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Given a quantum mechanical system of N electrons and an external potential
(which typically consists of the potential due to a collection of nuclei), the tra-
ditional approach to determining its ground-state energy involves the optimiza-
tion of the corresponding wavefunction, a function of 3N dimensions, without
considering spin variables. As the number of particles increases, the computa-
tion quickly becomes prohibitively expensive. Nevertheless, electrons are
indistinguishable so one could intuitively expect that the electron density – N
times the probability of finding any electron in a given region of space – might
be enough to obtain all properties of interest about the system. Using the
electron density as the sole variable would reduce the dimensionality of the
problem from 3N to 3, thus drastically simplifying quantum mechanical calcu-
lations. This is in fact possible, and it is the goal of orbital-free density func-
tional theory (OF-DFT). For a system of N electrons in an external potential
Vext, the total energy E can be expressed as a functional of the density ρ [1],
taking on the following form:

E[ρ] = F[ρ]+
∫
�

Vext(�r)ρ(�r) d�r (1)

Here, � denotes the system volume considered, while F is the universal func-
tional that contains all the information about how the electrons behave and
interact with one another. The actual form of F is currently unknown and one
has to resort to approximations in order to evaluate it. Traditionally, it is split
into kinetic and potential energy contributions, the exact forms of which are
also unknown.

Kohn and Sham first proposed replacing the exact kinetic energy of
an interacting electron system with an approximate, noninteracting, single
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determinantal wavefunction that gives rise to the same density [2]. This
approach is general and remarkably accurate but involves the introduction of
one-electron orbitals.

E[ρ] = TKS[φ1, . . . , φN ]+
∫
�

Vext(�r)ρ(�r)d�r + J [ρ]+ Exc[ρ] (2)

TKS denotes the Kohn–Sham (KS) kinetic energy for a system of N noninteract-
ingelectrons (i.e., for thecase ofnoninteracting electrons, a single-determinantal
wavefunction is the exact solution), the φi are the corresponding one-electron
orbitals, J is the classical electron–electron repulsion, and Exc is a correction
term that should account for electron exchange, electron correlation, and the
difference in kinetic energy between the interacting and noninteracting systems.
If the φi are orthonormal, TKS has the following explicit form:

TKS =−1

2

∫
�

N∑
i=1

φ∗i (�r)∇2φi(�r) d�r (3)

Unfortunately, the required orthogonalization of these orbitals makes the com-
putational time scale cubically in the number of electrons. Although linear-
scaling KS algorithms exist, they require some degree of localization in the
orbitals and, for this reason, are not applicable to metallic systems [3]. For
condensed matter systems, the KS method has another bottleneck: the need
to sample the Brillouin zone for the wavefunction (also called “k-point sam-
pling”) can add several orders of magnitude in cost to the computation. Thus, a
further advantage of OF-DFT is that, without a wavefunction, this very expen-
sive computational prefactor of the number of k-points is completely absent
from the calculation.

At this point, many general, efficient and often accurate functionals are
available to handle every term in Eq. (2) as functionals of the electron density
alone, except for the kinetic energy. The development of a generally applica-
ble, accurate, linear-scaling kinetic energy density functional (KEDF) would
remove the last bottleneck in the DFT computations and enable researchers to
study much larger systems than are currently accessible. In the following, we
will focus our discussion on such functionals.

1. General Overview

Historically, the first attempt at approximating the kinetic energy assumes a
uniform, noninteracting electron gas [4, 5] and is known as the Thomas–Fermi
(TF) model for a slowly varying electron gas.

TTF =
∫
�

3

10
(3π2)2/3ρ(�r)5/3d�r (4)
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The model, although crude, constitutes a reasonable first approximation to the
kinetic energy of periodic systems. It fails for atoms and molecules, however,
as it predicts no shell structure, no interatomic bonding, and the wrong behav-
ior for ρ at the r = 0 and r =+∞ limits. We will discuss some ways to improve
this model later.

A deeper look at Eq. (3) reveals another approach to describing the kinetic
energy as a functional of the density. Within the Hartree–Fock (HF) approxi-
mation [6], we have

ρ(�r) =
N∑

i=1

φ∗i (�r)φi (�r) (5a)

ρ(�r) =
N∑

i=1

ρi(�r) (5b)

so that, using the hermiticity of the gradient operator, and acting on Eq. (5) we
obtain

∇2ρ(�r) = 2
N∑

i=1

[
φ∗i (�r)∇2φi (�r)+ ∇φ∗i (�r)∇φi (�r)

]
(6)

Rearranging Eq. (6), integrating over �, and substituting Eq. (3) into Eq. (6)
yields

TKS =−1

4

∫
�

∇2ρ(�r)d�r + 1

2

∫
�

N∑
i=1

∇φ∗i (�r)∇φi (�r) d�r (7)

Multiplying and dividing every term of the sum by ρi naturally introduces ∇ρi

TKS =−1

4

∫
�

∇2ρ(�r)d�r + 1

8

∫
�

N∑
i=1

|∇ρi(�r)|2
ρi(�r) d�r (8)

but does not provide a form for which the sum can be evaluated simply. Nev-
ertheless, the first term can be rewritten as the integral of the gradient of the
density around the edge of space.∫

�

∇2ρ(�r)d�r =
∮
�

∇ρ(�r) d�r (9)

For a finite system, the gradient of the density vanishes at large distances and
for a periodic system the gradients on opposite sides of a periodic cell cancel
each other out, so that this integral evaluates to zero in both cases. Finally, for
a one-orbital system, we obtain the following exact expression for the kinetic
energy [7].

TVW =
1

8

∫
�

|∇ρ(�r)|2
ρ(�r) d�r (10)
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Although only exact for up to two electrons, the von Weizsäcker (VW) func-
tional is an essential component of the true kinetic energy and provides a good
first approximation in the case of quickly varying densities such as those of
atoms and molecules.

Unfortunately, the total energy corresponding to the ground-state electron
density has the same magnitude as the exact kinetic energy. Consequently,
errors made in approximating the kinetic energy have a dramatic impact on
the total energy and, by extension, on the ground state electron density com-
puted by minimization. Unlike the exchange-correlation energy functionals,
which represent a much smaller component of the total energy, kinetic-energy
functionals must be highly accurate in order to achieve consistently accurate
energy predictions.

2. KEDFs for Finite Systems

In the case of a finite system such as a single atom, a few molecules in the
gas phase, or a cluster, the electron density varies extremely rapidly near the
nuclei, making the TF functional inadequate. Although many corrections have
been suggested to improve upon the TF results for atoms, these modifications
only yield acceptable results when densities obtained from a different method
are used, usually HF. Left to determine their own densities self-consistently,
these corrections still predict no shell structure for atoms. Nevertheless, the TF
functional, or some fraction of it, may still be useful as a corrective term, as
we will see later. Going back to the KS expression from Eq. (8), we introduce

ni(�r) =
ρi(�r)
ρ(�r) (11)

which, when multiplying both sides by ρ(�r) and taking the gradient, yields

∇ρi(�r) = ni(�r)∇ρ(�r)+ ρ(�r)∇ni(�r) (12)

Substituting Eq. (12) into Eq. (8) gives the following expression:

TKS =
1

8

∫
�

N∑
i=1

(ni(�r)∇ρ(�r)+ ρ(�r)∇ni(�r))2

ni(�r)ρ(�r) d�r (13)

The product is expanded into three sums and reorganized as

TKS =
1

8

∫
�

[ |∇ρ(�r)|2
ρ(�r)

N∑
i=1

ni(�r)+ 2∇ρ(�r)
N∑

i=1

∇ni(�r)

+ ρ(�r)
N∑

i=1

|∇ni(�r)|2
ni(�r)

]
d�r (14)
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From Eq. (11), it follows immediately that

N∑
i=1

ni(�r) = 1 (15)

and so, making use of the linearity of the gradient operator in the second term
of Eq. (14)

N∑
i=1

∇ni(�r) = ∇
N∑

i=1

ni(�r) = ∇(1) = 0 (16)

the expression further simplifies to

TKS =
∫
�

|∇ρ(�r)|2
8ρ(�r) d�r +

∫
�

ρ(�r)
N∑

i=1

|∇ni(�r)|2
8ni (�r) d�r (17)

As every quantity in the second integral is positive, we can conclude that the
VW functional (the first term in Eq. 17) constitutes a lower bound on the
noninteracting kinetic energy. This makes physical sense anyway, as we know
that the VW kinetic energy is exact for any one-orbital system (one or two
electrons, or any number of bosons). Any other orbital introduced will have
to be orthogonal to the first. This introduces nodes in the wavefunction, which
raises the kinetic energy of the entire system. Therefore, further improvements
upon the VW model involve adding an extra term to take into account the
larger kinetic energy in the regions of space in which more than one orbital
is significant. Far away from the molecule, only one orbital tends to dominate
the picture and the VW functional is accurate enough to account for the rela-
tively small contribution of these regions to the total kinetic energy. Most of
the deviation from the exact, noninteracting kinetic energy is located close to
the nuclei, in the core region of atoms.

Corrections based on adding some fraction of the TF functional to the VW
have been proposed (see, for instance, Ref. [8]), but only when nonlocal func-
tionals (those depending on more than one point in space, e.g., r and r ′) are
introduced is a convincing shell structure observed for atomic densities [9].

Even without such correction terms, the TF and VW functionals may still
be enough to obtain an accurate description of the system in some limited
cases. For instance, Wesolowski and Warshel used a simple, orbital-free KEDF
to describe water molecules as a solvent for a quantum-chemically treated
water molecule solute [10]. They were able to reproduce the solvation free
energy of water accurately using this method.

Although this result is encouraging, the ultimate goal of OF-DFT is to
determine a KEDF that would be accurate even without the backup provided
by the traditional quantum-mechanical method. One key to judging of the



142 V. Lignères and E.A. Carter

quality of a given functional is to express it in terms of its kinetic-energy
density.

T [ρ] =
∫
�

t (ρ(�r)) d�r (18)

The KS functional as it is expressed in Eq. (3) uniquely defines its kinetic-energy
density. Certainly, if a given functional can reproduce the KS kinetic-energy
density faithfully it must reproduce the total energy also. Any functional that
differs from that one by a function that integrates to 0 over the entire system
– like, for instance, the Laplacian of the density – will match the KS energy
just as well but not the KS kinetic-energy density. For the VW functional, for
instance, the corresponding kinetic-energy density should include a Laplacian
contribution:

TVW =
∫
�

tVW(ρ) d�r (19)

tVW(ρ) =−1

4
∇2ρ(�r)+ |∇ρ(�r)|2

8ρ(�r) (20)

OF-DFT has experienced its most encouraging successes for periodic systems
using a different class of kinetic energy functionals described below. These
achievements led to attempts to use this alternative class of functionals for
nonperiodic systems as well. Choly and Kaxiras recently proposed a method
to approximate such functionals and adapt them for nonperiodic systems [11].
If successful, their method may further enlarge the range of applications where
currently available functionals yield physically reasonable results.

3. KEDFs for Periodic Systems

If the system exhibits translational invariance, or can be approximated
using a system that does, it becomes advantageous to introduce periodic bound-
ary conditions and thus reduce the size of the infinite system to a small
number of atoms in a finite volume. A plane-wave basis set expansion most
naturally describes the electron density under these conditions. As an addi-
tional advantage, quantities can be computed either in real or reciprocal space,
by performing fast Fourier transforms (FFTs) on the density represented on a
uniform grid. The number of functions necessary to describe the electron den-
sity in a given system is highly dependent upon the rate of fluctuation of said
density. Quickly varying densities need more plane waves in real space which
translate into larger reciprocal-space grids and, consequently, into finer real-
space meshes. Unfortunately, in real systems, electrons tend to stay mostly
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around atomic nuclei and only occasionally venture in the interatomic regions
of space. This makes the total electron density vary extremely rapidly close
to the nuclei, in the core region of space. Consequently, an extremely large
number of plane waves would be necessary to describe the total electron
density.

One can get around this problem by realizing that the core region density is
often practically invariant upon physical and chemical change. This observa-
tion is similar to the realization that only valence shell electrons are involved
in chemical bonding. The valence electron density varies a lot less rapidly
than the total density, so that if the core electrons could be removed, one could
drastically reduce the total number of plane waves required in the basis set.
Of course, the influence of the core electrons on the geometry and energy of
the system must still be accounted for. This is done by introducing pseudopo-
tentials that mimic the presence of core electrons and the nuclei. Obviously,
if one is interested in any properties that require an accurate description of
the electron density near the nuclei of a system, such pseudopotential-based
methods will be inappropriate.

Each chemical element present in the system must be represented by its
own unique pseudopotential, which is typically constructed as follows. First,
an all-electron calculation on an atom is performed to obtain the valence eigen-
values and wavefunctions that one seeks to reproduce within a pseudopotential
calculation. Then, the oscillations of the valence wavefunction in the core re-
gion are smoothed out to create a “pseudowavefunction,” which is then used
to invert the KS equations for the atom to obtain the pseudopotential that
corresponds to the pseudowavefunction, subject to the constraint that the all-
electron eigenvalues are reproduced. Typically, this is done for each angular
momentum channel, so that one obtains a pseudopotential that has an angular
dependence, usually expressed as projection operators involving the atomic
pseudowavefunctions. Such a pseudopotential is referred to as “nonlocal,”
because it is not simply a function of the distance from the nucleus, but also
depends on the angular nature of the wavefunction it acts upon. In other words,
when a nonlocal pseudopotential acts on a wavefunction, s-symmetry orbitals
will be subject to a different potential than p-symmetry orbitals, etc. (as in the
exact solution to the Schroedinger equation for a one-electron atom or ion).
This affords a nonlocal pseudopotential enough flexibility so that it is quite
accurate and transferable to a diverse set of environments.

The above discussion presents a second significant challenge for OF-DFT
beyond kinetic energy density functionals, since nonlocal pseudopotentials
cannot be employed in OF-DFT, because no wavefunction exists to be acted
upon by the orbital-based projection operators intrinsic to nonlocal pseudopo-
tentials. In the case of an orbital-free description of the density, the pseudopo-
tentials must be local (depending only on one point in space) and spherically
symmetrical around the atomic nucleus. Thus, in OF-DFT, the challenge is to
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construct accurate and transferable local pseudopotentials for each element.
An attempt in this direction specifically for OF-DFT was made by Madden
and coworkers, where the OF-DFT equation

δTKS

δρ
+ Vext + δ J

δρ
+ δExc

δρ
= µ (21)

is inverted to find a local pseudopotential (the second term on the left-hand
side of Eq. (21)) that reproduces a crystalline density derived from a KS cal-
culation using a nonlocal pseudopotential [12]. Here the terms on the left-hand
side of Eq. (21) are the density functional variations of the same terms given
in Eq. (2), except that in OF-DFT, TKS will be a functional of the density only
and not of the orbitals. On the right-hand side is µ, the chemical potential. This
method yielded promising results for alkali and alkaline earth metals, but was
not extended beyond such elements because inherent to the method was the
assumption and use of a given approximate kinetic energy density functional.
Hence the pseudopotential had built into it the success and/or failure associ-
ated with any given choice of kinetic energy functional. A related approach
for constructing local pseudopotentials based on embedding an ion in an elec-
tron gas was proposed by Anta and Madden; this method yielded improved
results for liquid Li, for example [13]. More recently, Zhou et al. proposed
that improved local pseudopotentials for condensed matter could be obtained
by inverting not the OF-DFT equations but instead the KS equations so that the
exact kinetic energy could be used in the inversion procedure. This was done
subject to the constraint of reproducing accurate crystalline electron densities,
using a modified version of the method developed by Wang and Parr for the
inversion procedure [14]. Zhou et al. showed that a local pseudopotential
could be constructed in this way that, e.g., for silicon, yielded bulk properties
for both semiconducting and metallic phases in excellent agreement with pre-
dictions by a nonlocal pseudopotential within the KS theory. This bulk-derived
local pseudopotential also exhibited improved transferability over those
derived from a single atomic density. In principle, Zhou et al.’s approach is
a general scheme applicable to all elements, since the exact kinetic energy is
utilized [15].

With local pseudopotentials now in hand, we turn our attention back to
calculating accurate valence electron densities via kinetic-energy density func-
tionals within OF-DFT. The valence electron density in condensed matter
can be viewed as fluctuating around an average value that corresponds to the
total number of electrons spread homogeneously over the system. If this were
exactly the case, we would have a uniform electron gas for which the kinetic
energy is described exactly by the TF functional in Eq. (4) with a constant
density. For an inhomogeneous density, the TF functional still constitutes an
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appropriate starting point and is the zeroth order term of the conventional
gradient expansion (CGE) [16].

TKS[ρ] = TTF[ρ]+ T 2[ρ]+ T 4[ρ]+ T 6[ρ]+ · · · (22)

Here, T 2, T 4, and T 6 correspond to the second-, fourth-, and sixth-order
corrections, respectively. All odd-order corrections are zero. The second-order
correction is found to be one ninth of the VW kinetic energy, while the fourth-
order term is [17]:

T 4[ρ] =
1

540(3π2)2/3

∫
�

ρ1/3

[
(∇2ρ)2

ρ2
− 9∇2ρ(∇ρ)2

8ρ3
+ (∇ρ)4

3ρ4

]
d�r (23)

Starting with the sixth-order term, all further corrections diverge for quickly
varying or exponentially decaying densities [18]. Moreover, the fourth-order
correction constitutes only a minor improvement over the second-order term
and its potential δT 4[ρ]/δρ also diverges for quickly varying or exponentially
decaying densities. Usually then, the CGE expansion is truncated at second
order as

TCGE[ρ] = TTF[ρ]+ 1
9 TVW[ρ] (24)

For slowly varying densities, this truncation is reasonable.
For the nearly-free electron gas, linear response theory can provide an

additional constraint on the kinetic-energy functional [19].

F̂

⎛⎝ δ2T [ρ]

δρ2

∣∣∣∣∣
ρ0

⎞⎠ =− 1

χLind
=

(
1

2
+ 1− η2

4η
ln

∣∣∣∣1+ η

1− η

∣∣∣∣
)−1

(25)

Here F̂ denotes the Fourier transform, δ the functional derivative evaluated at
a reference density ρ0, and χLind is the Lindhard susceptibility function, the
expression for which is detailed on the right-hand side, where η = q/2kF, q
is the reciprocal space wave vector and kF = (3π2ρ0)

1/3. Although the exact
susceptibility is known in this case, the actual kinetic-energy functional is not.
Its behavior at the small and large q limits can be evaluated, however. The
exact linear response matches the CGE only for very slowly varying densities,
which correspond to small values of q.

Lim
η→0

F̂

⎛⎝ δ2T [ρ]

δρ2

∣∣∣∣∣
ρ0

⎞⎠ = Lim
η→0

F̂

⎛⎝ δ2(TTF[ρ]+ 1
9 TVW[ρ])

δρ2

∣∣∣∣∣
ρ0

⎞⎠ (26)

In the limit of infinitely quickly varying densities or the large q limit (LQL),
the linear response behavior is very different.

Lim
η→+∞ F̂

⎛⎝ δ2T [ρ]

δρ2

∣∣∣∣∣
ρ0

⎞⎠ = Lim
η→+∞ F̂

⎛⎝ δ2(− 3
5 TTF[ρ]+ TVW[ρ])

δρ2

∣∣∣∣∣
ρ0

⎞⎠ (27)
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As we saw before though, the VW kinetic energy constitutes a lower bound
to the kinetic energy. Therefore, here the linear response behavior cannot
be correct (we are far from the small perturbations away from the uniform
gas limit required in linear response theory) and we can conclude that linear
response theory inadequately describes quickly varying densities. Neverthe-
less, a lot of effort has been made to determine the corresponding kinetic-
energy functional.

Bridging the gap between the small and large q to obtain the linear
response kinetic-energy functional involves explicitly enforcing the correct
linear response behavior. Pioneering work in this direction by Wang and Teter
[20], Perrot [21], and Smargiassi and Madden [22] produced impressive
results for many main group metals. A correction term is added to the TF
and VW functionals to enforce the linear response.

T [ρ] = TTF[ρ]+ TVW[ρ]+ TX[ρ] (28)

Here TX is the correction, usually a nonlocal functional of the density that can
be expressed as a double integral

TX[ρ] =
∫
�

ρα(�r)
∫
�

w(�r − �r ′)ρβ(�r ′) d�r ′ d�r (29)

where w is called the response kernel and is adjusted to produce the global
linear response behavior, while α and β are functional-dependent parame-
ters. More complex functionals, based either on higher-order response theories
[23], for instance) or on density-dependent kernels (like those of Chacón and
coworkers [24] or Wang et al. [25] can produce more general and transferable
results. However, their excellent performance comes with increased computa-
tional costs and, in the case of the Chacón functional, with quadratic scaling
of the computational time with system size. Nevertheless, computations using
these functionals are several orders of magnitude faster than those using the
KS kinetic energy. For example, Jesson and Madden performed DFT mole-
cular dynamics simulations of solid and liquid aluminum using the Foley and
Madden KEDF, on systems four times larger and for simulation times twice
as long [26] as previous KS molecular dynamics studies [27] could consider.
Although the melting temperature they predicted was much lower than the
experimental value and previous predictions, it appears that their pseudopo-
tential, not their KEDF, was the main source of error.

It is important to emphasize that even the best of today’s functionals do
not exactly match the accuracy of the KS method, exhibiting non-negligible
deviations from the KS densities and energies in many cases. This should spur
further developments of kinetic-energy density functionals.
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4. Conclusions and Outlook

Despite more than seventy years of research in this field and some tremen-
dous progress, kinetic-energy density functionals have not yet reached a
degree of sophistication that allow their use reliably and transferably for all
elements in the periodic table and for all phases of matter. One could eas-
ily view the development of accurate descriptions of the kinetic energy in
terms of the density alone as the last great frontier of density functional the-
ory. Currently, OF-DFT research is moving from the development of new,
approximate functionals to attempting to determine the properties of the ex-
act one [28]. Also, it is becoming clearer that reproducing the KS energy
for a given system is not a guarantee of functional accuracy. More efforts
have been devoted to trying to reproduce the kinetic energy density predicted
by the KS method at every point in space [29]; one can expect this type
of effort to intensify in the future. If highly accurate and general forms for
the kinetic-energy density functional are discovered, which retain the linear
scaling efficiency of current functionals, OF-DFT will undoubtedly
become the quantum-based method of choice for investigating wavefunction-
independent properties of large numbers of atoms. Aside from spectroscopic
quantities, most properties of interest (e.g., vibrations, forces, dynamical evo-
lution, structure, etc.) do not depend on knowledge of the electronic wavefunc-
tion and hence OF-DFT can be employed. For further reading about advanced
technical details in kinetic-energy density functional theory, see Wang and
Carter [30].

References

[1] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., 136, B864–
B871, 1964.

[2] W. Kohn and L.J. Sham, “Self-consistent equations including exchange and correla-
tion effects,” Phys. Rev., 140, A1133–A1138, 1965.

[3] S. Goedecker, “Linear scaling electronic structure models,” Rev. Mod. Phys., 71(4),
1085–1123, 1999.

[4] E. Fermi, “Un metodo statistice per la determinazione di alcune proprieta
dell’atomo,” Rend. Accad., Lincei 6, 602–607, 1927.

[5] L.H. Thomas, “The calculation of atomic fields,” Proc. Camb. Phil. Soc., 23, 542–
548, 1927.

[6] C.C.J. Roothaan, “New developments in molecular orbital theory,” Rev. Mod. Phys.,
23, 69–89, 1951.
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