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A MODERN PERSPECTIVE ON
TRANSITION STATE THEORY

J.D. Doll
Department of Chemistry, Brown University, Providence, RI, USA

Chemical rates, the temporal evolution of the populations of species of
interest, are of fundamental importance in science. Understanding how such
rates are determined by the microscopic forces involved is, in turn, a basic
focus of the present discussion.

Before delving into the details, it is valuable to consider the general nature
of the problem we face when considering the calculation of chemical rates. In
what follows we shall assume that we know:

• the relevant physical laws (classical or quantum) governing the system,
• the molecular forces at work,
• the identity of the chemical species of interest, and
• the formal statistical-mechanical expressions for the desired rates.

Given all that, what is the “problem?” In principle, of course, there is none.
“All” that we need do is to work out the “details” of our formal expressions and
we have our desired rates. The kinetics of any conceivable physical, chemical,
or biologic process are thus within our reach. We can predict fracture kinetics
in complex materials, investigate the effects of arbitrary mutations on protein
folding rates, and optimize the choice of catalyst for the decomposition/storage
of hydrogen in metals, right?

Sadly, “no.” Even assuming that all of the above information is at our dis-
posal, at present it is not possible in practice to carry out the “details” at the
level necessary to produce the desired rates for arbitrary systems of interest.

Why not?
The essential problem we face when discussing chemical rates is one of greatly
differing time scales. If, for example, a species is of sufficient interest that it
makes sense to monitor its population, it is, by default, generally relatively
“stable.” That is, it is a species that tends to live a “long” time on the scale
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of something like a molecular vibration. On the other hand, if we are to
understand the details of chemical events of interest, then we must be able
to describe the dynamics of those events on a time scale that is “short” on the
molecular level. If we do otherwise , we risk losing the ability to understand
how those detailed molecular motions influence and/or determine the rates at
issue. What happens then when we confront the problem of describing a rate
process whose natural time scale is on the order of seconds? If we are not
careful we end up drowning in the detail imposed by being forced to describe
events on macroscopic time scales using microscopic dynamical methods. In
short, we spend a great deal of time (and effort) watching things “not happen.”

Is there a better way to proceed?
Fortunately, “yes.” Using methods developed by a number of investigators

[1–9], it is possible to formulate practical and reliable methods for estimat-
ing chemical rates for systems of realistic complexity. While there are often
assumptions involved in the practical implementation of these approaches,
it is increasingly feasible to quantify and often remove the effects of these
assumptions albeit at the expense of additional work.

It is our purpose to review and illustrate these methods. Our discussion
will focus principally on classical level implementations. Quantum formula-
tions of these methods are possible and are considered elsewhere in this mono-
graph. While much effort has been devoted to the quantum problem, it remains
a particularly active area of current research. In the present discussion, we
purposely utilize a sometimes nonstandard language in order to unify the
discussion of a number of historically separate topics and approaches.

The starting point for any discussion of chemical rates is the identification
of various species of interest whose population will be monitored as a function
of time. While there are many possible ways in which to do this, it is conve-
nient to consider an approach based on the Stillinger/Weber inherent struc-
ture ideas [10, 11]. In this formulation, configuration space is partitioned by
assigned each position to a unique potential energy basin (“inherent structure”)
based on a steepest descent quench procedure. The relevant mental image is
that of watching a “ball” roll slowly “downhill” on the potential energy surface
under the action of an over-damped dynamics.

In many applications the Stillinger/Weber inherent structures are them-
selves of primary interest. Although the number of such structures grows rapidly
(exponentially) with system size [12], this type of analysis and the associated
graphical tools it has spawned [13], provide a valuable language for char-
acterizing potential energy surfaces. Wales, in particular, has utilized varia-
tions of the technique to great advantage in their study of the minimization
problem [14].

In our discussion, it is the evolution of the populations of the inherent
structures rather than the structures themselves that are of primary concern.
Inherent structures, by construction, are associated with local minima in the
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potential energy surface. They thus have an intrinsic equilibrium population
that can, if desired, be estimated using established statistical–mechanical tech-
niques. Since the dynamics in the vicinity of the inherent structures is locally
stable, the inherent structure populations tend to be (relatively) slowly varying
and thus provide us with a natural set of populations for kinetic study.

If followed as a function of time under the action of the dynamics generated
by potential energy surface to which the inherent structures belong, the popu-
lations of the inherent structures will, aside from fluctuations, tend to remain
constant at their various equilibrium values. Fluctuations in these populations,
on the other hand, will result in a net flow of material between the various
inherent structures. Such flows are the mechanism by which such fluctuations,
either induced or spontaneous, “relax.” Consequently, they contain sufficient
information to establish the desired kinetic parameters.

To make the discussion more explicit, we consider the simple situation of a
particle moving on the bistable potential energy depicted in Fig. 1. Performing
a Stillinger/Weber quench on this potential energy will obviously produce two
inherent structures. Denoted A and B in the figure, these correspond to the
regions to the left and right of the potential energy maximum, respectively.

We now imagine that we follow the dynamics of a statistical ensemble of
N particles moving on this potential energy surface. For the purposes of dis-
cussion, we assume that the physical dynamics involved includes a solvent or
“bath” (here unspecified) that provides fluctuating forces that act on the system

V(x)

BA

x

Figure 1. A prototypical, bistable potential energy. The two inherent structures, A and B, are
separated by an energy barrier.
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of interest. The bath dynamics acts both to energize the system (permitting it
to acquire sufficient energy to sometimes cross the potential barrier) as well
as to dissipate that energy once it has been acquired. It is important to note
that these fluctuations and dissipations must, in some sense, be balanced if an
equilibrium state is to be produced and sustained [7]. Were the dynamics in
our example purely conservative and one-dimensional in nature, for example,
the notion of rates would be ill-posed.

We now assume in what follows that we can monitor the populations of
the inherent structures as a function of time. Denoting these populations NA(t)
and NB(t), we further assume, following Chandler [7], that the overall kinetics
of the system can described by the phenomenological rate equations

dNA(t)

dt
= −kA→B NA(t)+ kB→A NB(t)

dNB(t)

dt
= +kA→B NA(t)− kB→A NB(t).

(1)

If the total number of particles is conserved, then the two inherent structure
populations are trivially related: the fluctuation in the population of one inher-
ent structure is the negative of that for the other. Assuming a fixed number of
particles, it is thus a relatively simple matter to show that

dδNA(t)

dt
=−(kA→B + kB→A)δNA(t), (2)

where δNA(t) indicates the deviation of NA(t) from its equilibrium value. The
decay of a fluctuation in the population of inherent structure A, relative to an
initial value at time zero, is thus given by

δNA(t) = δNA(0) e−keff t , (3)

where keff is given by the sum of the “forward” and “backward” rate constants

keff = (kA→B + kB→A). (4)

As noted by Onsager [15], it is physically reasonable to assume that if they are
small, fluctuations, whether induced or spontaneous, are damped in a similar
manner. Accepting this hypothesis, we conclude from the above analysis that
the decay of the equilibrium population autocorrelation function, denoted here
by , is given in terms of keff by

〈δNA(0)δNA(t)〉
〈δNA(0)δNA(0)〉 = e−keff t . (5)

Equivalently, taking the time derivative of both sides of this expression, we see
that keff is given explicitly as

keff =−〈δNA(0)δ ṄA(t)〉
〈δNA(0)δNA(t)〉 . (6)
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Equations (5) and (6) are formally exact expressions that relate the sum of
the basic rate constants of interest to various dynamical objects that can be
computed. Since we also know the ratio of these two rate constants (it is given
by the corresponding ratio of the equilibrium populations), the desired rate
parameters can be obtained from either expression provided that we can obtain
the relevant time correlation functions involved.

Although formally equivalent, Eqs. (5) and (6) differ with respect to their
implicit computational demands. Computing the rate parameters via Eq. (5),
for example, entails monitoring the decay of the population autocorrelation
function. To obtain reliable estimates of the rate parameters from Eq. (5), we
have to follow the system dynamics over a time-scale that is an appreciable
fraction of the reciprocal of keff. If the barriers separating the inherent struc-
tures involved are “large”, this time scale can become macroscopic. Simply
stated, the disparate time-scale problem makes it difficult to study directly the
dynamics of infrequent events using the approach suggested by Eq. (5).

Equation (6), on the other hand, offers a more convenient route to the
desired kinetic parameters. In particular, it indicates that we might be able to
obtain these parameters from short as opposed to long-time dynamical
information. If the phenomenological rate expressions are formally correct
for all times, then the ratio of the two time correlation functions in Eq. (6) is
time-independent. However, since it is generally likely that the phenomenolog-
ical rate expressions accurately describe only the longer-time motion between
inherent structures, we expect in practice that the ratio on the right hand side of
Eq. (6) will approach a constant “plateau” value only at times long on the scale
of detailed molecular motions. The critical point, however, is that this transient
period will be of molecular not macroscopic duration. With Eq. (6), we thus
have a route to the desired kinetic parameters that requires only molecular or
short time-scale dynamical input.

A valuable practical point concerning kinetic formulations based on Eq. (6)
is that for many applications the final plateau value of the correlation function
ratio involved is often relatively well approximated by its zero time value.
Because the correlation functions required depend only on time differences,
such zero-time quantities are purely equilibrium objects. Consequently, an
existing and extensive set of equilibrium tools can be invoked to produce
approximations to kinetic parameters.

The approach to the calculation of chemical rates based on Eq. (6) has sev-
eral desirable characteristics. Most importantly, it has a refinable nature and
can be implemented in stages. At the simplest level, we can estimate chem-
ical rate parameters using purely zero-time, or equilibrium methods. Such
approximate methods alone may be adequate for many applications. We are,
however, not restricted to accepting such approximations blindly. With addi-
tional effort we can “correct” such preliminary estimates by performing addi-
tional dynamical studies. Because such calculations involve “corrections” to
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equilibrium estimates of rate parameters, as opposed to the entire rate parame-
ters themselves, the dynamical input required is only that necessary to remove
the errors induced by the initial equilibrium assumptions. Because such errors
tend to involve simplified assumptions concerning the nature of transition state
dynamics, the input required to estimate the corrections is of a molecular, not
macroscopic time scale.

We now focus our discussion on some of practical issues involved in
generating equilibrium estimates of the rates. We shall illustrate these using
the simple two-state example described above. We begin by imagining that we
have at our disposal the time history of a reaction coordinate of interest, x(t).
As a function of time, x(t) moves back-and-forth between inherent structures
A and B, which we assume to be separated by the position x = q. Using one of
the basic properties of the delta function,

δ(ax) =
1

|a|δ(x), (7)

it is easy to show that N (τ , [x(t)]), defined by

N(τ, [x(t)]) =

τ∫
0

dt
∣∣∣∣dx(t)

dt

∣∣∣∣δ(x(t)− q), (8)

is a functional of the path whose value is equal to the (total) number of
crossings of the x(t)=q surface in the interval (0,τ). Every time x(t) crosses q,
the delta function argument takes on a zero value. Because the delta function
in Eq. (8) is in coordinate space while the integral is with respect to time, the
Jacobian factor into Eq. (8) creates a functional whose value jumps by unity
each time x(t)− q sweeps through a value of zero.

If we form a statistical ensemble corresponding to various possible
histories of the motion of our system and bath, we can compute the average
number of crossings of the x(t) = q surface in the (0,τ) interval, 〈N(τ , [x(t)])〉,
using the expression

〈N(τ, [x(t)])〉 =

τ∫
0

dt
〈∣∣ẋ(t)∣∣δ(x(t)− q)

〉
. (9)

Here represents the time derivative of x(t). Because are dealing with a
“stationary” or equilibrium process, the time correlation function that appears
on the right hand side of Eq. (9) can be function only of time differences. Con-
sequently, the integrand on the right hand side of Eq. (9) is time-independent
and can be brought outside the integral. The result thus becomes

〈N(τ, [x(t)])〉 =
〈∣∣ẋ ∣∣δ(x − q)

〉 τ∫
0

dt, (10)
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where the (now unnecessary) time labels have been dropped. We thus see that
the number of crossings of the x(t) = q surface in this system per unit time is
given by

〈N(τ, [x(t)])〉
τ

=
〈∣∣ẋ ∣∣δ(x − q)

〉
. (11)

Recalling that N measures the total number of crossings, the number of
crossings per unit time in the direction from A to B (the number of “up
zeroes” of x(t) − q in the language of Slater) is half the value in Eq. (11).
Thus, the equilibrium estimate of the rate constant for the A to B transition,
(i.e., the number of crossings per unit time from A to B per atom in inherent
structure A) is given by

kTST
A→B =

1

2

〈∣∣ẋ ∣∣δ(x − q)
〉

NA
. (12)

Equation (12) gives an approximate expression to the rate constant that
involves an equilibrium flux between the relevant inherent structures. Because
the relevant flux is associated with the “transition” of one inherent structure
into another, the approach to chemical rates suggested by Eq. (12) is typically
termed “transition state” theory (TST). Along with its multi-dimensional gen-
eralizations, it represents a convenient and useful approximation to the desired
chemical rate constants. Being an equilibrium approximation to the dynamical
objects of interest, it permits the powerful machinery of Monte Carlo meth-
ods [16, 17] to be brought to bear on the computational problem. The signif-
icance of this is that the required averages can be computed to any desired
accuracy for arbitrary potential energy models. One can proceed analytically
by making secondary, simplifying assumptions concerning the potential. Such
approximations are, however, controllable in that their quality can be tested.
Furthermore, Eq. (12) provides a unified treatment of the problem that is inde-
pendent of the nature of the statistical ensemble that is involved. Applications
involving canonical, microcanonical and other ensembles are treated within a
common framework. It is historically interesting in this regard to note that if
the reaction coordinate of interest is expressed as a superposition of normal
modes, Eq. (12) leads naturally to the unimolecular reaction expressions of
Ref. [4].

There is a technical aspect concerning the calculation of the averages
appearing in Eq. (12) that merits discussion. In particular, it is apparent from
the nature of the average involved that, if they are to be computed accurately,
the numerical methods involved must be capable of accurately describing the
reactant’s concentration profile in the vicinity of the transition state. If we
are dealing with with activated processes where the difference between tran-
sition state in inherent structure energies are “large”, then such concentrations
can become quite small and difficult to treat by standard methods. This is
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simply the equilibrium, “sparse-sampling” analog of the disparate time-scale
dynamical problem. Fortunately, there are a number well-defined techniques
for coping with this technical issue. These include, to name a few, umbrella
methods [18], Bennett/Voter techniques [19, 20], J-walking [21, 22], and par-
allel tempering approaches [23]. These and related methods make it possible
to compute the the required, transition-state-constrained averages.

The basic approach outlined above can be extended in a number of ways.
One immediate extension involves problems in which there are multiple, rather
than two states involved. Adams has considered such problems in the context
of his studies on the effects of precursor states on thermal desorption [24].
A second extension involves using the fundamental kinetic parameters pro-
duced to study more complex events. Voter, in a series of developments, has
formulated a computationally viable method for studying diffusion in solids
based on such an approach [25]. In its most complete form (including dynami-
cal corrections), this approach produces a computationally exact procedure for
surface or bulk diffusion coefficients of a point defect at arbitrary temperatures
in a periodic system [26]. In related developments, Voter [25] and Henkelmen
and Jónsson [27] have discussed using “on-the-fly” determinations of TST
kinetic parameters in kinetic Monte Carlo studies. Such methods make it pos-
sible to explore a variety of lattice dynamical problems without resorting to
ad hoc assumptions concerning mechanisms of various elementary events. In
a particularly promising development, they also appear to offer a valuable tool
for the study of long-time dynamical events [28, 29].

An important practical issue in the calculation of TST approximations to
rates is the identification of the transition state itself. In many problems, such
as the simple two-state problem discussed previously, locating the transition
state is trivial. In others, it is not. Techniques designed to locate explicit tran-
sition states in complex systems have been discussed in the literature. One
popular technique, developed by Cerjan and Miller [30] and extended by oth-
ers [31–33], is based on an “eigenvector following” method. In this approach,
one basically moves “up-hill” from a selected inherent structure using local
mode information to determine the transition state. Other approaches, includ-
ing methods that do not require explicit second-order derivatives of the pot-
ential, have been discussed [34]. It is also important to mention a different
class of methods suggested by Pratt [35]. Borrowing a page from path integral
applications, this technique attempts to locate transition states by working with
paths that build in proper initial and final inherent structure character from the
outset. Expanding upon the spirit of the original Pratt suggestion, recent efforts
have considered sampling barrier crossing paths directly [36].

We wish to close by pointing out what we feel may prove to be a potentially
useful link between inherent structure decomposition methods and the problem
of “probabilistic clustering” [37, 38]. An important problem in applied math-
ematics is the reconstruction of an unknown probability distribution given a
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known statistical sampling of that distribution. So stated, the probabilistic clus-
tering problem is effectively the inverse of the Monte Carlo sampling problem.
Rather than producing a statistical sampling of a given distribution, we seek
instead to reconstruct the unknown distribution from a known statistical sam-
pling. This clustering problem is of broad significance in information tech-
nology and has received considerable attention. Our point in emphasizing the
link between probabilistic clustering and inherent structure methods is that our
increased ability to sample arbitrary, sparse distributions would appear to offer
an alternative to the Stillinger/Weber quench approach to the inherent struc-
ture decomposition problem. In particular, one could use clustering methods
both to “identify” and to “measure” the concentrations of inherent structures
present in a system.
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