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Abstract 

The impact of climate change and other environmental changes on population 
health poses radical challenges to scientists. A fundamental characteristic of this topic 
is the pervasive combination of complexity and uncertainty. This chapter seeks to 
identify the nature and scope of the problem, and to explore the conceptual and 
methodological approaches to studying these relationships, modelling their future 
realization, providing estimates of health impacts, and communicating the attendant 
uncertainties.  
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Introduction 

The impact of climate change and other environmental changes on population 
health poses radical challenges to scientists. The exploration of these systems-based 
risks to human health seems far removed from the tidy examples that abound in 
textbooks of epidemiology and public-health research (with only a few exceptions 
(Martens and McMichael 2002; Aron and Patz 2001)). Yet there are real and urgent 
questions being posed to scientists here. The wider public and its decision-makers are 
seeking from scientists useful estimates of the likely population health consequences 
of these great and unfamiliar changes in the modern world. 

Clearly, there is a major task for health scientists in this topic area. This chapter 
seeks to identify the nature and scope of the problem, and to explore the conceptual 
and methodological approaches to studying these relationships, modelling their future 
realization, providing estimates of health impacts and communicating the attendant 
uncertainties.  

Challenges

A fundamental characteristic of this topic area is the pervasive combination of 
complexity and uncertainty that confronts scientists. Policy-makers, too, must 
therefore adjust to working with incomplete information and with making 
‘uncertainty-based’ policy decisions. Here we outline several aspects of this research 
domain: (i) complexity and surprises; (ii) uncertainties; and (iii) determinants of 
population vulnerability and adaptive capacity to these environmental changes. 
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Complexity and surprises 

Predicting the impact of a changing world on human health is a challenging 
task that requires an interdisciplinary approach drawn from the fields of 
evolution, biogeography, ecology and social sciences. It relies on a variety of 
methodologies such as integrated-assessment (IA) modelling (see below) as well 
as historical analysis, among other things. When even a simple change occurs in 
the physical environment, its effects percolate through a complex network of 
physical, biological and social interactions, which feed back and feed forwards. 
Sometimes the immediate effect of a change is different from the long-term 
effect; sometimes the local changes may be different from the region-wide 
alterations. The same environmental change may have quite different effects in 
different places or times. Therefore the study of the consequences of 
environmental change is a study of the short- and long-term dynamics of complex 
systems. 

Uncertainties 

The prediction of environmental change and its health impacts encounters 
uncertainties at various levels. Some of the uncertainties are of a scientific kind, 
referring to deficient understanding of actual processes – for example, knowing 
whether or not increased cloud cover arising because of global warming will have a 
positive or a negative feedback effect. Some of the uncertainties refer to the 
conceptualization and construction of mathematical models where the specification of 
linked processes may be uncertain or where key parameter values are uncertain. For 
example, what is the linkage between changes in temperature, humidity and surface 
water in the determination of mosquito breeding, survival and biting behaviour? Some 
uncertainties are essentially epistemological, referring to what we can and cannot 
reasonably foresee about the structure and behaviour of future societies, including for 
example their future patterns of emissions of greenhouse gases. And, finally, there is 
of course the familiar source of uncertainty that arises from sampling variation, and 
which leads to the need for confidence intervals around point estimates. 

Vulnerability and adaptation 

Human populations vary in their vulnerability to health hazards. A population’s 
vulnerability is a function of the extent to which a health outcome is sensitive to 
climate change and of the capacity of the population to adapt to new climate 
conditions. The vulnerability of a population depends on factors such as population 
density, level of economic development, food availability, local environmental 
conditions, pre-existing health status, and the quality and availability of public 
health care. 

Adaptation refers to actions taken to lessen the impact of the (anticipated) 
climate change. There is a hierarchy of control strategies that can help to protect 
population health. These strategies are categorized as: (i) administrative or 
legislative; (ii) engineering, or (iii) personal (behavioural). Legislative or 
regulatory action can be taken by government, requiring compliance by all, or by 
designated classes of, persons. Alternatively, an adaptive action may be 
encouraged on a voluntary basis, via advocacy, education or economic incentives. 
The former type of action would normally be taken at a supranational, national or 
community level; the latter would range from supranational to individual levels. 
Adaptation strategies will be either reactive, in response to observed climate 
impacts, or anticipatory, in order to reduce vulnerability to such impacts.  
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Modelling the impact of climate change on malaria 

Models incorporating a range of meteorological variables have been developed to 
describe a specific ‘bioclimate envelope’ for malaria. Multivariate statistical 
techniques can be used to select predictive variables (whether meteorological or 
environmental, ground-based or remotely-sensed). Models that match the presence of 
a particular species with a discrete range of temperature and precipitation parameters 
can be used to project the effect of climate change on vector redistribution. 

Some mosquito species have been successfully mapped in Africa using 
meteorological data (Lindsay, Parson and Thomas 1998). Meteorology is usually 
recorded at ground level, but coverage can be relatively sparse or inappropriate, 
especially in developing countries (Hay et al. 1996). Grid surfaces interpolated from 
these data often form the basis for modelling the relationship between vectors/disease 
and climate, though averaging and interpolation to large grid boxes leads to (as yet 
unresolved) methodological problems of scaling when making inferences to point 
estimates (Patz et al. 2002; Hay et al. 2002). Remotely-sensed imagery from space 
satellites is often used as surrogate for instrumental meteorological data and has the 
advantages of wide coverage, fine resolution, consistency and providing a synoptic 
view. In addition, compound indices may be useful: the Normalized Difference 
Vegetation Index (NDVI), based upon the difference ratio of reflected red and near-
infrared energy, correlates well with photosynthetic activity of plants, rainfall and 
saturation deficit and has also been correlated with the distribution of vectors and 
disease (Hay et al. 1996). 

Rogers has mapped the changes of three important disease vectors (ticks, tsetse 
flies and mosquitoes) in Southern Africa under three climate-change scenarios 
(Hulme 1996). The results indicate significant changes in areas suitable for each 
vector species, with a net increase for malaria mosquitoes (Anopheles gambiae). The 
final objective of such work is to map human disease risk but the relationship between 
vector-borne disease incidence and climate variables is complicated by many socio-
economic and environmental factors.  

Another example of an empirical statistical model is the CLIMEX model. This 
model, developed by Sutherst, Maywald and Skarratt (1995), maps the translocation 
of species between different areas as they respond to climate change. The assessment 
was based on an ‘ecoclimatic index’, governed largely by the temperature and 
moisture requirements of the malaria mosquito. CLIMEX analyses conducted in 
Australia indicate that the indigenous vector of malaria would be able expand its 
range 330 km south under one typical scenario of climate change. However, these 
studies clearly cannot include all factors that affect species distributions. For example, 
local geographical barriers and interaction/competition between species are important 
factors that determine whether species colonize the full extent of suitable habitat 
(Davis et al. 1998). Assessments may also include additional dynamic population 
(process-based) models (Sutherst 1998). 

Martin and Lefebvre (1995), using a similar approach, developed a Malaria-
Potential-Occurrence-Zone (MOZ) model. This model was combined with 5 GCMs 
(General Circulation Models) to estimate the changes in malaria risk based on 
moisture and minimum and maximum temperatures required for parasite 
development. This model corresponded fairly well with the distribution of malaria in 
the 19th century and the 1990s, after allowing for areas where malaria had been 
eradicated. An important conclusion of this modelling exercise was that all simulation 
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runs showed an increase in seasonal (unstable) malaria transmission, under climate 
change, at the expense of perennial (stable) transmission. 

Rogers and Randolph (2000), using a multivariate empirical-statistical model, 
found that, for the IS92a (business as usual) climate-change scenario, there is no 
significant net change by 2050 in the estimated portion of the world population living 
in malaria-transmission zones: malaria increased in some areas and decreased in 
others. The outcome variable in this model is based on present-day distribution limits 
of malaria. However, using current distribution limits in the estimate may have 
yielded a biased estimation of the multivariate relationship between climatic variables 
and malaria occurrence, since the lower temperature range in temperate zones 
(especially Europe and southern USA), would have been treated as climatically 
unsuitable for malaria. However, it may be that these portions of multivariate climate 
space were captured in the model because malaria persists in climatically similar 
regions (e.g. parts of Asia). These hypotheses are currently being tested by sensitivity 
modelling (Thomas in prep.).  

An integrated, process-based model to estimate climate-change impacts on malaria 
(that is part of the MIASMA modelling framework), has been developed by Martens 
and colleagues (Martens 1995b; 1995a; 1999). This model differs from the others in 
that it takes a broad approach in linking GCM-based climate-change scenarios with a 
module that uses the formula for the basic reproduction rate (Ro) to calculate the 
‘transmission or epidemic potential’ of a malaria-mosquito population. The use of the 
basic reproduction rate is defined as the number of new cases of a disease that will 
arise from one current case when introduced into a non-immune host population 
during a single transmission cycle (Anderson and May 1991). This goes back to 
classical epidemiological models of infectious disease. Model variables within Ro that 
are sensitive to temperature include: mosquito density, feeding frequency, survival, 
and extrinsic incubation period. The extrinsic incubation period (i.e., the development 
of the parasite in the mosquito) is particularly important. The minimum temperature 
for parasite development is the limiting factor for malaria transmission in many areas.  

Tol and Dowlatabadi (2001) integrated the results of MIASMA within the FUND 
framework, developed by Tol, to estimate the trade-off between climate change and 
economic growth on malaria risk. The first results of this exercise show the 
importance of economic variables in estimating changes in future malaria risk. 
Although this exercise indicates the importance of including the economic dimension 
in analysing climate-change impacts upon future malaria risk, their approach may be 
too simplistic (Martens and McMichael 2001).  

Gallup and Sachs (2001) explored the correlation between the malaria index and 
income levels. They took into account some of the factors that also affect malaria risk 
(e.g. low agricultural productivity, presence of other tropical diseases, colonial history 
and geographical isolation). The malaria index is defined as the fraction of the 
population living in areas of high malaria risk in 1994, times the fraction of malaria 
cases in 1990 that are of the malignant Plasmodium falciparum species. The malaria 
index showed a strong negative association with income levels, indicating that income 
grows more slowly in countries where the disease is present. This trend appears to 
apply equally to countries in Africa and in other continents. In countries that include 
large malaria-free regions (e.g. Brazil, Venezuela, Malaysia, Indonesia, Turkey, 
Kenya and Ethiopia), the prevalence of infection correlates with poverty. Malaria , of 
course, is not the sole determinant of poverty, just as poverty alone does not explain 
the distribution of malaria. 



Martens and Thomas 

7

All of the examples discussed above have their specific disadvantages and 
advantages. For example, the model developed by Rogers and Randolph (2000) 
incorporates information about the current social, economic and technological 
modulation of malaria transmission. It assumes that those contextual factors will apply 
in future in unchanged fashion. This adds an important, though speculative, element of 
multivariate realism to the modelling – but the model thereby addresses a qualitatively 
different question from the biological model. The biological model of e.g. Martens and 
colleagues (1998; 1999) assumes that there are known and generalizable biologically 
mediated relationships. Also, this modelling is only making a start to include the 
horizontal integration of social, economic and technical change. The statistical model is 
based on socio-economically censored data. It derives its basic equation from the 
existing (constrained) distribution of malaria in today’s world and climatic conditions, 
and foregoes much information on the malaria–climate relationship within the 
temperate-zone climatic range. Yet this range is likely to be considerably important in 
relation to the marginal spread of malaria under future climate change. 

Characterizing the relationship between socio-economic development and malaria 
incidence is difficult for various reasons: First and foremost, malaria incidence is 
hugely influenced by geography and prevailing climate. Hence, since the world’s 
poorest countries tend to be in high-risk tropical and subtropical regions, it is inevitable 
that national rates of malaria incidence correlate with per capita income. Apportioning 
malaria causality between environment, income and social practices is, therefore, 
problematic. Other related reasons include: i) The income per capita at a country or 
regional level is an inadequate description of how that wealth is distributed within a 
society and to what public uses it is applied (e.g. Costa Rica and Cuba, with lower per 
capita income, outperform Brazil in social and health indices); ii) Political instability 
can undermine the influence of development (i.e. Russia, Azerbaijan); iii) Economic 
development can increase transmission temporarily (e.g. deforestation, population 
movement, water development projects); iv) Many control programmes depend on 
external/donor funding (e.g. Viet Nam) from richer, developed countries.  

Furthermore, the quality of malaria data is very poor in most developing 
countries. National indicators of malaria include national mortality or morbidity 
data. Mortality data generally reflect P. falciparum transmission as P. vivax is rarely 
fatal. Further, in areas with very high levels of transmission where nearly everyone 
is infected, with or without immunity, the morbidity figures are meaningless. 
Estimates can vary considerably from year to year because of changes in reporting 
rather than a true change in disease transmission. For these reasons therefore, a 
straightforward relationship between national income per capita and malaria status 
is not very likely.  

Little research has been carried out on the determinants of vulnerability of 
populations to malaria, so it is difficult to develop assumptions about future 
adaptation to changes in disease risk associated with climate change and economic 
development. Populations can respond to changes in local malaria transmission 
associated with climate change. With planning and development of adaptation 
capacity, potential increases in disease incidence associated with climate change 
may be largely prevented. However, the effectiveness of adaptation responses will 
vary depending on the circumstances of the population at risk. 

In tropical countries, successful prevention and control in the future would 
probably involve technical, political and socio-economic adaptation. Technical 
adaptation includes for example the use of insecticides. Political adaptation involves 
adequate administration of control programmes, funding of research and training, 
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investments in health infrastructure etc. It should be noted here that, after the initial 
success of global eradication programmes of the 1950s and 1960s, resources available 
from international agencies have declined along with those of national governments. 
The disease is now resurgent in many countries where it previously had been 
controlled. However, the relation between the level of malaria incidence and political 
willingness to adapt policy is unknown. In the meantime, it is not clear to what extent 
economic growth on its own will reduce the incidence of malaria. 

A matter of scale 

The problem of modelling the impacts of global (environmental) change processes 
on human health is that it has to cope with a variety of processes that operate on 
different temporal and spatial levels and differ in complexity.  

First, modelling has to connect disciplinary processes that differ by nature: 
physical processes, monetary processes, social processes and policy processes. 
Because of the multitude of disciplinary processes to be combined, a representation as 
simple as possible of disciplinary knowledge is preferable. There is, however, no 
unifying theory how to do this. In addition, the processes to be linked are usually 
studied in isolation from each other. This isolation is needed as part and parcel of the 
classic model of scientific progress and discovery. However, when the constraints of 
isolation are removed, there is a variety of ways in which to connect the reduced 
pieces of disciplinary knowledge. This manifold of possible integration routes, for 
which there is no unifying theory, is one of the reasons why quality control is so 
difficult to achieve in IA modelling. For instance, in order to link the reduced pieces 
of disciplinary knowledge in a systemic way, one can use elements from classical 
systems analysis, or the method of system dynamics, or a sequential input–output 
analysis, or a correlation-based approach, or a pressure–state–impact–response 
approach.

Second, modelling has to deal with different spatial scale levels. One of the 
ultimate challenges in modelling is to connect higher scale assessments with lower 
scale ones. So far, there has been hardly any experience with playing around with 
scale levels in modelling. Down-scaling or up-scaling the spatial level of a model has 
profound consequences. This is related to the question to what extent the processes 
considered are generic or spatially bound in character. In other words: does a 
relationship at one scale hold at larger or lower scale levels?  

Third, modelling is faced with a multitude of temporal scales. Short-term needs 
and interests of stakeholders have to be considered. However, biogeochemical 
processes usually operate on a long time scale, whereas economic processes operate 
on short to medium time scales. Another challenging aspect of modelling is to 
interconnect long-term targets as specified as a result of analysing processes operating 
on longer-term time scales, with short-term goals for concrete policy actions. 
Unfortunately, there is not yet a sound scientific method how to do this, thus far only 
heuristic methods have been used. 

In Figure 1, for example, some important factors determining malaria risk are 
depicted along ‘temporal’ and ‘spatial’ scale axes. Looking at the climate, human and 
mosquito system, it is apparent that they vary in their spatial and temporal scale: 
mosquito larval development takes place at the level of puddles and at time scales 
varying from days to weeks, climate change is a process influencing the global 
climate system at time frames of years to centuries or more, whereas economic 
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processes operate on short  to medium time scales. Furthermore, short-term needs and 
interests of stakeholders have to be considered.  

Although the assessment of malaria risk may be done on a variety of 
geographical scales – varying from a village to an entire country, region or the 
world as a whole – so far there has been no formal analysis of the effect of scaling 
on models or our understanding. Varying geographical (extent) and measurement 
(resolution) scales has profound implications for spatial analysis. This is formalized 
as the Modifiable Areal Unit Problem (MAUP) (Openshaw 1984), and is 
fundamental to the analysis of geographical data (Flowerdew, Geddes and Green 
2001). MAUP has become an important but overlooked issue for our understanding 
of malaria as many studies are now geographically based. An equally important 
issue, already alluded to, is scaling mismatches when interpreting events at one 
scale against data measured at another. In the pilot analysis presented below we 
explore these differences in spatial scale (the same effects will be evident in 
mismatched temporal series). 

Figure 1. Some processes on different temporal and spatial scales that affect malaria 
epidemiology

In seeking spatial structure it is instructive to compare the variation in 
measurements among locations at increasing distances, in the likelihood that locations 
closer together will be more similar than locations further apart. Here we employed an 
exploratory geostatistical approach by calculating the semivariance (Oliver 2001) (as 
variance among locations increases, the semivariance also increases) in four 
measurements relevant to malaria in Africa. The first two are estimates of the climatic 
suitability for falciparum malaria transmission based upon 0.5-degree grid cell length 
surfaces of 1961-90 observed mean climate (http://ipcc-ddc.cru.uea.ac.uk) using the 
MARA/ARMA spatial fuzzy-logic model (Craig, Snow and Le Sueur 1999): i) spatial 
extent (Figure 2, see Colour pages elsewhere in this book) – the suitability for malaria 
transmission in four consecutive months (fuzzy values from 0 to 1); ii) seasonal extent 
(Figure 3, see Colour pages elsewhere in this book) – number of consecutive months 
suitable for transmission (fuzzy values from 0 to 12). We used this index as a proxy 
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fro climate, rather than a single measure such as temperature because it incorporates 
both temperature and precipitation thresholds for disease transmission.  

The second two measurements are entomological values (biting rate and 
entomological inoculation rate, EIR) recorded in the field at specific locations across 
Africa (Figure 4) and compiled by Hay et al. (2000). 

Our analyses were designed to indicate general differences in spatial structure and 
are not exhaustive (a variety of lags and bounding regions could have been tried) or 
complete (for instance there are methodological inconsistencies in the entomological 
measurements, see Hay et al. (2000)). 

Figure 4. Locations where EIR and (for a sub-set) biting rate have been recorded (derived 
from Hay et al. (2000)) 

Climate-based estimates of malaria distribution and seasonality showed long-range 
variation, with a sill variance (asymptote) at around 30 degrees separation. As might 
be expected from interpolated values, variance increased smoothly with increasing 
separation (Figure 5 a,b). In contrast, semivariograms of location-specific biting rates 
and EIR showed no obvious spatial structure, with measurements varying randomly 
over space (Figure 5 c,d) at least for lags of 0.5 degrees.  

The lack of spatial structure in biting rate and EIR will likely be due to sampling 
errors and inconsistencies and, more importantly, local variation in environment not 
captured at 0.5-degree lags. In other words, to compare biting rate and EIR usefully 
with climate it would be necessary either to aggregate entomology measures to 
climate grid boxes or to use meteorological data local to the entomological studies.  
For the former, we urgently need to know the spatial structure (if any) of malaria 
entomological and clinical measurements, and how this varies among regions, so that 
we can determine optimal aggregation scales and  hence relate them to other 
aggregated variables such as climate. For the latter, we need more consistent long-
term measurements tied to local meteorological stations. Initiatives such as the 
INDEPTH network (see chapter by Sankoh and Binka in this volume) are an essential 
step forward for both solutions. 

Geographical scaling is not the only important issue. For instance, an early version 
of the malaria model developed by Martens et al. (1995) uses a composite measure of 
different species of Anopheles. This globally aggregated model assumed that there are 
universal relationships that are sufficiently dominant to ensure a valid approximate 
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overall forecast. Later versions of the model (Martens et al. 1999) include species-
specific relationships (as far as available in literature) between climate and 
transmission dynamics. Even so, the equations within a global model may well be 
inappropriate for particular local conditions. This example of hierarchical (in this 
case, taxonomic) scaling demonstrates another area where informed decisions need to 
be made in modelling.  

Figure 5. Omnidirectional semivariograms (moments estimator) with lag of 0.5 degrees, over 
0.5-35 degrees extent. A) MARA/ARMA index of climatic suitability for P. falciparum

transmission in four consecutive months; B) Number of consecutive months with a 

MARA/ARMA index of climatic suitability for P. falciparum transmission of p Σ0.9 in each 
month; C) biting rate; D) entomological inoculation rate 

In this context, an interesting approach is proposed by Root and Schneider (1995): 
the so-called Strategic Cyclical Scaling (SCS) method. This method involves 
continuous cycling between large- and small-scale assessments. Such an iterative 
scaling procedure implies that a specific global model is disaggregated and adjusted 
for a specific region or country. The new insights are then used to improve the global 
version, after which implementation for another region or country follows. In malaria 
modelling some progress has been made (Lindsay and Martens 1998). This SCS 
method can also be used for conceptual validation of models. 

The trend in current modelling is to move toward greater and greater 
disaggregation, assuming that this yields better models (Rotmans and Van Asselt 
2000). In general, it is difficult to know when to stop building more detail into an IA 
model. Past decades of model building have shown that small and transparent models 
are often superior in that they provide similar results to large models faster and offer 
ease of use. In this respect, it is useful to distinguish between complicated and 
complex models. Complicated models are models that include a variety of processes, 
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many of which may be interlinked. If incremental changes in these processes 
generally lead to incremental changes in model output, one can conclude that the 
dynamics of the model are almost linear and not complex at all. The more 
complicated the model, the higher the possibility of errors and bugs. It requires 
thorough testing to pick up most if not all errors and bugs, an activity which is, 
unfortunately, heavily underrated. Complex models, however, contain relatively few 
processes, but incremental changes in these processes may result in considerable 
changes in the results of the overall model. This non-linear behaviour, due to the 
inclusion of feedbacks, adaptation, self-learning and chaotic behaviour, is often 
unpredictable. 

Practically speaking, this means that disaggregation of models has profound 
consequences for the dynamics of the model. Breaking down a global model into 
various regions requires that the regional dynamics be dealt with in an adequate 
manner. Current regional models use grid cells or classes for representing 
geographical differences and heterogeneities in regional models. They do not capture, 
however, the regional dynamics with regard to population growth and health, 
economic development, resource use and environmental degradation, let alone 
regional interactions through migration and trade. 

The way ahead 

As the full complexity of the interactions between global developments and human 
health cannot be satisfactorily reduced to modelling, what is the role of such 
modelling? Despite the difficulties and limitations of the modelling process, models first 
of all draw attention to the potential health impact of these global changes. Second, they 
may indicate the relative importance of the factors that influence these outcomes. This 
enhances public discussion, education and policy-making. However, even more 
important is the role modelling plays in the systematic linkage of multiple cause-and-
effect relationships based on available knowledge and reasoned guesses. This should 
increase our understanding of the health impacts of global changes, and identify key 
gaps in data and knowledge needed to improve the analysis of these effects. 
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