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STOCHASTIC CHEMICAL KINETICS

Daniel T. Gillespie
Dan T Gillespie Consulting, 30504 Cordoba Place, Castaic, CA 91384

The time evolution of a well-stirred chemically reacting system is tradition-
ally described by a set of coupled, first-order, ordinary differential equations.
Obtained through heuristic, phenomenological reasoning, these equations
characterize the evolution of the molecular populations as a continuous, deter-
ministic process. But a little reflection reveals that the system actually possesses
neither of those attributes: Molecular populations are whole numbers, and when
they change they always do so by discrete, integer amounts. Furthermore, in
excusing ourselves from the arduous task of tracking the positions and velocities
of all the molecules in the system, which we hope to justify on the grounds that
the system is “well-stirred”, we preclude a deterministic description of the sys-
tem’s evolution; because, a knowledge of the system’s current molecular pop-
ulations is not by itself sufficient to predict with certainty the future molecular
populations. Just as rolled dice are essentially random or “stochastic” when we
do not precisely track their positions and velocities and all the forces acting on
them, so is the time evolution of a well-stirred chemically reacting system for
all practical purposes stochastic. That said, discreteness and stochasticity are
usually not noticeable in chemical systems of “test-tube” size or larger, and for
most such systems the traditional continuous deterministic description seems
to be adequate. But if the molecular populations of some reactant species are
very small, as is often the case for instance in cellular systems in biology, dis-
creteness and stochasticity can sometimes play an important role. Whenever
that happens, the ordinary differential equations approach will not be able to
accurately describe the true behavior of the system.

Stochastic chemical kinetics attempts to describe the time evolution of a
well-stirred chemically reacting system as an overtly discrete, stochastic pro-
cess, evolving in real (continuous) time. And it tries to do this in a way that
accurately reflects how chemical reactions physically occur at the molecu-
lar level. This article will outline the theoretical foundations of stochastic
chemical kinetics, and then derive and interrelate its principle equations and
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computational methods. It will also show how it happens that the resulting dis-
crete, stochastic description usually gives way to the traditional continuous,
deterministic description in a special limiting approximation.

1. Microphysical Foundations of Stochastic
Chemical Kinetics

We consider a well-stirred system of molecules of N chemical species
{S1, . . . , SN }, which interact through M chemical reaction channels {R1, . . . ,
RM }. We assume the system to be confined to a constant volume �, and to be
in thermal (but not necessarily chemical) equilibrium at some constant absolute
temperature T . We let Xi (t) denote the number of molecules of species Si in
the system at time t . Our goal is to estimate, as best we can, the state vector
X(t)=(X1(t), . . . , X N (t)), given that the system was in state X(t0)= x0 at some
initial time t0 < t .1

Each reaction channel R j is assumed to be “elemental” in the sense that it
describes a distinct physical event which happens essentially instantaneously.
This assumption restricts us to two general types of reaction: Unimolecular
reactions of the form Si → product(s); and bimolecular reactions of the form
Si + Si ′ → product(s), where in the latter i ′ may or may not be the same
as i .2

A given reaction channel R j is characterized mathematically by two quan-
tities. The first is its state-change vector ν j = (ν1 j , . . . , νN j ), where νi j is
defined to be the change in the Si molecular population caused by one R j

reaction event; thus, if the system is in state x and an R j reaction occurs, the
system immediately jumps to state x + ν j . The two-dimensional array

{
νi j

}
is commonly known as the stoichiometric matrix. Its elements are practically
always confined to the values 0, ±1 and ±2.

The other defining quantity for reaction channel R j is its propensity function
a j . It is defined as follows:

a j (x) dt
�
= the probability, given X(t)= x, that one R j reaction

will occur somewhere inside � in the next infinitesimal
time interval [t, t + dt). (1)

1Boldface variables will always be understood here to be N-component vectors, with the components
corresponding to the N chemical species in the system.
2A set of three elemental reactions of the form S1 + S2 →← S4 and S3 + S4 → S5 can often be regarded as
the single trimolecular reaction S1+ S2+ S3 → S5 if the first two reactions are much faster than the third.
But this is always an approximation.
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This definition might be said to be the fundamental premise of stochastic
chemical kinetics, because everything else follows from it. It is important to
recognize that this probabilistic definition has a solid basis in physical theory,
more solid in fact than the reasoning that is traditionally used to justify the de-
terministic differential equations mentioned earlier. Since the microphysical
basis of Eq. (1) ultimately determines the forms of the propensity functions, it
is appropriate to describe it briefly here.

If R j is the unimolecular reaction S1→ product(s), the underlying phy-
sics, which might be quantum mechanical, generally dictates the existence
of some constant which we shall call c j such that c j dt gives the probability
that any particular S1 molecule will so react in the next infinitesimal time
dt . If there is currently a finite number x1 of S1 molecules in the system, we
can take dt to be so small that no more than one of them will undergo that
reaction in the next dt . This allows us to invoke the addition law of probability
theory for mutually exclusive events, and so calculate the probability for any
S1 molecule in the system to undergo the R j reaction by simply summing the
individual reaction probabilities. That sum gives x1× c j dt , from which we
may conclude that the propensity function in Eq. (1) is a j (x) = c j x1.

If R j is a bimolecular reaction of the form S1+S2 → product(s), stochas-
ticity manifests itself in two ways, both stemming from the fact that we do not
know the exact position and velocity of any molecule in the system: First, we
can predict only the probability that an S1 molecule and an S2 molecule will
collide in the next dt . And second, we can predict only the probability that
such a collision will actually produce an R j reaction. Consider a randomly
chosen pair of S1 and S2 molecules. The assumption of thermal equilibrium
implies that the S2 molecule will see the S1 molecule moving with an av-
erage relative speed v̄12 =

√
8kBT /πm12, where kB is Boltzmann’s constant

and m12 = m1m2/(m1 + m2). Denote the effective collision cross section of
the molecular pair by σ12 (which would equal π(r1 + r2)

2 if the molecules
were hard spheres with radii r1 and r2). In the next infinitesimal time dt,
the S1 molecule will sweep out relative to the S2 molecule an infinitesimally
small “collision volume” of size (v̄12 dt)σ12 – so called because if the center
of the S2 molecule happens to lie inside that volume then the two molecules
will collide in the next dt . (We take dt to be so small that there is virtually
no chance that the collision will be preempted by an earlier collision with
some third molecule.) By our assumption that the system is “well-stirred”
– a condition that can be secured either by an externally driven stirrer or
by the inevitable self-stirring effects of the many non-reactive (bounce-off)
molecular collisions that typically occur in such a system – the probability
that the center of the S2 molecule will lie inside the collision volume is just
the ratio of that volume to the total system volume: (v̄12dt)σ12/�. This ratio
is therefore the probability that the pair will collide in the next dt . Denot-
ing by p j the probability that a colliding S1-S2 molecular pair will actually
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react according to R j , we conclude by the multiplication law of probability
theory that

(v̄12dt)σ12

�
× p j =

(
v̄12σ12 p j

�

)
dt

�
= c j dt (2)

gives the probability that a randomly chosen S1-S2 molecular pair will und-ergo
the R j reaction in the next dt . Now taking dt to be so small that no more
than one of the x1x2 S1-S2 pairs in the system will react in the next dt , we can
invoke the addition law of probability for mutually exclusive events to com-
pute the probability for some pair to so react as x1x2×c j dt . Thus we conclude
that the propensity function in Eq. (1) is a j (x) = c j x1x2. If this bimolecular
reaction had instead been S1 + S1 → product(s), we would have reckoned the
number of distinct S1 molecular pairs to be x1(x1− 1)

/
2, and so obtained for

the propensity function a j (x) = c j (1/2)x1(x1− 1), which properly vanishes if
there is only one S1 molecule.

The foregoing analysis shows two things: First, an elemental reaction chan-
nel R j can indeed be described by a function a j (x) in the manner prescribed
by Eq. (1). And second, a j (x) can usually be written as the product of some
constant c j , called the specific reaction probability rate constant, times the
number of distinct combinations of R j reactant molecules that are available
when the system’s state is x. Our subsequent work here will depend criti-
cally on the first point, but will tolerate considerable variance with respect
to the second; hence, we shall be less concerned here with the forms of the
propensity functions than with the fact that they exist and satisfy Eq. (1).

But we should note in passing that the task of evaluating c j entirely from
first principles is a very challenging one. An interesting result for bimolecular
reactions emerges in the idealized case in which the colliding molecules will
react if and only if the kinetic energy associated with the component of their
relative velocity along their line of centers at contact exceeds some threshold
value ε∗; in that case, it can be proved from elementary kinetic theory that
the conditional reaction probability p j in Eq. (2) is given by p j = −ε∗/kBT ,
thus providing a physically transparent interpretation of the familiar Arrhenius
factor.3 If it were also the case that the reaction can occur only if the point of
collisional contact between the two molecules lies inside specific solid angles
ω1 on molecule 1 and ω2 on molecule 2, then in the absence of any orient-
ing forces p j would contain the additional probability factors (ω1/4π) and
(ω2/4π).

It turns out that c j for a unimolecular reaction is numerically equal to
the reaction rate constant k j of conventional deterministic chemical kinet-
ics, while c j for a bimolecular reaction is equal to k j/� if the reactants are

3See R. Present, Kinetic Theory of Gases (McGraw-Hill, New York, 1958), and D. Gillespie, Physica A
188, 404–425, 1992.
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different species, or 2k j/� if they are the same. Contemplating this result by
itself, one might be tempted to conclude that the fundamental premise (1) and
the mathematical forms of the propensity functions all follow from some sim-
ple heuristic “stochastic extrapolation” of the mass-action equations of deter-
ministic chemical kinetics. But the foregoing analysis shows that that is not
the case: The existence and forms of the propensity functions are rooted in the
realities of molecular dynamics. The equations of stochastic chemical kinetics
cannot be derived in a logically rigorous way from the equations of determin-
istic chemical kinetics; rather, as we shall see later, the derivation goes the
other way.

In what follows, we shall simply assume that the propensity functions
a j (x), like the state-change vectors ν j , are all given.

2. The Chemical Master Equation

Although the probabilistic nature of Eq. (1) precludes making an exact
prediction of X(t) given that X(t0) = x0 for any t > t0, we might reasonably
hope to infer the probability

P(x, t | x0, t0)
�
= Prob {X(t) = x, given X(t0) = x0} . (3)

In technical terms, P(x, t | x0, t0) is the “probability density function” of the
time-dependent “random variable” X(t), and X(t) in turn is, by virtue of the
dynamics prescribed by Eq. (1), a “jump Markov process”.4

It is not difficult to deduce a time-evolution equation for the function (3) by
using the laws of probability theory to write P(x, t + dt | x0, t0) as the sum of
the probabilities of all the mutually exclusive ways in which the system could
evolve from state x0 at time t0 to state x at time t + dt , via specified states at
time t :

P(x, t + dt | x0, t0) = P(x, t | x0, t0)×
⎡⎣1−

M∑
j=1

(
a j (x)dt

)⎤⎦
+

M∑
j=1

P(x− ν j , t | x0, t0)× (
a j (x− ν j )dt

)
.

4A stochastic process – a random variable that depends on time – is said to be Markov if its future values
depend on its past values only through its present value. (A Markov process is distinguished from a Markov
chain by the fact that time is a real or continuous variable in a process and an integer variable in a chain.) A
jump Markov process changes discontinuously at isolated instants in time, and remains constant between
such jumps. There are also continuous Markov processes, which evolve in a way that is mathematically
continuous but often not differentiable.



1740 D.T. Gillespie

Here, the first term on the right is the probability that the system is already
in state x at time t and then no reaction of any kind occurs in [t, t + dt). And
the generic second term is the probability that the system is one R j reaction
removed from state x at time t and then one R j reaction occurs in [t, t + dt).
That these M+ 1 routes to the final state x are mutually exclusive and collec-
tively exhaustive is ensured by taking dt to be so small that no more than one
reaction of any kind can occur in [t, t + dt). Subtracting P(x, t | x0, t0) from
both sides of the above equation, dividing through by dt , and then taking the
limit dt → 0, we obtain what is know as the chemical master equation (CME):

∂P(x, t | x0, t0)

∂t
=

M∑
j=1

[
a j (x− ν j )P(x− ν j , t | x0, t0)

− a j (x)P(x, t | x0, t0)
]
. (4)

In principle, the CME completely determines the function P(x, t | x0, t0).
But a closer inspection of Eq. (3) reveals that it is actually a set of coupled,
ordinary differential equations in t ; in fact, there is one equation for each
possible value (0,1,2, . . .) of each of the M components of the variable x –
roughly as many equations as there are combinations of molecules in the sys-
tem! So it is perhaps not surprising that the CME can be solved analytically
for only a very few very simple systems, and numerical solutions are usually
prohibitively difficult in other cases.

One might hope, less ambitiously, to learn something from the CME about
the behavior of functional averages like 〈 f (X(t))〉≡∑

x f (x)P(x, t | x0, t0),
but this too turns out to be practically impossible if any of the reaction channels
are bimolecular. For example, it can be proved from Eq. (4) that

d〈X(t)〉
dt

=
M∑
j=1

ν j
〈
a j (X(t))

〉
. (5)

Now, if all the reactions were monomolecular, the propensity functions would
all be linear in the state variables, and we would have

〈
a j (X(t))

〉
= a j (〈X(t)〉).

Equation (5) would then become a closed ordinary differential equation
for the first moment or mean 〈X(t)〉. But if any reaction is bimolecular, the
right hand side of Eq. (5) will contain at least one quadratic moment of the
form 〈Xi (t)Xi ′(t)〉, and Eq. (5) would then be merely the first of an infinite,
openended set of equations for all the moments.

In the hypothetical case in which there are no fluctuations, i.e., if X(t)
were a deterministic or sure process, we would have 〈 f (X(t))〉= f (X(t)) for
all functions f . Equation (5) would then reduce to

dX(t)

dt
=

M∑
j=1

ν j a j (X(t)). (6)
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This is just the well known reaction rate equation (RRE) of traditional deter-
ministic chemical kinetics – a set of coupled first-order ordinary differential
equations for the components Xi (t), which are now continuous (real) vari-
ables. The RRE is more commonly written in terms of the concentration vari-

able Z(t)
�
= X(t)/�, but that simple scalar transformation is inconsequential

for our purposes here.
Although the foregoing analysis shows that the deterministic RRE (6)

would be valid if all fluctuations were simply ignored, it does not tell us how
or why the fluctuations might ever be “ignorable”. We shall later prove that
the RRE can actually be derived from Eq. (1) through a series of physically
transparent approximating assumptions.

3. The Stochastic Simulation Algorithm

Since the CME (4) is practically never useful for calculating the proba-
bility density function of X(t), we need another approach. Let us look for a
way to construct a numerical realization of X(t), i.e., a simulated trajectory
of X(t) vs. t . Note that this is not the same as solving the CME numeri-
cally; however, much the same effect can be achieved by either histogram-
ming or averaging the results of many realizations. For example, the nth
moment

〈
Xn

i (t1)
〉
, which would be given in terms of the solution to the CME

as
∑

x xn
i P(x, t1 | x0, t0), can also be estimated by generating L trajectories

x(1)(t), . . . , x(L)(t) from state x0 at time t0 to time t1, and then computing

L−1 ∑L
l=1

[
x (l)

i (t1)
]n

. This estimate will have an associated uncertainty which

decreases with the number of realizations L like L−1/2. In practice, it is often
found that as few as two or three simulated trajectories can convey as good a
picture of the dynamical behavior of X(t) as would be afforded by an exact
expression for P(x, t | x0, t0).

The key to generating simulated trajectories of X(t) is actually not the
CME, but rather a new probability function, p(τ, j | x, t), which is defined as
follows:

p(τ, j | x, t) dτ
�
= the probability, given X(t) = x, that the next reaction

in the system will occur in the infinitesimal time
interval [t + τ, t + τ + dτ), and will be an R j

reaction. (7)

Formally, this function is the joint probability density function of the two
random variables “time to the next reaction” (τ ) and “index of the next reac-
tion” ( j), given that the system is currently in state x. If we can derive an
analytical expression for this function, we could use Monte Carlo techniques
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to generate simultaneous samples of τ and j , and that would enable us to
advance the system in time from one reaction event to the next. Happily, it
turns out that we can do all this fairly easily, and without having to make
any approximations.

To derive an analytical expression for p(τ, j | x, t), we begin by introduc-
ing yet another probability function, P0(τ | x, t), which is defined as the prob-
ability, given X(t) = x, that no reaction of any kind occurs in the time interval
[t, t+τ). By the definition (1) and the laws of probability theory, this function
satisfies

P0(τ + dτ | x, t) = P0(τ | x, t)×
⎡⎣1−

M∑
j ′=1

(a j ′(x)dτ )

⎤⎦,
since the right side gives the probability that no reaction occurs in [t, t + τ)
and then no reaction occurs in [t + τ, t + τ + dτ) (as usual we take the
infinitesimal time span dτ to be so small that it can contain no more than
one reaction). A simple algebraic rearrangement of this equation and passage
to the limit dτ→ 0 results in the differential equation

dP0(τ | x, t)

dτ
=−a0(x) P0(τ | x, t),

where we have defined

a0(x)
�
=

M∑
j ′=1

a j ′(x). (8)

The solution to this differential equation for the initial condition
P0(τ = 0 | x, t)= 1 is

P0(τ | x, t) = exp (−a0(x) τ ).

Now we observe that the probability defined in Eq. (7) can be written

p(τ, j | x, t) dτ = P0(τ | x, t)×(a j (x)dτ ),

since the right side gives the probability that no reactions occur in [t, t + τ)
and then one R j reaction occurs in [t + τ, t + τ + dτ). When we insert the
above formula for P0(τ | x, t) into this last equation and cancel the dτ ’s, we
obtain

p(τ, j | x, t) = a j (x) exp (−a0(x) τ ), (9a)
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or equivalently

p(τ, j | x, t) = a0(x) exp (−a0(x) τ )× a j (x)
a0(x)

. (9b)

Equation (9a) is the desired explicit formula for the joint probability density
function of τ and j . The equivalent form (9b) shows that this joint density func-
tion can be factored as the product of a τ -density function and a j -density func-
tion; more precisely, it shows that τ is an exponential random variable with
mean and standard deviation 1/a0(x), while j is a statistically independent
integer random variable with point probabilities a j (x)/a0(x). There are sev-
eral exact Monte Carlo procedures for generating samples of these random
variables. Perhaps the most direct is the procedure that follows by apply-
ing to each of the two probability density functions in Eq. (9b) the so-called
inversion generating method:5 Draw two random numbers r1 and r2 from the
uniform distribution in the unit-interval, and take

τ =
1

a0(x)
ln

(
1

r1

)
, (10a)

j = the smallest integer satisfying
j∑

j ′=1

a j ′(x)> r2 a0(x). (10b)

And so we arrive at the following exact procedure for constructing a numer-
ical realization of the process X(t), a procedure called the stochastic
simulation algorithm (SSA):

0. Initialize the time t = t0 and the system’s state x = x0.
1. With the system in state x at time t , evaluate all the a j (x) and their sum

a0(x).
2. Generate values for τ and j using Eqs. (10) (or an equivalent procedure).
3. Effect the next reaction by replacing t ← t + τ and x ← x+ ν j .
4. Record (x, t) as desired. Return to Step 1, or else end the simulation.

The X(t) trajectory that is produced by the SSA might be thought of as
a “stochastic version” of the trajectory that would be obtained by solving the
RRE (6). (But note that the time step τ in the SSA is exact, and is not a finite
approximation to some infinitesimal dt , as is the time step in most numerical
solvers for the RRE.) If it is found that every SSA-generated trajectory is prac-
tically indistinguishable from the RRE trajectory, then we may conclude that
microscale randomness is negligible for this system. But if the SSA trajecto-
ries are found to deviate significantly from the RRE trajectory, then we must

5It can be proved that a sample x of the random variable X can be obtained from a sample r of the unit-
interval uniform random variable by solving

∫ x
−∞ P(x ′)dx ′ = r , where P is the density function of X . This

is known as the “inversion” generating procedure.
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conclude that microscale randomness is not negligible, and the deterministic
RRE does not provide an accurate description of the system’s true behavior.

The SSA and the CME are logically equivalent to each other, since each
is derived without approximation from premise (1). But even when the CME
is completely intractable, the SSA is quite straightforward to implement. In
fact, as a numerical procedure, the SSA is even simpler than the procedures
that are typically used to numerically solve the RRE (6). The catch is that the
SSA is often very slow. The source of this slowness can be traced to the factor
1/a0(x) in Eq. (10a), which as mentioned earlier is the mean of the random
variable τ : Since a0(x) is at least linear and more commonly quadratic in the
reactant populations, a0(x) can be very large, and 〈τ 〉 correspondingly very
small, whenever any reactant species is present in large numbers, and that is
nearly always the case in practice.

One notable attempt to speed up the SSA is the Gibson-Bruck procedure,
which advances the system in exact accord with the function p(τ, j | x, t) in
Eq. (9) but using a different scheme than Eqs. (10).6 Although this procedure
is more complicated to code than the procedure described above, it is signif-
icantly faster and more efficient for systems having many species and many
reaction channels.

But any procedure that simulates every reaction event, exactly and one at a
time, will inevitably be too slow for many practical applications. This prompts
us to consider the possibility of giving up some of the exactness of the SSA in
return for greater simulation speed.

4. Tau Leaping

One approximate accelerated simulation strategy is tau-leaping, which tries
to advance the system by a pre-selected time interval τ that encompasses more
than one reaction event. To properly accomplish that feat when the system is
in state x at time t , we need to know how to generate sample values of the
M random variables

K j (τ ; x, t)
�
= the number of times reaction channel R j fires

in [t, t + τ), given that X(t) = x ( j = 1, . . . , M). (11)

For then, we could simply insert those sample values into the update formula

X(t + τ) = x+
M∑
j=1

K j (τ ; x, t) ν j (12)

6For details, see M. Gibson and J. Bruck, J. Phys. Chem., 104, 1876–1889, 2000.
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to “leap” the system ahead by the chosen time τ . Unfortunately, that is eas-
ier said than done. In general, the M random variables (11) are statistically
dependent, and it is not altogether clear even how to calculate their joint prob-
ability density function, much less generate random samples according to that
function.

Suppose, however, that τ is chosen small enough that the following Leap
Condition is satisfied: The expected state change induced by the leap is suf-
ficiently small that no propensity function changes its value by a significant
amount. In that case, we should be able to approximate each K j (τ ; x, t) by a
statistically independent Poisson random variable:

K j (τ ; x, t) ≈ P j (a j (x), τ ) ( j = 1, . . . , M). (13)

This is because the generic Poisson random variable P(a, τ ) is by definition
the number of events that will occur in time τ , given that a dt is the probability
that an event will occur in any infinitesimal time dt , where a may be any
positive constant (hence the need for the Leap Condition).7 Therefore, if we
can find a value for τ that is small enough that the Leap Condition is satisfied,
yet large enough that many reaction events occur in time τ , we may indeed
have a faster, albeit approximate, simulation strategy.

The practical question arises, how can we determine in advance the largest
value of τ that is compatible with the Leap Condition? Although there is as
yet no unequivocal answer to this question, the following recipe for choosing
τ will approximately ensure that no propensity function is likely to change its
value in the leap by more than εa0(x), where ε is some pre-chosen accuracy
control parameter satisfying 0<ε� 1: With

f j j ′(x)
�
=

N∑
i=1

∂a j (x)
∂xi

νi j ′ ( j, j ′ = 1, . . . , M) (14a)

and

µ j (x)
�
=

M∑
j ′=1

f j j ′(x) a j ′(x)

σ 2
j (x)

�
=

M∑
j ′=1

f 2
j j ′(x) a j ′(x)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ( j = 1, . . . , M), (14b)

take8

τ = Min
j∈[1,M]

{
ε a0(x)∣∣µ j (x)

∣∣ , ε2a2
0(x)

σ 2
j (x)

}
. (15)

7It can be shown that the probability that the random variable P(a, τ ) as so defined will equal any non-
negative integer n is e−aτ (aτ )n

/
n!, and also that the mean and variance of P(a, τ ) are both equal to

aτ .
8For a derivation, see D. Gillespie and L. Petzold, J. Chem. Phys., 119, 8229–8234, 2003.
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The explicit tau-leaping simulation procedure thus goes as follows:

1. In state x at time t , and with a value chosen for ε, evaluate τ from
Eq. (15).

2. For j =1, . . . , M , generate the number of firings k j of reaction R j in time
τ as a sample of the Poisson random variable P

(
a j (x), τ

)
.9

3. Leap, by replacing t← t + τ and x ← x+∑M
j=1 k j ν j .

Smaller values of ε will result in a better satisfaction of the Leap Condition,
and hence a leap that is more accurate, but of course shorter. In the limit
ε→ 0, tau-leaping becomes mathematically equivalent to the SSA; however,
tau-leaping will be very inefficient in that limit because all the k j ’s will usually
be zero, giving a very small time step without any change of state. Therefore,
it is advisable to abort the above procedure after Step 1 if τ is found to be
less than a few multiples of 1/a0(x), the mean time to the next reaction, and
instead use the SSA to step directly to that next reaction.

A variation on the foregoing tau-leaping procedure allows us to advance the
system to the moment of the next firing of some particular reaction channel
Rα , which perhaps initiates some critical sequence of events in the system. To
do that, we start by computing a tentative τ from Eq. (15), and then computing
aα(x) τ , the expected number of Rα firings in that time τ . If aα(x) τ < 1, we
should not try to leap ahead to the next Rα reaction because that would violate
the Leap Condition. But if aα(x) τ ≥ 1, then a leap with kα = 1 should be okay.
In that case, we would generate the actual time τ to the next Rα reaction as
τ = a−1

α (x) ln (1
/

r),where r is a unit-interval uniform random number. Using
that value for τ , we would then generate Poisson values for all the other k j=/ α

as in Step 2, and finally effect the leap as in Step 3.
If the system happens to be “dynamically stiff” – meaning that it has widely

varying dynamical modes, the fastest of which are stable – the explicit tau-
leaping procedure will be computationally unstable for time steps that are
larger than the fastest time scale, and that may severely restrict the size of
τ . Stiffness is very common in chemical systems. Recently, an implicit tau-
leaping procedure has been proposed which shows promise of overcoming the
instability problem for stiff systems.10

It should be noted that tau-leaping is not as foolproof as the SSA. If one
takes leaps that are too large, bad things can happen; e.g., some species popu-
lations might be driven negative. The underlying philosophy of tau-leaping is
to leap over “unimportant” reaction events but not the “important” ones, and

9Numerical procedures for generating Poisson random numbers can be found, for instance, in W. Press,
B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes: The Art of Scientific Computing,
Cambridge University Press, New York, 1986.
10For details, see M. Rathinam, L. Petzold, Y. Cao, and D. Gillespie, J. Chem. Phys., 119, 12784–12794,
2003.
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in some circumstances special measures must be taken to ensure that outcome.
Much more work in this area is needed.

5. The Chemical Langevin Equation

In the previous section we noted that, when the system is in state x at time
t , if we choose a time-step �t that is small enough that none of the propensity
function values changes significantly during �t , then the system’s state at time
t +�t can be decently approximated by

X(t +�t)
.
= x+

M∑
j=1

P j
(
a j (x),�t

)
ν j , (16)

where the P j ’s are statistically independent Poisson random variables. Sup-
pose the system admits a �t that satisfies not only that condition, but also
the condition that the expected (or mean) number of firings of each reaction
channel in time �t is� 1; i.e.,

a j (x)�t � 1 for all j = 1, . . . , M. (17)

It will usually be possible to find such a �t if the molecular populations of all
reactant species are “sufficiently large”. Now, it is well know that the Poisson
random variable P(a, τ ), which has mean and variance aτ , can be approxi-
mated when aτ� 1 by the normal random variable with the same mean and
variance.11 Therefore, denoting the normal random variable with mean m and
variance σ 2 by by N (m, σ 2), condition (17) allows Eq. (16) to be further
approximated as follows:

X(t +�t)
.
= x+

M∑
j=1

N j
(
a j (x)�t, a j (x)�t

)
ν j , (18a)

= x+
M∑
j=1

(
a j (x)�t +

√
a j (x)�tN j(0, 1)

)
ν j ,

X(t +�t)
.
= x+

M∑
j=1

ν j a j (x)�t +
M∑
j=1

ν j

√
a j (x)N j (0, 1)

√
�t , (18b)

where the second line invokes the fact that N (m, σ 2) = m + σN (0, 1).

11That e−aτ (aτ )n/n! ≈ (2πaτ )−1/2exp(−(n−aτ )2/2aτ ) when aτ � 1 follows from Stirling’s approx-
imation and the small-x approximation for ln(1+ x).
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We have thus established the following result: If the system admits a macro-
scopically infinitesimal time increment dt , defined so that during dt (i) no
propensity function changes its value significantly yet (ii) every reaction chan-
nel fires many more times that once, then we can approximate the t to t + dt
system evolution by

X(t + dt)
.
= X(t)+

M∑
j=1

ν j a j (X(t)) dt +
M∑
j=1

ν j

√
a j (X(t)) N j (t)

√
dt,

(19)

where the N j (t) are M statistically independent, temporally uncorrelated,
normal random variables with means 0 and variances 1. Equation (19) is called
the chemical Langevin equation (CLE). The dot over its equal sign reminds us
that it is an approximation, valid only to the extent that dt is small enough
to satisfy condition (i) and simultaneously large enough to satisfy condition
(ii). It is usually possible to find such a dt if all the reactant populations are
sufficiently large. But if that is not possible, Eq. (19) has no basis and should
not be invoked.

The approximate character of the CLE (19) is underscored in the fact that
the state vector X(t) therein is no longer discrete (integer-valued), but instead
is continuous (real-valued); in fact, the name “Langevin” is applied because
Eq. (19) has the exact mathematical form of the like-named generic equation
that governs the time-evolution of any continuous Markov process. For the
sake of completeness, two pertinent but unobvious results from the formal
theory of continuous Markov processes should be noted here:12 First, Eq. (19)
can be written in the mathematically equivalent form

dX(t)

dt
.
=

M∑
j=1

ν j a j (X(t)) +
M∑
j=1

ν j

√
a j (X(t)) � j (t) . (20)

Here, � j (t) are statistically independent “Gaussian white noise” processes
satisfying

〈
� j (t) � j ′(t ′)

〉
= δ j j ′ δ(t − t ′), where the first delta function is Kro-

necker’s and the second is Dirac’s. Equation (20) is called the “white noise
form” of the CLE. Second, the time evolution of X(t) prescribed by Eq. (19)

12For a proof of the equivalence of the mathematical forms (19), (20) and (21), see D. Gillespie, Am. J.
Phys., 64, 1246–1257, 1996.
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induces a time evolution in the probability density function of X(t) according
to the partial differential equation

∂P(x, t|x0, t0)

∂t
.
= −

N∑
i=1

∂

∂xi

⎡⎣⎛⎝ M∑
j=1

νi j a j (x)

⎞⎠ P(x, t | x0, t0)

⎤⎦
+ 1

2

N∑
i=1

∂2

∂x2
i

⎡⎣⎛⎝ M∑
j=1

ν2
i j a j (x)

⎞⎠ P(x, t | x0, t0)

⎤⎦
+

N∑
i,i ′=1
(i<i ′)

∂2

∂xi∂xi ′

⎡⎣⎛⎝ M∑
j=1

νi jνi ′ j a j (x)

⎞⎠ P(x, t | x0, t0)

⎤⎦.
(21)

This equation is called the chemical Fokker–Planck equation (CFPE). Essen-
tially, we have approximated the jump Markov process governed by the mas-
ter Eq. (4) by the continuous Markov process governed by the Fokker–Planck
Eq. (21).

All this somewhat complicated and possibly unfamiliar mathematics should
not be allowed to obscure the genuine simplicity of the logical arguments
underlying the foregoing derivation of the CLE (19): Condition (i) allowed us
to infer, essentially from the fundamental premise (1), the Poisson approxima-
tion (16), and condition (ii) then allowed us to make the normal approximation
(18), whence the CLE (19).13

Before examining some interesting theoretical implications of the CLE,
we should note that it has a very practical numerical application: In either of
its forms (18), the CLE enables us to approximately advance the system in
time by a macroscopically infinitesimal time increment �t . By virtue of con-
dition (17), that would allow us to leap over very many individual reactions,
thus producing a very substantial increase in simulation speed over the SSA.
The Langevin update formula (18) is computationally more attractive than the
explicit tau-leaping update formula (16) simply because normal random num-
bers are easier to generate than Poisson random numbers.14 But it should be
clear that the Langevin update formula (18) is really just a limiting approxima-
tion of the explicit tau-leaping update formula (16): Whenever conditions (17)
hold, tau-leaping inevitably reduces to Langevin leaping.

13Note that this derivation of the CLE does not proceed in the ad-hoc manner of many Langevin equation
derivations, in which the forms of the coefficients of � j (t) in Eq. (20) are simply assumed with an eye to
obtaining some pre-conceived outcome.
14See the reference cited in footnote 9.
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6. The Reaction Rate Equation Limit

In practice, most chemical systems contain huge numbers of molecules,
and are thus well on their way to the so-called thermodynamic limit, in which
the species populations Xi and the system volume � all approach infinity in
such a way that the species concentrations Xi/� remain constant. The large
molecular populations of such systems usually means that their dynamical
behavior is well described by the CLE (19).

An inspection of the CLE (19) shows that it separates the state incre-
ment X(t + dt) − X(t) in a macroscopically infinitesimal time step dt into
two components: a deterministic component proportional to dt , and a fluctu-
ating component proportional to

√
dt . The deterministic component is evi-

dently linear in the propensity functions, while the fluctuating component is
proportional to the square root of the propensity functions. Now it happens
that all propensity functions grow, in the thermodynamic limit, in direct pro-
portion to the size of the system. For a unimolecular propensity function of
the form c j xi this is obvious; for a bimolecular propensity function of the
form c j xi xi ′ this follows because c j is inversely proportional to the system
volume � [cf. Eq. (2)], which offsets one of the population variables. There-
fore, as the thermodynamic limit is approached, the deterministic component
of the state increment in the CLE (19) grows like the system size, whereas the
fluctuating component grows like the square root of the system size. The fluc-
tuating component thus scales, relative to the deterministic component, as the
inverse square root of the system size. This establishes, in a logically deductive
way, the conventional rule-of-thumb that relative fluctuations in a chemically
reacting system typically scale as the inverse square root of the system size.

This scaling behavior also implies that, in the full thermodynamic limit,
the fluctuating term in the CLE (19) usually becomes vanishingly small com-
pared to the deterministic term, and hence can be dropped. The CLE therefore
becomes in the full thermodynamic limit,

X(t + dt)
.
= X(t)+

M∑
j=1

ν j a j (X(t)) dt . (22)

This is just the conventional RRE (6). But we have now derived it within the
theoretical framework of stochastic chemical kinetics.

Notice how our description of the system’s dynamical behavior has pro-
gressed: The CME (4) and the SSA (9) describe X(t) as a discrete stochas-
tic process. The CLE (19) and the CFPE (21) describe X(t) as a continuous
stochastic process. And the RRE (22) describes X(t) as a continuous deter-
ministic process. At each level, the description is an approximation of the
description at the previous level, valid only under certain specific conditions.
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One instance in which the limiting form (22) can be misleading is when
the sum on the right hand side is zero, which happens whenever the system
evolves to a “stable state”. In such a circumstance, the fluctuating term in
the CLE (19) will inevitably be larger than the deterministic term, and hence
not entirely negligible. Another instance of inadequacy of the RRE concerns
the long-time behavior of an open or driven system that has more than one
stable state: Such a system will in fact perpetually visit all of those stable
states, whereas the RRE contrarily implies that the system will go to the near-
est (downhill) stable state and stay there forever. But in the many cases where
the approximating assumptions leading to the RRE are warranted, the RRE
provides a very efficient description of the system’s temporal behavior.

7. The Chemical Kinetics Modeling Hierarchy

We conclude by summarizing the hierarchy of schemes that are available
for modeling the time evolution of a chemically reacting system, proceeding
from the slowest and most accurate to the fastest and most approximate.

The most exact procedure for simulating the time evolution of a chemi-
cally reacting system is molecular dynamics (MD), wherein the position and
velocity of every molecule in the system are tracked precisely. This results in a
simulation of every molecular collision that occurs in the system, not only the
reactive collisions but also the non-reactive (elastic) collisions. MD is thus able
to show very accurately the evolution of not only the species populations, but
also their spatial distributions. But of course, this essentially exact approach
requires an enormous investment of computation time and resources.

If the system is such that reactive collisions are usually separated in time by
many non-reactive collisions, and the predominant effect of the latter is simply
to “stir” the system, then we may back away from an MD simulation and use
instead the SSA. The SSA simulates only the reactive collisions. Because it
skips over all the non-reactive collisions, and also avoids computing spatial
distributions (which are assumed to be uniform in the statistical sense), the
SSA is computationally much faster than MD.

Tau-leaping is based on the same assumptions as the SSA, but it proceeds
approximately from those assumptions; more specifically, it uses a special
Poisson approximation to advance the system by a pre-selected time τ dur-
ing which more than one reaction event may occur. The size of τ is restricted
by the condition that no propensity function may change its value during τ by
a “significant” amount. Whenever that condition is satisfied and at least some
of the reaction channels fire very many times in τ , tau-leaping will be faster
than the SSA.

A tau-leap in which all of the reaction channels fire many more times than
once is approximately described by the CLE. In a Langevin-leap, the number
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of firings of each reaction channel is approximated by a normal random num-
ber instead of a Poisson random number. Since by hypothesis many reaction
events are skipped over, and since also normal random numbers are easier
to generate than Poisson random numbers, Langevin-leaping is faster than
ordinary tau-leaping.

Finally, if the system admits a description by the CLE and is for all practical
purposes at the thermodynamic or “large system” limit, then the random term
in the CLE will usually be negligibly small compared to the deterministic term.
The CLE then reduces to the deterministic RRE. This RRE limit is usually
justified for macroscopic systems, and when it is, it provides the most efficient
way to simulate the evolution of the system.
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