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Abstract. During the last few years, the use of multiple-point statistics simulation to 
model depositional facies has become increasingly popular in the oil industry. In 
contrast to conventional variogram-based techniques such as sequential indicator 
simulation, multiple-point geostatistics enables the generation of facies models that 
capture key depositional elements (e.g. curvilinear channels) characterized by unique 
and predictable shapes. In addition, multiple-point geostatistics is more intuitive because 
the complex mathematical expression of the variogram is replaced with an explicit 
three-dimensional training image that depicts the geometrical characteristics of the 
expected facies.
In multiple-point geostatistics, the stationarity assumption that underlies the inference of 
a variogram model from sparse sample data is extended to infer facies joint-correlation 
statistics from the training image. A consequence of this assumption is that patterns 
extracted from the training image can be reproduced in any region of the reservoir 
model where the training image is thought to be representative of the geological 
heterogeneity. Yet actual reservoirs are generally non-stationary: topographic 
constraints, sea-level cycles, or changes of sedimentation sources lead to spatial 
variations of facies deposition directions and facies geobody dimensions. Three-
dimensional fields of location-dependent facies azimuth/dimensions representing those 
spatial variations are commonly estimated from well log and seismic data, or from 
geological interpretations based on analogs. This paper proposes a modification of the 
multiple-point statistics simulation program snesim to account for such non-stationary 
information.
In the original snesim, prior to the simulation, the multiple-point-point statistics inferred 
from the training image are stored in a dynamic data structure called a search tree.  In 
the presence of a locally-varying azimuth field, the range of possible azimuths over the 
study field is first discretized into a small number of classes. Then, the training image is 
successively rotated by the average value of each azimuth class and a search tree is built 
for each resulting rotated training image. During the simulation, at each unsampled 
node, multiple-point statistics are retrieved from the search tree built for the class in 
which the local azimuth falls, enabling the local reproduction of patterns similar to those 
of the corresponding rotated training image.  A similar process is proposed to account 
for a field of location-dependent facies geobody dimensions. The new modified snesim

program is applied to the simulation of a fluvial reservoir with locally-variable channel 
orientations and widths.

235

235-244.
© 2005 Springer. Printed in the Netherlands. 

tics  O. Leuangthong and C. V. Deutsch (eds.), Geostatis        Banff 2004,



236 S. STREBELLE AND T. ZHANG 

1 Introduction 

Multiple-point geostatistics has emerged recently as a practical approach to characterize 
and model facies at reservoir scale (Strebelle et al, 2002). The first step of this approach 
is the construction of a three-dimensional training image describing the facies thought to 
be present in the study area. The training image captures the geometrical characteristics 
of each facies, as well as the complex spatial relationships among multiple facies. The 
training image is a purely-conceptual geological model; it contains no absolute location 
information and in particular, is not conditioned to any actual field data. In reservoir 
modeling applications, non-conditional object-based modeling techniques appear to be 
well-suited to create such three-dimensional conceptual models. The second step of this 
approach consists of inferring from the training image statistics on the joint-correlation 
of facies at multiple locations, and using these statistics to reproduce patterns similar to 
those of the training image while honoring hard and soft conditioning data.

The theoretical framework of multiple-point geostatistics was developed as early as 
1989 by Journel and Alabert and was revisited by Guardiano and Srivastava in 1993. 
The first practical implementation was proposed by Strebelle (2000), who introduced a 
dynamic data structure called a search tree, to efficiently store and retrieve all multiple-
point statistics inferred from the training image. During the last few years, multiple-
point geostatistics has been shown to overcome the major limitations of traditional 
facies modeling technologies: 

Multiple-point statistics (MPS) simulation enables improved modeling of 
curvilinear and large-scale continuous facies patterns, such as sinuous channels, 
relative to variogram-based techniques (Strebelle et al, 2002). In addition, the 
training image is much easier to analyze/discuss than a variogram model.
In contrast to object-based modeling techniques (Holden et al, 1996; Viseur, 
1997; Lia et al, 1998), MPS simulation is a very flexible data integration tool. 
In particular, MPS models honor all conditioning well data, i.e. reproduce at all 
well data locations the facies connectivity/geometry observed in the training 
image, with no limitation on the number of wells (Strebelle and Journel, 2001). 

One important assumption underlying the inference of multiple-point statistics from the 
training image and their reproduction in the MPS model is the stationarity of the field 
under study: facies relative proportions, geometries, and associations are expected to be 
reasonably homogeneous over the field. Yet, most actual reservoirs are not stationary. 
Local topographic constraints such as the presence of a salt dome, seal level cycles, or 
changes of sedimentation sources, lead to significant spatial variations of facies 
deposition directions and facies geobody dimensions.

In this paper, we first review the implications of the stationarity assumption in multiple-
point geostatistics. Then we propose modifying the MPS simulation program snesim

(Strebelle, 2000) to reproduce pre-defined non-stationary information such as locally-
varying facies azimuth and/or facies geobody dimension data. 



NON-STATIONARY MULTIPLE-POINT GEOSTATISTICAL MODELS 237 

2 Stationarity 

Geostatistics relies on the concept of Random Function. The Random Function 
represents the statistical model of spatial variability of some property over some study 
field. In traditional geostatistics, the Random Function model is generally limited to 
some one-point and two-point statistics moments, namely a cumulative distribution 
function and a variogram model. In multiple-point geostatistics, the Random Function 
model consists of the multiple-point facies joint-correlation moments that can be 
inferred from the training image. The inference of statistics representing the Random 
Function model requires some repetitive sampling. For example, a porosity cumulative 
probability distribution is typically inferred from the histogram of porosity data 
collected from all well logs available over the study field. However, when pooling 
sample data together into a single histogram, the modeler makes an assumption of 
stationarity: all porosity sample values are assumed to originate from the same unique 
population, regardless of their location in the reservoir. Another stationarity decision is 
commonly taken whenever a variogram is computed by pooling information at similar 
lag distances together into a single scatter plot.

In multiple-point geostatistics, the stationarity assumption carries over to higher order 
statistics: multiple-point statistics moments are inferred from training patterns present in 
the training patterns regardless of the location of these patterns in the training image. As 
a consequence, non-stationary features of the training image cannot be preserved in 
MPS models. Figure 1 shows a clearly non-stationary training image wherein ellipses 
are South West-North East-oriented in the left half of the image, and North West-South 
East-oriented in the right half. The resulting model generated by the MPS simulation 
program snesim displays a mix of ellipses oriented in both directions over the whole 
field.

Figure 1. Non-stationary training image (left), and resulting MPS model (right). The 
specific locations of the South West-North East and North West-South East-oriented 
ellipses in the training image are not preserved in the MPS model.

The non-stationary features of the training image are not captured in MPS models. 
Therefore, we propose using a stationary training image and applying rotation and 
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affinity transforms to the training image to reproduce non-stationary features to MPS 
models. Prior to that, the implementation of the original MPS simulation program 
snesim is briefly recalled. 

3 Multiple-point statistics simulation implementation 

The MPS simulation program snesim proposed by Strebelle (2000) is a pixel-based 
direct sequential simulation algorithm: all simulation grid nodes are visited only once 
along a random path and simulated node values become conditioning data for cells 
visited later in the sequence. Let S be the categorical variable (depositional facies) to be 
simulated, and sk, k=1…K, the K different states (facies types) that the variable S can 
take.  At each unsampled node u, dn denotes the data event consisting of the n
conditioning data S(u1)=s(u1)… S(un)=s(un), closest to u. The conditional probability 
distribution function (cpdf) at u is inferred by scanning the training image to find all 
training replicates of dn (same geometric configuration and same data values as dn), and 
identifying the conditional facies probabilities as the facies proportions obtained from 
the central values of the training dn –replicates. 

Instead of repeatedly scanning the whole training image at each unsampled node to 
search for training replicates of the local conditioning data event, Strebelle (2000) 
proposed storing ahead of time all conditional facies probabilities that can be inferred 
from the training image in a dynamic data structure called a search tree. More precisely, 
given a conditioning data search window W, which may be a search ellipsoid defined 
using GSLIB conventions (Deutsch and Journel, 1998), N denotes the data template 
(geometric configuration) constituted by the N vectors {h , =1…N} corresponding to 
the N relative grid node locations included within W. Prior to the simulation, the training 
image is scanned with N, and the numbers of occurrences of all training data events 
associated with N are stored in the search tree. During the simulation, at each 
unsampled node u, N is used to identify the conditioning data located in the search 
neighborhood W centered on u. dn denoting the data event consisting of the n
conditioning data found in W (original sample data or previously simulated values, 
n N), the local probability distribution conditioned to dn is retrieved directly from the 
above search tree; the training image need not be scanned anew.

Theoretically, a large data template N should be used to capture the large-scale features 
of the training image. However, such large template would increase dramatically the 
memory used to build the search tree and the cpu-time needed to retrieve conditional 
probabilities from it. One practical solution to capture large-scale structures while 
keeping the size of the data template N reasonably small (N 100) is to use a multiple 
grid simulation approach (Strebelle, 2000). In snesim, this approach consists of 
simulating a series of G increasingly-finer grids, the g-th (1 g G) grid comprising each 
2G-g-th node of the final (finest) simulation grid. After the data template 

N={h , =1…N} has been defined on the finest grid, its components h  are rescaled 
proportionally to the node spacing within the grid being simulated. Thus the rescaled 
data template N

g={h
g=2G-g

.h  , =1…N} is used to build the search tree and search for 
conditioning data when simulating the g-th grid. 
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In the next two sections, we show how rotation and affinity transformations can be 
applied to the data template N prior to building the search tree, to integrate location-
dependent azimuth and geobody size information into MPS models. 

4 Integration of azimuth data 

In this section, we first study the simple case in which the main direction of continuity 
of the facies geobodies is assumed to be constant over the field under study, but possibly 
different from the main direction of continuity of the training facies. Then we extend 
this technique to handle 2D or 3D fields of location-dependent azimuths.  Only azimuths 
defined in the xy-plane are considered in this section because, in practice, dip is typically 
taken into account by the layering of the stratigraphic grid in which the facies model is 
built.

4.1 CONSTANT AZIMUTH 

Consider the case in which the facies geobodies in the MPS model should have a 
constant principal direction of continuity, yet possibly different from that of the training 
image. Let  be the difference in degrees counter-clockwise between those two 
directions.

Given a training image and a data template N={h , =1…N}, Zhang (2002) proposed 
modifying the snesim algorithm as follows. First the search tree is built from the 
training image using N. Then, a new data template N( ) is created from N  by the 
following method: 

1. Rotate by  each single component h  of N.
In 2D, the coordinates (x ( ), y ( )) of the rotated component h ( ) are 
computed from the coordinates (x , y ) of the original component h as:
x ( )= x cos + y sin

 y ( )= - x sin + y cos
2. Relocate the rotated components h ( ) to the nearest nodes of the simulation 

grid currently simulated.
During the simulation, at each unsampled node, the rotated data template N( ) is used to 
search for nearby conditioning data, and the corresponding conditional probability 
distribution function (cpdf) is retrieved from the search tree, which was built using the 
original data template N.

However, as described in the previous section, snesim uses a multiple-grid simulation 
approach that consists of simulating a series of increasingly-finer grids. Thus, at the 
early stage of the simulation, the rotated components h ( ) are relocated to the closest 
nodes of some coarse grids, entailing drastic approximations regarding the actual 
locations of the conditioning data. Such approximations lead to the inaccurate estimation 
of facies probability distributions and the poor reproduction of training patterns. 
However, because the simulation grids used in snesim are regular Cartesian grids and 
the distance between nodes is the same along both x and y-directions, the components 
h ( ) of the rotated data template match exactly existing grid nodes for =0, 90, 180, or 
270 degrees. This is a property that we will use in the next sub-section. 
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An alternative approach consists of keeping the original data template N to search for 
conditioning data, but rotating that data template to build the search tree prior to the 
simulation. In this case, the rotated data template is built in a slightly different way than 
in Zhang’s method: 

1. Rotate by –  each single component h  of the original data template N.
In 2D, the coordinates (x (- ), y (- )) of the rotated component h (- ) are 
computed from the coordinates (x , y ) of the original component h as:
x (- )= x cos - y sin and :   y (- )=  x sin + y cos    

2. Relocate the rotated components h (- ) to the nearest nodes of the training 
image grid. When using snesim, the training image is assumed to have the 
same node spacing as the (finest) simulation grid. 

The resulting rotated data template N(- ) is used to build the search tree from the 
training image. The exact same result can be obtained by rotating the training image by 
, then building the search tree from that rotated training image using the original data 

template N. During the simulation, at each unsampled node, N is used to search for 
nearby conditioning data, and the corresponding cpdf is retrieved from the above search 
tree.

The most critical advantage of that new technique over Zhang’s original method is that 
the relocation of the rotated components h (- ) to the training image grid entails only 
minor approximations of the actual locations of the conditioning data, thus resulting in a 
reasonably good reproduction of the training patterns. As an application, this modified 
snesim program was used to model a horizontal 2D section of a fluvial reservoir. The 
training image depicts the prior conceptual geometry of the sinuous sand channels 
expected to be present in the subsurface (Figure 2). The size of that image is 
250*250=62,500 pixels, and the channel proportion is 27.7%. A non-conditional 
simulated realization was generated using the same direction of continuity as that of the 
training image (Figure 2), then two additional models were created using different 
arbitrary main directions of continuity: 20 and 50 degrees (Figure 3). All models 
reproduce equally well the patterns displayed in the training image.

Figure 2. Training image used for the simulation of a 2D horizontal section of a fluvial 
reservoir (left), and reference MPS model (right).
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Figure 3. Fluvial reservoir MPS models obtained with a 20 degree counter-clockwise 
azimuth difference with the training image (left), and a 50 degree difference (right).

4.2 LOCATION-DEPENDENT AZIMUTHS 

In reservoir facies modeling applications, it commonly is observed that the principal 
direction of continuity of the facies varies from one region of the reservoir to another. 
For example, topographic constraints, such as changes in the slope gradient, may lead to 
the formation of several sand fairways with different depositional directions. Data 
regarding such variations can be derived from different sources. In particular, local 
depositional directions can be obtained from geological interpretation (Harding et al,
this meeting), or can be computed from seismic data (Strebelle et al, 2002).

Suppose that local azimuths can be estimated at each location u of the reservoir, and that 
(u) denotes the difference in degrees counter-clockwise between the azimuth value 

estimated at node u and the azimuth of the (stationary) training image. Given a data 
template N, the method previously presented for a constant azimuth field can be 
extended to the location-dependent azimuth field (u) as follows:

1. Consider the range [ min, max] of all azimuth values estimated over the entire 
study field. Discretize that range into a small number L of classes, using 
regularly-spaced threshold values: i = min+i*( max- min)/L, i=0… L.

2. Using the method described in the previous sub-section, compute for each class 
[ i; i+1] the search tree corresponding to the rotated data template N(- ) where 
 is the central value of the class: = ( i + i+1)/2

3. During the simulation, at each node u to be simulated, use the original data 
template N to search for nearby conditioning data, and retrieve the local cpdf 
from the search tree corresponding to the class of azimuth angles to which (u)
belongs.

If the range [ min, max] of azimuth angles is greater than 90 degrees, Zhang’s original 
technique can be used to decrease the range of the individual discretized classes 
[ i, i+1]. For example, consider the simulation of node u where (u)= min+100°. The 
rotated data template N(90°) can be used to search for conditioning data (recall that 0, 
90, 180, and 270 degrees are the only rotation angles for which Zhang’s method 
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requires no data relocation). Then the resulting cpdf can be retrieved from the search 
tree corresponding to the class of azimuth angles to which ( min+100°)-90°= min+10°
belongs. Therefore, in any case, the maximum range of azimuth values to discretize is 
90 degrees. The number L of azimuth classes should depend then on the uncertainty 
about the local azimuth values. With L=5 classes, the range of each class is 18 degrees. 
This is equivalent to estimating local azimuth values with an error of ± 9 degrees. 

One limitation of the above technique may be the memory demand because one search 
tree per azimuth class needs to be built. However, one can consider one azimuth class 
after the other, i.e. build the search tree corresponding to a given azimuth class, simulate 
all grid nodes corresponding to that class, then delete that search tree prior to 
considering the next azimuth class. Building, then deleting search trees is a relatively 
fast process compared to the actual grid simulation process. 

Figure 4 shows a 2D azimuth field and a resulting simulated realization using the fluvial 
reservoir training image of Figure 2. The reproduction of the training patterns is similar 
to that in the reference simulated realization of Figure 2. Note also that, although only 
five azimuth classes were used, the discretization of the range of possible azimuths did 
not create any artifact in the simulated realization.

Figure 4.  2D location-dependent azimuth field (left), and resulting MPS model 
obtained using the fluvial reservoir training image of Figure 2 (right).

5 Integration of geobody dimensions data 

Facies geobody dimensions that may depend, for example, on the distance to the 
sedimentation source, represent another traditional non-stationary feature of 
hydrocarbon reservoirs. A technique similar to that presented in the previous section to 
impose locally-varying azimuths is proposed to integrate geobody dimensions data, 
using some affinity transform of the data template used to build the search tree. For the 
sake of simplicity, we assume in this section that an isotropic rescaling factor (same 
affinity ratio in x, y, and z-directions) is sufficient to describe the variations of geobody 
dimensions in the volume under study.
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Consider first the case in which the facies geobodies should have constant dimensions 
over the study field, yet possibly different from the dimensions of the training 
geobodies. Let  be the ratio between target and training facies dimensions. Given a 
training image, and a data template N={h , =1…N}, a new data template N(1/ ) is 
obtained from N  by the following method:

1. Rescale by 1/  each component h  of N. In 2D, the coordinates (x (1/ ),
y (1/ )) of the rescaled component h (1/ ) are computed from the coordinates 
(x , y ) of the original component h as: x (1/ )=x /     and: y (1/ )=y /

2. Relocate these rescaled components to the nearest nodes of the training image 
grid.

The resulting rescaled data template N(1/ ) is used to build the search tree from the 
training image. The exact same result can be obtained by rescaling the training image by 
, then building the search tree from that rescaled training image using the original data 

template N. During the simulation, at each unsampled node, the original data template 
N is used to search for nearby conditioning data, and the corresponding cpdf is retrieved 

from the above search tree. 

The extension of that technique to integrate location-dependent geobody dimensions 
data is straightforward and similar to the integration of location-dependent azimuth data. 
If (u) denotes the ratio between target and training facies dimensions at the grid node 
location u, then MPS simulation using locally-varying geobody rescaling factors 
consists of dicretizing the range of (u) values into a smaller number of classes, and 
building a search tree for the average rescaling factor value of each class.

Figure 5 shows a 2D rescaling factor field and a resulting simulated realization using the 
fluvial reservoir training image of Figure 2. The reproduction of the training patterns is 
similar to that in the reference simulated realization of Figure 2.

Figure 5. 2D field of location-dependent geobody dimension rescaling factors (left), and 
resulting MPS model obtained using the training image of Figure 2 (right).
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6 Conclusion 

In multiple-point geostatistics, statistics on facies joint-correlation at multiple locations 
are inferred from patterns displayed by a training image regardless of the location of 
these patterns in the training image. As a consequence, non-stationary features, such as 
spatial variations of facies azimuths or geobody dimensions that the training image may 
contain are not preserved in the multiple-point statistics simulated realizations.
To integrate variable azimuth/dimensions data, we propose applying a series of 
rotation/affinity transforms to a stationary training image, and building a search tree to 
store the multiple-point statistics inferred from each rotated/rescaled training image. 
During the simulation, multiple-point statistics are retrieved from the search tree 
corresponding to the class where the local azimuth/rescaling factor occurs. The 
application of that process to a 2D horizontal section of a fluvial reservoir indicates that 
the reproduction of the training patterns in non-stationary MPS models is similar to that 
observed in stationary models.
This technique can be easily generalized to create non-stationary models using several 
different training images thought to be representative of the geological heterogeneity in 
different areas of the reservoir provided that there is a smooth transition between the 
different training images. 
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