the approximation of vector-fields we employ vector-valued shape func-
tions ϕiψ

n
i ; i.e., we simply change the definition of our local approximation

spaces V pi
i = span 〈 �ψn

i 〉 but keep the partition of unity functions ϕ. To this end,
we choose the local vector-valued basis functions

�ψn
i := �ψ ñ,l

i := ψ ñ
i �el

where we simply multiply the scalar functions ψ ñ
i with an appropriate unit

vector �el . In the following we will drop the explicit vector notation and use the
symbol ψn

i also for vector-valued functions.
In summary, we can view the construction given above as follows:

⎛
⎝{xi }

W
{pi }

⎞
⎠ →

⎛
⎝ {ωi }

{Wi }
{V pi

i = span〈ψn
i 〉}

⎞
⎠ →

( {ϕi }
{V pi

i }
)

→ V PU =
∑

ϕi V
pi

i ,

where the set of points P = {xi }, the generating weight function W and the
local approximation orders pi are assumed to be given.
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2.2 Galerkin Discretization

Consider the elliptic boundary value problem

Lu = f in � ⊂ R
d, Bu = g on ∂�′, (4)

where L is a symmetric partial differential operator of second order and B
expresses suitable boundary conditions. The imposition of essential boundary
conditions within meshfree methods is more involved than in the FEM for a
number of reasons and many different approaches have been proposed. We
use Nitsche’s method [7] to enforce Dirichlet boundary conditions. The main
advantages of this approach are that it does not require a second function (or
multiplier) space and that it leads to a positive definite linear system, see [5, 6]
for a more detailed discussion of Nitsche’s method in the PUM context. Here,
we just state resulting weak formulation a(u, v) = l(v) of the simple Poisson
problem

−�u = f in � ⊂ R
d,

u = gD on 	D ⊂ ∂�,

un = gN on 	N = ∂�\	D,

with mixed boundary conditions which reads as∫
�

∇u∇v +
∫

	D

u(βv − vn) − unv =
∫

�

f v +
∫

	D

gD(βv − vn) +
∫

	N

gNv,

(5)

where the subscript n denotes the normal derivative and β is the Nitsche reg-
ularization parameter which depends on the employed PUM space but can be
pre-computed without much additional cost. Finally, for the Galerkin discretiza-
tion of (5) we have to compute the stiffness matrix

A = (A(i,n),( j,m)), with A(i,n),( j,m) = a(ϕ jψ
m
j , ϕiψ

n
i ) ∈ R

and the right-hand side vector

f̂ = ( f(i,n)), with f(i,n) = 〈 f, ϕiψ
n
i 〉L2 =

∫
�

f ϕiψ
n
i ∈ R.

The stable approximation of these integrals is somewhat more involved than
in the finite element method (FEM). Due to the meshfree construction given
above the shape functions ϕiϕ

n
i are piecewise rational functions only so that the

respective integrands have a number of jumps within the integration domain
which need to the resolved. For the stable numerical integration of the weak
form we use a tree-based decomposition scheme together with efficient sparse
grid integration rules, see [2, 8].
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2.3 Multi-level Solution of Resulting Linear System

The product structure of the shape functions ϕiψ
n
i implies two natural block-

partitions of the resulting linear system Aũ = f̂ , where ũ denotes a coefficient
vector and f̂ denotes a moment vector.

1. The stiffness matrix A can be arranged in spatial blocks. A spatial block
Anm corresponds to a discretization of the PDE on the complete domain
� using the trial functions ϕ jψ

m
j and the test function ϕiψ

n
i with fixed n

and m. Here, all blocks Anm are sparse matrices and have the same row and
column dimensions which corresponds to the number of partition of unity
functions ϕi .

2. The stiffness matrix A may also be arranged in polynomial blocks. Here,
a single block Ai j corresponds to a local discretization of the PDE on the
domain ωi ∩ ω j ∩ �. The polynomial blocks Ai j are dense matrices and
may have different dimensions corresponding to the dimensions of the local

approximation spaces V pj
j and V pi

i .

This separation of the degrees of freedom into local approximation functions
ψn

i and partition of unity functions ϕi can be used to define two different multi-
level concepts [3]. Throughout this paper we assume that the stiffness matrix
is given in polynomial block-form and we use the corresponding spatial multi-
level solver developed in [3] for the fast and efficient solution of the resulting
large sparse linear block-system Aũ = f̂ , where ũ denotes a coefficient block-
vector and f̂ a moment block-vector.

In a multi-level method we need a sequence of discretization spaces Vk

with k = 0, . . . , J where J denotes the finest level. To this end we construct
a sequence of PUM spaces V PU

k with the help of a tree-based algorithm de-
veloped in [2, 3]. As a first step we generate a sequence of point sets Pk and
covers Ck

� from a given initial point set P̃ with this algorithm, see Figure 1.
Following the construction given in Section 2.1 we can then define an asso-
ciated sequence of PUM spaces V PU

k . Note that these spaces are nonnested,
i.e., V PU

k−1 �⊂ V PU
k , and that the shape functions ϕi,kψ

n
i,k are non-interpolatory.

Thus, we need to construct appropriate transfer operators I k
k−1:V PU

k−1 → V PU
k and

I k−1
k : V PU

k → V PU
k−1. With such transfer operators I k

k−1, I k−1
k and the stiffness

matrices Ak coming from the Galerkin discretization on each level k we can then
set up a standard multiplicative multi-level iteration to solve the linear system
AJ ũ J = f̂ J . Our multi-level solver utilizes special localized L2-projections
for the interlevel transfers and a block-smoother to treat all local degrees of
freedom ψn

i within a patch ωi simultaneously. Namely, we use the so-called

local-to-local L2-projections as prolongation operators I k−1
k for scalar as well

as vector-valued problems. For further details see [3, 6].
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Figure 1. Point sets Pk and covers Ck
� for k = 10, . . . , 8 generated for an initial graded Halton

(2,3) point set P̃ with Ñ = 678 points. The number N of generated points on the finest level

J = 10 is N = 1293.

2.4 Numerical Results for Linear Elasticity

In the following we consider the numerical solution of the Navier–Lamé
equations

−μ�u − (λ + μ)∇(∇ · u) = f in � ⊂ R
d, d = 2, 3

together with suitable boundary conditions u D = gD on 	D ⊂ ∂� and
σ(u).n = gN on 	N = ∂�/	D where σ(u) := λ∇ · uI + 2με(u) denotes the
symmetric stress tensor and ε(u) := 1

2
(∂iU j + ∂ j ui ) the strain tensor asso-

ciated with the displacement field u = (ui ), i = 1, . . . , d. The parameters λ

and μ are the so-called Lamé parameters. They are related to the Poisson
ratio ν and the Young modulus E of the material via λ = Ev

(1+v)(1−2v)
and

μ = E
2(1+ν)

. The associated bilinear form arising from Nitsche’s approach is

given by

a(u, v) =
∫

�

σ(u) : ε(v) +
∫

	D

2μβεu · v + λβdiv(u · n)(v · n)

− ((σ(u) · n) · v + u · (σ(v) · n))
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Table 1. Convergence rates ρ
ν,ν
1 for the Vv,v-cycle and convergence rates ρ

ν,ν
2 for the

Wv,v-cycle with v = 2, 3, 4 in two and three dimensions.

N J p Dp ρ
2,2
1 ρ3.3

1 ρ
4,4
1 ρ

2,2
2 ρ

3,3
2 ρ

4,4
2

16,384 7 1 3 0.502 0.438 0.388 0.240 0.182 0.150

65,536 8 1 3 0.503 0.437 0.389 0.229 0.170 0.141

262,144 9 1 3 0.504 0.437 0.389 0.221 0.162 0.136

1,048,576 10 1 3 0.505 0.437 0.389 0.217 0.158 0.134

512 3 1 4 0.769 0.712 0.678 0.549 0.415 0.398

4,096 4 1 4 0.741 0.714 0.677 0.367 0.268 0.222

32,768 5 1 4 0.735 0.706 0.675 0.285 0.221 0.195

262,144 6 1 4 0.726 0.694 0.671 0.261 0.202 0.175

and the linear form on the right-hand side by

l(v) =
∫

�

f · v +
∫

	N

gN · v +
∫

	D

2μβεgD · v + λβdiv(gD · n)(v · n)

− gD · (σ(v) · n).

We measure the convergence of our multi-level solver via a simple test
problem, where we use a sequence of uniform point sets in the domain � =
[−1, 1]d for d = 2, 3. In this example we use the parameters E = 1 and ν = 1

3
for the material and the boundary conditions u = 0 on 	D := {x ∈ ∂� : x0 =
−1},σ(u) · n = 0 on 	N1 := {x ∈ ∂� : x1 = −1 or x1 = 1}, and σ (u) · n =
(0, −1)T . In two dimensions the finest discretization is based on N = 1,048,576
points and employs dof = 6,291,456 degrees of freedom, in three dimensions
the finest discretization uses N = 262,144 and dof = 1,048,576.

In Table 1 we give the measured convergence rates ρ for our multi-level
solver using the V - and W-cycle (ρ1 and ρ2 respectively) with 2, 3 and 4
smoothing steps, the number of points N on the finest level J , the polyno-
mial degree p and the dimension Dp of the local approximation spaces V p

i .

These rates ρ := ||ur ||1/r
L2 are determined using a vanishing right-hand side and

the stopping criteria ||ur ||L2 < 10−12 or r = 50 where ur denotes the current
iterate. From these numbers we can observe an optimal level-independent con-
vergence of our solver. The slight fluctuations in the measured rates are due to
the parallelization of the block-Gauss-Seidel smoother, see [4, 6] for details on
the parallelization.

For the approximation of more complicated geometries we reuse the tree-
based cover construction to define so-called domain integration cells, see
Figures 2 and 3. Note, however, that the resolution of the domain is not di-
rectly coupled to the cover construction.
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Figure 2. Domain approximation using the cover tree. Left: Domain and all sampling points.

Center: Domain and constructed cover. Right: Domain and respective integration cells.

Currently, the approximation of the boundary of the domain is given by the
boundary of the respective tree-cells. However, a higher order reconstruction
of the boundary is straight-forward, see e.g., [8].

In summary, these results show that the PUM can be used effectively for the
numerical solution of linear elliptic PDE, i.e., for unconstrained minimization
problems. Let us now focus on the approximation of constrained minimization
problems.

3. CONSTRAINED MINIMIZATION PROBLEMS

A classical example for such a minimization problem with constraints is the
Poisson–Obstacle problem

−�u ≤ f on �,

u = 0 on ∂�,
(6)

u ≤ o on �,

(−�u − f )(u − o) = 0 on �,
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Figure 3. Displacement field on a L-shaped domain (left), comparison of deformed geometry

(red) and original geometry (black) in two dimensions (center), and deformed geometry in three

dimensions.
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or the more involved Poisson–Signorini problem

−�u = f on �,

u = gD on 	D ⊂ ∂�,
(7)

∂u

∂n
= gN on 	N ⊂ ∂�,

∂u

∂n
≥ 0, u

∂u

∂n
≥ 0, u ≥ 0 on 	C ⊂ ∂�.

In the obstacle problem (6) the constraints are enforced throughout the entire
domain �, whereas in the more involved Signorini problem the constraints are
enforced on a certain part of the boundary 	C , the contact boundary, only.

Let us consider the respective weak formulation of such a constrained prob-
lem. To this end, we define the classical energy function

J (u) := 1

2
α(u, u) − 〈 f, u〉L2

associated with the underlying PDE problem, i.e., for (6) a(u, v) = ||∇u||2L2

and restrict its minimization to the closed cone

K := {v ∈ H 1 | v(x) ≤ o(x) a.e. in �}.
That is we are now looking for the minimum in a convex subset K ⊂ H 1

only, i.e., we try to find u ∈ K such that J (u) ≤ J (v) for all v ∈ K holds. This
is unlike in the unconstrained minimization case where we are looking for the
minimum in the linear space H 1. The discretization of this cone K of valid
functions is the main issue in the numerical treatment of problems like (6) and
(7). For instance, within the FEM pointwise conditions like

v(x) ≤ o(x) for almost all x ∈ �

on the functions v ∈ H 1 are approximated in the vertices xi of the mesh. Since
the linear FEM shape functions are interpolatory, this approximation directly
translates into a simple comparison of the coefficient vectors ṽh = (vi ) ∈ R

n and
õh = (oi ) ∈ R

n associated with the discrete function vh ∈ Vh and the obstacle
oh ∈ Vh . Hence, in the FEM the cone K is usually discretized as

Kh := {vh ∈ Vh | vh(xi ) ≤ oh(xi )} = {ṽh ∈ R
n | vi ≤ oi }.

3.1 Partition of Unity Discretization

In the PUM, however, this approach is not valid since the shape functions of
the PUM are non-interpolatory. Hence, we cannot directly compare the discrete
coefficients of the current solution and the obstacle to determine whether the
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Figure 4. Active sets for right-hand side f = 2.5 (left) and f = 10 (right).

solution is valid. However, if we employ just linear local spaces V pi=1
i then we

can easily compute the minimum and maximal function value of the difference
ui – oi locally on the patch ωi . Hence, we discretize the closed cone KPUM of
valid functions within our PUM via

KPUM := {v ∈ V PUM|max
ωi

(vi − oi ) ≤ 0 for all i}.

Here, we exploit the PU property of the functions ϕi to localize the pointwise
conditions v = ∑

ϕivi ≤ ∑
i ϕi oi = o on the global shape functions ϕiψ

n
i to

the local shape functions ψn
i patches ωi .

3.2 Numerical Results for Obstacle Problem

Let us now present some numerical results obtained with our PUM for
the obstacle problem (6) with o = dist� on the unit square [−1, 1]2. From the
isoline plots depicted in Figure 4 we can observe that we capture the active
set, i.e., the part of the domain where the solution actually coincides with the
obstacle, very well.

4. CONCLUDING REMARKS

In this paper we presented the PUM and its application to unconstrained
as well as constrained minimization problems in elasticity. The presented nu-
merical results clearly indicate the applicability of the PUM in this context.
An open question at this time is the extension of our multi-level solver to the
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constrained minimization case, where certain monotony properties are essen-
tial. The implementation of these properties within our PUM, however, is not
trivial due to the fact that the sequence of PUM function spaces are non-nested
and the bilinear form involves level-dependent regularization parameters due
to the Nitsche approach for essential boundary conditions.
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A MESHFREE APPROXIMATION WITH
ALLMAN’S ROTATIONAL DOFS

R. Tian and G. Yagawa
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Abstract The Allman’s rotational dofs are often used to develop advanced elements in

modeling of shells as an assembly of flat elements in FEM. Yet the technique

does not extend to the area of meshfree methods. In this paper we first present

an extremely simple expression of the Allman’s rotational dofs of 1984 and then

develop a meshfree approximation containing the rotational dofs.

Keywords: meshfree, Allman’s rotational dofs, moving least square.

1. A SIMPLIFIED EXPRESSION OF THE
ALLMAN’S ROTATIONAL DOFS OF 1984

Allman in 1984 designed a triangle with rotational dofs (or alternatively
called drilling freedom in plane elements) with successes not previously at-
tained. The triangle has two translational dofs and one rotational dof per node
and is defined as

ue =
3∑

i=1

uiξi + 1

2
l12 cos γ12(ω2 − ω1)ξ1ξ2

+ 1

2
l23 cos γ23(ω3 − ω2)ξ2ξ3 + 1

2
l31 cos γ31(ω1 − ω3) ξ3ξ1 (1)

ve =
3∑

i=1

viξi + 1

2
l12 sin γ12(ω2 − ω1)ξ1ξ2

+ 1

2
l23 sin γ23(ω3 − ω2)ξ2ξ3 + 1

2
l31 sin γ31(ω1 − ω3) ξ3ξ1 (2)
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where li j (i, j = 1, 2, 3) are the length of the edge of the triangle, γi j (i, j =
1, 2, 3) are the angles between the outward normal of the edge i j and the
x-axis, and ωi (i = 1, 2, 3) are the commonly called Allman’s rotational dofs.

Equations (1) and (2) are simplified as follows. First it is easy to have the
relation

li j cos γi j = y j − yi , (i, j = 1, 2, 3). (3)

Substituting Equation (3) into Equation (1), we have

ue =
3∑

i=1

uiξi + 1

2
((y2 − y1)(ω2 − ω1) ξ1ξ2 + (y3 − y2)(ω3 − ω2) ξ2ξ3

+ (y1 − y3)(ω1 − ω3) ξ3ξ1). (4)

After simple mathematical transformation, Equation (4) becomes

ue =
3∑

i=1

uiξi − 1

2
ω1ξ1((y2 − y1)ξ2 + (y3 − y1)ξ3)

− 1

2
ω2ξ2((y1 − y2)ξ1 + (y3 − y2)ξ3)

− 1

2
ω3ξ3((y1 − y3)ξ1 + (y2 − y3)ξ2) (5)

=
3∑

i=1

uiξi − 1

2
ω1ξ1

3∑
i=1

(yi − y1)ξi − 1

2
ω2ξ2

3∑
i=1

(yi − y2)ξi

− 1

2
ω3ξ3

3∑
i=1

(yi − y3)ξi .

Since

3∑
j=1

(y j − yi )ξ j = y − yi = ŷi (i = 1, 2, 3), (6)

the Allman’s original formulation (1) is finally simplified as

ue =
3∑

i=1

uiξi − 1

2
ω1ξ1 ŷ1 − 1

2
ω2ξ2 ŷ2 − 1

2
ω3ξ3 ŷ3

=
3∑

i=1

ξi

(
ui − 1

2
ŷiωi

)
. (7)
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Similarly the Allman’s formulation (2) is simplified as

ve =
3∑

i=1

ξi

(
vi + 1

2
x̂iωi

)
(8)

where x̂i = x − xi . In a matrix form we finally express the triangle with the
Allman’s rotational dofs as

ue =
3∑

i=1

ξi

[
1 0 −ŷi/2
0 1 x̂i/2

] ⎛
⎝ui

vi

ωi

⎞
⎠ . (9)

Compared with the usual nodal displacements,

ui =
(

ui

vi

)
=

[
1 0
0 1

] (
ui

vi

)
, (10)

we can define a generalized form of the nodal displacements ui as

ui =
[

1 0 −ŷi/2
0 1 x̂i/2

] ⎛
⎝ui

vi

ωi

⎞
⎠ = Ri Di (11)

in which the Allman’s rotational dof is contained. Now in a different but much
easier way one can obtain the same element by just replacing the conventional
nodal displacement (10) with the generalized node (11). Equation (11) is termed
a generalized node that can be used as a substitute of the original Allman’s
formulae [2, 3]. Reader may also be referred to Tian, Matsukara and Yagawa
[4] for an extended discussion in the context of the tetrahedrons with Allman’s
rotational dofs.

2. A MESHFREE APPROXIMATION WITH
THE ALLMAN’S ROTATIONAL DOFS

Denote � ⊂ Rd , d = 1, 2, 3, be the domain of interest, {xi} be nodes gen-
erated on the domain, Dr (xi ) be a d-dimension open ball of radius ri and center
xi , Dr (xi ) = {x : ||x−xi || < ri }. {ri } are set so that any point x∈ � has only
finitely many i of x∈Dr (xi ). Define unknowns at the node i be (ui , vi , ωi ), i.e.,
two translational dofs (ui , vi ) and a Allman’s rotational dof ωi .

A linear approximation of the field function u(x) is assumed,

uh(x) =
m∑

i=1

pi (x)ai (x) = pT(x)a(x), pT = [1, x, y], x ∈ �, (12)
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where a are the unknown parameters. At an arbitrary point x, a Moving Least
Square (MLS) fitting is performed locally with respect to the nodes {x∣∣x ∈
Dr (xi )} to determine the unknowns. A discrete L2 error norm of the fitting is
defined by,

J (x) =
n∑

I=1

w I (x)(PT(xI )a(x) − uI )2, x ∈ Dr (xI ), (13)

where n is the dimension of the node set {xi

∣∣x ∈ Dr (xI )}, w I (x) is the weight
function. The MLS fitting among the generalized nodes becomes accordingly,

J (x) =
n∑

I=1

w I (x)(PT(xI )a(x) − RI DI )2, x ∈ Dr (xI ). (14)

Minimizing the L2 norm directly leads to the solution to the unknown a
like,

a = A−1BRI DI , (15)

A =
n∑

i=1

wi (x)p(xi )p
T(xi ), B = [w1(x)p(x1), w2(x)p(x2), . . . , wn(x)p(xn)].

(16)

Back substitute a into Equation (12), a meshfree approximation with the
Allman’s rotational dofs is constructed

uh(x) =
n∑

I=1

φI (x)RI DI , φI (x) = pA−1B. (17)

Instead the new meshfree approximation (17) can also be directly obtained
by replacing the conventional nodal displacement with the generalized node
(11) as follows:

uh(x) =
n∑

I=1

φI (x)uI =
n∑

I=1

φI (x)RI DI , (18)

where uI = (ui , vi )
T denotes the conventional node. The rotational dof is also

applicable to the approximations based on other meshfree techniques in the
similar way.

3. GOVERNING EQUATIONS

Consider a two-dimensional, small strain, linear elastic problem on the
domain �,

∇ · σ + b = 0 in � (19)

ε = ∇su, σ = C : ε (20)
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u = ū on 	u (21)

σ · n = t̄ on 	t (22)

where σ is the Cauchy stress tensor for a displacement field u, b the body
force, n is the unit outward normal vector to traction boundary 	t, ∇s is the
symmetric gradient operator, C is the elastic module tensor. The superposed
bar denotes the prescribed values at the boundaries. The modified variational
principle with penalty treatments of the essential boundary condition (21) is
established as the following:∫

�

∇sδu : σd� −
∫

�

δu · b d� −
∫

	t

δu · t̄d	 + KT
∫

	u

δu · (u − ū) d	 = 0

(23)
where k and T are defined as

k =
[

k 0
0 k

]
, T =

[
1 0
0 0

]
,

[
0 0
0 1

]
, or

[
1 0
0 1

]
(24)

where T is used to customize the penalty matrix k according to boundary
constraint. Discretizing Equation (24) we obtain the system of equations to be
solved

KU = F (25)

where

U = (u1, u2, . . . , uN )T, uI = (uI , vI , ωI )T, (26)

K =
∫

�

BTDB d� +
∫

	u

NTkTN d�,

F =
∫

�

NTb d� +
∫

	t

NTt d	 +
∫

	u

NTkTu d	, (27)

N = [N1R1, N2R2, . . . , NN RN ], NI =
[
φI 0
0 φI

]
,

RI =
[

1 0 −ŷI /2
0 1 x̂ I /2

]
(28)

B = ∇sN, ∇s(NI RI ) =
⎡
⎣φI,x 0

0 φI,y

φI,y φI,x

⎤
⎦ RI + 0 = B0

I RI , (29)

D is the material matrix, N is the number of the nodes on the whole domain.
It may be seen from Equation (29) that the new stiffness matrix can be

obtained by the simply following matrix transformation to that without the
rotational dofs,

BTDB = RTBT
0 DB0R, B0 = [B0

1, B0
2, . . . , B0

N ],

R = [R1, R2, . . . , RN ]T. (30)
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3.1 Zero Energy Modes

By setting all the rotational dofs to the same non-zero constant while letting
all the translational dofs vanish, one zero energy mode can be identified as
follows,

ω1 = ω2 = · · · = ωn = ω �= 0, (31)

uh(x) =
n∑

I=1

φI (x)

[
1 0 −ŷI /2
0 1 x̂ I /2

] ⎛
⎝0

0
ω

⎞
⎠ = 0. (32)

It is also shown in Equation (32) that the zero-energy mode does not induce
any deformation and is also a zero displacement mode. It thus can be suppressed
by prescribing an arbitrary rotational dof to an arbitrary constant say simply
zero.

4. NUMERICAL EXAMPLES

Two numerical examples are presented in the conference separately due to
the space limitation here, Eigenvalue examination of the stiffness matrix of the
meshfree approximation with the rotational dof detects one zero spurious mode
that has been identified in Section 3.1. The mode, however, can be suppressed
easily as discussed in Section 3.1. The other example, the standard cantilever
benchmark, shows an evident improvement in both accuracy and convergence
of the meshfree approximation by equipping the rotational dof. We remark that
the performance of the meshfree approximation developed should lie between
the standard MLS approximations of the linear and completely second bases.

5. CONCLUSIONS

(1) An extremely simple expression of the Allman’s rotational dofs has been
found.

(2) A meshfree approximation containing the Allman’s rotations has been pre-
sented.
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THE VORTEX METHOD APPLIED
TO SIMULATION OF HOMOGENEOUS
ISOTROPIC TURBULENCE

Y. Totsuka and S. Obi
Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan

Abstract The present study examines two representative viscous diffusion models in com-

bination with the vortex method. It is shown that the MPS Laplacian model is

superior to the conventional core spreading model in terms of calculating the

decay rate of enstrophy and energy spectra. Computational time is remarkably

reduced by using fast multi-pole method while retaining accuracy.

Keywords: turbulent flow, vortex method, viscous diffusion, dissipation, MPS.

1. INTRODUCTION

Vortex methods have a lot of advantages in engineering application because
of the grid-free nature. Problems comprizing complex geometry, moving and/or
deforming boundary are typical applications where the vortex method exhibits
its advantage over Eulerian type of approach. Because only the motion of vortex
elements is considered, computational efforts are remarkably reduced in, e.g.,
aerodynamics where inviscid flow occupies major part of the domain. Flow
around a blade of wind turbine is a good example of the unsteady flow with
moving boundary [1].

Apart from the engineering application, it is of great importance for any
kind of computational method that it satisfies the law of conservation. In turbu-
lent flow computations, it is the kinetic energy conservation that should always
be kept in mind. Up to now, there are only few investigations that consider the
appropriateness of the representation of energy dissipation due to viscosity. A
study on the interference of a pair of vortex ring has demonstrated the ability of
the vortex method to express the inertial sub-range, which is of a great impor-
tance in dynamics of turbulence [2], while the so-called Vortex in Cell method
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[3], is reported to be useful for simulation of homogeneous isotropic turbulence.
Nevertheless, systematic investigations on the performance of commonly used
diffusion model are necessary.

In the present study, the two-dimensional homogeneous isotropic turbu-
lence is considered, where the energy cascade due to vortex stretching does not
occur. The energy decay directly reflects the viscous dissipation; hence pure
assessment of the viscous diffusion model is possible.

2. OUTLINE OF THE VORTEX METHOD

2.1 Basic Equation

The vortex method handles with a system of ordinary differential equations
derived from vorticity transport equation. The location and intensity of individ-
ual vortex elements are calculated from the following equations for individual
vortex elements:

dxi

dt
= ui , (1)

dωs
i

dt
= (

ν∇2ωs
)

i
(2)

The right hand side of Equation (2) expresses the diffusion of vortex intensity
ωs due to molecular viscosity, with ν being the kinematic viscosity. The approx-
imation of this term is considered in the present study; i.e., the appropriateness
of the diffusion model in representing the dissipation of kinetic energy.

2.2 Core Spreading Model

The core spreading model [4] is most popular in vortex method and has
been adopted for various engineering applications. The model stems from the
expression of individual vortex element by core-function with core radius εi .
The use of this model replaces Equation (2) by the equation below for the
rate-of-change of εi :

dεi

dt
= 4ν

2εi
. (3)

2.3 MPS Laplacian Model

The Laplacian model developed by Koshizuka and Oka [5] for the purpose
Moving Particle Semi-implicit (MPS) scheme may be applied for the vortex
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method simulation. The MPS mosel approximates the right hand side of Equa-
tion (2) as follows:

(
ν∇2ωs

)
i
= 4ν

λi n̄

∑
j �=i

[(
ωs

j − ωs
i

)
w

(
ri j

)]
, (4)

where λi is a function controlling the number density of vortex elements. n̄
represents the average number density of elements. The weighting function
w(ri j ) is evaluated by

w(ri j ) =
⎧⎨
⎩

re

ri j
− 1 (ri j ≤ re)

0 (ri j ≤ re)
, (5)

with ri j being the position vector connecting i th and j th elements. The parameter
re indicates the limit to distance that is to be determined according to the number
density of elements.

Because the MPS Laplacian model becomes erroneous in case of heteroge-
neous distribution of elements, we controlled the number density at every time
step and kept certain level of homogeneous distribution by adding/subtracting
the elements when necessary.

3. COMPUTATION OF THE 2D HOMOGENEOUS
ISOTROPIC TURBULENCE

A energy spectrum distribution is specified as the initial condition for the
calculation according to Tatsumi and Yanase [6]:

E(k) = u2
0k3

k4
0

exp

(
−k2

k2
0

)
, (6)

where u0 is fluctuating velocity and k0 stands for the wave number at which the
energy spectrum reaches its maximum. The present study specified k0 = 4. The
given energy spectrum was expressed by the vortex elements which were first
distributed on an equidistant grid on the x−y plane. The intensity of individual
elements was corrected so that the total energy becomes equal to that of the
initial distribution.

The computations were performed in a rectangle domain with each face
equal to 2π at two different Reynolds numbers: Re = 1300 and 260, with Re
being the Reynolds number based on the length of the computation domain
and the RMS of the initial velocity distribution. To accomplish the infinitely
large field for homogeneous turbulence, a finite number of domains were used
and the results are obtained from the domain located in the center. Preliminary
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computations by changing the number of domains indicated that 81 × 81 do-
mains are sufficient to achieve the periodicity in every direction; the estimated
error with respect to the values obtained by 2561 × 2561 domains was less than
O(10−6), based on the norm of second order.

4. RESULTS AND DISCUSSION

4.1 Computational Details

Equations (1) and (2) were solved by means of second-order Adams method.
The diffusion term was also treated in explicit manner. The time step was kept
constant to �t = 10−3, and computations were performed for 5000 steps which
corresponded to approximately 10 times the eddy turnover time. For the MPS
Laplacian model, re was set equal to three times the initial distance between
regularly distributed elements.

4.2 Enstrophy

The energy decay is represented by the enstrophy ζ evaluated by integration
of whole computation domain as

ζ = 1

2

∫
ω2 ds. (7)

Figure 1(a) compares the decay of ζ for DNS and core spreading model. The
vertical axix is normalized by the initial value ζ0. The core spreading model
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Figure 1. Decay of enstrophy at Re = 1300.
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Figure 2. Energy spectra at Re = 1300.

provides too early decay compared to DNS. The tendency is unaffected by the
change of initial core radius ε0 which was varied from 0.5 r0 to 1.5 r0. On
the other hand, the MPS Laplacian model agrees well with DNS as shown in
Figure 1 (b).

4.3 Energy Spectra

Figure 2 presents the evolution of energy spectra, comparing the results of
two diffusion models and DNS. The core spreading model shown in Figure 2
(a) does not represent the distribution in higher wave number range as DNS
does. On the other hand, the MPS Laplacian model in 8 2 (b) well follows the
variation calculated by DNS. The change in ε0/r0 did not alter the tendency
given by either model. The apparent superiority of the MPS Laplacian model as
demonstrated above reflects the fact that the addition of vortex elements during
the simulation is necessary to represent the increase of energy in high wave
number range. Such treatment could also be introduced to the core spreading
model, though the vorticity of the individual element is too difficult to control.

5. CONCLUDING REMARKS

The vortex method is capable of simulating two-dimensional homogeneous
isotropic turbulence. The MPS Laplacian model is superior to the core spreading
model in representing increase of energy spectra in high wave number range
that is indicated by DNS. The representation of the interaction between vortex
elements seems to be the key for realistic calculation of dissipation process.
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Abstract The local Petrov–Galerkin method (MLPG) is applied to solve the geometrically

nonlinear problem in this paper. The local Petrov–Galerkin method uses the mov-

ing least square approximation as a trial function, and involves only integrations

over a regular local subdomain and on a local subboundary centered at a node

in question. These special properties lead to a more convenient formulation in

dealing with nonlinear problems. An incremental and iterative solution proce-

dure is used to solve the geometrically nonlinear problem. Formulations for the

geometrically nonlinear problems are obtained from virtual work principle. All

measures are related back to the original configuration. Several examples are given

to show that the local Petrov–Galerkin method has good accuracy in solving the

geometrically nonlinear problem.

Keywords: local Petrov–Galerkin method, moving least square approximation, the geomet-

rically nonlinear problem, virtual work principle.

1. INTRODUCTION

The local Petrov–Galerkin method is a new numerical technique presented
in recent years. It requires only nodal information and no element connec-
tivity is needed. Nodes can be randomly distributed in a domain under con-
sideration. The local Petrov–Galerkin method uses the moving least square
(MLS) as an approximation function, which is different from the finite ele-
ment method. MLPG constructs field function based on scatter nodes. The
local Petrov–Galerkin method is similar to the element-free Galerkin method
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to some extent except integral format, as it involves only integrations over a
regular local subdomain and on a local subboundary centered at a node in ques-
tion. This method is more flexible in solving nonlinear problems than the finite
element method, the boundary element method and the element-free Galerkin
method.

Atluri et al. proposed firstly the local Petrov–Galerkin method and applied
it to solving two-dimensional potential problems and bending problems of
beams [1, 2]. Then Long applied MLPG to 2-D elasticity problems and bending
problems of a thin plate [3, 4]. In this paper, MLPG is developed to solve the
2-D geometrically nonlinear problems.

2. LOCAL PETROV–GALERKIN INTEGRAL
FORMULATIONS AND DISCRETIZATION
EQUATIONS

The linearization meshless local Petrov–Galerkin integral equation is given
as follows for 2-D geometrically nonlinear problems

∫
0�s

0 Dijkl 0ekl
t
0 BLwi

0d�s +
∫

0�s

t
0
Sij

t
0 BNLwi

0d�s

+ 2α

∫
0�su

wi (ui − ūi )
0d� = t+�t Qs −

∫
0�s

t
0Sij

t
0 BLwi

0d�s (1)

t+�t Qs =
∫

∂0�s

t+�t
0 tkwi

0d�s+
∫

0�s

0ρ t+�t
0 bkwi

0d�s (2)

where 0 Dijkl is a tangent constitutive tensor, α a penalty parameter used to im-
pose the essential boundary conditions and wi the weight function of the moving
least square approximation. 0eij and 0ηij are the linear and quadratic terms of
incremental displacements ui ;

t
0Sij is the Kirchhoff stress tensor obtained by

last solution step; 0ρ is density; t+�t
0tk is the surface traction and t+�t

0bk is the
body force; t+�t Qs is the virtual work of external loads in subdomain 0�s ;
0�su is a part of the local boundary ∂0�s , over which displacement increments
are prescribed. Where symbol “0” at the upper or lower left corner denotes
that the initial configuration is selected as a reference configuration in MLPG
formulations.

Using MLS interpolation function to approximate the displacement incre-
ments ui , the discretization equation can be written in matrix form

t
0 K u = f (3)
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where

t
0 K =

∫
0�s

t
0 BT

L 0 D t
0 BL W 0d�s −

∫
0�su

t+�t
0t i W

0d�

+
∫

0�s

t
0 BT

NL
t
0S t

0 BNLW 0d�s + 2α

∫
0�su

WC t
0Φ j

0d� (4)

f =
∫

0�st

t+�t
0 t̄ i W

0d� + ρ

∫
0�s

t+�t
0bi W

0d�s

+ 2α

∫
0�su

WC t
0ū0d� −

∫
0�s

t
0 BT

L
t
0 Ŝ 0W d�s (5)

and C is the parameter of boundary; t
0 BL and t

0 BNL are the transformation
matrices between linear strain 0eij, nonlinear strain 0ηij and displacements,

respectively. 0 D is the constitutive matrix of material. t
0S , t

0 Ŝ are the matrix
and vector of Kirchhoff stresses, respectively. t

0Φi is the shape function of MLS
approximation. All these measures refer to the initial configuration.

In the present computation, both quartic spline weight function [1] and
exponential weight function proposed by Zhou [5] are employed.

3. NUMERICAL EXAMPLES

Example 1. A cantilever beam is now analysed under uniformly distributed
loads, as shown in Figure 1. Geometric and material parameters are: μ =
0.2, L = 10.0 cm, h = 1.0 cm, one unit thickness, E = 1.2 × 104N/cm2.
60(12 × 5) nodes are regularly distributed. The radius of support domain ri

is equal to 5cm. The quartic spline weight function is used as the test func-
tion and its radius is equal to 0.2 which is also the radius of a subdomain.
10 and (8 × 8) Gauss integral points are adopted on the boundary �s and
in subdomain �s , respectively. Loads are always kept at the vertical direc-
tion and linear elastic material is considered here. In the solution process, 30

y 

0 h 

L  
P/2

P/2

x

Figure 1. A cantilever beam under uniformly distributed loads.
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Figure 2. Results of a cantilever beam under uniformly distributed loads.
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Figure 3. A holed square body subjected to a tension.

steps of load are imposed and equilibrium iterations are used in each load
step. The results obtained are shown in Figure 2. The results show that re-
sponses in the large deformation appear more rigid than in the small defor-
mation and results of MLPG are in good agreement with those of Holden and
ANSYS.

Example 2. A holed square body subjected to a tension is analysed, as shown
in Figure 3. L = 10.0 m h = 4.0 m, μ = 0.2, E = 1.2 × 104 N/m2, one unit
thickness, the radius of a hole is 1.0 m, and the centre of the hole is at (5.0,
2.0). One end of the square body is fixed and the other end is subjected to a
uniform tension P = 1000 N/m. We use 76 nodes, as shown in Figure 3(b). All
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Table 1. Geometrically nonlinear solutions of a holed square

body subjected to a tension.

u (mm) v (mm)
Coordinate

(m) ANSYS LPGM ANSYS LPGM

(1,0) 90.789 91.014 22.452 22.754

(5,0) 565.670 566.210 155.280 156.740

(10,0) 1129.900 1130.420 30.628 31.532

(1,4) 90.789 90.565 −22.432 −22.950

(5,4) 563.630 564.630 −153.130 −154.750

(10,4) 1129.300 1130.600 −27.920 −28.643

other data are the same as in example 1. Results obtained are shown in Table 1.
Results of MLPG show good agreement with those of ANSYS.

4. CONCLUSION

The formulation and implementation of the Local Petrov–Galerkin method
(MLPG) have been presented in this work for the geometrically nonlinear prob-
lem. The quartic spline function and the exponential weight function serve as
the test function and the trial function in MLS approximation, respectively. The
results of numerical examples show that MLPG can solve the geometrically
nonlinear problems effectively and accurately.
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Abstract Smoothed particle hydrodynamics (SPH) is extended to the strain rate independent

elastic-plastic large deformation analysis for low velocity contact problems. The

volume constant condition is imposed on the plastic deformation process using

a pressure equation given by the particle density condition in a unit volume. Test

problems show that these improvements lead to good stability and accuracy of

large deformation analysis.

Keywords: particle method, SPH, large deformation, elastic-plastic.

1. INTRODUCTION

During the past decade there has been a effort to apply SPH (Smoothed
Particle Hydrodynamics) to the problem of high velocity impact. The superior
points of SPH for high velocity impact is that it is based on Lagrangian form and
is substantially one of meshless methods. SPH technique can easily be applied
to severe distortions and fragmentation process of impact bodies. However
there has been almost no study for applying SPH to the elastic-plastic large
deformation analysis of relatively low velocity contact problems. This paper
presents 2D and 3D elastic-plastic large deformation algorithms using SPH
method, where the Dp matrix method and the volume constant condition are
used for the plastic process of materials.

2. THE SPH METHOD

The foundation of SPH [1] is one of the interpolation technique. The equa-
tion of motion and the conservation laws of substance, in the form of partial
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differential equations, are introduced into integral equations through the use
of an interpolation function (weight function) that gives the estimate of the
field variables at a point. In numerical process, information is given at discrete
points, so that the integrals are evaluated as summing over neighboring parti-
cles. Consider a function f and a kernel W which has a radius (support domain)
h, the kernel estimate is

f (x) ≈
∫

f (x ′) W (x − x ′, h) dx ′ (1)

As a typical weight function we used the spline function of three degrees. If
we identify ρ(x ′)dx ′ as the differential mass dm and make summation over
neighbouring particles, the discrete kernel estimate becomes

f (x) ≈
N∑

J=1

m J

ρ J
f (x J )W (x − x J , h) (2)

3. ANALYSIS

3.1 Elastic-Plastic Models for Particle Methods

It is well known that the constitutive relation for elastic-plastic field varies
in regard to the strain rate. For high velocity impact Johnson and Cook [2] have
successfully described for a variety of materials.

σ = (A + B · εn)(1 + C ln έ)(1 − T
∗m) (3)

Where έ is the strain rate, and A, B, C, n and m are material constants; T∗

is the ratio (T−Troom)/(Tmelt–Troom), and T is the absolute temperature. SPH
structural analyses have been performed mainly for high strain rates and large
strain as space-debris impact problems.
In this study as a constitutive relation for low velocity deformation of metals we
use. Dp matrix method which is a standard algorithm for plastic deformation
independent on strain rate. The incremental form of a constitutive relation is

{dσ } = [D]{dε} (4)

The plastic flow regime is determined by the von Mises criterion and using
stress invariant the plastic constitutive model is described using Dp matrix.

{dσ } = [Dp]{dε} (5)

The details of Dp matrix method is described in the standard FEM text book
[3]. In a particle method the evaluation of yield condition and the calculation
of strain components are executed at each particle position.
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V=0.01m/s
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Fe 

Al 

FEM

0.1s 0.2s 0.3s

Figure 1. The growth of plastic regions.

Figure 1 shows the growth of plastic regions in an impact model using
FEM and SPH. An aluminum plate is loaded by an iron rod with the constant
velocity 0.01 m/s. The both materials are modeled as a von Mises elastic-plastic
material with a Young’ of 160 GPa, 55 GPa, an initial yield strength of 5 GPa,
0.55 GPa, and a constant hardening slope of 40 GPa, 5 GPa, Poisson’s ratio is
0.3. The FEM analysis is performed using triangular elements. As shown in
the figures the growth of plastic regions are very similar and the stress-strain
relations at any points in a materials are also in good agreement in FEM and
SPH simulations.

3.2 The Elastic-Plastic Analysis Under
Large Deformation

There are the growing demands for computing super large deformation of
materials in mold manufacturing techniques. Up to now the analysis has been
done by FEM, however the large deformation causes severe mesh distortion
in elements near the boundary, thereby dramatically reducing the stable time
increment during solution. Moreover rezoning and adaptive meshing technique
are necessary during FEM large deformation analysis.

On the other side particle methods are meshless techniques that no longer
use connectivity data, so users are free from the troublesome problems to decide
how frequently remeshing should be done and what method to use to map the
solution from the old mesh to the new mesh as the solution processes.

During the plastic deformations of metals under sufficiently low velocity
it is noted that the volume of the deformed material has been nearly constant
throughout the process. This is the typical feature of plastic flow theory and this
effect should be taken into account to the analysis of plastic large deformation
of metals.



1518 Y. Sakai and A. Yamasita

Fe 

Al 
V = 0.01m/s

t = 2s t =  0s

t =  20s t = 7s

Figure 2. The deformed shapes of a rod under compression.

In a particle simulation the constant volume condition (incompressibility
condition) is obviously maintained by considering the following equation [4].

∂ρ

∂t
= 0 (6)

The constant of density of a material becomes the constant of density of
particles in SPH simulation. When the temporal particle number density n∗

i is
different from the constant value n0, the volume constant condition is

n∗
i + n′

i = n0 (7)

where n′
i is an adjusting value. In plastic flow theory the conservative of mass

is

1

n0

∂n′

∂t
+ ∇ · ū′ = 0 (8)

Where u is the velocity of plastic flow caused by the temporally occurred
pressure from the change of density n′

i . The gradient of pressure causes the
temporal velocity,

∂ ū′

∂t
= − 1

ρ
∇ Pn+1 (9)
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Using Equations (6)–(9) the following Poisson’ equation is obtained.

∇2 Pn+1 = − ρ

�t2

n∗
i − n0

n0
(10)

By solving above equation we can calculate temporal pressure due to the
variation of density of metals and then coordinates of particles are corrected by
using the pressure gradient. Figure 2 shows the elastic-plastic large deformation
behaviours of metals using above algorithm. The deformed shapes show good
general agreement and thee is no large void or split between particles. All these
results appear to be reasonable and well-behaved.
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Abstract Two methods of stress recovery have been suggested and investigated in this

paper. The first one is introduced by using moving least square method (MLS)

and superconvergent points. The second method is based on the satisfaction

of equilibrium equations at some nodes for which the recovery is applied. Si-

multaneous solution of these equations increases computational time. So, the

second method is more expensive than the first one. A numerical example is

used to compare the stresses recovered by these two methods with corresponding

FEM, well-known SPR method and analytical solutions. The effect of various

orders of basis functions and the values of weight functions on stress recovery

by the proposed methods is also investigated. The present research indicates that

the two methods, and especially the first one, represent acceptable accuracy over

the domain and even on the boundaries, in comparison with SPR method, and

also good convergency is achieved.

Keywords: stress recovery, moving least square (MLS), SPR method and FEM.

1. INTRODUCTION

Due to the nature of conventional displacement type FEM, the gradient
of obtained field becomes discontinue crossing the borders of elements. This
discontinuity reduces as mesh system of problem becomes finer and the ap-
proximate solution approaches to exact one. However for better interpretation of
obtained results it is often necessary to engage certain procedures for smoothing
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these approximate fields gradient. It has been shown [1] that in certain points
of elements the precision of field gradient is distinctively superior to the
other points. Zhu and Zienkiewicz [2, 3] used this phenomenon for obtain-
ing a smooth field gradient in certain subdomain called as patch. Each patch
contains a certain number of elements. The mentioned algorithm which is
called Superconvergent Patch Recovery method (SPR) uses a conventional
least square method to relate an approximate gradient field to each patch.
This method not only yields a smooth field in each patch but also effectively
improves the precision of predicted field. Unfortunately the SPR method is
much less effective at the borders of problems. Wiberg et al. [4] try to im-
prove the performance of SPR method by incorporating the equilibrium and
boundary conditions. Although they engage a sophisticated and expensive
procedure which needs numerical integration over each patch, their results
show no significant improvement to the standard SPR method. Tabbara et al.
[5] recovered the stress field by moving least square (MLS) technique. They
obtained local approximation of displacement field by MLS technique from
nodal values. By differentiating from this approached field and equilibrium
equation they are able to obtain stress field. This method is limited to the
problems with linear constitutive equations. By establishing the equilibrium
between external and internal forces, Boroomand and Zienkiewicz [6] recov-
ered the stress field. Their method seems to be quite complicated but highly
efficient. Hashemolhosseini et al. [7] introduced an algorithm based on fi-
nite point method for recovery the hydrostatic pressure. The present work can
be somehow considered as an extension of this algorithm. Hereby two dif-
ferent stress recovery methods based on MLS and finite point technique are
presented.

2. FORMULATION

In the first purposed method the recovered stresses in each point (often in
the nodes) is obtained by interpolating from the values of stresses of supercon-
vergent points in its vicinity. The interpolation is done by using the Moving
Least Square Method. Here the choice of influence domain, basis function and
weight function can influence the results. In the second method the stresses at
each point is approximated by MLS technique from superconvergent and the
recovered points as (Formula (1)):

σ̂ij =
M∑

I=1

N
(1)
I (x) σ̄

(1)
ijI

+
N∑

J=1

N
(2)
J (x) σ̄

(2)
ijJ

=
N+M∑
K=1

NK (x) σ̄ijK (1)
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Here σ̂ij are the recovered stresses at desired point, σ̄
(1)
ijI

are the known stresses
at the superconvergent points, σ̄

(2)
ijI

are the unknown stresses at recoverd points
and N (x) are corresponding shape functions. The residue of equilibrium at each
point can be obtained as (Formula (2)):

N+M∑
K=1

∂ NK (x)

∂x j
σ̄ijK + fi = Req

i (2)

While at the boundary points the residue of boundary condition equation be-
comes as (Formula (3)):

σijnj − Ti = 0 OR
∑

NK (x)σ̄ijK nj − Ti = Rbo
i (3)

Here Ti and nj are traction vector and normal vector to boundary surface. At
last by minimizing the total square of residues, the recovered stresses at the
desired points are computed.

3. NUMERICAL EXAMPLE AND RESULTS

The well-known elastic problem shown in Figure 1 is selected to compare
the methods. This problem is often considered as a benchmark for stress re-
covery algorithms. The problem is solved by three systems of meshes; consist
of bilinear Q4 elements with one point of integration for each element. The re-
sults show (Figure 2) that both introduced methods are more efficient than SPR
approach. Especially they yield much more precise results near the borders of
problem. The second method is more complicated than the first one, but not as
efficient as it. The first method is a simple and cheap algorithm which at least
can be used with SPR method for recovery of stresses at the points which are
near the boundaries.
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Figure 1. Infinite plate with a hole.
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Abstract Geometrically nonlinear analysis for structures with finite deformation is pre-

sented based on a meshfree radial point interpolation method (RPIM). The method

uses a set of distributed nodes to discretize problem domain that may reduce the

possibility of mesh distortion or tangling. The formulations are given in material

description. The method is implemented using a full Newton–Raphson iteration

procedure. Numerical problem is investigated for a cantilever beam made of com-

pressible hyperelstic neo-Hookean materials to demonstrate the effectiveness of

this method.

Keywords: meshfee method, nonlinear analysis, point interpolation method, finite deforma-

tion, geometrical nonlinearity.

1. INTRODUCTION

Nonlinear analysis becomes now an essential component to investigate the
behaviours of structures under abnormal loading conditions, especially in the
design of structures of peculiar types or of great importance. In addition, in
the presence of pre-stress geometric nonlinearities are of the same order of
magnitude as linear elastic effects in structures, which implies that in most
cases geometric nonlinearities should be considered, such as the problems of
buckling, cable nets, fabric structures, etc. [1]. In the field of manufacturing,
nonlinear simulation is also an important process in prototype testing, sheet
metal forming, extrusion, forging and casting.
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In recent years, the element-free or meshfree methods have been developed
to deal with the large deformation or crack propagation problems. They have
achieved remarkable progress in computational mechanics and related fields.
The main purpose of this paper is to further the RPIM [2–4] to the geometrical
nonlinear problems in solid mechanics.

2. RADIAL POINT INTERPOLATION
METHOD (RPIM)

Consider a field function u(x) defined by a set of arbitrary distributed nodes
xi (i = 1, 2, . . . , N ) in a domain � bounded by �. It is assumed that only the
neighboring n nodes in the support domain of a considered point xQ have effects
on u(xQ). The radial PIM with polynomial basis function interpolates the field
variable u(x) in form [5]

uh(x, xQ) =
n∑

i=1

ri (x)ai +
m∑

j=1

p j (x)b j = rT (x)a + pT (x)b (1)

where ai and b j are the unknown coefficients for the radial basis ri (x) and the
polynomial basis p j (x), respectively. Among many others, multi-quadric (MQ)
function is used here. The coefficients ai and b j are determined by enforcing
the Equation (1) to pass through n data nodes in the support domain. Therefore
the following equations can be obtained.

ue = RQa + Pmb (2)

To guarantee unique solutions, the following constraints are imposed:

n∑
i=1

p j (xi )ai = 0, j = 1, 2, · · · , m (3)

Combining Equations (2) and (3) and solving these equations yield

a = Saue, b = Sbue (4)

Substituting vectors a and b into Equation (1), the interpolation function
ϕ(x)can be obtained

uh(x, xQ) = [rT Sa + pT Sb]ue = ϕ(x)ue (5)

Note that the shape functions obtained through the above procedure possess
Delta function property and unity partition property. If at least linear polyno-
mial terms are included in Equation (1), they can reproduce a general linear
polynomial exactly.
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3. VARIATIONAL FORM AND DISCRETE
EQUATIONS

Using the qualities related to the current configuration, the standard equi-
librium equation for a solid is given as (see e.g. Belytschko et al., [6])

∂σji

∂x j
+ ρbi = ρv̇i in � (6)

where σji is the Cauchy stress component; bi the body force component per unit
mass and ρ is the mass density in the current configuration. Note that ρ = ρ0/J
and ρ0 is the mass density in the initial undeformed configuration.

For the current configuration the traction and displacement boundary con-
ditions may be expressed by requiring that

σjin j = t̄i on �t , ui = ūi on �u (7)

where n j is direction cosine of a unit outward normal on the deformed surface.
The variational weak form of Equation (6) can be expressed as∫

v

δDijσji dv+
∫

v

δviρv̇i dv =
∫

v

δviρbi dv+
∫

�

δvi t̄i d� (8)

It can be transformed to the expression with respect to the initial or reference
configuration∫

V
δ ĖijSji dV +

∫
V

δviρ0üi dV =
∫

V
δviρ0bi dV +

∫
�0

δvi T̄i d�0 (9)

After discretization of the linearized equilibrium equation using RPIM shape
functions, the discrete form becomes

Ku = R − Mv̇ (10)

where the tangent stiffness matrix consists of material and geometric parts. The
residual force vector R is defined as the deviation of the internal force LS from
the external force LE .

In this paper a simple case of an isotropic hyperelastic material is considered,
which is termed as the compressible neo-Hookean material. The stored energy
function ψ for such a material is defined as

ψ = μ0

2
(I1 − 3) − μ0 ln J + λ0

2
(ln J )2 (11)

Here the quantities λ0 and μ0 are the Lame constants of the linearized theory.
The second Piola-Kirchhoff stress tensor S can be derived as

S = λ0 ln JC−1 + μ0(I − C−1) (12)
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Figure 1. Bending of a cantilever beam according to different steps of load increment.

The elasticity tensors (tangent moduli) are given as follows in component form

C S
ijkl = λ0C−1

ij C−1
kl + (μ0 − λ0 ln J ) (C−1

ik C−1
jl + C−1

il C−1
kj ) (13)

4. NUMERICAL EXAMPLE

A cantilever beam with large deformation is analysed that subjected to a tip
load increment of 
F = 16.0 N . The size of the beam is (10 cm × 2 cm) and
initially discretized using (11 × 3) regularly distributed nodes. The analysis
is carried out using twenty load incremental steps (n = 20). The simulation
converges very fast and in each load increment, the iteration is performed less
than 4 times. Figure 1 illustrates the different stages of deformation for the
beam using RPIM. The link between the tip deflections versus the load steps is
plotted in Figure 2. It can be seen that, the nonlinear analysis makes the beam
stiffer than the linear solutions as the load increases. Some other examples have
also been successfully analysed and will be presented at the conference.

5. CONCLUSION

In this paper, the point interpolation method (PIM) is presented for the
analysis of geometrically nonlinear problems with finite deformation. With
radial basis functions employed as interpolators, the problem domain can be
discretized by a set of regular/irregular nodes and no element connectivity is
considered. Load incremental procedure is used to ensure stable and accu-
rate solutions along with the full Newton–Raphson algorithm. The equilibrium
equation and its corresponding linearizations as well as the applied constitutive
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Figure 2. Tip-deflection/load relationships for a cantilever beam.

modes are established in terms of a material description. Comparing with for-
mulations in spatial description, it is found that the present ones show higher
convergence speed and are more suitable for geometrical analysis of solids with
finite deformation, which is therefore recommended when using RPIM.
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Abstract Partition of unity quadrature (PUQ) for Galerkin meshless methods is presented

and Galerkin meshless methods based on PUQ are studied in detail. The math-

ematic foundations of PUQ, finite covering and partition of unity, are described

and the validity of PUQ is proved theoretically. Galerkin meshless methods based

on PUQ do not require any mesh information and are ’truly’ meshless methods.

Numerical examples show the excellent agreement with conventional quadrature

methods and exact solution, which exemplifies the accuracy and robustness of

Galerkin meshless methods based on PUQ. The relation between accuracy of

integral and cover size is also analysed.

Keywords: Galerkin meshless methods, partition of unity quadrature, finite covering, partition

of unity.

1. INTRODUCTION

Meshless methods are the computational methods which have been devel-
oped rapidly in recent years. According to the ways transforming partial differ-
ential equations into algebraic equations, Meshless methods can be classified
collectively as Galerkin meshless methods [1], collocation meshless methods
[2] and Petrov–Galerkin meshless methods [3]. Due to the high accuracy and
stability, Galerkin meshless methods are applied broadly. But it’s unavoidable to
carry out the numerical integration over the whole physical domain in Galerkin
weak form.

To evaluate the integral in Galerkin meshless methods, Belytschko et al. [1]
decomposed the physical domain into regular meshes, called cell structure, and
Gauss quadrature is employed on each cell structure. This quadrature method is
called cell quadrature (CQ) method which is used in most of Galerkin meshless
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methods at present. There are two drawbacks in this method. One is that the
introduction of cell wastes some of the advantages of meshless methods, the
other is that the cells are supposed to be regular without considering the spatial
arrangement of nodes. As a result, significant error may be gotten when the
integrand is complex.

Beissel et al. [4] and Chen et al. [5] use another quadrature method, nodal
integration. This method can be expressed as follows∫

�

f (x)d� =
∑

i

f (xi )��i (1)

In nodal integration, the entire domain is decomposed into a large number of
small subdomains ��i . The integrand f (x) in ��i is supposed to be f (xi ),
xi is a point included in ��i . Nodal integration is easy to perform and the
computational effort is small, but it’s difficult to assign ��i to each of nodes,
and the solution presents spatial oscillations.

Partition of unity quadrature technique is presented and Galerkin meshless
methods based on PUQ are studied in this paper. PUQ seems attractive in several
ways. First, the decomposition of quadrature field and mesh information are
always not required in this method, which makes Galerkin meshless methods be
’truly’ meshless methods. Second, the stiffness matrix is symmetric and positive
definite. Third, the influence of the spatial arrangement of nodes are considered
which can reduce the integral error according to Dolbow’s viewpoint [6].

A brief outline of the paper is as follows. In Section 2, partition of unity
quadrature method is presented. Numerical implementation of Galerkin mesh-
less methods with PUQ is demonstrated in Section 3 and numerical examples
are given in Section 4. The paper ends with conclusions and discussions in
Section 5.

2. PARTITION OF UNITY QUADRATURE

Definition 1 (Finite Convering). Assume � is an open smooth domain in
Rd(d = 1, 2, 3), �̄ is the closure of �.QN will denote an arbitrarily chosen
set of N nodes from �

QN = {
x1 x2 · · · xN

}
, xk ∈ �

The set QN is then used to define a finite open covering O N = {�k}N
k=1 of �.

O N is composed of N circular (or elliptic, rectangular) covers centred at the
nodes xk, k = 1, . . . , N , and the following conditions are satisfied

�I = {x ∈ � : ||x − xk ||Rd < rk} (2a)
N⋃

k=1

�k ⊃ �̄ (2b)
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kΩ
kx

Figure 1. Finite covering.

then O N is called a finite covering of �.
A finite covering {�k}N

k=1 of � is shown in Figure 1, where � ⊂ R2, the
covers are set to be circular and the centres are marked by sign “+”.

Definition 2 (Partition of Unity). Assume O N = {�k}N
k=1 is a finite covering

of � ⊂ Rd , a class of functions �N = {φk}N
k=1 is called a partition of unity

with respect to the finite covering ON if it possesses the following properties

φk(x) ∈ C∞
0 (Rd), 0 ≤ φk(x) ≤ 1, x ∈ Rd, k = 1, 2, . . . , N (3a)

N∑
k=1

φk(x) = 1, ∀x ∈ � (3b)

supp φk(x) ⊂ �k, k = 1, 2, . . . , N (3c)

where supp φk(x) denotes the closure of set {x ∈ � : φk(x) 	= 0}, called support
of φk(x). Condition (3a) can be loosen to φk(x) ∈ Cl(�k), l ∈ N0.

Theorem 1. Assume ON = {�k}N
k=1 is a finite covering of finite open domain

�, �N = {φk}N
k=1 is a partition of unity with respect to ON , f (x) is a integrable

function defined on �, then∫
�

f (x) d� =
n∑

k=1

∫
�∩�k

φk(x) f (x) d� (4)

Proof. Since
N∑

k=1

φk(x) = 1 for ∀x ∈ �, we have

∫
�

f (x) d� =
∫

�

N∑
k=1

φk(x) f (x) d� =
N∑

k=1

∫
�

φk(x) f (x) d� (5)
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From Equation (3c), we have∫
�

φk(x) f (x) d� =
∫

�∩�k

φk(x) f (x) d� (6)

By Substituting Equation (6) into (5), we will obtain Equation (4). Because
of formula (3b), we called this integral technique partition of unity quadrature
(PUQ).

3. NUMERICAL IMPLEMENTATION

Consider 2D Poisson equation in a domain � with boundary ∂�

∂2u

∂x2
+ ∂2u

∂y2
= f (x, y) in �

u = ū on �u

∂u

∂n
= −q̄ on �q (7)

where the superposed bar denotes prescribed boundary value, �u and �q are
the essential boundary and natural boundary, respectively. �u ∪ �q = ∂�, �u ∩
�q = φ, ∂� is the boundary of �, and n is the unit outward normal to ∂�.

Using modified variation principle, the equation and boundary conditions
mentioned above are equivalent to minimize the following functional

� =
∫

�

{
1

2

[(
∂u

∂x

)2

+
(

∂u

∂y

)2
]

+ u f

}
d�

−
∫

�u

[
∂u

∂n
(u − ū)

]
d� +

∫
�q

uq̄d� (8)

The stationarity of �, δ� = 0 can lead to following system of linear equations

[K ]{u} = {F} (9)

where

K i j = −
∫

�

(
∂ Ni

∂x

∂ N j

∂x
+ ∂ Ni

∂y

∂ N j

∂y

)
d� +

∫
�u

[(
∂ Ni

∂x
nx + ∂ Ni

∂y
ny

)
N j

+
(

∂ N j

∂x
nx + ∂ N j

∂y
ny

)
Ni

]
d� (10a)

Fi =
∫

�

Ni d� +
∫

�u

[(
∂ Ni

∂x
nx + ∂ Ni

∂y
ny

)
ū

]
d� +

∫
�q

Ni q̄d� (10b)

nx , ny are the Cartesian components of n.
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It is noted that MLS shape function N (x) [1, 7] and partition of unity
(PU) function �(x) can be constructed by MLS, but the PU function is not
necessary to keep coincident with MLS shape function [8]. For simpleness,
Shepard function [7] is usually acted as the PU function.

4. NUMERICAL EXAMPLES

We will consider Poisson equation:

∇2u(x, y) = −2(x + y − x2 − y2) in � : x ∈ [0, 1], y ∈ [0, 1]

u(x, y) = 0 on ∂� (11)

the exact solution is given by

u(x, y) = (x − x2)(y − y2) (12)

This problem is analysed for 11 × 11 nodes as shown in Figure 2 and the nu-
merical results are obtained by using EFG with PUQ and CQ, respectively
(Figure 3). The domain surrounded by nodes is taken as the subfield of integra-
tion in CQ, which is a square and the length of side is denoted by L . In each cell
4 × 4 Gauss points are used to evaluate the stiffness of EFG. The square covers
are used in PUQ with Shepard PU function, the length of side of the cover is
1.6L and 4 × 4 Gauss points are distributed in each cover. It can been seen

0             1
0

1

Figure 2. Nodal arrangement.
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Figure 3. Results comparison along x = 0.5.

that the numerical results of PUQ are in good agreement with CQ and exact
solution.

The accuracy of PUQ is closely related to the cover size. For this study, we
define L2 error as follows:

error =
N∑

i=1

[
uNUM(xi , yi ) − uEXC(xi , yi )

]2
(13)

where uNUM(xi , yi ) and uEXC(xi , yi ) are numerical solution and exact solution
at (xi , yi ), respectively. The L2 error is shown in Table 1 while the length of
side of square covers ranges from 1.0L to 2.4L .

The finite covering can ’just’ cover the computational domain if the length
of side of covers is 1.0L , which is equivalent to CQ. It can be seen from Table 1
that the CQ results are not as accurate as PUQ in general. A significant error
appears when the length of side increases to be 1.2L due to the absence of
Gauss points in the overlapping of covers, which makes the integration results
larger. Remarkably accurate results are achieved when the length of side is
1.4L–2.2L .

Table 1. The size of quadrate covers and L2 error (×10−3).

Length of side 1.0L 1.2L 1.4L 1.6L 1.8L 2.0L 2.2L 2.4L
L2 error 15.50 117.20 0.39 0.26 0.09 1.92 × 10−6 0.56 2.30
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5. CONCLUSIONS

A numerical integral technique for Galerkin meshless methods, partition of
quadrature (PUQ) is presented and Galerkin meshless methods based on PUQ
are studied in detail. The relation between accuracy and covers size is analysed,
and it is observed that the numerical results is better than CQ when the cover size
is 1.4L–2.2L . PUQ is also appropriate to Petrov–Galerkin meshless methods,
and it is easy to extend to linear or nonlinear elastic problems.
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RADIAL POINT INTERPOLATION
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Abstract This paper discusses a scheme for choosing local upwind biased support domains

in the RPICM for solving convection-dominated problems. A numerical example

of a 2D steady state convection-domainted problem is presented. It is demon-

strated that significant improvement on the accuracy can be obtained after using

this scheme for convection-dominated problems.

Keywords: meshfree, convection-dominated equation, collocation.

1. INTRODUCTION

Point interpolation method (PIM) and radial PIM are based on weak-forms
and local support formulation and were proposed by Liu [1], and it has been
further studied for fluid problems [2]. So far, most applications of PIM are
based on Galerkin or Petrov-Galerkin weak forms, which needs numerical
integrations globally or locally. A collocation form of RPIM or RPICM has
also been studied and applied to solve different kind of PDEs [3, 4]. This study
applies RPICM to the solution of convection-dominated equations.

The convection-diffusion equation appears in a variety of practical appli-
cations involving the modeling of transport phenomenon. The convection-
dominated equation, where the magnitudes of the ratio of the diffusion
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coefficient to convection coefficient is very small, is very difficult to be solved
numerically based on standard formulation. In recent years, a great deal of
effort has been devoted to the development of the numerical approximation
of convection-dominated problems, as well-summarised by Zienkiewicz and
Taylor [5]. In finite element and finite difference method (FDM), a common
upwind scheme has been effectively adopted to obtain high accurate solution
for such problems. Similar to the upwind difference scheme used in FDM, the
local upwind biased support domain scheme is presented and implemented
in the RPICM to stabilize the solution in this study. It can be shown that
the upwind biased support domain can improve the accuracy and stability for
convection-dominated problems because it can fully capture the information
from the upstream. Due to the freedom in selecting the support domain in mesh-
free methods, this scheme will be easily incorporated in RPICM for solving
convection-dominated problems.

In this paper, radial point interpolation formulation is first introduced. Then
RPICM is applied to solve 2D steady state convection-dominated equation with
special emphasis on using local upwind biased support domain scheme. Some
concluding remarks are given finally.

2. RADIAL BASIS POINT INTERPOLATION

The approximation of a function u(x) may be written as a linear combination
of n radial basis functions, viz.,

u(x) ∼= ũ(x) =
n∑

i=1

aiφ(||r − ri ||) (1)

where n is the number of points in a local support domain near x, ai are
coefficients to be determined and the radial basis function φ can be the well-
known Multiquadrics (MQ), or Gaussian basis function, or thin plate spline
(TPS) function.

Gaussian basis function is used in this paper:

φ(||r − ri ||) = exp(−||r − ri ||2) (2)

Where r is the distance between two nodes. In 2D problems, we have

||r − ri || =
√

(x − xi )2 + (y − yi )2 (3)

The coefficients ai in Equation (1) can be determined by enforcing Equation
(1) to be satisfied at all n nodes within the local support domain.

The interpolations of a function at the k th point can have the form of

ũ(xk) = a1φ(||rk − r1||) + a2φ(||rk − r2||) + · · ·
+ anφ(||rk − rn||), k = 1, 2, . . . n (4)
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From Equation (4), the approximated function and shape function can be
obtained:

ũ(x) = �ũe, � = [�1 . . . �i . . . �n] (5)

More details can be found in a book by Liu [1].

3. NUMERICAL EXAMPLE

In this section, a 2D steady state convection-dominated equation is numer-
ically analysed. The results are obtained and compared with different size of
local biased support domain. Large improvement on accuracy can be observed
from these results as the results of using a biased support domain.

The error indicator used in Table 1 is defined as follows:

e =
√√√√ N∑

i=1

(uex
i − ûi )2

/
N∑

i=1

(uex
i )2 (6)

Example: 2D steady-state convection-diffusion equation. Governing
equation:

−∇ · (D∇u) + v · ∇u + βu = f (x, y), (x, y) ∈ � = [0, 1] × [0, 1] (7)

D =
[
ε 0
0 ε

]
, v = [(3 − x), (4 − y)], β = 1 (8)

Dirichlet boundary conditions:

u|∂� = 0 (9)

The exact solution is given by

uex = sin (x)
(

1 − e
2(1−x)

ε

)
y2

(
1 − e

3(1−y)
ε

)
(10)

Table 1. Error result obtained with different diffusion coefficients and

different biased distance.

ε = 10−2 ε = 10−4 ε = 10−6

αu e (%) αu e (%) αu e (%)

0.0 55.53 0.0 494.63 0.0 518.07

1.0 32.81 1.0 38.88 1.0 38.95

1.5 12.01 1.5 14.43 1.5 14.46

2.0 2.00 2.0 2.15 2.0 2.15
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Figure 1. Schematics of a biased support domain.

The following Nd equations at internal domain nodes and Nb equations on
the Dirichlet boundary 	b are satisfied:

L(ũi ) = −∇ · (D∇ũi ) + v · ∇ũi + βũi

− f (xi , yi ), i = 1, 2, . . . , Nd (11)

ũ j = 0, j = 1, 2, . . . , Nb

An effective and simple way to establish an upwind biased support domain
is deliberately selecting more nodes in the upstream direction while forming the
local support domain for a collocation node. Figure 1 shows a biased support
domain constructed based on a normal support domain by moving its centre
along upstream direction. Figure 2 plots results of u(x) obtained using the
Guassian RPICM with the normal and biased support domains.

Table 1 lists the errors of u(x) with different parameter choices for
the biased distance. These results are obtained by 121-node regular model
with Gaussian radial basis (e−r2

) using local upwind biased support domain
(ds = 2.0dc, du = αudc,dc = 0.1). The results show that the RPICM with the
normal support domain gives very poor accuracy for convection-dominated



Figure 2 (a). αu = 0.0, ε = 10−6.

Figure 2 (b). αu = 1.0, ε = 10−6.

Figure 2 (c). αu = 2.0, ε = 10−6.
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cases. In other words, the RPICM with the biased support domain gives more
accuracy when the biased distance increases.

4. CONCLUSIONS

A local upwind biased support domain scheme is used in a RPICM to solve
convection-dominated equation in this paper. Much more accurate solution
has been obtained. The results demonstrate that this scheme is very promising
for dealing with convection-dominated problems. Further improvement can be
made to adaptively move the biased domain based on the ratio of convection to
diffusion, and to stabilize the collocation procedure without the use of a weak
form.
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MESHFREE NUMERICAL SOLUTION
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POROUS MEDIA
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Abstract Thin plate spline radial point interpolation collocation method (TPS-RPICM) has

been applied to the numerical simulation of two-phase flow in porous media. In

the numerical testing, it was applied to solve the Five-spot Waterflood problem,

which is a classical benchmark in this field of petroleum reservoir simulation. The

results obtained by the TPS-RPICM for coarse and fine models were compared,

and it demonstrates the accuracy and convergence of the proposed method for

multiphase flow problems.

Keywords: TPS, meshfree, two-phase flow, porous media, reservoir simulation.

1. INTRODUCTION

Point interpolation method (PIM) and Radial PIM (RPIM) proposed by
Liu and Wang [1] are based on Galerkin or Petrov–Galerkin weak forms, and
numerical integrations are required. Its collocation form radial point interpo-
lation collocation method (RPICM) has also been presented and applied to 2D
linear elastic problems and other problems [2,3]. MQ-RPICM was applied to
the numerical simulation of two-phase immiscible flow in porous media by
Liu [3]. It was found that water saturation fronts obtained with coarse and
fine models are lightly different. The reason is because the h-convergence is
strictly dependent on the choice of shape parameter in MQ. This was also
shown in the work by Lee et al. [4]. In contrast, the h-convergence is very good
through some numerical tests while TPS-RPICM is employed [5]. The object
of this paper is to apply TPS-RPICM to solve an immiscible flow equation
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in reservoir simulation. The numerical results show that TPS-RPICM is more
available for the solution of transient problem due to its good h-convergence
feature.

In this study, the governing equations for immiscible flow and radial point
interpolation approximation are briefly introduced. The collocation schemes for
the pressure and saturation equations are formulated with the present method.
Then, an immiscible flow equation in reservoir simulation is solved by this
present method TPS-RPICM. Some concluding remarks are given finally.

1.1 Governing Equation for Two-Phase Immiscible Flow

The governing equations describing two-phase immiscible flow through
porous media can be found in [3].

2. RADIAL POINT INTERPOLATION

The approximation of a function u(x) may be written as

u(x) ∼= ũ(x) =
n∑

i=1

aiϕi + p(x) (1)

where n is the number of points in the support domain near x.ai are coefficients
to be determined and ϕ are the TPS radial basis function, p(x) is additional
linear or quadratic polynomials.

2.1 Thin Plate Spline

ϕi = ||r − ri ||2m log(||r − ri ||), ||r − ri || =
√

(x − xi )2 + (y − yi )2

(2)
The interpolations of the function at the kth point have the form:

ũk = ũ(xk) =
n∑

i=1

aiϕki + p(xk), ϕki = ϕ(||xk − xi ||), k = l . . . n (3)

From (3), the approximated function and shape function can be obtained:

ũ(x) = �ũe, � = [�1 . . . �i . . . �n] (4)

For more details, see for Liu [6] and X. Liu [2–5]
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2.2 RPICM for Pressure and Saturation Equations

From Equation (4), the point interpolation and their derivatives forms for
pressure and saturation functions can be expressed as:

p̃(x) = �p̃e,
∂ p̃(x)

∂x
= ∂�

∂x
p̃e, S̃w (x) = � S̃e

w ,
∂ S̃w (x)

∂x
= ∂�

∂x
S̃e

w (5)

At time tm+1, the following equations are satisfied in internal domain nodes:

− ∇ · (λm+1∇ p̃m+1) + rc

2
∇(∇ · (λm+1∇ p̃m+1)) = 0 (6)

φ
S̃m+1

w − S̃m
w

�t
+ vm+1

T

(
d f m+1

w

d S̃w

)
· ∇ S̃m+1

w − rc

2
∇ ·

(
vm+1

T

d f m+1
w

d S̃w
· ∇ S̃w

)

= ε�S̃m+1
w (7)

It should be noted that a small diffusion term has been added to (7) to handle
shocks and ε is the adjustable diffusion coefficient. Here, implicit time inte-
gration scheme has been adopted. The additional term involving in rc is taken
as numerical stable term, rc is the characteristic length for the discretization
model. For uniform model, rc is taken as the uniform distance between nodes;
For scattered point model, rc is taken as the size of support domain at collocation
point.

The following equations are satisfied on reflected boundaries for both pres-
sure and saturation equations:

n · ∇ p̃m+1 − rc

2
(∇ · (λm+1∇ p̃m+1 )) = 0, n · ∇ S̃m+1

w = 0 (8)

The following equations are satisfied on Dirichlet boundaries for both pressure
and saturation:

At source well for injected fluid (water),

p̃m+1 = p0, S̃m+1
w = 1.0, (9)

At sink well for produced fluid (oil),

p̃m+1 = 0, S̃m+1
w = 0.0, (10)

The last system algebraic equation can be solved by Newton–Raphson iteration
scheme.
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Figure 1. 2D horizontal homogeneous reservoir.

2.3 Numerical example

In this section, a 2D homogeneous two-phase immiscible reservoir problem
[7] has been tested by TPS-RPICM in which linear additional term in Equation
(1) and m = 4 in Equation (2) are used. Owing to symmetry, only the upper half
of the reservoir needs to be discretized. Source and sink nodes with specified
p values are indicated by the thick lines in Figure 1. The size of the reservoir
is [0, 400.0 m] × [0, 400.0 m]. Sw was kept equal to unity at the source. The
25 ×13 = 325-node coarse model, 49 ×25 = 1225-node fine uniform model,
1225-node Halton scattered point model shown as Figure 2 are used to solve the
pressure and saturation equations. Figures 3–5 show the wetting fluid satura-
tion distributions at 2000 days for three different models. There are 25 points in
every support domain. For 325-node uniform model, time step numbers: 500;
time interval: 4 day; diffusion coefficient ε = 0.01, stable parameter rc = 16.0

1225-point Halton model

Figure 2. 1225-node Halton model.
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Figure 3. Saturation distribution obtained with 25 × 13 uniform model.

for dealing with Neumann boundary in pressure equation. For 1225-node uni-
form and scattered point models time step numbers: 2000; time interval: 1 day;
diffusion coefficient ε = 0.005. For 1225-node uniform model, stable param-
eter rc = 8.0 for dealing with Neumann boundary in pressure equation. For
1225-node scattered point model, stable parameter rc is taken as the size of
support domain for dealing with Neumann boundary in pressure equation. It
can be observed that results obtained with coarse and fine models are very close
at water saturation front. However, the numerical oscillation is smaller for fine
model, and higher accurate water saturation front has been obtained with fine
model. On the other hand, it is also seen that the results with the uniform and

Figure 4. Saturation distribution obtained with 49 × 25 uniform model.
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Figure 5. Saturation distribution obtained with 1225-node Holton model.

scattered point models show little difference, and it shows this present method
is suitable for the scattered point model. In addition, the results obtained by
TPS-RPICM are compared with Figure 13 in Langtangen’s paper [7], and show
good agreement.

3. CONCLUSIONS

We have employed TPS-RPICM to solve immiscible two-phase flow in
porous media. The results computed demonstrate that the h-convergence is
good when TPS is used in RPICM. The good h-convergence feature will be very
important for further numerical simulation research in practical engineering
problems.
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Abstract A meshfree radial point interpolation method (RPIM) is presented for stress

analysis of three-dimensional (3-D) problems. In this method, the radial basis

function augmented with polynomial is used to construct shape functions. As

the shape functions so constructed have the Kronecker delta function property,

the RPIM enforces essential boundary conditions much more easily than the

meshfree methods based on the moving least-square approximation. The Galerkin

weak form of the governing equations is used to derive the discretized system

equations. The stress analysis of a numerical example is studied and it is concluded

that the present meshfree RPIM is very accurate and efficient for stress analysis

of 3-D solids.

Keywords: meshfree, meshless, radial point interpolation, three-dimensional.

1. INTRODUCTION

Meshfree methods have been developed and achieved remarkable progress
in recent years. There are some well-known ones such as smooth particle hydro-
dynamics (SPH) [1], the diffuse element method (DEM) [2], the element free
Galerkin (EFG) method [3] and the meshless local Petrov-Galerkin (MLPG)
method [4], and so on.

The point interpolation method (PIM) [5–8] is a meshfree method devel-
oped using local shape functions and Galerkin weak form. In PIM, the shape
function is constructed based only on a group of nodes arbitrarily distributed in

G. R. Liu et al. (eds.), Computational Methods, 1555–1559.
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a local support domain by means of interpolation. A background cell structure
is required to evaluate the integration in the Galerkin weak form. The major
advantage of PIM is that the shape functions created possess the Kronecker
delta function property, and hence many numerical treatments are as simple as
in the finite element method (FEM).

PIM using radial basis functions (RBFs) is termed as radial PIM (RPIM)
[7, 8]. In the RPIM, RBFs are used for constructing shape functions and it
has been proved that the moment matrix of the RBF interpolation is usually
invertible for arbitrary scattered nodes [9]. Therefore, the RPIM is very stable
and robust for arbitrary nodal distributions.

In this paper, the three-dimensional (3-D) RPIM formulation is first devel-
oped. A numerical example is then presented to demonstrate the accuracy and
efficiency of RPIM for 3-D solids.

2. RADIAL POINT INTERPOLATION

Consider an approximation function u(x) in a local support domain that
discretized by a set of arbitrarily distributed nodes. We have the following
RPIM form of the function u(x)using radial basis function Ri (x) augmented
with polynomial basis function p j (x) [8, 9].

u(x) =
n∑

i=1

Ri (x)ai +
m∑

j=1

Pj (x)b j = RT (x)a + PT (x)b (1)

where nis the number of RBFs and is also identical to the number of nodes in
the local support domain of interest point x, and m is the number of polynomial
basis functions. There are a number of types of RBFs and the multi-quadrics
(MQ) function is adopted in this paper. In order to determine ai and b j in
Equation (1), a local support domain must be formed. In this paper, the nnodes
which are the nearest to the interest point x are adopted in the support domain.
It leads to n linear equations by enforcing Equation (1) to be satisfied at these
n nodes in the support domain. Finally, the approximation function can be
rewritten as the follows

u(x) = �T (x)Us =
n∑

i=1

φi ui (2)

where �(x) is the vector of shape functions corresponding to the nodal dis-
placements,

�T (x) = {
φ1(x) φ2(x) . . . φn(x)

}
(3)
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3. GLOBAL WEAK FORM FOR
THREE-DIMENSIONAL SOLIDS

Consider the following 3-D problem defined in the domain � boundary by
� [10].

LTσ + b = 0 in � (4)

The natural and the essential boundary conditions are given as the follows,
respectively,

σ · n = t on �t ; u = u on �u (5)

The unconstrained Galerkin weak form of Equation (4) is posed as the
follows [8].∫

�

(Lδu)T (DLu) d� −
∫
�

δuT b d� −
∫
�t

δuT t d� = 0 (6)

Substituting Equation (2) into Equation (6) yields

Ku = f (7)

where

K i j =
∫
�

BT
i DB j d�; f i =

∫
�t

φi t d� +
∫
�

φi b d� (8)

4. A NUMERICAL EXPERIMENT

In this section, a 3-D cantilever beam, shown in Figure 1, is studied as
a testing example using the RPIM. In this study, the units are all taken as
international standard units and the material adopted is linear elastic with E =
3.0 × 107 and ν = 0.3. The parameters of the beam are taken as L = 50,
D = 10, B = 1 and p = 1000. For the RPIM, q = 1.03, αc = 4.0 and 52 nodes

Figure 1. A cantilever beam.
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Figure 2. Irregular nodal distribution.

are adopted in the support domain. The cantilever beam is represented by
1620 irregularly distributed nodes (shown in Figure 2) and 4447 tetrahedron-
shaped background integration cells are used. There are 11 Gauss points in
each tetrahedron cell for integration. As the beam has a unit thickness and a
plane stress problem can be considered to yield the analytical solution [10], this
analytical solution is adopted to act as the reference solution for the cantilever.

Figure 3 illustrates a comparison of normal stress in x direction along a
particular line between the analytical solutions and the RPIM results. The plot
shows that the results obtained using RPIM in 3-D are in great agreement with
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Figure 3. Normal stress (σxx ) distribution along the line located at x = L/2, z = 0.0.
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Figure 4. Shear stress (σxy) distribution along the line located at x = L/2, z = 0.0.
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the analytical solutions. Figure 4 shows that the shear stresses obtained using
the RPIM have a good agreement with the analytical solutions.

The present RPIM code is also used for analyzing complicated 3-D me-
chanical components, and the results will be presented in oral presentation.

5. CONCLUSIONS

A RPIM formulation for 3-D solids is presented in this paper. In this method,
the combination of radial basis functions and the polynomial is adopted to
construct shape functions based on a 3-D local support domain. As the shape
functions so derived possess Kronecker delta function property, the essential
boundary conditions can be imposed as easily as in FEM. The RPIM is coded
and applied for stress analysis of 3-D solids. It is found that the meshfree RPIM
is very easy to implement, very accurate and efficient for stress analysis of three-
dimensional problems, and with equivalent efficiency as the standard FEM. The
code is being developed further for dynamic and non-linear problems.
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3-D HEAT TRANSFER ANALYSIS USING
A COLLOCATION METHOD TOGETHER
WITH RPIM SHAPE FUNCTIONS AND
FIC BOUNDARY CONDITIONS

B.H. Zhou and G.R. Liu
Department of Mechanical Engineering, National University of Singapore, 9 Engineering
Drive 1, Singapore 117576

Abstract This paper describes a meshfree collocation procedure for heat transfer analysis. In

this procedure, radial point interpolation method (RPIM) is employed to construct

shape functions and a finite calculus treatment is used for problems with derivative

boundary conditions to improve the stability and accuracy of numerical solution.

Numerical examples of 2-D and 3-D heat transfer problems are presented to study

the stabilization parameter to demonstrate the efficiency of the present numerical

procedure.

Keywords: RPIM-numerical analysis, finite calculus, heat transfer, meshfree, collocation.

1. INTRODUCTION

Meshfree methods can be generally classified into three major categories:
methods based on strong forms (e.g., collocation), those based on weak forms
and those based on the combination of weak and strong forms [1]. A compre-
hensive review for meshfree methods can be found in the books by Liu [2, 3].

Meshfree collocation method has been used extensively due to its simplicity
in implementation and computational efficiency. However, the poor stability
and low accuracy for problems with derivative boundary conditions (DBCs)
constitutes the main drawback for this type of methods. Many treatments aiming
to alleviate such a flaw have been proposed in recent years, and one of which
is the use of finite calculus (FIC) [4, 5].

In this paper, the radial point interpolation method (RPIM) augmented with
polynomials is used to construct shape functions with Kronecker delta function
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properties, which allows easy handling of essential boundary conditions. A col-
location procedure using the RPIM shape functions is then employed to analyse
heat transfer problem numerically. Finite calculus (FIC) concept is adopted for
the treatment of DBCs. Several numerical examples of heat transfer problem
are solved via the present collocation method, the results show a significant
improvement in accuracy and efficiency, when a proper stabilization parameter
is used.

2. RADIAL POINT INTERPOLATION

2.1 Formulation Using Radial-Polynomial Basis

Interpolation of functions with pure radial basis functions fails to capture
the linear field exactly due to the inconsistency nature (see, e.g., [2]). Adding
polynomial terms up to linear order can ensure the reproduction of a linear
field, and it can usually improve the accuracy of the results.

Consider a temperature field function T (x) defined in a domain represented
by a set of nodes. The approximate interpolation T (x) by using the surrounding
nodes in a local support domain of a point at x can be written as

T (x) =
n∑

i=1

φi (x) Ti (1)

where φi is a shape function and Ti is the function value at node i in the support
domain. The shape functions can be obtained through a standard procedure
(see, e.g., [2]), using different types of radial basis functions. In this paper,
the multiquadric (MQ) radial functions are used. Once the shape functions are
obtained, Equation (1) is then used in the standard collocation procedure to
discretize the governing equations, which leads to a set of algebraic equations.
Since the RPIM shape functions possess the delta function property, the essen-
tial boundary conditions can be imposed as in the conventional FEM or FEM.

2.2 Finite Calculus for the DBCs

Collocation method together with RPIM shape functions can usually pro-
duce accurate results for PDEs, for cases when only essential boundary condi-
tions exist. However, the solution accuracy can drop significantly when a DBC
presents. To improve the accuracy in such a case, a stabilization technique
called finite calculus approach has been suggested by Oñate et al. [4, 5]. The
FIC procedure, imposing balance laws of mechanics over a domain of finite
size, is used here only to deal with the derivative boundary conditions.
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Consider the following 3-D problem of heat transfer defined in a cubic
domain [0 ≤ x ≤ L , 0 ≤ y ≤ L , 0 ≤ z ≤ L], where L is a given constant.

∇2T + 3π2

L2
sin

(πx

L

)
sin

(πy

L

)
sin

(πz

L

)
= 0 (2)

where ∇2 denotes Laplace operator, and T is temperature variable in the cubic
domain. The derivative boundary condition on x = 0 or x = L is given as
follows.

∇2T + 3π2

L2
sin

(πx

L

)
sin

(πy

L

)
sin

(πz

L

)
= 0 (3)

On the rest of five surfaces of the cubic domain, the temperature is fixed at

T = sin
(πx

L

)
sin

(πy

L

)
sin

(πz

L

)
(4)

Using finite calculus procedure, the DBC equations can be rewritten as(
∂T

∂x
− π

L
cos

(πx

L

)
sin

(πy

L

)
sin

(πz

L

))

+ αdcn

(
∇2T + 3π2

L2
sin

(πx

L

)
sin

(πy

L

)
sin

(πz

L

))
= 0 (5)

where n is the outwards normal on the boundary, dc is the distance in the normal
direction between the sampling node on the boundary and the nearest node
within the local support domain. We introduce α as a stabilization parameter
to be adjusted to achieve better accuracy.

The least square norm is defined as error indicator in our accuracy study.

error = 1

N

√√√√(
N∑

i=1

(
T exact

i − T num
i

)2

) / (
N∑

i=1

(
T exact

i

)2

)
(6)

where T exact
i is exact values of the temperature, T num

i is numerical values ob-
tained using the present numerical method, and N is total number of nodes in
the cubic domain.

The derivation for 2-D heat transfer problem based on the above formulation
is straight, and hence is omitted here.

3. RESULTS AND DISCUSSION

Some benchmarking numerical examples with exact analytical solutions are
studied to test the present collocation procedure.

Figure 1 shows the temperature distribution for a 2-D problem defined in
[0 ≤ x ≤ 100, 0 ≤ y ≤ 100]. The problem has been solved with the derivative
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Y

X

Figure 1. Temperature distribution in a 2-D square domain.

boundary condition at x = 100 and 121 evenly distributed nodes are used.
Figure 2 shows the least square error obtained using Equation (6) when different
stabilization parameter α is used. It can be found that better results have been
obtained when α is around 0.4. An example of 3-D heat transfer problem
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Figure 2. Least square error in the temperature for different parameter α used.
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Y

X

Figure 3. Temperature distribution on a plane at z = 3 in a cubic domain.

is defined in a cubic domain [0 ≤ x ≤ 6, 0 ≤ y ≤ 6, 0 ≤ z ≤ 6]. 7 × 7 × 7
regularly distributed nodes are used for the numerical analysis. Figure 3 shows
the temperature distribution on the cross -section at z = 3. The least square
error for different stabilization parameter α is shown in Figure 4. It is found
that accurate solution can be obtained when α = 0.4 ∼ 1.0 in this case.

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

–
e
rr

o
r–

–α–

× 10−4

Figure 4. Least square error in the temperature for different parameter α used.
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4. CONCLUSIONS

A collocation method, together with RPIM shape functions and a FIC pro-
cedure, is used to analyze 3-D heat transfer problem. Numerical examples have
shown that the stabilization parameter α affects significantly the accuracy of
the solution, and it should be within the range of 0.4 to 1.0 for our example
problems.
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SYMPLECTIC ANALYSIS FOR OPTICAL
WAVEGUIDES IN LAYERED MEDIA

Zheng Yao and Wanxie Zhong
Department of Engineering Mechanics, Dalian University of Technology, Dalian,
China 116023

Abstract Symplectic analysis is introduced into optical waveguide theory, by using Hamil-

tonian system theory in which the transverse electric and magnetic field vectors

are the dual vectors. The method can accommodate arbitrary anisotropic material.

The electro-magnetic stiffness matrix of a typical segment in optical waveguide is

generated by means of the combination algorithm of contiguous segments based

on energy variational principle. Then the Wittrick–Williams algorithm is used

to extract the eigenvalues. Thereafter, an energy band analysis is performed for

optical waveguide in layered media.

Keywords: symplectic, optical waveguide, layered media, Wittrick–Williams algorithm.

1. INTRODUCTION

Frequency spectrum analysis of waveguides shows that the eigenvalues ex-
hibit energy band behaviour [1], such that a wave with frequency ω which
is in a pass-band can propagate along the structure, whereas otherwise ω is
in a stop-band and the wave decays to zero over long distances. The energy
analysis used to find pass-bands and stop-bands is very important in practical
disciplines. In the analysis of waveguides, the layered structure is encountered
frequently. The optical wave is electro-magnetic wave, the analysis of optical
waveguides is the topic of the present paper.
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2. SYMPLECTIC ANALYSIS FOR
ELECTRO-MAGNETIC WAVE

The Maxwell equation set is the foundation for this paper. For optical ma-
terials there is usually neither source nor current (i.e., ρ = 0, j = 0) and the
equations are given as [1–3]

∇ · D = 0, (1)

∇ · B = 0 (2)

∇ × E = −∂B/∂t = −μ∂H/∂t, (3)

∇ × H = ∂D/∂t = ε∂E/∂t (4)

where E and H are, respectively, the electric and magnetic field vectors; D
and B are electric displacement density and magnetic flux density vectors. The
constitutive relations are

D = εE, (5)

B = μH (6)

The Maxwell equations are formulated in the time domain, whereas the corre-
sponding forms in the frequency domain are

H = he−iωt , E = iee−iωt (7)

where e(x, y, z, ω) and h(x, y, z, ω) are to be determined. Equation (3) and (4)
transform to

ωμ0h = R · e, (8)

ωεe = R · h (9)

where R =
⎡
⎣ 0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x
−∂/∂y ∂/∂x 0

⎤
⎦ (10)

is an operator matrix.
If S is the boundary surface of a finite domain V ; the boundary condition

for a perfect conductor is

n × e = 0, n = ixl + iym + izn, on the boundary S (11)

For a finite domain V with perfect conductor boundary conditions, the
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variational principle can be expressed as

�(e, h) = Re

{∫∫∫
V

[
hH · (R · e) − μ0ωhH h/2 − ωeHεe/2

]
dxdydz

+ ∫∫
S eH · (n × h)dS

}
, δ� = 0

(12)

where superscript H denotes Hermitian transposition. The components of vec-
tors h and e are treated as independently varying functions in the functional.
Note that the boundary condition (11) is also the natural boundary condition
derived from the variational principle [4].

The configuration of the longitudinal co-ordinate z is different to that of the
transverse ones x and y: Let partial differential with respect to it be denoted by
∂(#)

/
∂z =(#̇) and let the transverse vectors q and p be written as

q = { ex ey }T, p = {hy −hx }T, q1 = ex , q2 = ey, p1 = hy, p2 = −hx

(13)

These form a pair of dual vectors. The variational principle can be rewritten
with dual vectors q and p:

�(q, p) =
∫∫∫

V

×
[
pT q̇ − ωqTεtr q/2 − μ0ωpTp/2 − (∂p1/∂x + ∂p2/∂y)(εzt q)/εz

+(∂p1/∂x + ∂p2/∂y)2/(2εzω) + (∂q1/∂y − ∂q2/∂x)2/(2μ0ω)

]
dxdydz,

δ� = 0 (14)

where εtr = εt − εztε
−1
z εT

zt =
[

εt11 εt12

εt21 εt22

]
, εzt = [ εxz εyz ] (15)

The variational principle gives

˙̃q(x, y, z) = Aq̃ + μ0ωp̃ + Dopp̃ (16a)

˙̃p(x, y, z) = −ωεtr q̃ − Bopq̃ − AT p̃ (16b)

where Dop =
def

1

ωεz

[
∂2/∂x2 ∂2/∂x∂y
∂2/∂x∂y ∂2/∂y2

]
, (17a)

Bop =
def

1

ωμ0

[
∂2

/
∂y2 −∂2

/
∂x∂y

−∂2
/
∂x∂y ∂2

/
∂x2

]
(17b)

A = −
[

∂
/
∂x

∂
/
∂y

] (
εzt

εz
•
)

, (18a)

AT =
(

εT
zt

εz

) [
∂/∂x ∂/∂y

] • (18b)

The tilde over dual vectors denotes that q and p are the functions of (x, y, z).



1570 Zheng Yao and Wanxie Zhong

Cladding

Film

Substratum n1

n2

n3

Z

x

1
2

d

1
2

d

Figure 1. Layered media.

3. SOLUTION FOR A HOMOGENEOUS
ISOTROPIC PLANE WAVEGUIDE

In the simplest case the field is invariant in the y direction, see Figure 1.

q̃(x, z) = q(x) · exp (ikzz)
p̃(x, z) = p(x) · exp (ikzz)

(19)

For isotropic material, substituting (19) into (16a,b) gives

d2 p1/dx2 = [k2
z (εz/εt11) − μ0ω

2εz]p1, d2q2/dx2 = [k2
z − ω2μ0εt22]q2

ikzq2 = μ0ωp2, ikz p1(x) = −ωεtq1; q2 = ey, p1 = hy (20)

This set of equations has been separated the variables, and can be divided into
two groups: q1 = ex = 0, p1 = hy = 0 (TE solutions) and q2 = ey = 0, p21 =
−hx = 0 (TM solutions).

The derivation can be used for all layers. The equations are very simple
so that the analysis solution can be given out. The analysis for pass-band in
layered media is very necessary. The precise integration method (PIM) [5, 6] in
combination with extra W–W (Wittrick–Williams) algorithm [7–11] is applied
to solve the problem of isotropic plane waveguide, and gives out all the pass-
band eigenvalues.

4. SOLUTION FOR A HOMOGENEOUS
ANISOTROPIC PLANE WAVEGUIDE

Now consider this: the media is layered along the z direction and the wave
propagates in the x direction. Because the field is invariant in the y direction

E(x, y, z) = e(z) · exp [i(kx x − ωt)], H(x, y, z) = h(z) · exp [i(kx x − ωt)]

(21)
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substituting (21) into (16a,b) gives

q̇ = −
[

iεxzkx/εz iεyzkx/εz

0 0

]
q +

[
ωμ0 − k2

x/ωεz 0
0 ωμ0

]
p (23a)

ṗ(z) = −
[

ωεt11 ωεt12

ωεt21 ωεt22 − k2
x/ωμ0

]
q −

[
iεxzkx/εz 0
iεyzkx/εz 0

]
p (23b)

The above equations can be written in matrix form

v̇(z) = Hv, v =
{

q
p

}
, H =

[
A D
B −AH

]
, JH = (JH)H (24)

A = −
[

iεxzkx/εz iεyzkx/εz

0 0

]
, D =

[
ωμ0 − k2

x/ωεz 0
0 ωμ0

]
,

B = −
[

ωεt11 ωεt12

ωεt21 ωεt22 − k2
x/ωμ0

]
(25)

Equations (23a,b) can be rewritten as

K22q̈ + (K21 − K12)q̇ − K11q = 0, K22 = D−1, K21 = −D−1A,

K11 = B − AH D−1A (26)

Equation (26) is analogous to structural mechanics problems. Hence, the numer-
ical methods developed in computational structural mechanics can be applied.
By utilizing PIM and W–W algorithm, all the pass-band eigenvalues can be
obtained precisely.

5. COMPUTATIONAL METHOD FOR MATRIX
DIFFERENTIAL EQUATIONS

The Computational method of matrix differential equations (24) will be
discussed in this section.

5.1 The interval formulation and matrix
differential equations

Let the two stations za and zb(zb > za) required by the interval formulation
of the precise integration method be selected arbitrarily within a layer to form
the interval [za, zb]. Evidently, if the vectors qa and pb are given at the two
ends, respectively, the solution q and p in the interval [za, zb] is fixed. Thus the
solution in the interval [za, zb] is totally determined by the two end boundary
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conditions, which can be written as [12]

q = qa at z = za; p = pb at z = zb (27)

Because the system is linear, the relationship is

qb = Fqa − Gpb pa = Qqa + Epb (28)

where F, Q, G, E are complex matrices to be determined. Differentiating Equa-
tion (28) with respect to z and assuming qa, pa are given yields

q̇b = Ḟqa − Ġpb − Gṗb

0 = Q̇qa + Ėpb + Eṗb

(29)

The dual equation can then be written as

q̇b = Aqb + Dpb ṗb = Bqb + Cpb (30)

Combining Equation (29) and Equation (30) gives

(Ḟ − AF − GBF)qa + ( − Ġ − D − GC + AG + GBG)pb = 0

(EBF + Q̇)qa + ( −EBG + Ė + EC)pb = 0 (31)

Noting that the vectors qa, pb are mutually independent, yields the equations

Ḟ = (A + GB)F, Ė = E(BG − C),
Ġ = AG − GC − D + GBG, Q̇ = −EBF

(32)

By going to the limit as zb → zathe boundary conditions for these equations
are

G(za, zb) = Q(za, zb) = 0, F(za, zb) = E(za, zb) = I, when za → zb

(33)

5.2 The combination of adjacent intervals

Two adjacent intervals [za, zb] and [zb, zc], for which the interval matrices
are (F1, Q1, G1, E1) and (F2, Q2, G2, E2), respectively, can be combined to
form a longer interval [za, zc] with interval matrices (Fc, Qc, Gc, Ec).

Applying Equation (28) to intervals 1 and 2 gives

qb = F1qa − G1pb for [za, zb] (34a)

pa = Q1qa + E1pb for [za, zb] (34b)

qc = F2qb − G2pc for [zb, zc] (35a)

pb = Q2qb + E2pc for [zb, zc] (35b)
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and the requirement is to find the equations of the combined interval in the
form

qc = Fcqa − Gcpc for [za, zc] (36a)

pa = Qcqa + Ecpc for [za, zc] (36b)

Solving for the vectors qb, pb by using Equations (34a) and (35b) gives

qb = (I + G1Q2)−1F1qa − (G−1
1 + Q2)−1E2pc (37a)

pb = (Q−1
2 + G1)−1F1qa + (I + Q2G1)−1E2pc (37b)

Substituting these back into Equations (34b) and (35a), and then compar-
ing with Equations (36b) and (36a), gives the desired interval combination
equations as

Fc = F2(I + G1Q2)−1F1 (38a)

Gc = G2 + F2(G−1
1 + Q2)−1E2 (38b)

Qc = Q1 + E1(Q−1
2 + G1)−1F1 (38c)

Ec = E1(I + Q2G1)−1E2 (38d)

These equations are important for eigenvalue problems or the solution of
ordinary differential equations.

5.3 Initialization of interval matrices

Equations (38abcd) have shown how interval matrices operate, but so far
no interval matrices have been derived, so that only the system matrices A, B,
C, D are available. Therefore it is now necessary to generate a set of interval
matrices from A, B, C, D.

The present case constitutes a system which is independent of the co-
ordinate z within each layer of material, which can therefore be considered
as an interval. It is then possible to subdivide this interval into any number
of equal length subintervals. For convenience, the procedure adopted is a two
step process. The layer thickness Dzi = (zi − zi−1), can be first divided into
64 identical sublayers, so that each one has thickness subDzi = Dzi/64. This
provides the points at which the elements of subsequent eigenvectors will be
calculated if required. Each of these sublayers can then be further divided into
2N sublayers, each with the extremely small thickness

τ = subDzi/2N = subDzi/1, 048, 576 for N = 20

For this interval τ , the interval matrices F, Q, G, E can be found as fol-
lows. Based on the differential Equation (32), and using the interval boundary
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conditions of Equation (33), the Taylor series expansion can be expressed as

Q(τ ) = θ1τ + θ2τ
2 + θ3τ

3 + θ4τ
4 (39a)

G(τ ) = γ1τ + γ2τ
2 + γ3τ

3 + γ4τ
4 (39b)

F′(τ ) = φ1τ + φ2τ
2 + φ3τ

3 + φ4τ
4 F(τ ) = I + F′(τ ) (39c)

E
′
(τ ) = ψ1τ + ψ2τ

2 + ψ3τ
3 + ψ4τ

4 E(τ ) = I + E
′
(τ ) (39d)

where θi , φi , ψi , γi (i = 1, 2, 3, 4) are all 2 × 2 coefficient matrices yet to
be determined. Substituting Equation (39) into Equation (32), and comparing
coefficients of various powers of τ gives the following equations

θ1 = −B γ1 = −D φ1 = A ψ1 = −C (40)

θ2 = −(ψ1B + Bφ1)/2 γ2 = (Aγ1 − γ1C)/2 φ2 = (Aφ1 + γ1B)/2

ψ2 = (Bγ1 − ψ1C)/2 a2 = (Aa1 + γ1sp)/2 b2 = −(Ba1 + ψ1sp)/2

(41)

θ3 = −(ψ2B + Bφ2 + ψ1Bφ1)/3 γ3 = (Aγ2 − γ2C + γ1Bγ1)/3

φ3 = (Aφ2 + γ2B + γ1Bφ1)/3 ψ3 = (Bγ2 + ψ1Bγ1 − ψ2C)/3 (42)

θ4 = −(ψ3B + Bφ3 + ψ2Bφ1 + ψ1Bφ2)/4

γ4 = (Aγ3 − γ3C + γ2Bγ1 + γ1Bγ2)/4

φ4 = (Aφ3 + γ3B + γ2Bφ1 + γ1Bφ2)/4

ψ4 = (Bγ3 + ψ1Bγ2 + ψ2Bγ1 − ψ3C)/4 (43)

These matrices can be computed successively without iteration. However, the
precision must be considered carefully as follows. The Taylor series expansions
are truncated after the τ 4 terms, and the first term is of order τ . Therefore the
relative order of the neglected terms is τ 4. However, if N = 20τ has been
divided by rather more than 106. Thus τ 4 will be of the order of 10−24, which
is well beyond the double precision accuracy of the computer used.

All derivations in the previous sections are exact, in the sense that the sole
approximation made, namely the truncation of the Taylor series expansion of
Equation (39), has just been shown to cause a numerical error which is less than
the round-off error of double precision computation. Therefore the method is
exact in the sense that any method can be exact, i.e., it is as exact as the
computer precision permits. However, because F = I + F′ and F′ is a matrix
of small quantities, the addition must not be executed when the interval is very
small, as otherwise unnecessary numerical errors would be induced and the
exactness lost. Therefore it is vitally important that only F′ is generated and
stored in the computer memory, and never F. Hence it is necessary to replace
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Equation (38) by

F′
c = (F′ − GQ/2)(I + GQ)−1 + (I + GQ)−1(F′ − GQ/2)+F′(I + GQ)−1F′

(44a)

E′
c = (F′ − GQ/2)(I + GQ)−1 + (I + GQ)−1(F′ − GQ/2)+F′(I + GQ)−1F′

(44b)

Gc = G + (I + F′)(G−1 + Q)−1(I + E′) (44c)

Qc = Q + (I + E′)(Q−1 + G)−1(I + F′) (44d)

5.4 The 2N algorithm

After the generation of the interval matrices E(τ ), F(τ ), Q(τ ), G(τ )
of length τ , combination must be used to obtain the matrices
E′(subDzi ), F′(subDzi ), Q(subDzi ), G(subDzi ), of the given interval
subDzi . There are 2N (= 1, 048, 576 for N = 20), small τ intervals. Since all
of these small intervals are identical, the interval combination of Equation (44)
can be applied with Q1 = Q2,etc., and the combination of the 2N identical in-
tervals requires N ‘doubling up’ executions of Equation (44), as given by the
instructions

{E′(τ ), F′(τ ), Q(τ ), G(τ )} generated by Equation (39)

for (itera = 0; itera < N ; itera++) {
{ The execution of Equations (44abcdef); }
Q = Qc; G = Gc; F′ = F′

c; E′ = E′
c

}
Q(subDzi ) = Qc; G(subDzi ) = Gc; F(subDzi ) = I + F′

c;

E(subDzi ) = I + E′
c (45)

The algorithm (45) gives the computation for a sublayer of thickness
subDzi . However, it is required further to find the layer interval matrices
Q(Dzi ); G(Dzi ); F(Dzi ); E(Dzi ). The reason for setting up a sublayer of thick-
ness subDzi is that if the thickness of say, the i-th layer, Dzi = zi − zi−1, is too
large, a wave could possibly occur within it. The division into 64 small sublay-
ers ensures that internal waves are impossible, i.e., for each such sublayer its
eigenvalue count Jm(ω) = 0. Subsequent combinations of these layers involves
keeping track of the eigenvalue count by using the equation

Jmc(ω) = Jm1(ω) + Jm2(ω) − s{G1} + s{(G−1
1 + Q2)} (46)
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where s{· · ·} is the sign count of the matrix within the brackets. Equation (46)
is a necessary complement to Equation (38).

The following instructions give the computation of layer interval matrices
Q(Dzi ); G(Dzi ); F(Dzi ); E(Dzi )

{Q1 = Q2 = Q(subDz); G1 = G2 = G(subDz); F1 = F2 = F(subDz)

E1 = E2 = E(subDz); Jm1 = Jm2 = 0 }
for (itera = 0; itera < 6; itera++) {
{ The execution of Equations (38) and (46)}
Q1 = Q2 = Qc; G1 = G2 = Gc; F1 = F2 = Fc;

E1 = E2 = Ec; Jm1 = Jm2 = Jmc

}
{Q(Dz) = Qc; G(Dz) = Gc; F(Dz) = Fc;

E(Dz) = Ec; Jm = Jmc } (47)

The algorithm for combining the matrices of all of the intervals into one
overall interval is similar. Let z = 0 be treated as end a, then the algorithm
is

for (layer = 1; layer ≤ layers; layer + +) {
if (layer == 1){

Qc = Q(layer ); Gc = G(layer ); Fc = F(layer );

Ec = E(layer ); Jmc = Jm1;

}
else { Q1 = Q(layer ); G1 = G(layer ); F1 = F(layer );

E1 = E(layer ); Jm1 = Jm1;

Q2 = Qc; G2 = Gc; F2 = Fc;

E2 = Ec; Jm2 = Jmc

The execution of Equations (38) and (46);]

}
} (48)

So far Qc, Gc, Fc, Ec, Jmc are the overall interval matrices and EC, where EC
stands for the eigenvalue count and Jm1 means the EC for the layer. From the
EC computation in combination with a binary search, one can find all of the
eigenvalues without ever missing any.
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Figure 2. Multi-layered media.

6. NUMERICAL EXAMPLES

First, consider the case of isotropic plane waveguide: the thickness of the
films is d , and the wave propagates in the z direction with propagation constant
kz , see Figure 2.

For pass-band:

kz >
max(n1, nm+1) · ω

c
;

kz <
max(ni ) · ω

c
; i = 2, 3, . . . , m

(49)

In the simplest case: m = 1, n2 = 2.5, n1 = n3 = 1.5, d1 = 600 nm, kz = 1 ×
107. So the maximum of ω is ωM AX = 2 × 1015. All the pass-band eigenvalues
can be obtained via W–W algorithm:

ω1 = 1.279857264 × 1015,

ω2 = 1.506912669 × 1015,

ω3 = 1.834222574 × 1015

The corresponding wave functions are shown in Figure 3:

Figure 3. Wave functions of single film.
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Figure 4. Wave functions of three films.

If m = 3, and take:, n2 = n4 = 2.5, n1 = n3 = n5 = 1.5, d1 = 300 nm,
d2 = 200 nm, d3 = 300 nm, kz = 1 × 107. The corresponding pass-band eigen-
values and wave functions are shown in Figure 4.

By using W–W algorithm the relationship between propagation constant kz

and pass-band eigenvalue ω can be obtained, and satisfies Equation (49). The
relationship is shown in Figure 5. (The thickness of all the films is d = 600 nm;
for single layer: n1 = n3 = 1.5, n2 = 2.5; for three layers: n1 = n3 = n5 =
1.5, n2 = n4 = 2.5)

Figure 5. Relationship between kz and ω.
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7. CONCLUSION

In present paper, the problem of optical waveguides in layered media is
solved via symplectic analysis. A lot of numerical examples have been com-
puted by using PIM and W–W algorithm, and highly precise results were given
out. The merit of using the Hamiltonian system and symplectic geometry is that
doing so enables the mathematical method of separation of variables, symplec-
tic eigensolutions, expansion solution, etc., to be used to solve a wide range of
problems.
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A COMPUTATIONAL ANALYSIS
OF THERMAL RESIDUAL STRESS
DURING MAGNETIC QUENCHING
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Faculty of Mechanical and Electrical Engineering, Kunming University
of Science and Technology, Kunming 650093, Yunnan, P. R. China

Abstract In this paper, based on the analysis of coupling action of temperature, phase

transformation, magnetic field and stress, the phase transformation condition and

equation related to material properties are discussed, a new constitutive equation

considering effects of phase transformation and magnetic field is proposed and

solved by means of Finite Element Method (F.E.M). The thermal residual stress

is obtained and the influencing factors on the thermal stress of magnetic field are

analysed and discussed.

Keywords: thermal stress, magnetic quenching, constitutive equation, F.E.M.

1. INTRODUCTION

Magnetic quenching is a new heat treatment method adding additional mag-
netic field during quenching process of ferromagnetic material, which can well
improve the mechanics properties of material. However, compared with the ex-
perimental research, the theoretical study on the new heat treatment method is
far behind the demands of actual uses. During the course of magnetic quench-
ing, residual stress is a consequence of interactions among time, temperature,
deformation, microstructure and additional magnetic field (Figure 1). All of
these make the numerical solution more difficult, and research on the above is
reported in this paper.
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C© 2006 Springer. Printed in the Netherlands.

1581



1582 Z.L. Li et al.
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Figure 1. Phenomenological coupling during magnetic quenching.

2. THE INFLUENCE OF MAGNETIC FIELD
ON THE PHYSICAL PROPERTIES
OF FERROMAGNETIC

2.1 Condition of phase transformation and calculation
of the phase composition

According to phase transformation theory, the volume fraction of diffusion
phase transformation can be calculated as follows [1]:

f J = 1 − exp(−bntan ), (1)

where f J is the certain phase composition’s volume fraction, bn(T ) and an(T )
are two coefficients relevant to the temperature that can be obtained in terms
of the isotherm transfer curve of the material. The transformation quantity
from austenite to martensite, which is non-diffusion transformation, can be
calculated by following formula [1]:

fM = 1 − exp[−1.10 × 10−2(Ms − T )], (2)

where fM is the volume fraction of Martensite, Ms is the critical temperature at
which the martensite transformation starts and T is the temperature. Let H (x)
express a stepped function as follows:

H (x) =
{

1, x ≥ 0
0, x < 0

. (3)

And the condition of phase transformation can be written as:

FA→M (T, Ṫ ) = H (Ṫ − Vc)H (Ms − T ). (4)
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2.2 Abrupt change of specific heat and
heat expansion coefficient

It is the basic feature of ferromagnetic that there exists abrupt change of
specific heat and heat expansion coefficient at Curie temperature. According to
the theory of ferromagnetism [2], the calculating expressions of the magnetic
material’s specific heat cρH and heat expansion coefficient αH can be written
as:

cρH = cρ − 1

2
λ

d

dT
[M(T )]2, αH = αI − 1

3

(
∂ω

∂ H

)
T

(
∂ H

∂T

)
I

, (5)

where cρ and α I are the common specific heat and heat expansion coefficient,
respectively,λ is the molecule field coefficient, ω and M(T ) stand for sponta-
neous magnetization and volume contract induced by magnetic field.

2.3 Magneto-elasticity effect

Generally, the Young’s modulus of ferromagnetic material will appear
change when it is magnetized by the magnetic field and may be expressed
as [2]:

EH = E0 − �E = E0

[
1 − E0

(
9μ0λ

2
s

20π I 2
s

)]
, (6)

where E0 is the Young’s modulus without magnetized, μ0 is the initial magnetic
permeability, Is is saturated intensity of magnetization and λs is the saturated
magnetostriction.

3. THE HEAT CONDUCTION GOVERNING
EQUATION SET

In order to depict the course of heat transfer of the workpiece under the
magnetic quenching more accurately, the following governing equation set [3]
is used:

[k(T )T,i ],i = cρH (T )Ṫ −
N∑

J=1

FJ (T, Ṫ ) ḟ J L J + ∂ H

∂h
ḣ in 	 × (0, t]

−k(T )
∂T

∂n
= a1�Tw + a2�T 2

w + · · · + al�T l
w at ∂	 × (0, t]

T (x, 0) = T0 in 	

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (7)

where the sign H is enthalpy, h is magnetic field strength, M is spontaneous
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magnetiz-ation, the sign T0 means sample’s initial temperature and cρH is the
specific heat.

4. THERMAL ELASTOPLASTIC CONSTITUTIVE
EQUATION DURING MAGNETIC QUENCHING

The Mises’ yield criteria of isotropy strengthen model can be expressed as
[4]:

σ̄ − F

(∫
d ε̄p, T

)
= 0, (8)

where ε̄p and σ̄ represent equivalent plastic strain and equivalent stress, respec-
tively. Differentiating the Equation (8), we can get:(

∂σ̄

∂{σ }
)T

dσ = ∂ F

∂ε̄p
d ε̄p + ∂ F

∂T
dT . (9)

According to incremental theory, let d{ε} stands for the increments form of the
total strain, thus:

d{ε} = d{ε}e + d{ε}p + d{ε}T + d{ε}tr (10)

In which, d{ε}e, d{ε}p, d{ε}T and d{ε}tr are the increments form of the elastic
strain, plastic strain, temperature stain and the united expression of all phase
transformation strain component, respectively.

According to the mobile criteria and generalized Hooke’s law, we can get:

d {σ } = [D]H d {ε}e = [D]H

(
d {ε} − d {ε}p − d {ε}T − d {ε}tr

)
= [D]H

(
d {ε} − ∂σ̄

∂ {σ }d ε̄p − d {ε}T − d {ε}tr

)
. (11)

Through formulas (9) and (11), we can gain the increments form of ther-
mal elastoplastic constitutive equation during magnetic quenching process as
follows:

d {σ } = [D]epH

{
d {ε} −

[
d [D]−1

H

dT
{σ } + {α}

]
dT − d {ε}tr

}
− [D]H

∂σ̄

∂ {σ }

+
[D]H

∂σ̄

∂ {σ }
∂ F

∂T
dT

∂ F

∂ε̄p
+

{
∂σ̄

∂ {σ }
}T

[D]H
∂σ̄

∂ {σ }

, (12)

where [D]epH is the thermal elastoplastic matrix during magnetic quenching
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process. Equation (12) is a nonlinear equation, it should be solved by means of
Finite Element Method, and the Finite Element Method equation of Equation
set (12) is established as follows:

[K ] {δ} = {Q} , (13)

in which, [K ] and {δ} are the rigidity matrix and the displacement matrix,
respectively, {Q} is the heat load vector.

5. EXAMPLE AND DISCUSSION

The metallic workpiece is shown in Figure 2. It is a 45 steel cylinder of
30 × 60 mm. The quenching initial temperature is 860◦C and the magnetic
field intensity is 4.4 × 104 A/m. It is continuously cooled in water whose initial
temperature is 21◦C.

Based on the known transient temperature distribution of a 45 steel cylinder
workpiece during magnetic quenching [3], the finite element Equation (13)
is solved and the calculated results of thermal residual stress distribution on
Section I and Section II are obtained in Figure 3.

Figure 3 shows that during magnetic quenching, σz , σr , σθ all are smaller
than the normal quenching process. It indicates that using magnetic quenching
can decrease the internal stress of the sample due to the following reasons:
first, additional magnetic field may reduce the cooling velocity of workpiece,
and lighten it’s temperature difference of surface and inner, so the residual

II

I

II

I

Z

r

Figure 2. Sample.
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Figure 3. Thermal residual stress distribution on Section I and Section II.

thermal stress is small. Second, the heat expansion coefficient of magnetized
material take place abrupt change at Curie temperature, which is about 750◦C
and influence the process of phase transformation, then lead to the less thermal
stress. Third, under the effect of additional magnetic field, the Young’s modulus
of 45 steel get small and make the elastic matrix and the thermal elastoplastic
matrix changed and result in the less thermal stress.
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Abstract This paper presents a parallel finite element analysis of high frequency electro-

magnetic wave in an environment. The HDDM (Hierarchical Domain Decom-

position Method) is employed as a parallel solver. Nedelec element is employed.

The simulation method is tested for a simple model, and the results are compared

with exact solutions.

Keywords: ADVENTURE system, HDDM, high frequency electromagnetic wave.

1. INTRODUCTION

In order to estimate high frequency electromagnetic wave density in an
environment, we are developing a parallel finite element method (FEM) to
solve a high frequency electromagnetic wave field [1]. The present authors
have been involved in the ADVENTURE project since 1997 in which a com-
putational mechanics system (ADVENTURE system) for large-scale analysis
and design is being developed. The system consists of pre-, main- and post-
processing modules and design modules that can be used in various kinds of
parallel environment [2]. The ADVENTURE Magnetic is one of the modules
in the ADVENTURE system. The module contains the solver for magnetostatic
problems. In this paper, we modify the module so as to solve a high frequency

G. R. Liu et al. (eds.), Computational Methods, 1587–1594.
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electromagnetic wave field. We adopt the Hierarchical Domain Decomposition
Method (HDDM) for parallel computing [3–4].

2. OUTLINE OF THE HDDM

In the DDM, an analysis model i.e. a FE mesh is subdivided into a number
of subdomains. Yagawa and Shioya (1993) proposed a hierarchical technique
to implement the DDM on various parallel computers. This technique is called
the HDDM. In this particular method, a group of processing elements (PEs)
are subdivided into three groups: one Grand Parent PE (Grand), some Parent
PEs (Parent) and a number of Child PEs (Child or Children). Figure 1 shows
the schematic data flow among PEs.

An analysis model is subdivided into some ‘parts’ whose number is the
same as that of Parents. Then, each part is further subdivided into a number of
subdomains. Each Parent stores in its memory a set of the part data that con-
sists of some sets of subdomain data. The subdomain data include coordinates
of nodes, material properties and information of the interface between sub-
domains. In the nonlinear analysis of magnetic fields, magnetic fields are also
stored in the Parents. Children are dynamically allocated to Parents, and the data
associated with a subdomain stored in Parents are sent to the Children. Each
Child receives the data of a subdomain, conducts the computation associated
with the subdomain and sends the results back to the Parents. Grand manages
the computation; for example, check of the status of Parents and Children and
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Hard disk 
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Figure 1. Schematic data flow among PEs in the HDDM.
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Figure 2. Schematic flow of nonlinear finite element analysis of magnetic fields on the HDDM.

assignment of Children to Parents and judgment of convergence of iterative
methods. Figure 2 shows the schematic flow of the computation. The features
of the HDDM are summarized as follows:

1. The number of Children can be arbitrary chosen if it is smaller than the
number of subdomains. Therefore, robust operations can be done i.e. a user
can change the number of PEs without changing that of subdomains.

2. Dynamic workload balancing can automatically be achieved. Therefore, the
HDDM is suitable even in heterogeneous parallel environments.

3. Any large-scale analysis data can be handled by increasing the number of
Parents.

4. Disk I/Os are conducted only by Parents. A large number of Children need
not to directly access hard disks [5].

3. FORMULATION

3.1 Helmholtz wave equation

We consider a wave problem and adopt the magnetic vector potential
A(x, t) [Wb/m] as an unknown function. The Helmholtz electromagnetic wave
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equation with a source term is solved. The equation is given as follows:

∇ × ∇ × A + μεω2A = −μJ (1)

Let us consider the Maxwell equation in a frequency domain as:

∇ · E = ρ

ε
(2)

∇ × E = −∂B

∂t
(3)

∇ · H = 0 (4)

∇ × H = −∂D

∂t
+ J or ∇ × B = −με

∂E

∂t
+ J (5)

In Equations (1)–(5), E(x, t) and H(x, t) denote field vectors of electric intensity
[V/m] and magnetic intensity [A/m], respectively. D(x, t) and B(x, t) denote
electric flux density [C/m2] and magnetic flux density [Wb/m2], respectively.
ρ and J denote charge density [C/m3] and current vector intensity [A/m2],
respectively. ε and μ are permittivity and permeability, respectively. Generally,
electromagnetic wave in an environment is solved assuming that the problem
becomes stationary. Equations (3) and (5) become Equations (6) and (7), taking
the time dependence term of e jωt . j and ω denote imaginary and angular
frequency, respectively.

∇ × E = − jωμH (6)

∇ × H = − jωεE + J (7)

Equation (9) is derived from Equations (6) and (8). Equation (9) does not contain
an eddy current field, and one can get Equation (10) by a scalar potential �

from Equation (9).

B = μH = ∇ × A (8)

∇ × (E + jωA) = 0 (9)

Equation (11) is obtained from Equations (6), (8) and (10), and one can set the
second term of the right hand side of Equation (11) to be 0. Then, Equation
(11) becomes Helmholtz wave equation given in Equation (1).

E + jωA = −∇� (10)(
� + μεω2

)
A = −μJ + ∇ (∇ · A + jωμ�) (11)

∇ · A + jωμ� = 0 (12)
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3.2 Weak form

Let us consider the weak form of Equation (1). First order Nedelec element
is employed to attain free spurious solutions. Equation (13) is rewritten in the
form of to Equation (14). In this study, the perfect reflection boundary condition
is employed. The condition is given by Equation (15) [6].

F(A) =
∫
�

{(∇ × A) · (∇ × A) + μεω2A · A − μA · J

+ τ (∇ · A) (∇ · A)}ds = 0 (13)[
[K ] + μεω2[M] + τ [N ]

] {A} ≡ [D] {A} = − {J} (14)

A × n = 0 (15)

4. ANALYSIS OF THE TEST MODEL

Solving the system equation of Equation (14), input vector i.e. current J
produces magnetic vector potential in a space. Figure 3b shows a sketch of the
test model. The model is simplification of a passenger car shown in Figure 3a.
Every wall is grounded. Stainless steel pipe and antenna are made of metal.
Seat and human body are assumed employing material parameters of plastic
and water, respectively. The space is full of air. Figures 4a and b show the wire
frame and the mesh of the input CAD data, respectively.

Calculating condition is shown in Table 1. Figure 5 shows one cycle of the
wave of input current J. Its frequency is 500 MHz.

(a) In a passenger car (b) Sketch of the CAD model 

Figure 3. The model for test calculation. (a) In a passenger car. (b) Sketch of the CAD model.
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(a) Wire frame (b) Mesh

Figure 4. Input data. (a) Wire frame (b) Mesh.

Figure 6 shows the result. Figures 6a and b show the computed magnetic
flux density contour and vector on X-Y plane, respectively. Figure 6c shows
the magnetic flux vector of full layer. Figure 7 shows the convergence his-
tory of the CG iteration. As shown in Figure 7, good convergence has been
obtained. The magnetic flux is radiated around the antenna i.e. source J. We
can obtain that the flux does not permeate the seat and human body perfectly.
Obviously, the simulation code can calculate physically correct solution in the
model.

5. CONCLUSIONS

In this paper, we have described a parallel finite element method (FEM)
to solve a high frequency electromagnetic wave field. We have developed it,
modifying the ADVENTURE Magnetic module. We have shown that the sim-
ulation code can calculate the solution in the model. The magnetic flux is
radiated around the antenna. The flux does not permeate the seat and human
body perfectly. These results are simulated physical phenomenon correctly.

Table 1. Calculation conditions.

Calculation model Three dimension full layer

Element First order tetrahedral Nedelec

Number of elements/DOFs 18599/4036∗3

Machine spec Pentium4 2.4GHz 4 parallel.

Calculation time 4.5 [s]
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Figure 5. Input current J.

(c) Vector indication (3D full layer)

x

y

z

(a) Computed magnetic flux 
density contour 

(b) Magnetic flux density vector on 
X-Y plane 

Figure 6. Results (Magnetic flux density distributions). (a) Computed magnetic flux density

contour. (b) Magnetic flux density vector on X-Y plane. (c) Vector indication (3D full layer).
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Figure 7. Convergence history of the CG iteration.
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Abstract The continuous miniaturization of electronic products has led to new concerns

over the resistance of interconnections between transistors. As transistors be-

come smaller and consequently faster, delays in interconnects start to account

for a considerable proportion of processing time. One solution is to replace the

conventional Al/SiO2 interconnects with Cu/silk interconnects. In order to curb

the diffusion of Cu into silk, it has been proposed to coat the Cu with Ta. The

suitability of Ta as a diffusion barrier is still not fully established. Ab initio MD

simulations were carried out to characterize the diffusion of Cu and Ta atoms

inside silk-like polymer structures. The results showed that Cu is much more

active in the silk-like polymer than Ta. An analysis of the speed of the Cu atom

in the silk polymer showed that the Cu atom experienced impulsive interatomic

loads. Such impulses are postulated to cause hoppings, which were highlighted in

reports of previous classical MD simulations. In contrast, the motion of Ta atom

was relatively stable and can be considered as harmonic oscillations around an

equilibrium position. The ‘inert’ characteristic of Ta suggests it is a good material

to serve as a barrier between copper and silk layers to prevent the leakage of Cu

into silk.

Keywords: ab initio MD simulation, diffusion coefficient, copper, tantalum, silk.

1. INTRODUCTION

An understanding of the mechanisms involved in the diffusion of copper
and tantalum atoms into the silk is important to support the viability using
Cu/Ta/Silk structures to replace Al/SiO2 material systems that are widely used
now. Although molecular level computations of diffusion phenomena of various
material systems have been carried out successfully, reports on the diffusion

G. R. Liu et al. (eds.), Computational Methods, 1595–1599.
C© 2006 Springer. Printed in the Netherlands.
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of metal atoms inside the polymer structures are lacking. Current technology
can now produce Cu/Ta/Silk layers of nanometer length scale. At such scales,
the understanding of interactions among single molecules and atoms is neces-
sary for analysing diffusion phenomena. First-principle ab initio methods are
used to study the most basic electronic characteristics of atoms and molecules.
They are built on functions that can give reasonable approximate solution to the
Schrödinger equation. Therefore, molecular dynamics (MD) simulations can
be performed using energy relationships obtained from the ab initio algorithms.
In this paper, ab initio MD simulations were carried out to characterize the dif-
fusion of single Cu and Ta atoms in the silk-like amorphous polymer structure.

2. METHODOLOGY

The diffusion model comprised a block of amorphous polymers and single
atom of Cu or Ta. The amorphous polymer was built from chains of aromatic
hydrocarbon structure comprising about 100 atoms (Figure 1). After building
the silk-like amorphous polymer model, a metal atom was placed at the centre
of the cell. The ab initio MD simulations were carried out with the CPMD [1]
software on an IBM690 parallel cluster. A wave function optimization was then
carried out to quench the electrons to the ground-state, after which, ab initio
MD simulations were carried out at a temperature of 300 K to study the motion
of the metal atoms. By recording the trajectory of the penetrants, the diffusion
coefficient, D, can be calculated from,

D = 1

2F N
lim

t→∞
d

dt

〈
N∑

i=1

[ri (t) − ri (0)]2

〉
(1)

Here, F represents the number of dimensions of freedom; N is the number of
penetrants; ri (t) is the position of penetrant i at time t . The angular brackets
denote the mean square displacement of penetrants [2].

(a) (b) 

Figure 1. Model of silk-like amorphous polymer. (a) Original view; (b) In-cell view.
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3. RESULTS AND DISCUSSION

The single metal atom, Cu or Ta, was placed at the centre of the amorphous
cell as the starting point of the diffusion process. Figure 2 shows the planar pro-
jections of the penetrants’ diffusion trajectories recorded by the simulations.
To further characterize the motions of the metal atom, the total diffusion time
was divided into equal intervals, and the average speed of the penetrant at each
interval was calculated. Histories of speed of diffusion for the metal atoms are
shown in Figure 3. The speed of the Cu atom averages to 0.8 km/s but demon-
strates some large sharp peaks in motions. This suggests that the diffusion of
Cu in silk can be considered as major wanderings plus some impulsive motions
due to interactions from neighbouring elements. The impulsive motion is per-
ceived to contribute to most of the diffusion mechanism. When the impulses are
large enough to release the penetrant from the current neighbouring elements,
hopping, as observed in classical MD simulations [3], will take place.

In contrast, the Ta atom has an average speed of around 0.5 km/s, and
demonstrates less fluctuation in speed. This means that Ta atoms are unlikely

(a) (b)
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to be excited by the silk-like polymer elements. When the Ta atom is travelling
within a reasonably mean dense medium, its trajectory can be considered to be
mainly harmonic oscillations around equilibrium position. Thus, the Ta atoms
are unlikely to deviate sufficiently far away from their original locations to
cause diffusion.

Apart from the speed of the metal atoms inside the amorphous silk polymer,
the mean square displacement (MSD) of the atoms, i.e., an average of squared
distances summed up over all possible positions from the origin, is also a useful
indication of the diffusivity of the metal atoms in the polymer. Figure 4 shows
the MSD for the Cu and Ta atoms.

The MSD plot clearly shows that the Ta atom has a much flatter and more
linear MSD curve than that of the Cu atom. Comparatively, Cu is quite active
inside the silk polymers. The steps in the MSD plot of the Cu atoms occur at the
same instances as the large peaks in speed of Figure 3. That the steps in displace-
ments account for more than 50% of the final MSD supports the suggestion
that diffusion is dominated by the impulses imparted on the Cu atoms.

With the MSD data, the diffusion coefficient can be calculated from Equa-
tion (1). A plot of the diffusion coefficient from Equation (1) against time is
shown in Figure 5. The plateau in the plots gives the converged values of the

Figure 5. Evolution of diffusion coefficients of Cu and Ta in silk.
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diffusion coefficients. Figure 5 shows that the diffusion coefficient of Ta starts
to converge at quite early stages while the coefficient for Cu requires a longer
duration to converge because of the large impulses. The converged values of
diffusion coefficients are estimated to be 2.4 × 10−5cm2/s for Cu and 0.6 ×
10−6cm2/s for Ta. The diffusion coefficient of Ta is comparable to those of
other small molecule penetrants [2–4] while Cu has a coefficient of around
three factors higher.

4. CONCLUSIONS

Preliminary work to simulate the diffusion of metal atoms inside polymers
was undertaken to study the viability of Cu/Ta/silk structures for semiconductor
applications. Ab initio MD simulations have been carried out to characterize
the diffusion of single Cu and Ta atoms inside silk-like amorphous polymer
structures. The results showed that Cu is more active in the polymer medium
than Ta. Computations based on the simulations gave a diffusion coefficient
for Cu which is four times that of Ta. An analysis of the speed of a Cu atom
during the diffusion process showed that the atom is subjected to large impulses,
which are likely to be the cause of hoppings reported in previous classical MD
simulations. The motion of Ta, on the other hand, was quite stable. The Ta atom
did not demonstrate the excitations observed for the Cu atom, making Ta a
candidate barrier material to prevent the leakage of Cu into silk in electronic
applications.
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Abstract A multiscale modelling procedure, combining meshless method with molecular

dynamics is developed in this paper. An intermediate oscillator is introduced to

act as a media for the energy transfer between atom and continuum domains.

Very smooth energy transfer is observed in our calculations for both 1D and 2D

examples.

Keywords: multiscale, meshless, atomistic, intermediate oscillator.

1. INTRODUCTION

Most physical phenomena in nature involve a hierarchy of both spatial
and temporal scales at different levels. Typical cases include protein folding,
chemical reaction, turbulence, crack propagation in solid, or shear localization.
To solve such kind of problems is often beyond the capability of one theoretical
frame valid within a single scale, such as molecular dynamics and continuum
mechanics.

Efforts seeking for multiscale methodologies spanning from atomistic to
continuum domains can be traced back to the work by Sinclair [1]. Mullins et al.
[2] used finite element method to model the continuum domain slight away from
the region near the crack tip where atomistic calculation is performed. Tadmor
et al. [3] developed the quasicontinuum (QC) method with capability to remesh
according to the variation of the deformation gradient. Rudd and Broughton
[4] formulated a coarse-grained molecular dynamics (CGMD) method, de-
rived directly from finite temperature MD through a statistical coarse graining

G. R. Liu et al. (eds.), Computational Methods, 1601–1606.
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procedure. Xiao and Belytschko [5] proposed a bridging domain method with
linear combination of the continuum and atomic Hamiltonians at the overlap-
ping domain, avoiding spurious wave reflections. Till now, most of the multi-
scale methods belong to handshaking approach. Recently, Cai et al. [6] and Park
et al. [7] introduced a general Langevin equation as a boundary to atom region,
also to eliminate wave reflections.

In this paper, motivated by Xiaoand Belytschko [5], we study wave propaga-
tion with a modified multiscale modelling method, coupling meshless method
with molecular dynamics. Very smooth energy transfer between atom and con-
tinuum domains is achieved.

2. COUPLING MODEL

The coupled model (Figure 1) includes atomistic and continuum domains,
and an intermediate oscillator. The oscillator acts as a media for the energy
transfer between atomistic and continuum domains. The total Hamiltonian of
the extended system is a combination of the Hamiltonians of the atomistic and
continuum domains, and the intermediate oscillator,

H =
atom∑

i

pT
i pi

2 (1 − α) mi
+ (1 − α) V +

node∑
I

pT
I pI

2αm I
+ αW

+
Media∑

�

(
pT

g�pg�

2Q
+ λT

�g� + K

2
gT

�g�

)
(1)

where i stands for the atoms, I for meshless node and � for the interpolation
point in the overlapping region. α(∈ [0, 1]) is the scale parameter, allowing for a
grade energy transfer between atomistic and continuum domains. In practice, α
takes the form of arctangent function. Q, K , λ, pg� and g� are the generalized
mass, stiffness, Lagrange force, momentum and coordinate of the intermediate
oscillator respectively. pg� and g� are obtained by the following,

g� =
∑

I

N�I uI −
∑

i

N�i ui pg� = Q

(∑
I

N�I

αm I
pI −

∑
i

N�i

(1−α) mi
pi

)
(2)

Figure 1. Coupling model.
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At each point �, there is a ‘particle’ with mass Q (a small value for quick
energy transfer in calculations), subjected to a constant force (penalty method)
and variable Lagrange force (Lagrange multiplier method). N�I and N�i are
shape functions of node I and atom i , respectively, evaluated at point �. The
shape function is constructed via MLS approach [8]. The equations of motion,
derived from Hamiltonian canonical equations, can be integrated with velocity
Verlet integrator, using multiple-time step algorithm:

uI (n+1) = uI (n) + u̇I (n)�T + 1

2

fI (n)

m I
�T 2

ui(n+ j+1
N ) = ui(n+ j

N ) + u̇i(n+ j
N )�t + 1

2

fi(n+ j
N )

mi
�t2

fI(n+ j+1
N ) = f int

I (n+1) +
(

f λ

I(n+ j+1
N )

+ f g

I(n+ j+1
N )

)/
α

fi(n+ j+1
N ) = f int

i(n+ j+1
N )

+
(

f λ

i(n+ j+1
N )

+ f g

i(n+ j+1
N )

)/
(1 − α) (3)

u̇I(n+ j+1
N ) = u̇I(n+ j

N ) + �t

2m I

(
fI(n+ j

N ) + fI(n+ j+1
N )

)

u̇i(n+ j+1
N ) = u̇i(n+ j

N ) + �t

2mi

(
fi(n+ j

N ) + fi(n+ j+1
N )

)

where, j = 0, 1, 2 · · · , N − 1.�T is the time step for continuum, �t for atom-
istic region. f int

I ,f int
i are the internal force for continuum and atom, respectively.

The generalized forces are

f λ
I = −

∑
�

λ�N�I f g
I = −K

(∑
�

∑
J

N�I N�J uJ −
∑
�

∑
j

N�I N�j u j

)

f λ
j =

∑
�

λ�N�j f g
i = K

(∑
�

∑
J

N�i N�J uJ −
∑
�

∑
j

N�i N�j u j

)

(4)

3. RESULTS AND DISCUSSION

In the 1D and 2D models, nearest neighbour (NN) interaction in atom do-
main is represented with harmonic potential. The elastic properties of contin-
uum domain are equivalent to that of atomistic domain. The units are reduced.
The longitudinal wave propagation in 1D model is shown in Figure 2. The
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Figure 2. A wave propagates in 1D domain with overlapping area.
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Figure 3. Time history of energy transfer in 1D domain.

nodes overlapping atoms

Figure 4. The 2D model.

distances between the NN atoms and NN nodes are 0.2 and 0.5, respectively.
There are 30 nodes and 75 atoms in 1D model. The two ends are traction free.
An initial displacement of one-quarter of sinusoid is applied as in Figure 2
(time = 0.0). The time steps for atoms and nodes are 0.01 and 0.05, respec-
tively. Figure 3 shows a smooth energy (sum of kinetic and potential energy)
transfer from atom to continuum. Figure 4 is a 2D slab model, with 105 nodes
and 400 atoms. The distances between the NN atoms and NN nodes are 0.2
and 0.4, respectively. Periodic boundary condition is applied along the vertical
direction and the two horizontal ends are traction free. The initial displace-
ment is similar to that in 1D model. Figure 5 demonstrates the plane wave
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Figure 5. A plane wave propagates in a 2D domain with overlapping area.
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Figure 7. A circular wave propagates in 2D domain with overlapping area.

propagation in the slab model. Again, energy transfers smoothly between the
two domains (Figure 6). Figure 7 exhibits the propagation of a circle wave in
a square model. The overlapping zone locates between the dashed lines, the
left to which is continuum domain, and the right to which is atom domain. The
wave crosses the bridging domain in a good manner, with minor wave reflec-
tion observed. For comparison, Park et al. [7] adopted generalized Langevin
equation as the boundary condition for atom domain, where the refection wave
is not neglectable.
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4. CONCLUSIONS

A multiscale modelling method, combining meshless method with molecu-
lar dynamics, is developed in this paper, in which an intermediate oscillator is
introduced acts as a media for the energy transfer between atom and continuum
domains. 1D and 2D models are studied with our approach. Smooth energy
transfer is observed in our calculations.
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Abstract This report is devoted to the following plausible mechanisms of disintegration

of mineral substances exposed to high-power electromagnetic pulses (HPEMP)

with high electric field strength: loosening of mineral structure through elec-

trical breakdown; disintegration due to development of mechanical stresses at

the boundary between the dielectric and conductive mineral components; elec-

tromagnetic energy absorption by thin metallic films or layers thinner than the

characteristic skin layer. Disintegration through these mechanisms would pro-

ceed efficiently only provided that the size of the mineral sample exposed to

HPEMP exceeds a definite minimum value, which is due to low concentration of

the irradiating energy.

Keywords: mineral media, high-power electromagnetic pulses, disintegration.

1. INTRODUCTION

The application of HPEMP irradiation in dressing of resistant gold-
containing ores appears attractive as this technique provides for a significant
increase in precious metal recovery (30–80% for gold and 20–50% for silver),
therewith helping reduce both energy consumption and the cost of products, as
shown in previous works by Chanturiya et al. [1–3]. However, the diversified
physical processes involved in the interaction of HPEMP with complex mineral
media are as yet scantily known.

This study deals with three plausible mechanisms of disintegration of min-
eral particles under the action of nanosecond HPEMP with high electric field
strength E p ∼107 V/m. The first mechanism consists in loosening of the min-
eral structure due to electrical breakdown effects, which only occurs in cases

G. R. Liu et al. (eds.), Computational Methods, 1607–1614.
C© 2006 Springer. Printed in the Netherlands.
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where small, highly conductive inclusions are hosted in dielectric media. The
second mechanism is related to development of thermomechanical stresses at
the boundary (interface) between the dielectric and conductive mineral compo-
nents, being only realized in cases where these components are comparable in
size. The third mechanism, assuming essentially non-thermal action of HPEMP
on mineral complexes, is related to electromagnetic energy absorption by thin
metallic films or layers much thinner than the characteristic skin layer.

2. MODELING OF DISINTEGRATION PROCESSES
IN MINERAL COMPLEXES EXPOSED TO
HIGH-POWER PULSE IRRADIATION

2.1 Disintegration of mineral media due to electrical
breakdown

The action of HPEMP on a sample with conductive inclusions is accompa-
nied by electric field strengthening in the vicinity of the boundary with max-
imum curvature. As a result, electrical breakdown occurs at lower E p values.
The as-formed breakdown channels connect the conductive inclusions to each
other and to the surface of the sample.

In this report we present experimental data, according to which the bound-
aries of Au micro-inclusions in FeAsS (arsenopyrite) grains are initially (prior
to irradiation) out of contact with joints in the host mineral matrix. Originally
the joints in arsenopyrite grains have a spallation (cleavage) appearance, most
of them being filled with some dust-like material. After HPEMP irradiation,
the cracks prove to be empty of filling, and appear discontinuous. Most of these
cracks are confined to boundaries between secondary mineral phase segrega-
tions and the arsenopyrite matrix, which suggests that HPEMP have a selective
effect on the host mineral matrix.

The average per pulse amount of energy released in the developing break-

down channel is estimated as w ≈ W0tp/t0, where W0 = ∫
V d3x(ε

−→
E

2
/8π ) is

electric field energy of the pulse in a particle of volume V , tp is pulse dura-
tion, and t0 is the time during which the channel develops a length equal to
the linear dimension of the particle (L). In essence, t0 depends on the rate of
channel development vd , which is governed by the drift velocity of electrons in
the avalanche at the head cusp of the developing channel, and depends on local
field strength as ∝ √

E . For dielectrics with electrical strength about 50 MV/m,
vd

∼= 3–5 km/s, such that more than one pulse with tp = 30 ns would be re-
quired to break down through a particle with L > 1 mm. Once the developing
channel reaches the surface of the particle, the discharge becomes creeping,
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tending to neutralize the electric field throughout the entire particle volume.
The total energy released in the channel is limited by the W0 value (assuming
that the particle under consideration is isolated from all other particles).

The size of the zone occupied by cracks (rc) depends on energy density in
the breakdown channel. To calculate rc, we used the following model consid-
erations from a previous work by Chanturiya et al. [4]. Energy is released in
the channel somewhat instantaneously as compared to the time it takes for the
channel to expand, stress waves to propagate through the sample and the heated
matter to flow out from the channel. The zone occupied by evaporated matter
takes on the form of explosion cavity. Beyond the zone of evaporation, the ma-
terial undergoes crushing, and in farther-away zones cracking due to azimuthal
(radial) rupture stresses predominates. While a problem of cylindrical shock
wave propagation is being solved in the zones of evaporation and crushing, for
the cracking zone we use a quasi-static approximation based on equilibrium
equations. The relationship of rc to initial gas pressure in the channel (p0) can
be approximately expressed as follows:

rc = a0

σ∗κ
σc

(
p0

σ∗
√

κ

)1/2γ

, κ2 ≡ E

2σ∗

[
1 + ν + ln

σ∗
σc

]−1

, (1)

where a0 is the initial channel radius, γ is an adiabatic index for the gas in
the channel, σ∗ and σc denote the compression (crushing) and rupture strength
parameters of the material exposed to HPEMP, E is Young’s modulus and ν is
Poisson’s ratio.

For quartz samples with L = 0.3, 1 and 10 mm and HPEMP with E p = 20
MV/m, we obtained rc = 0.005, 0.08 and 0.5 mm, respectively. In addition to
cracks developing in an irradiated sample, there also forms a cavity remaining
after matter outflow from the channel, and some voids arise due to opening
of the cracks, these latter totalling about 50% of the hollow channel volume.
Energy density per unit of channel length depends on particle volume V as
∝ V 2/3, owing to which mechanical stresses around the channel give rise to
cracking only in particles larger than Lmin varying from 10−4 to 10−3 m, de-
pending on E p. This is why this mechanism would only work for relatively large
particles subject to disintegration, its efficiency increasing with increasing L
and E p.

2.2 Mechanism of disintegration of mineral aggregates
subjected to pulse-heating

Disintegration of mineral particles through irradiation-induced cracking is
possible for particles consisting of substances with differing conductivity, when
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subjected to pulse-heating. The rate of HPEMP energy absorption by the matter
is determined as ηE2

∗/ρcp, where η and E∗ are local electrical conductivity
and field strength, respectively, ρ denotes density of particular component of
the complex substance exposed to heating pulses and cp is heat capacity of
this material component. Intensity of thermomechanical stresses is governed
by heating contrast and dissimilarity of thermoelastic properties of the different
material components.

In the simplest case with axial symmetry, where two cylindrical parts (1 and
2) are in contact in the z = 0 plane, the quantities u(r, z) and s(r, z), respectively
characterizing displacement in the r and z directions, and the σαβ(r, z) values
characterizing stresses within each of the contacting parts are determined by
the following equations of motion:

∂σrr

∂r
+ ∂σr z

∂z
+ σrr − σzz

r
= ρ

∂2u

∂t2
, (2)

∂σzz

∂z
+ ∂σr z

∂r
+ σzr

r
= ρ

∂2s

∂t2
(3)

with the following boundary conjugation (continuity) conditions:

u(1)(r, z = 0) = u(2)(r, z = 0).

The components of the deformation tensor

err = ∂u/∂r, ezz = ∂s/∂z, eϕφ = u/r, erz = 1
2
(∂u/∂z + ∂s/∂r ) (4)

are related to σαβ(r, z) as follows:

σαβ = 2Geαβ + (λe − βθ )δαβ, σrϕ = σzϕ = 0, erϕ = ezϕ = 0, (5)

where θ = �T denotes the amount of heating of part 1 (or part 2), and G, λ and
β are related to Young’s modulus E , Poisson’s ratio ν and thermal expansion
coefficient α by the following expression:

G = E/2(ν + 1), λ = Eν/(1 + ν)(1 − 2ν) and β = αE/(1 − 2ν).

Shear stresses at the boundary between parts 1 and 2 can be determined
approximately from the condition of equal displacement at the boundary, as-
suming that in the vicinity of the interface u(r, z) can be considered independent
of r and s(r, z) independent of z, neglecting the acceleration and disregarding
temperature gradient within each of the contacting parts:

τ = β2θ2(2G1 + λ1) − β1θ1(2G2 + λ2)

2(G1 + G2) + λ2 + λ1

∼= Ẽ · 3

2
(α2θ2 − α1θ1), (6)

where Ẽ = 2E1 E2/(E1 + E2). Stress values are maximum in cases where α2 >

α1, θ2 > θ1 or α2 < α1, θ2 < θ1, (e.g., in the FeS–Al2O3 complex FeS heats up
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stronger than Al2O3); in such situation, τ ∼ 30 × 10−6 Ẽθ2. Owing to heat
conduction, θ2 at the boundary becomes nearly equal to θ1 within ∼10−8 s
of the pulse, such that only stresses related to dissimilarity of thermoelastic
properties remain significant.

A single pulse with E ∼107 V/m and tp ∼ (3–10)×10−9 s generates stresses
of 0.3–3 MPa at pyrite-gold or pyrite-quartz boundaries in complex samples,
which would be insufficient for spallation along an ideal (perfect) boundary
between the different components. However, in the presence of initial damages,
small as they are, failure can build up in a sample irradiated with a series of
pulses. Under repeated loading, a small initiating crack of length l0 < L develops
up to l = ∑N

n �ln , where �ln = ∫ tn
0

(dl/dt)dt is crack length increment due
to the nth pulse, and dl/dt is the rate of crack development. This mechanism
of disintegration would work efficiently if l ∼= L .

When estimating dl/dt, we proceeded from the assumption that the disin-
tegration thus induced is essentially of quasi-brittle failure type. On this basis,
the current dl/dt value can be determined from given stress σ (t) and its related
critical length lc, assuming the fulfilment of the condition of crack development
l > lc(σ (t)), σ (t) > σc:

dl/dt = vcr
max

√
(1 − lc/ l) {1 − (2σc/σ − 1)lc/ l}, (7)

where vcr
max

∼= (0.4/0.6)
√

E/ρ is maximum crack development rate. The con-
dition of reaching the critical stress value σc depending on initial crack length
l0 was taken as a cracking start criterion.

For stress varying between 0.3 and 3 MPa, l0 proves to be about (0.2–2) ×
10−3 m. Since the linear dimension of the particle L > l0, only particles with
L > (0.2–2) ×10−3 m would be expected to disintegrate. For example, when
dealing with pyrite-quartz or pyrite-gold contacts, 15–50 pulses with E p ∼ 107

V/m and tp = (3–10) ×10−9 s suffice to break down a sample of size 3×10−3m,
and 100–300 pulses with the same parameters would be required to disintegrate
a sample of size 10−2 m.

2.3 Non-thermal absorption of electromagnetic energy
by precious metal particles

The above described mechanisms of electrical breakdown and pulse-heating
do not exhaust the multitude of processes that occur in natural mineral me-
dia exposed to high-power electromagnetic pulses. In particular, one of the
plausible mechanisms of non-thermal action of HPEMP on mineral com-
plexes is related to the effect of electromagnetic energy absorption by thin
metallic films or layers thinner than the characteristic skin layer. This model
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appears quite realistic as the size of disseminated precious metal particles is
very small (0.01–0.1 μm), which may be significantly smaller than the char-
acteristic wavelength of the irradiating pulse and the corresponding skin layer
thickness.

Theoretical analysis of this disintegration mechanism was performed us-
ing a simple 1-D model (developed in collaboration with IRE RAS, Moscow),
which consider an electromagnetic pulse striking a flat metallic layer of thick-
ness h enclosed within a dielectric medium. For h >> δ (δ = c/

√
2πσω is

skin layer thickness for frequency ω, c is light speed in vacuum and σ is elec-
trical conductivity of the metal), reflection coefficient R for a flat electromag-
netic wave reflected from a thick metallic layer is given by the Hagen–Rubens
formula:

R = 1 −
√

2ω/πσ = 1 − 2kδ. (8)

For a gold layer, δ values in the UHF and radio frequency ranges (e.g., λ = 3
cm and 1 m) are equal to 0.72 and 4.17 μm, respectively, and the corresponding
reflection coefficient values are 0.99973 and 0.999956, which means that the
electromagnetic radiation is almost totally reflected, and absorption may be
considered nil.

For h 
 δ, reflection coefficient may be far from unit, and absorption co-
efficient values may range up to 50% and even more. In this case, the values
of reflection, transmission and absorption coefficient for the electromagnetic
energy of HPEMP are determined completely by electrical conductivity σ of
the thin metallic layer, which is related to conductivity of the same metal in a
massive sample σ0 by the following formula:

σ (d) = σ0(d/2l0)(1 + ln(l0/d)), (9)

where d is layer thickness obeying the condition d < l0 (l0 is average elec-
tron free path length in a sample of infinite thickness). This particular case is
suitable for describing the interaction of HPEMP with precious metal parti-
cles disseminated in resistant ores, because for particles of size 10−9 to 10−7

m skin layer thickness would be about ∼10−6 m. The above described 1-
D model gives us reason to state that interaction of high-power electromag-
netic radiation with precious metal particles hosted in resistant ores may in-
volve highly efficient non-thermal absorption of electromagnetic energy by
metal particles, which, at irradiation power high enough, may result in fast
energy release and cause certain changes in host mineral structure. In par-
ticular, field strength within the rock (ore) samples may be increased signif-
icantly, and micro-breakdown features may develop between metal particles,
which would result in micro-cracking to promote disintegration of mineral
complexes.
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3. CONCLUSIONS

A feature in common to the disintegration mechanisms described above is
the limitation on the minimum sample size related to low concentration of the
irradiating energy. Increasing this concentration by increasing E p or tp would
result in unwanted through breakdown of the discharge gap and decrease in
heating contrast. The material would disintegrate efficiently provided that the
pulse irradiation energy suffices for matter sublimation in the channel and the
time it takes for this energy to be released is significantly shorter than the time
required for heat transfer and dissipation of heat in surrounding zones. Main-
taining the discharge further would result in redistribution of the permanently
generated heat in the volume of the sample. As a result of electrothermal break-
down, this may give rise to unwanted effects, such as overheating, sintering of
particles, fusion of particle surfaces and closure of as-formed micro-damages,
which would subsequently hinder the access of lixiviant solutions to valuable
components hosted within the mineral particles. Among other issues, the role
of the high-frequency HPEMP component in the increase of local energy re-
lease and peculiarities of electric breakdown development in a semiconductor
matrix call for further investigation.

ACKNOWLEDGEMENTS

The authors acknowledge the financial supports from the President of
the Russian Federation (Grant No. HIII-472.2003.5) and the program of the
Geoscience Branch of the Russian Academy of Sciences ‘Nanoparticles in
Geospheres of the Earth: Modes of Occurrence, Industrial and Economic
Sequels’.

REFERENCES

1. V.A. Chanturiya, Y.V. Gulyaev, V.D. Lunin, I.J. Bunin, V.A. Cherepenin, V.A. Vdovin and
A.V. Korzhenevsky (1999), The opening of the refractory gold-containing ores under
power electromagnetic impulses. Reports of Russian Academic Science (Doklady RAN),
366, 5, pp. 680–683 (in Russian).

2. V.A. Chanturiya, I.J. Bunin, V.D. Lunin, Y.V. Gulyaev, N.S. Bunina, V.A. Vdovin, P.S.
Voronov, A.V. Korzhenevsky and V.A. Cherepenin (2001), High-power electromagnetic
pulses used for disintegration and breaking-up of resistant mineral products. Journal of
Mining Science, 4, pp. 95–106 (in Russian).

3. V.A. Chanturiya, I.J. Bunin, V.D. Lunin, Y.V. Gulyaev and G.V. Sedelnikova (2003), Ef-
fective Breaking-Up Technology for Resistant Gold-Containing Ores and Beneficiation



1614 V.A. Chanturiya et al.

Products. In: 22nd Proceedings of XXII International Mineral Processing Congress, Vol.
1, pp. 232–241.

4. V.A. Chanturiya, I.J. Bunin and A.T. Kovalev (2004), Disintegration of mineral media
exposed to high-power electromagnetic pulses. Proceedings of Russian Academic Science
(Izvestiya RAN). Series Physics, 68, 5, pp. 630–632 (in Russian).



DOMAIN SWITCHING CRITERIA FOR
TETRAGONAL PHASE FERROELECTRICS:
A COMPARATIVE STUDY

M.G. Shaikh1, S. Phanish2 and Srinivasan M. Sivakumar1

1Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai
600 036, India
2Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai
600 036, India

Abstract The nonlinearity observed in piezoelectric behaviour of ferroelectrics like PZT

needs to be modelled appropriately. Mainly the domain-switching phenomenon

is the cause of this nonlinearity, which requires adoption of suitable switching cri-

teria. In this paper, different domain switching criteria that describe the nonlinear

behaviour are evaluated. The comparative study shows that there is considerable

deviation from the experimental results. This calls for a better understanding of

effects of domain parameters on the macroscopic behaviour of the ferroelectric

material.

Keywords: ferroelectrics, nonlinear behaviour, domain switching.

1. INTRODUCTION

The ferroelectrics like PZT undergo structural phase transformation from
cubic to tetragonal when they are cooled below their Curie temperature. This
phase transition is accompanied by the spontaneous changes in the lattice di-
mensions and electric dipoles are induced due to separation of centres of posi-
tive and negative charges. The minimum energy requirement for stability forces
the material to form individually oriented regions, which are known as ferro-
electric domains. With respect to the cubic phase cell, there are six possible
stable configurations of the tetragonal cell. Therefore, domains built by cells
of identical polarization, scattered randomly in the bulk ferroelectric ceramics,
could be designated as of type 1 through type 6. As a result the ceramics shows
no piezoelectric properties though the individual domains are piezoelectric.

G. R. Liu et al. (eds.), Computational Methods, 1615–1619.
C© 2006 Springer. Printed in the Netherlands.
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However, by application of sufficient high electric field, usually at high temper-
ature, the alignment of the domains is possible, making the material useful as
piezoelectric that could be used in various transducers. This process is known
as poling.

During poling, the domains snap to the most favoured orientation with re-
spect to the applied electric field, switching either through 90◦ or 180◦ with
respect to their original spontaneous polarization direction. The pattern of do-
main orientations at any instant of loading is decided by the microstructure of
the material. The process of domain switching, which nucleates somewhere in
the material, causes movement of their walls which is influenced by defects in
the material. Application of electric field causes domains to switch through ei-
ther 90◦ or 180◦, whereas mechanical stress can switch them through 90◦ only.
The complexities associated with domain-type evolution with loading make un-
derstanding of the nonlinear behaviour difficult. So far many researchers have
proposed different domain switching criteria. In order to make a comparative
study of these criteria, a nonlinear model is implemented in this paper. For
various domain types, the following equations are used for the piezoelectric
responses, namely, strain and electric displacement:

ε = ε∗ + M : σ + d · E

D = D∗ + d : σ + k · E (1)

The electric displacement is predicted by averaging contributions by the
randomly oriented different domain types. The results are compared with the
experimental values of electric displacement observed for PZT-51 by Lu et al.
[1].

2. COMPARISON OF DOMAIN
SWITCHING CRITERIA

Several domain criteria proposed, available in recent literature, are given in
Table 1. Most of them are based on a threshold on work done during switching.

Based on each of the above models, a polycrystalline form of the PZT-
51 material is simulated assuming random crystallographic orientations of the
domains. Each domain is assumed to be independently subjected to the same
forcing of stress and electric field. This gives upper bound solution to the macro-
scopic problem of simulating the polycrystalline PZT-51 material behaviour.
The material constants for the PZT-51 material are given in Lu et al. [1].

Two cases are simulated. The first case is that of a specimen subjected
to purely electric loading and the second case is that of electromechanical
loading with stress kept at a constant compressive value of −20 MPa (Figure 1).
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Table 1. Domain switching criteria.

No. Author 180◦ switching criteria 90◦ switching criteria Basis

1. Hwang Ei�Pi + σ jk�ε jk Same as 180◦ Only dependent

et al. [2] ≥ 2P◦ Ec on spontaneous

(� = difference between polarization and

two domains) strain

E3 = Ec
180

1 + λ1σ33

;

λ1 = 2d33

PS

E1 =
Ec

90 − σ33γS

PS

1 + λ1σ33

2. Sun and Dependent on

Jiang total strain and

[3] electric

displacement.

3. Lu et al. W f
180 = 2P◦ Ec W f

90 = c−a
a0

σc Based on Gibb’s

[1] (W = driving force) + 1
2

(M1111 − M3333) σ 2
c free energy and

(a, c, a0 = unit cell driving force

dimensions; M =
compliance)

E3 = Ec
180

1 + λ̄1σ33

;

λ1 = d33

PS

E3 =
Ec

90 − σ33γS

PS

1 + λ̄1 E3

4. Hwang Not very

and different from

McMee Sun and Jiang

king [4] model except λ1

parameter

E3 = Ec
180 − d33σ33

ε33

5. Fotinich None Driving force

and based on electric

Carman displacement

[5] (flux)
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Figure 1. Polarization response under purely electrical loading—Comparison of model and ex-

perimental results.
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Figure 2. Polarization response under electromechanical loading—Comparison of model and

experimental results (constant compressive stress).

Figure 2 shows the results of macroscopic response of polarization in the PZT-
51 material under zero compressive stress. The results show that though overall
characteristics of the response curve is captured by most of the models, the
curved response indicating a gradual switching seen in the experimental curves
are not predicted by any of the models studied in this work. The reason could
be related to the critical driving force used in the model for switching. Another
characteristic that the models do not seem to capture is the flatter response or the
saturation response observed in the experiments on a polycrystalline specimen.

As is observed in experiments, the delay in switching phenomena with
increase of electrical loading under a compressive stress is seen in simulations
in terms of an elongation in the hysteresis loop. However, all the models seem to
over-predict the saturation polarization slope. There are considerable variations
in the responses of different models for this electrical loading under a constant
compressive stress indicating that the 90◦ switching criterion should to be
studied in more detail.

3. CONCLUSION

The above comparison shows that predictions based on theory related only
to changes in spontaneous quantities are not sufficient for explanation of the
nonlinear behaviour of the ferroelectric ceramics. The predictions based on free
energy associated with the various domain types, neglecting any interaction
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of any type what so ever exists among them and that with defects, also are
not enough. An appropriate nonlinear model based on separate criteria for
90◦ and 180◦ switching which takes in account the interactions among the
various domain types as well as that between domains and defects may be
expected to predict the nonlinear piezoelectric response of the ferroelectrics
under consideration.
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Abstract The finite element equations corresponding to two-dimensional generalized

magneto-thermoelasticity with G–L theory are derived. Avoiding the complex-

ity of Laplace and Fourier transform and the low precision, the equations are

solved directly in time domain. The developed method is used to investigate the

generalized magneto-thermoelastic behaviour of a semi-infinite plate subject to

thermal shock loading. The results demonstrate that the developed method can

faithfully predict the thermoelastic properties and most importantly the delicate

second sound effect of heat conduction.

Keywords: generalized magneto-thermoelasticity, finite element method, principle of virtual

work, second sound effect.

1. INTRODUCTION

Increasing attention is being devoted to the interaction between thermoe-
lastic field and the electromagnetic field because of its many applications in
various branches of science and technology. Ezzat and Othman [1,2] have stud-
ied the two-dimensional generalized magneto-thermoelasticity with L–S theory
[3] and G–L theory [4]. In solving these problems, both Laplace and Fourier
transforms and their inverse counterparts have to be used, and the inverse trans-
form must be carried out numerically due to the complication of corresponding
expressions. However, the results cannot capture the generalized thermoelastic
properties exactly, e.g., the jump in the temperature will disappear and predic-
tion of the second sound effect is thus not obvious.
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The finite element equations for generalized magneto-thermoelasticity in a
perfectly conducting medium are derived within the framework of G–L theory,
with the equations solved in time domain. The proposed method is then applied
to investigate a half space plate under magnetic field subjects to a heat shock
loading.

2. FINITE ELEMENT EQUATIONS

In the analysis, we assume that the medium under consideration is a perfect
electric conductor. The linearized equations of electromagnetic for moving
media are

curlh = J + ε0 Ė, curlE = −μ0ḣ,

E = −μ0(u̇ × H), div h = 0 (1)

where J is the electric current density, ε0 and μ0 are the magnetic and elec-
tric permeabilities, respectively. E is the induced electric field, H is the mag-
netic field, H = H0 + h, H0 is the initial magnetic field and h is the induced
magnetic field. Assuming that all causes producing the wave propagation are
independent of the variable z and the wave are propagated in the plane of the
plate (xy-plane). The initial magnetic field H0 = (0, 0, H0). Then the relation
(1) yields

J = curlh − ε0 Ė, E = μ0 H0(−ν̇ u̇ 0), h = −H0(0 0 e) (2)

where e is the cubical dilation, e = ∂u/∂x + ∂v/∂y. According to the Lorentz
force F = J × B and B = μ0 H, the external body force is

F = μ0 H 2
0 (∂e/∂x − ε0μ0ü, ∂e/∂x − ε0μ0ν̈, 0) (3)

The G–L theory of generalized magneto-thermoelasticity consists of the
equilibrium equation, the heat transfer equation and Fourier’s heat conduction
law

σ j i, j + fi = ρüi , ρT η̇ = −qk,k + ρh̄, qi = −ki j T, j (4)

The linear constitutive equations are adopted, i.e.,

σi j = Ci jklεkl − βi j (T − T0 + τ1Ṫ ),

ρη = βi jεi j + cE (T − T0 + τ2Ṫ ) (5)

where σi j is the stress, fi is the body force. Only the external body force is
considered. ρ is the mass density, ui is the displacement. T is the temperature,
T0 is the reference temperature, η is the entropy density, qk is the heat flux, h̄ is
the heat source density, ki j is the thermal conductivity coefficient. Ci jkl is the
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elastic stiffness, βi j is the thermal constant, and cE is the specific heat capacity.
When τ1, and τ2 vanish identically, the G–L theory reduces to the classical
thermoelasticity.

The appropriate boundary conditions associated with Equation (4) must be
adopted in order to properly formulate a problem. The finite element equations
of generalized magneto-thermoelasticity can be readily obtained by following
the standard procedure. The principle of virtual work for generalized magneto-
thermoelasticity is ∫

V

[
δ{ε}T σ + δ{T ′}T {q} − δT ρT0η̇

]
dV

=
∫

V
δ{u}T ({F} − ρ{ü}) dV

+
∫

Aσ

δ{u}T {T̄ } d A +
∫

Aq

δT Q̄dA (6)

Substituting Equation (3), Equation (4) and boundary conditions into Equa-
tion (6), the finite element equations corresponding to the generalized magneto-
thermoelasticity can be obtained.

ne∑
e=1

([
M (e)

11 0

0 M (e)
22

] {
ü(e)

T̈
(e)

}
+

[
0 −C (e)

12

C (e)
21 C (e)

22

] {
u̇(e)

Ṫ
(e)

}

+
[

K (e)
11 −K (e)

12

0 K (e)
22

] {
u(e)

T (e)

}
=

{
F (e)

1

−F (e)
2

})
(7)

where {u(e)} and {T (e)} are nodal displacement and temperature, ne is the num-
ber of elements. For numerical convenience, the non-dimensional quantities
are introduced

x(y) = c1ξ x∗(y∗), θ = (T − T0)/T0, t(τi ) = c2
1ξ t∗(τi

∗),

Q = Q∗/kT0c2
0η

2
0 ui = c1ξu∗

i , σi j = σ ∗
i j/μ,

ξ = ρcE/κ, c2
1 = (λ + 2μ)/ρ, i = 1, 2 (8)

The asterisk quantities denote dimensional variables. λ and μ are the Lame
constants. The finite element Equation (7) will be solved in non-dimensional
space.

Avoiding the larger time consumption and lower precision of transform
method, Equation (7) is solved in time domain. In the solution, the element size
of the structure, especially at the heat wave front, should be small enough to
guarantee the precision of the results due to the large temperature gradient. So
the structure should be remeshed during the analysis due to heat conduction.
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3. NUMERICAL EXAMPLE

We assume that the plate investigated is made of isotropic material. The
physical constants are listed as below.

ρ = 8945 kg/m3, ν = 0.3, κ = 386,

αt = 1.78e − 5 m/K · m

λ = 77.6 GPa, T0 = 293 K, μ = 38.6 GPa,

τ1 = τ2 = 0.05 (9)

cE = 383.1 J/kg · K, ε0 = 10−9/(36π ) F/m,

μ0 = 4π∗10−7 H/m

The example is a half space plate (x ≥ 0, |y| < ∞, z = 0) in magnetic field
subject to a heat source of intensity θ (y, t) = H (a − |y|)H (t) at x = 0, a is
a constant. The boundary of the plate is traction free. Due to the symmetry of
the problem only half of the plate (i.e., y ≥ 0) is analysed. The x-axis is on the
symmetrical edge. The initial magnetic field H0 is 10e7/(4π), so the magnetic
strength is B = 10T.

Figure 1 shows the temperature contours at time t = 0.04. The white colour
in Figure 1 represents the temperature does not change. We can see that the
temperature changed zone is limited in an area and the temperature keeps
original out of the zone. The area becomes larger with the passage of time. To
exploit the implication of the zone, temperature along the x-axis at different
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Figure 1. The temperature of the plate.
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Figure 3. The displacement ux on the x-axis.

time is shown in Figure 2. There is a clear jump in the temperature and the
temperature reduces abruptly to zero at the jump. It means the heat conducts in
the structure at a finite velocity and the temperature of the structure changes only
when the heat wave arrives. It is difficult to be captured by using the transform
technology. However, the developed finite element method successfully predicts
the second sound effect, showing its superiority over the transform method in
two-dimensional generalized magneto-thermoelasticity. The displacement ux

on the x-axis at different time is shown in Figure 3. It also shows that the heat
conducts at a finite speed.
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Figure 4. Stress σxx on the x-axis.

Stress σxx on the x-axis at different time is shown in Figure 4. The slight
oscillation presented on the stress curves is due to numerical noise. We can find
that the shape of stress distribution is similar to that of one-dimensional problem
obtained theoretically. We also find a peak occurs at the heat wave front and the
larger temperature jump, the larger stress peak observed. This may be caused
by the temperature discontinue at the heat wave front. The induced magnetic
field also has a peak at the heat wave front and the peak becomes smaller with
the temperature jump decreasing. It can be predicted that the peak in stress and
induced magnetic field will disappear when the temperature jump vanishing.

4. CONCLUSIONS

The finite element equations corresponding to generalized magneto-
thermoelasticity with two relaxation time parameters are derived. The nu-
merical results demonstrate that the developed method can faithfully predict
the delicate second sound effect in two-dimensional generalized magneto-
thermoelastic solids whilst this effect is usually difficult to be modelled by
the transform method. The results also show that the stress and induced mag-
netic field on the plate has a peak at the heat wave front and the magnitude of
the peak is related to the jump of the temperature.
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MICROSTRUCTURE REPRESENTATION
AND SIMULATION TOOLS FOR
MICROSTRUCTURE-BASED
COMPUTATIONAL MICRO-MECHANICS
OF HETEROGENEOUS MATERIALS
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GA-30332-0245

Abstract Microstructures of advanced materials such as composites often contain ensem-

bles of microstructural features (particles, fibers, voids, etc.) that have complex

morphologies, non-uniform spatial distributions and partially anisotropic angular

orientations. These microstructural complexities significantly affect the micro-

mechanical response and mechanical properties of such materials, and provide

opportunities and challenges for microstructure sensitive design of materials. In

this contribution, we present digital image analysis and microstructure modelling

algorithms and tools that can be used to simulate/represent complex geometry

material microstructures in the simulations of micro-mechanical response and

mechanical behaviour of heterogeneous materials such as composites and multi-

phase alloys. The methodologies are presented through their implementation in

the finite elements (FE)-based simulations on the realistic microstructure models.

Keywords: microstructure-based modelling, finite elements, design, composites.

1. INTRODUCTION

In complex microstructures of engineering alloys and composites, damage
evolution and deformation processes are often governed by several types of
microstructural features present at different length scales, and microstructural
clustering and spatial correlations affect the damage evolution and deformation
paths. Nonetheless, to simplify the computations, most micro-mechanics and

G. R. Liu et al. (eds.), Computational Methods, 1629–1633.
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damage mechanics-based numerical modelling studies ignore such complex
details of the geometry of real material microstructures. On the other hand,
to develop the technology of ‘materials by design,’ it is essential to develop
the tools that permit realistic simulations of variations of micro-mechanical re-
sponse due to changes in specific microstructural parameters. Therefore, there is
a need to develop techniques that incorporate (i) complex particle/feature mor-
phologies, (ii) spatial microstructural clustering, (iii) morphological anisotropy,
and (iv) multi-scale microstructures in the simulation of micro-mechanical re-
sponse of heterogeneous materials. Digital image processing and statistical mi-
crostructure modelling techniques are now developed to an extent where they
can be fruitfully used to incorporate the detailed geometry of multi-scale mi-
crostructures in the computational mechanics modelling of micro-mechanical
response of elasto-plastic materials. These methodologies are also useful for de-
sign of microstructures for optimum micro-mechanical response. Applications
of these important enabling tools for modelling of micro-mechanical behaviour
of materials are presented in this contribution. The next section of the paper de-
scribes computer simulations of realistic microstructures to incorporate spatial
clustering, non-randomness and complex particle/void morphologies, which is
followed by implementation of the simulated microstructure in the finite ele-
ments (FE)-based simulations of micro-mechanical response of the complex
microstructure of advanced ceramic matrix composite.

2. COMPUTER SIMULATED REALISTIC
MICROSTRUCTURES

Figure 1 (a) shows a low-magnification micrograph of spatially non-uniform
microstructure of a ceramic matrix composite (CMC) containing aligned SiC
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Figure 1. (a) Real microstructure, (b) Simulation, (c) Radial distributions.
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(nicalon) fibres in MAS glass ceramic matrix. The methodology to incorpo-
rate the details of spatially clustered fibers in the FE-based simulation via
microstructure modelling involves two steps: (1) development of a computer
generated microstructure model that is statistically similar to the real mi-
crostructure so that it has the same fibre volume fraction, size distribution
and statistically representative non-uniform spatial arrangement of fibres and
(2) implementation of the computer generated microstructure model in the
FE computations of micro-mechanical response. The methodology for devel-
opment of appropriate microstructure model involves (i) quantitative char-
acterization of volume fraction, size distribution and spatial arrangement of
the fibres in the composite, (ii) choice of a generic Monte Carlo type model
on the basis of the processing history of the composite and (iii) optimiza-
tion of the parameters of the computer simulated models till the attributes of
the simulated microstructure are in agreement with the corresponding exper-
imental data on the composite. In the present material, the spatial inhomo-
geneity in the arrangement of fibres is primarily due to the slurry infiltration
and hot pressing steps involved in the processing that lead to alternate fibre-
poor and fibre-rich regions [1]. Such inhomogeneity can be represented by
a model consisting of alternate strips of microstructure having the same size
distribution but different number densities of the fibres, where within each
strip the fibre centres have a uniform random distribution. In such a simple
model, the extent of the inhomogeneity (clustering) can be varied by changing
the width and number density of fibres in the alternate fibre-rich and fibre-
poor strips. These geometric parameters together with the fibre volume frac-
tion and size distribution specify the simulated microstructure. The optimum
model parameters can be arrived at through iterations involving comparison
of the statistical distribution functions that quantify spatial arrangement of fi-
bres (for example, radial distribution shown in Figure 1 c) in the simulated
microstructure with the corresponding stereological experimental data on the
real microstructure till appropriate agreement between the two is attained [2].
For the present CMC, the nearest neighbour and radial distribution functions
are utilized to qualify the spatial arrangement of fibre centres [3]. Figure
1 (b) shows the simulated microstructure of the composite obtained in this
manner.

Another example of microstructure simulation is depicted in Figure 2, where
the real microstructure of a metal matrix composite (MMC) containing SiC
particles (not fibres) of irregular shapes in an Al-alloy matrix (Figures 2 (a) and
(c)) is simulated (Figures 2 (b) and (d)) via matching their two-point correlation
functions [4].

Note that the irregular morphologies of SiC particles in the real microstruc-
ture (Figure 2 (c)) are nicely captured by the simulation (Figure 2 (d)).



1632 A.M. Gokhale et al.

(a) (b)

(c) (d)

Figure 2. (a) Real microstructure of MMC, (b) Simulated microstructure of MMC, (c) High

mag. view of 2a, (d) High mag. view of 2b.

3. IMPLEMENTATION OF SIMULATED
MICROSTRUCTURES IN FE COMPUTATIONS

The simulated microstructures that are statistically representative of the
corresponding real microstructures can be implemented in the FE schemes
using the techniques described in detail elsewhere [2, 5]. This is illustrated in
Figure 3, where the simulated microstructure of CMC shown in Figure 1 (b)
is implemented in the FE scheme to simulate local distributions of maximum
principal stress in the ceramic matrix, which is useful to model damage initiation
due to nucleation of micro-cracks in the ceramic matrix of the composite.
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Abstract In nanomechanics, a systematic approach is required to deal with various ex-

pressions of intermolecular potential functions. A concept of universal atomic

potential (UAP) is suggested in this paper to unify all the expressions of inter-

molecular potential functions. The UAP function aims to establish a systematic

approach to express the intermolecular potential functions in terms of the UAP

form. As examples, two kinds of potential function have been expressed in terms

of the given UAP function.

Keywords: molecular dynamics, potential function, uniform atomic expression.

1. INTRODUCTION

Nanomechanics is a rising cross-discipline, it is used to probe the laws of
motion and properties of mechanics of substance with 0.1nm∼100nm size.
There are main two methods used to simulate physical properties of the nano-
material and nanostructures, they are Molecular Dynamics (MD) method and
Monte Carlo (MC) methods. MD simulation is based on the second Newton
law or Hamiltonian principle. The key of MD simulation is to determine the
molecular potential function. Normally, the molecular potential functions are
experimentally given, however, the characterization of potential parameters is
very difficult. Following problems remain: the parameters depend on the sub-
stance, thus the potential function of one kind of substance or particle are
improper to others; the determined parameters are only composed of two or
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three types of atoms; also the parameters derived from the experiment cannot
be used to predict the parameters of new substance, etc.

Thus a systematic approach is required to deal with various expressions
of intermolecular potential functions. There has been so far no report about
a uniform expression of molecular potential functions, this paper attempts to
express the molecular potential function uniformly in terms of the suggested
UAP form.

2. UAP POTENTIAL FUNCTION

The expression of the UAP function is suggested

φi j

(
γi j

) =
∑

k

ci jk

(
1

γi j − ak

)k

+
∑

l

gi jl

(
γi j − bl

)l
(1)

where, k, l are integers, respectively. γi j is the distance between particle i and j

γi j = ∣∣γi − γj

∣∣ (2)

and γi is a generalized coordinate vector, it may be linear or angular vector.
The unknown parameters, ci jk, gi jl, ak, bl , are decided on the basis of the

following conditions:

1. the potential function is symmetry;
2. the minimum of the potential function exists;
3. when γi j = ∣∣γi − γ j

∣∣ > γc, φi j ≈ 0, here γc is the cutting off distance;
4. the function is satisfied with specific conditions of molecular interaction.

Following, as examples of the universal of UAP, the Chelikowsky–Phillips
[1–3] and Born-Mayer Huggins (BMH) [4] potential functions are expressed
in term of UAP form.

3. CHELIKOWSKY–PHILLIPS
POTENTIAL FUNCTION

Chelikowsky and Phillips obtained a covalent interactive classical atomic
potential function [1–3]

φij

(
rij

) = A exp
(−β1rij

2
)

rij
2

− gij exp
(−β2rij

2
)

rij
(3)
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Expanding the following two functions in terms of Taylor series,

exp
(−β1rij

2
) = 1 − β1rij

2 + β2
1

2!
rij

2 − β3
1

3!
rij

3 + · · · + (−1)k βk
1

k!
rij

k

exp
(−β2rij

2
) = 1 − β2rij

2 + β2
2

2!
rij

2 − β3
2

3!
rij

3 + · · · + (−1)k βk
2

k!
rij

k

Equation (3) can be expressed by

φi j

(
rij

) = A

r2
ij

− gij

rij
− Aβ1 + gijβ2rij + Aβ2

1

2!
r2

ij − gijβ
2
2

2!
r3

ij

+ · · · + (−1)k Aβ1

k!
r2k−2

ij + (−1)k+1 Aβ1

k!
r2k−1

ij (4)

It can be simplified as

φi j

(
rij

) =
2∑

k=1

cijk

(
1

rij

)k

+
∑

l

gijl

(
rij

)l
(5)

This is the UAP expression in terms of ak = 0, ci jk = 0 (k �= 1, 2) , bl = 0.
Figure 1 shows that the φ − r curve of UAP coincides with that of

Chelikowsky–Phillips [1].

Figure 1. φ − r curve of C-Phillips vs. UAP.
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4. BORN-MAYER HUGGINS (BMH)
POTENTIAL FUNCTION

BMH [4] is the atom potential function of alkali metal or alkaline-earth
metal

φij

(
rij

) = zi z j e2

rij
+ Aijb exp

[
σi + σ j − rij

ρ

]
− cij

r6
ij

− Dij

r8
ij

(6)

Expanding the following function on the basis of Taylor series:

exp

(
σi + σ j − rij

ρ

)

= exp

(
σi + σ j

ρ

) (
1 − rij

ρ
+ 1

2!

rij

ρ2

2

− 1

3!

r3
ij

ρ3
+ · · · + (−1)k 1

k!

γ k
ij

ρk

)
(7)

Equation (6) can be expressed by

φi j

(
rij

) = −ci j8

rij
8

− cij6

rij
6

+ cij1

rij
− gij1rij + gij0 + gij2rij

2 − gij3ri j
3 + · · ·

+ (−1)l gijl r l
ij =

∑
k

cijk
1(

rij − ak

)k
+

∑
l

gijl

(
rij − bl

)l
(8)

This is UAP function in terms of

gi jl = (−1)l 1

l!
Ai j b exp

[
σi + σ j

ρ

]
1

ρl
, ci j1 = zi z j e

2, ci j6 = −ci j , ci j8 = −Di j

ci jk = 0, (k �= 1, 6, 8) ; ak = bl = 0 Figure 2 shows that the φ − r curve of
UAP coincides with that of BMH and the minimum of UAP and BMH potential
functions exist.

5. CONCLUSION

The approach towards a universal expression provides a comprehensive
solution strategy for all kinds of the intermolecular potential functions. The
examples of the universal expressions of two kinds of intermolecular poten-
tial functions have demonstrated the effectiveness. The concept of universal
expression is still in the infant stage; however, it offers a new viewpoint for
developing the unknown intermolecular potential functions.
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Figure 2. φ − r curve of MBH vs. UAP.
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Abstract A novel multi-scale method has been proposed for estimating the in-plane dis-

placements of LSI lithography mask. In order to verify the applicability of pro-

posal method, the mask of simple pattern has been simulated. The simulated

results agree with experimental mask feature qualitatively. Moreover, simulation

for real device pattern shows full-chip simulation can be performed in practical

short time by using this method.

Keywords: lithography mask, multi-scale analysis, full-chip simulation.

1. INTRODUCTION

There is a strong demand for high-density LSI device with minimum pattern
sizes below 100 nm. The lithography technique to produce 65/45 nm node
devices by using proximity electron lithography (PEL) has been developed [1].
The assessment of overlay error caused by pattern-specific image-placement
(IP) error on the mask level is very important for this technique. However, it has
been impossible to estimate the IP error in a full-chip scale within the period of
time acceptable for practical use because of geometrical complexity of circuit
patterns. We have proposed the multi-scale method to the full-chip simulation of
mask distortion. In this paper, this method has been demonstrated for contact
layer of real device in the 65-nm node. The applicability of this method is
discussed in terms of computation time and accuracy.
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2. MULTI-SCALE METHOD FOR FULL-CHIP
SIMULATION

The finite element method (FEM) enables the simulation of the displace-
ment of local pattern in the part of mask. However, it is impossible to perform
the simulation over the full-chip scale, because of the very large number of
FEM meshes caused by pattern complexity. Then, we have proposed the multi-
scale method for full-chip simulation. The procedure of the proposal method
is described as follows:

(1) The entire mask is divided into smaller unit domains with a rectangular
shape.

(2) The mask strength distribution induced by geometrical of pattern (e.g.,
pattern-density) is replaced by the equivalence stiffness matrix for each
unit domain. The stiffness matrix is derived from database that relates the
pattern-character and the stiffness.

(3) Simulation is performed for the entire mask using these stiffness matrices.

Using the database of stiffness matrices, full-chip simulation can be per-
formed quickly without calculating the stiffness matrices for specific local
patterns. Moreover, the accuracy of analysis can be flexibly varied changing
the size of local domain.

3. DATABASE OF EQUIVALENCE
STIFFNESS MATRIX

For irregular patterns in a real device, the stiffness matrices have to be cal-
culated for all unit domains. However, the database approach need not calculate
the detailed FEM analysis of local pattern for estimation of stiffness matrices.
Therefore, the full-scale device is analysed in short time. The stiffness matrix—
is homogenized elasticity matrix obtained by homogenization assuming the pe-
riodic boundary condition. The Young’s modulus and Poisson’s ratio taken from
the material properties of silicon are 160 Gpa and 0.2. Perforation-density of
mask pattern is adopted as a parameter to represent the strength induced by
pattern feature. Figure 1 shows the database that expresses the relation between
the hole-density and the stiffness. In the simulation for real device, the linear
approximation as shown in Figure 1 is used for full-chip simulation.

4. SIMULATIONS FOR SIMPLE PATTERN

The applicability of the proposed method is verified by comparing the sim-
ulated and experimental data [2]. The simple model used for the test of the
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Figure 1. Database of stiffness matrix for contact layer.

Figure 2. Simple pattern mask.

method is shown in Figure 2. For simple pattern, the matrix is not derived from
database of Figure 1. The stiffness matrix for the unit domain with only one
hole with the area density of 6.25% is calculated using homogenized method.
The stiffness matrix C of no-perforation area and 6.25% density-perforation
area are following:

Cno-perforation =
⎡
⎣166667 33333 0

33333 166667 0
0 0 66667

⎤
⎦ ,

C6.25%-perforation =
⎡
⎣139246 27064 0

27064 139246 0
0 0 49411

⎤
⎦

Figure 3 shows the boundary conditions. When the analysis is done under
this boundary condition, von Mises stress in membranes is estimated at about
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Figure 3. Boundary condition.
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Figure 6. Real device pattern.

30 MPa. The reason for the choice of this boundary is that the inertial stress in
membranes of the experiment has been estimated from 20 to 30 MPa. Figures 4
and 5 show the experimental and calculated displacement of membrane, where
the vertical and horizontal axes are the x-direction displacement and y-direction
coordinate, respectively. Qualitatively, the calculated results agree well with
the experimental results and reproduce the deformation of stencil mask under
tensions. However, experiment and calculation differ quantitatively. As one of
causes of this difference, inappropriate choice of boundary condition related to
the experimental uncertainties. Further study is needed to clarify this point.

5. SIMULATION FOR REAL DEVICE

The proposed method and database (Linear approximation in Figure 1)
are applied to the simulation for the contact layer of a real device. Figure 6
illustrates the real device pattern for simulation. The size of unit domain is a 1
mm2. In this simulation, after the calculation of the stiffness for unit domain,
the stiffness matrix of larger area is calculated using the stiffness of the unit
domain within the area. The reason for 2-step calculation of stiffness matrices
is that it is impossible to simulate in the full-chip scale via a 1-step calculation.
The boundary condition and material properties are the same as used for the
simple mask pattern. Figure 7 shows the distribution of von Mises stress. The
calculated stress distribution is reasonable qualitatively. From this simulation,
it is shown that the proposed multi-scale method can be applied for the real
devices.
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Figure 7. Von Mises stress.

6. CONCLUSIONS

In order to simulate the mask distortion quickly, we proposed the multi-scale
method for full-chip simulation. The full-chip contact layer has been calculated
by this method. Displacement of simple mask patterns and stress distribution of
real patterns have been simulated qualitatively. Using the database of stiffness
matrices, we can perform full-chip simulation in the short time. It has been
proved that our proposed method can be applied in practical simulation.
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Abstract It is a well-known fact that ab initio programs imply a direct quantitative prediction

of chemical phenomena from the first principles, thus providing most reliable and

accurate results. The term ab initio (Latin) means from first principles and so

ab initio quantum chemistry deals with calculations of molecular structure

whereby no empirical parameters are included and all integrals are evaluated

and thus is independent of any experiment. MOLPRO is an open source ab ini-

tio program which is approximately 200,000 lines of code written in Fortran. It

is important to note here that an open source program MOLPRO and an open

source operating system LINUX was seen as compatible. This paper presents the

assessment of the implications of ab initio programs in molecular sciences and

the optimized environment for MOLPRO 2000.

Keywords: ab initio methods, assessment, MOLPRO environment.

1. INTRODUCTION

Ab initio quantum chemistry deals with calculations of molecular structure
that uses no input other than the Schrödinger equation and fundamental physical
constants like Planck’s constant, mass and charge of electron, etc. The only
information which must be provided are the atomic numbers and positions of
the atoms within the system. The basis of these calculations lies in an area of
theoretical chemistry called molecular quantum mechanics which relates the
molecular properties to the motion and interaction of electrons and nuclei. Thus
the key to theoretical chemistry is molecular quantum mechanics. The ab initio
methods offer a variety of basis sets of varying complexity where all integrals
are evaluated and no empirical parameters are required.

G. R. Liu et al. (eds.), Computational Methods, 1647–1654.
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1.1 Theoretical methodology

Molecular orbital theory is an approach to molecular quantum mechanics
which uses one-electron functions or orbitals to approximate the full wave-
function. The inclusion of wavefunctions for all possible alternative electron
configurations within the framework of a given basis set is termed full config-
uration interaction (CI). The exact correlation energy can be obtained from a
full Configuration Interaction calculation in which all configurations are taken
into consideration. Conceptually, we can think of CI calculations as using the
variation principle to combine various SCF excited states with the SCF ground
state, which lowers its energy. Unfortunately this is not possible for all but small
systems. In general, Configuration Interaction is not the practical method of
choice for the calculation of correlation energy so a different approach to elec-
tron correlation has been introduced, Møller–Plesset perturbation method which
is becoming popular in recent years. The simplest electron correlation method
to treat electron correlation is Møller–Plesset perturbation theory, which is a
special variant of Rayleigh–Schrödinger perturbation theory, with the zeroth-
order Hamiltonian [1]. It is a way of introducing electron correlation into a
calculation by perturbing the Hamiltonian and calculating the energy to differ-
ent orders of expansion. The basic idea is that the difference between the Fock
operator and the exact Hamiltonian can be considered as a perturbation. Vari-
ous levels of perturbation theory called MP2, MP3, MP4, etc. can be applied
to the problem The Møller–Plesset calculations are not time-consuming and
usually give quite accurate geometries and about one-half of the correlation
energy. Second-order Møller–Plesset (MP2) perturbation theory is one of the
most efficient techniques to include electron correlation.

2. SIGNIFICANCE OF AB INITIO METHODS
IN MOLECULAR SCIENCES

The application of quantum chemistry is mainly concerned with the inves-
tigation of inter-relations between electronic structure and biological activity,
the basic assumption is that all biological processes have a molecular basis.
The ultimate goal is in the application to problems which are of interest in
research like predicting reactivity and reaction mechanisms, stabilization en-
ergies, stable conformations, vibrational frequencies, thermodynamic proper-
ties, etc. The ab initio calculations were extensively applied to the study of
hydrogen bonded and stacked base pairs in nucleic acids. Such studies would
provide the experimentalists with a consistent set of various properties of nu-
cleic acids prior to any experiment being performed or even designed. Now
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with the advent of high-speed computing systems one can really speculate into
the possibility of designing new biological structures which may be potentially
useful as therapeutic agents. With these methods one will be able to interpret
much better the different physical and chemical properties underlying their
biological functions [2–4]. The stabilization energies for AT base pairs cal-
culated by using the second-order Møller–Plesset perturbation theory (MP2)
with the 6-31G∗ basis set yield 11.8 kcal/mol for the Watson Crick pattern and
11.7 kcal/mol [5] for Reverse Watson Crick type. The mechanism and nature of
hydrogen bonding were a matter of considerable interest to quantum chemists
long before detailed calculations of electronic structure and properties of poly-
atomic systems became feasible. In our earlier paper [6, 7], we focussed on
hydrogen-bonded self-association and hetero-association in nitrogenous bases
that could be a basis for constructing the information-bearing macromolecules
using the semi-empirical PM3 method. However, these methods are not accurate
in their predictions and have been superseded by the ab initio methods. Thus,
if one wants to know more than just the structures and other properties that
are obtained from potential energy surfaces, one has to resort to a fundamen-
tal approach. To name just a few of the well-known ab initio programs are
Gaussian 94/98, GAMESS US, GAMESS UK, MOLPRO, SPARTAN,
JACGUAR, COLUMBUS, etc.

2.1 Accuracy of ab initio methods

The ab initio programs have a high demand of computational cost, the
high computational cost of ab initio calculations implies that they are most
profitably used for simulating the detailed electronic structure of a system.
High-accuracy computational methods can now be applied to much larger sys-
tems than had previously been envisaged, due to increased computer power
and algorithmic improvements. This brings the area of biochemistry within
the scope of high-accuracy methods previously developed for small molecules.
Huge calculations involving large number of basis functions and a large num-
ber of electrons are now being more accessible, thanks to the developments
of parallel algorithms. Ab initio quantum-chemical calculations with inclusion
of electron correlation carried out since 1994 have given a clear picture and
insight to the interactions of nucleic acid bases [8]. The progress in theoretical
studies on hydrogen bonding has been due to the advent of high-speed com-
puters which allow non-empirical SCF ab initio studies to be carried out on
even larger systems which were not feasible earlier. These calculations made
it possible to perform the first reliable comparison of the strength of stacked
and hydrogen bonded pairs of nucleic acid bases, and to characterize the nature
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of the interactions of bases. Accurate geometry optimizations on very large
molecules have been a long-standing challenge for electronic structure pro-
grams, however with the recent ab initio programs on high-performance com-
puters all of this changes. The methods are quite time-consuming and yet give
reliable results and represent the most promising means. Though the ab initio
methods have a high demand of computer power yet these methods yield accu-
rate results and thus far supersede the semi-empirical methods which have less
reliability as their applicability is limited by the requirement of structural pa-
rameters. Accurate ab initio calculations can now be performed for much larger
molecules than with most other programs. Using recently developed integral-
direct local electron correlation methods [9–11], which significantly reduce
the increase of the computational cost with molecular size, accurate ab initio
calculations can be performed for much larger molecules than with most other
programs.

3. MOLPRO PROGRAM

The heart of the MOLPRO program consists of the multi-configuration Self
Consistent Field (MCSCF), multi-reference Configuration Interaction (MRCI),
and coupled-cluster (CC) routines, and these are accompanied by a full set
of supporting features. MCSCF is a means of variationally minimizing the
energy of several electron configurations of a given system simultaneously.
The methods utilized in the MRCI program, which forms a part of MOLPRO,
are almost uniquely capable of dealing with the complexity of the problems, as
they are able to efficiently include a large proportion of the correlation energy.
Thus emphasis is on highly accurate computations, with extensive treatment
of the electron correlation problem, through the multi-reference configuration
interaction (MRCI) [12], coupled cluster [13, 14] and associated methods. The
simplest electron correlation method to treat electron correlation is Møller–
Plesset perturbation theory, which has been mentioned earlier.

3.1 Setting up the MOLPRO environment

MOLPRO is an open source ab initio program which is approximately
200,000 lines of code written in Fortran. It is not like a commercially vi-
able software or application of Microsoft which simply needs installation and
ready to run. MOLPRO requires an optimized environment and therefore needs
certain specific parameters like (i) processor, (ii) machine architecture, (iii)
compatible operating system with the GNU tools/libraries and the compatible
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Fortran compiler depending upon the operating system, like f77 or g77, or
f90, MIPSpro f90 for SGI systems. Added to this, as any other large program,
MOLPRO carries bugs and hence the installation becomes complex. We carried
out experimentation with different Operating Systems and machine architec-
tures and found Linux a lean OS, free of fancy. Prime factors of choice are
(i) stability, performance and security, (ii) it is one of the fastest operating
systems for computational work, (iii) the availability of the GNU tools and
libraries along with the g77 compiler, (iv) it is an open source operating sys-
tem which can be customized to our needs, (v) it is cost effective. Red Hat
Linux comes with all the GNU Tools which is Free Foundation Software and
gives a complete software development environment. The GNU Tools are dis-
tributed primarily as source code, accompanied by the appropriate libraries,
header files and make files to compile the tool. Hence, an open source pro-
gram MOLPRO and an open source operating system LINUX was seen as
compatible. MOLPRO is a machine-dependent program and hence it requires
a compatible machine architecture for its compilation. We installed Red Hat
Linux 6.2 on a Pentium III 550 MHz, 64 MB RAM as this version supports the
program and so we loaded the MOLPRO program and configured the program
creating the CONFIG and CONFIG FRONT files which contain the machine-
dependent parameters. Then we successfully patched up and compiled MOL-
PRO and were able to create the MOLPRO executable. An important point
here is that when we configure MOLPRO the configure utility after finding
the compatible compiler, i.e., Fortran compiler and the right machine architec-
ture prompts for a few questions from the MOLPRO user viz., (a) the licence
key and password which must be correctly typed in, (b) the number of atoms
and the default selection, (c) the number of valence orbitals and (d) blas op-
tions. NOTE: At this stage, one must understand that BLAS and LAPACK
are subroutine libraries. One must choose from the options of BLAS which
are given as 1, 2, 3. On some machines, however, it will be advantageous to
use a system-tuned version instead. BLAS = 0 is the default selection and
means that the MOLPRO Fortran BLAS routines are used. For example, if you
specify 2, the system libraries will be used for level 2 and level 1 BLAS, but
MOLPRO’s internal routines will be used for level 3 (i.e., matrix–matrix mul-
tiplication). In either case, one is prompted for appropriate linker options (e.g.,
-L/usr/lib –l blas) to access the libraries. It is generally recommended that sys-
tem BLAS be used if available, but on some workstations MOLPRO’s internal
matrix routines give comparable performance to system-supplied libraries. A
special situation, of course, arises if 64-bit integers are in use since on many
platforms the system BLAS and LAPACK libraries only supports 32 integer
arguments. WARNING! No system LAPACK library must be used together with
BLAS = 4.
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4. RESULTS AND DISCUSSIONS

The tables below represent a comparative study of the application of
ab initio and semi-empirical methods to small systems like water molecule
and an interesting interpretation of the results is obtained. In this paper, we
make use of the ab initio programs MOLPRO and GAMESS and also the
semi-empirical program MOPAC 6.0.

Table 1 clearly indicates the vast difference of results between the ab initio
and semi-empirical results in regards to simple molecules like water. The energy
values recorded in Table 2 represent the sum total of one-electron, two-electron
and nuclear repulsion energies at different levels of basis sets using MOLPRO.
Here it is noteworthy that the higher basis set level accounts for a much more
stable electron and nuclear repulsion energies at different levels of basis sets
using MOLPRO energy value as shown by the data. It is also important to note
here that the energy values as obtained by the ab initio methods MOLPRO and
GAMESS are quite similar (Table 3).

Table 1. Contrast of ab initio and semi-empirical results for water molecule.

Final energy (kcal/mol)

MOLPRO GAMESS PM3 AM1

System (ab initio) (ab initio) (semi-empirical) (semi-empirical)

Water −76.06458 −75.98374 −53.42645 −59.23816

Table 2. Comparison of results using MOLPRO at different levels of basis set.

Final energy (kcal/mol)

Basis set � HCN (◦) RCN (Å) RCH (Å) Methyl nitrene Ethyl nitrene

VDZ 110.973 1.4015 1.0987 −93.909260 −132.95359

6-31G∗ 110.917 1.4028 1.0918 −93.905617 −132.95042

6-311G∗ 110.897 1.4008 1.0910 −93.921252 −132.96950

Table 3. Comparison of energy values using

MOLPRO and GAMESS.

Final energy (kcal/mol)

Program Water Methyl nitrene

MOLPRO −76.06458 −93.90561

GAMESS −75.98374 −94.00396
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5. CONCLUSION

Our current approach to the significance of ab initio quantum chemistry pro-
grams in molecular sciences urge us in finding out the optimized environment
for MOLPRO 2000 which would provide an easy means to the users on how
to configure, debug, compile the program. One can install MOLPRO in a Pen-
tium III 1000 MHz, 128(+) MB RAM, 20(+) GB HDD for running MOLPRO or
any other number crunchers for large molecules. Hence Pentium Architectures
32-bit can become cost-effective solution for these kinds of number crunchers.
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Abstract Molecular dynamics (MD) simulations of nanoindentation of polyhedral

oligomeric silsesquioxane (POSS) materials H8Si8O12 (T8H8) and POSS poly-

merized norbornene homopolymer (PNPOSS) at different temperatures were per-

formed. Load-displacement curves were calculated, from which the hardness and

elastic moduli at different temperatures were obtained. These results compare well

with currently available experimental data and previous theoretical calculations.

Surface adhesion and plastic deformation in POSS materials during nanoindention

are investigated. The difference between the MD simulations of nanoindentaion

and the actual ones are discussed as well.

Keywords: molecular dynamics simulations, nanoindentation, POSS.

1. INTRODUCTION

Polyhedral oligomeric silsesquioxane (POSS), (RSiO1.5)n or Tn , where n is
an even number and R = H, Cl or a variety of organic groups, is a unique class
of materials that has emerged as recently in polymer chemistry. Comparing to
other traditional polymer materials, the inimitable characteristic of organic–
inorganic nano-hybrid materials POSS is that POSS monomers are combined
to the polymer molecules. The POSS monomers lead to serials of excellent
properties such as high thermal stability, high tenacity, high intensity and so
on. Not only the POSS monomers can form polymers themselves, but also the
monomers can be combined to the polymer chains and reinforce the polymer
materials. In this paper, mechanical properties of two kinds of POSS materials
T8H8 (formed by POSS monomer T8 absolutely) and C6PN (in which the
POSS monomers C6POSS ((RSiO1.5)6 R = cyclohexyl ring) were combined to
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polymerized norbornene homopolymer chains) were studied by the simulations
of nanoindentation tests.

2. POLYMER MODEL, INDENTER SHAPE,
SIMULATION METHOD AND PROCEDURE

Molecular structures of T8H8 and C6PN are shown in Figures 1 and 2, re-
spectively. The C6PN molecule was constructed as the structure in Bharadwaj’s
work [1] The C6PN molecular chains were built by including 10 mol% of
C6POSS and 90 mol% of norbornene. Each chain consists of 10 monomeric
units. There is only one C6POSS monomer in the C6PN chain. To avoid the
agglomeration of the C6POSS monomer, we selected the POSS monomer at-
tached to the fifth norbornene unit. One such a C6PN included 316 atoms. Two
kinds of polymer molecules are included in a layer. The T8H8 layer included
200 T8 molecules (5600 atoms) and the layer size is 62.58 Å × 62.58 Å ×
40 Å. The C6PN layer includes 32 C6PN chains (10,112 atoms) and the layer
size is 61.12 Å × 61.12 Å × 40 Å. The boundary conditions are periodic in the
lateral (x and y) directions, but there is no periodicity along the layer thickness
(z) direction. The bottom 2 Å of the layer is held rigid and the surface is free
(Figures 1 and 2).

The indenter is a square-based pyramid similar to the Vickers indenter
and is constructed by Fe atoms. The indenter material would have to have an
elastic modulus much larger than that of the materials being tested. Since we
are interested in the material properties of T8H8 and C6PN as determined by
nanoindentation and not in the tip surface interactions themselves, it is not
important how the external load is applied as long as it is applied with the

Figure 1. Structure of T8H8 molecular.
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Figure 2. Structure of C6PN chain.

required geometry. During the indentation process, the relative positions of Fe
atoms in the indenter were fixed, so the modulus of the indenter can be viewed
as infinite. We only need to consider the interactions between the indenter and
the materials being tested. The indenter included 285 atoms. The crystal lattice
constant of Fe is 2.8664 Å. But after being relaxed, the size of the Fe pyramid
changed. The height of the indenter is 15.24 Å. The indenter is shown in
Figure 3.

The relationship between the mechanical constants (elastic moduli and hard-
ness) and the load-displacement curves was determined in Sneddon’s work [2]
for a flat cylindrical punch. The same relation has been shown to hold re-
gardless of indenter shape for a wide range of indenters, provided the area of
contact remains constant during the initial unloading This relation is used for
most indenter shapes under circumstances where the material indented can be
approximated as an elastic continuum.

The PCFF force field established by Maple and Sun [3, 4] was used in order
to calculate potential energies between atoms. And the velocity-Verlet algo-
rithm was used to calculate the position and velocity of atoms. The simulation
procedure of two kinds of materials at different temperatures are as follows:
Firstly, the layer was relaxed at 0 K using a relaxation time of 10 ps, and the

Figure 3. Fe indenter and its size (c) in the 3D view.



1658 F.L. Zeng and Y. Sun

Figure 4. Atomic configurations for some of steps at 300 K (a) T8H8 (b) C6PN.

time step was 2 fs, after which the system was heated to 300, 400 and 500 K,
respectively, using the Andersen thermostat dynamics over 100 ps and the time
step was 1 fs. Then the Fe indenter was brought towards the free surface at a
rate of 1 Å per 10,000 time steps, or 10 m/s (the time step was 1 fs). After every
10,000 time steps, the configuration of the layer was saved and local stresses
were calculated, The total z-component of the force on the indenter atoms was
recorded at the same time. After 100,000 time steps of simulation, the indenter
was held 10 Å in the substrate. Then the indenter was withdrawn using the same
schedules used in the loading process. From this, a load-displacement curve
was obtained for the overall simulation. Figure 4 shows a CPK model of the
atomic configurations for different steps at 300 K.

3. RESULTS AND DISCUSSIONS

Figure 5 shows the load-displacement curves for the molecular dynamics
(MD) simulations of T8H8 (a) and C6PN (b) at different temperatures. From
these data, the elastic moduli and hardness of T8H8 and C6PN at different

Figure 5. Load-displacement curves for (a) T8H8 (b) C6PN at different temperatures.
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Table 1. Simulation results and theoretical results (GPa).

Temperature (K) E (T8H8) E∗∗ (T8H8) E (C6PN) E∗ (C6PN) H (T8H8) H (C6PN)

300 10.2 12.05 2.70 2.25 3.97 0.31

400 16.7 15.83 1.67 1.40 3.60 0.32

500 4.82 4.97 0.78 0.69 6.18 0.35

E : Elastic modulus; H : Hardness; ∗From Bharadwaj’s work; ∗∗From the method in Bharadwaj’s

work.

temperatures were obtained. The results are listed in Table 1. The elastic moduli
compare well with Bharadwaj’s results [1] and using the method introduced in
Bharadwaj’s work [1]. It is seen from Table 1 that the difference between the
present results and that in the existing literature is within 10%. The discrepancy
may come from two ways. One is that the size of layers used in this study is
too small to account for statistical variation; and the other maybe due to the
inadequate relaxation in simulations. Although there are no existing results
to compare the hardness data, it has been pointed out by several investigators
that hardness is known to increase with decreasing indentation sizes. Since the
size of the indenter here is quite small, the hardness should be much higher
than the measured values using micro-indentation test. If the attractive forces
between the indenter and substrate atoms were considered, the jump-to-contact
and surface-adhesion phenomena would be observed. This is the fundamental
difference between micro- and nanoindentations.

4. CONCLUSIONS

MD simulations of nanoindentation have been successfully used to compute
the mechanical properties of POSS materials. It was found that the pure POSS
materials have excellent mechanical properties and the POSS monomers can
reinforce the normal homopolymer significantly. The deformation and damage
mechanism with external contact can be investigated using this method.
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MOLECULAR SIMULATION
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Abstract Size-dependent stress concentration of nanocavities was investigated with EAM

(embedded-atomic potentials) based molecular statics simulations. It was found

that at nanoscale stress concentration factor of nanocavities decreases as the

characteristic size decreases and this trend is not affected by grain orientations.
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1. INTRODUCTION

With the development of nanotechnology, there is a growing interest in
developing devices and materials with nanomaterials. For example, microres-
onators with nanothickness were made of silicon to detect single virus. High
frequency resonator (380 MHz), which can be used for many communication
applications as frequency references and filters, with size of 2 mm × 200 nm ×
100 nm was fabricated from single crystal silicon. These promising applica-
tions of nanomaterials have also brought new challenges in analysing mechan-
ical behaviours of nanomaterials. For example, recent research has shown that
conventional continuum mechanics fails to predict the mechanical behaviour
of nanomaterials [1, 2]. At nanoscale, material elastic constants also show sig-
nificant size-dependence [1, 3].

At nanoscale, stress and strain significantly affect the physical properties
of nanomaterials. For example, strain will affect the optoelectronic properties
of quantum dots. Consequently, it is critical to predict the stress and strain
accurately at nanoscale.
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Recently, Sharma et al. [4] studied the stress concentration of nanocavities
with an elasticity theory involving surface stress and found stress concentra-
tion factor is size-dependent at nanoscale. In their work, Sharma et al. consid-
ered isotropic materials, however, they employed anistropic surface material
constants in the discussion and concluded that stress concentration factor can
both increase and decrease with the decrease of characteristic nanocavity size.
Consequently, it is not clear how the stress concentration factor depends on
nanocavity size for either isotropic or anisotropic materials.

In the present paper, I will studied how the stress intensity factor depends on
characteristic nanocavity size with EAM (embedded-atomic potentials) molec-
ular statics simulations. The detailed approach used in the simulations are in-
troduced first, the simulation results are then presented and discussed. Finally,
conclusions are drawn based on the simulation results.

2. SIMULATION APPROACH

Recognizing nanocavities generally exist in anisotropic matrix, anisotropic
problems are considered in this paper. Without loss of generality, face-centred
cubic (FCC) single crystal Ni is chosen for study. Schematic diagram illustrat-
ing the cross-section of the material system is shown in Figure 1. This represents
a material with infinite dimension in the [100], [010] and [001] directions. The
cavity, with square cross-section geometry, goes through the whole material
body in the [010] direction. Due to the symmetric properties of the material

RVE 

[100]

[001]

Ni (010)

Figure 1. Cross-sectional of the modelling.
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Figure 2. Atomic modelling projected in the [010] direction.

body, a representative volume element is chosen for the simulations (see
Figure 1). In the simulations, the length L is chosen as 52.8 Å, the charac-
teristic size of nanocavities ranges from 7.04, 14.08, 21.12 to 28.16 Å. The
RVE length in the [010] direction is 17.6 Å. Figure 2 shows a typical molecular
modelling of the RVE. Periodic boundary condition is applied in the [100],
[010] and [001] directions. The lattice constant of Ni is 3.52 Å.

In this study, an EAM based molecular statics program is used to obtained
the those material constants. Embedded-atom method (EAM) potential is a
widely used potential for FCC metals. In the EAM potentional, the total en-
ergy � is composed of an electrostatics pairwise interaction energy between
atoms α and β, V (rαβ), and an embedding energy F(ρα), which is an energy
to embed the atom in the local-electron density created by its near neighbours,
i.e.,

� = 1

2

N∑
α �=β

V
(
rαβ

) +
N∑
α

F (ρα), (1)

ρα =
∑

β

φ
(
rαβ

)
. (2)

where N is the number of atoms in the system, rαβ is the distance between
atoms α and ρα is electron density contributed by other atoms to the site of
atom α (the summations are over all the atoms β that interacts with the atom
α), and φ(rαβ) is electron density from atom β to the site of atom α. Empirical
functions φ(rαβ), V (rαβ) and F(ρα) are fitted to experimentally measured bulk
material properties, such as equilibrium lattice constants, sublimation energies,
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elastic constants and vacancy formation energy. The equation for the force
−→
Fα

on atom α is the derivative of Equation (2) and is given as

−→
Fα = −

∑
β

[
1

2
V ′

αβ + F ′
αρ

′
αβ + F ′

βρ ′
βα

]
−→rαβ, (3)

where F ′
α is the derivative of atom α’s embedding function F , and ρ ′

αβ is
the derivative at atom α of the electron density due to atom β. Again, the
summations are over all the atoms β that interact with the atom α. The stress
used in this study is the viral stress, which is defined as

σα
i j = − 1

2�α

(∑
β

Fαβ

i rαβ

j

)
. (4)

where �α is the atomic volume of atom α, F αβ

i is the i-component of the
force between atoms α and β obtainable from the derivative of the potential

�(r ) by Equation (3), and rαβ

j is the j-component of the separation of atoms α

and β.

Let define the stress concentration factor (SCF) as

SCF = σ11

σ11

. (5)

where σ11, σ11 are the local stress at the right bottom corner atom on the front
surface and σ11 is the average stress of the whole volume of the simulating
slabs. During the loading process, the dimension of the molecular statics cell
is uniformly expanded in x1 direction, while the dimensions in the x2 and x3

directions are kept constant.

3. RESULTS AND DISCUSSIONS

The stress concentration factor as a function of characteristic size, a, is
depicted in Figure 3. It can be seen that as the characteristic size decrease,
the stress concentration factor decreases. A 37% decrease is observed in our
simulation. This trend is in contrast with the that obtained by Sharma et al. In
their work, Sharma et al. used surface material constants in the [100] crystal
orientations and predicted stress concentration factor increase with decreasing
characteristic size.

As recently noted, as the surface Young’s modulus is smaller than the value
of its bulk part in the [100] direction while the surface Young’s modulus is
larger than the value of its bulk part in the [110] direction. In order to study
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Figure 3. SCF as a function of characteristic.

whether stress concentration factor can increase with decreasing characteristic
size in different crystal orientations, simulations are also conduct for FCC Ni
with x1, x2 and x3 in the [110], [011] and [001] directions. Since it is difficult
to build square nanocavities, we construct rectangular nanocavities with length
as L1 and L2. Effective characteristic size R is also introduced in such a way
that R2 = a∗b. The stress concentration factor as a function of characteristic
size, a, is depicted in Figure 4. Again, it can be seen that as the characteristic
size decrease, the stress concentration factor decreases.
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Figure 4. SCF as a function of size (in [100] crystal orientation) characteristic size (with [110]

crystal orientation).
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4. CONCLUSIONS

Size-dependent stress concentration of nanocavities was investigated with
EAM (embedded-atomic potentials) based molecular statics simulation. It was
found that at nanoscale stress concentration factor of nanocavities decreases
as the characteristic size decreases and this trend is not affected by grain
orientations.

REFERENCES

1. H. Zhang and C.T. Sun (2002), Semi-continuum model for plate-like nanomaterials.
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference,
2002-1316, Denver, Colorado, USA, pp. 1–11.

2. H. Zhang and C.T. Sun (2004), Nanoplate model for plate-like nanomaterials. AIAA Jour-
nal, 42, pp. 2002–2009.

3. C.T. Sun and H. Zhang (2003), Size-dependent elastic moduli of plate-like nanomaterials.
Journal of Applied Physics, 93, pp. 1212–1218.

4. P. Sharma, S. Ganti and N. Bhate (2003), Effect of surfaces on the size-dependent elastic
state of nano inhomogeneities. Applied Physics Letters, 82, pp. 535–537.



ATOMISTIC SIMULATION ON THE
STIFFENING AND SOFTENING
MECHANISM OF NANOWIRES

H.Y. Liang,1 G.R. Liu1 and X. Han2

1Centre for ACES, Department of Mechanical Engineering, National University of Singapore,
9 Engineering Drive 1, Singapore 117576
2College of Mechanical and Automotive Engineering, Hunan University, Changsha 410082,
P.R. China

Abstract This paper studies the stiffening and softening of copper nanowire due to sur-

face effect along different crystallographic orientations. Using molecular statics,

nanowires of [001], [110] and [111] directions, are found to be elastically stiffer

or softer than its bulk counterpart. These opposite trends of stiffening and soften-

ing can be attributed to two factors: surface elasticity and surface stress induced

non-linear elasticity in the core region. The surfaces of nanowires are found to be

softer instead of stiffer than bulk copper.

Keywords: nanowire, stiffening, softening, atomistic simulation.

1. INTRODUCTION

Decreasing characteristic dimensions of materials to nanoscale often leads
to size effect: a deviation of elastic properties from its macroscopic counter-
part behaviour [1]. With the substantial development of nanotechnology [2, 3],
nanomechanical structures, such as nanowire/plate, are no longer hypotheti-
cal. Using molecular dynamics simulation, nanowire and nanoplate of EAM
tungsten are found to be softer along 〈001〉 direction as the cross-section de-
creases [4]. Besides softening, stiffening is also possible in nanostructures. In
an early attempt to study the size dependence of Young’s modulus of EAM cop-
per film, Streitz et al. [5] found softening in 〈001〉 direction and stiffening in
〈110〉 direction as the film thickness decreases. The opposite trends in Young’s
modulus are reconfirmed by atomistic calculations with EAM potentials for
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aluminium [6] and copper [7]. It is well known that the elastic moduli of mate-
rials near surface are different from corresponding bulk values. This difference
is regarded as the cause for the size effect [1,6,7]. For macroscopic solids,
surface elasticity contributes little to the total elastic behaviour, while it turns
pivotal at nanoscale where surface-to-volume ratio is extremely large. In addi-
tion to surface elasticity, surface stress induced non-linear elasticity could be
another factor responsible for size effect. Actually, for free standing nanosized
structures, surface stress can induce large contraction strain well beyond linear
elastic region [4,8], or even phase transformation [9].

In this paper, atomistic simulations are employed to investigate the physical
mechanism of size effect on the Young’s modulus of copper nanowire.

2. SIMULATION PROCEDURE

Three types of copper nanowires of square cross-section (Figure 1) are set up
with [001], [110] and [111] direction along axis X. For [001] nanowire, the two
lateral free surfaces are (100) and (010), respectively. For [110] nanowire, the
two lateral free surfaces are (001) and(11̄0), respectively. For [111] nanowire,
the two lateral free surfaces are (1̄1̄2) and (11̄0), respectively. Different square
cross-sections, with width ranging roughly from 1.3 to 15.0 nm, are simulated
for each nanowire type. The width of nanowire is defined as the average of
length along Y and Z-axes after relaxation. The cross-section of [001] nanowire
is exactly square. But for [110] and [111] nanowires, we construct the cross-
section as square as possible.

Y

X

[100]

[001]

[010]

[001]

[110]

[110] [110]

[112]

[111]

(b) (c) (d)

Z
(a)

Figure 1. Configuration of nanowires. Axis X is the strain direction with PBC. Y and Z surface

are traction free.
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For all cases, periodic boundary conditions are applied along axis X, and the
two lateral surfaces are traction free. The EAM potential for copper developed
by Mishin et al. [10] is adopted. Strains in the range of [−5.00%, 1.00%] with
an increment of 0.05% are applied along axis X. Conjugate gradient method is
used to find the local energy minimum at each strain step. The Young’s modulus
is calculated via the second derivative of the total system energy with respect
to strain: E = (1/V )d2Utot/dε2, where Utot is the total system energy, ε the
strain. V is the volume of nanowire at the initial state.

3. RESULTS AND DISCUSSION

Due to the presence tensional surface stress, a copper nanowire will reach
its energy minimum with a contraction along axis X. Figure 2 shows the strain
energy changes with applied strain for two [001] nanowires with width of 3.5
and 2.0 nm, and for the bulk copper. The energy minimum shifts to the right
as the width reduces. This trend is the same for [110] and [111] nanowires.
Figure 3 demonstrates the contraction strain for nanowires of different width.
The contraction behaviour of [110] and [111] nanowire are quite similar, while
the contraction of [001] nanowire is much larger. The contraction strain of
nanowires results mainly from the competition between the surface stress and
Young’s modulus in the core area. For example, the larger contraction strain of
[001] nanowire could be attributed to the smallest Young’s modulus (for bulk
copper, E001 < E110 < E111) and moderate surface stress [11].

Figure 4 shows the variation of Young’s modulus with the width of [001],
[110] and [111] nanowires. [001] and [111] nanowires exhibit softening, i.e.,
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Figure 2. Strain Energy per atom for [001] nanowires and bulk copper.
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Figure 5. Comparison of Young’s modulus between bulk and nanowires.

Young’s modulus decreasing with smaller nanowire, while [110] nanowire
shows stiffening. The present results are consistent with the findings by Streitz
et al. [5] and Zhou and Huang [7]. To understand the mechanism of softening
and stiffening, we calculate also the Young’s modulus of bulk copper at dif-
ferent levels of uniaxial strain, and the results are plotted in Figure 5 together
with those for nanowires for comparison. It is noted that though a high surface-
to-volume ratio compared with macro counterpart, surface atom accounts for
less than 50% even for the thinnest nanowire in our simulations, suggesting an
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important role of core region. Hence, the Young’s modulus of [001] and [110]
nanowires follow the trends of corresponding bulk copper (Figures 5a and b).
Surprisingly, the Young’s modulus of [111] nanowires goes down despite a weak
increase of 3.5% (with strain from 0.0 to −0.015) for bulk copper (Figure 5c).

It is noted from Figure 5 that the Young’s modulus of nanowires are always
smaller than that of bulk copper, indicating a softer surface other than a stiffer
surface. The surface softening is originated from the configurations of surface
atoms with lower atomic coordinates. For [110] nanowire, the nearest neighbour
atoms form continuous lines along axis X on (11̄0)and (001) surfaces. For [001]
nanowire, the nearest neighbour atoms form 45◦ crossing on (100) and (010)
surfaces. For [111] nanowire, due to the less atom interaction on (11̄0) surface
and especially no interaction for the outmost atoms (beyond the cutoff distance
of EAM potential) along axis X on (1̄1̄2) surface. It is expected that the surface
elasticity are moderate for [001] and [110] nanowires and neglectable for [111]
nanowire. Therefore, the surface softening and the non-linear elasticity at core
region will determine whether a nanowire shows softening or stiffening.

4. CONCLUSIONS

Due to surface stress induced contraction, nanowires of [001], [110] and
[111] directions, are found by molecular statics to be elastically stiffer or softer
than its bulk counterpart. These opposite trends of stiffening and softening
can be attributed to surface elasticity and surface stress induced non-linear
elasticity in the core region. The surfaces of nanowires are always found to be
softer instead of stiffer than bulk copper.
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Abstract Three-dimensional molecular dynamics (MD) simulations of mechanical proper-

ties of copper nanowire have been carried out to study the size effects on the high

strain-rate scale. It is found that the strain-rate scale of a nanosized structure is

much higher than common materials. Even strain rate of 108/s can be considered

as quasi-static loading rate for metal nanowires. The results from three different

loading methods agree well to this finding, which proves that this high strain-rate

scale can be true for small structures. The origin of such a high strain-rate scale

is that structures with a length scale of nanometers can respond to the external

loading very quickly.

Keywords: molecular dynamics, nanowire, strain rate, size effect, material property.

1. INTRODUCTION

Mechanical devices are shrinking in dimensions to reduce mass, increase
resonant frequency and lower the force constants of these systems to achieve
desired purposes. The thinnest metal Au nanowire with only four atomic rows
was successfully prepared using electron-beam irradiation in an ultrahigh vac-
uum electron microscope [1]. The concept of using nanowires as building
blocks for self-assembling logic and memory circuits was presented [2]. Metal-
lic nanowires have received considerable attention in recent years, especially
numerical simulation study by employing atomistic simulation methods, which
can elucidate the details of deformation evolution by motion of atoms [3]. In
this paper, our study will focus on the strain-rate scale of nanowires, and MD

G. R. Liu et al. (eds.), Computational Methods, 1673–1678.
C© 2006 Springer. Printed in the Netherlands.

1673



1674 H.A. Wu and G.R. Liu

simulations will be conducted to model the mechanical behaviour of copper
nanowires under external loadings. This work is motivated by the controversies
about the high strain-rate scale of nanowires. Our MD simulations will prove
that this high strain-rate scale is true, and it is due to the size effect.

2. STRAIN-RATE EFFECT STUDY

We consider a rectangular nanowire cut from bulk single crystal copper,
whose size is 2.0 nm × 2.0 nm × 5.4 nm. The initial atomic configuration is
positioned at the fcc lattice sites. The X , Y , Z coordinate axes represent the
lattice direction of [1 0 0], [0 1 0], [0 0 1], respectively. Periodic boundary
condition is applied in the length direction, i.e., Z direction. The surfaces in
X and Y directions are free. An embedded atom potential of copper [4], are
employed to represent the atomic interactions. The temperature is kept constant
at 0.01 K by using a direct velocity scaling method. The Gear algorithm [5],
which is used to integrate Newton’s equations of motion, uses up to the fifth
time derivative of the atom position. After full relaxation of initial configuration,
extension strain loadings are applied by uniformly scaling the z coordinates [3],
which we call scaling method. The atoms of the outermost layer at each end are
only constrained in the z direction during each loading step. The tensile strain
step is 0.0001. It is relaxed during sometime in each step. Both the strain step
and relaxation time determine the strain rate. The stress in the nanowire under
above strain loading is computed by the average of atomic stress.

The different rates of tensile strain range from 107/s to 5 × 1010/s. Figure 1
shows the plot of normalized yielding stress as a function of extension strain
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Figure 1. Yield varying with strain-rates.



High Strain-Rate Scale for Nanowires 1675

rate. The strain-rate effect is similar to that in macroscale. However, the strain-
rate scale is much different. It is found from the results that the strain rates of
108/s or below are just quasi-static loading rate for this nanowire.

This method is generally used in simulating extension deformation by many
researchers. It is stable and efficient. However the scaling process seems to have
introduced some artificial factors. Maybe we helped the atoms to move to their
balanced positions. If so, the high strain rate will be meaningless or false. In
our present work, we use another two methods, force method and displacement
method, to apply extension loading to verify this high strain-rate scale.

3. FORCE AND DISPLACEMENT
LOADING METHODS

For the force method, one end of the nanowire is fixed after free relaxation,
and the extension forces are uniformly applied to one layer atoms at the other
end. These forces drive the last layer atoms to move along the length direction.
The next layer atoms will receive an attractive force due to bigger distances
between the last two layer atoms, so they will also move in the same direction.
Thus, all atoms except the fixed ones will move along the length direction. The
result is that extension deformation occurs. The force loading is also applied
step-by-step. During each step, the simulation cell is fully relaxed before next
loading step. Because the length of the simulation cell changes with loading and
is not predetermined, periodic boundary condition (PBC) cannot be applied in
length direction. The simulation cell is a finite length copper nanorod, with the
size of 2.0 nm × 2.0 nm × 200.3 nm. Three loading steps are applied, with each
step of 3.94 nN. The force is uniformly distributed to 61 atoms of the last layer.

We can calculate that the induced extension stress step in nanowire would
be 1.0 GPa. The strain can be easily obtained from the displacement of last
layer atoms and the simulation cell length at free relaxation state. Figure 2
shows the plots of strain as a function of time. It is can be found that during the
20 ns of each loading step, resulted strain converge to stable value. The elastic
modulus can be obtained by stress divide by strain, about 66 GPa, which agrees
well with the scaling method results. In current simulation, the nanorod is fully
relaxed during each loading step so that a stable state can be reached. This
loading speed can be considered as quasi-static loading. On the other hand, we
can calculate the corresponding strain rate from strain and loading step time,
which is about 106/s.

For the displacement loading method, one end of the nanorod is fixed after
free relaxation, and the enforced displacements along the length direction are
uniformly applied to one layer atoms at the other end. The next layer atoms
will receive an attractive force due to bigger distances between the last two
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Figure 2. Strain varying with time.

layer atoms, so they will also move in the same direction. Thus, all atoms
except the fixed ones will move along the length direction. The displacement
loading is also applied step-by-step. During each step, the simulation cell is
fully relaxed before next loading step with two layer atoms fixed at either ends.
The displacement increment of each step is 0.05 nm, so the strain step is 0.25%.
In force loading method, we input stress and output strain to get strain–stress
relation. In displacement loading method, we input strain and output stress.
To ensure the assumption of quasi-static loading, the nanorod is fully relaxed
during each step. The relaxation time is 0.5 ns for above strain step of 0.25%,
so the strain rate is 5 × 106/s.

Figure 3 shows the stress plot with time. It can be found that during the
elastic stage, the stress converges during each step quickly. This further proves
that 5 × 106/s is a comparatively low strain rate for elastic deformation of copper
nanowire. The elastic modulus obtained in this simulation is almost the same
as those obtained by scaling method and force method. However, the yielding
strain and yielding stress are some different. The yielding strain and stress are
0.10 and 7.5 GPa, respectively, from the figure. It is also illustrated that the
reactions to external strain rates of plastic deformation and elastic deformation
are different. A 0.5 ns is long enough for elastic strain of 0.25%, but not for
same plastic strain.

The simulation results show that different loading models have no signif-
icant influence on the elastic behaviours of metal nanowire, but have some
influence on yielding behaviour. Scaling method of applying strain loading is
very stable and efficient, and the strain rate in this method is still meaningful.
All results prove that the strain-rate scale of nanostructures is different from
that of macro-materials and structures. The former is much higher. This is due
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Figure 3. Stress plot as a function of time.

to the much smaller length size scale, which permits the structure to respond
external loading very quickly.

4. CONCLUSIONS

Molecular dynamics simulations with three different loading methods, scal-
ing method, force method and displacement method, to apply extension on metal
nanowire have been presented in this paper. The results shows that the mechan-
ical behaviours of nanowires are strain-rate dependent. However, the strain-rate
scale is different from that of macrostructures. Strain-rate loading of 106–108/s
can be considered as quasi-static loading, which are super high strain rates
for macro-materials and structures. This high strain-rate scale is verified by
different loading methods. The origin of such high strain-rate scale is that the
nanowire can respond external loading very quickly because of its small size
of nanometers.

REFERENCES

1. Y. Kondo and K. Takayanagi (1997), Gold nanobridge stabilized by surface structure.
Physical Review Letters, 79, 18, pp. 3455–3458.

2. N.I. Kovtyukhova and T.E. Mallouk (2002), Nanowires as building blocks for self-
assembling logic and memory circuits. Chemistry-A European Journal, 8, 19, pp. 4355–
4363.



1678 H.A. Wu and G.R. Liu

3. T. Kitamura, K. Yashiro and R. Ohtani (1997), Atomic simulation on deformation and
fracture of nano-single crystal of nickel in tension. JSME International Journal Series
A-Solid Mechanics and Material Engineering, 40, 4, pp. 430–435.

4. M. Doyama and Y. Kogure (1999), Embedded atom potentials in fcc and bcc metals.
Computational Materials Science, 14, 1–4, pp. 80–83.

5. M.P. Allen and D.J. Tildesly (1987), Computer Simulation of Liquids. Oxford University
Press, New York.



VOXEL BASED RIGID BODY DYNAMICS
FOR COMPUTER GRAPHICS

K. Suzuki, J. Kubota and H. Ohtsubo
Department of Environmental Studies, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo, Japan 113-8656

Abstract For the rigid body simulation, robust and efficient rigid body dynamic simulation

algorithm is developed. The rotation of rigid body is represented using quaternion

and volume based collision detection algorithm is developed. The rigid body is

subdivided into voxel, and collision detection is carried out with spheres that

include voxels. The strategy for determining time step was described. Several

examples are shown to demonstrate the efficiency, robustness and applicability to

the non-convex objects of the method, and compared with polygon based method.

It was shown that by changing the level of sphere subdivision, it was possible to

control the accuracy and computational efficiency.

Keywords: rigid body simulation, quaternion, voxel, collision detection.

1. INTRODUCTION

For the simulation of rigid body dynamics, DEM (Distinct Element Method)
developed by Cundall [1] and DDA (Discontinuous Deformation Analysis) de-
veloped by Shi [2] which considers deformation of body are two major methods.
These methods have been applied to the rock fall analysis but most analysis uses
two dimensional model, which is quite different from real situations. However,
the extension of rigid body dynamics to three dimensions is quite difficult in
algorithm and computational load.

On the other hand, in the field of computer graphics almost all computation
is carried out in three dimensions. These days more and more physics based
simulations are used in creating motions of realistic animations. In this paper,
we propose to use the algorithm based on the rigid body dynamics technology
that is used in the field of computer graphics, and considers the possibility of
combining them in the field of engineering simulations.

G. R. Liu et al. (eds.), Computational Methods, 1679–1687.
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Most difficult part of the rigid body dynamics is collision detection. Jimenez
et al. [3] gives good survey of the collision detection technique. Traditional
collision detection often fails and penetration of objects occurs quite often. Also
another problem is collision detection of non-convex objects. For the collision
detection of convex objects, GJK (Gilbert–Johnson–Keerthi) algorithm [4] is
quite effective. However, for non-convex objects the objects need to be divided
into several convex objects to enable collision detection, which cannot be done
automatically.

Bounding box and oriented bounding box approach approximate the objects
by rectangle or oriented rectangle and are good for very rough approximation
but not accurate collision detection. OBBTree [5] is another volume based
collision detection technique using oriented bounding box in hierarchical way.
Dingliana and O’Sullivan [6] proposed sphere tree based collision detection
technique that is good balance of accuracy and efficiency. However, their ap-
plication is limited to primitive 2D examples. In this paper, we are going to
implement the sphere tree based algorithm into three dimensional rigid body
dynamics and verify the accuracy, efficiency and robustness in detail.

In Chapter 2 we are going to describe rigid body dynamics using quaternion,
which is commonly used in computer graphics to describe three dimensional
rotations. In Chapter 3 we are going to propose volume based collision detec-
tion technique. Finally we are going to show several examples to demonstrate
the efficiency and robustness of the method. The proposed collision detection
method can be utilized in either DEM or DDA.

2. RIGID BODY DYNAMICS

The rigid body dynamics in three dimensions is described in the following
manner. State variables for single rigid body are defined as follows [7].

y(t) =

⎧⎪⎪⎨
⎪⎪⎩

x(t)
q(t)
P(t)
L(t)

⎫⎪⎪⎬
⎪⎪⎭

d y(t)

dt
=

⎧⎪⎪⎨
⎪⎪⎩

v(t)
ω(t)q(t)
mv̇(t)
I ω̇(t)

⎫⎪⎪⎬
⎪⎪⎭ (1)

where x(t) is position vector at centre of gravity, v(t) is velocity, ω(t) is angular
velocity and q(t) is quaternion [8] that describe the rotation of rigid body. P(t)
is momentum vector and L(t) is angular momentum vector. From the equation
of motion, we have following relations.

F(t) = mv̇(t)

τ (t) = I ω̇(t) (2)
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where F(t) is external force and τ (t) is external moment, m is mass of rigid
body and I is moment of inertia matrix. By integrating this differential equation
over time domain, we obtain the state of rigid body at each time step. In this
paper, we employed explicit Euler time integration scheme.

3. VOXEL BASED COLLISION DETECTION

In the traditional collision detection methods, the collision between poly-
gons are handled by detecting the intersection between vertex vs. face, and
edge vs. edge. This process is quite complicated algorithm and sometimes fails
to detect the collision that results in the penetrations of objects. Also different
type of collisions results into different evaluation of collision force, which again
complicates the simulation algorithm. These difficulties reduce the robustness
and computational efficiency. Here, we employed the concept of using sphere
tree for collision detection [6].

An object is originally defined in the form of polygon. As preprocess, we
define voxel subdivision of the polygon in different level as shown in Figure 1.
Sphere that involves each cube is defined on the voxel. We call the voxel that
defines single cube for an object as level 0, and subdivide each edge by two to
obtain one level higher subdivision. The collisions between objects are judged
by the collision of spheres. By increasing level we get more accuracy in shape
representation of objects, hence more accuracy in collision detection, with more
computational time. By this way, we can control the accuracy and computational
efficiency easily.

For the sphere of level 0, a sphere that includes the object is used instead
of spheres that include the cube, which gives better accuracy. The algorithm of
collision detection is as follows. By obtaining the distance between centres of
level 0 spheres of objects and comparing them with the radiuses of them, we
can check the possibility of collision between two objects. If there is collision
between spheres, we increase the level of subdivision of both objects and check
the collision between spheres, until we reach the maximum level of subdivision
we defined. By subdividing the only spheres that collide each other as shown
in Figure 2, the computational efficiency can be increased dramatically. When
the collision is detected, the collision forces need to be computed to obtain the
motion after collision. Since the forces acts in quite short time, we consider
them as impulse force, and consider to act at the mid-point of the centres of
two colliding spheres. When we take the centre of each sphere as x1 and x2,
the direction of impulse force becomes as follows when no friction is acting,
as shown in Figure 3. When friction is acting, the friction force is applied by
multiplying coefficient of friction to the normal force. We denote − as before
collision and + as after collision, the relative velocity of spheres v−

rel (before
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Figure 1. Voxel subdivision.

Figure 2. Subdivision of colliding sphere.
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Figure 3. Direction and position of collision force.

collision) and v+
rel (after collision) can be calculated as follows, where n is

direction of one colliding sphere to another.

v−
rel = n21 · (ẋ−

1 − ẋ−
2 ) v+

rel = n21 · (ẋ+
1 − ẋ+

2 ) (3)

They have following relation using restitution coefficient ε.

v+
rel = −εv−

rel (4)

The angular velocity ω can be considered as follows. The velocity of the
centre of sphere is described by the position of the centre of gravity xg and
vector r of the centre of sphere from the centre of gravity.

x−
1 = x−

g1 + ω−
1 × r1 x+

1 = x+
g1 + ω+

1 × r1 (5)

When we denote the change of the momentum as j and mass of object as M ,
and moment of inertia matrix as I , we obtain following relations.

x+
g1 = x−

g1 + jn21

M1

(6)

ω+
1 = ω−

1 + I −1
1 (r1 × jn21) (7)

By substituting Equations (6) and (7) into Equation (5) we can obtain x+
1 from

x−
1 . From Equations (3) and (4), we can obtain j as follows.

j = −(1 + ε)v−
rel

1

M1

+ 1

M2

+ n12

{(
I−1

1 (r1 × n12)
) × r1 + (

I−1
2 (r2 × n12)

) × r2

} (8)
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Figure 4. Shape of objects (Example 1).

4. EXAMPLES

4.1 Comparison with polygon base method

For the second example the projection of objects of shape shown in Figure 9
(left) were used for comparison with traditional method of polygon base col-
lision detection. Figure 9 shows from left to right, original shape with 12
polygons, sphere subdivision of level 2, 3, 4 respectively. From time 0 to 4 s
10 objects are projected from height 1 m with horizontal speed 2 m/s and
vertical speed 0.5 m/s and simulation during 5 s are carried out. With level 4
Equation (21) gives �tmax = 1/113 (s), and �t = 1/120 (s) was used for each
simulation. In traditional method there is no indicator to determine time step
so various �t was used.

In the traditional method �t need to determine empirically to obtain the
results with no penetration. With �t = 1/1440 and 1/1920, the penetrations of
objects have been observed. With �t = 1/2400 a result with no penetration was
obtained. In voxel base method no penetration occurred even with �t = 1/120
in each level. The solution time for each case is shown in Figure 5. The reason

Figure 5. Comparison of solution time.
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Figure 6. Halfway view.

why it takes more solution time with �t = 1/1440 than 1/1920 is because
of penetration, the number of collision detection increases. It was shown that
the collision detection algorithm described in this paper is effective in both
robustness and computational time. The view in the mid of simulation is shown
in Figure 6.

4.2 Non-convex objects

One big advantage of this new method is handling of non-convex objects is
easy, while in the polygon base method handling of non-convex objects takes
several times more computational time. In this example the cross shape objects
shown in Figure 7 is used. The voxel subdivision is shown in Figure 2. 26
objects of this shape were dropped from the height 1.5 m from time 0 to 12 s
in even interval and simulation until time 18 s was carried out. Solution time
was about 1500 s.

The halfway view of the simulation process is shown in Figure 8.

Figure 7. Example of penetration.
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Figure 8. Non-convex objects.

Figure 9. Halfway view of simulation process.

5. CONCLUSIONS

For the simulation of dynamics of discrete system, we have presented the
robust and fast algorithm. The rotation of a rigid body is represented using
quaternion and collision detection algorithm based on the volume sphere is
developed. By changing the level of the subdivision, control of accuracy and
efficiency is quite easy. Also the simple algorithm to determine time step to
prevent penetration is shown for robust simulation. Several examples are shown
for verification, and it was shown that new method is much robust and fast, and
it can handle non-convex objects easily.
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COMPLEXITY OF CABLE DYNAMICS
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School of Mechanical Engineering and Production, Nanyang Technological University,
Nanyang Avenue, Singapore 639798

Abstract Non-linear cable dynamics is investigated under a harmonic excitation. A set of

non-linear partial differential equations is derived by the extended Hamilton’s

principle. Global bifurcation cascades are provided to show the multiple solution

structures with the variation of forcing amplitude. The ultimate steady state of

the cable is sensitively dependent on initial conditions and evolution history of

parameters. The coexistence of different solutions may induce a sudden jump

in response under small perturbations, a new feature found in non-linear cable

dynamics.

Keywords: bifurcation, chaos, multiple solution, sudden jump.

1. INTRODUCTION

Cable with its outstanding flexibility and strength has been widely used in
engineering. Exposing to turbulent surrounding mediums (wind or wave), cable
experiences violent oscillation that degrades the system performance. Within
the framework of linear theory, cable dynamics has been well understood. How-
ever, we know a little about non-linear dynamics of cable, due to the difficulty
in dealing with strong geometrical non-linearity and intensive coupling effects
as well as sensitive dependence on initial conditions and parameters. In the last
decade, a remarkable progress has been made forward with a number of liter-
atures [1] documented for non-linear cable dynamics. Some basic non-linear
behaviours such as harmonic, sub-harmonic and chaotic motions have been
reported in numerical studies [2] and experimental observations [3]. Never-
theless, the richness of non-linear cable dynamics has not been fully explored.
Some peculiar phenomena were observed but not well explained. The existing
knowledge about this topic is distant from the level of understanding.
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Figure 1. Schematic configuration of a suspended cable.

2. FORMULATION OF GOVERNING EQUATIONS

Figure 1 shows a schematic configuration of a suspend cable. w (s) = w (s)(x)
describes the static equilibrium. Under the excitation p(t), the cable is displaced
by a shift (u, v, w) from a reference point (x, 0, w (s)), where u = u(x, t), v =
v(x, t) and w = w(x, t), L is the chord length of the cable. Based on Hamil-
ton’s principle, the governing equation of the cable in three dimensions can be
expressed by the three partial-differential equations as⎧⎨

⎩
mü = p1 − μ1u̇ + [(E Aε + T )(1 + μ,x )],x
mv̈ = p2 − μ2v̇ + [(E Aε + T )ν,x ],x
mẅ = p3 + mg − μ3ẇ + [(E Aε + T )(w,x + ∂w (s)/∂x)],x

(1)

where m denotes the mass per unit length and the dot indicates the derivative
with respect to time t ; p1, p2, p3 are the load intensity in x, y, z; μ1, μ2, μ3

are the viscous damping coefficients; E is the elastic modulus and A is
the cross-sectional area of the cable; T is the tension of the cable in equi-
librium. The boundary conditions are u(0, t) = v(0, t) = w(0, t) = u(L , t) =
v(L , t) = w(L , t) = 0. Consider an in-plane vibration of the cable with the
assumption of |v′| � 1, |w ′| � 1, |u′| = O2(v′, w ′), u̇ � 1. Introduce dimen-

sionless quantities W = w
Ds

, W (s) = w (s)

Ds
, η = x

L , τ = t/( L2

Ds

√
ρ

E ). The in-plane

governing equations become

ε = D2
s

L2

1∫
0

[W (s)
,η W,η + 1

2
(W 2

,η)] dη = D2
s

L2
e

W,ττ + α1W,τ − (e + β)(W,ηη + W (s)
,ηη) = γ (1 + f (η, τ )) (2)

Using the Galerkin’s method, the vibration solution can be expressed by

W (η, τ ) =
∞∑

i=1

Ti (τ ) sin(iπη). The governing Equations (2) can be converted
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into ODE:

T̈ k + α1Ṫ k + π2(e + β)(k2Tk + δk1) =
1∫

0

sin(kπη)γ (1 + f (η, τ )) dη

e = 1

4
π2

[
2T1 +

n∑
1

i2T 2
i

]
(3)

where δk1 =
{

1, k = 1
0, k �= 1

, k = 1, 2, . . . , n. α1 = μ2 L2

m Ds

√
ρ

E , β = T L2

D2
s E A , γ =

ρgL4/(E D3
s ), Tk is unknown time function, f (η, τ ) = f0 cos (ωτ ) and n is

the number of modes used for approximation.

3. SOLUTION STRUCTURE OF NON-LINEAR
CABLE DYNAMICS

Table 1 lists the parameter values used in numerical simulations. The sag-
to-span ratio here is 1:20. Based on the parameters in Table 1, the quan-
tities in (3) are calculated as α1 = 0.04418, β = 0.0194, γ = 0.38249. In
simulations, 10 modes are used for numerical solutions, which can provide
reasonably good approximation in analysis. The cable is under a periodic
excitation F = f0 cos(ωτ ). Many typical non-linear behaviours of harmonic,
sub-harmonic and chaotic motions are observed. The harmonic motion is named
as a P1 orbit if its period is identical to the period of excitation, P2 orbit if its
period is double of the period of excitation. These notations will be used to
illustrate the complexity of cable dynamics in bifurcation diagrams.

Bifurcation is referred to as the case that the characteristic of the motion of
a system is qualitatively changed as a parameter varies across a specific value.
A bifurcation diagram provides a global picture of different types of motions

Table 1. Assignment of parameters.

Variable Description Value (SI)

E Yong’s modulus 1.5988 × 1011 N/m2

A Cross-sectional area 7.85 × 10−3 m2

ρ Cable density 7.8 × 103 kg/m3

Ds Static cable sag 5.0 m

L Length of cable 100 m

T Static cable tension 1.5 × 105 N

c1 Damping coefficient 0.001 M (mass)
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Figure 2. Global bifurcation diagram of the amplitude Wm (mid-span of the cable) against the

variation of f0, at a fixed forcing frequency ω = 3.1416.

associated with a variation of parameters. It enables us to inspect the complete
solution structure of cable dynamics and understand overall behaviours of the
system.

Figure 2 shows the bifurcation diagram when the forcing amplitude varies
in a range of f0 = 0.01 ∼ 2.00 with a step of 0.002. The points are sampled
from the time evolution of Wm (mid-span of the cable) in every forcing period.
Three branches of solution structures are illustrated. Branch 1 starts forwards
at f0 = 0.01 and merges with the Branch 2 at f0 = 0.4. Branch 2 consists of P1
orbit ( f0 = 0.01 ∼ 0.65) and P2 orbit ( f0 = 0.65 ∼ 0.90) followed by chaotic
motion ( f0 = 0.90 ∼ 1.21). At f0 = 1.21, Branch 2 merges with Branch 3 in
which only chaotic motions (marked by C) are observed. Tracking the solution
structure backwards from Branch 3 at f0 = 1.23. The red dots show the chaotic
solutions against the decrease of f0. Branch 3 ends at f0 = 0.35 where the
solution structure jumps up to Branch 1. By tracking Branch 2 backwards from
f0 = 0.5, Branch 2 extends to left and ends at f0 = 0.17, at which the response
of the cable jumps to the P1 orbit of Branch 1. Note that two branches of
solutions could coexist in some parameter regimes. It implies that the ultimate
state of the cable could stay onto either two different solutions sensitively
dependent on the initial conditions and the direction of the variation of the
parameter f0.
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Figure 3. Time history of the motion of Wm of the cable with forcing frequency changed from

1.20 to 1.26 at τ = 1600, f0 = 0.1.

The phenomenon of sudden changes in oscillation amplitude is observed,
referred to as a jump event. Figure 3 shows a jump when the forcing frequency
ω is perturbed from 1.20 to 1.26 at time τ = 1600. The amplitude of a P2
motion rapidly changes to a chaotic motion with an amplification about 10
times in amplitude. A small change of the input can cause a severe change in the
output. This peculiar behaviour is very important to engineering applications.
It happens usually without any indication, therefore hardly predictable. The
mechanism behind the jump is that there coexist multiple stable solutions (as
shown in Figure 2). These solutions are separated by basin boundaries. When
a small perturbation applied to the cable, this disturbance may kick the system
across the boundary from one solution basin into the other solution basin. Thus,
such a transition in dynamical evolution between different solution basins may
cause a significant change in response, resulting in a jump event.

4. CONCLUSION

In this paper, the governing equation for a suspended cable is presented.
Complicated global bifurcation diagrams are illustrated, under the variation of
forcing amplitude. We revealed the jump phenomena in non-linear cable dy-
namics. The jump event occurs due to a dynamical transition between different
solution basins, which could be induced by small disturbances. Jump event
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could happen without any indications thus hardly predictable. This dynamical
feature is important to engineering design because a sudden change in response
can damage a system or degrade the system performance.
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Abstract The primary objective of this paper is to study the parameters governing the robot

arm model by way of finding the discrete solutions at different values of time ‘t’

for the system of second order equations, which actually represents the dynamics

of the arm model of the robot of two degree freedom. In this paper, it is also

intended to demonstrate the effectiveness of the proposed numerical methods,

Single Term Walsh Series (STWS) technique and extended RK method based on

Heronian Mean (RKHeM), in order to find numerical solution for the robot arm

model.

Keywords: numerical techniques, STWS, RKHeM, robot arm model.

1. INTRODUCTION

It is indeed true that a good number of researchers have contributed on
a variety of aspects in the field of robust control, especially about the dy-
namics of robotic motion and their governing equations, for the past three
decades. Krishnan and Mcclamroch [1] have dealt with the ‘Applications of
Non-linear Differential—Algebraic Control Systems to Constrained Robot
Systems’. Warwick and Pugh [2] have dealt elaborately ‘Robot Control Theory
and Applications’. Huang and Tseng [3] have discussed ‘Asymptotic Observer
Design for Constrained Robot Systems’.
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In this study, the authors have observed that the robotic motion has been
governed by second order linear and non-linear differential equations. Hence
a meticulous attempt has been made to study the parameters concerning the
control of a robot arm model. In this paper, Single Term Walsh Series (STWS)
technique and [5] the extended fourth order RK method based on Heronian
mean (RKHeM) have been applied to find the numerical solutions of parameters
governing the motion of a robot arm model.

2. ROBOT ARM MODEL

The dynamics of a robot arm is represented as

T = A(Q)Q̈ + B(Q, Q̇)Q̇ + C(Q) (1)

where A(Q) = coupled inertia matrix, B(Q, Q̇) = matrix of coriolis and cen-
trifugal forces, C(Q) = Gravity matrix, T = Input torques applied at various
joints.

For a robot of two degree of freedom, under the assumption of lumped
equivalent masses and mass less links, the dynamics are represented by

T1 = D11q̈1 + D12q̈2 + D122(q̇2)2 + D112(q̇1q̇2) + D1

T2 = D21q̈1 + D22q̈2 + D211(q̇1)2 + D2 (2)

For the set point regulation, the state vector is defined as

x = (x1, x2, x3, x4)T = (q1 − q1d, q̇1, q2 − q2d, q̇2)T (3)

where q1 and q2 are the angles at the joint 1 and joint 2 respectively and q1d,
q2d are constants.

In state space representation, Equation (2) can be written as

ẋ1 = x2; ẋ2 = D22

d
(D122x2

2 + D112x2x4 + D1 + T1)

− D12

d
(D211x2

4 + D2 + T2)

ẋ3 = x4; ẋ4 = −D12

d
(D122x2

2 + D112x2x4 + D1 + T1)

+ D11

d
(D211x22

44 + D2 + T2) (4)

The above system of equations is non-linear in nature and it is observed that a
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synthesis of the control law would be very difficult due to the non-linear and
interactive nature of the canonical Equations (4).

3. REDUCTION OF ROBOT DYNAMICS TO
A SECOND ORDER LINEAR SYSTEMS

Although the Physical and Mathematical structure of the complete dynamic
robot model are analytically coupled and non-linear, it is observed that the
transient responses of robot dynamics appear to resemble as transient responses
of linear systems. Consequently, each joint of the robot can be characterized
as a single-input, single-output system (SISO). The input is the actuator torque
(or) force and the output is the joint position. Hence it is determined that the
non-linear model Equations (4) of the two-link-robot arm model can be reduced
to the following system of linear equations as

ẋ1 = x2, ẋ2 = B0T1 − A1x2 − A0x1

ẋ3 = x4, ẋ4 = B2
0T2 − A2

1x4 − A2
0x3 (5)

The above system has been reduced to a system of two linear second order
equations as

ẍ1 = −A1ẋ1 − A0x1 + B0T1

ẍ3 = −A2
1ẋ3 − A2

0x3 + B2
0T2, where x2 = ẋ1 and x4 = ẋ3 (6)

i.e., [
1 0
0 1

] [
ẍ1

ẍ3

]
=

[−A1 0
0 −A2

1

] [
ẋ1

ẋ3

]
+

[−A0 0
0 −A2

0

] [
x1

x3

]

+
[

B0 0
0 B2

0

] [
T1

T2

]
(7)

4. EXAMPLE

The values of the robot parameters used were M1 = 2, M2 = 5, d1 = d2 = 1.
The input into the ‘Black Box’ is the response of ÿ + 2knẏ + n2y = n2ys. For
n = 5 and k = 1 the critical damping, the initial conditions and the set points
have been taken as

q1(0) = 0, q2(0) = 0, q̇1(0) = 0, q̇2(0) = 0, q1d = 1 and q2d = 1 (8)
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The linear model parameters of joint 1 have been found as A0 = 0.1730,
A1 = −0.2140, B0 = 0.0265, and that of joint 2 have been determined as
A0 = 0.0438, A1 = 0.3610, B0 = 0.0967.

Equation (7) becomes[
1 0
0 1

] [
ẍ1

ẍ3

]
=

[
0.2140 0

0 −0.130321

] [
ẋ1

ẋ3

]

+
[−0.1730 0

0 −0.00191844

] [
x1

x3

]
+

[
0.0265 0

0 0.00935089

] [
T1

T2

]
,

(9)

where x2 = ẋ and x4 = ẋ3

Since (x1, x2, x3, x4) = (q1 − q1d, q̇1, q2 − q2d, q̇2) and using Equation (9),
the initial conditions are x1(0) = −1, x3(0) = −1, ẋ1(0) = 0, ẋ3(0) = 0.

In order to study the parameters that govern the dynamics of the robot using
numerical methods, choose T1 = T2 = 1 unit. However, one can vary the values
of T1 and T2 to visualize the effect of the parameters that control the arm model
of the robot and the simulation can be done. The exact solution of the system
(9) has been determined.

The proposed methods, Paul Dhayabaran [4], Single Term Walsh Series
(STWS) technique and extended fourth order Runge-Kutta method based on
Heronian Mean (RKHeM), have been applied for the example discussed above
to determine the discrete solutions at different time ‘t’ for any length of time.
The exact and discrete solutions of the angles q1 and q2 at the joints 1 and 2 of
the robot arm at different time ‘t’ are given in the Table 1. The absolute error
between the exact and discrete solutions of q1 and q2 are given in the Table 2.

Table 1. Angles at the joints.

Discrete solution

Exact solution STWS RKHeM

Time q1 q2 q1 q2 q1 q2

0.00 0.00000007 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.50 0.0257576 0.0013785 0.0257576 0.0013785 0.0257564 0.0013764

1.00 1.1057041 0.0053968 0.1057041 0.0053968 0.1057029 0.0053967

1.50 0.2432320 0.0118865 0.2423232 0.0118865 0.2423220 0.0118864

2.00 0.4358009 0.0206887 0.4358009 0.0206887 0.4357999 0.0206886

2.50 0.6837585 0.0316534 0.6837584 0.0316534 0.6837576 0.0316533

3.00 0.9810702 0.0146391 0.9810701 0.0446392 0.9810696 0.0446391

3.50 1.3197869 0.0595124 1.3197868 0.0595124 1.3197867 0.0595123

4.00 1.6891783 0.0761471 1.6891782 0.0761471 1.6891784 0.0761470
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Table 2. Error in angles at the joints.

Error in q1 Error in q2

Time STWS RKHeM STWS RKHeM

0.0 0.0000E + 00 0.0000E + 00 0.0000 0.0000

0.5 4.6256E − 09 1.1795E − 06 1.7303E − 10 6.6992E − 08

1.0 2.9653E − 09 1.2177E − 06 1.8039E − 10 7.1974E − 08

1.5 6.2724E − 09 1.1616E − 06 3.6119E − 11 7.4573E − 08

2.0 2.3923E − 08 1.0317E − 06 2.4672E − 10 7.6128E − 08

2.5 5.0228E − 08 8.3628E − 07 6.5596E − 10 7.7064E − 08

3.0 8.4720E − 08 5.8317E − 07 1.1803E − 09 7.7576E − 08

3.5 1.2614E − 07 2.8375E − 07 1.8092E − 09 7.7770E − 08

4.0 1.7237E − 07 4.3937E − 08 2.5330E − 09 7.7712E − 08

5. CONCLUSIONS

In this paper, by observing the table of results, it is found that the numerical
techniques STWS and RKHeM suit well for determining the discrete solutions
of the governing equations of the arm model of the robot of two degree freedom.
In particular, this study helps to estimate the variations in the angles at the joints
of the robot arm at different fractions of time and enables to identify the robot
arm movement.
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Abstract It is important to take into consideration the particle rotation when discussing the

behaviour of deformation in granular material. A Cosserat continuum theory is

suitable for the problems that include rotation of particles in granular materials

because the deformation of a ground composed of granular materials is described

by both displacements and rotations. In this study, laboratory tests were carried

out to investigate the rotation behaviour of granular materials. Then, an elasto-

plastic model for sand based on tij-sand model [1] was formulated within Cosserat

continuum theory. Furthermore, the model is implemented into a finite element

code for the numerical simulation of boundary value problems related to the

tests. From a series of laboratory tests and simulations, results are compared and

discussed in detail.

Keywords: Cosserat continuum theory, particle rotation, granular materials.

1. INTRODUCTION

In this study, laboratory tests were carried out to observe the deformation of a
granular material with particle rotation. Aluminium rods were used to simulate a
granular soil mass. From the results of the test, both deformation and rotation of
the rods were investigated in details. Furthermore, numerical simulations of the
above-mentioned aluminum rod experiments were conducted. In the numerical
calculations, an elasto-plastic model for sand based on Cosserat continuum
theory was used for finite element analyses. Results of laboratory tests and
numerical simulations are compared and discussed in detail.
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200 mm 450 mm

Figure 1. Test apparatus.

2. EXPERIMENTS USING ALUMINIUM ROD MASS

Laboratory tests were carried out to observe the deformation of a granular
material with particle rotation. Based on the passive and active earth pressure
tests results, it is possible to check the validity of the constitutive model us-
ing Cosserat continuum theory, by conducting finite element analyses on the
experiments. The aluminium rods used as ground in the experiment were 50.0
mm in length and 1.6 mm or 3.0 mm in diameters. Figure 1 shows the appa-
ratus and its size of passive and active earth pressure tests. The boundary of
apparatus and aluminium rods ground are smooth. The assembly of aluminium
rods was chosen with a proper weight ratio: 60% of the rods in diameter of 1.6
mm and 40% of the rods in diameter of 3.0 mm, so as to replicate the grain
size distribution of Toyoura standard sand. In the tests, given displacements
were applied through a retaining wall on the left side of aluminium rods up to a
maximum value of 20 mm for active earth pressure tests and 40 mm for passive
earth pressure tests. In the tests, both the displacements and the rotations of
the aluminum rods were measured. The rotation of the marks are recorded and
compared at different times. The selected rods for rotation measurement were
chosen where a relatively larger displacement and rotation would take place
during loading. Furthermore, a grid was marked on one end of the rods and
displacements of the grid can be measured at different times.

The deformations of granular materials are shown from Figures 2 to 7. It is
found that a shear band occurred in both tests (see Figures 2 and 5). The angle
of shear band is about 35 degree in passive earth pressure condition and about
60 degree in active earth pressure condition. It can be recognized that there
is outstanding deformed area for both passive and active earth pressure tests
respectively from Figures 3 and 6. In comparison between the passive and active
earth pressure condition, the area of deformation under passive earth pressure
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Figure 2. Deformed mesh.

Figure 3. Deformation vector.

Figure 4. Portion of rotation measurement and the rotation angle in measured area.

Figure 5. Deformed mesh.
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Figure 6. Deformation vector.

Figure 7. Portion of rotation measurement and the rotation angle in measured area.

condition is larger than active earth pressure condition. From the rotating angle
measurement a large mass of clockwise rotation is observed in the passive
earth pressure condition (Figure 4). On the other hand, anticlockwise is in large
measure for the active earth pressure condition (Figure 7).

3. NUMERICAL ANALYSES

In this section, finite element analyses on the aluminum rod experiment
using the Cosserat tij model is conducted [2]. The boundary conditions are
shown in Figure 8. The model ground is consisted with 800 elements that are

200 mm 200 mm

450 mm 450 mm

40 mm 20 mm

Figure 8. Finite element mesh for both earth pressure conditions.
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l
c
=0.0 cm l

c
=0.1 cmPassive earth pressure condition

Figure 9. Deformed mesh and distribution of rotational angle (unit = rad).

estimated 20 times 40 elements and the boundary conditions (see Figure 8). For
the calculation of Cosserat rotation, the rotation at lower right node of model
ground is constraint. In order to evaluate the influence of the characteristic
length on the deformation, two different values of Cosserat parameter lc were
used, namely: 0.00 and 0.10 m.

Results when horizontal displacement reached 40 mm under passive earth
pressure condition and 20 mm under active conditions are plotted in Figures 9
and 10. No shear band can be observed in both deformed meshes. The influence
on the deformation by introducing Cosserat theory is not obvious. The distribu-
tion of rotational angle, however, is clearly affected by the value of parameter
lc in both cases. It is known from Figure 9 that the rotational angles of particles
are anticlockwise in most part. This tendency is not coincident completely with
the experimental results. While in the case of passive earth pressure condition,
it is known from Figure 10 that, the rotational angles of particles are clockwise
in most part, which is similar to the experimental results. The reason is that, in
experiments, rotation angles are measured for the aluminium rods one by one,
while in the calculations, the rotation angles are calculated continuously. There
is an inherent difference between the way of measurement for rotation angle in
numerical calculation and experiments.

4. CONCLUSIONS

In this paper, model tests and numerical analyses were conducted to verify
the validity of Cosserat continuum theory. Firstly, laboratory tests were car-
ried out to investigate the behaviours of aluminium-rods mass, especially the

       lc = 0.1 cm lc= 0.0 cm        Active earth pressure condition         

Figure 10. Deformed mesh and distribution of rotational angle (unit = rad).
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rotation of the rods. Then, an elasto-plastic model is derived based on Cosserat
continuum theory with tij sand model. Using the proposed model, numerical
simulations for tests on aluminum-rod mass are conducted. In the numerical
simulations, two cases with different Cosserat parameter are used. From both
the experimental and analytical tests, rotation of aluminium rods is observed.
However, the rotating angle in calculation is smaller than that in the experi-
ments. Also, the rotating direction in calculation is different with experimental
results. The calculation results with Cosserat theory cannot describe reasonably
the rotation of grains. It still remains a question whether the present calculation
scheme can predict the rotation of grains qualitatively. Meanwhile, though the
results are not given in detail in the context, further research should be done to
take into consideration the strain softening behaviour of sand.
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Abstract The aim of this paper is to analyse classical models for viscoelastically damped

sandwich beams. Some are based on the kinematics of Kirchhoff-Love, Mindlin,

Reddy or Touratier, the others on the zigzag principle [D.K. Rao, Journal of
Mechanical Engineering Science 20(5) (1978) 271; E.M. Daya and M. Potier-

Ferry, Revue européenne des éléments finis 11(1) (2002) 39]. The accuracy of

these models is compared in the static field and the dynamic field, for which a

finite element based solution is considered as reference. The comparison includes

vertical deflection of simply supported sandwich beams under transverse loading,

natural frequencies and loss factors of simply supported viscoelastically damped

sandwich beams. It is found that the zigzag models are more accurate than the

others. The ratio of length to thickness, the ratio of rigidities and the ratio of core

and face thickness are chosen as three principal parameters of sandwich beams,

and their influences are studied and compared. Finally, the fields of application

of these models are defined in terms of these three parameters.

Keywords: comparison, deflection, frequency, loss factor.

1. INTRODUCTION

Vibration control in structures by means of viscoelastic damping material
has gained wide acceptance, particularly in the aerospace industry. Signifi-
cant weight, cost, performance, and reliability payoffs are possible in situations
where resonant vibration cannot be avoided. Numerous examples of damping
by constrained or unconstrained layers of viscoelastic material have appeared in
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the literature. However, the analysis of general structures to predict the damping
due to an integral or add-on layered treatment or lumped viscoelastic elements
is by no means a routine activity. The key to effective use of the well-developed
technology of damping materials will be a parallel improvement in analytical
capability. It will be necessary to make reliable and timely predictions of the
system damping which can be expected when a given viscoelastic material is
incorporated into a given structural configuration. It must also be possible for
working engineers to produce these answers in a project environment using
widely available analysis tools such as computer codes. It is natural to look
to finite element methods for damping predictions of general damped struc-
tures, just as they are used for routine calculation of the dynamic properties
of undamped systems. Considerable work has already been done in this area,
primarily aimed at prediction of damped response of simple structural elements
such as sandwich beams, plates, etc. However as with any emerging technol-
ogy, there are specific questions, both theoretical and practical, which must
be investigated and resolved in order to produce a reliable and useful design
tool. The damping is introduced by an important transverse shear in the vis-
coelastic layer. It is due to the difference between in-plane displacements of
the elastic layers and also to the low stiffness of the central layer. Numerical
simulation of these structures requires, first the use of an adequate model to
obtain a reasonable computational cost, second a proper account of the shear-
ing action of the core. Many investigations have been devoted to the static and
dynamic analysis of these structures and various approaches and models have
been proposed. The purpose of this paper is to compare these proposed models
to finite element based solution and to evaluate their efficiency. For these pur-
poses, two problems will be considered: (1) Deformation of simply supported
sandwich beams under a constant transverse loading at the centre of beams
and (2) free vibration of simply supported viscoelastically damped sandwich
beams.

For the first one, Kirchhoff-Love, Reddy [1] and Touratier [2] models are
compared with the so-called zigzag models [3, 4], which describe apiecewise
continuous displacement field. For the second one, Rao’s model is added
to the comparison, natural frequencies and loss factors are two elements of
comparison.

2. KINEMATICS OF THE MODELS

Consider a three-layer symmetric sandwich beam with a viscoelastic core
as Figure 1. Let x be the mid-surface coordinate of the beam and z is the
one transverse to the thickness.Hc and Ec are respectively the thickness and
Young’s modulus of the core. H f and E f are the thickness and Young’s modulus
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Elastic layer (Hf, Ef) 

Viscoelastic layer (Hc, Ec, hc) 

Elastic layer (Hf, Ef) 

z

x

Figure 1. Sandwich beam with viscoelastic middle layer.

of the faces, ηc is the core loss factor. The length and the thickness total are L
and Ht .

The following hypotheses, common to many authors, are assumed: (1) All
points on a normal to the beam axis have the same transverse displacement
w(x, t). (2) The displacement is continuous at the interfaces. (3) All points of
the elastic layers on a normal have the same rotations. (4) The core material
is homogeneous, isotropic and viscoelastic with a constant loss factor, so the
Young’s modulus is complex and constant.

The kinematics of non-zigzag models can be written with a general expres-
sion:

U (x, z, t) = U0(x, t) − z
∂w(x, t)

∂x
+ f (z)β(x, t). (1)

U (x, z, t) is the longitudinal displacement and U0(x, t) is the longitudinal dis-
placement of the mid-plane of core. β(x, t) is the additional rotation of the
normal to the mid-plane, f (z) can be considered as ‘shear functions’, here
expressions considered for f (z) are:

� Model 1: f (z) = 0, Kirchhoff-Love kinematical assumptions;
� Model 2: f (z) = z, Mindlin kinematical assumptions;
� Model 3: f (z) = z − 4z3/(3H 2

t ), Reddy kinematical assumptions and
� Model 4: f (z) = Ht sin(π z/Ht )/π, Touratier kinematical assumptions;

For zigzag models, the function of longitudinal displacements are speared by
three parts:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U1(x, z, t) = U 0
1 (x,t) −

(
z − Hc + H f

2

)
∂w(x, t)

∂x
,

Hc

2
< z ≤ Ht

2

U2(x, z, t) = U 0
2 (x,t) − z

∂w(x, t)

∂x
+

n∑
i=1

fi (z)βi (x, t), − Hc

2
≤ z ≤ Hc

2

U3(x, z, t) = U 0
3 (x,t) −

(
z + Hc + H f

2

)
∂w(x, t)

∂x
, − Ht

2
≤ z < − Hc

2

(2)

U 0
1 (x, t), U 0

2 (x, t), U 0
3 (x, t) are the axial longitudinal displacements of the
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mid-plane of the layers. It is clear that Kirchhoff-Love’s model is kept for
the faces. In the core, three models are considered:

� Model 5: n = 1, f1(z) = z, Mindlin’s model in the core [3, 4];
� Model 6: n = 1, f1(z) = z − 4z3/(3H 2

c ), Reddy’s model in the core;
� Model 7: n = 2, f1(z) = z, f2(z) = z3, Enriched zigzag kinematical

assumptions.

3. BASIC EQUATIONS

The sandwich-beam equations can be obtained from Virtual Work
Equation:

δPext + δPint = δPacc. (3)

As many authors have studied non-zigzag models, here we just derive the basic
equations for zigzag models. Considering the continuity of the displacements
at the interfaces between the central and the face layers, we can express the
face displacement U1(x, z, t) and U3(x, z, t) as follows:

U1(x, z, t) = U 0
2 (x, t) − z

∂w(x, t)

∂x
+

n∑
j=1

f j (z)β j (x, t)

U3(x, z, t) = U 0
2 (x, t) − z

∂w(x, t)

∂x
−

n∑
j=1

f j (z)β j (x, t) (4)

With these two expressions, the independent generalized displacements are
reduced to U 0

2 (x, z, t), w(x, t) and βi (x, t). According to Hooke stress–strain
relation and using Equations (3), (6) and (7) are respectively obtained from
problems 1 and 2:

∫ L

0

[
(M1 + M2 + M3) − Hc + H f

2
(N1 − N3)

]
∂2δw

∂x2
dx −

∫ L

0

F(x)δwdx = 0,

(5)∫ L

0

[
(M1 + M2 + M3) − Hc + H f

2
(N1 − N3)

]
∂2δw

∂x2
dx

−
∫ L

0

(2ρ f S f + ρc Sc)
∂2w

∂t2
δwdx = 0. (6)
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Table 1. Material properties and dimensions.

Young’s modulus of faces E f = 6.9e10 Pa

Poisson’s ratio υ f = υc = 0.3

Loss factor of core ηc = 0.3

Mass density ρ f = 2770 kg/m3, ρc = 968 kg/m3

Thickness Ht = 0.01 m

Width b = 0.1 m

Example 1 Example 2

(Ec/E f = 0.01, Hc/H f = 10, L/Ht = 50) (Ec/E f = 3e − 4, Hc/H f = 1, L/Ht = 20)

For both our two problems, Equation (7) and beam end conditions can be
deduced:

∫ L

0

(N1 − N3)
n∑

j=1

f j

(
Hc

2

)
∂δβ j

∂x
+

∫
Sc

σxx

n∑
j=1

f j
∂δβ j

∂x
d Sc

+
∫

Sc

σxz

n∑
j=1

∂ f j

∂z
δβ j d Scdx = 0. (7)

In which Mi is bending moment and Ni is axial force of the i th layer.

4. COMPARISON OF THE RESULTS

By solving these equations, we can compare the results of the two considered
problems by two examples. The beam dimensions and material properties are
presented in Table 1. A two-dimensional eight nodes quadrilateral element
(Q16) is kept for ANSYS 7.1. The results are presented in Tables 2–3 and
Figure 2.

Table 2. Deflection comparison of problem 1 (q = 100 N/m).

Maximal
deflection
(m) Model 1 Model 3 Model 4 Model 5 Model 6 Model 7 ANSYS

Example-1 −1.06E−4 −1.08E−4 −1.09E−4 −1.11E−4 −1.10E−4 −1.11E−4 −1.11E−4

Example-2 −3.01E−6 −3.06E−6 −3.07E−6 −2.05E−5 −1.89E−5 −2.05E−5 −2.06E−5
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Table 3. Comparison of problem 2.

Example Model 1 Model 3 Rao Model 5 Model 6 Model 7 ANSYS

1 1st frequency 87.5 86.7 85.5 86.1 86.3 86.1 85.9

Loss factor 0 6.5E−3 0.032 0.045 0.040 0.045

2 1st frequency 627.7 623.2 242.2 242.2 252.8 242.2 241.1

Loss factor 0 5.2E−6 0.44 0.44 0.47 0.44

5

4

3

2
1

0

−1
−2

−3

−4

−5

−2000

Shear stress Hc/2 -Hc/2

Transverse shear stress (Pa)

−4000 −6000 −80000

z
 (

m
m

)

Figure 2. Distribution of shear stress at x = L/4 (ANSYS).

5. CONCLUSION

From these tables, we can see that zigzag models are always more accurate
than non-zigzag models and the non-zigzag are imprecise when the core is very
weak. Models 5 and 7 are very approach with the results of ANSYS. In the case
of Ec/E f > 0.01, L/Ht > 100 or | lg(Hc/H f )| ≥ 3, all the proposed models
give comparatively the same results. Between zigzag models, Rao’s model can
be used for the modelling of very weak cores. Figure 2 shows that the transverse
shear stress is constant in the core. Models 5 and 7 are the more precise models
and one can conclude that we do not need to enrich Mindlin’s model in the core
when we use zigzag principal.
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MODELLING AND ANALYSES OF CRACKS
IN FUSELAGE LAP JOINTS WITH A
SINGLE-COUNTERSUNK RIVET

G. Shi and G. Li
Structures, Materials and Propulsion Laboratory, Institute for Aerospace Research, National
Research Council Canada, 1200 Montreal Road, Building M-14, Ottawa, Ontario,
Canada K1A 0R6

Abstract A fracture analysis was carried out to study cracks in fuselage lap joints with a

single-countersunk rivet using the finite element and boundary element alternat-

ing method. A global–local methodology was developed for crack modelling a

complex structure. Stress intensity factor distributions along the crack front at

the edge of the rivet hole in the corner of the joint outer sheet were predicted.

Parametric studies were performed by varying crack shapes and sizes in the crack

analysis. The effects of residual stresses induced by the riveting process on the

stress intensity factors were investigated to get a better understanding of the failure

mechanism for the lap joints.

Keywords: crack analysis, lap joints with a single-countersunk rivet, FEM–BEM alternating

method, global–local approach, residual stress, stress intensity factor.

1. INTRODUCTION

Fatigue crack growth and unstable fracture have the potential to cause catas-
trophic failures of transport aircraft. Although a great deal of effort has been
made to better understand these phenomena, there is still a lack of numerical
solutions for predicting the stress intensity factors for cracks in fuselage lap
joints with countersunk rivets due to the complex geometry configurations and
load conditions. The numerical simulation of crack growth and the calculation
of fracture mechanics parameters, such as stress intensity factors, for complex
aircraft components subjected to combined external load and residual stresses
remain challenging in structural integrity assessment and damage tolerance
analysis.

G. R. Liu et al. (eds.), Computational Methods, 1715–1725.
C© 2006 Springer. Printed in the Netherlands.
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Research is being carried out at the National Research Council Canada on
crack growth simulation with an objective to develop computational modelling
techniques to simulate the fatigue crack propagation in complex aircraft struc-
tures and to estimate the remaining life and residual strength of a component. In
the present research work, modelling and analysis were carried out for cracks in
fuselage lap joints with a single-countersunk rivet. The stress intensity factors
along the crack front of a corner crack in the outer sheet were predicted. For the
crack analysis, three models were generated and used: a finite element global
model, a local finite element model and a boundary element crack model. A
finite element and symmetric Galerkin boundary element alternating method
was employed to alternate the finite element and boundary element models to
evaluate the stress intensity factors.

2. FEM–BEM ALTERNATING METHOD

In recent decades, various numerical methods, such as finite element meth-
ods (FEM), boundary element methods (BEM) and alternating methods, have
been developed and employed to obtain stress intensity factor solutions for
cracks in three-dimensional structures. The alternating methods, especially the
FEM–BEM alternating method, show more advantages in carrying out fracture
analysis than other numerical methods, such as a pure FEM or a pure BEM, be-
cause they combine advantages from both methods. The finite element method
is a robust method for elastic–plastic problems which can easily incorporate
various complex boundary conditions. The boundary element method, on the
other hand, is more suitable for modelling cracks in infinite or finite bod-
ies. Among the various boundary element methods, the symmetric Galerkin
boundary element method provides a more simple, accurate and efficient way
of modelling the crack [1]. In recent years, the finite element and symmetric
Galerkin boundary element alternating method has been developed [2,3]. In
this FEM–BEM alternating method, the solution procedure alternates between
the FEM solution for an uncracked structural component of a finite geometry,
and the symmetric Galerkin boundary element method solution for cracks in
an infinite or finite body.

The basic steps of the FEM–BEM alternating iteration procedure can be
described as follows:

1. Using the finite element method, solve the problem in the finite uncracked
body with all external boundary conditions. The stress field in the finite body
is obtained, which means that the tractions at the location of the crack are
determined.
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2. Using the symmetric Galerkin boundary element method, solve the problem
of a crack in an infinite or finite region. The only loads in this problem are
the tractions on the crack surfaces from the FEM solutions.

3. Determine the tractions at the outer boundaries of the FEM model in the finite
body from the symmetric Galerkin boundary element method solution.

4. Applying the tractions obtained from the symmetric Galerkin boundary el-
ement method in step (3) as the residual forces to the FEM model, re-solve
the FEM problem for the finite uncracked body and obtain the tractions at
the location of the crack.

5. Repeat steps (2)–(4) until the residual loads are within a preset tolerance.
6. By adding the symmetric Galerkin boundary element method solution to the

FEM one, the real solution is obtained.

Once the iteration procedure is completed, the stress and displacement
field in the finite body and around the crack can be obtained. Then, the
fracture mechanics parameters, such as the stress intensity factors, can be
determined.

3. PROBLEM DESCRIPTION

The problem of a joint with a single-countersunk rivet subjected to a uniform
tensile loading was considered. The configuration of the joint was consistent
with the configuration of the testing specimen used in recent experimental
and numerical studies by the authors [4,5]. The joint consisted of two sheets
with a thickness of 2.03 mm and one countersunk rivet. The dimensions of
the two identical rectangle sheets were 200 × 38.1 × 2.03 mm and the mean
rivet hole diameter was 6.51 mm. The rivet shank diameter was 6.35 mm and
height was 14.29 mm. Due to symmetry of the joint, only half of the joint
was modelled in the numerical simulation, as shown in Figure 1. Symmetric
boundary conditions were applied to the joint centre plane along the longitudinal
direction and other appropriate boundary conditions were applied. at both ends
of the joint. The materials used in the joint were 2024-T3 aluminium alloy
bare sheet for the skins and 2117-T4, aluminium alloy for the MS20426AD8-9
rivet. The isotropic hardening behaviour was assumed for both the rivet and,
sheet materials at the global FE model analysis stage. Linear elastic behaviour
was assumed at the crack analysis stage by neglecting the plasticity effect
on the crack characteristics. To simulate cracks, corner cracks with circular
and elliptical shapes of different sizes were assumed to be positioned at the
countersunk rivet hole in the outer sheet of the joint, as shown in Figure 2.
Note that a and c are the characteristic dimensions of the ellipse and t is the
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Figure 1. Global FE model.

Figure 2. Crack location at the countersunk hole.

thickness of the sheet, θ is a physical angle in this figure from 0◦ at the faying
surface to 40◦ at the countersunk surface.

4. CRACK MODELLING AND ANALYSIS
METHODOLOGY

Fracture analysis for cracks in fuselage lap joints with countersunk rivets
have been a challenging issue for many years due to the complex structural
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configurations, such as the geometry condition (countersunk hole), loading
conditions (riveting force and tensile loading) and contact situations between
the rivet shank, rivet hole and the faying surface between the two sheets. To
carry out a fracture mechanics analysis on such a complex structure, a crack
modelling and analysis methodology based on a combination of the FEM–
BEM alternating method and global–local approach was developed and im-
plemented to predict the stress intensity factor distributions and the effect that
the residual stress induced by the riveting process had on the stress intensity
factors.

4.1 Global Finite Element Modelling and Analysis

In a global–local approach the global FE model is usually used to calcu-
late the stress and displacement distributions for the entire model to provide
tractions or displacements to a local model as boundary conditions. The fi-
nite element model was generated based on the experimental joint dimensions
using the commercial FE software package MSC/PATRAN (pre- and post-
processor) and MSC/MARC (solver). The global FE model consisted of 5560
8-node reduced integration brick elements associated with 7431 nodes. Three
deformable contact bodies, two sheets and one rivet, and two rigid contact bod-
ies, rigid pusher and rigid set, were defined in the model. Four different squeeze
forces of 27, 36, 45 and 53 KN were applied to rivet the joints and then the
joints were loaded to a remote tensile stress of 98.5 MPa. In the global FE anal-
ysis, multiple-load steps were defined. First, a rivet squeeze force was applied
to simulate the installation of the rivet; then this squeeze force was released
back to zero; after which a remote tensile load was applied to the joint. During
the global FE analysis, the residual stresses were calculated during the riveting
process simulation and their effects were taken into account in the local stress
distributions around the rivet hole during the tensile loading.

4.2 Local Finite Element Model

A local model was used in the global–local approach to calculate the stress
and displacement in the finite body without a crack and to alternate with the
boundary element solutions for the stress intensity factor evaluation. In the
present work, a local model was cut from the global model of the joint in the
outer sheet around the rivet hole, as shown in Figure 3. This local FE model
consisted of 1568 20-node brick elements associated with 7693 nodes. The
traction boundary conditions were transferred from the global model analysis
results to the cutting surfaces of the local model.



1720 G. Shi and G. Li

Figure 3. Local FE model (Cutting from the outer sheet).

Figure 4. BE crack model (a/c = 1.5, c/t = 0.3).

4.3 BE Crack Model

Boundary element crack models were generated for the fracture mechanics
analysis. The crack surface located at the corner of the outer sheet with different
shapes and sizes were modelled using quadrilateral 8-node boundary elements
and the mid-side nodes were moved to the quarter-side positions for the elements
on the crack front, as illustrated in Figure 4.

4.4 Analysis Procedure and Study Cases

Crack analyses were carried out by using the FEM–BEM alternating method
based computer code, SAFELIFE, which was developed by Knowledge Sys-
tem Research, LLC. The entire analysis procedure can be summarized as (a)
create the global FE models and carry out the stress analysis by applying dif-
ferent squeeze forces during the riveting process simulation and the tensile
load during the tension stage; (b) create local FE models and transfer boundary
conditions from the global FE model analysis results to the local models; (c)
create boundary element crack models with different crack configurations; (d)
alternate the local FE model solution and the BE model solution by using the
FEM–BEM alternating method until convergence is reached and (e) obtain the
stress intensity factors along the crack front. In the present analysis, a total of
four global and local models corresponding to four different squeeze forces
were generated and analysed, and 12 crack configurations with different crack
shapes and sizes were generated.
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5. NUMERICAL RESULTS AND DISCUSSIONS

In the fracture analysis, all three fracture modes, KI, KII and KIII, were
calculated. However, since it was shown from the analysis that mode I was
the dominant failure mode in the lap joint under the current loading condition
only mode I results are presented in this paper. In the results, the normalized
stress intensity factor is expressed as F = KI/K0 where K0 = σ0(πa/Q)1/2,
σ0 is the remote applied stress, and a is the crack characteristic dimension in
the joint transverse direction. Empirical expressions of the shape factor, Q, for
an ellipse are given by Raju and Newman [6] as Q = 1 + 1.464(a/c)1.65 when
a/c ≤ 1.0 or Q = 1 + 1.464(c/a)1.65 when a/c > 1.0. It should be mentioned
that only portions of the numerical results are presented in this paper.

5.1 Effects of Crack Shape and Size
on Stress Intensity Factor

For a fixed rivet squeeze force of 36 KN and a circular crack shape (a/c =
1.0), the normalized stress intensity factor distributions along the crack front
for cracks of different sizes, c/t = 0.2, 0.3, 0.4 and 0.5, are plotted in Figure 5.
This figure shows that the larger the crack size, the smaller the normalized stress
intensity factors. In Figure 6, the fracture behaviour for elliptical cracks with
a/c = 1.5, 2.0, 3.0, 5.0 and 7.0 show that the normalized stress intensity factors
at the faying surface (θ = 0◦) are less than those at the countersunk surface
(θ = 40◦), and the larger crack size corresponds to a smaller normalized stress
intensity factor. For another type of elliptical crack with shapes of c/a = 1.5,
2.0 and 3.0 the normalized stress intensity factors at the faying surface are
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Figure 5. Normalized SIFs for circular cracks (SF = 36 KN).
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Figure 7. Normalized SIFs for elliptical cracks (SF = 36 KN).

much larger than those on the countersunk surface, and the normalized stress
intensity factors near the countersunk surface for c/a = 3.0 are less than c/a =
1.5 and 2.0, as shown in Figure 7.

5.2 Effects of Residual Stress on Stress Intensity Factor

As expected the residual stress induced by the riveting process affected the
stress distributions, and thus the crack behaviour in the joints. Figures 8 to 10
show the effects that the residual stress caused by different squeeze forces had
on the stress intensity factor solutions in the single riveted lap joint. In Figure 8,
the normalized stress intensity factor distributions for the circular crack (a/c =
1.0) along the crack front varying with different squeeze forces (SF = 27, 36,
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45 and 53 KN) are plotted. It can be seen from this figure that the rivet squeeze
force had a significant effect on the stress intensity factor distribution. As the
crack front approached the countersunk surface, the normalized stress intensity
factor became smaller when the rivet squeeze force was larger. This is because
the residual stress reduced the local stress at the edge of the countersunk hole
(θ = 40◦), which in turn reduced the stress intensity factors. The normalized
stress intensity factor distributions under different squeeze forces SF = 27,
36, 45 and 53 KN along the crack front are plotted in Figure 9 and 10 for the
elliptical cracks with a/c = 1.5 and c/a = 1.5, respectively. These two figures
demonstrate the same trend that the higher rivet squeeze force results in a
lower stress intensity factor near the countersunk surface, which will eventually
increase the fatigue life of the riveted lap joint.

6. CONCLUSIONS

A fracture analysis was carried out to study cracks in fuselage lap joints with
a single-countersunk rivet using the finite element and boundary element alter-
nating method and the developed global–local approach. The stress intensity
factor distributions for cracks at the corner of the outer sheet were predicted. The
results show that the stress intensity factor distributions significantly depend
on the crack shapes and sizes. The residual stress caused by the rivet squeeze
force in the riveting process had considerable effect on the stress intensity fac-
tors near the countersunk surface. The larger the squeeze force, the smaller the
stress intensity factor, which would result in a longer joint fatigue life.
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THREE-DIMENSIONAL SOLUTION OF A DEEP
BEAM USING AN EFFICIENT
FINITE-DIFFERENCE SCHEME
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Technology, Dhaka 1000, Bangladesh

Abstract The application of a new numerical method of solution is described for 3-D

analysis of an elastic deep beam. More specifically, an efficient finite-difference

scheme has been developed based on a potential function formulation to solve the

3-D deep beam. In the present approach, a new scheme of reduction of unknowns

is used to formulate the 3-D beam problem in terms of a single potential func-

tion, defined in terms of the three displacement components. Compared to the

conventional computational approaches, the present method provides numerical

solution of higher accuracy with reduced computational effort. The suitability

and reliability of the method has been verified through the comparison of results

with those obtained by the usual method of solution.

Keywords: finite-difference method (FDM), stress analysis, 3-D beam, potential function.

1. INTRODUCTION

Analysis of stresses in a material body is basically a 3-D problem. How-
ever, still now, in most of the cases, the 3-D problems are approximated to
either 1-D or 2-D ones, mainly due to the lack of useful method of solution
by which the 3-D problems can be formulated efficiently. Elastic problems of
solid mechanics are usually formulated either in terms of deformation or stress
parameters. The stress formulation is not suitable for solving mixed-boundary-
value problems. The displacement formulation, on the other hand, involves
finding three displacement functions simultaneously from three second-order
partial differential equations. In fact, 3-D stress analysis of structural prob-
lems is mainly handled by FEM. Although the adaptation of FEM relieved us
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from the major inability of solving 3-D problems as well as managing the odd
boundary shapes, we are constantly aware of the lack of sophistication and
doubtful quality of FEM solutions, especially, for the surface stresses [1]. This
is mainly because of the manifold increase of computational work and a lot of
loss in sophistication in satisfying the boundary conditions, especially in the
region where the boundary conditions change from one type to the other. On the
other hand, the superiority of FDM in predicting the state of stresses along the
boundary has been verified in our previous researches [2–4]and also by Dow
et al. [5].

The present paper describes the application of a new method of solution
[6] for the analysis of a 3-D both ends fixed deep beam, where the potential
function formulation has been used in conjunction with FDM. The present
method reduces the problem to finding a single potential function, instead of
three functions at the nodal points, and hence, a tremendous saving in com-
putational work is achieved, which, in turn, increases the quality of solution
significantly.

2. POTENTIAL FUNCTION FORMULATION
OF THE ELASTIC PROBLEM

Considering the equilibrium of a cubic element with its sides parallel to the
axes x, y and z, under the action of the continuous functions σxx, σyy, σzz, σxy, σyz

and σxz, the differential equations of equilibrium in terms of the displacement
components, ux, uy and uz, are obtained as follows [7]:

G′ ∂
2ux

∂x2
+ G

[
∂2ux

∂y2
+ ∂2ux

∂z2

]
+ G′′

[
∂2uy

∂x∂y
+ ∂2uz

∂x∂z

]
= 0 (1a)

G′ ∂
2uy

∂y2
+ G

[
∂2uy

∂x2
+ ∂2uy

∂z2

]
+ G′′

[
∂2ux

∂x∂y
+ ∂2uz

∂y∂z

]
= 0 (1b)

G′ ∂
2uz

∂z2
+ G

[
∂2uz

∂y2
+ ∂2uz

∂x2

]
+ G′′

[
∂2ux

∂z∂x
+ ∂2uy

∂y∂z

]
= 0 (1c)

Where

G′′ = E

2(1 + μ)(1 − 2μ)
, G′ = E(1 − μ)

(1 + μ)(1 − 2μ)
and G = E

2(1 + μ)
.

In the present approach, the problem is reduced to the determination of a single
variable instead of evaluating three functions ux, uy, uz, simultaneously, from
the equilibrium Equations (1). A potential function of space variables ψ(x,y,z)
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is thus defined in terms of the displacement components as [6]

ux = ∂2ψ

∂x∂y
(2a)

uy = −
[

2(1 − μ)
∂2ψ

∂x2
+ (1 − 2μ)

∂2ψ

∂y2
+ 2(1 − μ)

∂2ψ

∂z2

]
(2b)

uz = ∂2ψ

∂y∂z
(2c)

When the displacement components of Equations (1) are replaced by ψ(x,y,z),
Equations (1a) and (1c) are found to be satisfied automatically and the only
condition (Equation 1b) that ψ has to satisfy becomes

∂4ψ

∂x4
+ ∂4ψ

∂y4
+ ∂4ψ

∂z4
+ 2

∂4ψ

∂x2∂y2
+ 2

∂4ψ

∂y2∂z2
+ 2

∂4ψ

∂z2∂x2
= 0 (3)

Therefore, a single potential function ψ(x,y,z) has to be evaluated from the gov-
erning differential equation of equilibrium (3), satisfying the associated bound-
ary conditions. The displacement boundary conditions are given by Equation
(2). Now the six stress components can readily be expressed explicitly in terms
of the function ψ(x,y,z), when the displacement components of the stress–
displacement relations are replaced by Equation (2).

3. METHOD OF SOLUTION

FDM is used here to transfer the governing differential equation and also the
differential equations associated with the boundary conditions into their corre-
sponding algebraic forms. Considering the rectangular shape of the boundary
and also the nature of the differential equations involved, a uniform rectangu-
lar mesh-network is used all over the region concerned. The discrete values of
ψ(x,y,z), at the mesh points are obtained from a system of linear algebraic equa-
tions resulting from the discretization of the governing equation and the associ-
ated boundary conditions. Finally, all the parameters of interest in the solution
of the beam problem can readily be obtained as soon as ψ is known at the mesh
points. It is noted that, in the present FDM solution, the number of equations
required to be solved is simply one-third of the usual computational approaches.

4. NUMERICAL RESULTS OF THE DEEP BEAM

Figure 1 illustrates the geometry and loading of the both ends fixed deep
beam (L/D = 2 and L/B = 2). For obtaining the numerical results, the beam is
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Figure 1. Loading and geometry of the 3-D both ends fixed beam.
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assumed to be made of ordinary steel (μ = 0.3, E = 209 GPa). The FDM solu-
tions are presented here along with the corresponding FEM solutions obtained
by ANSYS code. Figure 2 presents the solutions of uz and ux at different sections
of two different planes of the beam, where the displacements are normalized
w.r.t. the maximum theoretical deflection of the beam, δmax. FDM solutions
are found to be in very good agreement with FEM solutions. Figure 3 presents
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the solutions of two stress components, σzz and σyy, at different sections of
two different planes of the beam. Two solutions are found to be very close
to each other except those around the region of transition. The present FDM
solutions conform to all the requirement of the physical characteristics of the
beam appropriately, thereby establishing the superiority over the usual method
of solution.

5. CONCLUSION

The present Finite-Difference method of solution is verified to be capable
of producing accurate and reliable solutions at any critical section of a 3-D
deep beam. The drastic reduction in the number of algebraic variables in the
present approach improves the accuracy as well as computational efficiency
significantly.
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COMPUTATIONAL METHOD OF SEA
LOADS ON FLOATING STRUCTURES

Yanying Wang
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116024, China

Abstract A computer packet, which is composed of three-dimensional source–sink dis-

tribution approach with boundary element numerical method, is applied to de-

termine the interaction of environmental factories and floating structure in the

partly non-linear category and in the frequency domain. Some numerical tech-

niques, such as the form of Green function, the treatment of free surface bound-

ary conditions and the calculation of kernel function of Green function, are

discussed and all of conclusion remarks are useful for the engineering practice in

this chapter.

Keywords: source–sink distribution approach, boundary element method, Green function,

environmental loads, waves.

1. INTRODUCTION

The environmental loads with their encountered probabilities and the struc-
tural response distribution in the frequency domain induced by wind, waves and
current, which are necessary to predict the operative performance and the struc-
tural reliability, are calculated by using CFD numerical approach in this chapter.
Based on the environmental observational data the design parameters for wind,
waves and current can be determined from a computational model of the long-
term probability distribution analysis. A computer packet, which is composed
of three-dimensional source–sink distribution approach with boundary element
numerical method, is applied to determine the interaction of environmental fac-
tors and floating structure in the partly non-linear category and in the frequency
domain. Thus, the response functions of motion and the long-term probabilities
and the frequency characteristics of encountered loads for floating structure can
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be calculated. A computational example for a built FPSO is introduced and the
results include the prediction of environmental factories in operative sea area,
and of motion response functions and dynamic loads with different loading
states under stated environmental conditions.

2. MATHEMATICAL MODELS

A series of mathematical models is necessary to predict environmen-
tal data in the operative sea area, motion induced by environmental factors
for structures in the frequency domain, hydrodynamic pressure and compo-
sition of forces as well as their probability distribution on structures and
so on.

Based on the stylebook of the long-term distribution of the statistical char-
acteristics for the short-term observation samples of waves in the operative sea
area, the Weibull probability function is used to determine the extreme waves
encountered by structures with specifically return period [1, 2], so called the
design wave:

HD = (HC − H0)[17.27 + ln TC − ln TZ ]1/ξ + H0 (1)

in which H0, HC , ξ are the parameters of the Weibull probability density func-
tion, TZ is the main cross-up wave period, in s; TC is the return period for design
wave, in year.

The flow field around floating structures is assumed to be the potential
flow with incompressible and irrotational fluid, finite water depth (d), rigid
bottom parallel to still water surface, progressive wave on the free surface and
rigid surface for a floating hull. Therefore, the velocity potential ϕ pertaining
to the fluid region should satisfy the Laplace equation. Based on the linear
assumption the total velocity potential can be expressed by sum of the potentials
of individual motion for six-freedom degree, i.e.

ϕ = (ϕ0 + ϕ7 + iωη jϕ j )e
iωt (2)

The linear velocity potential for incident waves can be expressed as �I =
Re

(
ϕ0eiωt

)
and the steady velocity potential ϕ0 can be written as

ϕ0 = i
gH

2ω

ch[k0(z + d)]

ch(k0d)
e−ik0(x cos β+y sin β) (3)

where β is angle between progressive direction of wave and x-axis, k0 is wave
number satisfying the dispersion relation of k0th(k0d) = ω2/g. The steady mo-
tion velocity potentials with unit velocity ϕ j ( j = 1, 2, . . . ,6) and the diffraction
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potential ϕ7 should satisfy the following boundary conditions:

[L] ∇2ϕ j (x, y, z) = 0 in flow domain
[F] (∂ϕ j/∂z) − νϕ j = 0 at free surface

[S]
∂ϕ j/∂n = n j j = 1, 2, . . . , 6
∂ϕ j/∂n = −(∂ϕ0/∂n) j = 7

on body surface

[B] (∂ϕ/∂z)z=−d,or−∞ = 0 on sea bad
[R] lim

ρ→∞
√

ρ[(∂ϕ/∂ρ) + ik0ϕ] = 0 at infinite far field

(4)

where ν = ω2/g, and n1 = nx , n2 = ny, n3 = nz , n4 = zny − ynz , n5 =
xnz − znx , n6 = ynx − xny , where nx , ny , nz are the direction cosines of the
normal to the surface of body at the point (x, y, z).

In this case Haskind sources may be employed, which are distributed on
wetted body surface and satisfy free surface and bottom boundary conditions.
The velocity potential ϕ j can be written as that

ϕ j =
∫∫

S0

σ j (ξ, η, ζ ) · G(x, y, z; ξ, η, ζ )d S (5)

in which S0 is average wetted surface of floating body; (ξ, η, ζ ) repressed source
point, q, on body surface; (x, y, z) repressed field point, p, in the flow field.
σ j (q) is Haskind source strength on point q; G(p, q) is Green function which
should satisfy the following determination conditions in Equation (4) except
body surface condition and considering wave-making effect of body moving
speed on free surface condition:

[L] ∇2G(p, q) = δ(p − q) in flow domain
[F] − νgG + 2iU

√
νg(∂G/∂x) + U 2(∂2G/∂x2) + g(∂G/∂z)

= 0 at free surface
[B] (∂G/∂z)z=−d,or−∞ = 0 on sea bed
[R] lim

ρ→∞
√

ρ[(∂G/∂ρ) + ik0G] = 0 at infinite far field

(6)

where U is forward speed for body in x-direction. Thus, the velocity potential
ϕ j can be expressed by the distribution of Green function on body surface and
its distributing strength σ j can be determined by the boundary condition of
body surface. The form of determination solution for Green function can be
also assumed into the following form for finite water depth:

G(p, q) = 1

r1(p, q)
− 1

r ′
1(p, q)

+ 1

r2(p, q)
− 1

r ′
2(p, q)

+ G∗(p, q) (7)

where r and r ′ can be written as r1, r ′
1 =

√
(x − ξ )2 + (y − η)2 + (z ∓ ζ )2 and

r2, r ′
2 =

√
(x − ξ )2 + (y − η)2 + (z + 2d ± ζ )2. Then the Green function in
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frequency domain for navigating structures can be solved [4] as

G∗ = 1

2π

∫ ∞

0

∫ π

−π

2e−2mdsh(mζ )ch[m(z + d)]

ch(md)
eim[(x−ξ ) cos θ+(y−η) sin θ ]dθdm

− 1

2π

∫ ∞

0

∫ π

−π

2mge−mdch[m(ζ + d)]ch[m(z + d)]

ch(md)
[(√

νg + mU cos θ
)2 − mgth(md)

]
× [1 + th(md)]eim[(x−ξ ) cos θ+(y−η) sin θ ]dθdm (8)

By using simple mathematic treatment Equation (8) can be degenerated
into the cases for finite water depth and non-navigational body; for infinite
water depth and navigational body; as well as for infinite water depth and
non-navigational body.

The solution of Equation (5) may be carried out by using an approach
similar to Hess–Smith method [3]: p panels (to be triangle or quadrangle) are
distributing on body wetted surface S0, taking a point at each panel (xi , yi , zi )
with (i = 1, 2, . . . , p), so called control point. The source strength σ and the
direction cosines of the normal to the surface of body (taken as directed outward
from the body surface) 
ni at a panel (xi , yi , zi ) are assumed to be constants
respectively. Thus,

p∑
k=1

σ jk 
ni

∫∫
k
∇G(xi , yi , zi ; ξ, η, ζ )ds =

⎧⎨
⎩ n ji

j = 1, 2, . . . , 6
i = 1, 2, . . . , p

−∂ϕ0(xi , yi , zi )/∂n j = 7
(9)

it can be written into the simplification form:

P̃ σ̃ = Q̃ (10)

in which the coefficient matrix P̃ , called induced matrix, is the square matrix
with p orders; Q̃ is the right matrix, and σ̃ is the determined matrix. In which
j = 1, 2, . . . , 6 are to be motion modes and i = 1, 2, . . . , p are to be number
of panels in n ji and σ j i respectively. Now the source strength can be solved and
both motions and loads of floating body induced by waves can be determined.
Then the Bernoulli equation can be used to calculate the hydrodynamic pressure
distribution on body surface and the motion equations can be applied to predict
the response function for body induced by waves in six-freedom degree.

3. NUMERICAL APPROACHES

It is found that dreadful oscillation and increasing amplitude appear at θ =
±π/2 and z → 0 for the integrand of Green function and integral accuracy
is limited by integral step size. An effective technique is that the upper limit
of integration, π/2 is mapped into infinite by using the variable substitution,
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such as t = scsθ or t = tgθ [4]. In order to make identification the following
function is selected to be example:

I =
∫ π/2

π/4

ki e
ki ω(1 + 4τ cos θ )

−1/2
dθ (11)

in which i = 1, 2; k1, k2 = (1/2 cos2 θ )(1 + 2τ cos θ ± √
1 + 4τ cos θ ); and

τ = Uωe/g, ω = Z + i(x cos θ + y sin θ ), Z < 0. Then

I =
∫ ∞

√
2

dt
1√

1 + 4τ
t

· −1

t2

√
1 − 1

t2

· t2

2

(
1 + 2τ

t
+

√
1 + 4τ

t

)
e

t2

2

(
1+ 2τ

t +
√

1+ 4τ
t

)
ω

=
∫ ∞

√
2

dt
−1√

1 + 4τ
t

√
1 − 1

t2

·
(

1 + 2τ

t
+

√
1 + 4τ

t

)
e

t2

2

(
1+ 2τ

t +
√

1+ 4τ
t

)
ω

≤
∫ ∞

√
2

dt | · | ≤
∫ ∞

√
2

dt
1√

1 − 1
t2

·
(

1 + 2τ

t
+

√
1 + 4τ

t

)
e

t2

2

(
1+ 2τ

t +
√

1+ 4τ
t

)
Z

(12)

lim
t→∞

⎡
⎣ 1√

1 − 1
t2

·
(

1 + 2τ

t
+

√
1 + 4τ

t

)
e

t2

2

(
1+ 2τ

t +
√

1+ 4τ
t

)
Z

⎤
⎦ · t2

= lim
t→∞ t2et2z

... z<0= 0 (13)

Now taking i = 1, t = 1/ cos θ , then “I ” can be transformed into Equation
(12) in which |·| is the absolute value of integrant for the above formula. From
the last formula it can be obtained as Equation (13). Based on Cauchy criterion
for infinite improper integral it is well known that the integral

∫ ∞
a f (x)dx

is convergence absolutely when lim
x→∞ x P | f (x)| = K , with 0 < K < +∞ and

P > 1. Then

E(M) =
∫ ∞

M
dt

1√
1 + 4τ

t

· −1

t2

√
1 − 1

t2

× t2

2

(
1 + 2τ

t
+

√
1 + 4τ

t

)
e

t2

2

(
1+ 2τ

t +
√

1+ 4τ
t

)
ω ≤

∫ ∞

M
dt |·|

≤
∫ ∞

M
dt

1

2
√

1 + 4τ
M

√
1 − 1

M2

·
(

1 + 2τ

M
+

√
1 + 4τ

M

)
e

t2

2

(
1+ 2τ

t +
√

1+ 4τ
t

)
Z

≤ A

∫ ∞

M

1

2
e

t2

2
Z dt ≤ A

∫ ∞

M

1

2
e

Mt
2

Z dt = A

Mz
e

Mt
2

z

∣∣∣∣∞M = − A

Mz
e

1
2

M2z

(14)
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The truncation error of “I ” is important part for total error of Green function
and the accuracy of Green function can be measured by the analysis of the
truncation error of “I ”

A = [1 + 2τ/M + (1 + 4τ/M)1/2][(1 + 4τ/M)(1 − M−2)]−1/2 (15)

Let assuming point M which is far away from the origin, then the expectation
of truncation error of “I ” at M , E(M) can be written as Equation (14). In this
equation, A is a finite value as expressing from Equation (15). It can be seen that
A will trend to 1 when M trends infinite. It can be found that the expectation
of error at M is decreasing speedy when the distance from origin to M is
increasing and is also depended on the distance of Z , i.e. the sum of vertical
coordinates of source and field points. When both source and field points are
close to the free surface the expectation of error at E is decreasing slowly.

4. COMPUTATIONAL EXAMPLE

To be a computational example a brief result for the FPSO is provided in this
section. The principal dimensions of hull and the environmental parameters in
the operative sea state are listed in Tables 1 and 2 respectively. The response
functions of motion induced by the combination of wind, wave and current
and the wave moment distributed in frequency domain with different wave
directions and loading states, and the wave moment both for significant and
maximum values with the exceed probability are calculated in this computation.

Table 1. FPSO vessel principal particulars.

Parameters Unit Dimension

Length over all m 285.00

Depth m 26.60

Breadth m 58.00

Draught with full loads m 16.6

Displacement at full load draught ton 25,3440

Table 2. Environment parameters.

Item Unit Dimension

Wind velocity m/s 28.0

Wave height m 10.2

Wave period s 13.8

Water depth m 119.5

Current velocity m/s 0.9
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Figure 1. Response function for heave with full loads.
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Figure 2. Response function for pitch with full loads.

Some of computational results are listed in the above figures in which the
response functions for heave and pitch motion with full loading and different
direction of incident waves are shown in Figures 1 and 2; the distribution
of hydrodynamic pressure on the hull surface with full loading and different
direction of incident waves are given in Figures 3 and 4; the sagging moment
distribution in the frequency domain and the wave moment values both for
significant and for maximum value with various exceed probability are given
in Figures 5 and 6 respectively.
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Figure 3. Hydrodynamic pressure on the surface with full loads and oblique wave.

Figure 4. Hydrodynamic pressure on the surface with full loads and beam wave.
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Figure 5. The sagging moment distributed in frequency domain.
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Figure 6. The wave moment values with the exceed probability.

5. CONCLUSION REMARKS

The solution of Laplace boundary problem can be used to analyse the sea
loads and motion encountered by floating structures under sea environmental
factors. The source–sink distribution approach, the basic form of Green func-
tion, and the treatment of the kernel function for the integral Green function in
this computation are efficient and the programmed computer packet is useful to
engineering practice. This method has been applied to the analysis of mooring
system and to be preprocessor for structure analysis by use of FEM computer
system.

The project of the calculation of sea loads and motion for floating structures
is continuing now and the emphases of investigation are put in the effect of non-
linear factories and the analysis in the time-domain.
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NEW FORMULAS FOR DESIGN OF SOCKETS
USED IN CABLE STRUCTURES
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Abstract The empirical formulas are commonly employed for design of the sockets used

in cable structures. By using these formulas, accurate stress distribution in the

socket may not be obtained. In response to the demand of the FAST project and

the socket-manufacturer, new theoretical design formulas are given in this paper

and further revised on basis of the comparison of numerical results by theoretical

formulas, FEM and empirical formulas. It is shown that the new formulas are

more accurate than existing empirical formulas and more reliable when used in

engineering design.

Keywords: socket, design formula, conical thick shell, stress.

1. INTRODUCTION

Anchor sockets are the most important joint elements in tension and cable
structures. The design formulas of the sockets are still empirical now. None of
accurate theoretical design formulas appears recently. The increasing applica-
tion and rapid development of the structure engineering need more accurate
and practical design formulas for socket.

In response to the demand of the FAST project and the manufacturer of
the anchor systems, new theoretical design formulas for sockets are given in
the paper. Through the comparison of the numerical results by new theoretical
formulas, FEM and empirical formulas, the theoretical formulas are revised for
practical use. The numerical results show that the revised formulas are more
accurate and can be used in engineering design.
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q
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τ

r

Figure 1. The anchor socket and mathematical model.

2. THE THEORETICAL FORMULAS OF THE
CONICAL THICK SHELLS

After simplification of a socket (Figure 1), the new theoretical formulas
of stress distribution in the socket can be derived using 3-dimensional elastic
theory. Introducing Love’s displacement function, ζ (r, z), the stresses in the
socket are given in following (Ref. [1]).

σz = Q

π (r2
2 − r2

1 )
+ qrr2

1r2
2 Az

(r2
2 − r2

1 )A

σr = qrr2
1 Ar

r2 A

σθ = −qrr2
1 Aθ

r2 A

τr z = qr z Aτ

r A
(1)

where, r1 and r2 are the inner and out boundaries of the socket; z is the height.
The details of parameter Q, qr , A, Ar , Az , Aθ and Aτ can be found in Ref [1].

It is shown in Equation (1) that the stresses in the socket are not only the
function of the radius r , but also the height z.

3. THE NUMERICAL RESULTS OF FEM

3.1 Parameters for analysis and simplification
of the model

The engineering model provided by manufacturer for numerical
analysis is I109 (Ref. [2]). The socket is made of cast steel. Its yielding stress is
fy = 310 MPa. The maximum strength is fb = 570 MPa. The elasticity model
is E = 2.06 * 105 MPa and Poison’s ratio is μ = 0.3. The friction factors are
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taken as tgφ = 0.2, 0.3 and 0.4 respectively. The theoretical model is shown in
Figure 1. The boundary in two ears is hinged, that is restrained in z direction,
free in r and θ . Two load cases, 100% and 167% of the tension capacity of the
corresponding cable, are applied on the socket.

3.2 Numerical results of FEM

Taking tgφ = 0.2, the socket is in elastic when the load reaches 100%. The
plastic strain appears in the small end of the socket when the load reaches
120%. The plastic strain appears in all inner surface of the socket when the
load reaches 167%. Taking tgφ = 0.3, the socket is in elastic when the load
reaches 100% and 120%. The plastic strain appears in the small end of the
socket when the load reaches 167%. Taking tg φ = 0.4, the socket is in elastic
when the load reaches 100%, 120% and 167%.

4. THE RESULTS OF EMPIRICAL FORMULAS
AND COMPARISON

The empirical formulas collected and the corresponding numerical results
are listed in Table 1. The results of the derived theoretical formulas and FEM

Table 1. Stresses of the socket I109 and comparison (100% of tension capacity).

Friction factor tgφ
Error to

References Formulas Stress 0 0.1 0.2 0.3 0.4 0.5 FEM (%)

Nears Pr = T/2π tg(φ + β) σθ 451 216 141 104 82 68 25∼33

Pujiang σr = P cos φ

Ae sin(θ + φ)
= pz cos φ

sin(θ + φ)
σr 324 157 103 77 62 51

0∼25

σθ = σc
D2

s + D2
i

D2
s − D2

i

σθ 595 288 190 142 113 94

Wei H = p/(tgα + μ2)cosα σθ 2432 1177 833 597 495 411 300∼400

Chen p = Y

B

(
(1 + B)

(
r

R1

)2B

− 1

)
σr 116 104 86 64 57 15∼40

Thick σr = a2 p

b2 − a2

(
1 − b2

r2

)
σr 323 156 103 77 61 51

0∼25

cylinder σθ = a2 p

b2 − a2

(
1 + b2

r2

)
σθ 593 287 189 141 113 94

New
z = h/2

σr 323 156 103 77 61 51
0∼25

Formulas σθ 653 316 208 155 124 103

z = h/2
σr 82 61 50

FEM σθ 209 140 110
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are also included in the table for comparison. It can be concluded from the
results listed in the table:

The stress given by Nears [3] is the average circumferential stress σθ of the
socket inner surface. The stresses given by Pujiang [2] are the stresses σθ , σr of
inner surface in half height of the socket. The stress given by Chen [4] is also
the stress σr of inner surface in half height of the socket. All these stresses are
the stresses in particular points of the socket. They cannot describe the exact
stress distribution in the socket.

The formulas obtained by circular thick shell theory [5] are only the function
of the radius r , but not concern with the shell height z.

The derived formulas are the function of conical radius r and height z. They
give accurate stress distribution of the socket. The stress distribution is better
close to FEM analysis.

5. THE REVISED THEORETICAL FORMULAS

Compared the numerical results of the theoretical formulas and of FEM, it
can be found that both results are better close to each other, but there are some
errors in the small end of the socket. After comparison, new-revised theoretical
formulas are given:

σr = ωqr

(
rb − r

rb − ra

)2

σθ = ηqr

(
1 +

(
rb − r

rb − ra

)2
)

(2)

ω = 0.95, η = 0.4

(
1 − z

h

)2

+ 0.86

where ra , rb are the inner and out surface radii in half socket; qr is the radial
component of the load.

The comparison of the numerical results between the new formulas and
FEM are shown in Figure 2. It is shown that two curves go closer to each other.

6. CONCLUSIONS

The empirical formulas cannot give the exact stress of the conical anchor
socket. The stresses calculated by circular thick shell theory are only the stresses
concerned with the radius, but not with the height. Then σ θ is obvious changed
with the socket height z. The numerical results show that the increase of the
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formula (2)

Figure 2. The stresses σ θ and σ r of I109 socket (tgφ = 0.2, 100% of tension capacity).

friction reduces the stresses of the socket. This is exactly shown in new theo-
retical formulas.

The new-revised theoretical formulas can exactly describe the stress distri-
bution in the socket. Their results are better close to the results of FEM. The
revised formulas can be used for engineering design.
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A NOVEL SUBCYCLING ALGORITHM
FOR COMPUTER SIMULATION OF
CRASHWORTHINESS
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Abstract It can decrease significantly the computation time in transient structural analysis

to use subcycling algorithms that permit multiple time steps in an explicit in-

tegration. In this paper, several subcycling algorithms are tested and it is shown

that constant velocity subcycling algorithm possesses the best stability properties.

A new subcycling algorithm that introduces damping to velocities is proposed.

The numerical examples show that the proposed algorithm is both accurate and

computationally efficient.

Keywords: finite element, subcycle, multi time step.

1. INTRODUCTION

The maximum time step is limited by the maximum natural frequency of
finite element in transient structural analysis. Some elements may require a
much smaller time step than the rest and the global time step of a structure
model decreases significantly, if only one time step is adopted. So the com-
putation for solving the problem increases dramatically. It is effective to use
subcycling algorithms that permit multiple time steps in explicit integration.
The subcycling algorithm was proposed by Belytschko et al. [1]. In this method,
according to time step, the structure model is arranged into several regions and
each region uses a different stabile time step. Within a major time step, in or-
der to calculate internal forces at adjacent nodes that use a smaller time step,
displacements or velocities at a nodal interface between different time steps
must be obtained. Some studies by Neal and Belytschko [2] and Belytschko
and Lu [3] assume a constant velocity over the major time step or a constant

G. R. Liu et al. (eds.), Computational Methods, 1749–1753.
C© 2006 Springer. Printed in the Netherlands.
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acceleration.While the former has received success in non-linear analysis, ac-
curacy problems have been reported. Although few algorithms assuming of
constant acceleration within a major cycle has been proven to be stable, the
work by Daniel [4] and Smolinski et al. [5] have shown that they can receive
better accuracy than that of constant velocity. Both of algorithms are tested, so
as to investigate the possibility using for crashworthiness analysis. The exam-
ples show that the assumption of constant acceleration bring unstable, while
constant velocity algorithms arouse errors for the simulation of a car collision.
In this paper, a new constant velocity subcycling algorithm is proposed by
introducing damping to velocities and its accuracy is investigated.

2. SUBCYCLING ALGORITHMS

In an explicit subcycling algorithm, the elements are arranged into element
groups. Each element group is integrated with a different time step. As men-
tioned by Smolinski et al. [6], each group is subject to the following restrictions:

a) The largest step must be an integer multiple of all time steps.
b) If any node is shared by elements in two different integration groups, the

time steps in these groups must be integer multiples of each other.

In an explicit finite element analysis, a velocity strain formulation is often
used for all element calculations. In constant velocity subcycling algorithms,
if an element is connected to a node with a larger time step, it uses the same
nodal velocity for all intermediate time steps within a major time step, while
in constant acceleration subcycling algorithms, it uses the same nodal acceler-
ation.

The constant velocity subcycling algorithms can be described as followed.
Considering a major cycle consists of nsubcycles, the start of the current major
cycle is labeled as state 0, the end of the first subcycle as state 1 and the end of
the major cycle as state n, respectively. The middle of subcycle i is labeled as
i + 1/2 and so on.

a) Common update of the large time step region (region L) and the small time
step region (region S) for state 0:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v
1/2
S = v

−1/2
S + �tSa0

S

v
1/2
L = v

−1/2
L + �tLa0

L

x1
S = x0

S + �tSv
1/2
S

x1
L = x0

L + �tSv
1/2
L

(1)
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b) Subcycle update i , internal forces are calculated only in region S.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v
i+1/2
S = v

i+1/2
S + �tSai

S

v
i+1/2
L = v

1/2
L

xi+1
S = xi

S + �tSv
i+1/2
S

xi+1
L = xi

L + �tSv
1/2
L

(2)

Note that region S and L use different time step �tS , �tLand the velocities

in region L v
i+1/2
L is held constant in (2).

The constant acceleration subcycling algorithm holds the mid-major cycle
acceleration constant. Equations (1) and (2) can be modified to a constant

acceleration subcycling algorithm, by replacing �tL by �tS in (1) and v
i+1/2
L =

v
1/2
L by v

i+1/2
L = v

i−1/2
L + �tSa0

L in (2). A subcycling algorithm that averages
acceleration is proposed by Daniel [4]. In this method, the acceleration to be
held constant in region L is altered from that computed at the start of the major

cycle a0
L , to a j

L for major cycle j in Equation (2).

(a j
C + a j−1

C )/2.0 = a0
L (3)

and with the initial a j−1
C = a0

L .

2.1 Testing of subcycling algorithms

Subcycling algorithms except the constant velocity one prove to be unstable
in many complicated cases. Can the constant velocity subcycling algorithm
provide good accuracy in a car collision analysis? It is shown by Figure 1
that the calculation results from the constant velocity subcycling algorithm are
different from the reference one by using single one time step.

Figure 1. (a) Result from one time step. (b) Result from constant velocity subcycling algorithm.

(c) Comparison of collision forces against rigid wall.
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Figure 2. (a) Result from damping method. (b) Comparison of collision forces against rigid

wall.

2.2 A subcycling algorithm with damping

To decrease errors by using the constant velocity subcycling algorithm in a

car collision analysis, damping is added. This can be done by replacing v
i+1/2
L

in (2) by

v
i+1/2
L = v

i−1/2
L + α�tSa0

L (4)

where α is the damping factor, restricts to 0.01–0.015.
As shown as Figure 2, the new method is proven to give good accuracy for

the computer simulation of crashworthiness. The time for solving the problem
cost by using dump subcycling algorithm is 10 h 22 min, comparing to 26 h
and 21 min by using the only one time step.

3. CONCLUSION

Several subcycling algorithms have been tested and it is shown that the
constant velocity algorithm exist better accuracy than others, but brings errors
to complicated system analysis. A new subcycling algorithm that introduces
dumping is proposed and found to possess good accuracy while sharing high
efficiency.
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Abstract This chapter presents a new iterative method based on the existence conditions

of Hopf bifurcation. By means of proposed method, the problem on how to deter-

mine Hopf bifurcation point in an autonomous nonlinear system with bifurcation

parameters is converted to how to solve a set of nonlinear algebraic equations.

This method can determine both Hopf bifurcation point and the pure imaginary

eigen-value pair of Jacobian matrix of a system at the same time. Thus, it can

avoid some weakness in some existing methods, such as repeatedly solving the

eigen-value whenever the chosen parameters are changed.

Keywords: Hopf bifurcation, nonlinear dynamical system, iterative method.

1. INTRODUCTION

Hopf bifurcation method has been used for dynamic system as a common
tool to solve the periodic orbit problem. All of the eigen-values of the first
power system should be known before resolving Hopf bifurcation problem of a
dynamic system by analytic method. Hopf bifurcation theorem can be directly
applied to the low-dimension system (less than 4-dimensions), whereas it is
difficult for high-dimension system because it is very hard to obtain all the
values of the Nth (N ≥ 5) power algebraic equation with parameters.

A lot of work have been done by researchers to solve Hopf bifurcation
problem for a dynamic system. Wencheng [1] and Jiaqi [2] have proposed di-
rect algebraic criterion of Hopf bifurcation existing problem by using Hurwitz
determinant. Based on nonlinear model theory, an analytic method of Hopf
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bifurcation was presented by Weiping [3]. Jike [4] converted the eigen-
polynomial problem crossing the image axe by using a transforming Jacobian
matrix. According to the control theorem of the electronic system, Hamdan
and Hamdan [5] presented Hopf bifurcation method for sub-synchronous res-
onance.

In this chapter, the condition causing Hopf bifurcation is used to construct
the numerical algorithm directly according to the theorem of Hopf bifurcation.

2. METHOD ANALYSIS

Considering an ordinary autonomous nonlinear system as follows.

ẋ = f (x, α), x ∈ Rn, α ∈ R (1)

When f (x0(α), α) = 0, Jacobian matrix of system (1) is

J (α) = Dx f (x, α) =
[

∂ fi

∂x j

]
, i, j = 1, 2, . . . , n (2)

Let the eigen-polynomial of J (α) of system (1) is

Pn(λ) = λn + a1λ
n−1 + a2λ

n−2 + · · · + an−1λ + an (3)

Where Pn(λ) is the nth power polynomial of λ.
It can be seen from the classical Hopf bifurcation theory that the necessary

existence condition of Hopf bifurcation in system (1) is that the eigenequation
Pn(λ) = 0 has a couple of plural conjugate pure image roots, namely

λ1,2 = ±i
√

ω (4)

So Pn(λ) can be decomposed at Hopf bifurcation point as follows.

Pn(λ) = (λ2 + ω)Pn−2(λ) (5)

Where Pn−2(λ) is the (n–2)th power polynomial.
For an estimate of ω, the polynomial (3) is transformed as follows.

Pn(λ) = (λ2 + ω)(λn−2 + b1λ
n−3 + · · · + bn−3λ + bn−2) + F1λ + F2 (6)

Expanding Equation 6 and simplifying it, the following expression can be
obtained.

Pn(λ) = λn + b1λ
n−1 + (b2 + ω)λn−2 + (b3 + ωb1)λn−3 · · ·

+ (bn−2 + ωbn−4)λ2 + (F1 + ωbn−3)λ + (F2 + ωbn−2) (7)
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Comparing Equation 7 with Equation 3, the following recursive relationship of
the coefficients ai , bi , F1 and F2 can be obtained.

b−1 = 0
b0 = 1
bi = ai − ωbi−2, i = 1, 2, . . . , n − 2
F1 = an−1 − ωbn−3

F2 = an − ωbn−2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8)

The coefficients ai , bi , F1 and F2 are the function of x , α and ω.
The existence condition of Hopf bifurcation in system (1) is that the

eigenequation Pn(λ) = 0 has a couple of pure image roots at Hopf bifurcation
point, which also means that the eigen-polynomial Pn(λ) can be decomposed
in the form of (5).

In Equation 6, if F1 and F2 are all zero, namely

F1 = F1(x, α, ω) = 0
F2 = F2(x, α, ω) = 0

}
(9)

then Equation 6 will be transformed into Equation 5. And Equation 5 is tenable
only at Hopf bifurcation point. So, if some x , α and ω which can satisfy Equation
9 can be find out, then α is Hopf bifurcation point in system (1) and ±i

√
ω are

the couple of pure image roots of the eigenequation of Jacobian matrix at Hopf
bifurcation point.

According to the analyses above, the method of determining Hopf bifurca-
tion point is constructed by using the conditions that F1 and F2 are both equal
to zero and Hopf bifurcation point must be the balanced point of the system (1).
Combining Equation 1 and Equation 9, a set of (n+2) order nonlinear equation
is formed as follows.

ẋ1 = f1(x1, x2, . . . , xn, α) = 0
ẋ2 = f2(x1, x2, . . . , xn, α) = 0

...
ẋn = fn(x1, x2, . . . , xn, α) = 0

F1 = F1(x1, x2, . . . , xn, α, ω) = 0
F2 = F2(x1, x2, . . . , xn, α, ω) = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(10)

In practical application, the expressions of f1, f2, . . . , fn are very com-
plicated and the eigen-polynomial of Jacobian matrix cannot be analyti-
cally expressed. So, the Newton–Raphson iterative method is used to solve
Equation 10.

The specific procedure to form F1, F2 is shown as follows.

(a) Select an initial iterative vector (x0
1 , x0

2 , . . . , x0
n , α

0, ω0) and a small in-
crement of the iterative vector (�x0

1 , �x0
2 , . . . , �x0

n , �α0, �ω0) and the
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corresponding calculation precision value ε. Expand Equation 10 to Tay-
lor series near x0

1 , x0
2 , . . . x0

n , α
0, ω0, and only remain the linear part as

follows.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1

∂x1

∂ f1

∂x2

· · · ∂ f1

∂xn

∂ f1

∂α
0

∂ f2

∂x1

∂ f2

∂x2

· · · ∂ f2

∂xn

∂ f2

∂α
0

...
...

. . .
...

...
...

∂ fn

∂x1

∂ fn

∂x2

· · · ∂ fn

∂xn

∂ f2

∂α
0

∂ F1

∂x1

∂ F1

∂x2

· · · ∂ F1

∂xn

∂ F1

∂α

∂ F1

∂ω

∂ F2

∂x1

∂ F2

∂x2

· · · ∂ F2

∂xn

∂ F2

∂α

∂ F2

∂ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�x1

�x2

...
�xn

�α

�ω

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= −

⎡
⎢⎢⎢⎢⎢⎢⎣

f1

f2

...
fn

F1

F1

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

(b) Calculate f x
1 , f x

2 , . . . , f x
n in Equation 1 at (x0

1 , x0
2 , . . . x0

n , α
0, ω0).

(c) Let x1
i = x0

i + �xi (i = 1, 2, . . . , n), α1 = α0 + �α and ω1 = ω0 + �ω,

then calculate f x+�xi
1 , f x+�xi

2 , . . . , f x+�xi
n (i = 1, 2, . . . , n) in Equation 1.

(d) Calculate all of ∂ fi

∂x j
(i, j = 1, 2, . . . , n) and all of ∂ fi

∂α
(i = 1, 2, . . . , n).

(e) Calculate the coefficients a1, a2, . . . , an in the polynomial (3) according to
the formula (12) beneath at (x0

1 , x0
2 , . . . x0

n , α
0, ω0).

ai = (−1)i
∑

1≤k1<k2<···<ki ≤n

∣∣∣∣∣∣∣∣∣

Jk1k1
Jk1k2

· · · Jk1ki

Jk2k1
Jk2k2

· · · Jk2ki

...
...

. . .
...

Jki k1
Jki k2

· · · Jki ki

∣∣∣∣∣∣∣∣∣
, i = 1, 2, . . . , n

(12)
(f) Calculate F x

1 and F x
2 following the formula (8).

(g) Let x1
i = x0

i + �xi (i = 1, 2, . . . , n), α1 = α0 + �α and ω1 = ω0 + �ω,

then calculate a1, a2, . . . , an , F x+�xi
1 , F x+�xi

2 (i = 1, 2, . . . , n), F x+�α
j and

F x+�ω
j (i = 1, 2, . . . , n).

(h) Calculate all of ∂ Fi

∂x j
(i = 1, 2, j = 1, 2, . . . , n), ∂ Fi

∂α
and ∂ Fi

∂ω
(i = 1, 2).

(i) The values of �x0
1 , �x0

2 , . . . , �x0
n , �α0, �ω0 can be obtained by solving

Equation 11.
(j) Verify the precision, stop if the request precision is satisfied, otherwise Let

x1
i = x0

i + �xi (i = 1, 2, . . . , n), α1 = α0 + �α and ω1 = ω0 + �ω, then
go bank to (b).
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3. CALCULATION EXAMPLE

The motion equations of the rotor system supported by the bearing with
nonlinear oil film in state space [6] are as follows.⎧⎪⎪⎨

⎪⎪⎩
ẋ1 = x3

ẋ2 = x4

ẋ3 = 1
ω2 − s

ω
( fr cos(ϕ) + ft sin(ω)) + e cos(t)

ẋ4 = − s
ω

( fr sin(ϕ) − ft cos(ω)) + e sin(t)

(13)

When e = 0, Equation 13 represents the motion equation of the balanced rotor
system, which is an autonomous system. According to the results of reference
[10], the motion form of the system is a stable movement at the balanced point
when the rotational speed is low. While the rotational speed is higher than some
limits (Hopf bifurcation point), the motion track is a stable movement of the
limit circle.

When e = 0 and s = 1.4, select an initial iterative vector (x, y, ẋ, ẏ) =
(0.2, 0.1, 0.5, 0.5), an initial iterative velocity ω0

H = 0.8 and initial λ = 0.5,
then according to the method above, the bifurcation point of the system can be
obtained, that is (x, y, ẋ, ẏ) = (0.12434682, 0.41090873, 0, 0), the bifurcation
parameter ωH = 1.05543263, the couple of the conjugate pure image roots of
Jacobian matrix λ1,2 = ±0.57361864i .

4. CONCLUSIONS

A numerical algorithm is constructed for the Hopf bifurcation of an au-
tonomous nonlinear system. The problem is converted to solving a set of non-
linear equations firstly. The bifurcation point and the couple of pure image
roots of eigen-polynomial of Jacobian matrix at bifurcation point in the system
can be both solved at the same time. It is crucial to construct a set of nonlin-
ear equations that includes bifurcation parameters and pure image roots of the
eigen-matrix at the bifurcation point in the system. A semi-analytic method
is adopted during the constructing process. The expensive calculation prob-
lem with many existing methods, which needs to calculate the eigen-values
and judges whether its real part is zero or not whenever the parameters cha, is
solved in this method.
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Abstract This paper investigates the nonlinear dynamic behaviours of a flexible rotor sys-

tem with elliptical bearing supports. Based on the variational constraint approach,

nonlinear oil film forces and their Jacobians are calculated simultaneously. Ac-

cording to the local nonlinearity of the flexible rotor system, a modal reduction

technique based on a free-interface component mode synthesis technique is uti-

lized to reduce linear degrees-of-freedom of the system. Nonlinear unbalance

periodic responses of the system are obtained by using PNF (Poincaré-Newton-

Floquet) method and the bifurcation point of system can be calculated by using

the combination of the predictor–corrector mechanism and the PNF method. The

local stability and bifurcation behaviours of periodic motions are analysed by the

Floquet theory. The numerical examples show that the schemes of this study not

only save computing efforts but also have good precision.

Keywords: nonlinear dynamics, journal bearing-rotor system, finite element method, bifur-

cation, stability.

1. INTRODUCTION

The nonlinear oil film forces act on few nodal points of rotor individu-
ally, thus bearing-rotor system is a local nonlinear system. A modal reduction
method for reducing a high-order dynamical system with local nonlinearity

G. R. Liu et al. (eds.), Computational Methods, 1761–1765.
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was shown by Zheng and Hasebe [1]. Based on modal synthesis technique
with fixed-interface, a method for reducing linear degrees-of-freedom of a dy-
namic system with local nonlinearity was presented by Zhang et al. [2]. In
this paper, a modified modal synthesis technique with free-interface is pro-
posed to reduce linear degrees-of-freedom of a flexible rotor system. After
the reduction of degrees-of-freedom, the system keeps the nonlinearity. El-
liptical variational equations with Reynolds boundary are solved by finite el-
ement method. The unbalance responses bifurcation point of the system are
obtained by PNF (Poincaré-Newton-Floquet) method and a method consisting
of predictor–corrector mechanism and PNF method.

2. THE BEARING-FLEXIBLE ROTOR SYSTEM
EQUATIONS OF MOTION

A typical bearing-rotor system with local nonlinearity is shown in Figure 1.
Using the finite element method, flexible shaft equations of lateral motion can
be written as

M s Ẍ s + G s Ẋ s + K s X s = Q s + f s(X s, Ẋ s) (1)

where M s ∈ Rn×n ,G s ∈ Rn×n ,K s ∈ Rn×n , Q s ∈ R n and f s(X s, Ẋ s) ∈ R n

are the mass matrix, gyroscope matrix, stiffness matrix, external force vector
and nonlinear force vector, respectively. For a shaft with p nodal points, the
displacement vector is of the form

X s = [x1, y1, ϕ1, ψ1, x2, y2, ϕ2, ψ2, · · · , x p, yp, ϕp, ψp]T (2)

where x j , y j , ϕ j , ψ j ( j = 1, 2, · · · , p) are the lateral translations and rotation
angles of the j th nodal point along the horizontal and vertical direction, respec-
tively. For rotor system supported by m bearings, the forces of bearings are of
the local features as follows

f s(X s, Ẋ s) = [ f s
b (X s

b , Ẋ s
b ), 0 ]T (3)

where X s
b ∈ R4m , f s

b (X s
b , Ẋ s

b ) ∈ R4m can be written as

X s
b = [x1, y1, ϕ1, ψ1, · · · , xm, ym, ϕm, ψm]T (4)

f s
b (X s

b , Ẋ s
b ) = [ fx j , fy j , 0, 0, · · · , fxm, fym, 0, 0]T (5)

1D
1B 2B

Figure 1. Sketch of a bearing-rotor system.
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where fx j and fy j are the horizontal and vertical oil film forces acting on the
j th point of the shaft. To simplify notations, the order of the vector components
is rearranged and Equation (1) can be partitioned as[

M s
bb M s

bc

Ms
cb Ms

cc

] {
Ẍ

s
b

Ẍ
s
c

}
+

[
G s

bb G s
bc

−G sT

bc G s
cc

] {
Ẋ s

b

Ẋ s
c

}
+

[
K s

bb K s
bc

K s
cb K s

cc

] {
X s

b

X s
c

}

=
{

Q s
b

Q s
c

}
+

{
f s

b (X s
b , Ẋ s

b )

0

}
(6)

where X s
b and X s

c are nonlinear degrees-of-freedom and the linear degrees-of-
freedom, respectively. X s is written as a linear combination of nd columns

X s = T1 p′, T1 = [ψb,ψc],

{
p s

b

p s
k

}
=

[
ψ−1

bb −ψ−1
bb ψbk

0 Ikk

] {
X s

b

p s
k

}
= p′ = T2 p

(7)
where the columns of matrix ψc ∈ Rn×nk with the kept elastic eigenmodes
are the mass normalized solutions (K s − ω2

j M s)ψ j = 0 ( j = 1, · · · nk) of the
undamped eigenproblem for ωk ∈ (0, ωcut ). The columns of the matrix ψb ∈
Rn×nb with the residual flexibility modes is calculated as shown in the work by
Craig [3]. The reduced equations become

T T M s T ṗ + T T G s T ṗ + T T K s T p = T T Q s + T T f s (8)

where T = T1 T2. From Equations (7) and (8), it is evident that the unbal-
ance forces of shaft and nonlinear effects definitely are remained. The reduced
dynamic system is given by

Mq̈ + Gq̇ + K q = Q (9)

When state variables X = (q, q̇)T are introduced, the corresponding system
equations in state space are

Ẋ =
{

q̇

M −1(Q − Gq̇ − K q)

}
(10)

3. CALCULATIONS OF NONLINEAR FORCES AND
JACOBIANS OF HYDRODYNAMIC BEARING

Since the Reynolds boundary problem arising in fluid lubrication is equiv-
alent to variational inequalities as shown in the work by Kinderlenhrer and
Stanpacchia [4], nonlinear oil film forces and their Jacobians are calculated
simultaneously as shown in the work by Lu et al. [5].



1764 Y. Lu et al.

4. A PERIODIC SOLUTIONS METHOD
CONSISTING OF PREDICTOR-CORRECTOR
MECHANISM AND
POINCARÉ-NEWTON-FLOQUET

Poincaré-Newton-Floquet (PNF) method covers solution of a two-point
boundary value problem and stability analysis of Floquet bifurcation theory.
A periodic solutions method consisting of predictor-corrector mechanism and
Poincaré-Newton-Floquet Floquet theory as shown in the work by Lu et al. [5].

5. NUMERICAL EXAMPLES AND RESULTS

The unbalance response of a bearing-rotor system with a rigid disk (noted
D1) and two elliptical bearing supports (noted B1, B2, pad arc: 150 deg,
dynamic viscosity of oil: 0.0287 Pas, width-to-diameter ratio: B/d = 0.8).
The shaft (diameter 0.45 m, length 8.4 m, Young’s modulus 2.0 × 1011 N/m2,
shear modulus 7.6923 × 1010 N/m2, mass density 7800 kg/m3) is equally dis-
cretized into six finite elements. Mass eccentricity of the shaft (e s

x = e s
y = 1μm)

and the disk (eD1
x = 0, eD1

y = 1μm) has the same rotating phase angle. Eight
eigenmodes are taken in the examples. The influence of modal reduction on
the accuracy of the result is analysed. For clearance ratio ψ = 0.003, ellip-
tical ration δ = 0.556, ω = 1000 r/min, the periodic solutions of the system
were solved by eight eigenmodes model and full eigenmodes model, respec-
tively. If an initial iterative position is given as Xs(t0), periodic solutions Xs

are solved by the PNF method. The kth periodic errors is εk by the PNF
method. The mode of the leading Floquet multiplier is | fmax| = 0.938861 =
−0.0637515 + 0.936694 j . Periodic solutions at B1 station are xB1 = 2.001 ×
10−4, yB1 = 2.128 × 10−5, ϕB1 = 7.443 × 10−4, ψB1 = −9.405 × 10−7 by
reduced model (eight eigenmodes model). The mode of the leading Floquet
multiplier is | fmax| = 0.938924 = −0.064017 + 0.936739 j . Periodic solution
at B1 station are xB1 = 1.998 × 10−4, yB1 = 2.116 × 10−5, ϕB1 = 7.460×
10−4, ψ B1 = −9.423 × 10−7 by the original model (i.e., full freedom-of-
freedom model). Table 1 infer that the nonlinear oil film forces and their

Table 1. Periodic errors calculated by the different model.

Time: k 1 2 3 4

Error εk 9.99875 × 10−1 1.70111 × 10−2 8.86754 × 10−4 1.37143 × 10−8

(reduced model):

Error εk 9.99832 × 10−1 1.88753 × 10−2 9.57457 × 10−4 1.65259 × 10−8

(original model):
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Jacobians have compatible accuracy and enough accuracy has been achieved
when eight eigenmodes are used. For ψ = 0.003, δ = 0.556, groove-to-width
ratio B/B = 0.4, 0 < ω < 1526 r/min (i.e., ω = 1526 r/min, | fmax| = 1.0000
by using the established method), the periodic solution is stable.

6. CONCLUSION

For the localized nonlinear feature of bearing-flexible rotor system, a modi-
fied modal synthesis technique with free-interface is presented to reduce linear
degrees-of-freedom of model of the flexible rotor system. The accuracy of non-
linear analysis of the system is ensured and the computing costs are cut down.
Variational constraint approach is introduced to continuously revise the varia-
tional form of Reynolds equation. A periodic solution method consisting of the
predictor-corrector mechanism and the PNF method are presented to calculate
the periodic motions and bifurcation points of the system. The numerical ex-
amples show that the schemes of this study not only save computing efforts but
also have good precision.
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Abstract This paper deals with stringer stiffened cylinders on local supports. For shell

structures, the imperfections of the constructions tend to have a major influence on

the structural behaviour. In this contribution, the results of a number of numerical

simulations of discretely supported cylinders with different imperfection shapes

are presented.

Keywords: cylindrical shell, buckling, imperfection, numerical simulation.

1. INTRODUCTION

In the field of structural engineering, thin-walled shell structures are fre-
quently applied. As some examples of this kind of structures, pressure vessels,
tanks, silos and pipelines can be mentioned. The behaviour of this kind of
structures is however complex and the present understanding is mainly due
to the extensive research that was conducted in the past by renowned re-
searchers as Timoshenko [1], Flügge [2], Koiter [3], . . . In the first decades
of last century, this research was mainly on a theoretical base and led to an
expression for the buckling stress of a perfect elastic cylinder subjected to
uniform axial compression (classical elastic critical stress). The correspon-
dence of this expression with the experiments however was dreadful: real
cylinders buckled at a distinctly lower load and furthermore the scatter of
the results was remarkable. In the decades that followed, this discrepancy was
investigated and nowadays the presence of unavoidable geometrical imperfec-
tions in the shell was is widely accepted as one of the main reasons for this
discrepancy.
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Figure 1. An example of a stiffened cylinder.

In the past century, the focus was mainly on uniformly loaded cylinders,
because the structural behaviour of this shell shape had to be thoroughly under-
stood before shell structures with increased complexity could be investigated.
At the dawn of the new century, the situation has changed and cylindrical shells
subjected to other load cases are also intensely studied. The traditional build-up
of a elevated steel silo consists of a cylindrical body and a conical bottom. The
silo is supported by a limited number of columns which are attached to the
cylindrical wall at the joint between the two shell structures. For the cylindrical
shell, this supporting method leads to a non-uniform loading and local instabil-
ity of the cylinder can be expected if the shell thickness is to low. Evidently this
instability has to be avoided and one way of preventing this failure phenomenon
is increasing the wall thickness of the entire cylinder. This is investigated by
Guggenberger et al. [4]. The possible deformation pattern of locally supported
cylinders is however very localized and therefore more economical ways of
preventing the instability may be possible. The present research of the authors
deals with the structural behaviour of locally supported cylinders where the
possible buckling zone is stiffened by means of longitudinal stiffeners in com-
bination with two ring stiffeners. Since the buckles can appear in the cylinder
in the zone just above a support, two longitudinal stiffeners with limited height
are attached to the cylindrical wall above each support. Above and below these
stringers, ring stiffeners are welded to the cylinder. An example of such a stiff-
ened cylinder can be seen in Figure 1.

For this kind of cylinders, adequate design rules have yet to be developed.
Therefore, it is the goal of the present research to develop these design rules
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for stringer stiffened cylinders on local supports. In this contribution, the focus
is on the effect of the geometrical imperfections on these structures.

2. THE NUMERICAL MODEL

The research is divided into two main parts: numerical simulations of the
cylindrical shells and experiments on scale models as a validation of the nu-
merical model. An example of a scale model used in the experiments is shown
in Figure 1. In the test set-up, the cylinder is placed upon four supports. The
main dimensions of the cylinder and the stiffeners are summarized in Table 1.
For more information regarding the test set-up, refer to Van Impe et al. [5]. A
numerical model with the dimensions of Table 1 was developed and numerical
simulations with the finite element package ABAQUS were performed. The
supports were modelled as rigid and the top rim of the cylinder was subjected
to a uniform axial load. This numerical model was validated with the results of
a number of tests on scale models [6].

With this model, a number of simulations were performed. In this contribu-
tion, the results of geometrically and materially non-linear analyses of imperfect
shell structures (GMNIA) are discussed. The results of five analyses are sum-
marized in Table 2. The first column of Table 2 indicates the imperfection shape
that was taken. For each simulation, an eigenmode (EM) of the perfect structure

Table 1. Dimensions of the cylinder and the stiffeners.

Characteristic Value [mm] Characteristic Value [mm]

Cylinder radius 350 Stringer spacing 37

Cylinder wall thickness 0.7 Support width 80

Cylinder length 700 Thickness upper ring 1.5

Stringer width 20 Width upper ring 20

Stringer height 280 Thickness lower ring 0.7

Stringer thickness 1.5 Width lower ring 45

Table 2. Results of the numerical

simulations.

Imperfection Failure Failure

shape load [kN] pattern

EM.1 78.3 Stiffener

EM.2 78.1 Stiffener

EM.3 73.8 Upper ring

EM.4 73.9 Upper ring

EM.5 77.5 Upper ring
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Figure 2. Failure pattern stiffener (left) and upper ring (right).

was chosen as imperfection shape and the imperfection amplitude was 3 mm.
So, for each of the first five eigenmodes of the perfect structure, a simulation
with this imperfection shape was performed. In the second column, the failure
load of this structure is given, while the third column indicates the type of
failure pattern. Basically, two possible failure patterns exist. The first failure
pattern is characterized by buckles in the stringers and the cylindrical shell near
the supports. Here, this failure pattern is called stiffener. For the second failure
pattern, the buckles appear in the cylindrical shell above the upper ring. Sec-
ondary buckles may also appear just below this upper ring. This failure pattern
is called upper ring. Both failure patterns are shown in Figure 2. In order to
be able to draw conclusions from these result, the applied imperfection shapes
have to be explained. For eigenmodes 1, 2 and 5, the buckles appear near the
support. For eigenmodes 3 and 4, the buckles appear above the upper ring.
The results of Table 2 clearly indicate that this imperfection shape has a strong
influence on the failure pattern as well as on the failure load. Furthermore, the
results show that the first eigenmode is not necessarily the most detrimental
imperfection shape.

3. CONCLUSIONS

In this contribution, the effect of the imperfections on the structural be-
haviour of stiffened cylindrical shells on local supports is investigated. These
imperfections have a major influence on the failure load and failure pattern. Fur-
thermore, the results show that the first eigenmode of the perfect construction
is not necessarily the most detrimental imperfection shape.
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Abstract The problem of doubly periodic rigid line inclusions in a rectangular array under

a uniform antiplane shear stress at infinity is dealt with. By using the complex

potential and the conformal mapping technique, the problem is reduced to a

Hilbert one and the exact solution is obtained. The stress singularity factor at

the tip of each rigid line is given in closed form and numerical results show

the contrary dependence on the ‘column’ and ‘stack’ spacings of the rigid lines.

Also, the effective longitudinal shear modulus of the inhomogeneous materials

containing a rectangular array of rigid line inclusions is given as a function of the

rigid line spacings.

Keywords: double period, rigid line, inhomogeneity materials, antiplane shear.

1. INTRODUCTION

Most solid materials contain some defects in the form of cracks, voids or in-
clusions which can cause serious stress concentrations and often lead to failure.
From the viewpoint of inhomogeneities in solids, a slit crack and a rigid line
(sometimes called a hard crack or an inverse crack) are the two extreme cases
of a flat inhomogeneity, namely, E → 0 for a slit crack and E → ∞ for a rigid
line, where E is Young’s modulus. These are the most dangerous extreme cases.
Crack problems have received much attention and have been widely studied.
Rigid line inclusion problems have also aroused much interest. The references
[1–11] provide examples of the contributions to the studies on rigid line inclu-
sions. The interested readers consult also Chapter 11 of Ting’s [12] book.

In many problems of multiple rigid lines, it is sufficient to assume that the
stress field in the vicinity of each rigid line is approximately the same as the
stress field around a single rigid line in a large (i.e., infinite) body. It will be
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seen that rigid lines which are separated by less than several rigid line lengths
interact to alter significantly the state of stress near the rigid line tips. Many
natural and manufactural solid materials may possess a periodic microstructure.
The study on doubly periodic rigid line inclusions is useful in understanding
such an interesting interaction phenomena of the stress field among multiple
rigid line inclusions. Obviously, exact solutions to such problems are most
desirable. To our best knowledge, the exact solution to the doubly periodic
rigid line problem has not been reported. It is noted, however, that several
studies on doubly periodic cracks have been reported [13–17].

In this paper, the problem of doubly periodic rigid line inclusions in a
rectangular array under a uniform antiplane shear stress at infinity is dealt with.
By using the complex potential and a conformal mapping from a rectangular
region to a half-plane, the problem is reduced to a Hilbert one. The exact solution
is obtained, and the interactions among rigid line inclusions are studied.

2. STATEMENT OF THE PROBLEM

The problem to be considered is shown in Figure 1. An infinite elastic
medium with shear modulus G contains doubly periodic rigid line inclusions
parallel to y-axis in a rectangular array. The rigid lines along the same lines are
said to form a ‘column’ and a ‘stack’ is formed in the direction normal to the

y 
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B′    

C′  D  C
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Figure 1. Doubly periodic rigid line array.
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rigid lines. The length of each rigid line is 2a, and the periods are ω1 and ω2 in
the directions of column and stack, respectively. τ∞

yz is the uniform antiplane
shear stress at infinity. τ∞

xz is set to be zero since the stress field induced by it
is not disturbed by the rigid lines.

To formulate the problem, we use the complex potential f(z) (an analytic
function of the complex variable z = x + iy), in terms of which, the antiplane
displacement w, antiplane shear stress components τxz and τyz can be expressed
as [18–20]

w = [f(z) + f(z)]/2 (1)

τxz − iτyz = Gf ′(z) = GF(z) (2)

Where the overbar denotes the complex conjugate and the prime represents
the derivative with respect to the argument.

According to the periodicity of the problem, consider a rectangle
ABCDC′B′A′A (Figure 1). Since w is antisymmetric about A′A and C′C,
∂w/∂x = 0 on A′A and C′C. Since the displacement w is symmetric about
B′C′ and BC, ∂w/∂x = 0 on B′C′ and BC. The rigid line is non-deformable,
so ∂w/∂y = 0 on A′B′and AB. From Equations (1) and (2), it is seen that
∂w/∂x = ReF(z), ∂w/∂y = −ImF(z), where Re and Im denote the real and
imaginary parts of a complex function, respectively. Thus, the boundary con-
dition of the rectangle ABCDC′B′A′A can be expressed as

Im F(z) = 0 on A′B′ and AB (3)

Re F(z) = 0 on the other boundaries (4)

To determine solely the solution of the problem, the resultant stress on the
boundary CD must be prescribed. Noting the symmetry and periodicity of the
problem, from the stress state at infinity and the equilibrium condition, it is
seen that ∫

CD

τyz dx = τ∞
yz ω1/2 (5)

where the length of CD is ω1/2.

3. ANALYSIS AND SOLUTION

Making use of the Jacobian elliptical function

ζ = sn
( z

A
, k

)
(6)
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Figure 2. Conformal transformation (ζ-plane).

or

z = A

∫ ζ

0

dt√
(1 − t2)(1 − k2t2)

(7)

where A is a constant and k is the modulus of the function sn, the rectangular
region ABCDC′B′A′A in the z-plane (Figure 1) is conformally transformed
onto the upper half plane of the complexζ– plane (Figure 2). The transformation
characteristic points are indicated in Figure 2 (the point D in the z-plane is
corresponding to the point infinity in the ζ-plane).

Now, we determine the coordinates of the transformation characteristic
points. In the z-plane OA = ω1/2, AC = ω2/2. From Equation (7), it is seen
that

ω1

2
= A

∫ 1

0

dt√
(1 − t2)(1 − k2t2)

(8)

ω2

2
i = A

∫ 1/k

1

dt√
(1 − t2)(1 − k2t2)

(9)

from Equations (8) and (9), constant A is determined as following

A = ω1

2K(k)
= ω2

2K(k′)
(10)

where k′ is called as the complementary modulus and

k′2= 1 − k2 (11)

K(k) and K(k′) are the complete elliptical integral of the first kind.

K(k) =
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

(12)

From Equations (10) and (11), the constant A, modulus k and complementary
modulus k′ can be determined.
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In the z-plane, AB = a. From Equation (7), it is seen that

ia = A

∫ 1+δ

1

dt√
(1 − t2)(1 − k2t2)

(13)

Letting

t = 1√
1 − k′2τ 2

(14)

Equation (13) becomes

a = A

∫ √
(1+δ)2−1

(1+δ)k
′

0

dτ√
(1 − τ2)(1 − k

′2τ2)
(15)

From Equations (10) and (15), it is seen that

1 + δ = 1/dn

[
2a

ω2

K(k′), k′
]

(16)

Letting

F1(ζ ) = iF(z) = iF

[
A

∫ ζ

0

dt√
(1 − t2)(1 − k2t2)

]
(17)

Equation (2) becomes

τyz + iτxz = GF1(ζ ) (18)

The substitution of Equation (17) into Equations (3) and (4) yields the boundary
conditions of F1(ζ ) on the real axis

ReF1(ζ ) = 0 on [−(1 + δ), −1] and [1, (1 + δ)] (19)

ImF1(ζ ) = 0 on the other parts (20)

The stress has singularities at the rigid tips and is equal to zero at the midpoints
of rigid lines, so F1(ζ) has singularities of order −1/2 at ζ = ±(1 + δ) and
zeros of order 1/2 at ζ = ±1. The stress is finite at the point D in the z-plane,
so F1(ζ) is finite at infinity in the ζ-plane. Thus, the solution of the boundary
problem can be expressed as

F1(ζ) = C0

√
ζ2 − 1

ζ2 − (1 + δ)2
(21)
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Where C0 is a constant, which is determined by Equation (5). The substitution
of Equation (21) into Equation (5) yields

C0AG

∫ ∞

1
k

dζ√
[ζ2 − (1 + δ)2](k2ζ 2 − 1)

= ω1

2
τyz (22)

Letting

ζ = 1

kτ
k1 = k(1 + δ) (23)

The substitution of Equations (23) and (10) into Equation (22) yields

C0 = τ∞
yz

G

K(k)

K(k1)
(24)

From Equations (18), (21) and (24), the stress in complex form is obtained

(τyz + iτxz) = τ∞
yz

K(k)

K(k1)

√
ζ 2 − 1

ζ 2 − (1 + δ)2
(25)

4. STRESS SINGULARITY FACTOR

The stress singularity at a rigid line tip is of great concern in fracture analysis.
To this end, introduce polar coordinates r, θ with the origin at a rigid line tip as
shown in Figure 1, and define the stress singularity factor SIII

S||| = lim
θ=0
r→0

√
2r τyz = lim

θ=0
r→0

√
2r τ∞

yz

K(k)

K( k1 )

√
ζ2 −1

ζ2 − (1 + δ)2
(26)

Equation (26) has a limit in closed form:

S||| = τ∞
yz

K( k1 )

√√√√√√√
ω1 K(k)sn

[
2a

ω2

K(k′), k′
]

dn

[
2a

ω2

K(k′), k′
]

2cn

[
2a

ω2

K(k′), k′
] (27)

It is of interest to examine the influence of the column and stack spacings
of the rigid lines on the stress singularity. Introduce the dimensionless stress
singularity factor β = SIII/(τ

∞
yz

√
a), the dimensionless rigid line spacings b1 =

ω1/(2a) in the stack and b2 = (ω2 − 2a)/(2a) in the column. Using solution (27),
the numerical results of the dimensionless stress singularity factor β for several
values of the dimensionless spacings b1 and b2 are listed in Table 1.
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Table 1. β for several values of b1 and b2.

β

b1 b2 = ∞ b2 = 4 b2 = 1 b2 = 0.5 b2 = 0.2

∞ 1.0000 1.0170 1.1284 1.2861 1.6885

5 0.9840 0.9849 1.0369 1.1357 1.3994

4 0.9750 0.9758 1.0163 1.1035 1.3424

3 0.9579 0.9580 0.9836 1.0535 1.2557

2 0.9138 0.9138 0.9231 0.9662 1.1135

1 0.7641 0.7641 0.7675 0.7726 0.8325

0.5 0.5631 0.5631 0.5631 0.5634 0.5752

0.2 0.3568 0.3568 0.3568 0.3568 0.3570

It is observed from Table 1 that decreasing the dimensionless spacing b2

of the rigid lines in the column while holding the dimensionless spacing b1 of
the rigid lines in the stack fixed, tends to increase the dimensionless singularity
factor β, but decreasing b1 while holding b2 fixed, tends to decrease β. The
numerical results show the contrary dependence of β on the rigid line spacings
in the stack and in the column.

It is also observed from Table 1 that β is greater unity when b1 = ∞ and
b2 is finite, but that its value drops off with the decrease of b1. Thus, for each
value of b2, there must be a value of b1 for which β is equal to unity, the value
of β for a single rigid line. Values of b1 and b2 for which β remains constants
have been determined, and the resulting curves are plotted in Figure 3.

0 1 2 3 4
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10

15

20

0.95

0.99

1.00

1.01

β=1.05

b
1

b
2

Figure 3. Relationship between b1 and b2 for constant values of β.
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If we assume that fracture occurs when the stress singularity factor SIII

reaches an experimentally determined critical value, it may be concluded that
a body containing a rectangular array of rigid lines for which the point (b1, b2)
lies on or below the curve β = 1 in Figure 3 will be of the same strength or
stronger (i.e., will fracture at a higher level of applied stress) than the same
body containing a single rigid line of the same length. Otherwise, the solid
will be weaker than the same material with a single rigid line. It is seen from
Table 1 and Figure 3 that increasing the density of rigid lines in the stack tends
to strengthen the solid under antiplane shear, whereas increasing the density of
rigid lines in the column tends to weaken it.

5. EFFECTIVE LONGITUDINAL
SHEAR MODULUS

The present solution can also be used to determine the effective longitudinal
shear modulus of the inhomogeneous materials containing a rectangular array
of rigid line inclusions. Due to the presence of doubly periodic rigid lines, the
material appears macroscopically continuous and orthotropic. The effective
longitudinal shear moduli Ge,xz and Ge,yz of such an equivalent orthotropic
material (refer to Figure 1) can be estimated by the following averaged stress
and strain relations

τxz = Ge,xz γ xz, τyz = Ge,yz γ yz (28)

where the overbar denotes averaging.
If only uniform τ∞

xz (not be included in Figure 1) is imposed at infinity, the
material will respond as if the rigid lines were not present, that is, Ge,xz remains
unchanged.

Ge,xz = G (29)

Taking 1/b1 and 1/b2 as the dimensionless density of the rigid lines in the stack
and in the column, respectively, the variations of the dimensionless effective
longitudinal shear modulus Ge,yz/G with 1/b1 for several values of 1/b2 are
plotted in Figure 4.

It is observed from Figure 4 that the dimensionless effective longitudinal
shear modulus Ge,yz/G increases progressively with increasing the dimension-
less densities 1/b1 or 1/b2. However, the influence of 1/b2 is much stronger than
the influence of 1/b1. Ge,yz/G tends to infinity as 1/b2 goes up to infinity for a
fixed finite value of 1/b1, whereas it tends to a finite limit ω2

/
( ω2 − 2a) as

1/b1 goes up to infinity for a fixed finite value of 1/b2.
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Figure 4. Variations of Ge,yz/G with 1/b1 for different 1/b2.

6. CONCLUSIONS

By using the complex potential and the conformal mapping technique, the
exact solution for doubly periodic rigid line inclusions under antiplane shear is
obtained, and the stress singularity factor at each rigid line tip is given in closed
form. Also, the effective longitudinal shear modulus is estimated.

The present solution shows that the rigid line densities in the column and in
the stack are two important parameters for the material containing a doubly peri-
odic array of rigid lines. Under antiplane shear, increasing of the density of rigid
lines in the stack tends to strengthen the material, whereas increasing the den-
sity of rigid lines in the column tends to weaken it. A material containing doubly
periodic rigid line inclusions in a rectangular array appears macroscopically or-
thotropic. The effective longitudinal shear modulus increases with increasing
the rigid lines densities in the column or in the stack, and the sensitivity of the
modulus to the density parameters in two directions is very different.
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PRELIMINARY ANALYSIS OF NORMAL
STRENGTH CONCRETE WALLS WITH
OPENINGS USING LAYERED FINITE
ELEMENT METHOD

D.J. Lee, H. Guan, S. Fragomeni, J.H. Doh
School of Engineering, Gold Coast campus, Griffith University, PMB 50 Gold Coast Mail
Centre, Queensland 9726, Australia

Abstract A nonlinear Layered Finite Element Method (LFEM) is applied to investigate the

structural behaviour of reinforced concrete walls with openings. Four half-scale

concrete walls with openings, tested recently in the laboratory, are analysed. The

test variables are the wall slenderness ratio and the size and location of openings.

The walls are axially loaded at an eccentricity of one-sixth of the wall thickness.

The ultimate loads, the load–deflection responses and the crack patterns predicted

by the LFEM are compared with the experimental results. The comparison shows

that the LFEM is effective and accurate.

Keywords: layered finite element method, reinforced concrete walls, openings, vertical and

eccentric loading, slenderness ratio, ultimate loads.

1. INTRODUCTION

This investigation focuses on the ultimate load behaviour of normal strength
concrete walls with openings in one-way action, with normal concrete strengths
and varying slenderness ratios. Previous research on walls with openings was
carried out by only a few researchers [1, 2]. Saheb and Desayi [1] tested 12 wall
panels and Doh and Fragomeni [2] tested only eight wall panels. Hence, the
amount of experimental data is very limited. To achieve more reliable empirical
formulae, more testing and numerical analysis are therefore required.

A nonlinear Layered Finite Element Method (LFEM) was developed by
Guan and Loo [3, 4] for the analysis of punching shear behaviour of flat plate
structures. The LFEM has been used successfully to analyse planar continuum
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structures without openings, such as flat slabs and walls [5]. The method has
been further extended to analyse slab–column connections with openings [6].
In this investigation, the LFEM is used to analyse normal strength concrete
walls with openings.

Test results by Doh and Fragomeni [2] on normal strength half-scale rein-
forced concrete walls with openings will be used to investigate the effectiveness
of the LFEM. The tested panels were supported top and bottom with varying
opening size and location. The LFEM ultimate loads, load–deflection responses
and crack patterns of selected panels are presented and compared to the exper-
imental data.

2. SELECTED EXPERIMENTAL PANELS

Geometrical properties and designations of the selected wall specimens to
be analysed are given in Table 1. In each designation, the first letter O means
one-way action; W means wall; N refers to normal strength concrete; the first
number refers to the number of openings; the second, the type of specimens
(e.g. OWN11). Three cylinders were tested for each wall panel to obtain the
compressive strength. The average mean value of the cylinders was taken as
the concrete compressive mean strength of the wall (fcm) at the day of testing.
The thickness and slenderness ratio of wall specimens as well as concrete
compressive strength are also presented in Table 1.

Figure 1 shows the geometrical shapes, size and location of the opening(s) as
well as the arrangement of the steel mesh for each wall panel. The opening size
has been varied depending on the wall specimen. OWN11 and OWN12 each
have one opening located at the wall centre. OWN21 and OWN22 each have
two openings positioned at the centre and distributed evenly in the horizontal
direction. The steel reinforcement (F41 mesh), which consists of 4 mm diameter
bars at 100 mm vertical and horizontal spacing, is located centrally in a single
layer, and satisfies the minimum requirement of reinforcement ratio in both

Table 1. Geometric and material properties of specimens.

Designation of specimen OWN11 OWN21 OWN12 OWN22

Size of wall, height × length 1200 × 1200 1200 × 1200 1600 × 1600 1600 × 1600

(mm × mm)

Size of opening (mm × mm) 300 × 300 300 × 300 400 × 400 400 × 400

Number of openings 1 2 1 2

Thickness, tw (mm) 40 40 40 40

Slenderness ratio, H/tw 30 30 40 40

Concrete mean strength, fcm (MPa) 53 50 47 51
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(a) OWN11
 

(b) OWN12

 

(c) OWN21

(d) OWN22 

Figure 1. Dimension and arrangement of steel mesh in wall specimens.

directions as specified in AS 3600-01 [7]. The steel reinforcement mesh and
three diagonal reinforcements at each corner of openings were arranged to
prevent early shrinkage cracking of walls.

The test rig was previously designed by Doh [8] as shown in Figure 2a and
the test set-up and test regime is described in more detail by Doh and Fragomeni
[2]. Figure 2b shows a schematic of typical deflection expected from the one-
way loading. To ensure one-way action the walls were loaded at an eccentricity
of t/6. The loading was undertaken at an incremental rate of 1.5 tonnes, where
deflection readings were also taken using dial gauges at the points indicated in
Figures 2c and d.

The selected concrete walls are modelled in LFEM using the degenerated
shell elements, each of which is subdivided into a number of layers fully bonded
together. Eight concrete layers are adopted. Each layer has a uniform thickness
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(a) Test rig set-up (b) One-way action 

(c) Wall panel with one opening (d) Wall panel with two openings 
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Figure 2. Test set-up and location of dial gauges.

and its own material properties, which are assumed to be constant through
the layer thickness. In this study, both front and back layers representing the
compression and tension surfaces are made thinner as compared to the inner
layers. The horizontal and vertical steel reinforcement meshes are represented
by two smeared layers of equivalent thickness as shown in Figure 3. Each layer
has gauss points on its mid-surface. The stresses of each layer are computed at
the gauss points and are assumed to be constant over the layer thickness. This
assumption results in a stepwise approximation of the stress distribution over
the thickness. The material responses at the gauss points can be elastic, plastic
or fracture according to the loading history.
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Figure 3. Construction of typical layered system.

In the LFEM, the incremental and iterative procedure, based on the Newton–
Raphson method, is used to compute the nonlinear solution. Both the geometric
and material nonlinearities are taken into account in the analysis. The LFEM is
also able to offer post-processing functions including the graphical represen-
tation of the deformed shape and crack patterns of the wall panels.

Due to symmetry, only half of each wall needs to be analysed using the
LFEM. A convergence study was initially carried out for wall specimen
OWN12 to determine the most appropriate finite element mesh. In total, five
mesh schemes were attempted. They are referred to as MS1 to MS5, and are
shown in Figure 4.

MS1 is a very coarse mesh having uniform element size. This mesh is
further refined to achieve an accurate analysis from MS2 to MS5. The size
of elements around the opening is made relatively smaller to deal with stress
concentration around the corner of the openings. The corresponding nodal and
element numbers of the five mesh schemes are given in Table 2. The ultimate
load Nu and the maximum deflection δmax for each mesh scheme are also
presented.

(a) MS1 (b) MS2 (c) MS3 (d) MS4  (e) MS5 

Figure 4. Mesh schemes for OWN12.
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Table 2. Convergence results of OWN12

Mesh scheme MS1 MS2 MS3 MS4 MS5

Number of elements 30 64 120 144 182

Number of nodes 117 233 413 493 613

Ultimate load, Nu,LFEM (kN) 281.1 278.1 278.1 278.1 278.1

 

(a) OWN11 (b) OWN21 (c)  OWN12 (d) OWN22 

Figure 5. Mesh scheme of specimens.

The ultimate loads Nu , derived by the LFEM, have apparently converged to
278.1 kN. MS4 is selected as the appropriate mesh for OWN12 taking into ac-
count the finer mesh around the corner of the opening. This can better simulate
the stress distribution around the range. In addition, MS4 is more economical
than MS5 in terms of lesser elements and nodal numbers. Based on this conver-
gence study, the mesh scheme for the remaining wall specimens can be readily
determined. The mesh schemes for all the specimens are shown in Figure 5.

3. ANALYSIS AND COMPARISON

The experimental and LFEM ultimate loads and maximum deflections are
presented in Table 3. The ratio between the experimental and the LFEM pre-
dictions are also included.

The comparison shows that the LFEM gives reasonable and satisfactory
prediction, where the average of the load and deflection ratios are close to
unity. The comparison between the experimental and the LFEM ultimate loads
is presented in Figure 6a and the load–deflection response of OWN12 is shown
in Figure 6b. These results are further evidence of good prediction by the LFEM.

The deflection predicted by the LFEM as presented in Figure 7 for wall
panels, OWN12 and OWN22, demonstrates typical one-way action. It is evident
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Table 3. Experimental and LFEM results

Designation of specimen OWN11 OWN21 OWN12 OWN22 Average

Nu,exp (kN) 309.0 191.3 294.3 195.7

Nu,LFEM (kN) 351.7 251.6 278.1 214.8
Ratio, Nu,exp/Nu,LFEM 0.879 0.760 1.058 0.911 0.902

δmax,exp (mm) 5.7 4.8 5.3 5.0

δmax,LFEM (mm) 5.5 4.9 6.2 5.8

Ratio, δmax,exp/δmax,LFEM 1.027 0.976 0.857 0.861 0.930

(a) Ultimate loads of each specimens (b)  Load--deflection response 

Figure 6. Comparison between experimental and LFEM results.

that the eccentrically loaded walls, simply supported at the top and bottom,
deflect in a single curvature. This is identical to the experimental observation.

The crack patterns predicted by the LFEM closely resemble the test results,
as shown in Figure 8 for OWN12 and OWN22. The major horizontal cracks

(a) OWN12  (b) OWN22 

−

−

−

−

Figure 7. Typical deformed shapes predicted by the LFEM.
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(a) LFEM prediction-OWN12 (b) Experimental result-OWN12  

 

(c) LFEM prediction-OWN22 (d) Experimental result-OWN22 

0

Figure 8. Typical crack patterns of OWN12 and OWN22.

through the openings are accurately predicted by the LFEM. But there seem
to be more cracks above and below the openings in the LFEM predictions,
whereas actual cracks were more distinct. This is generally expected by any
finite element analysis [9].

4. CONCLUSIONS

Based on the analysis of four one-way wall panels with openings, the fol-
lowing conclusions are made,
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1. The convergence study has enabled a selection of the most appropriate
meshes for the analysis of each wall panel using the LFEM.

2. The mean ratio of the ultimate load between the experimental and the LFEM
results is 0.902 and that of the maximum deflection is 0.930, which are
considered to be satisfactory.

3. The crack patterns predicted by the LFEM closely resemble the test results.
4. The LFEM is effective and reliable in analysing reinforced concrete walls

with either one or two openings.
Based on the satisfactory outcomes, further analysis work will be conducted
to cover walls with openings in not only one-way action but also two-way
action (i.e. walls supported on all sides). Further, walls with openings made
of high strength concrete will be investigated using the LFEM.
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Abstract A simple analytical model that can easily be implemented in MATLAB (Ma-

trix Laboratory) is presented for accurately predicting the moment-curvature and

load-deflection relations of concrete beams reinforced with internal tensile steel

bars and rehabilitated with externally bonded carbon fibre reinforced polymer

(CFRP) strips. The model has been verified by comparing model results with

those obtained experimentally. The model results and test data show that, with

adequate bond strength, application of a CFRP strip to a reinforced concrete

beam significantly increases the capacity. Currently, the model does not consider

debonding failure of CFRP from the beam.

Keywords: concrete beam, fibre reinforced polymer, rehabilitation, computer model.

1. INTRODUCTION

Reinforced concrete structures undergo continuous deterioration through-
out their service life, and many are required to support loads in excess of their
original design loads. Such structures need to be replaced or rehabilitated, with
rehabilitation being the cheapest alternative. Rehabilitation of concrete beams
with CFRP is becoming an increasingly popular method. Desirable characteris-
tics of CFRP include: high strength-to-weight ratio, corrosion resistance, high
impact resistance and low maintenance. Work by many researchers [1, 2] indi-
cate that, with adequate bond strength and anchorage, application of a CFRP
strip to the tension face of a beam significantly increases capacity. Recently,
Duthinh and Starnes [3] presented an iterative numerical approach to predict
the flexural behaviour of CFRP rehabilitated concrete beams. Their approach
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involved iteration over two variables. In this chapter, an approach involving
only one variable is presented.

2. SIMPLIFIED COMPUTATIONAL MODEL

Figure 1 shows the four point bending arrangement used for testing of the
CFRP reinforced concrete beams discussed in this chapter. The length variables
used in the formulation of the simplified computational model to predict flexural
behaviour of the beam are defined in Figure 1.

The stress–strain behaviour for steel is assumed to be linear elastic until
steel yields and then perfectly plastic with a constant yield stress of fsy in the
post-yield region. The constitutive behaviour of concrete is represented by the
Hognestad stress parabola. The model assumes beam failure by compressive
concrete crushing at ultimate concrete strain, εcu, of 0.003. The problem is
formulated to solve iteratively over the top fibre concrete strain, εcm . For the
iteration, we choose strain increment �ε as εcm /N, where N is the total number
of steps. A value of 20 for N has been used in the present work. The current
value of the extreme compressive fibre concrete strain can be defined by

εcm = (n − 1)�ε (1)

where n is the current step number.
Using linear elastic stress–strain relations, the steel force, Fs, for the current

step can be expressed in terms of the neutral axis depth, dn as

Fs = As Esεcm

(
d − dn

dn

)
(2)

where As and Es, respectively, denote the area and Young’s modulus of steel,
and d represents the depth to the tensile steel. Similarly, the FRP strip force,

P P

FRPL FRP
Laminate

 q  L-2q q 

Figure 1. Four-point bending arrangement.
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Ffrp, can be expressed as

Ffrp = Afrp Efrp εcm

(
h − dn

dn

)
(3)

where Afrp and Efrp are area and Young’s modulus, respectively, of FRP.
The concrete force, Fc, can be expressed by the integral of Hognestad stress

parabola as

Fc = b f ′
cdn

(
εcm

ε0

− ε2
cm

3ε2
0

)
(4)

where εo is the strain at which the concrete attains its compressive strength, f
′
c .

The neutral axis depth, dn, can now be determined by solving the following
equilibrium equation:

Fc = Fs + Ffrp. (5)

Knowing dn, one can determine the FRP and steel strains, εfrp and εs, respec-
tively. If FRP strain exceeds ultimate tensile strain, εfrpu, Ffrp is set to zero.
Similarly, if steel strain exceeds yield strain, εsy, Fs is set to As fsy, where
fsy is the yield stress of steel. Now equation (5) is solved again for the new
value of dn.

The moment of resistance, M , and the mid-span curvature, φo can be deter-
mined from

M = Fs(d − c) + Ffrp(h − c) (6a)

φo = εcm/dn. (6b)

where c is the depth to the centroid of the Hognestad stress parabola. Next the
step number, n, is increased by 1, and new values for M and φo are calculated.
The procedure is repeated until n reaches the value N. The result of this will be
a series of moment-curvature values. These moment-curvature values are used
to determine the beam curvature distribution along the length. In the final phase
of the model, the central deflection, δ of the beam is determined by invoking
the virtual work method.

3. NUMERICAL RESULTS AND DISCUSSION

The simple computational model presented in the previous section was
implemented in MATLAB software package. A comparison of the moment-
curvature and load-deflection results from the simple model with those obtained
experimentally from two 3 m long (L = 3 m) beams (beam I and beam II) at
James Cook University are presented in Figure 2 and 3.
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Figure 2. Moment—curvature relation for beam I and beam II.

The experimental beams had cross-section dimensions of 150 mm width ×
250 mm height. The internal reinforcing steel consisted of 2Y12 reinforcing
bars (with As = 226 mm2 and fsy = 400 MPa) 25 mm from the extreme tensile
fibres. No shear reinforcement was provided. Both beams were cured for 28 days
after construction. Before applying CFRP, the beams were loaded in four point
bending (with q = L/3) until steel starts yielding and then unloaded. Approxi-
mately 2 months later, the beams were rehabilitated by bonding a 80 mm wide,

Figure 3. Load—deflection relation for beam II.
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1.2 mm thick, unidirectional CFRP laminate (Sika Carbodur 80) to the tension
face of each beam. The rehabilitated beams were tested in four point bending
7 days later and experimental data required for moment-curvature and load-
deflection curves were recorded. For numerical computations, Efrp was taken
as the manufacturer’s recommended value of 150 GPa and Es as 200 GPa. The
ultimate tensile strength of CFRP was taken as 2400 MPa. A f

′
c value of 31

MPa based on concrete cylinder testing was used.
Figures 2 and 3 illustrate strong congruence of moment-curvature and load-

deflection relations between experimental and model prediction results. This
indicates that the simple algorithm can be used to predict the flexural behaviour
of CFRP rehabilitated concrete beams. Currently, the model assumes a perfect
CFRP/concrete bond, prior to beam failure by CFRP tensile rupture or compres-
sive concrete crushing. In contrast to this, the experimental results show that
ultimate beam failure has occurred by debonding near the CFRP/concrete inter-
face, before either of the aforementioned failure modes. Therefore, the model
has not predicted ultimate moment capacity accurately. Authors are currently
further investigating this failure mode.

4. CONCLUSION

A simple computational model that can predict the moment-curvature and
load-deflection relations for CFRP rehabilitated beams with internal tensile
steel reinforcement has been presented. The model results have been verified
by comparing with experimental results. The model takes into account CFRP
tension failure and compressive concrete crushing failure modes. However,
currently, the debonding near the CFRP/concrete interface is not taken into
account and, therefore, the ultimate capacity predictions from model are not
accurate.
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Abstract Owing to the vast developments in computer science and technologies, recent

years have seen a renewal of interest in the computational modelling of ma-

terial failure in meso-macro scale. The multi-scale capability of the method is

recognized as a promising tool in attacking formidable problems in fracture me-

chanics for heterogeneous media, such as rock, concrete or ceramic, and, indeed,

has been successfully applied to the various engineering problems for industrial

materials. These models have established themselves as a powerful and realistic

alternative to the non-local continuum models for softening damage and frac-

turing. However, the quantitative macro response (such as stress–strain) from

most of the current meso-mechanical models is not close enough to the be-

haviour of real materials. One reason for this shortcoming is that most of these

models are two-dimensional. In this paper, a three-dimensional material failure

process analysis model, MFPA3D, is proposed. The failure behaviour of brit-

tle materials can be simulated by this three-dimensional model. The model can

realistically simulate the inelastic triaxial behaviour, strength limits, and post-

peak response for both tension and compression. The capabilities of the MFPA3D

model to generate a wide range of damage morphologies are examined in this

paper.

Keywords: failure process, numerical simulation, elastic damage.

1. INTRODUCTION

There is greatly increasing interest and activity in the modelling failure
mechanics in heterogeneous materials, such as rocks, concretes, ceramics etc.,
as the vast developments in computer science and technologies in the past
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decades. These materials consist of crystals, grains, cementitious materials,
voids, pores, cracks and the like. These heterogeneities give rise to local dif-
ferential strain and stress within stressed brittle materials. Heterogeneities play
an important role during fracture process to create new cracks or make existing
cracks propagate when subjected to various loading cases. A lot of numerical
methods were applied to the study of the microscopic processes involved in
brittle fracture of rock-like materials. However, due to the limited computing
performance and complicated data processing, very few numerical codes can
simulate brittle failure process satisfactorily. The numbers of the total elements
in most of the numerical simulations were not more than 20,000 [1, 2]. It is well
know that a great number of elements are needed to simulate the failure process
in heterogeneous materials in order to take various weakness or initial cracks
into account. The failure process of rocks is three dimensional. Even though
many models can simulate the failure process, including crack initiation, prop-
agation and coalescence, they are developed just based on two dimension [3].
Most of the cracks in geologic body are three dimensional. Cracks propagate
and coalesce in three-dimensional space. Many rock mechanical problems ex-
cept plain strain problems and plain stress problems cannot be simplified to
two-dimension problems. Apparently, the ability to model the brittle failure of
heterogeneous materials lies in the high speed stress solver in computer cal-
culating and data process to deal with great number of elements and suitable
technique to demonstrate three-dimensional failure process properly. In this
respect, we present a newly developed numerical code RFPA3D (Material Fail-
ure Process Analysis-3D) to study the brittle failure process of heterogeneous
materials in this paper.

2. BRIEF DESCRIPTION OF MFPA3D

2.1 Heterogeneity in MFPA3D

The MFPA3D code has been developed by considering the deformation of
an elastic material containing an initial random distribution of micro-features
to simulate the progressive failure in a more visual way, including simulation
of the failure process, failure induced further rupture and failure induced stress
redistribution. Mechanical properties in each element, such as elastic modu-
lus, peak strength, passion ratio and weight, are the same. For heterogeneity,
the material properties for elements are randomly distributed throughout the
specimen by following a Weibull distribution. We define m as the homogeneity
index of the rock. A larger m implies that more elements with the mechani-
cal properties approximated to the mean value and a more homogeneous rock
specimen (Figure 1).



3D Modelling of Brittle Fracture 1801

D
is

tr
ib

ut
io

n 
D

en
si

ty

Elastic Modulus

m=2 m=20

f(e)

m=15

m=7.0

E
0

m=3.0

m=1.1

Figure 1. MFPA3D models with different homogeneity indices.

2.2 Elastic damage evolution in MFPA3D

Each element in the numerical model has an elastic-brittle constitutive law
during the loading process. When the stress increases to a value leading to
the failure of the element, the elastic modulus of the element may degrade
gradually as damage progresses. In the presented paper, it was assumed that
each element has a Mohr–Coulomb failure criterion envelope with a tensile
cut-off on mesoscopic scale, and the failure of elements may be either in shear
or in tension mode. If the stress condition of the element meets the shear failure
criterion, damage variable Dcan be described by the following function:

D =
⎧⎨
⎩

0 ε1 < εc0

1 − σrc

E0ε1

ε1 ≥ εc0

(1)

Where σr t is the residual compressive strength and ε is the effective strain.
E0 is the initial elastic modulus. If the stress condition of the element meets the
tensile failure criterion, the evolution of damage variable D can be summarized
as following:

D =

⎧⎪⎪⎨
⎪⎪⎩

0 (ε̄ < εt0)

1 − σr t

ε̄E0

(εt0 ≤ ε̄ ≤ εut )

1 (ε̄ > εut )

(2)

where σr t is the residual tensile strength of the element and ε is the effective
strain. εt0 and εut are strain at the failure point and ultimate effective strain.
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2.3 Residual strength

A parameter termed residual coefficient β is introduced to define the post-
strength in the presented elastobrittle model, and it can be described as the
following function: σrc=βσc. The peak strength of each element keeps constant
before the stress of the element satisfies the strength criterion. Residual coeffi-
cient describes the variation of the degradation behaviour of the specimens. The
stress–strain curves are controlled by residual coefficient and display different
strain-softening features. Numerical specimens with higher residual strength
coefficient show more ductile features after the peak strength, while low resid-
ual strength will lead to brittle failure. The slope of the dashed lines are elastic
modulus after failure.

3. NUMERICAL SIMULATION RESULTS

In this section, three numerical tests simulated by MFPA3D were under-
taken to analyse the complete failure process of brittle materials. All numeri-
cal specimens were divided into 128,000 elements. A high speed FEM solver
was adopted in MFPA3D code. Not only the crack initiation, propagation and
coalescence but also the complete progressive failure process and complete
stress–strain curves can be obtained. Figure 2a shows the failure mode of a
rock sample containing a circular opening subjected to uniaxial compression.
Stress concentration near the circular opening was released gradually when
cracks around the opening initiated and propagated along the axial stress ori-
entation. Figure 2b is the axial stress-displacement curve. It experienced four
stages: linear deformation, deformation accelerating caused by crack propaga-
tion near the opening, collapse caused by coalescence of the cracks and residual
deformation. Figure 2c shows the brittle failure of a numerical specimen sub-
jected to axial compressive loading. We can find only two main shear cracks
which leaded to the brittle fracturing from the surface of the specimen. From

rc 

c0

c

c0

c

c0

rc-c

b =0.1 b =0.5 b =1.0

rc

Figure 2. Stress–strain curves with different residual coefficients.
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Figure 3. Numerical results simulated by MFPA3D.

three-dimensional numerical pictures, we can find that two shear cracks on the
surface were caused by a tensile crack inside the specimen. Figure 2d shows the
maximum principal stress field of a ring subjected to compression imposed by
a relative motion of the upper and lower loading plates. Compressive stress was
found in the parts near the plates. Two compressive stress zones formed which
prevented the propagation of cracks from propagating along the compressive
stress orientation.

The presented model can simulate non-linear deformability of a quasi-brittle
behaviour with an ideal brittle constitutive law with a strength and elastic mod-
ulus reduction of weaken element by introducing micro-heterogeneities into
the model. Although the constitutive law for the individual element in the nu-
merical model is nearly brittle, a substantial non-linearity exists before the ring
reached its peak strength. Even though each element obeys a simple constitutive
law at mesoscopic level, the quantitative macro response demonstrate strong
non-linearity during the complete progressive failure process.
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Abstract Cracking of reinforced concrete structures reduces stiffness and a subsequent de-

terioration in the capacity of structural elements. This study has investigated the

use of a central difference approximation to obtain curvature mode shapes for

structural elements based on the measured natural frequency and modal displace-

ments for each load step. The findings of numerical analysis, conducted using

finite element software, has been compared with experimental results. This pa-

per also presents a proposed method of damage detection for structural elements

based on an estimate of stiffness degradation using nonprismatic beam element

called the Modified Flexure Damage Index (MFDI). This approach estimates

damage in terms of the change in the fundamental frequency of the structural

elements. It has been demonstrated that the MFDI and static strength approach

provide a realistic estimate of crack damage on nonprismatic reinforced concrete

beams.

Keywords: nonprismatic, strength deterioration, curvature mode, reinforced concrete.

1. INTRODUCTION

Nonprismatic beams; e.g., to resist shear deformations caused by induced
loads are commonly used in long highway bridge structures. They are less com-
mon in building structures [1]. Analytical procedures to predict the capacity of
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nonprismatic members are complex due to both the modulus of elasticity Ex and
moment of inertia Ix which vary along length of the member. In general, design
criteria for the prismatic members, for examples beam and column elements, in
a ductile earthquake resistant structures, are well documented and codified, e.g.,
the American Concrete Institute (ACI), Australian/New Zealand (AS/NZ) and
Japanese Codes. Similar, Standards are not available for nonprismatic members
and thus such members require special consideration in structural analysis and
design. Fertis [1] proposed the concept and method of the equivalent systems
for the analysis of prismatic and nonprismatic members. This method provided
an accurate and efficient method for such problems, and it simplified a great
deal the computational work that was required in inelastic solution subjected
to static loads. In addition, this method dealt with the derivation and used of
equivalent systems of constant stiffness rigidity EI, where both Ex and Ix of
the original member varied in any arbitrary manner, and where the material
of the member along its length was permitted to be stressed well beyond its
elastic limit. However, this research has not adequately addressed the strength
deterioration of nonprismatic reinforced concrete beams.

Stress concentrations in particular regions facilitate propagation of cracks
or localized damage and these cause strength deterioration of the members. It
has been observed that once cracks occur in a beam the stiffness is reduced and
the damping in the beam increases. The natural frequency decreases and the
vibration mode changes are affected by stiffness reductions along the beam.
Most of the previous investigations have placed emphasis on using the de-
crease in frequency or the increase in damping to detect cracks. Very little
work regarding the strength deterioration in nonprismatic reinforced concrete
beams has been done by using the changes in the mode shapes to predict the
crack. The changes of the mode shapes to detect damaged structures was con-
sidered by Yuen [2] through the use of a finite element method to analyse
a cantilever reinforced concrete beam to obtain the natural frequencies and
the mode shapes of a damaged beam. The frequency changes can be used to
determine the presence of crack or damage in a structure. However, the deter-
mination of crack location is not directly correlated to the frequency changes.
This is because cracks at two different locations associated with certain crack
lengths may cause the same amount of frequency change. Other parameters
need to be determined which will directly identify the crack location in a
structure [3].

In this paper, curvature mode shapes are introduced to detect the strength
deterioration in nonprismatic reinforced concrete beams. The different in the
curvature mode shapes between the intact and damaged beams is utilized to de-
tect crack locations. The changes in the curvature mode shapes are shown to be
localized in the region of damage compared to the changes in the displacement
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mode shapes. Simply supported nonprismatic beams have been investigated
in the experimental tests and were used in the numerical analysis using finite
element method (FEM).

2. THEORETICAL REVIEW

2.1 Structural system of damaged beam

A damaged beam can be modelled by reducing its flexural rigidity (EI) only
if plastic hinges have not been found. A damaged beam also has changed
dynamic characteristics, i.e., the natural frequency reduces and thus is the
potential for changes in the mode shapes. Curvature (κ) mode shapes are related
to the flexural stiffness of cross-sections [3] and is defined by

κ = M

E I
(1)

where M is the bending moment at a section, E is the modulus of elasticity and
I is the second moment of the cross-sectional area.

When a crack occurs it reduces the flexural rigidity of the beam (particu-
larly at damaged region) and an increase in the magnitude of curvature of the
beam results. The curvature changes are local in nature and hence can be used
to detect and locate a crack in the beam. The curvature change increases with
reduction in the value of the stiffness rigidity, and therefore, the amount of dam-
age can be obtained from the magnitude of changes in the curvature. Dynamic
characteristics of an intact beam are not affected by an external force where
{F} = {0}. However, decrease in the flexural rigidity causes a change in the
stiffness matrix. This assumes any change to the mass matrix can be neglected.
It was assumed that damage in a beam will affect only to the stiffness matrix
and not to the mass matrix in the eigenvalue problem formulation and thus is
consistent the assumption of Pandey [3]. The eigenvalue representation of an
intact beam can be written as Equation (2)

([K ] − ω2
i [M]){ai } = {0} (2)

and for the cracked beam as Equation (3)

([K ′]) − ω′2
i [M]){a′

i } = {0} (3)

where K is the stiffness matrix of an intact beam, K ′ is the stiffness matrix
of a damaged beam, M is the mass of the intact beam, M ′ is the mass of the
damaged beam, ωi is the i th natural frequency (eigenvalue) of the intact beam,
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ω′
i is the i th natural frequency (eigenvalue) of the damaged beam, ai is the

i th displacement eigenvector of the intact beam and a′
i is the i th displacement

eigenvector of the damaged beam. The damage level was modelled by adjusting
the modulus of elasticity (E) in the finite element analysis.

The displacement mode shape results from the finite element analysis were
used to estimate the curvature mode shapes of nonprismatic beams by using a
central difference approximation as described by Equation (4)

κ = yi+1 − 2yi + yi−1

l2
(4)

where yi is the i th displacement mode and l is an effective length of the el-
ement. At each specified damage location, the percentage change in the nat-
ural frequency, the absolute difference of the displacement mode shapes and
absolute difference of the curvature mode shapes were computed. The exper-
iment conducted in the University of Gadjah Mada, the displacement modes
were measured at each time increment and then by using the central difference
method its curvature mode shape were obtained [4].

2.2 Estimation of residual strength

A post-cracking/residual flexural rigidity of the reinforced concrete beam
can be estimated by computing the absolute difference of mode curvature based
on the intact and damaged beams. Pandey [3] detected damage locations based
on increases in the mode curvature. The curvature mode of the beam is derived
from the displacement by central difference approximation (Equation 4) and
the curvature at each point is also defined by using the relative displacements
described by Equation (4). The natural frequency and curvature mode at each
step of loading were measured, and based on these measurements the flexural
rigidity can be written in terms of the function of natural frequency ωn as
detailed in Equation (5)

E I = mω2
nl3

c
(5)

where m is the uniform mass density and c is a viscous damping constant. Sub-
stituting may be Equation (4) into Equation (1) obtaining the bending moment
at any cross section M . The second integral of the general differential equation
of a beam element enables computation of the deflection and maximum stress
at any cross section along the beam. Application of this equation and assuming
the first crack occurs at the first yield, the damage index (DI) can be formulated
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Figure 1. Moment curvature relationship for predicting the damage index.

as described by Equation (6)

DI = (1/ω2
x ) − (1/ω2

r )

(1/ω2
0 − 1/ω2

r )
(6)

which ωx = natural frequency at the estimated point, ωr = natural frequency at
the initial crack and ω0 = natural frequency at the maximum damage. Previous
researchers [5] have modified the damage index, i.e., called Modified Flexure
Damage Index (MFDI), which relies on the use of the bilinear moment curvature
relationship, refer Figure 1. This approach has been adopted in the formulation
of the damage index presented in Equation (7). It has been assured that the
first crack occurs at the first yield and the damage index can be redefined using
Equation (7).

MFDI = (κx/Mx ) − (κy/My)

(κ0/M0) − (κy/My)
(7)

where the indexing of x, y and 0 represents the specific point being estimated,
yield condition and maximum damage condition.

3. EXPERIMENTAL PROGRAM

An experimental program was conducted to detect damage to nonprismatic
beams resulting from a series of load regimes. The investigation formed partic-
ularly on changes of curvature mode shapes of concrete beam elements when
localized damage occurred. Eight 3 m long, nonprismatic beam specimens
were fabricated simultaneously in the University of Gadjah Mada, Structures
Laboratory [4]. The specimens were divided into four groups of beams with
each group had two typical reinforced beams. The 28-day concrete compressive
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Table 1. Beam specimen details.

Longitudinal Transversal Material

Typical Specimen reinforcement reinforcement Treatment properties

Beam 1 A 4Ø6 Ø6–200 —

B 4Ø6 Ø6–200 — Concrete:

Beam 2 C 4Ø10 Ø6–75 and Ø6–150 — f ′
c = 33.6 MPa

D 4Ø10 Ø6–75 and Ø6–150 — Ec = 2.8 × 104 MPa

Beam 3 E 4Ø10 Ø6–75 and Ø6–150 — Steel:

F 4Ø10 Ø6–75 and Ø6–150 — fy = 290 MPa

Beam 4 G 4Ø10 Ø6–75 and Ø6–150 App. initial Ey = 2 × 105 MPa

crack

H 4Ø10 Ø6–75 and Ø6–150 App. initial

crack

strength of the ready-mix concrete averaged 33.6 MPa for testing and analysis
of the dynamic response. The average yield stress of the 4 mm and 6 mm bar di-
ameter steel reinforcement was 290 MPa. Reinforcement details and geometry
of the beam specimens are presented in Table 1 and Figure 2.

The natural frequency and damping ratio of the beam were determined by
measuring the free vibration on beam specimens 1A and 1B due to impact
and static loads. Static load was applied from zero in increment of 980 N until
collapse occurred. Preliminary analysis of the beam indicated that maximum
displacement would occur at nodal point 15. Hence, a concentrated load was
applied at this point in the experiment. At each load step, these measurements
of the frequency and amplitude of vibration were measured at each nodal and
an average value recorded. The value of natural frequency could be directly
obtained by processing the recorded data using FFTSCOPE program devel-
oped by Sulistiyo and Haryanto [6]. During the investigation, the displacement

Figure 2. Typical specimens of nonprismatic beams.
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at nodal points 11, 13, 15, 17 and 19 were subsequently observed at each
increased load. Displacement measurements at five points were also recorded
by dial gauges. Figure 3 shows applied load-maximum displacement response
for four types of specimen and Figure 4 shows the frequency-applied load
relationship.

4. NUMERICAL ANALYSIS

The numerical analysis of the nonprismatic beams focused on the displace-
ment at node 15 (i.e., the maximum displacement) and the computed curvature
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Figure 5. Typical displacement mode shapes of beam 3F at the first and second cracks.

mode and absolute difference of the curvature mode were compared with the
experimental results. The two dimensional finite element program (SAP2000)
was used to compute the natural frequency for each specimen. In this analysis,
beams were modelled as solid and beam elements [7]. The equivalent method
was adopted to calculate the equivalent moment of inertia at each element.
Each 3 m, nonprismatic beam specimen was descretized into 30 elements with
length of 100 mm and 31 nodes. The flexural rigidity of the intact element
was assumed of 100% (EImax), and the EI of damage element was reduced
20% gradually. The reduction of EI in the numerical computation is relied on
the element range of the experimental damage patterns, so that the determina-
tion of damaged element was different at each applied load. In other words,
reduction on an element EI was depended on the crack patterns and the ap-
plied load increase. Based on this numerical computation, the displacement
and the natural frequency were identified at each reduction of the EI and the
displacement mode and curvature mode calculated and compared with the ex-
perimental results. The absolute difference of the curvature mode was also
identified to determine the damage index and residual strength. Figure 5 shows
a typical of plot of the displacement modes at the first and second cracks for
beam 3F.

5. RESULTS AND DISCUSSION

The first two beams were used to measure natural frequency. Excitations for
overall specimens were achieved by the measured of natural frequencies were
in a range of 32.2–34.6 Hz. The frequency of mechanical vibrator was always
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lower than the natural frequency. At small applied loads, the frequency de-
creases tend to be linear curves, while at higher static loads the curve decreases
gradually and nonlinearly (Figure 4). This result was consistent with the fact
that the natural frequency of the beam reduced along with the level of damage
propagation.

During the investigation, the cracked damage beams were observed at the
first to third cracks representing a sequence of the damage. The damage loca-
tions and crack patterns were then measured by a micro crack instrument and
plotted into the descretized elements assuming as a basis of stiffness reduction
in the numerical analysis. At each crack load, the numerical computation was
conducted by reducing of the flexural rigidity gradually.

Based on the crack loads, the residual strength of the beam specimen can
be estimated. Theoretically the damage index can be estimated depending on
the residual strength or vice versa. The damage index is a function of the
natural frequency between the damaged and intact beam. Defining the curvature
mode and the absolute difference of the curvature mode was dependent on the
first displacement mode shape resulting from the finite element analysis. The
residual strength of the damaged beam was achieved in three ways; firstly by
using the damage index formulation found from the recorded dial gauge and
static load, secondly by using the natural frequency substituted into Equation
(6) or (7) and thirdly by plotting the absolute difference of the experimental
curvature mode and the numerical curvature mode. The complete results are
summarized in Table 2.

6. CONCLUSIONS

The numerical results for the simply supported nonprismatic beam model
demonstrate the capability of curvature mode shapes in detecting and locating
a state of damage. It has been shown that changes in the curvature mode shapes
are localized in the damage regions. In contrast, changes in the displacement
mode shapes are not localized and therefore they do not provide any indication
of the damage location. To obtain the curvature mode shapes experimentally
is very tricky. However they can be calculated accurately by nonlinear finite
element analyses. The uncertainty of damage models makes the prediction less
reliable particularly in the nonlinear material behaviour. It is shown that the
damage index predicted by the MFDI and static strength approach has a good
compromise and more realistic measure of the cracked damage in nonprismatic
reinforced concrete beams. This method requires some modifications for future
study in nonlinear finite element analysis.
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NUMERICAL STUDY ON CONFINING
PRESSURE EFFECT IN THE PROCESS
OF ROCK FAILURE
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1Faculty of Land Resources Engineering, Kunming University of Science and Technology,
Kunming 650093, P. R. China
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Abstract The deformation mechanism of rock under different constant confining pressure

was briefly analysed based on continuum damage mechanics and the effects of

confining pressure on deformation, strength and macroscopic fracture patterns of

model rock specimens are also studied using the Rock Failure Process Analysis

(RFPA2D) code. The theoretical analysis and numerically obtained results dupli-

cate the deformation, strength (such as Young’s modulus, compressive strength,

etc.) and macroscopic fracture patterns observed in laboratory. The theoretical

studies and numerical simulations are extremely instructive and indicative for

investigating some catastrophic hazard phenomena such as rock bursts and insta-

bility induced by excavation.

Keywords: rock fracture, confining pressure effect, RFPA code, fracture patterns.

1. INTRODUCTION

Constitutive relations of rocks under the effects of confining pressure are
very important to energy exploitation and prevention of natural disasters. Nowa-
days the study on the effect of the confining pressure on macroscopic mechan-
ics is confined to the laboratory tests. It should be noted that differences in
rock samples and test methods could result in big differences in test results.
For this reason, a numerical study was conducted on the deformation strength
and macroscopic damage mode under different confining pressures through
the RFPA2D system, in order to obtain some references for the forecasting of
disasters in rock engineering.

G. R. Liu et al. (eds.), Computational Methods, 1817–1822.
C© 2006 Springer. Printed in the Netherlands.

1817



1818 D.P. Qiao et al.

Table 1. Parameters of numerical model.

Parameters Value

Even degree m 1.5

Average elastic module E0/GPa 30

Average compression strength σ0/MPa 200

Friction angle φ/◦ 30

Compression/tension C/T 10

Poisson’s ratio μ 0.25

Coefficient of the residual strength ξ 0.1

Maximum extension strain coefficient 1.5

Maximum compression strain coefficient 200

Confining pressure σ3/MPa 0, 2, 4, 8

2. NUMERICAL MODELS

The numerical tool used in this paper is the Rock Failure Process Analysis
(RFPA2D) which is developed to account for the randomness and heterogeneity
of the REV, which generates the Weibull statistic distribution. The REV is sup-
posed to be crisp elastic. Because the tensile strength of rock is far smaller than
its compressive strength, we suppose that the REV has two types of damages:
tensile failure and shear failure. When the minimum principal stress is larger
than the tensile strength, tensile failure appears; when the shear stress meets
the tensile cut-off of the Mohr-Coulomb principle, shear failure appears.

The plane strain model is adopted with a model size of 100 × 50 mm. The
model is divided into 200 ×100 REVs. The loading process is by displacement
control and the load step is � s = 0.002 mm. The specific mechanic parameters
are given in Table 1.

3. THE EFFECTS OF THE CONFINING
PRESSURE ON ROCK DEFORMATION

Due to the fact that the stress status of actual rock is nonhomogenous, it
is unlikely to display all the compound modes of the stress status when it is
damaged. However, we still can study the effects of the stress status on the
damage by studying the ultimate strength of the rock under different confining
pressures. In order to eliminate the effects of specimen variation, we did the
compressive loading test under different confining pressure on the same speci-
men. From Figure 1, we can see that increasing the confining pressure increases
the Young’s modulus and the ultimate compression strength. Figure 2 is the ex-
perimental stress–strain curves for granite under different constant confining
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Figure 1. Stress–strain curves for rock specimens under different constant confining pressures.

pressures. From Figures 1 and 2, we can see that most of the simulation results
are in agreement with the laboratory results.

4. EFFECTS OF THE CONFINING PRESSURE
ON STRENGTH

According to Figure 1 and single axle failure strength of rock samples,
the curves of the confining pressure and the ultimate compression strength
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Figure 2. Experimental stress–strain curves for granite under different constant confining

pressures.
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Figure 3. Curve between compressive strength of rock specimens and confining pressure.

can be drawn (Figure 3). Although the damage principles of the REV adopt
the linear-elastic Coulomb principle, the numerical test results indicate that the
relation between confining pressure (or minimum principle stress) and ultimate
compression strength of rock samples is nonlinear.

Based on the ultimate compression strength of rock samples under different
confining pressures, the Mohr circles and envelope line of every kind of stress
conditions is plotted in Figure 4. Figure 4 shows that the simulation results are
very similar to that of the physical test results. Although the damage principle
which simulates the REV is the linear Coulomb principle, the macroscopic
representation is nonlinear. In the RFPA2D simulation, the damage principle of
each element is very simple—amended Coulomb principle with tensile cut-off.
The most important reasons are that in this model, the radical characters of the
rock, namely, the heterogeneity and the interaction between the REV are taken
into account.

Figure 4. Simulated failure envelope of model rock specimens.
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 P=0    P=4MPa P=8MPa  P=16MPa

Figure 5. Macroscopic failure patterns of model specimens under different constant confining

pressures.

5. THE EFFECT OF THE CONFINING PRESSURE
ON THE FRACTURE MODE

A large number of experimental data show that the fracture mechanics of the
intact rock has close relationship with confining pressure. In practical situations,
the rock is under 2 or 3 dimensional stress, and different confining pressure
conditions obviously affect the fracture types.

Figure 5 shows the simulation results of the macroscopic fracture mode of
the rock under different confining pressures. We can find that with the enhancing
of the stress level of the confining pressure, the angle of the macroscopic
fracture plane changes gradually. When the confining pressure is 0, the angle
between the macroscopic fracture plane and the maximum principle stress
increases gradually (approximately 35◦–40◦), at the same time, the damage of
the rock transits and develops from tensile failure to shear failure. But under
high confining pressure, the angle between the ultimate fracture plane and the
compressive axis is about 45◦ and the macroscopic characters of the rock take
show some ductility.

6. CONCLUSIONS

In this paper, we built the damage mechanics model under different con-
fining pressure based on the microscopic continuum damage mechanics. The
model gives a good reflection of actual mechanical parameters such as the in-
crease in elastic modulus and ultimate compression strength with the increase
in confining pressure.

Although in RFPA2D, the elastic crisp constitutive relation and simple fail-
ure principle of the REV are adopted, the simulated results show that with the
increasing of the confining pressure, the simulation still gives a nonlinear de-
formation behaviour which transit from crisp damage to ductile damage. All
these simulation results are identical to the phenomena observed in laboratory,
which indicates that the evolutionary principles of REV adopted in RFPA2D are
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suitable to simulate complicated and nonlinear evolutionary damage of the rock
material. This study and its results are helpful to give theoretical and practical
directions.
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APPLICATION OF GEOSTATISTICAL
WEIGHTS IN SOLVING PROBLEMS
GOVERNED BY 2-D POISSON’S EQUATION
USING FINITE POINT METHOD
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Department of Mining Engineering, Isfahan University of Technology, Isfahan 84156, Iran

Abstract The modified Finite Point Method (FPM) is considered as one of the latest de-

velopments among the meshless numerical methods. In order to achieve accurate

results using modified FPM, it is essential to impose suitable mixed Boundary

Conditions (BC) along with simultaneously satisfying both the governing Par-

tial Differential Equation (PDE) at internal nodes and the associated BC at the

nodes located on inhomogeneous interfaces in addition to the nodes at external

boundaries of a normalized spatial domain. Through solving Homogeneous and

Inhomogeneous Geoelectric Models (HGM and IGM) of geophysical science us-

ing weighted FPM we show that employing geostatistically optimized weights

obtained via solving Kriging equations leads to results with greater accuracy

compared with those obtained using conventional Gaussian weight.

Keywords: FPM, BC, PDE, HGM, IGM, geostatistical weights, Kriging equations.

1. INTRODUCTION

The theoretical basis of meshless methods and in particular the so called Fi-
nite point Method (FPM) have been explained by many researchers [1–5]. The
improved weighted FPM as developed by Onate et al. [4] using Finite Calculus
(FC) is considered as a truly meshless numerical method that has the advantages
of both solution stability and precisely handling Drichlet and Neuman bound-
ary conditions. In the general form of weighted finite point formulation the
approximation at a point is done in least squares sense likewise the diffuse ele-
ment (DE) and Element Free Galerkin (EFG) method. Also the final discretized
system of equations are obtained by sampling the governing Partial Differential

G. R. Liu et al. (eds.), Computational Methods, 1823–1828.
C© 2006 Springer. Printed in the Netherlands.
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Equations (PDE) at all nodal points as is normally done in generalized Finite
Difference (FD) method. In this paper, we investigate a different aspect of FPM
that is the selection of optimum weight coefficients in solving Boundary Value
Problems (BVP) governed by Poisson’s equations. First we will present some
important properties of geostatistical estimators followed by deriving Kriging
weight coefficients to be incorporated in the FPM formulation.

2. PROPERTIES OF GEOSTATISTICAL
INTERPOLATING ESTIMATORS

In all numerical methods based on least square minimization of approxi-
mation errors one of the main issues is the interpolation procedure. In order
to have an optimum estimator, three important conditions are to be satisfied.
These conditions are (1) the estimator should have an exact interpolating prop-
erty which means that the estimation of each nodal value should equal the
exact value of the node value, (2) the approximation should have the minimum
estimation variance and (3) the estimation should be unbiased. Investigating
the spatial behaviour of the analytical solutions of Poisson’s equation with the
impulse source shows that they are inherently functions of distances from their
impulse source and hence applying the geostatistical estimators as the main
interpolating weights might led to a more accurate solutions using weighted
FPM. In geostatistical literature the mean of squared sum of differences be-
tween the pair nodal values h meters apart is called the point variogram of the
unknown function and is denoted by 2γ (h).

2γ (h) = E
[
(z(xi + h) − z(x))2

] = 1

N (h)

N (h)∑
i=1

[z(xi + h) − z(xi )]
2

Each variogram is characterized by three basic parameters called nugget
effect (random portion of variation), range (radius of influence) and sill value
(the spatial portion of the variation). The common theoretical variogram models
having sill values are known as linear, spherical, exponential, Gaussian and
sinusoid models. Here we have used the least squares approach to find the
best fit between the experimental variogram and one of the theoretical models.
Figures 1 and 2 show the experimental variograms computed for HGM and IGM
models, respectively. The best obtained model for both media is the Gaussian
model with the following equations.

γ (h) = C

(
1 − e

−h2

a2

)
+ C0 γ (h)HGM = 4.5

(
1 − e

−h2

0.0529

)
γ (h)IGM = 6.2

(
1 − e

−h2

0.0625

)
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Figure 1. Experimental and fitted variograms for HGM model.

in which C0 is the nugget effect, a is the range and C is the sill value of the
variogram.

3. APPLYING KRIGING WEIGHTS
IN FINITE POINT METHOD

The Kriging estimator is based on a weighted moving average interpolation
using neighbourhood nodal values. Here the recommended Kriging estimator
is defined as a simple moving average interpolator as follows.

Z∗
v =

n∑
i=1

λi Zvi

in which λi is the weight for the i-th nodal value within the influence radius
of unknown nodal value being estimated, Zvi is the value of i-th nodal point

Figure 2. Experimental and fitted variograms for IGM model.
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and Z∗
v is the estimated value at the nodal point under estimation. Under the

second stationary condition the Kriging equations to be solved for weighting
coefficients is: A*X = B

A =

⎡
⎢⎢⎢⎢⎣

γ 11 γ 12 K γ 1n 1
γ 21 γ 22 K γ 2n 1
M M K M M
γ n1 γ n2 K γ nn 1
1 1 K 1 0

⎤
⎥⎥⎥⎥⎦ X =

⎡
⎢⎢⎢⎢⎣

λ1

λ2

M
λn

μ

⎤
⎥⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎢⎣

γ 1v

γ 2v

M
γ nv

1

⎤
⎥⎥⎥⎥⎦

in which γ̄i j is the average variogram between nodal points i and j, γi is the
Kriging weight for the i-th nodal value and γ̄iv is the average variogram value
between i-th nodal value and the current unknown nodal point. Accordingly it is
necessary to search for the nodal values in the range of the modelled variogram
distance.

3.1 Example 1: Electric potential distribution
in HGM model

In this paper, we adopt the FPM formulation originally developed by Onate
et al. [3]. The Poisson’s equation and the accompanied boundary conditions on
a normalized domain are assumed. In the case of one current electrode located
in a HGM with normalized spatial extent and a constant electrical resistivity
(10 Ohm-Meter) it can be shown that the potential is a function of radial distance
from current electrode and is given by u = (ρ I/4π )1/r . Figure 3 shows the
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Figure 3. Analytical (red) and FPM solutions of electric potentials for the HGM model.
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Figure 4. The geometry used for the IGM model with vertical contact located at x = 0.6.

results of applying Kriging weights in finite point approach for HGM on a
normalized spatial extent using a regular grid of 20 by 20. The source current
electrode is located at (0.3,0.5).

3.2 Example 2: Electric potential distribution
in IGM model

Figure 4 shows the IGM model consisting of two medium with differing
resistivities (10 and 100 Ohm-Meters) separated with a vertical contact. Figure 5
depicts the results obtained for the IGM model using Kriging coefficients on
the same domain as Example 1.

4. CONCLUSIONS

In the previous works presented by Onate et al. [3, 4] a standard normalized
Gaussian weight function have been used giving neither proof for its effects
nor specific criteria for selecting searching radius for solving any particular
PDE. However in this study, we have shown that the best weighting coefficients
for the solution of Poisson’s type BVP’s obeys the Gaussian variogram model
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Figure 5. Analytical (red) and FPM solutions of electric potentials for the IGM model.

resulting in more than 5% reduction on average approximation errors compared
to conventional Gaussian weights. Obviously using such geostatistical weighs
requires the solution of Kriging equations for every nodal point distributed all
over the domain of problem in a moving average sense.

REFERENCES

1. T. Belytschko, Y.Y. Lu and L. Gu (1994), Element free Galerkin methods. International
Journal for Numerical Methods in Engineering, 37, pp. 229–256.

2. G.R. Liu (2003), Mesh Free Methods: Moving Beyond the Finite Element Method. CRC
Press, Boca Raton, USA, pp. 83–161.

3. E. Onate, S. Idelson, O.C. Zienkiewicz and T. Fisher (October 1995), A finite point method
for analysis of fluid flow problems. In: Proceedings of the 9th International Conference
Finite Element Methods in Fluids, Veniz, Italy, pp. 15–21.

4. E. Onate, S. Idelson, O.C. Zienkiewicz, R.L. Taylor and C. Sacco (1996), A stabilized finite
point method for analysis of fluid mechanics problems. Computer Methods application
Mechanical Engineering, 139, pp. 315–346.

5. E. Onate, F. Perazzo and J. Miquel (2001), A finite point method for elasticity problems.
Computers and structures, 79, pp. 2151–2163.



NUMERICAL APPROACH TO FRACTURES
SATURATION BEHAVIOUR IN
HETEROGENEOUS MATERIAL SUBJECTED
TO THERMAL LOADING

L.C. Li1, C.A. Tang1, T.H. Yang1, and L.G. Tham2

1Center for Rock Instability and Seismicity Research, Northeastern University,
Shenyang, China, 110004
2Department of Civil Engineering, The Hong Kong University, Hong Kong, China

Abstract Based on the heterogeneous characteristics of rock and concrete at mesoscopic

level, a 2-D mesoscopic thermo-mechanical-damage (TMD model) coupling

model, implemented in RFPA2D, is proposed by introducing elastic damage me-

chanics and thermal-elastic theory. The TMD model is used to study the thermal

induced cracking process, including crack formation, extension and coalescence

in heterogeneous materials subjected to mechanical and thermal loading. The nu-

merical results compare well with the corresponding mathematic resolution and

experimental results, which prove that the proposed model as well as the numer-

ical system (RFPA2D) is reasonable and effective in investigating the failure of

heterogeneous materials subjected to thermomechanical action.

Keywords: numerical simulation, heterogeneity, damages, thermal conductivity.

1. INTRODUCTION

The physicochemical environment of geologic systems is host to various
coupled thermal, hydraulic, mechanical and chemical processes. Scientific in-
terest in these coupled physicochemical processes in the earth’s crust, in general,
and economic and environmental concerns related to waste geologic disposal,
in particular, have resulted in many research efforts aimed at understanding the
coupled thermal, hydrologic chemical and mechanical (THMC) behaviour of
geologic systems subject to complex natural or man-made perturbations. Due
to the complexity of the problem, one of the most promising approaches is
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to develop numerical methods for analyses. Lately two international forums,
namely DECOVALEX and INTERCLAY, provided great opportunities for de-
velopment of THM research [1].

To reach such a goal, a numerical method was developed. However, only
physical phenomena, namely, thermal and mechanical will be addressed. Im-
plemented with a Rock Failure Process Analysis code (RFPA2D) [2], the TMD
(thermomechanical-damage) model can be used to investigate the behaviour
of heat transfers, damage evolution and the overall response at the mesoscopic
level.

2. BRIEF OUTLINE OF THE ROCK FAILURE
PROCESS ANALYSIS NUMERICAL
CODE, RFPA2D

The Rock Failure Process Analysis (RFPA2D) code based on FEM, is a nu-
merical tool capable of handling the fracture initiation, interaction and coalesce
process in heterogeneous materials. A model of coupling between thermal,
mechanical and damage (TMD) has been proposed and implemented within
RFPA2D.

For heterogeneity, the material properties (failure strength σc and elastic
modulus Ec) for mesoscopic elements are randomly distributed throughout the
rock sample by following a Weibull distribution [2]:

f (u) = m

u0

(
u

u0

)m−1

exp

(
− u

u0

)m

(1)

where u is the parameter of the element; the scale parameter u0 is the average
of element parameter and the parameter m defines the shape of the distribution
function. The parameter m defines the degree of material homogeneity and is
called the homogeneity index. Materials with higher m values represent more
homogeneous materials, whereas those with lower m values, more heteroge-
neous materials. Figure 1 shows the variations of f with respect to m.

3. MODEL VALIDATION

For the sake of validating the proposed model, thermal induced stresses
in a homogeneous material, homogeneity index m = 1000, was numerically
studied and Compared with an analytical solution derived from classical theory
of thermoelasticity. A two-dimensional numerical rectangle board of 50-mm
wide and 100-mm long is designed as shown in Figure 2. The Young’s modulus
(E) of the numerical sample is 50,000 MPa. The numerical sample was divided
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Figure 1. Weibull’s distribution for mechanical properties with different homogeneity index.

 

O 

y

x

Figure 2. Configuration for model validation.

into 50 × 100 meshes. Temperature of 100◦C and 10◦C were applied to bottom
and upper boundary respectively.

The temperature distribution in the sample may be expressed as: t = a0 y.
Then theoretically, the stress in the sample are σx Eαa0 y, σy = 0, τxy = 0
(where a is the thermal expansion coefficient). Figure 3 shows the stress distri-
bution along the coordinate y axis from origin point O. The simulation results
are in good agreement with the the analytical solution derived from classical
theory of thermoelasticity.
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Figure 4. The three-layer model for numerical simulation of fractures saturation.

4. NUMERICAL SIMULATION OF FRACTURES
SATURATION PHENOMENA

Having the model validated, further analyses have been carried out to study
fracture saturation, the famously geological phenomena [3]. We use a three-
layer model, as used in many previous studies. The mesh for the model con-
tains 400 × 60 = 24, 000 elements with geometry of 8000 × 1200 mm. The
homogeneity index m is chose to be 3. Thickness of the central layer (Tc) is
300 mm. The overall thickness of the model (T ) is 1200 mm, which can be
defined as T = Tc + 2Tb. As shown in Figure 4, the right and left boundary
are fixed in x direction, both the bottom boundary and the top boundary are
free. The three layers are subjected to a uniform temperature decline from
0◦C to −88◦C at a step of −0.4◦C. The Young’s modulus (Eb), compressive
strength (σb) and Poisson’s ratio (υb) are same for adjacent layers, Eb = 10
GPa, σb = 200 MPa, υb = 0.4, and those for the central layer are 50 GPa, 100
MPa and 0.25, respectively. In addition, the thermal properties for adjacent
layers are thermal conductivity coefficient 1.2 W/m·◦C and thermal expansion
coefficient 1.0 × 10−51/◦C, and those for the central layer are 1.1 W/m·◦C and
0.9 × 10−51/◦C. The space of adjacent fractures is denoted as S. As illustrated
in previous study [3], the critical value (the spacing to fractured layer thickness
ratio S/Tc) determines the stress state between the adjacent fractures: when the
ratio is below this critical value the stress along line O–O is compressive, while
above the critical value the stress is tensile.

The process of fracture saturation is clearly shown in Figure 5. The different
grey scales represent different values of normalized maximum shear stress. At
temperature −2◦C, there is no fracture. When the temperature descends to
−5◦C, new fractures come into being. With the descending of temperature,
more fractures form. At last, the fractures are spaced so closely that no more
new fractures can infill, even with descending temperature (−74◦C to −88◦C)
and the three-layer model breakdown completely. In saturation state, we obtain
that the spacing to fracture thickness ratio S/Tc is 1.47, which is bigger than
the critical value (1.0) mentioned above. The reason is that the tensile stress
between adjacent fractures is bigger than zero but it is not big enough to offer
the tensile stress for new fracture formation.
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Figure 5. The process of fracture saturation simulated with RFPA2D.

One important method of observing damage during the rock deformation
experiments is monitoring the acoustic emissions (AE). As shown in Figure 6,
there are certain AE events before new fractures form, but the magnitude is
small. This indicates that small joints initiate in the model. As one new fracture
forms, and large amounts of AE events occur correspondingly. While in satu-
ration state, the magnitude of AE events is also small and the cumulative AE
counts main constant. This indicates that no more new fractures form in the sat-
uration state. The total number of the large-scale AE occurrences is 17, which
means that 17 fractures saturate the whole layer. This number is consistent with
the results as shown in Figure 5.
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1834 L.C. Li et al.

5. CONCLUSIONS

It indicates that the RFPA2D is a valid tool in understanding the physical
essence of the evolutionary nature of fracture phenomena in heterogeneous
materials subjected to thermal and external loading. The analysis provides a
deep insight in the influence of spatial variation in mesomechanical properties
on the fracture or damage process as well as thermal conductivity through a
statistical modelling scheme. The phenomenological approach shows in de-
tails the nucleation, propagation and coalescence of micro-fractures. It gives
a clear explanation to fracture saturation phenomena, the famously geological
phenomena.
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Abstract Rock permeability is not a constant but a function of stresses and stress-induced

damage. In this paper, a seepage-damage coupling model for heterogeneous rocks

by taking into account the growth of the existing fractures and formation of new

fractures is proposed. Implemented with the Flow-coupled Rock Failure Process

Analysis code, this coupling model has been used to investigate the behavior of

fluid seepage, damage evolution and their coupling action in samples subjected

to both hydraulic and biaxial compressive loading. The modeling results suggest

that the nature of fluid flow in rocks varies from material to material and depends

strongly upon the damage of the rocks.

Keywords: mescoscopic, heterogeneous, hydraulic fracturing, simulation.

1. INTRODUCTION

Except for being used in determining in situ stresses in rock masses, hy-
draulic fracturing is also a method used by oil companies to stimulate reservoir
production. There are lots of different interpretation theories for hydraulic frac-
turing. But there are at least two drawbacks in most of the hydraulic fracture
theories. Firstly, the materials studied in most of the hydraulic fracture models
are impermeable. Secondly, in most of the previous flow-coupled models, the
influence of heterogeneity existed in rock on the fracture pattern or hydraulic
fracture path cannot be taken into account.

Due to the difficulty to gain a complete solution of a hydraulic fractur-
ing problem, numerical simulation methods are widely used. In this paper, we
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employed the Flow-coupled Rock Failure Process Analysis code (F-RFPA2D)
to investigate the hydraulic fracturing phenomenon. The results indicate that
both the rock heterogeneity and the permeability affect the fracture initiation
and propagation significantly, and that the simplistic premise that rock is ho-
mogeneous and impermeable may apply to limited, but not general cases in
hydraulic fracturing

2. NUMERICAL SIMULATION

In this section, we simulate the rock failure and the associated fluid flow
numerically using F-RFPA2D [1]. A benchmark case of fracturing of an elastic
rock stratum by applying pressure in a borehole has been analyzed by using the
present model (Figure 1). The main mechanical parameters are listed below:
Poisson’s ratio is 0.25, Permeability is 00.01 m/s, Young’s modulus is 6 GPa,
Compression strength is 60 MPa and Tension strength is 6 MPa, respectively.
The horizontal, σh , and vertical, σv, in situ stresses are 1.0 and 2.0 MPa, re-
spectively. After drilling a hole, a pressure of 1 MPa is applied in the hole.
The heterogeneity is introduced into the model by assigning E , σc randomly to
each element within the model by assuming a Weibull distribution, as defined
in equation:

ϕ(s, m) = m

so

(
s

so

)m−1

exp

[
−

(
s

so

)m]
(1)

where s is the element strength σc or elastic modulus E , and so is the mean
strength σ0 or elastic modulus of elements E0. The parameter m is defined
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Figure 1. Sample geometry for simulating hydraulic fracturing.



Model for Simulating Hydraulic Fractures of Rock 1837

0

0.5

1

1.5

2

2.5

3

3.5

4

0 25 50 75 100 125 150

Normalized distance(mm)

S
tr

e
s
s
(M

P
a
)

σθ(theoretical result)

σr(theoretical result)

σθ(Numerical Simulated Results)

σr(Numerical Simulated Results)

Figure 2. Stress distribution along borehole in the homogenous materials.

as homogeneity index. The homogeneous index is chosen to be 1000, that is
the rock stratum is almost homogeneous. The variations of the tangential and
radial stress along the horizontal diameter are plotted in Figure 2. The computed
results are in good agreement with the published one and the analytical solution
[2]. Having the model validated, further analyses have been carried out to study
the effects the flow in fracture, the material homogeneity, the in situ stress ratio
and the pore pressure field on the breakdown pressure and the development of
the fractures. The findings are reported as follows

2.1 Hydraulic fracture paths with different
in situ stress ratio

Further simulations have been carried out to study the effect of the σh/σv

stress ratio on the fracture pattern. The stress ratio varies from 1.5 (uniform
pressure) to 1.0. The fracture patterns for different stress ratio are shown in
Figure 3. In the analysis, the homogeneity index is taken to be 3. At high stress
ratios, that is stress ratio equal to 1.5, a pair of fractures extends in the maximum
tensile stress direction from both ends of the hole (Figure 3a). The fractures are
also rather straight.

As the stress ratio decreases, the main fractures, while oriented in the max-
imum horizontal stress direction, are no longer straight and show a tendency
to branch out along the grain boundaries. Figure 3b shows the fracture pattern
for stress ratio equal to 1.25. Though cracks open at both ends of the vertical
diameters, they branch out after growing for a short distance. One can also note
that isolated fractures also open within the rock mass. Such fractures should
represent the existence of weak elements. Figures 3c and d show the hydraulic
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Figure 3. Experiment and numerical simulated results.

fracture path of rock models with the stress ratio equal to 1.13 and 1.0, re-
spectively. The figures indicate multiple major traces without any preferred
orientations are formed. There are significant branching and isolated fractur-
ing. Comparison of the present results with the stress patterns published by
Doe and Boyce [3] shows that the present model can predict the initiation and
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development of fractures fairly accurately. These results indicate that the crack
pattern depends on the homogeneity when the stress ratio is close to one.

Due to the heterogeneity of rocks, the hydraulic fracture paths are irregular.
The numerically obtained random nature of hydraulic fracture path during hy-
draulic fracturing and its dependence on mescoscopic homogeneity is clearly
illustrated in Figure 3. As we can see in the figure, the hydraulic fracture prop-
agation is controlled by the pre-existing field of defects.

The hydraulic fracture deterministically selects a path of least resistance
through the material with statistical features, and the random location of the
individual in homogeneities results in an irregular hydraulic fracture trajectory.

In Figure 4, the breakdown pressures, which is the pressure that fractures
are initiated, predicted by the present model are compared to those obtained
by the experiment and analytical approaches [4]. When parameter m = 1.5
and m = 3, the numerical simulation results are accord with those obtained
from experiment. The results show that the present method has a more accurate
prediction than the analytical ones.

3. CONCLUSIONS

The numerical simulations using F-RFPA2D clearly indicates the results
indicate that both the rock heterogeneity and the permeability affect fracture
initiation and propagation significantly, The main findings are: Firstly, the het-
erogeneity of rock has a significant influence on initiation and breakdown pres-
sure. Both fracture initiation and breakdown pressure values are much higher for
the homogeneous sample than that for the heterogeneous sample. Secondly, the
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F-RFPA2D clearly simulates the hydraulic fracturing in heterogeneous rocks in
a more realistic way than other numerical models. The capability of F-RFPA2D

in identifying hydraulic fracturing mechanisms, rather than prejudicing towards
certain mechanisms, is obvious. In addition, the authors would like to empha-
size that the work presented here is mainly intended to demonstrate a new model
for coupling stress, flow and damage. Coupling with damage is the main point.
We just provide a method with many parameters that you can input based on
your own experience or knowledge you have in your research.
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Abstract Self-Organization in rock failure progress is simulated by introducing a new nu-

merical approach, rock failure progress analysis (RPPA2D). Through the analysis

of acoustic emission (AE) event time series and the frequency distribution of dam-

age group size by correlation function and rescaled range (R/S) analysis method,

it is found that the frequency distribution of damage group size complies with a

power law (fractal geometry configuration) and the time series of AE event ex-

hibits the similar scale-invariant properties and temporal long-range correlation.

These fractal geometry configuration properties and long-range correlations are

two fingerprints of self-organized criticality, which denonstrates the occurrence

of SOC.

Keywords: self-organized criticality, power law distribution, long-range correlation, numer-

ical simulation.

1. INTRODUCTION

Since the concept of self-organized criticality (SOC) was introduced by
Bak, Tang and Wiesenfeld [1], an increasing number of physical situations
showing this behaviour have been studied. The sand-pile model became one
of prototype abstract models exhibiting self-organized criticality. The criti-
cal state is reached asymptotically in the limit of infinitely slow driving [2].
Due to inertia effects, the experiments on real sand-piles did not confirm
SOC behaviour [3]. Its variants consisting of a cellular automaton and fully
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deterministic versions were also studied, showing periodic or self-similar but
non-random behaviour [4,5]. Since the critical point is somewhat similar to the
invariable point of renormalization group calculations, self-organized critical-
ity is often addressed using the tool of renormalization group. But it is hard
to see how they relate to each other [6]. A closely related puzzle is whether
criticality and self-organized criticality are compatible. In analogy with usual
critical systems, the behaviour of SOC systems is often characterized by frac-
tal geometry configuration and spatio-temporal long-range correlations. In this
study, we try to explain the intriguing self-organized criticality behaviour in
heterogeneous materials by introducing a new numerical method, rock failure
process analysis (RFPA2D), which has been developed at Centre for Rock Insta-
bility and Seismicity Research, Northeastern University, People’s Republic of
China.

2. BRIEF INTRODUCTION OF RFPA2D AND
SIMULATED MECHANISM OF SOC

RFPA2D [7] is relied on FEM to perform stress analysis. The model is
firstly discretized into a large number of small elements. On account of the
heterogeneity of rock-like materials, the element local mechanical parame-
ters are assumed to follow Weibull’s distribution. During the simulation, the
model is loaded in a displacement control mode. At each loading increment,
the stress and strain in the elements are calculated, after which the stress
field is examined and those elements which satisfy with the failure crite-
rion, a revised-Coulomb criterion [8], get damaged. In RFPA2D, breaking an
element means reducing the element’s the stiffness and strength. Then the
model with new parameters switches to a new equilibrium. By this means,
the stress of failed element will transfer to its neighbouring element. Then
element failure is judged again. Consequently RFPA2D may possibly perform
many calculation circulations (stress and failure analysis) in the same load-
ing step. The next load increment is added only when there are no more ele-
ments fail. In the same load increment, the subsequent element damage results
from the stress transference of previously failed elements. In the whole load-
ing process, there must exist one critical point at which a minimal increment
is applied on the specimen, one element failure will trigger such a violent
avalanche that it can cut through the whole rock specimen (long-range correla-
tions). As no outside disturbance, the system self-organizes into a critical state.
So RFPA2D exhibits the avalanche behaviour in rock failure progress quite
vividly and it explains why the avalanche occurs very clearly. The more the
times of calculation circulations is, the more violent the avalanche behaviour
is.
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Table 1. Material mechanical property.

Parameter Value

Homogeneity index (m) 4

Poisson’s ratio (μ) 0.25

Elastic modulus (Eu) 60,000 (MPa)

Compressive strength (σc) 200 (MPa)

Friction angle (φ) 30◦

Tension cut-off 10%

3. PROBLEM DESCRIPTION

The geometry of rock specimen is 120 mm × 80 mm, which is discretized
into 120 × 80 elements. The specimen is under uniaxial compressive condition
and an increasing displacement with 0.001 mm/step is applied in the vertical
direction. So the stress condition is closer to plane stress. The element local
mechanical parameters are listed in Table 1.

4. SOC BEBAVIOUR OF AE EVENTS
IN ROCK FAILURE PROCESS

Besides stress analysis, RFPA2D can simulate seismicities associated with
progressive fracture process by recording failed elements and estimate the size
of damage group by computing the counts of neighbouring failed elements.
The shear stress distribution (above) and the location of AE events occurring
during the whole failure process (below) are showed in Figure 1. The rela-
tionship of stress (σ ), AE counts and loading step are showed in Figure 2.
As seen the symbol marked in Figure 2, the point ‘A, B, C and D’ are yield
strength point, maximum compressive strength point, long-time strength point
and rock break point, respectively. The whole failure process is divided into
five stages: (1) O–A, linear elastic deformation; (2) A–B, non-linear elastic
deformation; (3) B–C, strain weakening; (4) C–D, sudden breaking: (5) D-
, residual deformation. Figure. 3 shows us the frequency distribution of the
size of damage group at the 98th loading step (see the point ‘D’ in Figure 2).
According to the definition of RFPA2D, two neighbouring failed elements be-
long to the same damage group. We can see from Figure 3 that the biggest
damage group comprises 88 elements, which indicates long-range correlation
occurs. It is clear that the frequency distribution of damage group turns into
a power law. These data satisfy with an equation y = 51.453 ×−1.0775. This
power law distribution reflects the spatial fractal gecometry configuration; it
can be regarded as spatial fingerprints for SOC. Figure 4 shows us the analytical
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results gained by rescaled range (R/S) analysis method, which can evaluate the
persistence/antipersistence of AE event time series. A detailed description for
the R/S method is presented in the document by Hurst [9]. It can be seen that the
last part of the curve in Figure 4 is almost fitted with a line, especially for the part
from step 98 to step 150 which exhibits the similar scale-invariant properties
of AE event time series. Figure 5 shows the analytical results obtained by the
correlation function, which can evaluate the autocorrelation of the AE event
time series. A detailed introduction for the correlation function, please refer
to the literature [10]. It can be seen from Figure 5 that the absolute value of
autocorrelation coefficient enhances to a relatively stable good standard with
the inerease of time delay, which reflects the temporal long-range correlation
of AE event time series. The similar scale-invariant properties and long-range
correlation of AE event time series are the temporal fingerprints for SOC.

5. CONCLUSIONS

Self-organization in rock failure progress is simulated by introducing a new
numerial approach. RPPA2D. Through the analysis of AE event time series and
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the frequency distribution of damage group size by correlation function and
R/S analysis method, it is found that the frequency distribution of damage group
size of complies with a power law (fractal geometry configuration) and the AE
event time series exhibits the similar scale-invariant properties and temporal
long-range correlation. These long-range correlations and fractal geometry
configuration properties are two figerprints of self-organized criticality, which
demonstrates the occurrence of SOC.
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NUMERICAL APPROACH TO MINING
INDUCED INSTANTANEOUS OUTBURSTS
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Abstract Instantaneous outburst in underground coal mines has been the cause of major

disasters in the world mining industry and has plagued underground mining op-

erations of gassy coal seams in many countries for over a century. In this paper, a

numerical quantitative model for the coupled gas flow in coal and rock failure is

proposed to simulate and visualize mining induced instantaneous outbursts and

associated stress fields. Numerical simulations on instantaneous outburst reveal

that using the proposed numerical model to investigate the instantaneous out-

bursts and attempt to gain insight into the mechanisms of outbursts is appropriate

and practical.

Keywords: instantaneous outburst, gas flow, numerical simulation, RFPA2D-flow.

1. INTRODUCTION

Instantaneous outburst is a sudden and usually unexpected expulsion of coal
and gas away from a freshly exposed coal face during underground mining or
drilling in coal seams. It has been the cause of major disasters in the world
mining industry. In the last 150 years since the first reported outburst occurred
in France in 1843, as many as 30,000 outbursts have occurred in the world.
This has forced mining industry to develop techniques to understand this com-
plex phenomenon, and procedures to minimize the effect of outbursts. As of
today, despite extensive research into outbursts occurred in coal mines, sur-
prisingly little progress has been made in the past decades in understanding the
complex phenomena. Especially, a quantitative numerical model that describes
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progressive failure as well as instantaneous outbursts has not appeared. It is the
aim of this paper to present such a model and to show how the model replicates
instantaneous outbursts associated with the observations.

2. OUTLINE OF RFPA2D-FLOW MODEL

In this paper, based on the Rock Failure Process Analysis code [1], an
improved numerical model, rock failure process analysis for fluid flow, was
developed to simulate mining induced instantaneous coal and gas outbursts and
try to gain an insight into the physical and mechanical mechanisms and essence
of instantaneous outbursts. Here, we mainly focus on the coupled gas flow in
coal and rock, and the details of the model on stress and failure description can
refer to the related publications [1, 2].

The fundamental assumption behind the outburst model presented here is
that the gas flow through coal and rock at a meso-scopic level follows linear
filtration law [3]. Hereby, the equation of the isothermal infiltration gas flow in
gassy coal and rock based on seepage theory can be obtained [2]

αp∇2 P = ∂ P

∂t
(1)

where, αp = 4λA−1 P
3
4 , λ is the coefficient of gas infiltration in m2/(MPa2 S), A

is the empirical coefficient of gas content in m3/(m3 MPa1/2) and P is the square
of gas pressure in MPa2. For the deformation of coal and rock, the governing
equation considering the gas pressure in coal/rock can be represented as [2]

(K + G)u j, j i + Gui, j j + fi + (αp),i = 0 (2)

where G is shear modulus, K is Lame’s constant, u is the displacement of
element, fi is the body force, α is the coefficient of gas pore pressure and p is
gas pressure in MPa. In addition, for damage induced gas permeability change,
it has been found that the microcracking induced damage causes a remarkable
increase in permeability of rock [4]. The gas permeability coefficient in stressed
rock can be described [1]

λ = ξλ0e−β(σ−αp) (3)

where λ0 is the initial gas permeability for unloaded coal and rock, β is the
coupling factor of stress to pore pressure and ξ is the coefficient of sudden jump
of gas permeability for stressed elements. Thus, the above governing equations
were incorporated into the model to simulate the mining induced instantaneous
outbursts.
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Table 1. Numerical model parameters.

Index Coal Rock

m 1.5 5

E0/GPa 5 50

σ0/MPa 100 300

Possion’s ratio, μ 0.3 0.25

λ, m2/(MPa2 S) 1.2 ∗ 10−5 1.2 ∗ 10−8

A, m3/(m3 MPa1/2) 2 0.1

α 0.5 0.01

β 0.2 0.1

Figure 1. Numerical model.

3. MODELING OF INSTANTANEOUS OUTBURSTS

3.1 Model set-up

A numerical model for an instantaneous outburst induced by cross-cut driv-
ing was performed in this paper. The numerical model with a dimension of
5 m × 10 m was discretized into 100 × 200 elements, as shown in Figure 1.
The gas pressures on the coal face and in the deep coal seam are 0.1 and 4
MPa, respectively. The roof and floor of the coal seam are presumed to be im-
permeable, thus the seepage boundary conditions is set with no seepage flux.
The model parameters are given in Table 1.

3.2 Modeling results

Figure 2 shows the numerical results of the entire outbursts process in-
duced by cross-cut driving and the correspondingly associated evolution of
shear stress fields in the coal seam and the roof and floor of strata. It can be
seen from Figure 2, the cross-cut driving induced instantaneous outbursts can
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(a) (b)

Figure 2. Simulated delay outburst (a) and associated shear stress fields (b).
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Figure 3. Changing curves of gas pressure pre- and post-instantaneous outbursts.

be subdivided into four major stages, that is, stress concentration stage, coal
and rock fracturing and splitting induced by the combinations of gas pressure
and abutment stress, cracks propagation driven by gas pressure and the abrupt
ejection of coal and gas.

The changing curve of gas pressure pre- and post-outbursts is given in
Figure 3. As seen from Figure 3, the gas pressure is on average at hydraulic
pressure prior to cross-cut driving. During cross-cutting, mining removes the
confining pressure on the coal face; nevertheless the gas pressure remains high
even though the pores in the coal mass may expand some due to reduction in
coal and rock stress. Thus the coal near working face sustain high gas pressure
gradient and clusters of microcracks begin to form when the high gas pressure
is beyond the tensile strength of coal. Meanwhile, the abutment stress acting
on the coal face after mining excavations further deteriorate the properties of
the coal and the coal parallel to free exposed face further fractured and split.
The combinations of gas pressure in the coal front and the abutment stress on
the coal face crushed and even pulverized the weak coal. Thus, the crushed and
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pulverized coal was abruptly ejected and a circular cross-section outburst cavity
can be observed from Figure 2. With the continuance of outbursts process, the
gas pressure progressively declines near the freshly exposed coal. The outbursts
process ceased and an elongated hemispherical outburst cavity can be seen in
the end.

4. CONCLUDING REMARKS

In this paper, the gas pressure incorporated Rock Failure Process Analysis
for fluid flow code (RFPA2D-Flow) on the basis of the theory of solid defor-
mation and gas flow in porous media. Applying the RFPA2D-Flow code, the
numerical tests on cross-cut driving induced instantaneous outbursts were per-
formed. The numerical simulations replicated the cross-cut driving induced
outbursts process and the associated evolution of stress fields in coal seam and
rock strata, and reveal that instantaneous outbursts generally experience four
stages, i.e., stress concentration, coal and rock microcracking, cracks propa-
gation and the ejection of coal and gas. Moreover, the numerical results not
only trace the initiation, propagation and coalescence of cracks in coals, but
also visualize the associated evolution of stress fields in rock formations and
the observations in laboratory and in field, such as the hemispherical outburst
cavity with nearly symmetrical dimensions in the coal seam. Thus, the infor-
mation of this paper can provide a better understanding of the mining induced
instantaneous outbursts and gain insight into the complex mechanisms.

ACKNOWLEDGEMENTS

The work was funded by NSFC (50374020, 50504003 and 50504005).

REFERENCES

1. C.A. Tang, L.G. Tham, P.K.K. Lee, T.H. Yang and L.C. Li (2002), Coupled analysis of
flow, stress and damage (FSD) in rock failure. International Journal of Rock Mechanics
and Mining Science, 39, pp. 477–489.

2. T. Xu (2004), Numerical tests on coupled gas flow in coal and rock failure. Ph.D. thesis,
Northeastern University, Shenyang, China, pp. 1–164.

3. S.N. Zhou and B.Q. Lin (1998), The Theory of Gas Flow and Storage in Coal Seams.
China Coal Industry Publishing Corporation, Beijing, pp. 69–70.

4. T.H. Yang, T. Xu, C.A. Tang and Q.Y. Feng (2003), Experimental investigation of perme-
ability evolution of brittle rock in failure process. Journal of Northeastern University, 24,
10, pp. 919–923.



3D NUMERICAL SIMULATION OF A LARGE
SPAN DOUBLE-ARCH TUNNEL
CONSTRUCTION

C.C. Xia, H.J. Liu and H.H. Zhu
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Abstract This paper presents a numerical simulation of double-arch tunnel excavation

process by means of elasto-plastic finite element method. To perform a fully

3D numerical analysis of the whole excavating and supporting process, a FEM

model including the surrounding rock and supporting structure was developed,

and the whole process is divided into 20 construction steps according to the actual

construction sequence. The results were satisfactory and were reasonably close

to the displacement data monitored in the construction field. In the second part

of the article, the redistribution of stress in shotcrete, lining and anchor against

each excavation step was studied to understand the interaction between rock and

the supporting structure. Furthermore, the load pattern in surrounding rock and

the supporting structure were studied to analyze the influence of excavation in

adjacent tunnel and find out the reasonable distance between adjacent excava-

tion surfaces. The results obtained provide a better understanding of excavation

process of double-arch tunnel, and is helpful for guiding design and construction.

Keywords: 3D numerical simulation, construction mechanics, double-arch tunnel.

1. INTRODUCTION

Due to its flexibility to adapt to different soil conditions and geological
environment and its simplicity of equipment for tunnelling, the New Austrian
Tunnelling Method (NATM) is regarded as the guiding philosophy for tunnel
design and construction and is widely used in many countries.

In principle of NATM, the surrounding rock is considered an active part
of the supporting structures, capable of sustaining the load due to excavation.
Meanwhile the tunnel lining should be installed in an optimized way, capable of
providing enough flexibility to allow a desirable degree rock deformation and
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enough strength to control excessive deformation. The last and most important
principle is that the excavation method including complimentary construction
artifices should be adopted according to observational or measured data and
geological condition during construction, so it is said to be observational and
adjustable [1]. But the law of deformation and stress in surrounding rock and
supporting structure against each excavation step is still not clear. Systematic
understanding of the repeated loading and unloading process in the rock mass
and its impact on the supporting structures still demand further research. Cur-
rent research work on the complicated process of tunnelling mainly depend
on the development of numerical model, most of which were carried out by
means of finite element method (FEM) method [2]. According to a compilation
of the documents, majority of the numerical simulation were still performed
under 2D plane strain approach [3], but it has been widely recognized that the
tunnel excavation process induces typically 3D stress effect, which can only be
accurately described in 3D FEM model.

Double-arch tunnel is a special type of tunnel whose construction process
is more complicate than that of single tunnel. Studies on the principle of its
construction mechanics were mainly carried out by means of constructional
monitoring or by local experience [4], and few numerical simulations have
been carried out.

2. DESCRIPTION OF THE 3D FEM MODEL

The tunnel simulated here is a three-lane double-arch highway tunnel, and
it is 87 m long, 26.5 m wide and 7.76m high. It is a shallow tunnel whose
maximum rock cover is only 13 m.

Partial-face construction method was adopted in the construction and it was
a complicated process with tens of steps and sub-steps. For simplicity, the whole
construction process was reduced into 20 separate stages, details of which are
not given here for the limit of the article. Planar schematic illustration of the
reduced excavation sequences is shown in Figure 1.

Figure 1. Schematic representation of excavation sequences.
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Table 1. Mechanical parameters.

Material E (MPa) ν γ (kN) C (MPa) ϕ (◦)

Rock 250 0.35 20 0.1 35

Concrete 2.8e4 0.18 25 1.0 55

Anchor 2.1e5 0.3 78

Figure 2. 3-D finite element mesh.

The rock encountered is primarily weak and soft rock, which was sensitive
to blasting and water. In the numerical model, a linear Mohr–Coulomb material
model was adopted for the rock, shotcrete and lining, and a linear-elastic model
for the anchor. The mechanical parameters for the rock and the structures are
given in Table 1.

The 3D FEM model developed consists of all the supporting structures and
the surrounding rock, and it covers 107 m along the longitude axis of the tunnel,
67 m along the horizontal direction (perpendicular to the longitudinal axis), and
about 80 m along the vertical direction (perpendicular to the horizontal plane).
Eight-node hexahedral elements were introduced to simulate the surrounding
rock and the lining, the middle wall and the invert, meanwhile four-node quad-
rangular thin shell elements and two-node beam elements were introduced to
simulate the shotcrete and the anchor, respectively. Altogether 15,597 nodes
and 20,212 elements are meshed and the element mesh of whole model is il-
lustrated in Figure 2. Detail geometrical information is not given for the limit
of the paper.

3. SUMMARY OF NUMERICAL RESULTS

According to experience, the most instructive information is that of defor-
mation monitored, because the pressure cells do not always give reasonable
results, especially when they monitor radial stress component. The results of
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Figure 3. Comparison of the numerical and monitored result.

the numerical analysis were evaluated by comparing with the corresponding
data monitored. The value of vertical displacement computed is compared with
that obtained by the multiple-position borehole extensometers in the rock.

For the limit of the article, only the point above the left roof of the tunnel
is selected, the evolution of its vertical displacement is shown in Figure 3. It
can be seen that the numerical results are reasonably close to the corresponding
data monitored in the construction field.

By surveying the distribution pattern and value of the stress, it can be
seen that stress in the shotcrete, the lining, the invert and the anchors change
considerably during the construction process.

As depicted in Figure 4, the value of compressive stress in the shotcrete roof
decreases with drawing of the left excavation face, which is unfavourable for
the stability of the tunnel and it increases gradually with the left excavation face
advanced away. This indicates that the load caused by excavation was first taken
up by the shotcrete and its adjacent rock, and later part of the load went into the
surrounding rock gradually through the process of stress transfer. At last, the
load is taken up by the rock and supporting structure together. The law of the
stress change in the anchor, depicted in Figure 5, confirmed such proposition.
Meanwhile the value of stress in the middle wall is considerably high and it
changed more violent than other structures, so more attention is required.

4. IMPLICATIONS TO DESIGN AND
CONSTRUCTION

A series of 3D numerical analysis were performed using finite element with
Mohr–Coulomb model to simulate the double-arch tunnel construction in the
principle of NATM. The 3D construction effect of double-arch tunnel can be
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Figure 5. Principle stress in anchor blot.

represented by 3D numerical analysis and the result is satisfactory. The repeated
loading and unloading process in the supporting structures and the surrounding
rock is the effect of all construction activities in both tunnels. It is an interactive
construction process and should and can be analyzed systematically by 3D
numerical model.

The mechanical behaviour of the first tunnel construction is similar to that of
single tunnel excavation except for the middle wall, but it is affected greatly by
the construction activities in the second tunnel whose excavating face lagged.
The distance between the two excavation faces is the key factor to the safety
of the double-arch tunnel and its displacement control, meanwhile the span
between the excavation face of the heading and the bench in both tunnels is
also important. Insight into the construction effect and determination of the
optimal distance between these excavation faces still demand further research.
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The value of stress in the middle wall is considerably high and varies vi-
olently, and more attention is required. The construction of the lining and the
invert is also of great importance to the ultimate value of the displacement and
stress in the surrounding rock.
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AMPLITUDE FREQUENCY—LOAD
CHARACTERISTIC RELATION OF
CIRCULAR SANDWICH PLATES

Du Guojun and Hu Yuda
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Abstract The differential equations of the axisymmetric large amplitude free vibration for

circular sandwich plates under static load are derived, and a set of nonlinearly

coupled algebraic and differential eigenvalue equations of the problem are formu-

lated following an assumed time mode approach suggested. The analytic solutions

are presented and a relation for amplitude frequency-load of the plates with the

edge clamped is derived by modified iteration method. The effects of static load

on vibrations of plates are investigated.

Keywords: circular sandwich plate, uniformed load, nonlinear, amplitude frequency-load

characteristic relation

1. INTRODUCTION

So far, only a few peoples have studied the large deflection problem of sand-
wich plates and shells, because off the difficulty of nonlinear mathematics. Liu
Renhuai has done much to find a series of results with the value of application
in engineering practice [1–5]. Du Guojun [6,7] have done the initial discus-
sion to the large amplitude vibration of circular sandwich plate. But little has
been done to study the effects of static load on the vibration of circular thin
plate under a centre force, obtained the characteristic relation of fundamental
frequency-load, based on the assumptions of space and time mode. Wang Jiny-
ing et al. [9] studied the nonlinear vibration of the flexure circular plate with
initial deflection, deriving the control equation of the time mode by Galerkin
method, based on the assumption of space mode, and the periodically solution
of the nonlinear vibration is obtained by Lindstedt–Poincare perturbation. This
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study is not perfectly because of the membrane stress under the static load is
neglected.

In this paper, we studied the nonlinear vibration problem of circular sand-
wich plate under static load by an analysis method, the accurate solution is
employed for the static problem. Based on the assumption of time mode and the
method of calculus of variations, the deflection and stress function employs the
simple harmonic function, the space function is unknown, the vibration mode
assumed contains two unknown natural parameters, that is natural frequency
and the nonlinear vibration ‘drift’ is brought by the static deformation [10,11],
they are related to the loads, boundary conditions and the vibration amplitude.
Substitution of the assumptive model function to the variations equation of this
problem, the control equation of space mode and the algebraic equation for
solving the ‘drift’ are derived, and the expression of the space mode are given
by modify iteration method, thus the amplitude frequency-load characteristic
relations of circular sandwich plate under the uniform load are derived, the nu-
meric results are given and the effects of static load to the nonlinear vibration
frequency and ‘drift’ are discussed, the method presented in this paper can be
applied to the problem of the annular plates and the shells.

2. FUNDAMENTAL EQUATIONS

The nondimensional nonlinear static equation of circular sandwich plate
under the uniformed load have been given in paper [1]

L(ρ(K S̄ 0
r + 1)φ0) − S̄ 0

r φ0 − P0ρ = 0 (1)

L(ρ2 S̄ 0
r ) + (φ0)2/ρ = 0 (2)

where the nondimensional variable are given by

ρ = r/a, W̄ 0 =
√

2(1 − ν2)w0/h0, φ
0 = W̄ 0

ρ

S̄ 0
r = 2h1a2

D
σ 0

r , S 0
θ = 2h1a2

D
σ 0

θ , K = D

G2h0a2
, P0 =

√
2(1 − ν2)

2h0 D
q0 (3)

where a is the radius of the circular sandwich plate, r is the radial coordinate,
h1 is the thick of the face plates, h0 is the distance between the medium section
of the top and the bottom face plates and q0 is the density of the uniformed
load, the detail note see paper [1], and L(· · ·) = (( · · ·),ρ/ρ),ρ .

The clamped boundary conditions are

when ρ = 1 : W̄ 0 = 0, (K S̄ 0
r + 1)φ0 + K P0 = 0, (ρ S̄ 0

r ),ρ − ν S̄ 0
r = 0 (4)

when ρ = 0 : (K S̄ 0
r + 1)φ0 = 0, S̄ 0

r < ∞ (5)



Amplitude Frequency 1861

We study the large amplitude vibration under the static deformation, the varia-
tion formulation of the vibration differential equations are derived by Hamilton
principle [6]∫ t2

t1

∫ a

0

(rmw,t t − 2h1(rσr0w,r ),r − G2h0(r (ψ + w,r )),r )δw · 2πdrdt = 0

(6)

D((rψ),r/r ),r − G2h0(ψ + w,r ) = 0 (7)

The stress-displacement relation is given by

((r2σr ),r/r ),r + Ew2
,r/2r = 0 (8)

assumption w0 is the deflection of the circular sandwich plate under the static
load P0, we study the free vibration base on the static deformation,w is the
dynamic deflection, the total deflection w can be written as

w = w0 + w (9)

therefore, we obtain

σr = σ 0
r + σ r (10)

ψ = ψ0 + ψ (11)

substitution of Equations (9)–(11) into (6)–(8), and the solutions are written as
[10,11]

w̄ = W̄ (r )(ξ + cos ωt), ψ̄ = φ̄(r )(ξ + cosωt)

σ̄ r = S̄(r )(ξ + cos ωt) + T̄ (r )(ξ + cos ωt)2
(12)

where ξ is a unknown variable, it is the nonlinear vibration ‘drift’ is brought
by the static deformation that causing the plate has the different draw and press
stiffen, ω is the nondimensional vibration frequency of thee large amplitude
in the static configuration , W̄ (r ), φ̄(r ), S̄(r ), T̄ (r ) are the unknown space
functions, by a series of mathematics calculation, we obtain

(L̃2 + Kω2 L̃ − ω2)W = −K L∗( f (ρ)) + f,ρ(ρ)/ρ (13)

a0 + a1ξ + a2ξ
2 + a3ξ

3 = 0 (14)

where

L̃(· · ·) = (ρ(· · ·),ρ),ρ/ρ, L∗ = (ρ((· · ·),ρ/ρ),ρ),ρ/ρ,

f (ρ) = ρS 0
r W,ρ + ρSW 0

,ρ + f1(ξ )ρ(W 0
,ρT + W,ρ S) + f2(ξ )ρW,ρT

f1(ξ ) = 2ξ 3 + 3ξ

2ξ 2 + 1
, f2(ξ ) = 8ξ 4 + 24ξ 2 + 3

8ξ 2 + 4
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and

a0 = −
∫ 1

0

(ρW 0
,ρT + ρW,ρ S),ρW dρ

a1 = −
∫ 1

0

(
ρ L̃2(W ) − (ρN 0

r W,ρ + ρSW 0
,ρ + 3

2
ρT W,ρ),ρ

)
W dρ

+
∫ 1

0

K (ρ(( f (ρ)),ρ/ρ),ρ),ρW dρ + Kω2

2ξ 2 + 1

∫ 1

0

(ρW,ρ),ρW dρ (15)

a2 = 2a0

a3 = −
∫ 1

0

(ρT W,ρ),ρW dρ

The stress-displacement relations are written as

L(ρ2S) = −2βW 0
,ρW,ρ/ρ (16)

L(ρ2T ) = −βW 2
,ρ/ρ (17)

the clamped boundary condition is

when ρ = 1: W = 0, Kω2 1

ρ

∫ ρ

0

ρW dρ + K (S0
r φ + Sφ0 + Sφ) + φ = 0,

(ρS),ρ − νS = 0, (ρT ),ρ − νT = 0 (18)

when ρ = 0: W = W0, Kω2 1

ρ

∫ ρ

0

ρW dρ + K (S 0
r φ + Sφ0 + Sφ) + φ = 0,

S < ∞, T < ∞ (19)

where W0 = W (ρ)|ρ=0, and

W +
m = W0(1 + ξ ), W −

m = W0(1 − ξ )

W +
m and W −

m are the positive and negative vibration amplitude, respectively.
Where, the nondimensional variable are

ρ = r/a, φ = W,ρ, W = W̄/h0, W 0 = w0/h0, ω = ω̄(ma4/D)
1
2 ,

T = h1a2T̄ /D, S = h1a2 S̄/D, S̄ 0
r = h1a2σ 0

r /D, K = D/G2h0a2,

β = 2(1 − ν2)

(20)

compared Equation (3) and (20), we obtain

W 0 = W̄ 0/
√

2(1 − ν2), S 0
r = S̄ 0

r /2 (21)



Amplitude Frequency 1863

3. ANALYTIC SOLUTION OF THE PROBLEM

The exact static solution can be obtain in the paper [2]

S̄ 0
r =

∞∑
i=0

a2iρ
2i (22)

φ0 =
∞∑

i=0

b2i+1ρ
2i+1 (23)

where

a2i = − 1

4i(i + 1)

i−1∑
m=0

b2m+1b2i−2m−1, (i = 1, 2, · · ·)

b2i+1 = 1

K a0 + 1

(
1

4i(i + 1)

i−1∑
m=0

a2mb2i−2m−1

− K
i∑

m=1

a2mb2i−2m+1

)
, (i = 2, 3, · · ·)

b3 = 1

8(K a0 + 1)
((a0 − 8K a2)b1 + P) (24)

substitution of Equations (13) and (14) into the boundary conditions, and com-
bining Equation (15), we obtain the nonlinear algebraic equation systems, and
a0, b1 can be obtain to the given load P and the boundary conditions, the cal-
culating course see paper [2]. We solve the boundary value problem (6)–(8),
(10), (11) by the modify iteration method, in the first order approximate, we
neglect the nonlinear terms and the terms of containing the static deformation
in Equation (6), and let ξ = 0, we have

(L̃2 + Kω2
0 L̃ − ω2

0)W1 = 0 (25)

L(ρ2S1) = −2βW 0
,ρW1,ρ/ρ (26)

L(ρ2T1) = −βW 2
1,ρ/ρ (27)

The clamped boundary conditions are

when ρ = 1: W1 = 0, Kω2
0

1

ρ

∫ ρ

0

ρW1dρ + φ1 = 0,

(ρS1),ρ − νS1 = 0, (ρT1),ρ − νT1 = 0 (28a–d)

when ρ = 0 : W1 = W0, Kω2
0

1

ρ

∫ ρ

0

ρW1dρ + φ1 = 0, S1 < ∞, T1 < ∞
(29a–d)
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the solution of Equation (25) can be written as

W1 = W0

∞∑
j=0

A(1)
j ρ2 j (30)

where

A(1)
j = μ1

ω
2 j
0

22 j ( j!)2c j
+ μ2

(−1) j c j

22 j ( j!)2

c = ω2
0(K +

√
K 2 + 4/ω2

0)/2

where μi (i = 1, 2) is the coefficient which is to be determined by the bound-
ary conditions. Substitution of Equation (30) into (28a,b) and (29a), we
obtain

Aμ = 0 (31)

where

μ = [μ1, μ2, 1]T

A =
⎡
⎣a01 a02 −1

a11 a12 0
a21 a22 0

⎤
⎦

the expressions of elements of matrix A are omitted. Because μ is not a zero
vector, the determinant of matrix A must equal zero, that is

det A = 0 (32)

Solving Equation (32), we obtain ω0, thus ai j (i = 0, 1, 2; j = 1, 2) is deter-
mined, μ1 and μ2 can also be determined in Equation (32), therefore, W1 is
determined. For determining S1, T1, substitution of (30) into Equations (26)
and (27), doing integral, and applying the boundary conditions (28c,d) and
(29c,d), we obtain

S(1) = W0

∞∑
j=0

B(1)
j ρ2 j (33)

T (1) = W 2
0

∞∑
j=0

C (1)
j ρ2 j (34)

where

B(1)
j = − β

j( j + 1)

j∑
i=0

( j − 1)b2i+1 A(1)
j−i , j = 1, 2, · · ·



Amplitude Frequency 1865

B(1)
0 = −

∞∑
j=1

η(2 j + 1) − ν

η − ν
B(1)

j

C (1)
j = − β

j( j + 1)

j∑
i=0

i( j − 1)A(1)
i A(1)

j−i , j = 1, 2, · · ·

C (1)
0 = −

∞∑
j=1

η(2 j + 1) − ν

η − ν
C (1)

j (35)

For solving a0, a1, a2, a3 , substitution of Equations (30), (33) and (34)
into (14), we obtain

a0 = ϕ1W 3
0

a1 = ϕ2W0 + ϕ3W 2
0 + ϕ4W 3

0 + 3

2
ϕ5W 4

0

a2 = 2ϕ1W 3
0

a3 = ϕ5W 4
0 (36)

where

ϕ1 = −
∞∑
j=0

j∑
i=0

2i

2 j + 1
A(1)

i (E j−i + Fj−i )

ϕ2 =
∞∑
j=0

j∑
i=0

8( j − i + 1)2( j − i + 2)K

2( j + 1)
A(1)

i (Hj−i+1 + I j−i+1)

ϕ3 = −
∞∑
j=0

j∑
i=0

16( j + 2)2( j + 1)A(1)
i+2 A(1)

j−i +
∞∑
j=0

j∑
i=0

4i

2 j+1
A(1)

i (Hj−i + I j−i )

+
∞∑
j=0

j∑
i=0

8( j − i + 1)2( j − i + 2)K

2( j + 1)
A(1)

i f1(ξ )(E j−i+1 + Fj−i+1)

+ Kω2

2ξ 2 + 1

∞∑
j=0

j∑
i=0

2i2

j + 1
A(1)

i A(1)
j−i+1

ϕ4 =
∞∑
j=0

j∑
i=0

8( j − i + 1)2( j − i + 2)K

2( j + 1)
f2(ξ )A(1)

i G j−i+1

ϕ5 = −
∞∑
j=0

j∑
i=0

4

j + 1
C (1)

j−i Gi (37)
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and

E j =
j∑

k=0

b2k+1C (1)
j−k, Fj =

j+1∑
k=1

2K A(1)
k B(1)

j−k+1,

Hj =
j+1∑
k=0

2( j − k + 1)a2k A(1)
j−k+1, I j =

j∑
k=0

b2k+1 B(1)
j−k,

G j =
j+1∑
k=1

k( j − k + 1)A(1)
k Fj−k+1, j = 0, 1, 2, · · · (38)

thus, Equation (14) can be written as

ϕ1W 2
0 + (ϕ2 + ϕ3W0 + ϕ4W 2

0 + 1.5ϕ5W 3
0 )ξ + 2ϕ1W 2

0 ξ 2 + ϕ5W 2
0 ξ 3 = 0

(39)
where, ξ can be determined for the given W0.

In the second order iteration, we have the following problem of modified
eigenvalue

(L̃2 + Kω2 L̃ − ω2)W2 = −K L∗( f (ρ)) + f,ρ(ρ)/ρ (40)

when ρ = 1: W2 = 0, Kω2 1

ρ

∫ ρ

0

ρW2dρ + K (S0
r φ2 + S2φ

0 + S2φ2) + φ2 = 0,

(ρS2),ρ − νS2 = 0, (ρT2),ρ − νT2 = 0 (41)

when ρ = 0 : W2 = W0,

Kω2 1

ρ

∫ ρ

0

ρW2dρ + K (S 0
r φ2 + S2φ

0 + S2φ2) + φ2 = 0, S2 < ∞, T2 < ∞
(42)

where

f (ρ) = ρS0
r W (1)

,ρ + ρS(1)W 0
,ρ + f1(ξ )ρ(W 0

,ρT (1) + W (1)
,ρ S(1))

+ f2(ξ )ρW (1)
,ρ T (1)

substitution of Equations (22), (23), (30), (33) and (34) into (40), we obtain the
solution of Equation (40)

W (2) = W0

∞∑
j=0

(A(2)
j + B(2)

j )ρ2 j + W 2
0 f1(ξ )

∞∑
j=0

C (2)
j ρ2 j + W 3

0 f2(ξ )
∞∑
j=0

D(2)
j ρ2 j

(43)
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where

A(2)
j = δ1

ω2 j

22 j ( j!)2c j
+ δ2

(−1) j c j

22 j ( j!)2

c = ω2(K +
√

K 2 + 4/ω2)/2

B(2)
0 = B(2)

1 = 0

B(2)
j = E j−2

16 j2( j − 1)2
− ω2 K

4 j2
B(2)

j−1 + ω2

16 j2( j − 1)2
B(2)

j−2 ( j ≥ 2)

E j = −16K ( j + 2)( j + 1)2
j+2∑
i=0

i(A(1)
i a2( j−i+2) + B(1)

j−i+1b̃i ) +

+ 4( j + 1)

j+1∑
i=1

i(A(1)
i a2( j−i+1) + B(1)

j−i+1b̃i )

b̃i = b2i−1/2i (i = 1, 2, · · ·), b̃0 =
∞∑

m=0

b2m+1/2(m + 1)

C (2)
0 = C (2)

1 = 0

C (2)
j = Fj−2

16 j2( j − 1)2
− ω2 K

4 j2
C (2)

j−1 + ω2

16 j2( j − 1)2
C (2)

j−2 ( j ≥ 2)

Fj = −16K ( j + 2)( j + 1)2
j+2∑
i=0

i(a2 j C
(1)
j−i+2 + B(1)

j−i+1 A(1)
j ) +

+ 4( j + 1)

j+1∑
i=1

i(a2 j C
(1)
j−i+1 + B(1)

j−i+1 A(1)
j )

D(2)
0 = D(2)

1 = 0

D(2)
j = G j−2

16 j2( j − 1)2
− ω2 K

4 j2
D(2)

j−1 + ω2

16 j2( j − 1)2
D(2)

j−2 ( j ≥ 2)

G j = −16K ( j + 2)( j + 1)2
j+2∑
i=0

i A(1)
j C (1)

j−i+2 + 4( j + 1)

j+1∑
i=1

i A(1)
j C (1)

j−i+1

substitution of Equation (43) into (41), (42), we obtain

Hδ = 0 (44)
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where

δ = [δ1, δ2, 1]T

H =
⎡
⎣ 1 1 −1

h11 h12 h13

h21 h22 h23

⎤
⎦

all of the elements of the matrix H can be written as the functions of ω, the
expression is omitted.

By Equation (44), we obtain the frequency equation

det H = 0 (45)

Equation (45) is the characteristic relation for amplitude frequency-load of
large amplitude vibration of circular sandwich late under the uniformed load,
we can obtain the value of ω corresponding to any load P0 and W0 by solving
Equation (45), thus, all of the elements of matrix H are determine, and we can
determine the δ1, δ2 by Equation (44), so far, the solution of the second order
modified iteration of the boundary value problem is determined completely.

4. NUMERIC RESULTS AND DISCUSSION

We completed the numeric calculation for discussed circular sandwich plate
with edge clamped, let K =0.01,0.05,0.1, P0=0,25,50,75,100, the results see
Figure 1–6. The amplitude frequency-load curves corresponding to different
sheer parameters are given in Figure 1–3. According to Figure 1–3, the static
load not only can change the fundamental frequency of sandwich plate but also
may change the nonlinear effects of the vibration, when the sheer parameter
is smaller (K =0.01), the nonlinear effects are decreased gradually with the
increasing of the load, when K is larger (K =0.05,0.1), the nonlinear effects are
increased gradually with the increasing off the load, and larger of the K , larger
of the increasing of the nonlinear effects.

The varies of the nonlinear vibration drift ξ with the load and amplitude
are given in Figure 4–6. According to Figure 4–6, the drift of the nonlinear
vibration is increased with the increasing of the load. WhenK =0.05, for the
smaller amplitude, the varies of the drift of the nonlinear vibration is very
small with the varies of the load, when the amplitude is increased to some
value, the drift of the nonlinear vibration is increased with the increasing of the
load, for the larger K value, the drift of the nonlinear vibration is decreased with
the increasing of the load in begin, but when the amplitude is increased arriving
some value, it is increased with increasing of the load. In the all, the drift is
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Figure 1. Amplification Frequency-load curve (K = 0.01).
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Figure 2. Amplification Frequency-load curve (K = 0.05).
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Figure 3. Amplification Frequency-load curve (K = 0.10).
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Figure 4. Effects of load to drift (K = 0.01).
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Figure 5. Effects of load to drift (K = 0.05).
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Figure 6. Effects of load to drift (K = 0.10).
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increased with increasing of the amplitude in begin, when the drift arrived some
limited value, it is decreased with increasing of the amplitude.
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ENERGY ABSORPTION CAPACITY
OF LAYERED FOAM CLADDING

G.W. Ma and Z.Q. Ye
Department of Civil and Environmental Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore 639798

Abstract In the present study, layered foam cladding is proposed to enhance the energy

absorption capacity against blast load. The energy absorption of the layered foam

cladding is investigated based on a rigid, perfectly plastic, locking foam model.

The maximum blast impulses that can be resisted by different configurations of

layered foam cladding are calculated. It is shown that a double-layer foam cladding

can resist much higher impulse and is flexible for application of different purposes.

Keywords: layered foam cladding, blast mitigation, blast load, energy absorption.

1. INTRODUCTION

With the advantage of energy absorption and blast wave attenuation, metal-
lic foams have been attached as sacrificial claddings to protect main structures
against impacts and blast loads [1, 2]. However, it have been reported that the
sacrificial foam claddings intended to attenuate blast loads may work unex-
pectedly as pressure amplifiers when the sacrificial claddings were not prop-
erly designed [3]. Thus, it is of importance to study the dynamical deformation
mechanism in foam materials in order to optimize the design of the sacrificial
layers for structural protection.

It has been found that a shock wave may rise in the foam materials when
subjected to high strain rate compression. In order to describe the propagation
of the shock wave in the metallic foam materials, the stress–strain curve of
foam materials was idealized by Reid and Peng [4] as a rigid, perfectly plastic,
locking (R-P-P-L) model as shown in Figure 1. By neglecting the short elastic
regime of the foam material, the model has shown great advantages to estimate
the blast resisting capacity of the foam structures [5, 6]. It is worth noting that in

G. R. Liu et al. (eds.), Computational Methods, 1873–1877.
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D
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D
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Stress 

Figure 1. R-P-P-L model of foam.

all the existing investigations, only single-layer foam was used in the cladding
structures.

In the present study, layered foam cladding is considered to enlarge the
blast mitigation capacity. Different configurations of the layered foam claddings
are analysed. The layered cladding can be used to fulfill different application
purposes.

2. ENERGY ABSORPTION CAPACITY
OF LAYERED FOAM CLADDING

For a cladding made of two foam layers, the front layer and the rear layer
are assumed bonded perfectly. Each foam layer has a cover plate. Considering a
unit strip along the thickness direction of the cladding, the initial density, total
mass, plateau stress, and densification strain of the front layer foam are denoted
respectively as ρ1, m f 1, σ01, εD1, the mass of the cover plate is m1. The corre-
sponding parameters of the rear layer foam are respectively ρ2, m f 2, σ02, εD2

with a cover plate mass m2.

As shown in Figure 2, there are two shock waves respectively in the two
foam layers. For each shock front, the downstream stress is equal to the plateau

m1 m2

p(t).A 

D2 02

Shock front 2Shock front 1

01D1

Figure 2. Double-layer foam cladding.
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stress σ0 of the foam, while the upstream stress increases to σD accordingly. The
deformations of the foams are equal to the relative displacement of the two cover
plates. The mass of the compacted foams of the two layers are respectively

�m1 = ρ1 A

εD1

(u1 − u2) (1a)

�m2 = ρ2 A

εD2

u2 (1b)

At the upstream of the shock wave front in the two layers, the stresses are

σD1 = σ01 + ρ1 A

εD1

(u̇1 − u̇2)2 (2a)

σD2 = σ02 + ρ2 A

εD2

u̇2
2 (2b)

Therefore, the equation of the motion of the front foam layer can be expressed
as follows,[

m1 + ρ1 A

εD1

(u1 − u2)

]
ü1 + ρ1 A

εD1

(u̇1 − u̇2)2 + (σ01 − p(t))A = 0 (3)

The undisturbed part of the front layer (m f 1 − �m1) moves together with
the compacted foam (m2 + (ρ2 A/εD2)u2) of the rear layer. Hence the motion
equation of the rear foam layer can be expressed as follows,[

m f 1 − ρ1 A

εD1

(u1 − u2) + m2 + ρ2 A

εD2

u2

]
ü2 + ρ2 A

εD2

u̇2
2 + (σ02 − σ01)A = 0

(4)
The simultaneous nonlinear differential Equations (3) and (4) can be solved
by using a Wilson-θ algorithm. For a given blast impulse, the deformation of
the two foam layers can be derived from the above equations. When the rear
foam layer is fully compacted, the pressure transferred to the protected structure
could be larger than the plateau stress of the rear foam layer σ02 or even larger
than the input peak pressurep0. Therefore, the maximum blast impulse that the
cladding can resist is the critical value when the rear foam layer becomes fully
compacted.

3. BLAST RESISTANCE OF LAYERED
FOAM CLADDING

As an example, in the present study, aluminum foam is chosen as the foam
material, while steel is used for the cover plate. According to Andrews et al.
[7], two foams are selected for the present study. Foam I has a density of
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Table 1. Maximum blast impulse.

Maximum blast impulse

Configuration Peak pressure (MPa) Duration (ms)

Single layer (foam I) 24.6 0.3

Dual layers (foam I + I) 43.2 0.3

Two layers (foam I + II) 55.0 0.3

Two layers (foam II + I) 44.6 0.3

200 kg/m3, plateau stress of 1.5 MPa and densification strain 0.85. Foam II has
a density of 300 kg/m3, plateau stress of 3.0 MPa and densification strain 0.78.
The thickness of the foam layers is 10 cm, the thickness of the cover plates is
0.5 cm.

The blast resistances of four different configurations of the cladding have
been investigated. Cladding-1 has a single-layer of foam I. Cladding-2 has
two identical layers with each layer same as cladding-1. The only difference
between cladding-3 and cladding-2 is that the rear foam layer of cladding-
3 changes to foam II, which means that the rear layer foam is stronger than
the front layer foam. In cladding-4, the foams of the two layers in cladding-3
exchange.

The maximum blast impulses that the four claddings can resist have been
calculated, which is shown in Table 1. As can be seen, the double-layer foam
claddings have much higher blast resistance than the single-layer foam cladding.
The blast resistance of cladding-2 is 76% larger than that of cladding-1. Com-
pared with cladding-2, the blast resistance of cladding-3 is further increased
by 27%. On the other hand, the pressure transferred to the protected struc-
ture is twice as that of cladding-2 and the weight of cladding-3 is 8% higher.
Cladding-4 is also expected to resist much higher blast impulse. However, the
results indicate that the blast resistance of cladding-4 has no significant en-
hancement compared to cladding-2.

4. CONCLUSION

The analytical results show that the multiple layer foam cladding can re-
sist much higher impulse induced by blast load. It can be used for different
application purpose. The present study can also serve as design guidance to
preliminarily predict the energy absorption capacity and the maximum resis-
tance against the blast impulse of the layered foam claddings.
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WOVEN FABRIC WITH LS-DYNA
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Abstract This paper presents a novel method of modelling ballistic impact on woven poly-

meric fabric commonly used in armour applications. This method incorporates

the viscoelastic behaviour of the fabric yarns, yarn crimp, inter-yarn friction and

friction between projectile and fabric. The yarns of the fabric are modelled as

viscoelastic bar elements interwoven together. Excellent agreement between sim-

ulation and ballistic test data is obtained in the prediction of the energy absorbed

by the fabric and the deformation of the fabric during impact. This is achieved

despite the modest number of DOFs.

Keywords: ballistic impact, fabric, perforation, LS-DYNA.

1. INTRODUCTION

Woven fabric is commonly used in today’s protective clothing due to their
excellent impact resistance, high strength to weight ratio and drapability. The
fibres used in the manufacture of such clothing are typically polymeric fibres.
Kevlar R© and Twaron R© are two examples of aramid fibres that are commonly
used. The design of such protective clothing is based mainly on extensive
ballistic impact tests. There have also been various attempts, noticeably from
the last decade, at numerically modelling the ballistic impact of woven fabric
to study the mechanics involved in the deformation and perforation of such
fabrics subjected to small projectile impacts.

The modelling of fabrics varies greatly in complexity, ranging from simple
idealization of fabrics as shells or membranes as reported by Simons et al. [1]
and Lim et al. [2], to detailed full scale discretization of the yarns of the fabric
with solid finite elements as reported by Shockey [3] and Blankenhorn et al.
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[4]. A popular approach to modelling fabric is to represent them as networks
of one-dimensional elements pin-jointed at nodes [5–7].

Johnson et al. [8] and Shahkarami et al. [9] used bar elements to model
the yarns of the fabric. Shell elements were used to provide contact surfaces
for interactions with the projectile and different fabric layers. The difference
between their models lies in the fabric material model. Cunniff et al. [10]
also used bar elements to model the yarns of the fabric. However, the bar
elements of this model are not co-planar, and the nodes of the warp and fill
yarns are coupled together with spring elements, to better represent crimped
yarns.

The software used by Lim et al., Simons et al., Shahkarami et al., and
Blankenhorn et al. for their numerical models is LS-DYNA [11]. LS-DYNA is
a non-linear, explicit, finite-element software. It has been used to successfully
simulate various types of impact phenomena. The present study also uses LS-
DYNA to model the ballistic impact of fabric.

The present study uses only bar elements in the modelling of the fabric
yarns. These elements are tied together using spot-weld constraints, and are
modelled in a non-co-planar manner. However, the warp and fill yarns of the
fabric are not tied together, and can slide along one another. Details of the
model can be found in the following section.

2. NUMERICAL MODEL

Actual ballistic tests on woven aramid fabric specimens (Twaron R©CT716) were
performed prior to the numerical simulations. Fabric specimens of dimensions
120 mm by 120 mm were fully clamped on all sides during the ballistic tests. The
projectile was a steel sphere of diameter 12 mm and weight 7 g. The projectile
was propelled normally onto the centre of the target by a high-pressure gas gun,
with impact velocities ranging 80–520 m/s. The experimental set-up is similar
to that of Tan et al. [7].

The fabric yarns were modelled using discrete elements with a viscoelastic
material model. As the discrete elements are massless, truss elements with
null material properties were used to add mass to the fabric yarns, as well as
to provide contact surfaces. The fabric elements were modelled with a length
consistent with the actual length of the fabric yarns, and were assigned a radius
of 0.05 mm. The projectile was modelled as a rigid sphere and assigned the
density of steel. Diagrams of the mesh can be found in Figure 1. Only one
quarter of the actual set-up was modelled due to symmetry.

The viscoelastic material model used in this study to represent the aramid
yarns is the three-element spring-dashpot model shown in Figure 2. This model
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Figure 1. Mesh of fabric.

was also used by Shim et al. and Lim et al. The stress–strain response of this
model can be described by the three parameters as(

1 + K2

K1

)
σ + μ

K2

σ̇ = K2ε + με̇ (1)

The effects of crimp (undulations in yarns of woven fabric) have been found
by Shim et al. to affect the ballistic response of woven fabric and hence it is
important to include this in the fabric model. Crimp effects were incorporated
in this study by modelling the fabric yarns in a non-planar manner similar to
Cunniff, as shown in Figure 1. At the cross-over points, the nodes of the warp
and fill yarn elements were placed a distance of 0.1 mm apart in the thickness
direction.

In order to allow for fabric perforation, the nodes of the bar elements
of the yarns were joined together with spot-weld constraints. These con-
straints were defined to fail using the same failure criteria employed by Shim
et al. [5].

Friction was introduced between the projectile and fabric, as well as between
the warp and fill yarns of the fabric. The friction coefficient between yarns and
between fabric and steel were tested to be 0.2.

K1

K2

μ

Figure 2. Three-element viscoelastic model.
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Figure 3. Residual vs. impact velocity (m/s).

3. RESULTS

Figure 3 shows a plot of the residual velocity of the projectile against impact
velocity of the projectile. This plot includes the experimental data, as well as the
simulation data. A similar plot, for energy absorbed by the fabric (calculated
by the loss in kinetic energy of the projectile) against impact velocity of the
projectile, can be found in Figure 4.

The deformation plots of the fabric models subjected to impacts at velocities
of 110 and 400 m/s can be found in Figure 5.

The plots of residual velocity against impact velocity plot (Figure 3) and
the energy absorbed against impact velocity (Figure 4) show that the numerical
model is in excellent agreement with the experimental results. The residual
velocity is seen to vary approximately linearly for the higher impact veloci-
ties. The experimental critical impact velocity for complete penetration of the
fabric obtained is around 110 m/s. The numerical model predicts a slightly
conservative critical impact velocity of 105 m/s.

Figure 4. Energy absorbed (J) vs. impact velocity (m/s).
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Figure 5. Sequence of fabric deformation.

The deformation plots of the fabric (Figure 5) show that the pyramidal shape
deformation typically observed in high-speed photographs of ballistic impact
experiments, was also obtained by the numerical model for both low and high
impact velocities.

4. CONCLUSIONS

A numerical model of woven fabric comprising discrete elements interwoven
together has been shown to give predictions of ballistic response of woven
aramid fabric that are in good agreement with actual tests. The model is able to
reproduce the deformation and damage that are observed in actual tests. Quan-
titative agreement in terms of residual projectile velocities was also obtained.
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Abstract Numerical analysis is an important tool in obtaining a detailed understanding

about explosive phenomena. In this research, we perform the analysis of multi-

layer model with the air layer. In our calculation code, the analysis of compress-

ible substances, which cells transform greatly (like air) generally is very difficult.

In this research, we used LS-DYNA3D, an analysis code using a finite-element

method. By analyzing the stress state of the air hole circumference, multilayer

models such as air, water and structure are analyzed and it aims to get the propaga-

tion process of the shock wave. The multi-material Arbitrary Lagrangian Eulerian

(MMALE) [1] method improves upon pure Eulerian formulation by allowing the

reference fluid meshes to translate, rotate and deform, thus minimize the amount

of flux transport, and reduce mesh size of the reference fluid meshes.

Keywords: explosive, shock wave, air, the multi-material Arbitrary Lagrangian Eulerian

(MMALE) method, LS-DYNA3D.

1. INTRODUCTION

Explosives can easily generate high energy and ultra-high pressure. In recent
years, research on the advanced technological use of explosives is studied in
various places. Here we focus on the Smooth Blasting Technique that is applied
for tunnel blasting. This technique is performed to fracture concrete and to
reduce the quantity of fragments, while avoiding stress concentration of ground
pressure during tunnel blasting. An emulsion explosive is usually used for
Smooth Blasting Technique. In this research we investigated how the shock
wave generated from the explosive would act using a multilayer model. The
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Figure 1. Numerical analysis model.

explosives used by this research are detonation cord (DF) and an emulsion
explosive (EMX).

2. NUMERICAL ANALYSIS METHOD

The numerical analysis model is shown in Figure 1. This model has adopted
1/4 model of a pillar for calculating space reduction. The radial direction is set
to ze (explosive part), za (air part), zv (poly vinyl chloride (PVC) pipe part =
3 mm) and zw (water part = 20 mm). The used explosives are detonation cord
(density 1.2 g/cm3, detonation velocity 6300 m/s, detonation pressure 11.94
GPa, ze = 2.7 mm) and emulsion explosive (density 0.9 g/cm3, detonation
velocity 2520 m/s, detonation pressure 1.4 GPa, ze = 10 mm). The explosive
detonated from the part at x = 0 which gave initial detonation. The air part was
changed and numerical analysis was carried out. We evaluated the effect of the
air layer by the pressure histories.

Numerical analysis was carried out using the Arbitrary Lagrangian Eulerian
(ALE) approach. An ALE formulation contains both pure Lagrangian and
pure Eulerian formulations. This has combined the Lagrange method (which
observes change of the velocity, acceleration and so on paying attention to
arbitrary fluid particles) and the Euler method (for dealing with change of
physical quantity, such as velocity and pressure) as function of the position of
the point and time in space. We used the multi-material ALE Formulation).
The multi-material method uses the Euler element for fluid and the detonation
products of the explosive, and uses the Lagrange element for a structure. Two
levels of ALE technology exist. One allows ALE behaviour only within a
material (forcing material boundaries to remain Lagrangian). The second level
of ALE technology allows multi-material elements to form and is therefore
more generally applicable.

About the handling of the detonation phenomenon in this analysis ‘C-J
Volume Burn’ was used.
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Table 1. JWL parameter of DF and EMX.

A (GPa) B (GPa) R1 R2 ω

DF 452.35 8.85 5.485 1.425 0.28

EMX 1.51 4.43 5.8 1.7 0.24

The equation of state for explosives in this research made use of the Jones-
Wilkins–Lee (JWL) equation [2]. This equation is shown below (1) and each
coefficient is shown in Table 1.

PJWL = A

[
1 − ω

VR1

]
exp(−R1V )

+B

[
1 − ω

VR2

]
exp(−R2V ) + ωe

V
(1)

V = ρ0 (Initial density of an explosive)/ρ(Density of detonation gas)
PJWL: Pressure e: Specific internal energy
A, B, R1, R2, ω: JWL parameter.

The equation of state for water and PVC pipe in this research was used
Mie–Grüneisen equation [3]. Mie–Grüneisen equation is shown below (2) and
each coefficient is shown in Table 2.

P = ρ0C2
0η

(1 − sη)2

[
1 − �0η

2

]
+ �0ρ0e (2)

η = 1 − ρ0 (initial density of the medium)/ρ(density of the medium)
P: Pressure e: Specific internal energy
C0,S: Constant of material �0: Grüneisen coefficient.

The equation of state for an air in this research was used linear polynomial
equation. This equation is shown below and each coefficient is shown in Table 3.

P = C0 + C1μ + C2μ
2 + C3μ

3 + (C4 + C5μ + C6μ
2)E (3)

Table 2. Mie–Grüneisen parameter of water and

PVC pipe.

ρ0 (kg/m3) C0 (m/s) s �0

Water 1000 1490 1.79 1.65

PVC Pipe 1380 2300 1.47 0.40

Table 3. Linear polynomial parameter of air.

ρ0 (kg/m3) γ C4 C5

Air 1.025 1.403 0.403 0.403
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Figure 2. Relation of pressure contours using EMX and DF without an air-layer (detonation

front at x = 70 mm).

The linear polynomial equation of state was used model gas with the gamma
law equation of state. This may be achieved by setting.

C0 = C1 = C2 = C3 = C6 = 0

and

C4 = C5 = γ − 1

Where γ is ratio of specific heats.

3. ANALYSIS RESULTS

The pressure contours of Figure 2 shows the shock wave which propagates
into the PVC pipe and water when using DF and EMX as the explosive. There is
no air layer in these models. Since the sound velocity (2300 m/s) of a PVC pipe is
almost the same as the detonation velocity (2520 m/s) of EMX, the detonation
front of EMX and the shock front of a PVC pipe are located in almost the
same x-position. Incidentally, since destruction and deformation were taken
into consideration to the PVC pipe, a failure strain term was incorporated in
all the models used by this research.

Figure 3 shows the pressure contours of the numerical model with a 2.43
mm thick air layer using DF as the explosive. A shock wave and reflective wave
can be seen in the water. Pressure histories are shown in Figures 4(a) and 4(b).
When the air layer becomes thick, it turns out that Pmax is low in the pipe and
the water. However, with the air layer, the duration of pressure is increased by
the effect of a reflective wave. Therefore, the impulse shows almost the same
value in all cases.

4. CONCLUSIONS

In this research, we performed the numerical analysis of multilayer model
with the air layer. Rather than the underwater shock wave produced by



Explosion of High Explosive in Complex Media 1889

Figure 3. Pressure contours in the case of air layer thickness is 2.43 mm.
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Figure 4.(a). Pressure histories in PVC pipe (x = 40 mm, y = 0 mm, zv = 1.5 mm).
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detonation of an explosive, an air layer showed that a weaker shock wave was
introduced, but also that a reflected pressure wave occurred. The duration of
the pressure was increased by this, leaving the impulse practically unchanged.

REFERENCES

1. K. Mahmadi, N. Aquelet and M. Souli (2002), ALE multi-material formulation of high
explosive detonation using LS-DYNA3D. In: Emerging technologies in Fluids, Structures,
and Fluid/Structure Interactions, PVP Vol. 446–1.

2. E.L. Lee, M. Finger and W. Collins (1973), JWL equation of state coefficients for high
explosives. Lawrence Livermore Laboratory, UCID-16189.

3. S.P. Marsh (1980), LASL Shock Hugoniot Data. University of California Press, Berkeley,
CA.



NUMERICAL CALCULATION OF DETONATION
PHENOMENON FOR EMULSION EXPLOSIVES

H. Hamashima1, S. Itoh1, F. Sumiya2 and Y. Kato2

1 Shock Wave and Condensed Matter Research Center, Kumamoto University, 2-39-1
Kurokami, Kumamoto 860-8555, Japan
2 NOF CORPORATION, 61-6 Kitakomatsudani, Taketoyo-cho, Chita-gun, Aichi 470-2398,
Japan

Abstract Usually, it is difficult to obtain the equation of state (EOS) for the non-ideal

explosive, such as emulsion explosives (EMXs), that is most used in an industrial

explosive. The reason is that the detonation performance of a non-ideal explosive

changes with the charge diameter and confinement a lot. In this research, as for the

EMXs, it asked for the parameters of the JWL EOS obtained from the shape of an

underwater shock wave (Underwater Explosion Test). Numerical calculation was

performed about the detonation phenomenon of EMXs using this equation, and it

compared with the experiment. The result was well in agreement between them.

Keywords: JWL equation of state, explosive, underwater, ALE.

1. INTRODUCTION

The emulsion explosives (EMXs) show non-ideal detonation behaviour, and
their detonation velocities are easily controlled by selecting the void size and
adjusting the quantity of voids included. Their detonation waves steadily prop-
agate. However, their characteristics are significantly affected by the conditions
such as charge diameter or confinement. JWL EOS [1] is widely used because
of its simplicity in hydrodynamic calculations. JWL EOS contains parameters
that may be determined by the metal cylinder expansion test. However, the real
expansion of detonation products for EMXs is not estimated by the metal cylin-
der expansion because of using them confined in the metal cylinder. In order
to study the expanding process of detonation products of EMXs, the optical
observation of the underwater explosion of cylindrical EMXs was carried out.
Using a method of characteristics applied to the configurations of underwater
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Table 1. Compositions of emulsion matrix (wt %).

Ammonium Sodium Hydrazine EDTA Wax and

nitrate nitrate nitrate Water EDTA emulsifier Balloon

EMXA 72.29 6.22 5.52 11.04 0.10 4.82 RMB

EMXB 72.29 6.22 5.52 11.04 0.10 4.82 EPS

EMXC 70.44 6.22 7.37 11.05 0.10 4.82 EPS

Table 2. Structures of balloons.

Average

diameter Bulk density

(mm) (kg/m3) Structure Material

RMB 0.05 27 Mono-cell Acrylonitrile/vinylidene chloride

EPS 2.2 43 Multi-cell Polystyrene

shock waves and applying one-dimensional hydrodynamic analysis for the axis
symmetric flow, the expanding process of detonation products is made clear in
all stages. Therefore, the pressure and density of detonation products can be
determined. The parameters of JWL EOS are obtained by using this technique.

2. EXPERIMENTAL PROCEDURE [2]

Three kinds of sample EMXs are used in this study. Their compositions
of emulsion matrix are shown in Table 1. The structures of balloons mixed
in them are shown in Table 2. The detonation properties of sample explosives
are shown in Table 3. Sample explosives were set in the aquarium made of
Polymethylmethacrylate (PMMA) and initiated by No. 6 electric detonator.
Streak photographs and framing photographs are taken by a high-speed camera
(IMACON468, HADLAND PHOTONICS) using a conventional shadowgraph
system. The configurations of underwater shock waves were obtained from
the streak photographs. The experimental device for the cylindrical sample

Table 3. Detonation properties of emulsion explosive.

Detonation velocity

(m/s) Initial density (kg/m3)

EMXA 4390 900

EMXB 2520 900

EMXC 2540 900
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Figure 2. Experimental set-up.

explosive is shown in Figure 1. In this figure, the slit shows the optical slit
for taking the streak photograph. The experimental set-up in the Explosion
Laboratory is shown in Figure 2.

3. METHOD OF CHARACTERISTICS

The underwater shock wave system described in stationary coordinate sys-
tem fixed to detonation front is shown in Figure 3. Boundary between detonation
products and water is shown by curve AB. Curve of Characteristics, such as
S1B1, is described between underwater shock wave AS and this boundary. If
the configuration of underwater shock wave is given, physical quantities of a
range between AS and AB are obtained by using some equations for underwater
shock wave, streamline and Curve of Characteristics. Using one-dimensional
hydrodynamic analysis for the axis symmetric flow, the pressure and density of
products are found by making the underwater expanding process of the detona-
tion products clear. Hence, if the configurations of underwater shock waves are
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known, the expanding process of the detonation products is made clear, even if
the composition of explosive is unknown.

4. NUMERICAL SIMULATION

The numerical simulation of the underwater explosion of cylindrical explo-
sive was conducted by Arbitrary Lagrangian–Eulerian (ALE) method [3], by
using C-J Volume Burn Technique [4] and by using the laws of conservation
of mass, momentum, energy and EOS. Mie–Grüneisen EOS is used for water.

P = ρ0C2
0η

(1 − sη)2

(
1 − �η

2

)
+ �ρ0e, η = 1 − ρ0

ρ
. (1)

The constants of Mie–Grüneisen EOS for water are shown in Table 4.
JWL EOS was used for the detonation products.

P = A

(
1 − ω

R1V

)
exp(−R1V ) + B

(
1 − ω

R2V

)
exp(−R2V ) + ωρee

V
,

(2)
where A, B, R1, R2, ω are JWL parameters. V is ρe (density of explosive)/gρ

(density of detonation products). JWL parameters of EMXs obtained from
underwater explosion test are shown in Table 5.

Table 4. Constants of Mie–Grüneisen EOS.

Material ρ0 (kg/m3) C0 (m/s) s �

Water 1000 1489 1.79 1.65
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Table 5. JWL parameters of sample emulsion explosive.

A (GPa) B (GPa) R1 R2 ω

EMXA 169.0 3.67 5.69 1.19 0.33

EMXB 61.5 0.89 6.01 2.01 0.19

EMXC 72.9 0.92 6.35 2.15 0.22

5. RESULTS

The configurations of underwater shock wave for cylindrical explosive
EMXB obtained from the numerical and experimental results are shown in
Figure 4. The cylindrical explosive has 20 mm in diameter and 250 mm
long. Good agreement is obtained between the numerical and experimental
results.

The configurations of underwater shock wave for all sample explosives
obtained from the numerical and experimental results are shown in Figure 5.
The vertical axis is the distance from the outer surface of the explosive in
the direction of radius. The horizontal axis is the distance measured from the
detonation front. Good agreements between the numerical and experimental
results are obtained for all samples.

6. CONCLUSIONS

A new technique in determining the JWL parameters of detonation products
for emulsion explosives is proposed in this paper. This technique developed the
method of characteristics in the relation between underwater shock wave and the
expansion wave of detonation products. Using this theory, we can estimate the
relation between the pressure and volume in the expanded region of detonation
products. Then finally we can get the parameters of JWL EOS. It is concluded

Water

EMX

Water

EMX

Water

EMX

Water

EMX

(a) (b)

Figure 4. Configurations of underwater shock wave for EMXB: (a) numerical result (b) experi-

mental result.
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that for cylindrical charge, the configuration of the underwater shock wave is
well estimated by the numerical calculation.
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Abstract Explosive forming is one of the unconventional techniques, in which, most com-

monly, the water is used as the pressure transmission medium. The explosive is set

at the top of the pressure vessel filled with water, and is detonated by an electric

detonator. The underwater shock wave propagates through the water medium and

impinges on the metal plate, which in turn, deforms. There is another pressure

pulse acting on the metal plate as the secondary by product of the expansion of the

gas generated by detonation of explosive. The secondary pressure pulse duration

is longer and the peak pressure is lower than the primary shock pressure. However,

the intensity of these pressure pulse is based also on the conditions of a pressure

vessel. In order to understand the influence of the configuration of the pressure

vessel on the deformation of a metal plate, numerical analysis was performed.

This paper reports those results.

Keywords: explosive forming, underwater shock wave, finite difference method, high strain

rate, high explosive.

1. INTRODUCTION

When an explosive is detonated underwater, an underwater shock wave is
generated which is primarily responsible for the plastic deformation of the metal
plate. After the impingement of this primary underwater shock wave on the
metal plate, a secondary pressure pulse, generated from the expanding gaseous
products of the detonation, impinges on the metal plate. These pressure states
of acting on a metal plate change with the type of the container to be used. The
shock pressure and gas pressure acting on a metal plate in the case of the sealed
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Model 1 Model 2 Model 3

Figure 1. Simulation models.

pressure vessel can be predicted easily. However, in this method, the required
forming configuration was obtained with a lidless pressure vessel. Nevertheless,
in the case of employing a simple water filled container the influence of reflected
pressure from sidewall of container is significant. If no container is used then
there is almost no influence of gas pressure. Therefore, an attempt was made to
investigate the influence of the pressure vessels on the deformation of a metal
plate.

2. SIMULATION METHOD

Figure 1 shows three simulated models of underwater explosive forming. All
models were for axi-symmetric free forming operations. Free forming indicates
that the metal plate deforms by overhanging. In model 1, the pressure acts on
a metal plate without the confinement of pressure vessel. In model 2, there
was no lid for the container. The pressure pulse released from the upper part
of explosive is unrestricted because of the lidless container. In model 3, an
airtight container was used. In all models, the copper plate with 2 mm thick
and of diameter 230 mm. The size of an explosive was determined as in model
1. A distance between the explosive and metal plate was set to 30 mm. High
explosive, SEP was used. The density of this explosive is 1.31 kg/m3 and
detonation pressure is 15.9 GPa. The copper plate was placed on the die. The
die shoulder is of 15 mm radius of curvature. The pressure vessel and die holder
are assumed to be rigid body.

The r–z coordinates are set as shown in Figure 1. The simulation method
was finite difference method (FDM) using Lagrangian coordinates. The copper
plate is treated as the viscous elastic-plastic material. The pressure is solved
from the following Mie–Grüneisen equation of state [1],

P = ρ0c2
0η

(1 − sη)2

[
1 − �0η

2

]
+ �0ρ0e (1)
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Table 1. Material constants in Mie–Grüneisen EOS.

ρ0(kg/m3) C0(m/s) S �0

Water 1000 1490 1.79 1.65

Copper 8930 3940 1.48 1.96

where, ρ0 is initial density, e is energy, �0 is Grüneisen parameter, η = 1 −
ρ0/ρ, c0 and s are material constants. For the related materials, the values of
those constants are given in Table 1.

The pressure in detonation products of explosive is calculated by using the
JWL (Jones–Wilkins–Lee) equation of state [2]. The equation has the following
expression,

P = A

(
1 − ω

R1V

)
exp(−R1V ) + B

(
1 − ω

R2V

)
exp(−R2V ) + ωE

V
(2)

where, A, B, R1, R2, C and ω are constants (or JWL parameters). V is the ratio
of the volume of the product gases to initial volume of the undetonated explo-
sive. For the explosive of SEP, those constants were obtained from cylindrical
expansion test and are given in Table 2.

3. RESULTS AND DISCUSSION

Figure 2 shows the pressure profiles of the water element on the copper plate
in the position of r =0–50 mm. In all the models, the pressure pulse is seen to act
on the metal plate from the central part, and the pressure peak is also observed to
be decreasing gradually from central part. Figure 3 shows deformation process
of each model. In model 1, the quantity of deformation of copper plate is small
in comparison with the other two models and the propagation of the plastic
bending wave of metal plate [3] does not occur. In model 2, the propagation
of the plastic bending wave occurs and the deformation of the copper plate at
the central region is seen in the last stage. In model 3, as the pressure pulse is
of larger magnitude in comparison with other models, the central region of the
copper plate is conical.

Table 2. JWL parameters for SEP

explosive.

A(GPa) B(GPa) R1 R2 ω

365 2.31 4.30 1.10 0.28
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Figure 2. Pressure profiles of water element on the metal plate from 0 to 100 μs.

Figure 3. Deformation processes in three models.
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4. CONCLUSION

In the first model l, there was no pressure vessel on the metal plate, envelop-
ing the explosive charge. Consequently, the underwater shock wave generated
by detonation of explosive, was exposed all around. In the model 2, a lidless
container was employed. In the final case, model 3, an airtight pressure vessel
with lid was used. The pressure history acting on the metal plate varied. It is
seen that the changes in the pressure vessel influence the deformation process
of the metal plate. In the case the use of an airtight pressure vessel, model 3, as
the pressure generated inside the vessel was completely used, without getting
vented to atmosphere, for the deformation of the metal plate, the deformation
is significantly large and therefore, the efficiency of the process.
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Abstract Sports nets and hammocks are usually not pre-tensioned and too slack and flexible

to resist compressive forces, which the high pre-stressing would counterbalance in

tension structures. Due to this incompressibility, the low-tension nets may exhibit

extreme sags in the deformed configuration, which may be one computational

problem in analysis. The present study is concerned with this particular, but inter-

esting issue and proposes some modelling ideas to simulate the static and dynamic

response of flexible and incompressible nets, which are not frequently treated in

engineering applications. Special attention is paid to dynamics of hexagon-mesh

goal nets used in FIFA World Cup 2002 in Japan and South Korea. In numeri-

cal examples, it is illustrated that the hexagon-mesh net is much better than the

square-mesh net, especially for more enthusiasm in stadium and also for better

visual effects in TV.

Keywords: flexible nets, incompressibility, large displacement, dynamics, sags, slack.

1. INTRODUCTION (MOTIVATION)

In the last FIFA World Cup 2002 in Japan and South Korea, the hexagon-
mesh goal nets were used for the first time in the world cup history. There was
and is a very clear reason, why the hexagon-mesh net is better than the square-
mesh net: For all enthusiastic soccer funs watching the world event in stadium
and in TV, the hexagon nets will present the most exciting and dramatic images
at the moment of highlights. This ICCM paper is concerned with the static
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tension-stiff

natural length

incompressibilty

T

δ

Figure 1. Incompressibility.

and dynamic behaviour of extremely flexible and incompressive goal nets for
soccer, which have been so far not frequently treated for engineering purposes.
Modelling and computational techniques are described for net mechanics in
sports entertainment [1, 2]. The special emphasis is placed upon the different
behaviour of hexagon- and square-mesh goal nets.

2. NONLINEAR EFFECTS

The static and dynamic behaviour of flexible nets is in fact a geometrically
highly nonlinear problem including large nodal displacements. The singular
stiffness matrix, for example, may be avoided by the geometric stiffness matrix
activated by initial stresses. The stability problem and dynamic instability may
also be observed in the net behaviour, when the equilibrium solution will jump
from unstable equilibria subject to compression to the tension-only stable equi-
librium solution. For all these computational issues, innovated computational
techniques are nowadays well established [3–8].

One computational problem inherent in flexible nets is, however, their in-
compressibility, as illustrated in Figure 1. Starting from natural length L , the
net segment in Figure 1 has no stiffness on compression side and the distance of
two edges (nodes) will simply be shortened without any resistance and repre-
sent a sagging segment. On tension side in the meantime, a number of braided
fibres in zigzag lines (Figure 2) stay initially slack in the textile structure and
be stretched by �o = εo L without being stressed. Beyond this limit of initial
slackness, the relationship between axial force N and elongation � are linear
elastic, as all fibres in straight lines are ready to resist the stretching force. The
modelling of this material property of flexible nets is the major concern of the
present study [1, 2].
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Figure 2. Initial slackness.

3. COMPRESSION-FREE MATERIAL LAW
WITH INITIAL SLACKNESS (FIGURE 3)

The incompressibility of flexible nets may directly be considered in the
constitutive equation. For the relationship between axial force N and elongation
� for an element, we assume an analytical function for N (�) as;

N (�)

E A
=

(
1

2

) ⎧⎨
⎩

(
�

L
− εo

)
+

√(
�

L
− εo

)2

+ 4

(
T0

E A

)2

⎫⎬
⎭ (1)

in dimensionless form with axial stiffnessEA for element cross-section, natural
element length L and small initial tension T0 = N (0) for � = 0, respectively
εodesignates the initial slackness in Figure 3, in which the function curves
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Figure 3. Compression-free Material Law.
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for different values of T0 with a fixed value for εo = 0.001 are illustrated.
The constitutive curve for T0 = 0 is bi-linear and the first derivative of the
functionN (�) with respect to � is discontinuous at ε = εo. This may cause a
numerical trouble during equilibrium iteration in the vicinity of ε = εo. A small
initial stress T0 �= 0 is, therefore, necessary to make the equilibrium iteration
stable near the limit of initial slackness.

4. STATIC AND GEOMETRIC IMPERFECTION
FOR STATICS (FIGURE 4)

The second idea is possible in the structural level. We may discretize a
single net segment into more than one truss element, which is equally stiff
against compression and tension, and introduce a small static imperfection.
The static nonlinear equilibrium equations will then be rewritten as follows:

R(u) − pe − f = 0 (2)

Here, R(u) is the internal resistance depending upon nodal displacement vec-
tor u and the load parameter p will represent, together with reference load
vector e, proportional external loads. The static imperfection may be con-
sidered in the constant vector f. Figure 4a depicts an illustrative example,
which will be subject to tension (left) and compression (right) for a simple
two-element discretization, when a horizontal design load is applied in the
middle. To avoid this unacceptable solution, the refined discretization in Fig-
ure 4b and the small load imperfection in Figure 4c are effective to make
the iteration convergent to the sagging and compression-free configuration in
Figure 4d. To activate the geometric stiffness matrix, at the beginning of it-
eration, it is recommended to assume an initial displacement vector u0 such
that;

u0 f T ∼= |u0| | f | (3)

and to superpose u0 on input geometry, as shown in Figure 4c. This is due to the
reason, that the assumed configuration in Figure 4c should stay compression-
free for two vectors u0 and f in almost same directions. Care must be taken,
however, that the static imperfection in f need not always coincide with dead
loads of the net material. In the computed equilibrium configuration, as shown
in Figure 4d, all static imperfection is iterated away in the tension-stiff left half,
while the right half will be slack in a local catenary due to the assume static
imperfection.
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Figure 4. Static and geometric imperfection.

5. EQUATIONS OF MOTION

The static solution may also be computed by time-integrating the equations
of motion;

Mü + Cu̇ + R(u) − f = Q(t) (4)

with mass matrix M, acceleration vector ü, damping matrix C, velocity vector
u̇. The static loads may be considered as a step-function in dynamic external
load vector Q(t). Compared to the arc-length control method to solve Equation
(2), the dynamic approach based upon Equation (4) has the advantage that
we may exclude unacceptable equilibrium points subject to compression to
attain a tension-only stable equilibrium solution, when the motion is sufficiently
damped. Equation (4) is also used to study the dynamic behaviour of the goal
net at the moment of ball shooting.

6. NUMERICAL EXAMPLE (FIGURE 5)

The hexagon- and square-mesh nets, spanned over a mini-goal (steel frame:
4.75 m × 4.75 m) inclined to the ground surface at an angle of 67◦, are compared
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(a) t = 0.00 sec (b) t = 0.05 sec

(c) t = 0.10 sec (d) t =0.15 sec

Figure 5. Shooting a ball into the goal net.

to each other. The material parameters are EA = 7539.82 N, mass density ρ =
960 kg/m3, T0 = E A × 10−6 and εo = 0.003. The each side of the hexagon
and square are 0.095 and 0.125 m in length, respectively.

We first apply the static dead weight to both types of nets and the deformed
hexagon net surface for t = 0.0 sec is smother and softer, compared to the
deformed configuration of the square net. The significant difference in the
deformed surfaces may be identified especially near two corners at bottom.
When the net catches the ball, the shock wave propagates concentrically around
the ball in the hexagon net and the isotropic property of the hexagon net is
clearly illustrated in the sequence of dynamically deformed configuration for
each time step. The square net, on the other hand, transfers the dynamic loads
in horizontal and vertical directions, namely in directions of net strings and we
clearly see the orthotropic property and stiff behaviour of the square net.

7. CONCLUSIONS

The static and dynamic behaviour of flexible and incompressible goal nets
has been studied from the viewpoint of computational mechanics and sports
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entertainment. The special emphasis is placed upon the best image of the high-
lights of soccer games, which will receive much attention in the stadium and
in TV from all over the world. Compared to the conventional stiff square-mesh
nets, the hexagon-mesh nets are softer and more flexible and their larger dy-
namic deformation will more fever the soccer funs at the moment of goals.
“The hexagon mesh is the best for the goal net to make a big world game more
enthusiastic and dramatic!”—This is the conclusion of the present ICCM paper.
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Abstract In this paper, the authors analyse the aerodynamic properties of soccer ball. Using

ADVENTURE System, the finite element flow analysis around soccer ball is

performed to figure out the coefficient of drag of soccer ball, the critical Reynolds

number of drag crisis, the track of curveball.

Keywords: incompressible viscous flow analysis, ADVENTURE system, large-scale parallel

processing, soccer ball, aerodynamic properties.

1. INTRODUCTION

The Soccer ball has hexagonal and pentagonal surfaces and grooves between
them. Therefore, it is supposed to show different aerodynamic properties from
the smooth sphere. The target of this study is to figure out (i) the coefficient
of drag, lift and swing in various Reynolds numbers, (ii) the critical Reynolds
number of drag crisis, (iii) the tracks of curveball. Our final target is to build the
database which contains the information about various aerodynamic properties
of soccer ball, and apply it to free kick support system in real soccer game.

In this paper, we show the process of finite element mesh generation of
soccer ball. Then flow analyses around soccer ball are performed in various
Reynolds number. After evaluating the critical Reynolds number, we estimate
the track of soccer ball when it is kicked in certain direction, velocity and
rotation.
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Figure 1. Regular icosahedron.

2. MODELLING AND MESH GENERATION

For generating finite element analysis model of the flow around soccer
ball, the authors used pre-processing modules of ADVENTURE System. The
process of mesh generation has the following six steps.

Step 1. Calculate the coordinates of all (12) vertices of regular icosahedron
using Pythagoras’s theorem (Figure 1).

Step 2. Generate new vertices on all the edges, which vertices divide the edges
into three same length parts. The Fullerene C60 type structure is obtained
by connecting the new vertices (Figure 2).

Step 3. The Fullerene C60 type structure has 20 hexagons and 12 pentagons.
Divide hexagons into six triangle patches, and pentagons into five triangle
patches (Figure 3).

Step 4. Generate more fine triangle patches using the quad-tree algorithm. In
this study we use the quad-tree algorithm four times, then we get 23,042
vertices and 46,080 triangle patches (Figure 4).

Step 5. The radius of soccer ball is 110 mm. Shrink the radius of edges, which
correspond the Fullerene C60, into 108.3 mm for generating the grooves
(Figure 5).

Figure 2. Fullerene (C60).
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Figure 3. Triangle patch.

Figure 4. Fine patch.

Figure 5. Patch with grooves.

Step 6. Using ADVENTURE TetMesh (tetrahedral mesh generator), the finite
element model of flow around soccer ball is obtained (Figure 6). This model
has 237,292 nodes and 1,410,488 elements.

3. ADVENTURE FLUID

ADVENTURE Fluid, which has been developed in the ADVENTURE
project, is a general purpose parallel 3D finite element solver for the
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Figure 6. FE model.

incompressible thermal-fluid analysis (a manual in the homepage of the
ADVENTURE project). Some realistic problems have been solved by using
this code [1].

In the tetrahedral P1–P1 element version of the code, which will be used in
this study, the SUPG (Streamline-upwind/Petrov–Galerkin) method and PSPG
(Pressure-stabilized/Petrov–Galerkin) method are implemented as below:∫

�

wiρ

(
∂ui

∂t
+ ujui,j − fi

)
d� +

∫
�

wi,jσij d� +
∫
�
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∑
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ρ
qi

[
ρ

(
∂ui

∂t
+ ukui,k−fi

)
−σik,k

]
d�=

∫
�h

wihi d� (1)

The Crank–Nicolson method is employed for the implicit time integration. A
system of linear equations for the velocity field and pressure field is solved by
using diagonal scaling Bi-CG STAB method.

4. RESULTS OF FLOW ANALYSIS

Finite element flow analyses are performed using PC cluster (dual Xeon 2.0
GHz, 64 nodes). The Reynolds numbers of these analyses are set to 10, 100,
1000, 10,000 and 100,000. Time increment of these analyses is set to 0.002.
Total analysis time is 10.0 (i.e., 5000 time steps). Figure 7 shows the streamline
around the soccer ball in the case of Reynolds number 1000. The variation of
coefficient of drag by Reynolds number is shown in Figure 8, which indicates
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Figure 7. Streamline (Re = 1000).

that the coefficient of drag of soccer ball is slightly lower than that of sphere
especially in the high Reynolds number.

5. TRACK OF SOCCER BALL

After the flow analysis, the track of soccer ball is simulated using devel-
oped free kick simulator (Figure 9). The simulator requires many parameters,
which are shown in Figure 10. The coefficient of drag, lift and swing are the
most important parameters in this simulator for evaluating the exact track of
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Figure 8. Coefficient of drag.
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Figure 9. Free kick simulator.

soccer ball. At this time, there are not enough database concerning such pa-
rameters, therefore the approximated simulations are performed as the test
case.

6. CONCLUSIONS

The authors generated the finite element model around the soccer ball for
evaluating aerodynamic properties of soccer ball. Large scale flow analyses
were performed for estimating the coefficient of drag, lift and swing using
ADVENTURE Fluid. The result showed that the coefficient of drag of soccer
ball was slightly lower than that of sphere. The authors also simulated the track
of soccer ball using computed parameters. For applying this simulator to real
soccer game, many more flow analyses will be required.
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Figure 10. Controller.
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Abstract The performance of a twin-screw supercharger is influenced more by the internal

air leakages than by any other thermo-fluid aspect of its behaviour. The distribution

of leakage through the various leakage paths within the machine is, thus, impor-

tant for the improvement of the performance. The numerical analysis is conducted

using a Computational Fluid Dynamics (CFD) software commercially available,

FLUENT. The main innovation in this research is to integrate this advanced CFD

modelling technique, which is used for modelling complex airflow behaviour in

the complex supercharger passages, with an advanced CAD module, which is used

for design of new supercharger rotors and manifolds. This has allowed creating

a new innovative fully integrated CAD/CFD supercharger design environment,

which can address all aspects of fluid and geometry requirements for the future su-

percharger designs. This approach will insure the production of the highest quality

designs at the lowest manufacturing cost and in the shortest turn around time.

Keywords: twin-screw supercharger, optimization, CAD/CFD, leakage.

1. INTRODUCTION

A twin-screw supercharger is a positive displacement rotary compressor,
the working cavity of which is enclosed by the casing bores, casing end plates
and the helical surfaces of the male and female rotors. Due to the geometry of
the meshing parts and the need for clearances between them, the supercharger
has several leakage paths as follows: across the contact line between the male
and female rotors, across the sealing lines between the rotor tips and casing,
through the blow hole, and through the clearance between the end plate and
the rotor end face at the discharge end [1]. As the performance of a twin-screw
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supercharger is influenced more by the internal air leakages than by any other
thermo-fluid aspect of its behaviour, it is important to quantify the leakage rate
through each leakage pathway, and, the percentage by which it can reduce the
efficiencies for the purpose of prioritizing design procedures in general and for
improving the rotor lobe profile.

The field of engineering design optimization using computational fluid dy-
namics (CFD) can improve the performance and quality of existing products
and potentially lead to novel designs, which can be crucial in maintaining com-
petitiveness in world markets. However, engineering design optimization can
be very time-consuming when high-fidelity analysis models are involved. In
this study, two essential elements are required in the optimization process: these
are geometry design using computer-aided design (CAD), and CFD simulation
and analysis [2]. These two elements construct a cycle for optimization design.
Virtually, all computer-based design tasks commence with the use of CAD sys-
tems to create detailed geometrical models. These models serve as the point of
departure for analysis tool, CFD. By integrating these essential elements, the
optimization design process allows easy access to remote computational re-
sources and data archive capabilities. By repeating this cycle, the optimization
design is achieved.

2. ANALYSIS PROCEDURE

As Figure 1 shows, this study effectively uses such an innovative CAD/CFD
interaction approach to achieve engineering optimization design.

CAD Model Assembly
(Solidworks)

Detailed Geometry

CFD Mesh Generation 
(Gambit)

CFD Solver 
(Fluent)

Post-processing

Re-design 

Refine mesh 

Figure 1. CAD/CFD integration and optimization process.
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 (a) The 3D solid model (b) The 3D tetra-mesh

Figure 2. The 3D model of a supercharger.

2.1 Creation of a 3D solid model

As shown in Figure 2a, in the development process, the author creates a 3D
detailed solid model that accurately represents the geometry of the supercharger.
By making quite accurate solid model in Solidworks, few works have been
done during the procedure that CAD data can be easily converted for CFD
mesh generation, which thus accelerates the whole optimization procedure.
Currently, CAD and CFD are frequently interfaced via standardized interface
file formats, IGES (Initial Graphics Exchange Specification) for 2D model.
Since the IGES format contains surfaces only, the 3D solid data cannot be
exchanged completely [3]. For 3D modelling, ACIS files would be the most
effective format.

2.2 Mesh generation

With the new method, the time required for mesh generation for fluid anal-
ysis has been dramatically reduced through the use of tetra-mesh technology.
Hexahedral mash generally provides a higher degree of analysis accuracy than
tetra-mesh for fluid analysis. However, analyses with the new method are not
independent procedures like those seen with the conventional procedures, but
a tool completely integrated in the entire development flow as evaluated from
a macroscopic viewpoint. In order to make the tool adequate for the entire pro-
cess, and because the emphasis is on making the generation of meshes much
easier, a tetra-mesh is employed, as shown in Figure 2b.
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Figure 3. Leakage flow behaviour in the supercharger.

2.3 Leakage analysis

Leakage analysis is performed using the Fluent CFD package, which is
employed to simulate the flow passage through the supercharger. The flow
is simulated as a 3D incompressible air using the Realizable k-ε turbulence
model [4].

Figure 3 shows the leakage flow behaviour inside the supercharger. Table 1
gives the leakage flow rates through each leakage path in this model. The results
show that Path 2 and Path 3 have a very important influence on the leakage
distribution. Consequently, the improvement of a profile should concentrate on
the following two aspects: reducing the blowhole area by an asymmetric profile
and reducing the leaking rates through Path 2 by optimizing the wrap angle of
rotors.

2.4 Optimization

Making use of the above ideas and the optimization process, a preliminary
improved profile has been developed. Compared with the original design, the
total leakage has reduced by 1.5%. Thus in this case, the change of rotor profile
does reduce the leakage rate; 1.2 of the 1.5% improvement is obtained by

Table 1. Leakage flow rates through each leakage

pathway in a supercharger.

Leakage pathways Leakage flow rate (kg/s) %

Contact line (Path 1) 0.0015528 7.1

Sealing lines (Path 2) 0.0082927 37.8

Blowhole (Path 3) 0.0065058 29.6

End face (Path 4) 0.0055924 25.5
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reducing the blowhole area and 0.3 is obtained by increasing the rotor warp
angle. Repeated applications of optimization procedure can further improve
the performance of the supercharger.

3. CONCLUSIONS

In summary, the main innovation in this research is to integrate advanced
CFD modelling techniques for the modelling of the complex airflow passages
throughout the complex supercharger system with an advanced CAD module
for supercharger rotors and manifolds designs that can be used to directly inter-
face with the CFD program. This will create a new innovative fully integrated
CAD/CFD supercharger design environment, which addressed all aspects of
fluid and geometry requirements for the twin-screw supercharger. The success
of the research program will be demonstrated by an optimized design of the
supercharger. This approach will insure the production of the highest quality
designs at the lowest manufacturing cost and in the shortest turn around time.
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A MULTI-AGENT TRAFFIC AND
ENVIRONMENTAL SIMULATOR AND ITS
APPLICATION TO THE ANALYSIS OF TRAFFIC
CONGESTION IN KASHIWA CITY

Yutaka Nakama, Shinobu Yoshimura and Hideki Fujii
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Abstract Traffic problems are now very serious in various cities. Traffic simulators are ex-

pected to be useful for traffic system analysis. This paper describes research and

development of the advanced traffic simulator using a multi-agent approach which

is named MATES. Here each car is modelled as an intelligent agent with memory

and preference. They can reflect individual characteristics to their driving. The

environment surrounding a car agent consists of other cars, roads, traffic signals

and pedestrians. We’ve implemented some algorithms needed for real world prob-

lems, and proposed a framework to define some types of car agent, sedan, track

and bus. These cars show different characteristic of acceleration and deceleration

performance, route inquiry and the behaviour when getting close to bus stop. The

MATES is applied to analyse traffic congestion in Kashiwa City in Japan.

Keywords: traffic engineering, traffic simulator, multi-agent system, traffic congestion.

1. INTRODUCTION

Traffic simulators are expected to be useful for traffic system analysis. They
are classified into two models. One is a macro simulator, and the other is a micro
model simulator. The macro model is usually expressed by macro equations
describing traffic flow. In the micro model, the action of each vehicle is modelled
more precisely, and the traffic flow is expressed as their aggregation.

The macro model simulation is often used when an analysis area is large.
It is useful for some particular cases, but it is not useful for some other cases,
such that many types of vehicles exist. For example, we have to treat different
types of decision-making for driving route selection, and each car has different
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Figure 1. Environment and agent.

characteristic about acceleration and deceleration performance. Moreover, it is
difficult to use traffic information changing dynamically.

In the micro model simulation, each car is able to have individual charac-
teristics to their driving. Therefore, simulations by the micro model have been
used in recent years. The present authors are developing a kind of micro model
traffic simulator called MATES (Multi-Agent based Traffic and Environment
Simulator) based on the agent with autonomy, and moreover we are trying to
apply MATES to analyse the traffic phenomenon (Kashiwa City in Japan), as
an example of real world problems.

2. MULTI-AGENT SYSTEM

A multi-agent system is a system in which some distributed programs per-
form problem solution in cooperation in an environment. Here an agent is a
composition element. The agent perceives the environment by its own sensors,
and affects the environment through its own effector. In the multi-agent ap-
proach, many agents are released into the environment, and a whole complex
phenomenon is evaluated as the consequence of their interaction.

A conceptual figure of the multi-agent system developed in this research is
shown in Figure 1. Each agent takes the action considered to be locally the best
based on the information acquired in its state. For each agent, other agents are
regarded as a part of environment.

Figure 2 shows a conceptual model of the agent and the environment im-
plemented in MATES. Here each car and pedestrian perceive various kinds of
information from the environment, and determine their action. The pile of the
interaction of them is regarded as the whole traffic phenomenon. We design
these (car and pedestrian) as an agent. On the contrary, neither a road nor an
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Figure 2. Environment and agent in MATES.

obstacle is modelled as an agent in order not to have active influence in the
environment. Then they are simply regarded as objects.

The advantage of applying the multi-agent approach to a traffic simulator
is summarized below.

� Precision: A situation can be expressed more precisely than a macro model
simulator.

� Diversity: The characteristic of a driver or a car can be treated reasonably
well.

� Dynamic: Decision-making portions such as route selection can be treated
dynamically and automatically.

� Existence of information use: A driver can use various kind of information
retrieved from the environment.

� Extensibility: The reusability if the agent itself is high. It is also easy and
flexible to add a new function into the agent and to change data structure.

3. CALCULATION MODEL

Taking one of typical medium-sized cities in Japan, i.e. Kashiwa City in
Chiba Prefecture as an example, MATES is applied to perform the following
analyses:

1. Influence in traffic congestion by the difference in route selection behaviour
of drivers.

2. Traffic congestion relief by signal control.
3. Influence on traffic congestion by the different characteristics of vehicles.

The road map used in this analysis is shown in Figure 3. Some general views
of MATES are shown in Figures 4 and 5.
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Figure 3. Road map of Kashiwa City.

Figure 4. General view of MATES.
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Figure 5. 3D visualization.

4. INFLUENCE ON TRAFFIC CONGESTION
BY THE DIFFERENT BEHAVIORS
OF ROUTE SELECTION

In MATES, each vehicle has a start point and a destination, and route se-
lection is performed independently. We investigated the influence on traffic
congestion by the different behaviours of route selection. Here we consider the
following two different route selection methods.

1. The route with the shortest distance is chosen.
2. The route with the shortest travel time is chosen.

5. TRAFFIC CONGESTION RELIEF
BY SIGNAL CONTROL

Next, we conducted a numerical experiment varying signal control. Here
the data of the signal control actually performed in Kashiwa City is employed.

Influence on the traffic congestion by the different characteristics of ve-
hicles. Unlike the environment which consists only of usual passenger cars,
buses on regular routes and large-sized tracks are intermingled in an actual
traffic network. Such a heterogeneous situation may influence on certain traffic
congestion, because of the difference in acceleration or a slowdown perfor-
mance of each vehicle. Moreover, when a bus on a regular route stops regularly
at a stop, it may also influence traffic congestion.
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6. CONCLUSIONS

We have developed a multi-agent traffic and environment simulator MATES.
Taking Kashiwa City, some numerical experiments were conducted. We show
that the micro model traffic simulator could be adapted for practical problems.
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NUMERICAL INVESTIGATION OF COUPLED
TRANSPORT OF IONS AND IONIC SOLUTION
IN CORNEA AND THEIR INFLUENCE ON
CORNEAL HYDRATION

Long-Yuan Li and Brian Tighe
School of Engineering and Applied Science, Aston University, Birmingham, UK

Abstract This paper presents a numerical study on the transport of ions and ionic solution in

human corneas and their influences on the corneal hydration. The transport equa-

tions for ions and ionic solution within the cornea are derived based on transport

processes in electrolytic solutions, whereas the transport across epithelial and en-

dothelial membranes is described by using phenomenological equations derived

on the thermodynamics of irreversible processes. Numerical examples are given

for a typical human cornea from which some important features are highlighted.

Keywords: corneal hydration, electrolyte, ionic transport, flow, thermodynamics.

1. INTRODUCTION

Corneal transparency is dependent on the regulation of normal stromal
hydration. Isolated stromal tissues swell freely in isotonic saline and become
opaque. However, in vivo corneas remain thin and clear. How the limiting mem-
branes control the stromal hydration and thus maintain the hydrophilic stroma
in a state of relative deturgescence is one of the most perplexing questions in
corneal physiology.

Modelling of corneal swelling and its interaction with environment is crit-
ical to our understanding of corneal function and the potential effect of ocular
therapies on that function. Considerable efforts have been made in past decades
for developing models that can simulate the whole corneal transport system and
describe how the stroma and limiting layers interact to control stromal hydration
[1]. These models can be generally divided into two categories. One is the flow
model [2–5] in which the increase or decrease of corneal thickness at a particular
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point was purely due to the volume difference between the inflow and outflow
of water at that point. The driving force of water flow in the corneal stroma was
assumed to be the gradients of hydrostatic and osmotic pressures; the former
was expressed in terms of the swelling pressure of corneal stroma and the latter
was linked to the concentrations of solutes involved. The transport of the solutes
in the corneal stroma was treated in a similar manner. The flows of water and
solutes across epithelial and endothelial membranes were described by using
the phenomenological equations derived on the thermodynamics of irreversible
processes. The other is the triphasic model based on the poroelastic theory [6]
in which the solid matrix is regarded as a linear isotropic elastic material and
the corneal swelling is considered to be governed by the transport of ions in the
electrolyte within the poroelastic medium controlled by the coupled electro-
chemical and mechanical processes [7]. The volume change of the cornea is thus
related to both the fluid flow and the elastic deformation of the corneal matrix.

2. TRANSPORT MODEL

The transport model to be developed here is similar to that presented by
Klyce and Russell [4] and Li et al. [5], which is a one-dimensional model,
with stroma in the middle and epithelium and endothelium on the two sides
(Figure 1). However, since the solution considered here is a multi-component
one, the governing equations for the transport of ions and ionic solution are de-
rived on the transport processes in electrolytic solutions. The governing equa-
tions describing the transport of ionic solution and ionic species in corneal
stroma are expressed as [5, 8]

∂W f

∂t
= − ∂

∂ξ

(
ρ f J f

ρd

)
and

∂

∂t

(
W f Ck

ρ f

)
= − ∂

∂ξ

(
Jk

ρd

)
(1)

where W f is the mass of the solution in unit mass of dry tissue, t is the time, ρf

Figure 1. A two membrane-three compartment one-dimensional flow model for the cornea.
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is the density of the solution, J f is the volume flux of the solution flowing in unit
time through unit area in the thickness direction, ξ is the thickness coordinate
of the dry tissue, ρd is the density of the dry tissue, Ck is the concentration of
species k and Jk is the molar flux of species k flowing in unit time through unit
area in the thickness direction. Equation (1) represents the well-known mass
conservation of the solution and species k in the unit mass of dry tissue. The
fluxes of the solution and species k can be expressed as

J f = v and Jk = vCk − zk Dk

(
F

RT

∂φ

∂x

)
Ck − Dk

∂Ck

∂x
(2)

where v is the velocity of convective flow, zk is the charge number of species
k, Dk is the diffusion coefficient of species k, F is the Faraday’s constant, R is
the universal gas constant, T is the absolute temperature, φ is the electrostatic
potential, x is the transient thickness coordinate, which is expressed in terms of
the dry tissue thickness coordinate ξ

dx =
(

1 + W f ρd

ρ f

)
dξ (3)

The electrostatic potential gradient can be determined in terms of the conser-
vation of current density F

∑
z j J j = 0 and the condition of electro-neutrality∑

z j C j = 0.

The velocity of the convective flow in the corneal stroma can be determined
using the Darcy’s law as follows

v = −Kμ

d P

dx
= −d P

dξ

Kμ

1 + W f ρd/ρ f
(4)

where Kμ is the flow conductivity coefficient and P = IOP −γ exp(−Ww ) is
the local hydrostatic pressure, IOP is the intraocular pressure, γ is an empirical
constant and Ww is the stromal hydration which is defined as the mass of water
in unit mass of dry tissue. Note that for dilute solutions Cwυw ≈ 1. Thus the
following equations can be obtained

W f

Ww
= 1 +

∑
C j m j

Cw mw
≈ ρ f

ρw
(5)

where Cw is the concentration of water (solvent), υw is the partial molar volume
of water, mw is the molar mass of water, m j is the molar mass of species j , ρw

is the density of water.
Note that the flux expressions given by Equation (2) applies only to the

corneal stroma. To the epithelium and endothelium the flux expressions have
to be obtained from the theory of irreversible thermodynamics [9], which can
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be expressed as

J f = L p�P − L p

∑
σ j (RT �C j + z j C j F�φ)

Jk = (1 − σk)J f Ck + ωk(RT �Ck + zkCk F�φ) + Jak (6)

where L p is the hydraulic conductivity, �P , �φ and �C j are the differences
of hydrostatic pressure, electrostaic potential and concentration of species j in
the two sides of the membrane, σ k is the reflection coefficient, ωk is the perme-
ability coefficient of species k, Jak is the active pump rate of species k. Again,
the fluxes of species across the membrane should satisfy the conservation of
current density and the condition of electro-neutrality, from which the electro-
static potential gradient across the membrane can be determined. Equation (6)
provides the flux boundary conditions for the mass transport Equation (1). The
corneal thickness changes can be calculated using Equation (3) [10] after the
stromal hydration is calculated from Equation (5).

3. NUMERICAL RESULTS AND CONCLUSIONS

For given initial conditions (such as ionic concentrations and the hydra-
tion in stroma) and boundary conditions (ionic concentrations and hydrostatic
pressures in tears and aqueous humour) one can solve the partial differential
Equation (1) using various existing codes (such as FEA and Matlab) to obtain
the hydration distribution, Ww and then use Equation (3) to obtain the thick-
ness change. Figure 2 shows the stromal thickness response to 30 mOsm NaCl
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Figure 3. Stromal thickness response to the profusion with 15 mOsm solute hypertonic and

hypotonic solutions applied to endothelial surface.

shook and reversals at various different times (applied to the endothelial surface
while the epithelium is blocked). The results provide the information on how
the initial hydration affects the response of the stromal thickness when there
is a sudden change in osmotic pressure created by the change in ionic concen-
tration. It shows that, for the same hypertonic reversal, the higher the initial
hydration, the larger the change found in the stromal thickness. Figure 3 shows
typical responses of the stromal thickness to the profusion with 15 mOsm hypo-
tonic and hypertonic solutions of four different single solutes. The results show
that the responses of the stromal thickness are different to different solutions
although all solutions have the same ionic concentration. The greatest change
in thickness is found to the solution of NaHCO3, while the least change is to the
solution of KCl. It is interesting to notice that the thickness change is greater
in hypotonic shock than in hypertonic shock.
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Abstract A finite element model for the shallow water equations based on the quasi-bubble-

function approximation is discussed focusing on an alternative implementation of

surface elevation boundary conditions. Numerical experiments demonstrate that

the conventional implementation of the boundary conditions originate spurious

oscillations. In this work, the alternative implementation, which we refer to as

a discontinuous boundary implementation (DBI), is proposed with validation

via numerical testing. The results indicate that the DBI improves accuracy of

numerical solutions and eliminates the spurious modes.

Keywords: shallow water equations, quasi-bubble function, spurious oscillation, surface el-

evation boundary condition, discontinuous boundary implementation.

1. INTRODUCTION

The shallow water equations (SWE) are used to describe a number of
important environmental problems including storm surges, tidal fluctuations
and tsunami waves. Many finite element models have been investigated with
unstructured grids, which are preferable for intricate natural geography. The
quasi-bubble function approximation is one of such finite element models that
eliminate instabilities originated from the well-known 2�x-scale spurious os-
cillations [1–3]. In addition bubble-function schemes are known to be efficient
because the static condensation procedure allows us to extensively reduce the
number of unknowns [3].
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However, our numerical experiments, some of which are presented later,
showed that the quasi-bubble approach with the conventional implementation
of surface elevation boundary conditions degrades the accuracy of velocity so-
lutions. In the next section we propose an alternative implementation which
remedies deteriorated velocity solutions. The alternative implementation is
tested by comparing numerical solutions with the exact analytical solutions.

2. GOVERNING EQUATIONS AND
DISCRETIZATION

2.1 A Quasi-Bubble Finite Element Model

The weighted residual form of the depth-averaged two-dimensional shallow
water equations in a non-conservative form are written as:∫

�

(
∂ζ

∂t
+ ∇ · (Hu)

)
ζ ∗ d� = 0 (1)∫

�

(
∂u

∂t
+ u.∇u + g∇ζ + τbu

)
u∗ d� = 0 (2)

where ζ is the surface elevation, u is the vertically averaged lateral velocity,
H (= h + ζ ) is the total depth of the water column denoting the bathymetry by
h, g is the gravitational acceleration, and τb is the bottom friction coefficient.
ζ ∗ and u∗ are test functions and � is the computational domain. The Coriolis
effect and diffusive terms are omitted for the sake of simplification.

In order to obtain finite element equations, basis functions are to be defined.
In this work, the standard linear triangular element is used for ζ and ζ ∗, while
the triangular quasi-bubble element is used for u and u∗ [3].

2.2 A Discontinuous Boundary Implementation

We propose an alternative implementation derived by extending the idea of
Westerink et al. [4]. Applying Green’s Theorem to the third term of Equation
(2), we obtain∫

�

(
∂u

∂t
+ u.∇u − g∇ζ + τbu

)
u∗ d� +

∫
�s

gζ̂u∗ d� +
∫

�n

gζu∗ d� = 0

(3)
where surface elevation boundary conditions are imposed by substituting given
values to ζ̂ . �s denotes segments of the domain boundary where the surface
elevation boundary conditions are specified, and �n is the complement of �s .
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Because this formulation weakly imposes the surface elevation boundary con-
ditions, ζ on �s may differ from ζ̂ . Due to the existence of such discontinuity
on �s , we call the alternative implementation as a discontinuous boundary
implementation (DBI).

In addition, in order to control the jump ζ (= ζ − ζ̂ ) on �s , an additional
term proportional to |ζ | is added to Equation (1). Hence we have∫

�

(
∂ζ

∂t
+ ∇ · (Hu) + τdζ

)
ζ ∗ d� = 0 (4)

Approximating the unknown functions with nodal values and the prescribed
basis functions, we finally derive a finite element form of the governing equa-
tions. As a time marching scheme, two-step explicit method is employed.

3. NUMERICAL EXPERIMENTS

In order to evaluate the performance of the DBI, the quarter annulus problem
[5] is solved, adopting the linearized shallow water equations (LSWE) as the
governing equations. The exact analytical solutions of LSWE were developed
by Lynch and Gray [5]. The discretization described above is applied to the
LSWE as well. The geometry is depicted in Figure 1 (a). The inner radius r1

is set to 2 × 105 ft (60.96 km), and the outer radius r2 is 5 × 105 ft (152.4
km). Bathymetry varies quadratically between h = 10 ft (3.048 m) at r1 and
h = 62.5 ft (19.05 m) at r2. The linear bottom friction is adopted with the
coefficient τb of 0.0001 s−1. �t and τd are set to 12.5 s and 0.01, respectively.
An M2 tidal wave with the amplitude of 0.1 ft (0.03048 m) is imposed on the

Figure 1. The geometry and grid used for the quarter annulus problem.
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Figure 2. Errors in numerical solutions at each node relative to the exact analytical solutions.

seaward boundary as a surface elevation boundary condition. The grid used in
this test is shown in Figure 1 (b). Errors in numerical solutions relative to the
exact analytical solutions are evaluated at the nodes indicated in Figure 1 (b).
Maxima of the absolute values of the error at each node over the 10th period
are shown in Figure 2.

It is observed in Figure 2 (b) that the conventional implementation yields
significant error in the velocity solution at the seaward boundary node. Our
supplemental numerical experiments indicated that, when the advection term
is added to the momentum equation, the deteriorated velocity solutions at the
seaward boundary lead to critical non-physical oscillations. On the other hand,
as shown in Figure 2 (b), the DBI shows smooth error profiles, which signifi-
cantly improves stability of the quasi-bubble scheme.

4. CONCLUSION

In this paper, quasi-bubble finite element models of the SWE have been
discussed. It was demonstrated by some numerical experiments that the con-
ventional implementation of surface elevation boundary degrades accuracy of
velocity solutions near the surface elevation boundary. As an effective remedy
of the deteriorated solutions, the DBI was proposed with numerical verifica-
tions. Considering that the quasi-bubble-function scheme eliminates 2�x-scale
oscillation without requiring any inconsistent damping, and that the static con-
densation procedure enhances its computational efficiency, the quasi-bubble
scheme adopting the DBI is expected to be an advantageous choice for solving
large-scale shallow water problems.
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Abstract In this paper, the method of fundamental solutions (MFS) for solving the eigen-

frequencies of multiply connected plates is proposed. The coefficients of influ-

ence matrices are easily determined when the fundamental solution is known.

True and spurious eigensolutions appear at the same time. It is found that

the spurious eigensolution using the MFS depends on the location of the in-

ner boundary where the fictitious sources are distributed. To verify this find-

ing, mathematical analysis for the appearance of spurious eigenequations us-

ing degenerate kernels and circulants is done by demonstrating an annular plate

with a discrete model. In order to obtain the true eigensolution, the Burton &

Miller method is utilized to filter out the spurious eigensolutions. One example

is demonstrated analytically and numerically to see the validity of the present

method.

Keywords: method of fundamental solutions, biharmonic equation; circulant; degenerate

kernel; SVD updating document; Burton & Miller method

1. INTRODUCTION

The method of fundamental solutions (MFS) is a numerical approach as well
as finite difference method (FDM), finite element method (FEM) and boundary
element method (BEM). This method was attributed to Kupradze in 1964 [1].
The MFS was applied to many problems (Refs.[2–4]), and can be regarded as
one kind of meshless method. It has several advantages over boundary element
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method, e.g., no boundary integrals, no singularity and mesh-free model. Al-
though MFS has been applied to solve many engineering problems, most of
them are for cases of simply connected domains. Chen et al. have tried to
solve the eigenproblem of multiply connected membrane and found that spu-
rious eigenvalues also appear (Ref. [5]) as well as BEM (Ref. [6]). We may
wonder whether spurious solutions also occur for the plate case rather than
membrane.

In this paper, the MFS for solving the eigenfrequencies of annular plate is
proposed. The occurring mechanism of the spurious eigensolution of an annular
plate is studied analytically. The degenerate kernels and circulants are employed
to determine the spurious eigensolution. In order to filter out the spurious
eigenvalues, singular value decomposition updating technique and Burton &
Miller method are utilized. An annular case is demonstrated analytically to see
the validity of the present method.

2. ANALYTICAL DERIVATION OF FREE
VIBRATION FOR ANNULAR PLATE USING THE
METHOD OF FUNDAMENTAL SOLUTIONS

The governing equation for an annular plate vibration in Figure 1 is the
biharmonic equation as follows:

∇4u(x) = λ4u(x), x ∈ �

where ∇4 is the biharmonic operator, u is the lateral displacement, λ4 =
ω2ρ0h/D, λ is the frequency parameter, ω is the angular frequency, ρ0 is the
surface density, D is the flexural rigidity expressed as D = Eh3/12(1 − ν2) in
terms of Young’s modulus E , the Poisson ratio ν and the plate thickness h, �

Figure 1. An annular problem.
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Figure 2. Figure sketch for source distribution.

is the domain of the thin plate. The fundamental solution is chosen as

U (s, x) = 1

8λ2

[
Y0(λr ) − i J0(λr ) + 2

π
(K0(λr ) − i I0(λr ))

]
(2)

where r ≡ |s − x |, i2 = −1, J0(λr ) and Y0(λr ) are the first kind and second
kind zeroth-order Bessel functions, respectively, I0(λr ) and K0(λr ) are the first
and second kind zeroth-order modified Bessel functions, respectively. Based
on the MFS, we can represent the displacement field of plate vibration by

u(xi ) =
2N∑
j=1

P(s j , xi )φ j +
2N∑
j=1

Q(s j , xi )ϕ j , (3)

where 2N is the number of fictitious source nodes. φ j and ϕ j are the known
densities with respect to P and Q. The two kernels (P and Q) are obtained from
either the two of the kernel U (s, x) and the other three kernels, 
(s, x), M(s, x)
and V (s, x) (Ref. [7]). The slope (θ ), normal moment (m) and effective shear
force (v), are also obtained as reference (Ref. [7]). In order to derive the exact
eigensolution, degenerate kernel and circulant are considered for an annular
plate. The field and source points are distributed as shown in Figure 2. Here,
we consider the clamped case (u = 0 and θ = 0) by using U and 
 kernels.
We distributed 2N field points on the real boundary, and the same 2N sources
are distributed on the fictitious boundary. By matching the boundary condition,
we obtain

[SMcc]

⎧⎪⎪⎨
⎪⎪⎩

φ

φ2
ϕ1
ϕ2

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

U11 U12 
11 
12
U21 U22 
21 
22
U11θ U12θ 
11θ 
12θ

U21θ U22θ 
21θ 
22θ

⎤
⎥⎥⎦

8N×8N

⎧⎪⎪⎨
⎪⎪⎩

φ1
φ2
ϕ1
ϕ2

⎫⎪⎪⎬
⎪⎪⎭ = {0}

(4)
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where {φ1}, {φ2}, {ϕ1} and {ϕ2} are the generalized coefficients for B1 and
B2 with a dimension of 2N × 1, the matrices [Uij], [
ij], [Uijθ ] and [
ijθ ]
mean the influence matrices of U , 
, Uθ and 
θ kernels which are obtained
by collocating the field and source points on Bi and B ′

j with a dimension of
2N × 2N , respectively. For the existence of nontrivial solution, the determinant
of the matrix vs. the eigenvlaue must be zero, i.e.,

det[SMcc] =
N∏

m=−(N−1)

det([T cc
m ][SU


m ]) = 0, (5)

where

[T cc
m ] =

⎡
⎢⎢⎢⎢⎢⎣

Jm(λa) Ym(λa) Im(λa) Km(λa)

Jm(λb) Ym(λb) Im(λb) Km(λb)

J ′
m(λa) Y ′

m(λa) I ′
m(λa) K ′

m(λa)

J ′
m(λb) Y ′

m(λb) I ′
m(λb) K ′

m(λb)

⎤
⎥⎥⎥⎥⎥⎦ (6)

and

[SU

m ] =⎡

⎢⎢⎢⎢⎣
−i Jm (λa′) Ym (λb′) − i Jm (λb′) −i J ′

m (λa′) Y ′
m (λb′) − i J ′

m (λb′)

Jm (λa′) 0 J ′
m (λa′) 0

−(−1)mi
2

π
Im (λa′)

2

π
[km (λb′) − (−1)mi Im (λb′)] −(−1)mi

2

π
I ′
m (λa′)

2

π
[k ′

m (λb′) − (−1)mi I ′
m (λb′)]

2

π
Im (λa′) 0

2

π
I ′
m (λa′) 0

⎤
⎥⎥⎥⎥⎦.

(7)

It is noted that the matrix [T cc
m ] denotes the matrix of true eigenequation for the

C-C case and the matrix [SU

m ] denotes the matrix of spurious eignequation

in the U -
 formulation after comparing with the analytical solution for the
annular plate (Ref. [8]). The matrix in Equation (7) can be further decomposed
into

det[SU

m ] =

∣∣∣∣∣
Jm(λa′) J ′

m(λa′)

Im(λa′) I ′
m(λa′)

∣∣∣∣∣
×

∣∣∣∣∣
Ym(λb′) − i Jm(λb′) Y ′

m(λb′) − i J ′
m(λb′)

Km(λb′) − i(−1)m Im(λb′) K ′
m(λb′) − i(−1)m I ′

m(λb′)

∣∣∣∣∣ = 0

(8)

Since the latter part of Equation (8) is never zero, the spurious eigenequation
depends on a′. It is noted that the spurious eigensolution happens to be true
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Figure 3. The determinant vs. frequency parameter by using the U -
 formulation.

eigensolution of the clamped circular plate with a radius a′. Therefore, the
positions of spurious eigenvalues for the annular problem depend on the location
of inner fictitious boundary a′ where the sources are distributed.

3. A NUMERICAL EXAMPLE

An annular plate with the inner radius of 0.5 meter and the outer radius
of 1 meter are considered, respectively. The source points are distributed at
a′ = 0.4 meter and b′ = 1.2 meter. Forty-six nodes are uniformly distributed
on the inner and outer fictitious boundaries. Figure 3 shows the determinant
vs. frequency parameter by using the U -
 formulation. The drop location
indicates the possible eigenvalues. Figure 4 shows the determinant vs. frequency
parameter by using the Burton & Miller method for the annular plate. It is found
that the appearance of spurious eigenvalues is suppressed. After comparing the
result with the analytical solution, good agreement is made.

4. CONCLUSIONS

The mathematical analysis has shown that spurious eigenvalues occur by
using degenerate kernels and circulants when the method of fundamental so-
lutions is used to solve the eigenvalue of annular plates. The positions of
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Figure 4. The determinant vs. frequency parameter by using the U -
 formulation in conjunction

with Burton & Miller method.

spurious eigenvalues for the annular problem depend on the location of in-
ner fictitious boundary where the sources are distributed. The spurious eigen-
values in the annular problem are found to be the true eigenvalues of the as-
sociated simply connected problem bounded by the inner sources. We have
employed the Burton & Miller method to filter out the spurious eigenvalues
successfully.
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A TWO-GRID FINITE ELEMENT
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NONLINEAR EIGENVALUE PROBLEMS
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Abstract We describe a two-grid finite element discretization scheme which can be used

to trace solution branches as well as to detect bifurcation points of certain sec-

ond order semilinear elliptic eigenvalue problems. Sample numerical results are

reported.

Keywords: two-grid scheme, continuation method, finite element method, nonlinear eigen-

value problem.

1. INTRODUCTION

Recently Chien and Jeng [1] proposed some two-grid discretization schemes
for both linear and nonlinear eigenvalue problems, where both finite elements
and centered differences were used to discretize the PDEs. The modifica-
tions and numerical implementations of these algorithms can be found, e.g., in
[2–4].

In this paper we modify the two-grid finite element discretization scheme
proposed by [5] for second order linear elliptic eigenvalue problem, and com-
bine it with the two-grid finite element discretization scheme proposed by the
authors [1] for nonlinear eigenvalue problems. The resultant algorithm can
be used to trace solution branches as well as to detect simple and multiple
bifurcation point on the solution branches. Moreover, the two-grid finite el-
ement discretization scheme for linear eigenvalue problems can be exploited
to compute eigenpairs of the Maxwell equations. The details will be given
elsewhere.
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This paper is organized as follows. In Section 2 we describe the main algo-
rithm. The numerical results are given in Section 3.

2. A TWO-GRID FINITE ELEMENT
DISCRETIZATION SCHEME

In this section we describe a two-grid finite element discretization scheme
for nonlinear eigenvalue problems. First we consider the following linear eigen-
value problem

F(u, λ) = −�u − λu = 0 in � = [0,1]2, (1)

u = 0 on ∂�.

Let Vh̃(�) and Vh(�) be any two finite dimensional subspaces with 0 < h <

h̃ < 1 which satisfy Vh̃(�) ⊂ Vh(�) ⊂ H 1
0 (�). The finite element approxima-

tion of Equation (1) on the coarse space Ṽh(�) is to find (uh̃, λh̃) ∈ Ṽh(�) × R

such that ∫
�

∇uh̃ · ∇v dxdy = λh̃

∫
�

uh̃v dxdy ∀v ∈ Ṽh(�). (2)

The algebraic version of Equation (2) is to find (xh̃, λh̃) ∈ R
Ñ × R such that

Ah̃ xh̃ = λh̃ Bh̃ xh̃,

where Ñ = dim Ṽh(�), xh̃ = [xh̃,1, xh̃,2, . . . , xh̃,Ñ ]T , and Ah̃ ,Bh̃ ∈ RÑ×Ñ cor-
responding to the integrals

∫
�

∇uh̃ · ∇v and
∫

�
uh̃v, respectively.

Now we consider the following nonlinear eigenvalue problem

F(u, λ) = −�u + λ f (u) = 0 in � = [0, 1]2,

u = 0 on ∂�, (3)

where f, g : R → R are smooth maps. The two-grid finite element discretiza-
tion scheme for Equation (3) is based on the predictor-corrector continuation
method [6] for tracing solution branches. The computations of extremum eigen-
values determine the locations of the first few bifurcation points.

Algorithm 2.1. A two-grid finite element continuation algorithm for Equa-
tion (3).

1. Use the RQI to find the first few eigenvalues λ1
h̃
, · · · , λk

h̃
and the correspond-

ing eigenvectors x1
h̃
, · · · , xk

h̃
with ||x1

h̃
||2 = · · · = ||xk

h̃
||2 = 1 on the coarse

grid such that

Ah̃ xi
h̃

= λi
h̃

Bh̃ x i
h̃
, i = 1, 2, . . . , k.
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2. Solve k linear systems on the fine grid: Find x1
h , . . . , xk

h , such that

Ah xi
h = λi

h̃
Bh(I h

h̃
x i

h̃
), i = 1, 2, . . . , k.

3. Compute the Rayleigh quotient

λi
h = (xi

h)T Ah(xi
h)

(xi
h)T Bh(xi

h)
, i = 1, 2, . . . , k.

4. Perform the RQI:
(i) Normalize the approximate eigenvectors obtained in Step 2,

xi
0 = xi

h

/||xi
h||2 and set μi

0 = λi
h, i = 1, 2, . . . , k.

(ii) For i = 1 : k
For j = 0, 1, 2, . . .

Solve (Ah − μi
j Bh)zi

j+1 = Bh xi
j for zi

j+1

xi
j+1 = zi

j+1

/||zi
j+1||2

μi
j+1 = (xi

j+1)T Ah(xi
j+1)

(xi
j+1)T Bh(xi

j+1)

End
End

5. Use the predictor-corrector continuation algorithm to find the approximate
solution (uh̃, λh̃)on the coarse space Vh̃(�): Find (uh̃, λh̃) ∈ Vh̃(�) × R such
that ∫

�

∇uh̃ · ∇v + λh̃

∫
�

f (uh̃)v = 0 ∀v ∈ Vh̃(�).

6. For each continuation step, correct the approximate solution (uh̃, λh̃)by the
following steps:

(i) Make a correction on the fine space Vh(�): Find eh ∈ Vh(�) such that∫
�

∇eh·∇v + λh̃

∫
�

f ′(uh̃)ehv = −
∫

�

∇uh̃ · ∇v − λh̃

∫
�

f (uh̃)v

∀v ∈ Vh(�).

(ii) Make a further correction on the coarse space Vh̃(�) : Find eh̃ ∈ Vh̃(�)
such that∫

�

∇eh̃·∇v + λh̃

∫
�

f ′(uh̃)eh̃v = −1

2
λh̃

∫
�

f ′′(uh̃)e2
hv ∀v ∈ Vh̃(�).

(iii) Set uh = uh̃ + eh + eh̃ .
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Table 1. The first six eigenvalues and residuals of the corresponding eigenvectors of

Equation (1).

Coarse grid eigenvalue Fine grid eigenvalue RQI

λh̃ λh Residual μ1 Residual

1 0.19805118628[+2] 0.19739262864[+2] 0.10[−4] 0.19739209915[+2] 0.24[−9]

2 0.50383506082[+2] 0.49351779995[+2] 0.95[−4] 0.49348041011[+2] 0.17[−7]

3 0.50383506082[+2] 0.49351779995[+2] 0.95[−4] 0.49348041011[+2] 0.17[−7]

4 0.82142640415[+2] 0.79076580633[+2] 0.27[−3] 0.78956910426[+2] 0.85[−6]

5 0.103696686497[+3] 0.98547414332[+2] 0.42[−3] 0.98696132374[+2] 0.13[−5]

6 0.103696686497[+3] 0.98547414332[+2] 0.42[−3] 0.98696132374[+2] 0.13[−5]

The first six exact eigenvalues:

19.739208802 49.348022005 49.348022005 78.956835208 98.696044010 98.696044010

(iv) Compute λh = −
∫
�

∇uh · ∇uh∫
�

f (uh)uh
.

(v) If necessary, use (uh, λh) as the predicted point, perform Newton’s
method on the fine space Vh(�).

3. NUMERICAL RESULTS

We report some numerical results concerning the implementations of Al-
gorithm 2.1. All of our computations were executed on a Pentium 4 computer
using FORTRAN 95 with double precision arithmetic. The notation [±n] stands
for multiplication by 10±n .

Example. We consider Equation (1). The domain � was divided into two fam-
ilies T̃h and Th of quadratic Lagrange triangles, and Ṽh(�), Vh(�) ⊂ H 1

0 (�)
are subspaces of piecewise quadratic functions defined on T̃h and Th , respec-

tively. We took h = 1
/

16̃h with h̃ = 1/4. The steps 1-4 of Algorithm 2.1 were
implemented to compute the first six eigenvalues of Equation (1), where the
MINRES was used to solve the associated linear systems. Table 1 shows that
the first six eigenvalues consist of two simple eigenvalues and two clusters of
eigenvalues.
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Abstract We study two grid centered-difference discretization schemes for both linear

and nonlinear eigenvalue problems, where the Lanczos type algorithms, namely

MINRES and SYMMLQ are used as linear solvers. Numerical experiments on

some test problems are reported.

Keywords: two-grid scheme, finite difference method, linear eigenvalue problems, nonlinear

eigenvalue problems.

1. INTRODUCTION

In 1975, Paige and Saunders [1] proposed the MINRES and SYMMLQ
algorithms for solving large sparse symmetric indefinite linear systems

Ax = b, (1)

where A ∈ R
N×N is nonsingular and symmetric indefinite, and b ∈ R

N . Since
then MINRES and SYMMLQ became popular for solving (1) and large sparse
matrix eigenvalue problems. The implementations of the preconditioned ver-
sions of these two algorithms can be found in [2]. It is pointed out therein that
MINRES is better than SYMMLQ in eigenpair computations. Recently, Chang
et al. [4] give a comprensive study of the Lanczos type algorithms for both
linear and nonlinear eigenvalue problems. It is shown therein that the precon-
ditioned Lanczos algorithm is still very competive compared to MINRES and
SYMMLQ. Moreover, Chien and Jeng [4] proposed some two-grid discretiza-
tion schemes for solving linear and nonlinear eigenvalue problems. Our aim
here is to modify and implement the two-grid centered difference discretization
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schemes described therein for solving linear and nonlinear eigenvalue problems
defined on an L-shaped domain.

This paper is organized as follows. In Section 2 we describe the main algo-
rithm. Our numerical results are reported in Section 3.

2. A TWO-GRID CENTERED DIFFERENCE
DISCRETIZATION SCHEME

We consider the following nonlinear boundary value problems

F(u, λ) = −�u − λ f (u) − g(u) = 0 in �,

u = 0 on ∂�, (2)

where f, g : R → R are smooth maps and � is an L-shaped domain which is
obtained by cutting away the upper right corner of the unit square. We discretize
Equation (2) via centered differences on the coarse grid with uniform meshsize
h̃ on the x- and y-axis. The corresponding matrix nonlinear eigenvalue problem
is

Find (uh̃, λh̃) ∈ R
Ñ × R such that Ah̃uh̃ − λh̃ f (uh̃) − g(uh̃) = 0,

where Ñ is the number of interior points on the coarse space, Ah̃ ∈ R
Ñ×Ñ is the

coefficient matrix corresponding to the Laplacian operator −�, and f (uh̃) =
[ f ((uh̃)1), . . . , f ((uh̃)Ñ )]T , g(uh̃) = [g((uh̃)1), . . . , g((uh̃)Ñ )]T ∈ R

Ñ .
If we consider the linear approximation of the mapping F(u, λh̃) at uh̃ , the

approximate solution uh̃ can be corrected by solving the following equation

−�e − λh̃ f ′(uh̃)e − g′(uh̃)e = �uh̃ + λh̃ f (uh̃) + g(uh̃) in �,

e = 0 on ∂�, (3)

on the fine grid with uniform meshsize h (0 < h < h̃ < 1) on the x- and y-axis.
The centered difference analogue of Equation (3) is of the form

Find eh ∈ R
N such that (Ah − λh̃Ch − Dh)eh = −Ah(I h

h̃
uh̃) + λh̃ f (I h

h̃
uh̃)

+ g(I h
h̃

uh̃), where N is the number of interior points on the fine space, I h
h̃

:

R
Ñ → R

N is the interpolation operator from R
Ñ to R

N , and Ch = diag
( f ′((I h

h̃
uh̃)1), . . . , f ′((I h

h̃
uh̃)N )), Dh = diag(g′((I h

h̃
uh̃)1), . . . , g′((I h

h̃
uh̃)N )) ∈

R
N×N .

By considering the quadratic approximation of F(u, λh̃) at uh̃ , the further
coarse grid correction is obtained by solving the following equation

−�ẽ − λh̃ f ′(uh̃)ẽ − g′(uh̃)ẽ = 1
2
(λh̃ f ′′(uh̃)e2

h + g′′(uh̃)e2
h) in �,

ẽ = 0 on ∂�, (4)
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on the coarse grid. The centered difference counterpart of Equation (4) is of

the form Find eh̃ ∈ R
Ñ such that

(Ah̃ − λh̃Ch̃ − Dh̃)eh̃ = 1
2
(λh̃ E2

h̃
f ′′(uh̃) + E2

h̃
g′′(uh̃)),

where

Ch̃ = diag( f ′((uh̃)1), . . . , f ′((uh̃)Ñ )), Dh̃ = diag(g′((uh̃)1),

· · · , g′((uh̃)Ñ )) ∈ R
Ñ×Ñ ,

and

Eh̃ = diag((I h̃
h eh)1, . . . , (I h̃

h eh)Ñ ) ∈ R
Ñ×Ñ

with I h̃
h : R

N → R
Ñ is the restriction operator, and

f ′′(uh̃) = [ f ′′((uh̃)1), . . . , f ′′((uh̃)Ñ )]T , g′′(uh̃) = [g′′((uh̃)1),

. . . , g′′((uh̃)Ñ )]T ∈ R
Ñ .

In order to obtain an accurate parameter λh on the fine grid, we set uh =
I h
h̃

uh̃ + eh + I h
h̃

eh̃ and compute the Rayleigh quotient

λh = uT
h Ahuh − uT

h g(uh)

uT
h f (uh)

,

where

f (uh) = [ f ((uh)1), . . . , f ((uh)N )]T , g(uh) = [g((uh)1),

. . . , g((uh)N )]T ∈ R
N .

Therefore, we have the following algorithm.

Algorithm 2.1. A two-grid centered difference continuation algorithm for
Equation (2).

1. Use the predictor-corrector continuation algorithm to find the approximate
solution (uh̃, λh̃) of Equation (2) on the coarse grid: Solve the parameter
dependent nonlinear system

Ah̃uh̃ − λh̃ f (uh̃) − g(uh̃) = 0.

2. For each continuation step, correct the approximate solution (uh̃, λh̃) by the
following steps:

(i) Make a correction on the fine grid: Solve the linear system

(Ah − λh̃Ch − Dh)eh = −Ah(I h
h̃

uh̃) + λh̃ f (I h
h̃

uh̃) + g(I h
h̃

uh̃).
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(ii) Make a further correction on the coarse grid: Solve the linear system

(Ah̃ − λh̃Ch̃ − Dh̃)eh̃ = 1
2
(λh̃ E2

h̃
f ′′(uh̃) + E2

h̃
g′′(uh̃)).

(iii) Set uh = I h
h̃

uh̃ + eh + I h
h̃

eh̃ .

(iv) Compute λh = uT
h Ahuh − uT

h g(uh)

uT
h f (uh)

.

(v) If necessary, use (uh, λh) as the predicted point, perform Newton’s
method on the fine grid space.

3. NUMERICAL RESULTS

We report some numerical results concerning the implementations of
Algorithm 2.1. All of our computations were executed on a Pentium 4 computer
using FORTRAN 95 with double precision arithmetic.

Example 1. We consider the following semilinear elliptic eigenvalue problem

−�u − λ sin u + u4 = 0 in �,

u = 0 on ∂�.
(5)

This example was numerically tested using two-grid centered difference
discretization scheme. We discretized Equation (5) with coarse meshsize h̃ =
1/16 and fine meshsize h = 1/128 and traced the solution branch of Equation (5)
bifurcating at (0, λ1,1). The discretization matrices are of order 161 × 161 and
12033 × 12033 on the coarse grid and the fine grid, respectively. The sample
numerical result is shown in Table 1.

Table 1. Sample result for the solution curve of Equation (5) branching at (0, λ1,1), h̃ = 1/16,

h = 1/128, ε = 5 × 10−7, tol = 5 × 10−10, using Algorithm 2.1.

NCS λh̃ ||uh̃ ||∞ λh ||uh ||∞
4 38.4795133 0.101983986D + 00 38.4902556 0.172834086D + 00

7 38.6611478 0.164473214D + 00 38.5932909 0.219566775D + 00

9 38.7407056 0.199730890D + 00 38.6577884 0.249217223D + 00

10 38.7792939 0.217406954D + 00 38.7018398 0.269068719D + 00

20 39.2130875 0.361247801D + 00 39.1839267 0.425219130D + 00

30 39.7540783 0.542339282D + 00 39.7561347 0.598334571D + 00

40 41.1645776 0.850916446D + 00 41.1716333 0.893770029D + 00

50 42.8752374 0.111421014D + 01 42.8832040 0.115216692D + 01

60 44.7653129 0.134224760D + 01 44.7737203 0.137838364D + 01

70 46.7730794 0.154296072D + 01 46.7817107 0.157864863D + 01

85 53.2183767 0.203164726D + 01 53.2264487 0.206916166D + 01

100 60.0268568 0.241186860D + 01 60.0317721 0.245309943D + 01
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VIBRATION OF A BEAM WITH A BREATHING
CRACK SUBJECT TO MOVING MASS

S.S. Law and X.Q. Zhu
Department of Civil and Structural Engineering, Hong Kong Polytechnic University,
Kowloon, Hong Kong, People’s Republic of China

Abstract The dynamic behaviour of a beam with a breathing crack subject to moving loads

is studied. The two segments of the beam, separated by the crack, are related to one

another by time varying connection matrices representing the interaction forces.

Two different sets of admissible functions which satisfy the respective geomet-

ric boundary conditions are assumed for these fictitious sub-beams. Numerical

procedure is presented for the dynamic response of the simple beam subject to

moving loads.

Keywords: moving loads, breathing crack, dynamic response, damage detection.

1. INTRODUCTION

The analysis of a continuous elastic system subject to moving loads has been
a subject of interest in many research areas. Lee and Ng [1] used the assumed
mode method to analyze the dynamic response of a beam with a single-sided
crack subject to a moving load on the top. The beam is modelled as two segments
separated by the crack. Two different sets of admissible functions satisfying
the respective geometric boundary conditions are then assumed for these two
fictitious sub-beams. The rotational discontinuity at the crack is modelled by a
torsional spring with an equivalent spring constant for the crack. The equality
of transverse deflection at the crack is enforced by a linear spring of very large
stiffness. Parhi and Behera [2] utilized a local stiffness matrix to model the crack
section. Bilello and Bergman [3] modelled the damage in an Euler–Bernoulli
beam as rotational spring whose compliance is evaluated using linear elastic
fracture mechanics. All the above studies are related to simple open crack
model.

G. R. Liu et al. (eds.), Computational Methods, 1963–1968.
C© 2006 Springer. Printed in the Netherlands.
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In reality, partial crack closure often occurs due to (1) roughness interfer-
ence, (2) wedging by corrosion or wear debris, and (3) elastic constraint in
the wake of the plastic zone. The closure effects on the vibration response of a
fatigue cracked steel Tee–beam were investigated experimentally by Zhang and
Testa [4] Law and Zhu [3] used a damage function to model the crack zone in the
reinforced concrete beam. In this paper, the dynamic behaviour of a Bernoulli–
Euler beam with a breathing crack subject to a moving mass is studied. The two
segments of the beam, separated by the crack, are related to one another by time
varying connection matrices representing the interaction forces. Two different
sets of admissible functions which satisfy the respective geometric boundary
conditions are assumed for these fictitious sub-beams. Numerical procedure is
presented for the dynamic response of a simple beam subject to moving loads.

2. DAMAGED BEAM ELEMENT WITH
BREATHING CRACK

2.1 Rotational Spring Model

The rotational spring model is widely used to study cracked beams, in which
the effect of structural damage is modeled through a local compliance [5].
There are many existing models to describe the deterioration in the structures,
especially for inelastic structures. According to Richard and Abbott’s hysteretic
model [6], the moment-rotation relation at the damage cross-section of a beam
can be written as,

M =
[
kp + (k0 − kp)/

(
1 + ∣∣(k0 − kp)|θ |∣∣ /M0

)1/n
]
|θ | (1)

and the corresponding tangent stiffness is

krd = d M/dφ =
[
kp + (k0 − kp)/

(
1 + ∣∣(k0 − kp)|θ |/M0

∣∣n)(n+1)/n
]

(2)

where k0 is the initial rotational stiffness when the crack is closing and kp is
the stiffness when the crack full opens, M0 is a reference moment and n is a
parameter defining the curvature of the curve.

2.2 Cracked Beam Element

Figure 1 shows a prismatic isotropic beam element of length l with a breath-
ing crack which is located at lc(lc �= 0) from left end. The cracked beam element
is modeled as two segment beam connected by a virtual spring. Assuming the
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Figure 1. Cracked beam element.

rigidity of the undamaged beam is EI, the stiffness matrices link up the force
and deformation at the ends of two segment beams are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qi

Mi

QL
d

M L
d

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= E I

l3
c

⎡
⎢⎢⎢⎣

12 6lc −12 6lc

6lc 4l2
c −6lc 2l2

c

−12 −6lc 12 −6lc

6lc 2l2
c −6lc 4l2

c

⎤
⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

wi

θi

w L
d

θ L
d

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q R
d

M R
d

Q j

M j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= El

(l − lc)3

⎡
⎢⎢⎣

12 6(l − lc) −12 6(l − lc)
6(l − lc) 4(l − lc)2 −6(l − lc) 2(l − lc)2

−12 −6(l − lc) 12 −6(l − lc)
6(l − lc) 2(l − lc)2 −6(l − lc) 4(l − lc)2

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

w R
d

θ R
d

w j

θ j

⎤
⎥⎥⎥⎦

(3)

where wi , w j , θi , θ j are the displacements and rotations of two end nodes of
the elements, Qi , Q j , Mi , M j are the corresponding lateral shear forces and
moments, w L

d , θ L
d , w R

d , θ R
d are the two end displacements and rotations of the

spring, QL
d , M L

d , Q R
d , M R

d are the corresponding shear forces and moments.
According to the compatibility and equilibrium relations at the crack, the

cracked element matrix can be given

Kd = K1 + K2K−1
3 K4 (4)

where

K1 = E I

l3

⎡
⎢⎢⎣

12/δ3 6l/δ2 0 0
6l/δ2 4l2/δ 0 0

0 0 12/(1 − δ)3 −6l/(1 − δ)2

0 0 −6l/(1 − δ)2 4l2/(1 − δ)

⎤
⎥⎥⎦ ,
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K2 = E I

l3

⎡
⎢⎢⎣

−12/δ3 6l/δ2 0 0
−6l/δ2 2l2/δ 0 0

0 0 −12/(1 − δ)3 −6l/(1 − δ)2

0 0 6l/(1 − δ)2 2l2/(1 − δ)

⎤
⎥⎥⎦

K3 =

⎡
⎢⎢⎣

−12/δ3 6l/δ2 0 0
6l/δ2 S − 4l2/δ 0 0

0 0 12/(1 − δ)3 −6l/(1 − δ)2

0 −S −6l/(1 − δ)2 S − 4l2/(1 − δ)

⎤
⎥⎥⎦ ,

K4 =

⎡
⎢⎢⎣

−12/δ3 −6l/δ2 0 0
6l/δ2 2l2/δ 0 0

0 0 −12/(1 − δ)3 6l/(1 − δ)2

0 0 −6l/(1 − δ)2 2l2/(1 − δ)

⎤
⎥⎥⎦

δ = lc/ l, S = Krdl3/E I

3. EQUATION OF MOTION

Figure 2 shows the simply-supported beam under a moving mass m with
constant speed ν. The crack is located at ld from left end. The supporting beam
structure is discretized into N − 1 beam element where N is the number of nodal
points. With the assumption of Rayleigh damping, the equation of motion for
the bridge can be written as

MbR̈ + CbṘ + KbR = Hm P (5)

where Mb, Kb, Cb are the mass, stiffness and damping matrices of the simply-
supported beam. R̈, Ṙ, R are the nodal acceleration, velocity and displacement
vectors of the beam respectively, and Hm P is the equivalent nodal load vector
from the moving mass.

P = m{g − d2(w(x(t), t))/dt2} (6)

EI, rA  

L 

x(t) 

ld 

m 

v 

Figure 2. The damaged beam under a moving mass.
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where m is the moving mass. Hm = {0 · · · H (ξ (t))T
j 0 · · · 0}T with

( j − 1)l ≤ ξ (t) ≤ jl. H (x) is the shape function of the beam element. The
deflection of the beam at position x and time t can then be expressed as

w(x, t) = H(x)R (7)

where H(x) = {0 · · · H (x)T
j 0 · · · 0} with ( j − 1)l ≤ x ≤ jl. Sub-

stitute Equation (7) into Equations (5) and (6), the equation of motion of the
system is as follow

M(t)R̈ + C(t)Ṙ + K(t)R = mgHm (8)

where

M(t) = Mb + mHmH(x), C(t) = Cb + 2mνHmH′(x),

K(t) = Kb + mν2HmH′′(x) .

H′(x), H′′(x) are the first and second deviation of H(x). Newton–Raphson
iteration algorithm is used to solve Equation (8). Then, dynamic responses of
the beam subjected to a moving mass can be obtained from Equation (7).

4. CONCLUSION

A cracked beam element has been developed to analyze the dynamic be-
haviour of a beam with a breathing crack subjected to a moving mass. It is useful
to study the nonlinear behaviour of the damage bridge structures subjected to
moving vehicular loads.
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VALVE GEAR VIBRATIONAL ANALYSIS AND
DEVELOPMENT OF NEW CAM DESIGN

J. Avsec and M. Oblak
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Abstract This paper describes a valve gear vibrational analysis. In order to calculate the

kinematic and dynamic values and to assess the minimum oil film thickness in the

valve gear, the vibrational mathematical multidegree of freedom model of valve

gear was used. In addition, the comparison of the results between the polysine

cam and the new MULTICAM cam design was made. By means of the new cam

design the Hertz pressures were reduced at the point of contact between the cam

and the cam follower and the lubrication properties at the top of the cam improved.

Keywords: vibrational analysis, valve gear system, Runge–Kutta, method.

1. INTRODUCTION

The main task of the valve gear is the exhaust and inlet valve control. In
internal combustion engines, the valve gear system has an important influence
upon the power output and torque as well as on the exhaust gas emission. The
forces required for the control are very high due to high accelerations occurring
in the valve gear. Apart from the forces, wear and damage of the valve gear
are caused also by the reactive reagents and high temperatures primarily on
the exhaust side of the thermally loaded valve gear parts. The valve gear of
truck and bus engines has experienced a fast development in the past years.
In Otto engines for cars the electro-hydraulic valve gear with variable valve
gear design has been established in the series production. It has an advantage
over the conventional system primarily at the idling at lower engine loading. In
racing car engines, the pneumatic valve gear is used already due to a very fast
response and the correspondingly very short valve opening and closing times.

G. R. Liu et al. (eds.), Computational Methods, 1969–1974.
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In truck and bus diesel engines only conventional valve gear designs are used
in the series production.

2. EXISTING VALVE GEAR

In our case, the engine durability test was carried out in TAM BF 6L 515C
diesel engine, incorporating a conventional valve gear (Figure 1). After the
3000-hour engine test the manifestations of an intensive wear appeared on the
exhaust side of the valve gear. The wear of the exhaust cam was especially
intensive right under the top. This type of wear is called the surface wear and it
occurs at low peripheral speeds, when the lubrication properties are weakened
and high friction occurs between the cam and the follower when the side pressure
is high. Both the inlet and exhaust cams in the test engine were designed in
accordance with the polysine curve theory [1]. This type of cam is designed so
as to yield a continuous acceleration curve.

Figure 1. Valve gear system.
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3. NEW MULTICAM CAM DESIGN

By using the dynamic model of the valve gear we analysed the causes of
excessive wear. Since the cam (NI1), designed in accordance with the polysine
curve, offered too few possibilities for an optimum cam profile, we wanted
to manufacture a completely new type of cam with more possibilities for an
optimum adjustment. At the same time, we wished to summarise some findings
of authors on the dependence of the cam design on the fuel consumption and
valve gear noise. Thus, on this basis the new MULTICAM cam (NI2) was
created. Contrary to the conventional theory of polysine cam the motion in
MULTICAM cam can be written by means of seven curves. Equations and
boundary conditions for MULTICAM cam is possibly to find in the literature
of Avsec et al. [2].

4. MATHEMATICAL VALVE GEAR
DYNAMIC MODEL

The real valve gear system is unsuitable for the formulation of an equation
of movement, mainly because it is described by means of partial differential
equations. Consequently, the real system is replaced by an equivalent three-mass
system (shown in Figure 2), which may be described through three ordinary
second order differential equations. In this reaction, every element of the system
is represented by two concentrated masses, connected by a weightless spring,
having the stiffness of this element. In addition, rotational movement of a rocker
arm is replaced by translatory movement. Portions of masses of two adjacent
elements are integrated into a single mass (e.g., a portion of the mass of a push
rod and a portion of the mass of a rocker arm form a single mass in the equivalent
system), resulting in a system of three concentrated masses, interconnected
with springs. Reduced masses and reduced stiffnesses of the equivalent system
are determined on the basis of equality of kinetic and potential energy of the
real and equivalent system. By introducing these variables into the system of
dynamics equations a final form of differential equations is obtained, describing
the movement of the equivalent model of the valve gear system:⎡

⎣m1 + m0 0 0
m2 −m2 0
m∗

3 −m∗
3 −m∗

3

⎤
⎦

⎧⎨
⎩

z̈1

z̈2

z̈3

⎫⎬
⎭

+
⎡
⎣Cbv CS 0

0 −CS Ck

C∗
0 −C∗

0 −(C∗
0 + Ck)

⎤
⎦

⎧⎨
⎩

z1

z2

z3

⎫⎬
⎭ =

⎧⎨
⎩

m0ḧp + Cbvhp

0
F∗

⎫⎬
⎭ (1)



1972 J. Avsec and M. Oblak

Figure 2. The mathematical model.

We have solved Equation (1) with the help of Runge–Kutta 4 numerical method.
By means of the dynamic analysis we then carried out the review of values
having a direct impact upon the valve gear wear: Control of Hertz pressures;
Control of minimum oil film thickness according to elastohydrodynamic theory;
Control of tangential stresses occurring some tenths of millimetres in the depth
of the cam and being proportional to the normal tensions. Tables 1 and 2 show
the values of the highest Hertz pressure and the minimum oil film thickness
occurring in the inlet and outlet cam at the idling (500 rpm of crankshaft) and at

Table 1. Computation of force F1 between

cam follower and the push rod and minimum

oil film thickness Hmin at the top of cam.

Inlet system Exhaust system

F1 1521 N 1109 N

Hmin 0.142 μm 0.13 μm
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Table 2. Computation of normal tensions (Hertz

pressures) at the top of the cam.

Crankshaft Exhaust Inlet

velocity (rpm) cam (N/mm2) cam (N/mm2)

500 722 590

2800 560 480

rpm exceeded by a 30% (2800 rpm of crankshaft), which can appear by vehicle
moving downhill. In order to calculate the Hertz pressures we used the theory
of rolling contacts [1]:

pH(N/mm2) = 0.418

√
F1(N)E(N/mm2)

bN(mm)

(
1

Rp(mm)
+ 1

RON(mm)

)
(2)

According to the sources from the References [1, 2] the permissible Hertzian
pressure loads are approximately 600 N/mm2. As evident from Table 2, the
loads are too high mainly on the exhaust cam. The minimum oil film thickness
Hmin was calculated using the elastohydrodynamic theory [2]:

Hmin(m) = 1.6 · RON(m)0.43η(Pas)0.2 |vHD(m/s)|0.7 (F1(N))−0.13E(N/m2)0.03

(3)

The assessment of the minimum oil film thickness at the top of the exhaust cam
(Table 1) does not provide any favourable results. As the largest loads appear at
the top of the cam, where the highest wear was measured, it is necessary to re-
duce the normal tensions and improve the lubrication properties. Table 2 shows
that the tensions at the top of the exhaust cam must primarily be lowered (SI1).
This was achieved in two ways: The design exhaust cam allows an increase in
the base circle diameter from 41.6 mm to 45.6 mm. By means of a new base
circle diameter we calculated the new optimum polysine cam design (NI1).

5. RESULTS AND DISCUSSION

The comparison of the cam profiles is given in Figure 3. Figure 4 show
the analytical calculated cam lift for the new, NI2 cam. This paper describes
our theoretical and practical contribution to the optimization of valve gear
design, including the ramp period. For these purpose we developed a new cam,
called MULTICAM, which consists from seven different curves. To estimate
the kinematics, dynamical and lubrication properties with the new cam profile
the vibrational model of valve gear was used. At the new cam profile the Hertz
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Figure 3. Cam profiles (1-SI1, 2-NI1, 3-NI2).

Figure 4. Cam lift for NI2 model obtained by vibrational analysis.

pressure on the contact between cam and cam follower was reduced and also oil
film thickness was improved. The calculation of other important values, as for
example the ratio between inertia forces and spring forces, shows favourable
results too [2].
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Abstract In this study, the transfer matrix method is used for the dynamic analysis of

a stepped beam with arbitrary multiple transverse open cracks. The reduction

in bending stiffness due to the presence of transverse open cracks or abrupt

changes of cross-section is modelled by kind of massless rotational springs. The

advantages are demonstrated through examples. Firstly, it yields purely analytical

solutions which are more accurate than the numerical ones. Secondly, the size of

the resulting eigen-matrix is small. For beams with all sorts of boundary restraint

conditions, having many abrupt changes of cross-sections and/or with arbitrary

multiple open cracks, the size of the eigen-matrix is still 4 by 4 (or less). Numerical

examples are presented to validate the accuracy and efficiency of the present

formulation.

Keywords: transfer matrix, stepped beam, multiple cracks, massless rotational spring.

1. INTRODUCTION

Knowing the dynamic behaviour of a stepped beam with cracks is of signifi-
cant importance in engineering. In the past two decades, the vibration problems
of an uncracked stepped beam or a cracked uniform beam have attracted the
attentions of many researchers. A wealth of literature is available. However,
less attention has been paid to the vibration problem of a stepped beam hav-
ing cracks. Dimarogonas [1] presented a state-of-the-art review on methods
available for solving the cracked beam problems. Recently, Li [2] presented
solutions for a cracked multiple-stepped beam using analytical functions of vi-
bration mode shape and rotational spring at the location with abrupt change of
cross-sections. On the other hand, Khiem and Lien [3] used the transfer matrix

G. R. Liu et al. (eds.), Computational Methods, 1975–1979.
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method to obtain natural frequencies of a uniform beam having multiple cracks.
In this paper, the transfer matrix method is employed in conjunction with the
implantation of artificial rotational springs to investigate the natural frequen-
cies of a stepped beam having multiple open cracks. Essentially, the merits of
the transfer matrix method are inherited, and the simplicity of modelling cracks
by massless spring [4] is preserved.

2. THEORY AND FORMULATION

Firstly, consider a uniform beam segment j, of which the left end is at
x = x+

j−1 and the right end is at x = x−
j (where the superscript ‘+’ denotes the

right-hand side of the left-end junction; whereas the superscript ‘−’ denotes the
left-hand side of the right-end junction) having cross-sectional area A, moment
of inertia I, mass density ρ and Young’s modulus E. The general solution ϕ(x)
for the lateral free-vibration equation ϕ′′(x) − λ4ϕ(x) = 0 is:

ϕ(x) =
4∑

j=1

C j K j (λ
−x) (1)

where λ4 = ρ Aω2/E I ; x̄ = x−
j − x+

j−1; K j ’s are functions: K1(λ x̄) =
(cosh λ x̄ + cos λx̄)/2, K2(λ x̄) = (cosh λ x̄ − cos λ x̄)/2, K3(λ x̄) =
(sinh λ x̄ + sin λ x̄)/2, K4(λ x̄) = (sinh λ x̄ + sin λ x̄)/2; and C j ’s are the
coefficients to be determined. Write the state conditions at the left end
(x = x+

j−1) and the right end (x = x−
j ) as follows:

Z+
j−1 = {Z+

j−1,1, Z+
j−1,2, Z+

j−1,3, Z+
j−1,4}T

= {ϕ(x+
j−1); ϕ′(x+

j−1); −E Iϕ′′′(x+
j−1); Elϕ′′(x+

j−1)}T ;

Z−
j = {Z−

j1, Z−
j2, Z−

j3, Z−
j4}T = {ϕ(x−

j ); ϕ′(x−
j ); E Iϕ′′′(x−

j ); −E Iϕ′′(x−
j )}T

(2)

Substituting the state conditions at the left end (x = x+
j−1) into Equation (1)

yields C1 = Z+
j−1,1, C2 = Z+

j−1,2/λ, C3 = Z+
j−1,4/E Iλ2, C4 = Z+

j−1,3/E Iλ3.

Subsequently, the right-end (x = x−
j ) state condition can be expressed in terms

of the left-end state conditions through Equation (1). In matrix form,

Z−
j = T j Z

+
j−1 (3)

T j (λ, x̄)

=

⎡
⎢⎢⎣

K1(λ, x̄) λ−1 K2(λx̄) K4(λx̄)/E Iλ3 −K3(λx̄)/E Iλ2

λK4(λx̄) K1(λx̄) K3(λx̄)/E I −K2(λx̄)/E Iλ
−λ3 E I K2(λx̄) −λ2 E I K3(λx̄) −K1(λx̄) λK4(λx̄)
λ2 E I K3(λx̄) λE I K4(λx̄) λ−1 K2(λx̄) −K1(λx̄)

⎤
⎥⎥⎦
(4)
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Secondly, consider the continuity conditions at the junctions between segments.
Regardless of the presence of abrupt change of cross section at a junction, the
following continuity conditions at an arbitrary junction (at x j ) must be satisfied;
i.e.,

ϕ(x−
j ) = ϕ(x+

j ), ϕ′(x−
j ) = ϕ′(x+

j ), E j I jϕ
′′(x−

j ) = E j+1 I j+1ϕ
′′(x+

j ),

E j I jϕ
′′′(x−

j ) = E j+1 I j+1ϕ
′′′(x+

j ) (5)

By using the same notation defined above, Equation (5) can be re-written in
matrix form; i.e.,

Z+
j = J j (0)Z−

j where J j (0) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ (6)

Thirdly, consider the continuity and discontinuity conditions at the junctions
where an open crack is present between two segments. An artificial massless
rotational spring having a flexibility coefficient βk is introduced to account
for the discontinuity of the first derivative. In this case, Equations (5) and (6)
become

ϕ(x−
j ) = ϕ(x+

j ), ϕ′(x−
j ) + βkϕ

′′(x−
j ) = ϕ′(x+

j ), ϕ′′(x−
j ) = ϕ′′(x+

j ),

ϕ′′′(x−
j ) = ϕ′′′(x+

j ) (7)

Z+
j = J j (βk)Z−

j where J j (βk) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 βk

0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ (8)

Note that by setting βk = 0, Equation (8) is reduced to the special case as
in Equation (6). The flexibility coefficient βk (for the kth open crack) can be
expressed as a function of normalized crack depth ξk [4] where ξk = αk/hk(αk

is the depth of the open crack and hk is depth of the intact section without
crack); i.e.,

βk = 5.346 hk f (ξk)/E I (9a)

f (ξ ) = 1.8624 ξ 2 − 3.95 ξ 3 + 16.375 ξ 4 − 37.226 ξ 5 + 76.81 ξ 6

−126.9 ξ 7 + 172 ξ 8 − 143.97 ξ 9 + 66.56 ξ 10 (9b)

Fourthly, a chain relationship can now be established. Starting from the
extreme right-end segment (n) of a beam, we can relate the right-end state con-
ditions to those of the left-end through Equation (3); i.e., Z−

n = TnZ+
n−1. Then,

combining with Equation (6) or (8) leads to Z−
n = TnZ+

n−1 = (TnJn−1)Z−
n−1,
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x x x x x

xh  

2nd open crack

h

1st open crack 

Figure 1. A cantilever beam with two steps and two open cracks.

which is the typical chain relationship between the right-end state conditions
of two consecutive segments. Chaining up all segments yields

Z−
n = (TnJn−1) Z−

n−1 = (TnJn−1)(Tn−1Jn−2)Z−
n−2 = · · ·

= (TnJn−1)(Tn−1Jn−2) . . . (T2J1)Z−
1 (10)

Substituting Z−
1 = T1Z+

0 into Equation (10) leads to

Z−
n = [(TnJn−1)(Tn−1Jn−2)Z−

n−2 . . . (T2J1)T1]Z+
0 (11)

Letting Q = (TnJn−1)(Tn−1Jn−2) . . . (T2J1)T1, we have Z−
n = QZ+

0 , in
which Q relates the state conditions of the extreme right-end to those of the
extreme left-end. Note that Q is 4 × 4 matrix having its 16 elements qmn , which
are functions of the frequency ω only. By imposing the boundary constraints at
the two ends, Q will be often reduced to a 2 × 2 eigen-matrix and subsequently
to a single frequency equation. For example,

q12q34 − q32q14 = 0 (for both ends simple supported) (12)

q13q24 − q23q14 = 0 (for both ends fixed) (13)

q33q44 − q43q34 = 0 (for cantilevered beam left-end fixed) (14)

Example. To validate the present formulation, a two-stepped cantelever beam
having two one-sided open cracks is analysed (see Figure 1). The data are
Section 1 (width b = 0.3 m, depth h1 = 0.7 m), Section 2 (same b, but h2 =
0.5 m); 4 segments (x0 = 0, x1 varies, x2 = 5.5 m, x3 = 6.5 m, x4 = 11 m);
two cracks (depth a1 = 0.3 m at x1; depth a2 = 0.2 m at x3; E = 210 G Pa; ρ =
7800 kg/m3. Good accord with finite-element results [5] is observed (see
Figure 2).

3. CONCLUSIONS

Modelling of open crack by rotational spring in conjunction with applica-
tion of the transfer matrix method was presented. In solving the free vibration
frequency of a multiple stepped beam having arbitrary number of open cracks,
it always leads to a simple eigen-matrix of size only 4 × 4 (or less for common
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Figure 2. Frequency reduction (ω/ω0) for the first 3 modes against varies x1.

boundary conditions). The example showed that the present formulation is
simple, versatile, effective and accurate.
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FUNDAMENTAL MATRIX ESTIMATION
BASED ON A GENERALIZED
EIGENVALUE PROBLEM
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Computation and Knowledge Engineering of the Ministry of Education, Changchun, 130012,
P.R. China

Abstract A new method for estimating the fundamental matrix is proposed. Using eigen-

vectors corresponding to the two smallest eigenvalues obtained by the orthogonal

least-squares technique, we construct a 3 × 3 generalized eigenvalue problem.

Its solution gives not only the fundamental matrix but also the corresponding

epipoles. The new method performs well as compared with several existing lin-

ear methods.

Keywords: fundamental matrix, epipolar geometry, orthogonal least-squares, generalized

eigenvalue problem.

1. INTRODUCTION

Two images of a single rigid scene are related by the epipolar geometry,
which can be described by a matrix called fundamental matrix. It is a 3 × 3
matrix of rank 2 [1]. It is independent of scene structure, and can be com-
puted from correspondences of image points alone. Many methods have been
proposed for estimating fundamental matrix. They can be divided into three
classes [2] linear, iteration and robust. Linear methods are foundations of other
methods.

In this paper, we propose a new linear method for estimating the
fundamental matrix by constructing a 3 × 3 generalized eigenvalue prob-
lem. The performance of the new method is compared with other linear
techniques.
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2. DESCRIPTION OF THE METHOD

Assume that two image points of a same 3D space point in image I and I ′ are
m = (x, y, 1)T and m′ = (x ′, y ′, 1)T respectively, then the epipolar geometry
relation:

mT Fm′ = 0 (1)

is satisfied, where the 3 × 3 singular matrix F is the fundamental matrix. For
the epipoles e′ and e, we have

Fe′ = 0, FT e = 0 (2)

For a set of correspondences {(mi , m′
i )|i = 1, 2, . . . , n} with mi = (xi , yi , 1)T ,

m′
i = (x ′

i , y′
i , 1)T and n ≥ 7, Equation (1) can be writing as:

Unf = 0 (3)

where

f = (F11, F12, F13, F21, F22, F23, F31, F32, F33)T (4)

Un =

⎡
⎢⎢⎢⎣

x1x ′ x1 y′
1 x1 y1x

′
1 y1 y′

1 y1 x ′
1 y′

1 1
x2x ′

2 x2 y′
2 x2 y2x ′

2 y2 y′
2 y2 x ′

2 y′
2 1

...
...

...
...

...
...

...
...

...
xnx ′

n xn y′
n xn ynx ′

n yn y′
n yn x ′

n y′
n 1

⎤
⎥⎥⎥⎦

n×9

(5)

It is important to note that a fundamental matrix has only 7 degrees of
freedom. There are only 7 independent parameters among the 9 elements [3].
In Equation (3), only 7 parameters need to be solved and they can be expressed
by the remaining two parameters. A least-squares method can be used to solve
Equation (3):

min
f∈R9

(Unf, Unf) (6)

where (·,·) denotes the Euclid inner product. The vector f is only defined up
to an unknown scale factor. What we need is the non-trivial solution f �= 0.
We thus impose the constraint on the fundamental matrix:‖f‖ = 1 where ‖f‖
denotes the Euclid norm of f. Then Equation (6) becomes a classical constrained
minimization one:

min
‖f‖=1

(Unf, Unf) = min
f �=0

(Unf, Unf)

(f, f)
(7)

We introduce a Lagrange function

L(f, λ) = ‖Unf‖2 + ω
(
1 − ‖f‖2

)
(8)
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where ω is the Lagrange multiplier. The solutions of Equation (7) result in the
following eigenvalue problem:

UT
n Unf = ω f, ‖f‖ = 1 (9)

The nine eigenvalues of UT
n Un are arranged in the increasing order: 0 ≤ ω1 ≤

ω2 ≤ . . . ≤ ω9, and the corresponding unit orthogonal eigenvectors are written
as: f1, f2, . . . , f9, respectively.

If the matrix F1 formed by f1 based on Equation (4) satisfies the rank-
2 constraint, F1 is just the fundamental matrix. For F1, however, the rank-2
constraint will generally not be satisfied. We assume that F1 is not singular. To
obtain the fundamental matrix with the rank-2 constraint, we approximately
express the solution to Equation (3) in terms of

f = αf1 + βf2, α2 + β2 = 1 (10)

Let F1 and F2 be 3 × 3 matrices formed by f1 and f2, respectively. The funda-
mental matrix F can be represented as F = αF1 + βF2. The singularity of F
can be imposed by letting the following system of equations

(αF1 + βF2) z = 0 (11)

has non-zero solution z �= 0. If β = 0, Equation (11) has trivial solution z = 0
only, since F1 is non-singular. Therefore we have β �= 0. Let λ = −α/β, we
get the following generalized eigenvalue problem

(F2 − λF1) z = 0, z �= 0. (12)

There is at least 1 real eigenvalue and at most 3 real ones for Equation (12).
Let λ denote a real eigenvalue. Using Equation (10) and noticing λ = −α/β

yields

‖Unf‖2
2 =

(
λ2

1 + λ2

)
ω1 +

(
1

1 + λ2

)
ω2 (13)

From Equation (13), we see that the second smallest eigenvalue is weighted
by 1/(1 + λ2) thus its contribution is reduced. For the case of Equation (12)
having 3 real eigenvalues λ1, λ2 and λ3, based on Equation (13), we choose
λ = λi where |λi | = max{|λ1|, |λ2|, |λ3|}. Finally, the corresponding F and the
epipole in I are given by:

F = 1√
1 + λ2

(F2 − λF1), e′ = zi (14)
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3. EXPERIMENTAL RESULTS

The method proposed in this paper is compared with other two different
linear methods by using synthetic images with the Gaussian noise and out-
liers, and two real images shown in Figure 1. The methods include: Method
1-the method proposed in this paper, Method 2-the orthogonal least-squares
technique, Method 3-the modified orthogonal least-squares method. We use
8 correspondences to calculate F. Data normalization technique proposed by
Hartley and Zisserman [4] is used. The mean and standard deviation of the
distance between points and epipolar lines computed for 100 trials are listed in
Table 1. Method 2 obtains a rank-3 fundamental matrix. Method 3 yield rank-2
fundamental matrix, but distances become worse. For the proposed method,
rank-2 constraint is satisfied, and mean and standard deviation of distance are
smaller than other two methods. The results also indicate that the sensitivity to
noise of the proposed method is weaker than other methods.

(1) (2) 

Figure 1. Real images with correspondences: (1) Outdoor scene, (2) Indoor scene.

Table 1. Comparison of the mean and standard deviation of the distance (in pixels) between

correspondences points and epipolar lines.

Outlier Methods

Image Noise (%) 1 2 3

Synthetic image 0 0 0.00007 0.00009 0.0002 0.0003 0.0002 0.0002

0.1 0 1.0614 1.1986 1.5623 2.092 1.605 1.9653

0.5 0 3.4683 4.3818 3.9786 5.2487 4.1394 4.8859

1.0 0 4.6128 5.0021 5.9686 7.7197 5.7432 5.9899

0 12.5 4.0042 6.6476 5.5926 9.7352 6.1835 10.486

0.1 12.5 4.1647 6.0372 5.6528 8.6008 5.8042 7.9764

0.5 12.5 4.3803 5.961 6.9934 9.6698 7.1518 8.4868

1.0 12.5 8.0714 9.2385 8.1241 10.592 8.4277 9.9636

Image 1 0.6133 0.5409 0.7914 0.8622 0.9997 0.9062

Image 2 2.1770 2.2602 2.4964 2.7708 2.4755 2.3879
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4. CONCLUSIONS

In this paper, we present a new method for estimating the fundamental
matrix. Using the two eigenvectors corresponding to the two smallest eigenval-
ues achieved by the orthogonal least-squares technique, we construct a 3 × 3
generalized eigenvalue problem. The solutions to the problem give not only
the fundamental matrix but also the corresponding epipoles. The proposed ap-
proach is easy to be implemented, and the high quality results can be achieved.
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SKELETAL REDUCTION OF EIGEN-VALUE
PROBLEMS OVER THIN SOLIDS
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Abstract Extant dimensional reduction methods for thin solids are largely restricted to

‘regular’ solids, such as plates and shells that permit a mid-surface plus thickness

representation. In this paper, we propose a skeletal reduction that is mathemati-

cally well-defined for all solids. The proposed method is illustrated and compared

with the mid-surface based reduction using the Helmholtz eigen-value problem

as a vehicle.

Keywords: dimensional reduction, medial axis transform, eigen-value, plates, shells.

1. INTRODUCTION

Consider the eigen-value problem:

Find {u, λ}, u ∈ H 1
0 (�), λ ∈ C such that∫

�

∇u.∇vd� = λ

∫
�

uvd�, ∀v ∈ H 1
0 (�) (1)

In particular, we focus here on solids � that are geometrically thin in that one or
more spatial dimensions of � is much smaller than the third; examples of such
solids include plates and shells. For thin solids, a fully discretized finite element
approximation of (1) is not desirable for reasons stated, for example, in [1];
instead, a dimensional reduction is often recommended. Extant dimensional
reduction methods hinge on a mid-surface representation of �, wherein �

is expressed as a lower-dimensional manifold (a.k.a. mid-surface) ω plus a
relatively small, but possibly varying thickness H (ω), i.e.:

� = {p + n̂H (p)ε|p ∈ ω(s, t), n̂ : normal(p), −1 ≤ ε ≤ 1}. (2)
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ê

p

Midsurface

εH
n

Figure 1. Example to illustrate (2).

Figure 1 illustrates the above definition. The mid-surface representation (2)
leads to a convenient sub-space of solutions, typically consisting of low order
polynomials in the thickness parameter ε [2]. A dimensionally reduced model
of (1) can be obtained by seeking solutions in such sub-spaces. Dimensional
reduction methods have been successfully applied in the analysis of thin solids
such as plates and shells [3, 4].

Now consider the L-bracket in Figure 2 that is thin but exhibits an abrupt
change in geometry. Once again, a fully discretized solution is not desirable
since H � L . In order to apply extant dimensional reduction methods, one
must first find a suitable quasi-disjoint decomposition � = ⋃

�i such that
each �i permits the representation (2). More formally, we seek a decomposition
satisfying the following properties:

(1) � = ⋃N
i=1 �i . . . else the decomposition does not cover the original set.

(2) �i ∩ � j 	=i = φ . . . else the decomposition leads to ambiguity.
(3) �i = {p + n̂H (p)ε|p ∈ ωi (s, t), n̂ : normal(p), −1 ≤ ε ≤ 1} . . . else the

objective of dimensional reduction is not met.
(4) ω = ∪ωi must be connected . . . else a lower-dimensional problem cannot be

posed over ω. (3)

Unfortunately, for most solids that exhibit a sudden change in geometry (in-
cluding the one in Figure 2), it is not possible to find such a decomposition.
Further, violating one or more conditions from (3) results in both lack of

 L

H<<L

H

Figure 2. An L-bracket.
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automation [5] and irrecoverable loss in accuracy, as illustrated in the numerical
section below.

2. PROPOSED METHOD

It is objective of this paper to introduce a new method of dimensional
reduction that can be applied to all thin polyhedral solids (non-polyhedral solids
require a small modification not discussed here). The proposed method is based
on the skeletal representation of � [6, 7] which guarantees that it is always
possible to find a skeletal decomposition with the following properties:

(1) � = ⋃N
i=1(�+

i ∪ �−
i )

(2) �±
i ∩ �±

j 	=i = φ

(3) Each �±
i permits the skeletal representation: �±

i = {
p + k̂±

i R(p)ε|p ∈
mi (s, t), k̂±

i : projectors(p), 0 ≤ ε ≤ 1
}

(4) M = ∪mi is connected (4)

Observe the similarities and differences between (3) and (4). The manifold M in
(4) is called the medial axis of �, while R(p) is the radius function. Note that the
medial axis M, in general, will not coincide with the mid-surface ω The vectors
k̂±

i in (4) are defined to be the two projectors from a point on the medial axis to
the nearest boundary points; Figure 3 illustrates this definition. The mathemat-
ical properties of skeletal representations are now well understood [7], while
its computation has been addressed by Srinivasan [8] and Etzion [9]; Figure 4
illustrates the skeletal decomposition of the solid in Figure 2, where the darker
shade sub-domains correspond to �+

i , while lighter ones correspond to �−
i .

The main contribution of this paper is to propose a (Galerkin) sub-space of
solutions that are explicit functions of the thickness parameter ε in (4). In this
paper, we shall restrict ourselves to polynomial sub-spaces of ε. Note that such
sub-spaces may be expanded to include, for example, singularity functions at
re-entrant corners. Once a sub-space is selected, then a dimensionally reduced
eigen-value problem over M may be obtained via standard symbolic integra-
tion [5]. Since skeletal reduction rests on sub-space projections, it inherits the

p
r

+

ê

ê

-

k

k

Figure 3. Example to illustrate (4).
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Figure 4. Skeletal decomposition of L-bracket.

standard properties of a Galerkin approximation [1]. These and other theoretical
properties of the proposed method will be discussed in a forthcoming paper.

3. NUMERICAL EXPERIMENT

For lack of space, we consider only two numerical experiments involving
the Helmholtz eigen-value problem (1) when � is the 2-D L-bracket illustrated
in Figure 2. The experiments involve comparing the eigen-values λmid obtained
via the mid-element based reduction (3), when conditions (3)–(1) and (3)–(2)
are not satisfied, with the eigen-values λskel obtained via the skeletal reduction
(4), when all four conditions were satisfied. In the first experiment below with
H/L = 0.1, the solution λmps obtained via the method of particular solutions
[10] is used as a reference. In the second experiment (H/L = 0.05), the solution
λfem is obtained via a fully discretized finite element solution, and is used as a
reference. (We are unable to compare the eigen-vectors since the eigen-vectors
umid are not well-defined, when some of the conditions in (3) are violated; the
eigen-vectors uskel are however well-defined.)

Observe in Figure 5 that the first (critical) eigen-value λmid departs consid-
erably from the expected value while the eigen-values λskel are considerably

Figure 5. Comparison of eigen-values for the L-bracket for two aspect ratios.
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more accurate (with a loss in accuracy inherent to dimensional reduction). The
computational costs for mid-element and skeletal reduction are almost identical
(and significantly lower than either of the two 2-D methods). Further, skeletal
reduction can be easily automated making it a practical alternate to mid-element
based reduction.
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Abstract An exact solution for the free vibration of a tapered beam with elastic end rota-

tional restraints problem is obtained using the Euler–Bernoulli theory of beam

vibrations by programming them in FORTRAN 90. Natural frequencies and mode

shape details of an Euler–Bernoulli beam with ends on elastically support are de-

rived. Free vibration of uniform and tapered beam with elastic restraint is studied

using free vibration equation and the well-known Bessel functions. In this way

exact results can be obtained for the entire cross sectional laws which allow one

to reduce the equation of motion to a couple second-order Bessel equations. The

resulting displacement is then expressed in terms of Bessel functions. Natural

frequencies and mode shapes are determined using governed boundary condi-

tions (spring-free) and obtaining the matrix of coefficient. By equaling the matrix

determinant to zero and finding the roots actually natural frequencies are derived.

The paper ends with numerical examples, which confirm the usefulness of the

proposed method, and in good agreement with some previously known results

from journal papers and finite element methods. The accuracy of the method

considering simplicity of it is very precious.

Keywords: Euler–Bernoulli beam, free vibration, natural frequency, mode shape, dynamic

response, tapered beam, exact solution, elastic end.

1. INTRODUCTION

The importance of this subject is obvious considering great use of exact
solution for structural elements. For many structural elements in actual use

G. R. Liu et al. (eds.), Computational Methods, 1993–2003.
C© 2006 Springer. Printed in the Netherlands.
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it proves to be convenient to study the dynamic behaviour, and the quantities
that have an influence on the results by schematizing them: this often leads
to the variable cross-section beam model. The results thus obtained supply,
by simple analogy, useful indications regarding the influence of the different
parameters for complex problem whose solution proves to be difficult to obtain.
This simplification, therefore, allows optimization of the structures of mobile
arms used in cybernetics, towers, solar panel frames, tall building etc.

Many researchers have studied free vibration characteristics of tapered
beams with linear end rotational restraints. Dubil, Conway (1965) gave some
preliminary results for more common boundary conditions. Goel (1976),
Auciello (1995), Auciello and De Rosa (1996), Auciello and Ercolano (1997)
proposed an interesting generalization to the non-classical boundary condi-
tions. Liz Graciela Nallim, Ricardo Oscar Grossi (1999) proposed a general
algorithm for the study of the dynamical behaviour of beams. Auciello (2000)
gave a paper about free vibration of a restrained shear-deformable tapered beam
with a tip mass at its free end. Naidu and Rao and Raju (2001) considered free
vibration behavior of tapered beam with non-linear elastic end rotational re-
straints. Auciello (2001) worked on the transverse vibrations of non-uniform
beams with axial loads and elastically restrained ends. Naguleswaran (2002)
formulated vibration of a Euller–Bernoulli beam on elastic end supports and
with up to three step changes in cross-section. Naguleswaran (2003) also for-
mulated vibration and stability of an Euler–Bernoulli beam on elastic end sup-
ports and with up to three step changes in cross-section and in axial force.
Naguleswaran (2004) also formulated vibration of an Euler–Bernoulli stepped
beam carrying a non-symmetrical rigid body at the step. And many other re-
searchers whose results use in this paper and their names are in references
[1–16].

2. EQUATION OF MOTION

The equation of motion of an Euler–Bernoulli beam.

∂2

∂x2

(
E I (x)

∂2w

∂x2

)
+ m(x)

∂2w

∂t2
= Pz (1a)

θ (x) = −∂w

∂x
(1b)

M(x) = −E I (x)
∂2w

∂x2
(1c)

V (x) = − ∂

∂x

(
E I (x)

∂2w

∂x2

)
(1d)
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Where

E I (x) = bending stiffness of beam

m(x) = mass per unit length of beam

Pz = Vertical load per unit length

w = Displacement of beam

θ = Rotation of beam

M = Bending moment of beam

V = Shear of beam

t, x express time and axis of beam.

Considering condition of problem, above equation can be solved and used in
analysis of a beam.

The equation of motion of a tapered Euler–Bernoulli beam:

∂2

∂x2
(E I )(x)

∂2V

∂x2
+ ρ A(x)

∂2V

∂t2
= 0 (2)

The moment of Inertia and cross-section area express as follow:

I (x) = Ioξ
N+2

A(x) = A0ξ
N (3)

ξ = 1 + C
x

a
(4)

It is assumed that:

V (ξ, t) = V (ξ ) sin (ωt) (5)

Substituting Equation (3, 4, 5) into Equation (2), equation can be obtained.

ξ 2 d4V

dξ 4
+ 2(N + 2)ξ

d3V

dξ 3
+ (N + 2)(N + 1)

d2V

dξ 2
− λ4

g

C4
V = 0 (6)

λg = L 4

√
ρ Agω2

E Ig
(7)

Solution for Equation (6) is:

V (ϕ) = 1

ϕN
{C1 JN (ϕ) + C2YN (ϕ) + C2YN (ϕ) + C3 IN (ϕ) + C4 KN (ϕ)} (8)

ϕ = 2λg

C

√
ξ (9)
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And finally following equations express: ϕ rotation, M moment, and s shear in
each node.

θ (ϕ) = − λg

ϕN
{C1 JN+1(ϕ) + C2YN+1(ϕ) − C3 IN+1(ϕ) + C4 KN+1(ϕ)} (10)

M(ϕ) = E Igξ
N+2λ2

g

h2ϕN
{C1 JN+2(ϕ) + C2YN+2(ϕ) + C3 IN+2(ϕ) + C4 KN+2(ϕ)}

(11)

S(ϕ) = E Igξ
N+ 1

2 λ3
g

h3ϕN
{C1 JN+1(ϕ) + C2YN+1(ϕ) + C3 IN+1(ϕ) + C4 KN+1(ϕ)}

(12)

K , I, Y, J are first-order and second-order Bessel functions and modified first-
order and second-order Bessel functions [19].

3. BOUNDARY CONDITION

3.1 Pined-Pined

V (0) = 0 V (L) = 0
M(0) = 0 M(L) = 0

(13)

A =

⎡
⎢⎢⎣

JN (ϕ0) YN (ϕ0) IN (ϕ0) KN (ϕ0)
JN+2(ϕ0) YN+2(ϕ0) IN+2(ϕ0) KN+2(ϕ)
JN (ϕL ) YN (ϕL ) IN (ϕL ) KN (ϕL )

JN+2(ϕL ) YN+2(ϕL ) IN+2(ϕL ) KN+2(ϕL )

⎤
⎥⎥⎦ (14)

ϕ0 = 2λg

C
, ϕL = ϕ0

√
1 + C (15)

3.2 Clamped-Clamped

V (0) = 0 V (L) = 0
θ (0) = 0 θ (L) = 0

(16)

A =

⎡
⎢⎢⎣

JN (ϕ0) YN (ϕ0) IN (ϕ0) KN (ϕ0)
JN+1(ϕ0) YN+1(ϕ0) −IN+1(ϕ0) KN+1(ϕ)
JN (ϕL ) YN (ϕL ) IN (ϕL ) KN (ϕL )

JN+1(ϕL ) YN+1(ϕL ) −IN+1(ϕL ) KN+1(ϕL )

⎤
⎥⎥⎦ (17)
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3.3 Clamped-Free (Cantilever)

V (0) = 0 M(L) = 0
θ (0) = 0 S(L) = 0

(18)

A =

⎡
⎢⎢⎣

JN (ϕ0) YN (ϕ0) IN (ϕ0) KN (ϕ0)
JN+1(ϕ0) YN+1(ϕ0) −IN+1(ϕ0) KN+1(ϕ)
JN+2(ϕL ) YN+2(ϕL ) IN+2(ϕL ) KN+2(ϕL )
JN+1(ϕL ) YN+1(ϕL ) IN+1(ϕL ) −KN+1(ϕL )

⎤
⎥⎥⎦ (19)

3.4 Spring-Free

S(0) = Ku × V (0) S(L) = 0

M(0) = Kθ × θ (0) M(L) = 0 (20)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E Igξ
N+1λ2

g

L2ϕN
0

JN+2(ϕ0) + Kθλg

ϕN
0

JN+1(ϕ0)
E Igξ

N+1λ2
g

L2ϕN
0

YN+2(ϕ0) + Kθλg

ϕN
0

YN+1(ϕ0)

E Igξ
N+ 1

2 λ3
g

L3ϕN
0

JN+1(ϕ0) − KU

ϕN
0

JN (ϕ0)
E Igξ

N+ 1
2 λ3

g

L3ϕN
0

YN+1(ϕ0) − KU

ϕN
0

YN (ϕ0)

JN+2(ϕL ) YN+2(ϕL )

JN+1(ϕL ) YN+1(ϕL )

E Igξ
N+1λ2

g

L2ϕN
0

IN+2(ϕ0) − Kθλg

ϕN
0

IN+1(ϕ0)
E Igξ

N+1λ2
g

L2ϕN
0

KN+2(ϕ0) + Kθλg

ϕN
0

KN+1(ϕ0)

E Igξ
N+ 1

2 λ3
g

L3ϕN
0

IN+1(ϕ0) − KU

ϕN
0

IN (ϕ0) − E Igξ
N+ 1

2 λ3
g

L3ϕN
0

KN+1(ϕ0) − KU

ϕN
0

KN (ϕ0)

IN+2(ϕL ) KN+2(ϕL )

IN+1(ϕL ) −KN+1(ϕL )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(21)

For the other boundary conditions considering above equations formulation can
be derived.

When C has small value for example C ≤ 0.01 the beam physically closes
to uniform beam and K, L (modified first-and second-order Bessel function)
overflows. Considering that when their parameter is large they incline to simple
mathematical functions, so this problem is dissolvable. For frequency comput-
ing (determinant equal to zero) these two functions multiply by each other by
determinant of a 4 × 4 or 4(n + 1) × 4(n + 1) matrix and also it is like this for
mode shapes computing.
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When their parameter is large:

α → ∞
Im(α)

∼= eα P1(α) (22)

Kn(α)
∼= e−α P2(α)

P1, P2 is known and limited functions, which, defined considering conditions.
So the answer of Im(α) × Km(α) will be limited.

If the parameters differ from each other when they both are large:

Im(α)Kn(β) = eα−β P1(α)P2(β) (23)

Therefore, if C has a small value or ω has large value, the value of α, β will be
large, but they are a little bit different from each other so they never overflow
Generally when the parameter is large:

P1(α) = 1√
2πα

P2(α) =
√

π

2α

4. MODE SHAPES AND FREQUENCIES OF BEAM

Each beam has 2 boundary conditions in each edge; therefore, there are 4
conditions (equations) in each beam. If conditions express as a matrix and the
equation was related to free vibration so:

[A]4×4

⎧⎪⎪⎨
⎪⎪⎩

C1

C2

C3

C4

⎫⎪⎪⎬
⎪⎪⎭ = {0} (24)

Solving Equation (29) results: C1, C2, C3C4 and natural frequencies of beam
are values, which make the determinant of [A] zero.

A =

⎡
⎢⎢⎣

m1 m2 m3 m4

n1 n2 n3 n4

p1 p2 p3 p4

q1 q2 q3 q4

⎤
⎥⎥⎦ (25)
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Forming equation for 3 first lines:

m1C1 + m2C2 + m3C3 + m4C4 = 0

n1C1 + n2C2 + n3C3 + n4C4 = 0 (26)

p1C1 + p2C2 + p3C3 + p4C4 = 0

Dividing them by C4:

C ′
1 = C1

C4

, C ′
2 = C2

C4

, C ′
3 = C3

C4

(27)

m1C ′
1 + m2C ′

2 + m3C ′
3 + m4 = 0

n1C ′
1 + n2C ′

2 + n3C ′
3 + n4 = 0 (28)

p1C ′
1 + p2C ′

2 + p3C ′
3 + p4 = 0

⇒
⎡
⎣m1 m2 m3

n1 n2 n3

p1 p2 p3

⎤
⎦

⎧⎨
⎩

C ′
1

C ′
2

C ′
3

⎫⎬
⎭ = −

⎧⎨
⎩

m4

n4

p4

⎫⎬
⎭ (29)

⇒
⎧⎨
⎩

C ′
1

C ′
2

C ′
3

⎫⎬
⎭ = −

⎡
⎣m1 m2 m3

n1 n2 n3

p1 p2 p3

⎤
⎦

−1 ⎧⎨
⎩

m4

n4

p4

⎫⎬
⎭ (30)

Coefficients of shape mode obtain from C
′′
1, C

′′
2, C

′′
3.

U (ϕ) = 1

ϕn
{C ′

1 Jn + C
′′
2Yn + C

′′
3 In + Kn}C4 (31)

Computing of derivatives considering constancy of unknowns is available
easily.

If the beam is a stepped beam four boundary conditions are added for
connectivity of displacement, rotation, moment, shear at stepped cross section.
Equations of motion of beam express in the form of n + 1 differential equations,
which have answers that are corrected for stepped cross section. Generally for
n-step, matrix of coefficient will be 4(n + 1) × 4(n + 1) and unknowns will be
4(n + 1).

If there is just one-step, matrix of coefficients will be 8 × 8 and unknown
coefficients will be C1 to C8. If answers in area between 0, b express as
U1, θ1, M1, S1 and in area between b, h express as U2, θ2, M2, S2, boundary
conditions will be:

V1(0) = 0 V1(b) = V2(b)
θ1(0) = 0 θ1(b) = θ2(b)
M2(h) = 0 M1(b) = M2(b)
S2(h) = 0 S1(b) = S2(b)

(32)



2000 R. Attarnejad et al.

y
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z=h
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Figure 1. Beam with one-step.

5. NUMERICAL EXAMPLES

Written equations and relations were used for analysis of some examples
and results were compared with previous researches and softwares. Here there
are some tables and figures of compared results of present method and some
journal papers, which show high accuracy of, proposed method.

ϕ0 = 2λg

C
, ϕL = ϕ0

√
1 + C, λg = L4

√
ρ Agω2

E Ig

Height(m)

D
is

p
la

ce
m

e
n
t

Mode 1 Mode 2 Mode 3

Figure 2. Comparison of mode shape 1, 2, 3 of spring-free beam with Kθ = KU = 4.5 × 108.

Height(m)

D
is

p
la

c
e
m

e
n

t

Mode 4 Mode 5

Figure 3. Comparison of mode shape 4, 5 of spring-free beam with Kθ = KU = 4.5 × 108.
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Table 1. Comparison of non-dimensional natural frequencies of present method

and some journal papers (cantilever beam).

λ1 λ2 λ3 λ4 λ5

h0

hL
= 2

Naguleswaran (1994) 3.8238 18.317 47.265 – –

Lee (1992) 3.8238 18.3172 47.2648 – –

Ho & Chen (1998) 3.8238 18.3173 47.2648 – –

Present Method 3.8238 18.3173 47.2648 90.4505 148.0016
h0

hL
= 5

Naguleswaran (1994) 4.2925 15.743 36.885 – –

Present Method 4.2925 15.743 36.885 68.116 109.594

Table 2. Comparison of natural frequencies of present method and some journal

papers (cantilever beam, hL = 15 m, L = 180 m, E = 3.5 × 107 ton
m2 ,

m = 3.7 ton
m .

ω1 ω2 ω3 ω4 ω5

h0

hL
= 2

Naguleswaran (1994) 6.1124 29.279 75.554 – –

Lee (1992) 6.1124 29.281 75.554 – –

Ho & Chen (1998) 6.1124 29.282 75.554 – –

Present Method 6.1124 29.2805 75.5538 144.587 236.584
h0

hL
= 5

Naguleswaran (1994) 6.8616 25.165 58.961 – –

Present Method 6.8616 25.165 58.961 108.886 175.188

Table 3. Result of natural frequency of present method (Spring-free beam,

hL = 15 m, L = 180 m, E = 3.5 × 107 ton
m2 , m = 3.7 ton

m .

Kθ = KU ω1 ω2 ω3 ω4 ω5

h0

hL
= 2

Present method 1.0E + 20 6.1124 29.2805 75.5538 144.587 236.584

Present method 1.0E + 10 6.1124 29.2803 75.5528 144.583 236.574

Present method 1.0E + 07 6.0756 29.073 74.4917 140.63 224.906

Present method 1.0E + 06 5.7608 27.2751 64.3021 108.626 173.757

Present method 1.0E + 05 3.7988 18.1595 40.3738 86.5519 158.183
h0

hL
= 5

Present method 1.0E + 20 6.8616 25.165 58.961 108.886 175.188

Present method 1.0E + 10 6.8616 25.165 58.960 108.884 175.183

Present method 1.0E + 07 6.8147 25.003 58.384 107.055 170.218

Present method 1.0E + 06 6.4137 25.633 52.963 89.068 134.570

Present method 1.0E + 05 4.0038 17.013 34.398 66.080 116.642
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Table 4. Non-dimensional natural frequencies results of present method for different spring

stiffness of beam.

h0 = 15m, hL = 13m

Kθ KU λ1 λ2 λ3 λ4 λ5

Clamped-free Infinity Infinity 5.6204 35.223 98.624 193.264 319.480

(uniform)

Clamped-free Infinity Infinity 5.7137 33.731 92.800 181.007 298.641

Spring-free 4.50E + 08 Infinity 5.7135 33.730 92.799 181.006 298.639

Spring-free 4.50E + 07 Infinity 5.7112 33.724 92.790 180.993 298.623

Spring-free 4.50E + 06 Infinity 5.6886 33.668 92.696 180.862 298.458

Spring-free 4.50E + 05 Infinity 5.4719 33.130 91.796 179.614 296.881

Spring-free 4.50E + 04 Infinity 3.9638 29.606 85.827 171.280 286.260

Spring-free 4.50E + 08 4.50E + 08 5.7134 33.725 92.761 180.860 298.238

Spring-free 4.50E + 07 4.50E + 07 5.7104 33.674 92.408 179.493 294.352

Spring-free 4.50E + 06 4.50E + 06 5.6811 33.162 88.621 163.193 249.633

Spring-free 4.50E + 05 4.50E + 05 5.4026 28.298 61.848 118.296 210.163

Spring-free 4.50E + 04 4.50E + 04 3.6543 14.543 44.853 107.962 201.431

Table 5. Non-dimensional natural frequencies of present method for different spring stiffness

of beam.

h0 = 15m, hL = 13m

Kθ KU λ1 λ2 λ3 λ4 λ5

Clamped-free Infinity Infinity 11.4361 41.942 98.268 181.476 291.980

Spring-free 4.50E + 08 Infinity 11.4285 41.925 98.240 181.438 291.930

Spring-free 4.50E + 07 Infinity 11.3603 41.773 97.994 181.095 291.491

Spring-free 4.50E + 06 Infinity 10.7125 40.381 95.763 178.011 287.549

Spring-free 4.50E + 05 Infinity 6.7589 33.819 85.845 164.683 270.777

Spring-free 4.50E + 04 Infinity 1.8644 29.322 79.378 156.189 260.220

Spring-free 4.50E + 08 4.50E + 08 11.4280 41.914 98.170 181.177 291.219

Spring-free 4.50E + 07 4.50E + 07 11.3556 41.664 97.278 178.333 283.431

Spring-free 4.50E + 06 4.50E + 06 10.6691 39.319 87.992 147.723 223.589

Spring-free 4.50E + 05 4.50E + 05 6.5964 28.185 56.999 109.847 194.123

Spring-free 4.50E + 04 4.50E + 04 1.8229 14.096 39.012 94.803 178.376

6. CONCLUSION

An exact solution for the free vibration of a tapered beam with elastic end ro-
tational restraints problem is obtained using the Euler–Bernoulli theory of beam
vibrations. Natural frequencies and mode shape details of an Euler–Bernoulli
beam with ends on elastically support were derived. Numerical examples were
presented which, confirmed the usefulness of proposed method. Comparison
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of results and those of various research works shows high accuracy of method
and good performance of it was demonstrated.
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