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ELECTRONIC SCALE
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1. Real-space methods for ab initio calculations

Major computational advances in predicting the electronic and structural
properties of matter come from two sources: improved performance of hard-
ware and the creation of new algorithms, i.e., software. Improved hardware
follows technical advances in computer design and electronic components.
Such advances are frequently characterized by Moore’s Law, which states that
computer power will double every 2 years or so. This law has held true for the
past 20 or 30 years and most workers expect it to hold for the next decade,
suggesting that such technical advances can be predicted.

In clear contrast, the creation of new high performance algorithms defies
characterization by a similar law as creativity is clearly not a predictable act-
ivity. Nonetheless, over the past half century, most advances in the theory of
the electronic structure of matter have been made with new algorithms as
opposed to better hardware. One may reasonably expect these advances to
continue. Physical concepts such as the pseudopotentials and density func-
tional theories coupled with numerical methods such as iterative diagonaliza-
tion methods have permitted very large systems to be examined, much larger
systems than could be handled solely by the increase allowed by computa-
tional hardware advances. Systems with hundreds, if not thousands, of atoms
can now be examined, whereas methods of a generation ago might handle only
tens of atoms.

The development of real-space methods for the electronic structure over
the past ten years is a notable advance in high performance algorithms for
solving the electronic structure problem. Real-space methods do not require
an explicit basis. The convergence of the method, assuming a uniform grid,
can be tested by varying only one parameter: the grid spacing. The method
can be easily be applied to neutral or charged systems, to extended or local-
ized systems, and to diverse materials such as simple metals, semiconductors,
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and transition metals. These methods are also well suited for highly paral-
lel computing platforms as few global communications are required. Review
articles on these approaches can be found in Refs. [1–3].

2. The Electronic Structure Problem

Most contemporary descriptions of the electronic structure problem for
large systems cast the problem within density functional theory [4]. The many
body problem is mapped onto a one electron Schrödinger equation called the
Kohn–Sham equation [5]. For an atom, this equation can be written as( −�

2∇2

2m
− Ze2

r
+ VH(�r)+ Vxc[�r , ρ(�r)]

)
ψn(�r) = Enψn(�r) (1)

where there are Z electrons in the atom, VH is the Hartree or Coulomb poten-
tial, and Vxc is the exchange-correlation potential. The Hartree and exchange-
correlation potentials can be determined from the electronic charge density.
The eigenvalue and eigenfunctions, (En, ψn(�r)), can be used to determine the
total electronic energy of the atom. The density is given by

ρ(�r) =−e
∑

n,occup

|ψn(�r)|2 (2)

The summation is over all occupied states. The Hartree potential is then deter-
mined by

∇2VH(�r) =−4πeρ(�r) (3)

This term can be interpreted as the electrostatic interaction of an electron with
the charge density of system.

The exchange-correlation potential is more problematic. Within density
functional theory, one can define an exchange correlation potential as a func-
tional of the charge density. The central tenant of the local density approxima-
tion [5] is that the total exchange-correlation energy may be written as

Exc[ρ] =
∫
ρ(�r) εxc(ρ(�r)) d3r (4)

where εxc is the exchange-correlation energy density. If one has knowledge
of the exchange-correlation energy density, one can extract the potential and
total electronic energy of the system. As a first approximation the exchange-
correlation energy density can be extracted from a homogeneous electron gas.
It is common practice to separate exchange and correlation contributions to
εxc: εxc = εx + εc [4].

It is not difficult to solve the Kohn–Sham equation (Eq. 1) for an atom.
The potential, and charge density, is assumed to be spherically symmetric
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and the Kohn–Sham problem reduces to solving a one-dimensional problem.
The Hartree and exchange-correlation potentials can be iterated to form a self-
consistent field. Usually the process is so quick for an atom that it can be done
on desktop or laptop computer in a matter of seconds.

In three dimensions, as for a complex atomic cluster, liquid or crystal, the
problem is highly nontrivial. One major difficulty is the range of length scales
involved. For example, in the case of a multielectron atom, the most tightly
bound, core electrons can be confined to within ∼0.1 Å whereas the outer
valence electrons may extend over ∼1–5 Å. In addition, the nodal structure
of the atomic wave functions are difficult to replicate with a simple basis,
especially the cusp in a wave function at the nuclear site where the Coulomb
potential diverges.

One approach to this problem is to form a basis combining highly local-
ized functions with extended functions. This approach enormously compli-
cates the electronic structure problem as valence and core states are treated on
equal footing whereas such states are not equivalent in terms of their chemical
activity.

Consider the physical content of the periodic table, i.e., arranging the ele-
ments into columns with similar chemical properties. The Group IV elements
such as C, Si, and Ge have similar properties because they share an outer s2p2

configuration. This chemical similarity of the valence electrons is recognized
by the pseudopotential approximation [6, 7].

The pseudopotential replaces the “all electron” potential by one that
reproduces only the chemically active, or valence electrons. Usually, the pseu-
dopotential subsumes the nuclear potential with those of the core electrons
to generate an “ion core potential.” As an example, consider a sodium atom
whose core electron configuration is 1s22s22p6 and valence electron configu-
ration is 3s1. The charge on the ion core pseudopotential is +1 (the nuclear
charge minus the number of core electrons). Such a pseudopotential will bind
only one electrons. The length scale of the pseudopotential is now set by the
valence electrons alone. This permits a great simplification of the Kohn–Sham
problem in terms of choosing a basis.

For the purposes of designing an ab initio pseudopotential let us consider
a sodium atom. By solving for the Na atom, we know the eigenvalue, ε3s, and
the corresponding wave function, ψ3s(r) for the valence electron. We demand
several conditions for the Na pseudopotential: (1) The potential bind only the
valence electron, the 3s-electron for the case at hand. (2) The eigenvalue of
the corresponding valence electron be identical to the full potential eigenvalue.
The full potential is also called the all-electron potential. (3) The wave func-
tion be nodeless and identical to the “all electron” wave function outside the
core region. For example, we construct a pseudo-wave function, φ3s(r) such
that φ3s(r)=ψ3s(r) for r > rc where rc defines the size spanned by the ion core,
i.e., the nucleus and core electrons. For Na, this means the “size” of 1s22s22p6
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states. Typically, the core is taken to be less than the distance corresponding
to the maximum of the valence wave function, but greater than the distance of
the outermost node.

If the eigenvalue, εp, and the wave function, φp(r), are known from solving
the atom, it is possible to invert the Kohn–Sham equation to yield an ion core
pseudopotential, i.e., a pseudopotential that when screened will yield the exact
eigenvalue and wave function by construction:

V p
ion(r) = εp + �

2∇2φp

2mφp
− VH(r)− Vxc[r, ρ(r)] (5)

Within this construction, the pseudo-wave function, φp(r), should be identical
to the all electron wave function, ψAE(r), outside the core: φp(r) = ψAE(r) for
r >rc will guarantee that the pseudo-wave function will yield similar chemical
properties as the all electron wave function.

For r< rc, one may alter the all-electron wave function as one wishes,
within certain limitations, and retain the chemical accuracy of the problem.
For computational simplicity, we take the wave function in this region to be
smooth and nodeless. Another very important criterion is mandated. Namely,
the integral of the pseudocharge density, i.e., square of the wave function
|φp(r)|2, within the core should be equal to the integral of the all-electron
charge density. Without this condition, the pseudo-wave function can differ by
a scaling factor from the all-electron wave function, that is, φp(r)=C×ψAE(r)
for r > rc where the constant, C , may differ from unity. Since we expect the
chemical bonding of an atom to be highly dependent on the tails of the valence
wave functions, it is imperative that the normalized pseudo wave function be
identical to the all-electron wave functions. The criterion by which one insures
C = 1 is called norm conserving [2].

An example of a pseudopotential, in this case the Na pseudopotential, is
presented in Fig. 1. The ion core pseudopotential is dependent on the angular
momentum component of the wave function. This is apparent from Eq. (5)
where the V p

ion is “state dependent” or nonlocal. This nonlocal behavior is pro-
nounced for first row elements, which lack p-states in the core, and for first
row transition metals, which lack d-states in the core. A physical explanation
for this behavior can be traced to the orthogonality requirement of the valence
wave functions to the core states. This may be illustrated by considering the
carbon atom. The 2s of carbon is orthogonal to the 1s state, whereas the 2p
state is not required to be orthogonal to a 1p state. As such, the 2s state has a
node; the 2p does not. In transforming these states to nodeless pseudo-wave
functions, more kinetic energy associated with the 2s exists compared to the
2p state. The additional kinetic energy cancels the strong coulombic potential
better for the 2s state than the 2p. In terms of the ion core pseudopotential, the
2s potential is weaker than the 2p state.
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Figure 1. Pseudopotential compared to the all-electron potential for the sodium atom. This
pseudopotential was constructed using the method of Troullier and Martins [8].

In the case of sodium, only three significant components (s, p, and d)
are required for an accurate pseudopotential. Note how the d component is
the strongest following the argument that no core states of similar angular
momentum exist within the Na core. For more complex systems such as a rare
earth metals, one might have four or more components. In Fig. 2, the 3s state
for the all electron potential is illustrated. It is compared to the lowest s-state
for the pseudopotential illustrated in Fig. 1

The Kohn–Sham equation can be rewritten for a pseudopotential as( −�
2∇2

2m
+ V p

ion(�r)+ VH(�r)+ Vxc[�r , ρ(�r)]
)

ψn(�r) = Enψn(�r) (6)

where V p
ion can be expressed as

V p
ion(�r) =

∑
i

V p
i,ion(�r − �Ri ) (7)

where V p
i,ion is the ionic pseudopotential for the i th-atomic species located at

position, �Ri . The charge density in Eq. (7) corresponds to a sum over the wave
functions for occupied valence states.
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Figure 2. Pseudopotential wave functions compared to all-electron wave functions for the
sodium atom. The all-electron wave functions are indicated by the dashed lines.

Since the pseudopotential and corresponding wave functions vary slowly
in space, a number of simple basis sets is possible, e.g., one could use Gaus-
sians [9] or plane waves [6, 7]. Both methods often work quite well, although
each has its limitations. Owing in part to the simplicity and ease of implemen-
tation, plane wave methods have become of the method of choice for elec-
tronic structure work, especially for simple metals and semiconductors like
silicon [7, 10]. Methods based on plane wave bases are often called “momen-
tum” or “reciprocal” space approaches to the electronic structure problem.
Plane wave approaches utilize a basis of “infinite extent.” The extended basis
requires special techniques to describe localized systems. For example, sup-
pose one wishes to examine a cluster of silicon atoms. A common approach
is to use a “supercell method.” The cluster would be placed in a large cell,
which is periodically repeated to fill up all space. The electronic structure of
this system corresponds to an isolated cluster, provided sufficient “vacuum”
surrounds each cluster. This method is very successful and has been used to
consider localized systems such as clusters as well as extended systems such
as surfaces or liquids [10].

In contrast, one can take a rather dramatic alternative view and eliminate
an explicit basis altogether and solve Eq. (6) completely in real space using
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a grid. Real space or grid methods are typically used for engineering prob-
lems, e.g., one might solve for the strain field in an airplane wing using finite
element methods. Such methods have not been commonly used for the elec-
tronic structure problem. There are at least two reasons for this situation. First,
without the pseudopotential method, a nonlinear grid would be needed to
describe the singular coulombic potential near the atomic nucleus and the
corresponding cusp in the wave function. This would enormously complicate
the problem and destroy the simplicity of the method. Second, the non-local
nature of the pseudopotential can be easily addressed in grid methods, but until
recently the formalism for this task has not been available.

Real-space approaches overcome many of the complications involved with
explicit basis, especially for describing nonperiodic systems such as molecules,
clusters and quantum dots. Unlike localized orbitals such as Gaussians, the
basis is unbiased. One need not specify whether the basis contains particular
angular momentum components. Moreover, the basis is not “attached” to the
atomic positions and no Pulay forces need to be considered [11]. Pulay forces
arise from an incomplete basis. As atoms are moved, the basis needs to be
recomputed as the convergence changes with the atomic configuration. Unlike
an extended basis such as those based on plane waves, the vacuum is easily
described by grid points. In contrast to plane waves, grids are efficient and
easy to implement on parallel platforms. Real space algorithms avoid the use
of fast Fourier transforms by performing all calculations in physical space
instead of Fourier space. A benefit of avoiding Fourier transforms is that very
few global communications are required.

Different numerical methods can be used to implement real space meth-
ods such as finite element or finite difference methods. Both approaches have
advantages and liabilities. Finite element methods can easily accommodate
nonuniform grids and can reflect the variational principle as the mesh is
refined [1]. This is an appropriate approach for systems in which complex
boundary conditions exist. For systems where the boundary conditions are
simple, e.g., outside a domain the wave function is set to zero, this is not
an important consideration. Finite differencing methods are easier to imple-
ment compared to finite element methods, especially with uniform grids. Both
approaches have been extensively utilized; however, owing to the ease of
implementation, finite differencing methods have been applied to a wider range
of materials and properties. For this reason, we will illustrate the finite differ-
encing method.

A key aspect to the success of the finite difference method is the availability
of higher order finite difference expansions for the kinetic energy operator,
i.e., expansions of the Laplacian [12]. Higher order finite difference methods
significantly improve convergence of the eigenvalue problem when compared
with standard finite difference methods. If one imposes a simple, uniform grid
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on our system where the points are described in a finite domain by (xi , y j , zk),
one may approximate the Laplacian operator at (xi , y j , zk) by

∂2ψ

∂x2
=

M∑
n=−M

Cnψ(xi + nh, y j , zk)+ O(h2M+2), (8)

where h is the grid spacing and M is a positive integer. This approximation
is accurate to O(h2M+2) under the assumption that ψ can be approximated
accurately by a power series in h. Algorithms are available to compute the
coefficients Cn for arbitrary order in h [12].

With the kinetic energy operator expanded as in Eq. (8), one can set up the
Kohn–Sham equation over a grid. For simplicity, let us assume a uniform grid,
but this is not a necessary requirement. ψ(xi , y j , zk) is computed on the grid
by solving the eigenvalue problem:

− �
2

2m

⎡⎣ M∑
n1=−M

Cn1ψn(xi + n1h, y j , zk)+
M∑

n2=−M

Cn2ψn(xi , y j + n2h, zk)

+
M∑

n3=−M

Cn3ψn(xi , y j , zk + n3h)

⎤⎦+ [
Vion(xi , y j , zk)+ VH(xi , y j , zk)

+ Vxc(xi , y j , zk)
]
ψn(xi , y j , zk) = En ψn(xi , y j , zk) (9)

For L grid points, the size of the full matrix is L2.
A uniformly spaced grid in a three-dimensional cube is shown in Fig. 3.

Each grid point corresponds to a row in the matrix. However, many points
in the cube are far from any atoms in the system and the wave function on
these points may be replaced by zero. Special data structures may be used to
discard these points and retain only those having a nonzero value for the wave
function. The size of the Hamiltonian matrix is usually reduced by a factor of
two to three with this strategy, which is quite important considering the large
number of eigenvectors which must be saved. Further, since the Laplacian can
be represented by a simple stencil, and since all local potentials sum up to a
simple diagonal matrix, the Hamiltonian need not be stored.

Nonlocality in the pseudopotential, i.e., the “state dependence” of the
potential as illustrated in Fig. 1, is easily treated using a plane wave basis
in Fourier space, but it may also be calculated in real space. The nonlocal-
ity appears only in the angular dependence of the potential and not in the
radial coordinate. It is often advantageous to use a more advanced projection
scheme, due to Kleinman and Bylander [13]. The interactions between valence
electrons and pseudo-ionic cores in the Kleinman–Bylander form may be sep-
arated into a local potential and a nonlocal pseudopotential in real space [8],
which differs from zero only inside the small core region around each atom.
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Figure 3. Uniform grid illustrating a typical configuration for examining the electronic struc-
ture of a localized system. The gray sphere represents the domain where the wave functions are
allowed to be nonzero. The light spheres within the domain are atoms.

One can write the Kleinman–Bylander form in real space as

V p
ion(�r)φn(�r) =

∑
a

Vloc(|�ra|)φn(�r)+
∑

a, n,lm

Ga
n,lmulm(�ra)�Vl(ra), (10)

K a
n,lm =

1

〈�V a
lm〉

∫
ulm(�ra)�Vl(ra)ψn(�r)d3r, (11)

and 〈�V a
lm〉 is the normalization factor,

< �V a
lm > =

∫
ulm(�ra)�Vl(ra)ulm(�ra) d3r, (12)

where �ra = �r − �Ra , and the ulm are the atomic pseudopotential wave functions
of angular momentum quantum numbers (l,m) from which the l-dependent
ionic pseudopotential, Vl(r), is generated. �Vl(r) = Vl(r)− Vloc(r) is the dif-
ference between the l component of the ionic pseudopotential and the local
ionic potential.

As a specific example, in the case of Na, we might choose the local part
of the potential to replicate only the l = 0 component as defined by the 3s
state. The nonlocal parts of the potential would then contain only the l = 1 and
l = 2 components. The choice of which angular component is chosen for the
local part of the potential is somewhat arbitrary. It is often convenient to chose
the local potential to correspond to the highest l-component of interest. This
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reduces the computational effort associated with higher l-components [3]. The
choice of the local potential can be tested by utilizing different components for
the local potential.

There are several difficulties with the eigen problems generated in this
application in addition to the size of the matrices. First, the number of
required eigenvectors is proportional to the atoms in the system, and can grow
up to thousands. Besides storage, maintaining the orthogonality of these vec-
tors can be a formidable task. Second, the relative separation of the eigenval-
ues becomes increasingly poor as the matrix size increases and this has an
adverse effect on the rate of convergence of the eigenvalue solvers. Precondi-
tioning techniques attempt to alleviate this problem. A brief review of these
approaches can be found in Ref. [3].

The architecture of the Hamiltonian matrix is illustrated in Fig. 4 for a
diatomic molecule. Although the details of matrix structure will be a func-
tion of the geometry of the system, the essential elements remain the same.
The off-diagonal elements arise from the expansion coefficients in Eq. (8) and
the nonlocal potential in Eq. (10). These elements are not updated during the
self-consistency cycle. The on-diagonal matrix elements consist of the local
ion core pseudopotential, the Hartree potential and the exchange-correlation
potential. These terms are updated each self-consistent cycle.

Figure 4. Hamiltonian matrix for a diatomic molecule in real space. Nonzero matrix elements
are indicated by black dots. The diagonal matrix elements consist of the local ionic pseudopo-
tential, Hartree potential and local density exchange-correlation potential. The off-diagonal
matrix elements consistent of the coefficients in the finite difference expansion and the non-
local matrix elements of the pseudopotential. The system contains about 4000 grid points or
16 million matrix elements.
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Figure 5. Potentials and wave functions for the oxygen dimer molecule. The total electronic
potential is shown on the left along a ray connecting the two oxygen atoms. The Kohn–Sham
molecular orbitals are shown on the right side of the figure. The orbitals on the left are from a
real space calculation and the ones on the right from a plane wave calculation.

While the Hamiltonian matrix in real space can be large, it never needs
to be explicitly saved. Also, the matrix is sparse; the sparsity is a function of
M (see Eq. 8), which is the order of the higher order difference expansion.
For larger values of M , the grid can be made coarse. However, this reduces the
sparsity of the matrix. Conversely if we use standard finite difference methods,
the matrix is sparser, but the grid size must be fine to retain the same accuracy.
In practice, a value of M = 4−6 appears to work very well.

There is a close relationship between the plane wave method and real-space
methods. For example, one can always do a Fourier transform on a real-space
method and obtain results in reciprocal space, or perform the operation in
reverse to go from Fourier space to real space. In this sense, higher order finite
differences can be considered an abridged Fourier transform as one does not
sum over all grid points in the mesh. As a rough measure of the convergence
of real space methods, one can consider a Fourier component or plane wave
cut off of (π/h)2 for a grid spacing, h. Using this criterion, a grid spacing of
h =0.5 a.u.1 would correspond to a plane wave cut-off of approximately 40 Ry.

In Fig. 5, a comparison is between the plane-wave supercell method and
a real-space method for the oxygen dimer. The oxygen dimer is a difficult

11 a.u. = 0.529 Å or one bohr unit of length.
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molecular species using pseudopotentials as the potential is rather deep and
quite nonlocal as compared to second row elements such as silicon. The
total local electronic potential is depicted along a ray containing the oxy-
gen atoms [14]. Also shown are the Kohn–Sham one electron orbitals. The
agreement between the two methods is quite good, certainly less than the
uncertainties involved in the local density approximation. The most noticeable
difference in the potential occurs at the nuclear positions. At this point, the
atomic pseudopotential are quite strong and the variation in the wave function
requires a fine mesh. However, it is important to note that this spatial regime
is removed from the bonding region of the molecule. A survey of cluster and
molecular species using both plane waves and real space method confirms that
the accuracy of the two methods is comparable, but the real space method is
easier to implement [14].

3. Outlook

The focus of the electronic structure problem will likely not reside in solv-
ing for the energy bands of ordered solids. The energy band structure of crys-
talline matter, especially elemental solids, has largely been exhausted. This is
not to say that elemental solids are no longer of interest. Certainly, interest in
these materials will continue as testing grounds for new electronic structure
methods. However, interest in nonperiodic systems such as amorphous solids,
liquids, glasses, clusters, and nanoscale quantum dots is now a major focus
of the electronic structure problem. Perhaps this is the greatest challenge for
electronic structure methods, i.e., systems with many electronic and nuclear
degrees of freedom and little or no symmetry. Often the structure of these
materials are unknown and the materials properties may be a strong function
of temperature.

Real-space methods offer a new avenue for these large and complex sys-
tems. As an illustration of the potential of these methods, consider the example
of quantum dots. In Fig. 6, we illustrate hydrogenated Ge clusters. These clus-
ters are composed of bulk fragments of Ge whose dangling bonds are capped
with hydrogen. The hydrogen passivates any electronically active dangling
bonds. The larger clusters correspond to quantum dots, i.e., semiconductor
fragments whose surface properties have been removed, but whose optical
properties are dramatically altered by quantum confinement. It is well known
that these systems have optical properties with much larger gaps than that of
the bulk crystal. The optical spectra of such clusters are shown in Fig. 7. The
largest cluster illustrated contains over 800 atoms, although even larger clus-
ters have been examined. This size cluster would be difficult to examine with
traditional methods. Although these calculations were done with a ground state
method the general shape of the spectra are correct and the evolution of the
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Figure 6. Hydrogenated germanium clusters ranging from germane (GeH4) to Ge147H100.
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Figure 7. Photoabsorption spectra for hydrogenated germanium quantum dots. The labels E0,
E1 and E2 refer to optical features.
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spectra appear bulk-like by a few hundred atoms. Surfaces, clusters, mag-
netic systems, complex solids have also been treated with real-space methods
[1, 15].

Finally, systems approach the macroscopic limit, it is common to employ
finite element or finite difference methods to describe material properties. One
would like to couple these methods to those appropriate at the quantum (or
nano) limit. The use of real space methods at these opposite limits would be a
natural choice. Some attempts along these lines exist. For example, fracture
methods often divide up a problem by treating the fracture tip with quan-
tum mechanical methods, the surrounding area by molecular dynamics and
the medium away from the tip by continuum mechanics [16].
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