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Göran Wahnström
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A knowledge of diffusion in solids is necessary in order to describe the
kinetics of various solid state reactions such as phase transformations, creep,
annealing, precipitation, oxidation, corrosion, etc., all fundamental processes
in materials science. There are two main approaches to diffusion in solids
[1–5]: (i) the atomistic approach, where the atomic nature of the diffusing
entities is explicitly considered; and (ii) the continuum approach, where the
diffusing entities are treated as a continuous medium and the atomic nature
of the diffusion process is ignored. Many useful results and general relations
can be obtained within the continuum approach, but a more complete picture is
obtained if the atomic motions are considered. Macroscopic quantities, such as
diffusion fluxes, can then be related to microscopic quantities, such as atomic
jump frequencies. Knowledge of how atoms move in solids is also intimately
connected with the study of defects in solids.

1. The Diffusion Equation

In the continuum approach the diffusion coefficient D is introduced through
the Fick’s law which expresses the flux of particles j(r, t) in terms of the
gradient of the particle concentration n(r, t) at the same position r and time t

j(r, t) =−D∇n(r, t) (1)

To arrive at the standard diffusion equation Fick’s law is combined with
the equation which describes the conservation of particles,

∂n(r, t)

∂t
+ ∇ · j(r, t) = 0 (2)

which implies that
∂n(r, t)

∂t
= D∇2n(r, t) (3)
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We have here assumed that D itself is independent on concentration. The
solution to this equation is obtained exploiting the Fourier transform method.
It can be written on the form

n(r, t) =
1

(4π Dt)3/2

∫
n0(r′)e−(r−r′)2/4Dt dr′ (4)

where n0(r) = n(r, t = 0) is the initial particle concentration. If boundary
conditions have to be specified at finite distances the Fourier series expansion
method has to be used.

Several different diffusion coefficients can be defined. The tracer or self-
diffusion coefficient Ds describes the diffusive behavior of a given, or tagged,
particle. Experimentally, that can be measured using a small amount of
radioactive isotopes. The density of the tagged particle is described by the
probability p(r, t)dr to find the particle at time t in the volume element dr at
r, and is given by

∂p(r, t)

∂t
= Ds∇2 p(r, t) (5)

which is identical to Eq. (3) except for that D is replaced by Ds . The probabil-
ity to find the tagged particle at position r at time t , given that it was located
at r = 0 at time t = 0, can be obtained from the general solution (4), i.e.,

p(r, t) =
1

(4π Dst)3/2
e−r2/4Dst (6)

This Gaussian function describes the diffusive spreading of the probability
distribution. The width is equal to the mean squared displacement of the tagged
particle motion, 〈R2(t)〉= 6Dst , and can be used as a definition of the self-
diffusion coefficient.

Ds =
1

6t
〈R2(t)〉 (7)

where the notation 〈· · · 〉 is used for the averaging procedure. Equation (5)
is based on the assumption that the motion is diffusive. For short times, the
particle motion deviates from purely diffusive behavior and Eq. (7) becomes
invalid. Therefore, the definition of Ds should be supplemented with the con-
dition that t >τ0, where τ0 is a suitable microscopic time-scale.

The various diffusion coefficients depend on the thermodynamic variables,
i.e., temperature, pressure and composition. It is well known that diffusion co-
efficients in solids generally depend rather strongly on temperature, being very
low at low temperatures but appreciable at high temperatures. Empirically, this
dependence can often be described by the Arrhenius formula

D = D0e−Ea/kBT (8)

where D0 is commonly referred to as the pre-exponential factor and Ea the
activation energy for diffusion.
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2. The Continuum Approach

In the general case the situation can be quite complicated [1–3]. In
a multi-component system one has to introduce material fluxes for each
component i ,

ji (r, t) =−∑
j

Di j∇n j (r, t) (9)

The gradient in the concentration of one species may contribute to the flux
of another species, described by the off-diagonal components of Dij . The dif-
fusion coefficient is a function of composition as well as of temperature and
pressure (or more generally stress). If a temperature or pressure gradient is
present that may also introduce material fluxes and the Fick’s law of diffu-
sion has to be generalized. Thermodynamic equilibrium demands not only
that temperature and pressure be the same throughout a system but also that
the chemical potential be everywhere the same. Therefore, the gradient of the
chemical potential should enter in a more general description of diffusion.

The theory of non-equilibrium thermodynamics is used to derive the gen-
eral formalism for diffusion [3]. The theory put different phenomenological
diffusion treatments together into a coherent structure. It is a linear theory
and expresses the fluxes of the different species Ji in terms of suitable defined
forces X j acting on these species, according to

Ji =
∑

j

Li j X j (10)

where the phenomenological coefficients Lij are the basic kinetic parameters
in the theory. In general, they will be functions of the usual thermodynamic
variables, but they are independent on the forces X j . An important theorem,
the Onsager reciprocity theorem, states that the matrix L is symmetric, i.e.,
Lij = L ji . This relation derives from the underlying atomic dynamics of the
system and ultimately from the principle of detailed balance in statistical me-
chanics. In an isothermal, isobaric system the appropriate force is the gradient
of the chemical potential X j =−∇µ j , and the corresponding transport coeffi-
cient Lij is related, but not equal, to the diffusion coefficient Dij . For instance,
although by Onsager’s theorem Lij = L ji , it does not follow that Dij = D ji . In
a non-isothermal system the equations must also include the heat flow Jq and
a corresponding thermal force Xq =−∇T/T .

The corresponding set of coupled diffusion equations are derived by
supplementing Eq. (10) with the particle conservation law. Numerical soft-
ware packages for solution of multi-component diffusion equations have been
developed [6]. An important application is the simulation of diffusion con-
trolled transformations in alloys of practical importance. Necessary input is
kinetic and thermodynamic data. These are derived by collecting and selecting
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Figure 1. Simulated carbon concentration profile in a weld between two steels with ini-
tially similar carbon but different silicon contents see (http://www.thermocalc.com/Products/
Dictra.html).

experimental data from the literature. The progress of various solid state phase
transformations can then be simulated. In Fig. 1 a result from a diffusion sim-
ulation is shown produced by the software package DICTRA [6].

3. The Atomic Mechanism of Diffusion

The continuum approach is phenomenological. It does not give informa-
tion on the nature of the diffusive motion. In order to describe the diffusion
phenomena properly a knowledge of the underlying atomic mechanisms is
required. Atoms in a solid vibrate around their equilibrium positions. Occa-
sionally these oscillations become large enough to allow an atom to change
site. It is these jumps from one site to another which gives rise to diffusion in
a solid. The atomic jumps in a solid are rare on a microscopic time scale. The
self-diffusion coefficient is about 10−8 cm2/s near the melting point in most
closed packed metals. The lattice spacing is of the order 10−8 cm which im-
plies, using Eq. (7), that the atoms change site about 107 times/s. This should
be compared with the vibrational frequency which is 1013–1014 per second.
Thus even near the melting point the great majority of the time the atom is
oscillating about its equilibrium position in the crystal. It changes site only on
one oscillation in 104 or 105.
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There are two common mechanisms by which atoms can diffuse through a
crystalline solid, the vacancy and the interstitial mechanism. These are schemat-
ically illustrated in Fig. 2.

For bulk diffusion in closed packed metals the vacancy mechanism is most
important. Near the melting point the vacancy concentration is about
10−3–10−4 site fraction in most metals. These vacancies allow the atoms to
move, and this mechanism is operating in most cases with jumps to nearest
neighbor sites or also to next nearest neighbor sites in bcc crystals. At high
temperatures vacancy aggregates as divacancies may be present and influence
the diffusivity. Curvature in the Arrhenius plot of self-diffusion is commonly
interpreted as resulting from a monovacancy jump process at low tempera-
tures with an increasing contribution from a divacancy jump process at higher
temperatures [1]. That interpretation has recently been questioned based on
computer simulations and it is argued that the curvature could be equally
well interpreted by a single vacancy mechanism with a temperature-dependent
activation energy [7]. At high temperatures interstitials may also be present but
due to the high formation energy these defects are in most cases assumed to
give no contribution at equilibrium.

Substitutional atoms usually also diffuse by the vacancy mechanism. Other
mechanisms as various exchange mechanisms have been suggested [1]. At the
present there is no experimental support for any such mechanisms in crystal-
lized metals and alloys. However, in disordered solids these more cooperative
motions are more likely operating.

In the interstitial mechanism the atoms move from interstitial site to
interstitial site. Usually small interstitial atoms, like hydrogen or carbon atoms
in metals, diffuse through the lattice by this mechanism. The surrounding sol-
vent atoms are not greatly displaced from the normal lattice sites. If the inter-
stitial atom is nearly equal in size to the lattice atoms diffusion is more likely
to occur by the interstitialcy mechanism [1]. Here the interstitial atoms does
not move directly to another interstitial site. Instead it moves into a normal
lattice site and the atom that was originally at the lattice site is pushed into a
neighboring interstitial site.

a b

Figure 2. Mechanisms of diffusion in crystals: (a) the vacancy mechanism (b) the interstitial
mechanism.
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4. The Random Walk Model

The aim of the random walk model is to describe the observed macroscopic
diffusion in terms of the atomic jumps which are the elementary processes in
diffusion. It has been noted that the atomic jumps in a solid are rare on a
microscopic time scale. The actual duration of an atomic jump is, however,
short and can be neglected compared with the mean residence time at a site.
This justifies an assumption of randomness of the atomic jumps. On the other
hand, the total number of jumps over the period of hours or days is immense,
about 108 each second, and a statistical treatment becomes justified. In the ran-
dom walk models these aspects of the diffusive motion are taken into account.

Consider a random walk on a simple cubic lattice with lattice spacing a.
We assume that all sites are equally available and that the diffusing enti-
ties perform a series of uncorrelated jumps, i.e., we assume that interaction
between diffusing entities and correlation effects can be neglected. If the jump
vector for the i th jump is denoted by si , the total displacement after N jumps
can be written as

RN =
N∑

i=1

si (11)

From symmetry considerations the mean displacement will be zero, 〈RN 〉 = 0,
while the mean-squared displacement is proportional to the number of jumps

〈R2
N 〉 =

N∑
i=1

N∑
j=1

〈si · s j 〉 =
∑

i

〈si · si 〉 +
∑
i=/ j

〈si · s j 〉 = Na2 (12)

where the last equality follows from the fact that we have assumed the jumps
to be uncorrelated,

∑
i=/ j 〈si · s j 〉 = 0. In many situations this is not the case and

the analysis becomes much more complicated [5]. We can also write this in
terms of the jump rate k between two neighboring sites

〈R2
N 〉 = ka2t (13)

The jump rate is related to the mean residence time τ at a site according to
1/τ = nk, where n is the number of nearest neighboring sites. Furthermore, it
can be related to the self-diffusion coefficient by comparing with Eq. (7), i.e.,

Ds =
a2

6
k (14)

This very simple random walk model can be extended in many different
directions [8] and the more complicated models are most often solved using
the numerical Monte Carlo (MC) simulation technique.
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The random walk modeling can also be generalized by writing down the
equation for the rate of change of the probability distribution directly. We
obtain the following rate equation, or Master equation

∂

∂t
p(ri , t) =

∑
j

[
k j→i p(r j , t)− ki→ j p(ri , t)

]
(15)

with ki→ j equal to the transition rate from i to j . If nearest neighboring jumps
are assumed with the same jump rate it simplifies to

∂

∂t
p(r, t) =

1

nτ

∑
k

[
p(r+ ak, t)− p(r, t)

]
(16)

where ak is the set of vectors which connects a site with its nearest neigh-
boring sites. This equation gives a more detailed spatial information of the
diffusive motion compared with ordinary diffusion Eq. (5). To recover the lat-
ter equation we may expand the probability distribution around r, and use the
symmetry. The diffusion Eq. (5) is then obtained with Ds = (1/6) · (a2/τn).

Equation (16) is most easily solved in Fourier space. We obtain

I s(q, t) ≡
∫

dreiq·r p(r, t) = e−�(q)t (17)

and

Ss(q, ω) ≡
∫

dt

2π
e−iωt I s(q, t) =

1

π

�(q)
ω2 + �2(q)

(18)

with

�(q) =
1

nτ

∑
k

(1− e−iq·ak ) (19)

Quasi-elastic neutron scattering can be used to study diffusion [3]. In that
case the incoherent scattering cross-section is directly related to Ss(q, ω) and
by determining the width of the quasi-elastic peak as function of the scatter-
ing wave-vector a very detailed description of the diffusive motion may be
obtained. In practise only relatively fast diffusing atoms can be studied with
neutrons. Interstitial solutions of hydrogen in metals and fast ion conductors
are among those which have been extensively studied in this way.

The same quantities can also be obtained using the numerical molecular-
dynamics (MD) simulation technique. In Fig. 3 results from a MD simulation
for hydrogen diffusion in palladium are compared with quasi-elastic neutron
scattering data [9]. The width of the quasi-elastic peak is shown as function
of wave-vector. The temperature is 623 K and a classical description of the
hydrogen motion should be quite reasonable. The simulation data agree with
experiments provided energy dissipation to both the lattice vibrations and the
electron excitations are taken into account.
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Figure 3. The half-width (�≡�(q)a2/Ds) of the quasi-elastic peak as function of wave-
vector, in units of a, along (a) the 〈100〉 direction and along (b) the 〈110〉 direction at T = 623 K.
•: quasi-elastic neutron scattering data; �: molecular-dynamics simulation data (with coupling
to lattice vibrations); 1: molecular-dynamics simulation data (with coupling to lattice vibrations
and electronic excitations). The dotted line shows the results from Eq. (19). Reprinted with
permission from Ref. [9]. Copyright (1992) by the American Physical Society.

5. The Atomic Jump Frequency

The random walk model relates the atomic jumps to the macroscopic diffu-
sion phenomena. An understanding of parameters entering the expression for
the atomic jump frequency and related quantities is therefore of great interest.
Direct calculations of those parameters are important, in particular, if accurate
calculations can be performed without fitting to experimental data, so called
first-principles or ab initio calculations.

In vacancy and interstitial diffusion the diffusion coefficient will depend
on the concentration of defects and the atomic jump frequency k. In vacancy
diffusion the relevant jump frequency is the one of an atom into an adjacent
vacancy and in interstitial diffusion it is the jump rate between different inter-
stitial sites. Using equilibrium statistical mechanics the defect concentration
can be expressed in terms of formation entalpies and entropies. The atomic
jump frequency k is most often approximated using the absolute rate theory,
or transition state theory, according to

k =
kBT

h

Q#

Q
(20)

where Q and Q# are the statistical mechanical partition functions evaluated
for the system at a stable site and at the transition site, respectively. The
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transition site is defined as the hypersurface separating two stable sites.
Assuming harmonic lattice vibrations Vineyard [10] derived the following
expression for the transition rate

k =

∏N
j=1 ν j∏N−1

j=1 v∗j
e−�E/kBT (21)

where the activation energy �E (cf Eq. (8)) is the energy difference between
the system located at a stable site and at the transition site or saddle point
configuration. ν j are the N normal mode frequencies of the entire system at the
stable site and ν∗j the N−1 normal mode frequencies of the system constrained
in the transition site.

The various parameters entering the expressions for the defect concentra-
tion and the jump frequencies can be evaluated from first principles. In par-
ticular, the density functional theory has been applied extensively. Dynamics
and finite temperature effects have also been considered from first principles.
In Fig. 4 we show the result from such a calculation [7]. It is found that for
aluminum the mono-vacancy diffusion alone dominates over diffusion due
to divacancies and interstitials for all temperatures up to the melting point.
The calculated diffusion rate agrees with experimental data over 11 orders of
magnitude.
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Figure 4. Temperature dependence for the self-diffusion coefficient in aluminum as function
of the inverse temperature. Open and filled circles are experimental data and the lines are from
molecular-dynamics simulations. The inset shows calculated diffusion coefficients for vacan-
cies (v), divacancies (2v), and interstitials (i). The contribution from divacancies and intersti-
tials is less than 1% of that from mono-vacancies at the melting temperature. Reprinted with
permission from Ref. [7]. Copyright (2002) by the American Physical Society.
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6. Outlook

In the past diffusion studies have been dominated by various experimental
techniques and the development of the theoretical description. Software has
been developed for accurate simulation of diffusion in solids based on experi-
mental input. More recently ab initio computations and computer simulations
have gained in importance.

The first-principles or ab initio methods can be used to get insight and to
obtain data for various elementary properties in relation to diffusion. If the
diffusivity is high the MD simulation technique can be used to study dif-
fusion in a very direct way. It provides well-controlled “experiments” and
allows a proper check of the validity of the various theoretical descriptions.
The method requires a description of the inter-atomic interaction as input and
if that is sufficiently reliable the method provides a fairly reliable substitute to
actual experiments. The Monte Carlo simulation technique can also be used to
study diffusion. In that case a model for the kinetic description has to be estab-
lished. The method is particularly useful for the study of diffusion in complex
systems, like concentrated alloys and disordered materials.

To conclude; it is not unlikely that the present time of diffusion studies will
be characterized as the computational period.

References

[1] J.L. Bocquet, G. Brebec, and Y. Limoge, “Diffusion in metals and alloys,” In: R.W.
Cahn and P. Haasen (eds.), Physical Metallurgy, 4th edn., Elsevier Science BV,
Amsterdam, pp. 535–668, 1996.

[2] C.P. Flynn, Point Defects and Diffusion, Clarendon Press, Oxford, 1972.
[3] A.R. Allnatt and A.B. Lidiard, Atomic Transport in Solids, Cambridge University

Press, 1993.
[4] P. Shewmon, Diffusion in Solids, 2nd edn., The Minerals, Metals and Materials

Society, Pennsylvania, 1989.
[5] J.R. Manning, Diffusion Kinetics for Atoms in Crystals, D. van Nostrand, Princeton,

1968.
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