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For many growth, transport, or reaction processes occurring on the surfaces
or in the bulk of crystalline solids, atoms reside primarily at a discrete periodic
array or lattice of sites, actually vibrating about such sites. These atoms make
occasional “sudden” transitions between nearby sites due to diffusive hopping,
or may populate or depopulate sites due to adsorption and desorption, pos-
sibly involving reaction. Most of these microscopic processes are thermally
activated, the rates having an Arrhenius form reliably determined by transition
state theory [1]. In general, these rates will depend on the local environment
(i.e., the occupancy of nearby sites) thus introducing cooperativity into the
process, and they may vary over many orders of magnitude.

Such systems are naturally described by lattice-gas (LG) models wherein
the sites of a periodic lattice are designated as either occupied (perhaps by
various types of particles) or vacant. A specification of all possible transitions
between different configurations of particles, together with the associated rates,
completely prescribes the evolution of the LG model for the process of
interest. Such models are called Interacting Particle Systems (IPS) in the math-
ematical statistics community [2]. They correspond to stochastic Markov pro-
cesses for evolution between different possible configurations of the system,
and their evolution is rigorously described by appropriate master equations
[3]. Since it is typically not possible to precisely determine the behavior of
the solutions of these equations with analytic methods, Kinetic Monte Carlo
(KMC) simulation is the most common tool for analysis. This approach, des-
cribed below, implements on computer the “typical” evolution of the LG model
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through a specific sequence configurations using a random number gener-
ator to select processes with the appropriate weights [4]. The great advan-
tage of KMC is that usually it can treat these processes on the physically
relevant time and length scales, contrasting conventional Molecular Dynam-
ics. Another advantage of KMC is its versatility with respect to model mod-
ification, allowing systematic testing of the effect of various processes on
behavior.

The focus here is on simulation of non-equilibrium processes, hence the
“kinetic” in KMC. This contrasts conventional Monte Carlo (MC) simula-
tion for equilibrium (Gibbs) states of Hamiltonian systems. For the latter, the
independence of the equilibrium state on the history or dynamics of the sys-
tem provides considerable flexibility in optimizing the simulation procedure
[4]. For example, to speed up the simulation, one can use artificial dynamics
provided that is consistent with detailed-balance. Also, other tools are avail-
able for analysis of simulation data, e.g., histogram re-weighting, based on
the features of the Gibbs distribution. These techniques are not available for
non-equilibrium systems, where the simulation must incorporate the physi-
cal dynamics to correctly predict the possibly non-trivial competition between
various kinetic pathways. This requirement was fully not appreciated in earlier
studies of the approach to equilibrium where generic rules for rates were often
used.

The philosophy adopted here is that the atomistic LG model should first
be clearly defined, as distinct from the simulation algorithm used to analyze
the model. Thus, below we first give a general description of non-equilibrium
LG models, together with the master equations which describe their evolution,
and only then describe the two types of generic KMC simulation algorithms.
It is most instructive to illustrate these basic algorithms and various refine-
ments to them in the context of specific classes of examples. We choose mod-
els for evolution of homoepitaxial thin film systems and for catalytic surface
reactions.

1. Evolution of Stochastic Lattice-Gas Models:
Master Equations

The basic master equation formulation described below applies to the case
of finite systems, i.e., lattices with Ld sites where d is the spatial dimension.
Any simulation is of course also restricted to such finite systems. Usually,
finite-size effects are minimized by choosing periodic boundary conditions.
Below, we let n j denote the occupancy of site j , {n j } the configuration of the
entire system, and P({n j }, t) the probability for the system to be in this con-
figuration at time t . Implicitly, these probabilities involve ensemble averaging
which, in the context of KMC simulation, may correspond to averaging over a
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large number of simulation trials. Then, evolution is described exactly by the
master equations [3]

d/dt P({nj }, t) =
∑
{nj ′}

W ({n′j } → {n j })P({n′j }, t)

−∑
{nj ′}

W ({nj } → {n′j })P({nj }, t), (1)

where W ({n′j }→{nj}) denotes the prescribed rate of transitions from configu-
ration {n′j } to {nj }. These two configurations will differ only in the occupancy
of a single site for adsorption or desorption, but in the occupancy of a pair of
sites for diffusion. On the right hand side of (1), the first (second) term reflects
gain (loss) in the population of configuration {nj }. As an aside, we note that
for a Markov process, specifying a rate for each microscopic process actually
means there is an exponential waiting-time distribution between events associ-
ated with this process, with the mean waiting-time between consecutive events
given by the inverse of the rate.

The solutions of the master equations satisfy conservation of probability,
positivity, etc. The eigenvalues of the evolution matrix associated with these
linear equations have non-positive real parts to avoid blow-up of probabilities,
but they can in general be complex-valued. The latter scenario corresponds to
time-oscillatory solutions which can occur in open non-equilibrium systems.
In cases where the energy of configuration {nj } is described by a Hamiltonian,
H ({nj }), selecting rates to satisfy the detailed-balance condition (Landau and
Binder, 2000)

W ({n′j }→{nj }) exp(−H ({n′j })/kT )

=W ({nj }→{n′j }) exp(−H ({n j})/kT ), (2)

guarantees that the solution will evolve to the Gibbs equilibrium state
Peq({n j })∝ exp(−H{n j }/kT ). In this case, one can also show that the evolu-
tion matrix has only real (non-positive) eigenvalues, so solutions of (1) exhibit
only decay in time, not oscillatory behavior [3].

In both analytic and simulation studies, the P({n j }, t) typically contain too
much information to be manageable. It is thus common to focus on reduced
quantities such as the probability that a single site k is occupied, P(nk, t) =∑

nj /= k P({nj }, t), and higher-order quantities such as spatial pair-correlations.
From (1), one can obtain a hierarchy of rate equations for these, which can
be analyzed using approximate factorization relations to truncate the hierar-
chy at some low order, or by exact Taylor series expansions for short-time
behavior [5]. Often, one has translational invariance due to periodic boundary
conditions, so site quantities are independent of location, and pair-correlations
depend only on separation of the pair of sites. Furthermore, behavior in the
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limit of infinite system size, L→∞, is of primary interest. Then, in the con-
text of KMC simulation, such reduced quantities can be obtained precisely
from a single simulation for a sufficiently large system, rather than by
averaging over several trials.

2. Generic Kinetic Monte Carlo Simulation Algorithms

We first describe the two types of generic KMC algorithms applied to LG
models. We then compare features of the two algorithms, and give an example
of their application to a simple deposition process. Finally, we discuss some
issues associated with the finite size of the simulation system. Below, we
assume that these models incorporate a variety of distinct atomistic processes,
which we label by α (e.g., α = adsorption, desorption, diffusion, reaction, etc.).
Furthermore, we suppose that each process, α, occurs with only a finite num-
ber of microscopic rates, Wα(m), for m = 1, 2, . . . , depending on the local
environment.

2.1. Basic Algorithm

Here, we let Wα(max) denote the maximum of the Wα(m), for each α.
We then set Wtot =�α Wα(max), and define pα = Wα(max)/Wtot, so that �α

pα = 1. In the basic algorithm, one first randomly selects a site, then, selects
a process, α, with probability, pα , reflecting the maximum rate for that pro-
cess α. Finally, one implements this process (if allowed) with a probability,
qα = Wα/Wα(max)≤1, where Wα is the actual rate for process α at site j. This
means that Wα is one of the Wα(m), with m determined by the local envi-
ronment of site j. It is also essential to connect the “simulation time,” i.e., the
number of times a site is chosen, with the “physical time” in the stochastic LG
model. On each occasion a site is chosen, we increment the physical time by
δt, where LdWtotδt = 1. Thus, after one attempt per site, the physical time has
increased by 1/Wtot.

2.2. Bortz Algorithm

Here, we let Nα(m) denote the (finite) number of particles which can par-
take in process α with the mth rate, Wα(m). Then, the total rate for all par-
ticles in the system associated with this process α occurring at the mth rate
is Rα(m) = Wα(m)Nα(m), and the total rate for all processes is Rtot =�β�n

Rβ(n). The Bortz (or Bortz–Kalos–Lebowitz) simulation algorithm [6]
maintains a list of these particles for each α and m. The simulation proceeds
by selecting a sub-process (α, m) with probability pα(m) = Rα(m)/Rtot, then
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randomly selecting one of the Nα(m) particles capable of making this move
from the corresponding list, and then implementing the process (after which
lists have to be updated). Again, one must connect the “simulation time,”
i.e., the number of times a process is chosen, with the “physical time” in the
stochastic LG model. On each occasion when a process is implemented, one
increments the physical time by δt = 1/Rtot.

2.3. Comparison of Algorithms

In comparing standard and Bortz algorithms, it is appropriate to first note
that often the rates Wα(m), described above, vary over many orders of mag-
nitude. Furthermore, processes with high rates often have a low population of
available particles, a feature which can apply not just under quasi-equilibrium
conditions, but more generally. Thus, in the basic algorithm, after selecting
a site, usually one selects a process α with a large Wα(max), but then typi-
cally fails to implement this process due to the small population of particles
in this class. Thus, the basic algorithm is simple, but possibly inefficient due
to the large fraction of failed attempts. In contrast, in the Bortz algorithm, one
always implements the chosen process, so in this sense the algorithm has opti-
mal efficiency. However, there is a substantial “book keeping” penalty in that
one must maintain and continually update lists of length Nα(m) of particles for
each sub-process (labeled by α and m). In practice, for complex models where
processes have many rates, one may compromise between the two approaches
accepting some fraction of failed attempts to avoid substantial additional com-
plexity or cost in book-keeping.

2.4. A Simple Example

To illustrate these features, consider irreversible island formation during
submonolayer deposition [7]. Here, atoms deposit randomly at rate F per unit
time at the adsorption sites on the surface represented by an L × L site square
lattice (so d = 2) with coordination number z = 4, and with periodic boundary
conditions. Adsorbed atoms (adatoms) then hop randomly to adjacent sites at
rate h per unit time (in each of z = 4 directions) until meeting other diffusing
atoms and irreversibly nucleating new (immobile) islands, or until irreversibly
aggregating with existing islands. We assume some simple rule for incorpo-
rating into islands adatoms which land on top of islands, or which diffuse to
island edges, where this rule does not involve additional processes with finite
rates. Thus, the model is characterized by just two rates. Typically, F ∼ 10−2/s,
but h∼ 105−107/s is many orders of magnitude higher, and this leads to a very
low density of diffusing adatoms on the surface (∼10−5−10−7 atoms per site).
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For this deposition model, we write α = “dep” (deposition), or “hop” (dif-
fusive hopping), where each process is described by a single rate. In the basic
algorithm, one has pdep = F/(F+ zh) � 1, and phop = zh/(F+ zh)≈ 1. Thus,
after choosing a site, typically one attempts to hop, but fails due to the very
low probability of that site being occupied by a diffusing adatom. Also, one in-
crements time by δt = (F+ zh)−1 L−2. In the Bortz algorithm, one maintains a
list of the Nhop diffusing adatoms and their positions. Then, one has Rdep = FL2

(as all sites are adsorption sites) and Rhop = zhNhop. Thus, at each Monte Carlo
step, one chooses either to deposit with probability pdep = FL2/(FL2+ zhNhop),
or to hop with probability phop = zhNhop/(FL2+ zhNhop). For deposition, one
randomly chooses a lattice site and deposits. For hopping, one randomly
chooses one of the Nhop diffusing atoms from the list, and then implements
the hop in a randomly chosen direction. After either event, the list of diffusing
adatoms is updated. In particular, one must check for incorporation into an
island, which leads to removal of the adatom from the list.

2.5. Finite Size Effects

For large systems, the time increments δt described above are small. Thus,
the above algorithms accurately represent the continuous-time dynamics of
the stochastic lattice gas models. These algorithms also automatically produce
an exponential waiting-time distribution between consecutive events for each
particle. However, for small systems, the increments δt become significant on
the time scale of the slowest process. To recover an accurate description of
continuous kinetics and waiting-time distributions, in the basic algorithm, one
could simply reduce all the pα by some factor ε� 1, and correspondingly
reduce all the δt by the same factor. Analogous refinements are possible in the
Bortz algorithm. Instead, one can recover the exponential waiting-time dis-
tribution by setting δt =−ln(x)L−d/Wtot (basic algorithm), or δt =−ln(x)/Rtot

(Bortz algorithm), where x is a random number chosen uniformly in [0,1].
For KMC simulation (in finite systems), there are fluctuations between dif-

ferent runs or trials in predictions of quantities at some specific time. Simplis-
tically, fluctuations in some number, N (e.g., of adsorbed particles, of islands,
etc.) should vary like the square root of the number,

√
N. Such numbers typi-

cally scale linearly with the system size (i.e., the number of sites = Ld), so the
corresponding densities ρ = N/Ld are roughly size-independent. Thus, it fol-
lows that uncertainties in numbers (densities) should scale like Ld/2 (L−d/2).
A more sophisticated analysis comes from applying general fluctuation-
correlation relations (the presentation in Landau and Binder, 2000, for equi-
librium systems is readily generalized): 〈(δN)2〉= Ld Ctot, or equivalently that
〈(δρ)2〉= L−d Ctot, where Ctot represents the pair-correlations for the quantity
of interest (e.g., adsorbed atoms, islands, etc.) summed over all separations.
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Finally, we discuss the effects of finite system size on mean behavior of
quantities of interest. Usually, the choice of periodic boundary conditions is
motivated by the desire to minimize such effects, and specifically to remove
“edge effects”. In general, one expects finite size effects to be negligible when
the linear system size, L, significantly exceeds the relevant spatial correlation
length, Lc. This condition is violated near “critical points” where Lc→∞.

3. Simulation of Homoepitaxial Thin Film Growth
and Relaxation

Homoepitaxial growth [8] involves random deposition of adatoms on a
surface, and their subsequent diffusion. Adatom diffusion mediates nucleation
of new islands, when suitable number of adatoms meet, in competition with
growth of existing islands, when adatoms aggregate with island edges. In add-
ition, the details of interlayer transport are critical in determining multilayer
morphologies. Post-deposition relaxation often occurs on a much longer time-
scale than growth, and different processes may dominate, e.g., 2D evaporation-
condensation at island edges.

3.1. Tailored Models and Algorithms

Rather than developing generic models which might handle both growth
and relaxation, often a more effective strategy is to develop “tailored” mod-
els. These focus on the essential atomistic processes (for the conditions of
interest) which are described by a few key parameters. As an example, we
describe a simple but effective model for metal(100) homoepitaxial growth
with irreversible island formation [9]. As in the simple example used above,
deposition occurs at rate F and subsequent hopping to adjacent sites at rate
h. Diffusing adatoms irreversibly nucleate new islands upon meeting, and
irreversibly aggregate with existing islands. Islands have compact near-square
shapes in these systems due to efficient edge diffusion and kink rounding.
Thus, once a diffusing atom reaches an island edge, it is immediately moved
to a nearby doubly-coordinated kink site. This produces near-square individ-
ual islands, and describes reasonably growth coalescence shapes for impinging
islands. Atoms landing on top of islands diffuse until nucleating new islands
in higher layers, or until reaching island edges. In the latter case, adatoms
can hop down to lower layers also with rate h if the step edge is kinked, but
with reduced rate h ′< h, for a straight close-packed step edge. Finally, we
incorporate “downward funneling” of atoms deposited right at step edges to
adsorption sites in lower layers. See Fig. 1 for a schematic of these processes.
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Figure 1. Schematic of metal(100) homoepitaxy with irreversible island formation. The
square grid represents the lattice of substrate adsorption sites. Adatoms reaching island edges
are moved immediately to nearby kink sites [9].

Thus, the model has only three rates, h, h ′, and F . One would naturally
apply a Bortz-type algorithm maintaining a list of all hopping atoms in all
layers. Rather than maintain a separate list of atoms just above close-packed
step edges which can hop down at a distinct reduced rate h ′, it is easier to
include them in a single list of “hoppers”, but if hopping down is selected, then
implement this process with probability pdown = h ′/h < 1. One can determine
h by matching the observed submonolayer island density, and h ′ by match-
ing, e.g., the second layer population after deposition of 1 ml. Corresponding
activation barriers come from assuming an Arrhenius form with a prefactor of
∼1013/s. Then, matching F to experiment, the model has no free parameters.
How does it do? For Ag/Ag(100) homoepitaxy at 300 K, a purported classic
case of smooth quasi-layer-by-layer growth, it predicts initial smooth growth
up to ∼30 ml, but then extremely rapid roughening up to ∼1500 ml. For lower
temperatures, initial growth is rougher (as expected), but growth of thicker
films is smoother than at 300 K (contrasting expectations). These predictions
are supported by recent experiments, i.e., the tailored model works!

3.2. Classically Exact Models and Algorithms
(with Look-up Tables for Rates)

In contrast to tailored models, one could attempt to describe exactly adatom
diffusion in all possible local environments during or after growth. Typically,
the barrier for intra-layer diffusion will depend only on the occupancy of
sites which are neighbors or next-neighbors to either the initial or final site
of the hopping particle. For metal(100) surfaces represented by a square
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lattice of adsorption sites, there are 10 such sites. Then, one should specify
rates or barriers for 210=1024 possible local environments, ignoring symme-
tries [10, 11]. Thus, in the simulation algorithm, if hopping is chosen, one
must assess the local environment of the selected adatom, and determine the
relevant rate which will be stored in a large look-up table. It is not possible
to precisely determine so many barriers, and in fact film morphology may not
be sensitive to the precise values of many of these: too low means the process
is essentially instantaneous, too high means inoperative on the relevant time
scale. For efficiency in simulation with look-up tables, it is reasonable to not
implement processes with barriers above a certain threshold value, and per-
haps to divide up all diffusing particles into a few classes (fast, medium, slow
diffusers) for Bortz-type treatment [11].

This approach was introduced by Voter [10] to treat post-deposition dif-
fusion of 2D islands in metal(100) homoepitaxial systems, and then adapted
to treat film growth [11]. Originally, the values of barriers for rates were det-
ermined from Lennard–Jones or semi-empirical many-body potentials. Effort
has been made to decompose this large set of diffusion processes into a few
basic classes (which can aid simulation, as indicated above), and to develop
reliable approximate formulae for barriers in various environments. Recently,
at least a subset of key rates have been extracted from higher-level DFT cal-
culations. However, we caution that even DFT may not have the accuracy to
allow quantitative prediction of film morphologies.

3.3. Self-Teaching or On-the-Fly Algorithms

There are a vast number of possible local configurations and rates for
diffusing adatoms, but how many of these are practically important? Usu-
ally, most of these processes are associated with diffusion and detachment
of adatoms at step edges, and one has some idea as to which are the most
dominant processes. Thus, one strategy is to start with a smaller look-up
table containing these key rates. Then, run the simulation using these rates,
and any time a new local environment is generated in which an atom attempts
to hop, stop the simulation, calculate the rate, insert the configuration and bar-
rier value into the table, and continue the simulation [12, 13]. This approach
could even be utilized to search for possible many-atom concerted moves in
addition to probing single-atom hops.

3.4. Hybrid Algorithms

Many thin film deposition systems exhibit large characteristic lateral
lengths (e.g., large island separations). Consequently, rather than atomistic



1762 J.W. Evans

simulation of deposition and diffusion-mediated aggregation at island edges, it
makes sense to adopt a continuum PDE description of the adatom density [14,
15]. The local nucleation rate can be determined from this density, and the nu-
cleation process implemented stochastically with this rate. This approach has a
significant advantage for reversible island formation with a high density of dif-
fusing adatoms, as it is computationally expensive to follow all these particles
in KMC. However, a continuum description of island growth can be problem-
atic. Growth shapes are very sensitive to noise in the aggregation process for
inefficient shape relaxation (the Mullins–Sekerka or DLA instability), and rel-
iable continuum formulations are lacking for compact growth shapes due to
efficient shape relaxation. Thus, it is natural to combine a continuum descrip-
tion of deposition, diffusion, and aggregation with an atomistic description of
island shape evolution [16]. To grow islands, one tracks the cumulative total
aggregation flux, and adds an atom when this reaches unity at a location chosen
with a probability reflecting the local aggregation flux. Treatment of detach-
ment from island edges is similar. Edge diffusion is treated atomistically as in
a standard simulation.

3.5. Other Algorithms

For island formation during deposition, island growth rates can be charac-
terized precisely in terms of the areas of “capture zones” (CZs) which
surround islands [14]. Combining this CZ-based formulation of island growth,
together with a reliable characterization of the spatial aspects of nucleation,
e.g., as primarily along CZ boundaries, one could imagine implementing a
purely Geometry-Based Simulation (GBS) algorithm for island formation. As
in the above hybrid approach, here one retains a stochastic component to
the prescription of island nucleation [17]. Finally, we discuss tailored simu-
lation algorithms for post-deposition coarsening of submonolayer island dis-
tributions in metal(100) homoepitaxial systems, where coarsening is mediated
by the diffusion and coalescence of islands. Given the diffusion rates versus
island size, one could develop the following simulation algorithm [18]: adopt
a simple characterization of islands as squares with various sizes; let these
undergo random walks with the appropriate diffusion rates; after each colli-
sion, replace two islands by a single island so as to preserve size.

4. Simulation of Catalytic Surface Reactions

In catalytic surface reaction systems, the reactants are continually intro-
duced as a gas above the surface. They adsorb (sometimes reversibly), usu-
ally diffuse across the surface, and react with coadsorbed species, producing
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product(s) which desorb. The reactant and product species are continually re-
moved from the system by pumping. Thus, one has an open system which
might achieve a time-independent steady-state, but this is not a Gibbs state.
In simple models, it may also be possible to develop absorbing (or poisoned)
states where the surface is completely covered by some non-desorbing species
[19]. In more complex models, one may develop oscillatory states, although
fluctuations preclude perfect periodic behavior.

4.1. Basic Algorithms

If adsorption, desorption, diffusion, and reaction rates are comparable, then
the basic KMC algorithm is effective. Consider the canonical monomer (A)–
dimer (B2) reaction [19–21], which mimics CO-oxidation (A=CO and B2=O2):
A adsorbs reversibly at single empty sites; B2 adsorbs dissociatively and irre-
versibly at nearby pairs of empty sites; A may diffuse on the surface; adjacent
A and B react to produce the product AB (=CO2) which immediately desorbs.
For limited (non-reactive) desorption of A, upon increasing the adsorption rate
of A relative to B2, one finds a discontinuous non-equilibrium phase transition
from a reactive steady state with low A-coverage, θ−A , to a nearly A-poisoned
steady state with high θ+A . This discontinuous transition disappears at a non-
equilibrium critical point upon increasing the A desorption rate. See Fig. 2 for
a schematic of the monomer-dimer reaction model and its steady-state behavior.

As an aside, in the absence of desorption of A, this model exhibits a com-
pletely A-poisoned absorbing state [19]. From the general properties of finite-
state Markov processes, any finite system must eventually evolve to such a
state [3], while infinite systems can avoid such states indefinitely by remain-
ing in other non-trivial steady states. Thus, KMC simulation must eventually
reach such absorbing states (there are no true non-trivial steady states). How-
ever, in practice, this can take an immense amount of time, and the system
resides in a pseudo-steady state which accurately reflects the true steady state
of the corresponding infinite system.
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Figure 2. Schematic of the monomer (A)–dimer (B2) surface reaction model which mimics
CO-oxidation. Also shown is the variation of the steady-state coverage of A with adsorption
rate, pA. Note the emergence of bistability with increasing hop rate, hA, of A.
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The above example illustrates that non-equilibrium steady states can
exhibit phase transitions analogous to classic equilibrium systems. One can-
not apply thermodynamic concepts geared to Hamiltonian systems, but KMC
simulation combined with finite-size-scaling ideas borrowed from equilibrium
theory is an effective tool to analyze their behavior. This remains true for more
a realistic reaction model which incorporate rapid diffusion of CO, and inter-
actions between adsorbed CO and O, although refined algorithms are needed
for efficient simulation [20].

4.2. “Constant-Coverage” Simulation Algorithms

In the conventional “constant-adsorption-rate” simulations of the above
monomer-dimer model, if adsorption is selected as the process to be imple-
mented, one chooses between attempting deposition of A or of B2 with
probabilities reflecting their adsorption rates. A distinct “constant-coverage”
simulation approach was suggested by Ziff and Brosilow [22]. Here, the struc-
ture of the conventional simulation algorithm is retained, except that now if
adsorption is selected, one attempts to adsorb A (B2) if the current coverage
is below (above) some prescribed target “constant-coverage” value, θ∗A, say.
Furthermore, during the simulation, one tracks the fraction of attempts to ad-
sorb A (rather than B2). The long-time value of this fraction determines the
A adsorption rate corresponding to the prescribed coverage θ∗A. Thus, it deter-
mines the adsorption rate exactly at the discontinuous transition if one chooses
θ−A <θ∗A <θ+A . In summary, in conventional simulations of steady state be-
havior, one prescribes the A adsorption rate, and extracts the A coverage. In
constant-coverage simulations, one prescribes the A coverage and extracts the
A adsorption rate. Other variations are possible.

Are the constant-adsorption-rate and constant-coverage simulations entirely
consistent? Clearly, for conventional simulations in a small finite system, there
are significant fluctuations in the steady-state A coverage. Such fluctuations
are “artificially” removed in the constant-coverage simulation approach, so
one also should expect some differences in mean values of various quantities.
However, in the limit of large system size where fluctuations in conventional
simulations diminish, the two simulation approaches should converge.

4.3. Hybrid Algorithms

In “real” CO-oxidation or related reactions, the surface diffusion or hop
rate for CO is often many orders of magnitude above other rates. Also, since
removal of CO from the surface is not diffusion-limited, but reaction-limited,
there is a significant build-up of rapidly hopping CO molecules. This makes
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conventional simulation inefficient. However, rapid mobility and reaction-
limited removal of CO also mean that the CO should be quasi-equilibrated
within the complex geometry of the relatively immobile coadsorbed reac-
tant O. This suggests a hybrid approach wherein the distribution of CO is
described by some simple analytic equilibrium procedure, and the O distribu-
tion is described by conventional LG KMC simulations [20, 23]. Here, reaction
of a specific O to form CO2 is determined from the equilibrium probability of
finding an adjacent CO.

Next, we discuss application of the hybrid approach to the monomer–dimer
reaction with infinitely mobile adsorbed A, which does not interact with other
adsorbed A or B (other than through reaction with B). Now A will be ran-
domly distributed on sites not occupied by B. Thus, in our hybrid simulation
procedure, we track the location of all adsorbed Bs with a LG simulation,
but just the total number of adsorbed A. From this number, one can readily
determine the (spatially uniform) probability that any non-B site is occupied
by A, and thus determine reaction rates, etc. The most dramatic consequence
of replacing finite mobility of A with infinite mobility is that the discontin-
uous transition described above is replaced by bistability, i.e., stable reactive
and near-poisoned states coexist for a range of A adsorption rates [24].

Bistability is also obtained from a mean-field rate equation treatment of the
chemical kinetics. This is not surprising since mean-field equations apply to a
well-stirred system (i.e., rapid surface diffusion). In this mean-field treatment,
the two stable steady states are smoothly joined by a coexisting unstable state,
all of which are readily determined from a steady-state rate equation analysis.
In our hybrid model, one expects that an unstable steady state may exist. How-
ever, it will have a non-trivial distribution of adsorbed O, and cannot be read-
ily analyzed by conventional (constant-adsorption-rate) simulations for which
the system will always evolve away from the unstable state. However, effi-
cient analysis of the non-trivial unstable state behavior is possible by simply
implementing a constant-coverage version of the hybrid simulation code [20,
24]. By varying the target θ∗A, one maps out both stable and unstable steady
states.

5. Outlook

KMC simulation has proved a tremendously successful tool for analyz-
ing and elucidating the evolution of non-equilibrium LG models for a broad
variety of cooperative phenomena (not just in physical sciences). This
approach will continue to be applied effectively to analyze more complex
and realistic models in traditional areas of investigation, as well as in new
areas of cooperative phenomena. Recent variations and hybrid algorithms show
great promise not only in more efficiently connecting atomistic processes with
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resulting behavior on far larger length scales, but just as significantly in
providing fundamental insight into the key physics.
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