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1. Introduction

Engineering analysis requires the prediction of (say, a single) selected
“output” se relevant to ultimate component and system performance:∗ typical
outputs include energies and forces, critical stresses or strains, flowrates or
pressure drops, and various local and global measures of concentration,
temperature, and flux. These outputs are functions of system parameters, or
“inputs”, µ, that serve to identify a particular realization or configuration of the
component or system: these inputs typically reflect geometry, properties, and
boundary conditions and loads; we shall assume thatµ is a P-vector (or P-tuple)
of parameters in a prescribed closed input domain D⊂R

P . The input–output
relationship se(µ) : D→R thus encapsulates the behavior relevant to the
desired engineering context.

In many important cases, the input–output function se(µ) is best articulated
as a (say) linear functional � of a field variable ue(µ). The field variable, in turn,
satisfies a µ-parametrized partial differential equation (PDE) that describes the
underlying physics: for given µ∈D, ue(µ)∈ X e is the solution of

g(ue(µ), v; µ) = 0, ∀ v ∈ X e, (1)

where g is the weak form of the relevant partial differential equation† and X e is
an appropriate Hilbert space defined over the physical domain �⊂R

d . Note

*Here superscript “e” shall refer to “exact.” We shall later introduce a “truth approximation” which will
bear no superscript.
†We shall restrict our attention in this paper to second-order elliptic partial differential equations; see
Outlook for a brief discussion of parabolic problems.
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in the linear case, g(w, v ; µ) ≡ a(w, v ; µ) − f (v), where a(·, ·; µ) and f
are continuous bilinear and linear forms, respectively; for any given µ ∈ D,
ue(µ) ∈ X e now satisfies

a(ue(µ), v; µ) = f (v), ∀ v ∈ X e (linear). (2)

Relevant system behavior is thus described by an implicit “input–output”
relationship

se(µ) = �(ue(µ)), (3)

evaluation of which necessitates solution of the partial differential equation
(1) or (2).

Many problems in materials and materials processing can be formulated
as particular instantiations of the abstraction (1) and (3) or perhaps (2) and
(3). Typical field variables and associated second-order elliptic partial dif-
ferential equations include temperature and steady conduction–Poisson; dis-
placement and equilibrium or Helmholtz elasticity; {velocity, temperature}
and steady Boussinesq incompressible Navier–Stokes; wavefunction and sta-
tionary Schrödinger via (say) Hartree–Fock approximation. The latter two
equations are nonlinear, while the former two equations are linear; in subse-
quent sections we shall provide detailed examples of both nonlinear and linear
problems.

Our particular interest – or certainly the best way to motivate our approach
– is “deployed” systems: components or processes that are in service, in oper-
ation, or in the field. For example, in the materials and materials processing
context, we may be interested in assessment, evolution, and accommodation of
a crack in a critical component of an in-service jet engine; in real-time charac-
terization and optimization of the heat treatment protocol for a turbine disk; or
in online thermal “control” of Bridgman semiconductor crystal growth. Typi-
cal computational tasks include robust parameter estimation (inverse problems)
and adaptive design (optimization problems): in the former – for example,
assessment of current crack length or in-process heat transfer coefficient –
we must deduce inputs µ representing system characteristics based on outputs
se(µ) reflecting measured observables; in the latter – for example, prescription
of allowable load or best thermal environment – we must deduce inputs µ rep-
resenting “control” variables based on outputs se(µ) reflecting current process
objectives. Both of these demanding activities must support an action in the
presence of continually evolving environmental and mission parameters.

The computational requirements on the forward problem are thus formi-
dable: the evaluation must be real-time, since the action must be immediate;
and the evaluation must be certified – endowed with a rigorous error bound
– since the action must be safe and feasible. For example, in our aerospace
crack example, we must predict in the field – without recourse to a lengthy
computational investigation – the load that the potentially damaged structure
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can unambiguously safely carry. Similarly, in our materials processing exam-
ples, we must predict in operation – in response to deduced environmental
variation – temperature boundary conditions that will preserve the desired
material properties.

Classical approaches such as the finite element method cannot typically
satisfy these requirements. In the finite element method, we first introduce
a piecewise-polynomial “truth” approximation subspace X (⊂ X e) of dimen-
sion N . The “truth” finite element approximation is then found by (say)
Galerkin projection: given µ∈D,

s(µ) = �(u(µ)), (4)

where u(µ)∈ X satisfies

g(u(µ), v; µ) = 0, ∀ v ∈ X, (5)

or, in the linear case g(w, v ; µ) ≡ a(w, v ; µ)− f (v),

a(u(µ), v; µ) = f (v), ∀ v ∈ X (linear). (6)

We assume that (5) and (6) are well-posed; we articulate the associated
hypotheses more precisely in the context of a posteriori error estimation.

We shall assume – hence the appellation “truth” – that X is sufficiently
rich that u(µ) (respectively, s(µ)) is sufficiently close to ue(µ) (respectively,
se(µ)) for all µ in the parameter domain D. Unfortunately, for any reason-
able error tolerance, the dimension N needed to satisfy this condition – even
with the application of appropriate (parameter-dependent) adaptive mesh ref-
inement strategies – is typically extremely large, and in particular much too
large to provide real-time response in the deployed context. Deployed sys-
tems thus present no shortage of unique computational challenges; however,
they also provide many unique computational opportunities – opportunities
that must be exploited.

We first consider the “approximation opportunity.” The critical observation
is that, although the field variable ue(µ) generally belongs to the infinite-
dimensional space X e associated with the underlying partial differential equa-
tion, in fact ue(µ) resides on a very low-dimensional manifold Me≡{ue(µ) |
µ∈D} induced by the parametric dependence; for example, for a single param-
eter, µ∈D⊂R

P=1, ue(µ) will describe a one-dimensional filament that winds
through X e. Furthermore, the field variable ue(µ) will typically be extremely
regular in µ – the parametrically induced manifold Me is very smooth – even
when the field variable enjoys only limited regularity with respect to the spatial
coordinate x ∈�.∗ In the finite element method, the approximation space X is

*The smoothness in µ may be deduced from the equations for the sensitivity derivatives; the stability and
continuity properties of the partial differential operator are crucial.



1532 N.N. Cuong et al.

much too general – X can approximate many functions that do not reside on
Me – and hence much too expensive. This observation presents a clear oppor-
tunity: we can effect significant dimension reduction in state space if we restrict
attention to Me; the field variable can then be adequately approximated by a
space of dimension N �N . However, since manipulation of even one “point”
on Me is expensive, we must identify further structure.

We thus next consider the “computational opportunities”; here there are
two critical observations. The first observation derives from the mathematical
formulation: very often, the parameter dependence of the partial differential
equation can be expressed as the sum of Q products of (known, easily eval-
uated) parameter-dependent functions and parameter-independent continuous
forms; we shall denote this structure as “affine” parameter dependence. In our
linear case, (2), affine parameter dependence reduces to

a(w, v ; µ) =
Q∑

q=1

�q(µ) aq(w, v), (7)

for �q : D→R and aq : X × X →R, 1≤ q ≤ Q. The second observation
derives from our context: rapid deployed response perforce places a predom-
inant emphasis on very low marginal cost – we must minimize the additional
effort associated with each new evaluation µ→ s(µ) “in the field.” These two
observations present a clear opportunity: we can exploit the underlying affine
parametric structure (7) to design effective offline–online computational proce-
dures which willingly accept greatly increased initial preprocessing – offline,
pre-deployed – expense in exchange for greatly reduced marginal – online,
deployed – “in service” cost.∗

The two essential components to our approach are (i) rapidly, uniformly
(over D) convergent reduced-basis (RB) approximations, and (ii) associated
rigorous and sharp a posteriori error bounds. Both components exploit affine
parametric structure and offline–online computational decompositions to pro-
vide extremely rapid deployed response – real-time prediction and associated
error estimation. We next describe these essential ingredients.

2. Reduced-Basis Method

2.1. Approximation

The reduced-basis method was introduced in the late 1970s in the context
of nonlinear structural analysis [1, 2] and subsequently abstracted, analyzed,

*Clearly, low marginal cost implies low asymptotic average cost; our methods are thus also relevant to (non
real-time) many-query multi-optimization studies – and, in fact, to any situation characterized by extensive
exploration of parameter space.
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and extended to a much larger class of parametrized PDEs [3, 4] – including
the incompressible Navier–Stokes equations [5–7] relevant to many materi-
als processing applications. The RB method explicitly recognizes and exploits
the dimension reduction afforded by the low-dimensional and smooth para-
metrically induced solution manifold. We note that the RB approximation is
constructed not as an approximation to the exact solution, ue(µ), but rather as
an approximation to the (finite element) truth approximation, u(µ). As already
discussed, N , the dimension of X , will be very large; our RB formulation and
associated error estimation procedures must be stable and (online) efficient as
N→∞.

We shall consider in this section the linear case, g(w, v ; µ)≡ a(w, v ; µ)−
f (v), in which s(µ) and u(µ) are given by (4) and (6), respectively; recall that
a is bilinear and f , �, are linear. We shall consider a “primal–dual” formulation
particularly well-suited to good approximation and error characterization of
the output; towards this end, we introduce a dual, or adjoint, problem: given
µ∈D, ψ(µ)∈ X satisfies

a(v, ψ(µ); µ) =−�(v), ∀ v ∈ X. (8)

Note that if a is symmetric and � = f , which we shall denote “compliance,”
ψ(µ)=−u(µ).

In the “Lagrangian” [4] RB approach, the field variable u(µ) is approxi-
mated by (typically) Galerkin projection onto a space spanned by solutions of
the governing PDE at N selected points in parameter space. For the primal prob-
lem, (6), we introduce nested parameter samples SN ≡{µpr

1 ∈D, . . . , µ
pr
N∈D}

and associated nested RB approximation subspaces WN ≡span{ζn ≡ u(µpr
n ), 1≤

n≤ N} for 1≤ N ≤ Nmax; similarly, for the dual problem (8), we define corre-
sponding samples Sdu

Ndu ≡{µdu
1 ∈D, . . . , µdu

Ndu ∈D} and RB approximation
spaces W du

Ndu ≡span{ζ du
n ≡ψ(µdu

n ), 1≤ n≤ Ndu} for 1≤ Ndu≤ Ndu
max.∗ (Proce-

dures for selection of good samples SN , Sdu
Ndu and hence spaces WN , W du

Ndu will be
discussed in subsequent sections.) Our RB approximation is thus: given µ∈D,

sN (µ) = �(uN (µ))+ g(uN (µ),ψNdu(µ); µ), (9)

where uN (µ) ∈ WN and ψNdu(µ) ∈ W du
Ndu satisfy

a(uN (µ), v; µ) = f (v), ∀ v ∈ WN , (10)

and

a(v, ψNdu(µ); µ) =−�(v), ∀ v ∈ W du
Ndu , (11)

*In actual practice, the primal and dual bases should be orthogonalized with respect to the inner prod-
uct associated with the Hilbert space X , (·, ·)X ; the algebraic systems then inherit the “conditioning”
properties of the underlying partial differential equation.
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respectively. We emphasize that we are interested in global approximations
that are uniformly valid over a finite parameter domain D.

We note that, in the compliance case – a symmetric and � = f such that
ψ(µ)=−u(µ) – we may simply take N du = N , Sdu

N = SN , W du
N = WN , and hence

ψN (µ)=−uN (µ). In practice, in such a case we need never actually form the
dual problem – we simply identify ψN (µ)=−uN (µ) – with a corresponding
50% reduction in computational effort.

Typically [8, 9], and in some very special cases provably [10], uN (µ),
ψN (µ), and sN (µ) converge to u(µ), ψ(µ), and s(µ) uniformly and extremely
rapidly – thanks to the smoothness in µ – and thus we may achieve the desired
accuracy for N, Ndu�N . The critical ingredients of the a priori theory are
(i) the optimality properties of Galerkin projection,∗ and (ii) the good approx-
imation properties of WN (respectively, W du

Ndu ) for the manifold M≡{u(µ) |
µ∈D} (respectively, Mdu ≡ {ψ(µ) |µ ∈ D}).

2.2. Offline–Online Computational Procedure

Even though N , Ndu may be small, the elements of (say) WN are in some
sense “large”: ζn ≡ u(µpr

n ) will be represented in terms of N � N truth finite
element basis functions. To eliminate the N -contamination of the deployed
performance, we must consider offline–online computational procedures [7–
9, 11]. For our purposes here, we continue to assume that our PDE is linear,
(6), and furthermore exactly affine, (7), for some modest Q. In future sections
we shall consider a nonlinear example as well as the possibility of nonaffine
operators.

To begin, we expand our reduced-basis approximation as

uN (µ) =
N∑

j=1

uN j (µ)ζ j , ψNdu(µ) =
Ndu∑
j=1

ψNdu j (µ)ζ du
j . (12)

It then follows from (9) and (12) that the reduced-basis output can be expressed
as

sN (µ) =
N∑

j=1

uN j (µ) �(ζ j)−
Ndu∑
j=1

ψNdu j (µ) f (ζ du
j )

+
N∑

j=1

Ndu∑
j ′=1

Q∑
q=1

uN j (µ)ψNdu j ′(µ)�q(µ)aq(ζ j , ζ
du
j ′ ), (13)

*Galerkin optimality relies on stability of the discrete equations. The latter is only assured for coercive
problems; for noncoercive problems, Petrov–Galerkin methods may thus be preferred [12].
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where the coefficients uN j (µ), 1≤ j ≤ N , and ψNdu j , 1≤ j ≤ Ndu, satisfy the
N × N and Ndu× Ndu linear algebraic systems

N∑
j=1

{
Q∑

q=1

�q(µ)aq(ζ j , ζi )

}
uN j (µ) = f (ζi), 1 ≤ i ≤ N, (14)

Ndu∑
j=1

{ Q∑
q=1

�q(µ)aq(ζ du
i , ζ du

j )

}
ψNdu j (µ) =−�(ζ du

i ), 1 ≤ i ≤ Ndu.

(15)

The offline–online decomposition is now clear. For simplicity below we
assume that Ndu = N .

In the offline stage – performed once – we first solve for the ζi , ζ du
i , 1≤ i ≤ N ;

we then form and store�(ζi ), f (ζi),�(ζ du
i ), and f (ζ du

i ), 1≤ i ≤ N , and aq (ζ j , ζi ),
aq(ζ du

i , ζ du
j ), 1≤ i, j ≤ N , 1≤ q ≤ Q, and aq (ζi , ζ

du
j ), 1≤ i, j ≤ N , 1≤ q ≤ Q.∗

Note all quantities computed in the offline stage are independent of the param-
eter µ. In the online stage – performed many times, for each new value of µ
“in the field” – we first assemble and subsequently invert the N × N “stiff-
ness matrices”

∑Q
q = 1 �

q(µ)aq(ζ j , ζi ) of (14) and
∑Q

q = 1 �
q(µ)aq(ζ du

i , ζ du
j ) of

(15) – this yields the uN j (µ), ψNdu j (µ), 1≤ j ≤ N ; we next perform the sum-
mation (13) – this yields the sN (µ). The operation count for the online stage
is, respectively, O(QN2) and O(N3) to assemble (recall that the aq(ζ j , ζi ),
1≤ i, j ≤ N , 1≤ q ≤ Q, are pre-stored) and invert the stiffness matrices, and
O(N)+ O(QN2) to evaluate the output (recall that the �(ζ j) are pre-stored);
note that the RB stiffness matrix is, in general, full.

The essential point is that the online complexity is independent of N , the
dimension of the underlying truth finite element approximation space. Since
N, Ndu�N , we expect – and often realize – significant, orders-of-magnitude
computational economies relative to classical discretization approaches.

3. A Posteriori Error Estimation

3.1. Motivation

A posteriori error estimation procedures are very well developed for clas-
sical approximations of, and solution procedures for, (say) partial differential
equations [13–15] and algebraic systems [16]. However, until quite recently,

*In actual practice, in the offline stage we consider N = Nmax and Ndu = Ndu
max; then, in the online stage,

we extract the necessary subvectors and submatrices.
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there has been essentially no way to rigorously, quantitatively, sharply, and
efficiently assess the accuracy of RB approximations. As a result, for any given
new µ, the RB (say, primal) solution uN (µ) typically raises many more ques-
tions than it answers. Is there even a solution u(µ) near uN (µ)? This question
is particularly crucial in the nonlinear context – for which in general we are
guaranteed neither existence nor uniqueness. Is |s(µ)−sN (µ)| ≤ εtol, where εtol

is the maximum acceptable error? Is a crucial feasibility condition s(µ)≤C
(say, in a constrained optimization exercise) satisfied – not just for the RB
approximation, sN (µ), but also for the “true” output, s(µ)? If these questions
cannot be affirmatively answered, we may propose the wrong – and unsafe or
infeasible – action in the deployed context. A fourth question is also important:
Is N too large, |s(µ) − sN (µ)|� εtol, with an associated steep (N3) penalty
on computational efficiency? An overly conservative approximation may jeop-
ardize the real-time response and associated action – with corresponding
detriment to the deployed systems.

We may also consider the approximation properties and efficiency of the
(say, primal) parameter samples and associated RB approximation spaces, SN

and WN , 1≤ N ≤ Nmax. Do we satisfy our global “acceptable error level” con-
dition, |s(µ)− sN (µ)| ≤ εtol, ∀µ∈D, for (close to) the smallest possible value
of N? And a related question: For our given tolerance εtol, are the RB stiffness
matrices (or, in the nonlinear case, Newton Jacobians) as well-conditioned as
possible – given that by construction WN will be increasingly colinear with
increasing N? If the answers are not affirmative, then our RB approximations
are more expensive (and unstable) than necessary – and perhaps too expensive
to provide real-time response.

In short, the pre-asymptotic and essentially ad hoc or empirical nature of
reduced-basis discretizations, the strongly superlinear scaling (with N , Ndu) of
the reduced-basis online complexity, and the particular needs of deployed real-
time systems virtually demand rigorous a posteriori error estimators. Absent
such certification, we must either err on the side of computational pessimism
– and compromise real-time response – or err on the side of computational
optimism – and risk sub-optimal, infeasible, or potentially unsafe decisions.

In Refs. [8, 9, 17, 18], we introduce a family of rigorous error estimators
for reduced-basis approximation of a wide class of partial differential equa-
tions (see also Ref. [19] for an alternative approach). As in almost all error
estimation contexts, the enabling (trivial) observation is that, whereas a 100%
error in the field variable u(µ) or output s(µ) is clearly unacceptable, a 100%
or even larger (conservative) error in the error is tolerable and not at all use-
less; we may thus pursue “relaxations” of the equation governing the error and
residual that would be bootless for the original equation governing the field
variable u(µ).

We now present further details for the particular case of elliptic linear prob-
lems with exact affine parameter dependence (7): the truth solution satisfies
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(4), (6), and (8), and the corresponding reduced-basis approximation satisfies
(9)–(11). (In subsequent sections we shall consider the extension to nonlinear
problems through a detailed example; we shall also briefly discuss nonaffine
problems.)

3.2. Error Bounds

We shall need several preliminary definitions. To begin, we denote the
inner product and norm associated with our Hilbert space X as (w, v)X and
‖v‖X =

√
(v, v)X , respectively; we further define the dual norm (of any

bounded linear functional h) as

‖h‖X ′ ≡ sup
v∈X

h(v)

‖v‖X
. (16)

We recall that we restrict our attention here to second-order elliptic partial
differential equations: thus, for a scalar problem (such as heat conduction),
H 1

0 (�)⊂ X e⊂ H 1(�), where H 1(�) (respectively, H 1
0 (�)) is the usual space

of derivative-square-integrable functions (respectively, derivative–square–
integrable functions that vanish on ∂�, the boundary of �) [20]. A typical
choice for (·, ·)X is

(w, v)X =
∫
�

∇w · ∇v + wv, (17)

which is simply the standard H 1(�) inner product.
We next introduce [12, 18] the operator T µ : X → X such that, for any w

in X , (T µw, v)X = a(w, v ; µ), ∀ v ∈ X . We then define

σ (w; µ) ≡ ‖T µw‖X

‖w‖X
,

and note that

β(µ) ≡ inf
w∈X

sup
v∈X

a(w, v ; µ)

‖w‖X‖v‖X
= inf

w∈X
σ (w; µ), (18)

γ (µ) ≡ sup
w∈X

sup
v∈X

a(w, v ; µ)

‖w‖X‖v‖X
= sup

w∈X
σ (w; µ); (19)

we also recall that

β(µ)‖w‖X‖T µw‖X ≤ a(w, T µw; µ), ∀ w ∈ X. (20)

Here β(µ) is the Babuška “inf–sup” stability constant – the minimum singular
value associated with our differential operator (and transpose operator) – and
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γ (µ) is the standard continuity constant. We suppose that γ (µ) is bounded
∀ µ∈D, and that β(µ)≥ β0 > 0, ∀ µ∈D. We note that for a symmetric,
coercive bilinear form, β(µ)= αc(µ), where

αc(µ) ≡ inf
w∈X

a(w,w; µ)

‖w‖2
X

,

is the standard coercivity constant.
Given our reduced-basis primal solution uN (µ), it is readily derived that

the error e(µ)≡ u(µ)− uN (µ)∈ X satisfies

a(e(µ), v; µ) =−g(uN (µ), v; µ), ∀ v ∈ X, (21)

where −g(uN (µ), v; µ)≡ f (v)− a(uN (µ), v; µ) (in this linear case) is the
familiar residual. It then follows from (16), (20), and (21) that

‖e(µ)‖X ≤ εN (µ)

β(µ)
,

where

εN (µ) ≡ ‖g(uN (µ), · ; µ)‖X ′ , (22)

is the dual norm of the residual.
We now assume that we are privy to a nonnegative lower bound for the

inf–sup parameter, β̃(µ), such that β(µ)≥ β̃(µ)≥ εββ(µ), ∀µ∈D, where
εβ ∈]0, 1[. We then introduce our “energy” error bound

�N (µ) ≡ εN (µ)

β̃(µ)
, (23)

the effectivity of which is defined as

ηN (µ) ≡ �N (µ)

‖e(µ)‖X
.

It is readily proven [9, 18] that, for any N , 1≤ N ≤ Nmax,

1 ≤ ηN (µ) ≤ γ (µ)

β̃(µ)
, ∀ µ ∈ D. (24)

From the left inequality, we deduce that ‖e(µ)‖X ≤�N (µ),∀µ∈D, and hence
that �N (µ) is a rigorous upper bound for the true error∗ measured in the
‖ · ‖X norm – this provides certification: feasibility and “safety” are guaran-
teed. From the right inequality, we deduce that �N (µ) overestimates the true

*Note, however, that these error bounds are relative to our underlying “truth” approximation, u(µ) ∈ X ,
not to the exact solution, ue(µ) ∈ Xe.
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error by at most γ (µ)/β̃(µ),∗ independent of N – this relates to efficiency:
an overly conservative error bound will be manifested in an unnecessarily
large N and unduly expensive RB approximation, or (even worse) an overly
conservative or expensive decision or action “in the field.”

We now turn to error bounds for the output of interest. To begin, we note
that the dual satisfies an “energy” error bound very similar to the primal result:
for 1≤ Ndu≤ Ndu

max,

‖ψ(µ)− ψNdu(µ)‖X ≤ �du
N (µ), ∀ µ ∈ D;

here �du
N ≡ εdu

N (µ)/β̃(µ), and εdu
N (µ)= ‖− �(·)− a(·, ψNdu(µ); µ)‖X ′ is the

dual norm of the dual residual. It then follows† that

|s(µ)− sN (µ)| ≤ �s
N (µ), ∀µ ∈ D, (25)

where

�s
N (µ) ≡ εN (µ)�du

N (µ). (26)

It is critical to note that �s
N (µ)= β̃(µ)�N (µ)�du

N (µ): the output error (and
output error bound) vanishes as the product of the primal and dual error
(bounds), and hence much more rapidly than either the primal or dual error.
From the perspective of computational efficiency, a good choice is εN (µ)≈
εdu

N (µ); the latter also (roughly) ensures that the bound (25), (26) will be quite
sharp.

In the compliance case, a symmetric and � = f , we immediately obtain
�du

N (µ)= �N (µ), and hence (25) obtains for

�s
N (µ) ≡ ε2

N (µ)

β̃(µ)
, ∀ µ ∈ D (compliance); (27)

here, we obtain the “square” effect even without (explicit) introduction of the
dual problem. For a coercive further improvements are possible [9].

The real challenge in a posteriori error estimation is not the presenta-
tion of these rather classical results, but rather the development of efficient
computational approaches for the evaluation of the necessary constituents. In
our particular deployed context, “efficient” translates to “online complexity
independent of N ,” and “necessary constituents” translates to “dual norm of
the primal residual, εN (µ)≡‖g(uN (µ), ·; µ)‖X ′ , dual norm of the dual resid-
ual, εdu

N (µ)≡‖ − �(·)− a(·, ψNdu (µ); µ)‖X ′ , and lower bound for the inf–sup
constant, β̃(µ).” We now turn to these issues.

*The upper bound on the effectivity can be large. In many cases, this effectivity bound is in fact quite
pessimistic; in many other cases, the effectivity (bound) may be improved by judicious choice of (multi-
point) inner product (·, ·)X – in effect, a “bound conditioner” [21].
†The proof is simple: |s(µ)− sN (µ)|= |�(e)− g(u N (µ),ψN (µ); µ)|= | − a(e(µ), ψ(µ); µ)− g(u N (µ),
ψN (µ); µ)|= |g(u N (µ),ψ(µ)−ψN (µ); µ)| ≤ εN (µ)�du

N (µ).
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3.3. Offline–Online Computational Procedures

3.3.1. The dual norm of the residual

We consider only the primal residual; the dual residual admits a similar
treatment. To begin, we note from standard duality arguments that

εN (µ) ≡ ‖g(uN (µ), ·; µ)‖X ′ = ‖ê(µ)‖X , (28)

where ê(µ)∈ X satisfies

(ê(µ), v)X =−g(uN (µ), v; µ), ∀ v ∈ X. (29)

We next observe from our reduced-basis representation (12) and affine
assumption (7) that −g(uN (µ), v; µ) may be expressed as

−g(uN (µ), v; µ) = f (v)−
Q∑

q=1

N∑
n=1

�q(µ)uN n(µ)aq(ζn, v), ∀v ∈ X.

(30)

It thus follows from (29) and (30) that ê(µ)∈ X satisfies

(ê(µ), v)X = f (v)−
Q∑

q=1

N∑
n=1

�q(µ) uN n(µ) aq(ζn, v), ∀ v ∈ X. (31)

The critical observation [8, 9] is that the right-hand side of (31) is a sum of
products of parameter-dependent functions and parameter-independent linear
functionals.

In particular, it follows from linear superposition that we may write
ê(µ)∈ X as

ê(µ) = C +
Q∑

q=1

N∑
n=1

�q(µ) uN n(µ) Lq
n,

for C ∈ X satisfying (C, v)X = f (v), ∀ v ∈ X, and Lq
n ∈ X satisfying (Lq

n, v)X =
− aq(ζn, v), ∀ v ∈ X , 1≤ n≤ N , 1≤ q ≤ Q; note from (17) that the latter
are simple parameter-independent (scalar or vector) Poisson, or Poisson-like,
problems. It thus follows that

‖ê(µ)‖2
X = (C, C)X +

Q∑
q=1

N∑
n=1

�q(µ) uN n(µ)

{
2(C,Lq

n)X

+
Q∑

q ′=1

N∑
n′=1

�q ′(µ) uN n′(µ) (Lq
n,L

q ′
n′)X

}
. (32)
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The expression (32) – which we relate to the requisite dual norm of the
residual through (28) – is the sum of products of parameter-dependent (simple,
known) functions and parameter-independent inner products. The offline–
online decomposition is now clear.

In the offline stage – performed once – we first solve for C and Lq
n , 1≤ n≤

N , 1≤ q ≤ Q; we then evaluate and save the relevant parameter-independent
inner products (C, C)X , (C,Lq

n)X , (Lq
n,L

q ′
n′ )X , 1≤ n, n′ ≤ N , 1≤ q, q ′ ≤ Q.

Note that all quantities computed in the offline stage are independent of the pa-
rameter µ. In the online stage – performed many times, for each new value of µ
“in the field” – we simply evaluate the sum (32) in terms of the �q(µ), uN n(µ)
and the precalculated and stored (parameter-independent) (·, ·)X inner prod-
ucts. The operation count for the online stage is only O(Q2 N2) – again, the
essential point is that the online complexity is independent of N , the dimen-
sion of the underlying truth finite element approximation space. We further
note that, unless Q is quite large, the online cost associated with the calcu-
lation of the dual norm of the residual is commensurate with the online cost
associated with the calculation of sN (µ).

3.3.2. Lower bound for the inf–sup parameter

Obviously, from the definition (18), we may readily obtain by a variety of
techniques effective upper bounds for β(µ); however, lower bounds are much
more difficult to construct. We do note that in the case of symmetric coercive
operators we can often determine β̃(µ) (≤ β(µ)= αc(µ), ∀µ∈D) “by inspec-
tion.” For example, if we verify �q(µ)> 0, ∀µ∈D, and aq(v, v)≥ 0, ∀ v ∈ X ,
1≤ q ≤ Q, then we may choose [8, 21] for our coercivity lower bound

β̃(µ) =
(

min
q∈{1,...,Q}

�q(µ)

�q(µ̄)

)
αc(µ̄), (33)

for some µ̄∈D. Unfortunately, these hypotheses are rather restrictive, and
hence more complicated (and offline-expensive) recipes must often be pursued
[17, 18]. We consider here a construction which is valid for general noncoer-
cive operators (and thus also relevant in the nonlinear context [22]); for sim-
plicity, we assume our problem remains well-posed over a convex parameter
set that includes D.

To begin, given µ̄∈D and t = (t(1), . . . , t(P))∈R
P – note t( j ) is the value

of the j th component of t – we introduce the bilinear form

T (w, v ; t ; µ̄) = (T µ̄w, T µ̄v)X

+
P∑

p=1

t(p)

{
Q∑

q=1

∂�q

∂µ(p)
(µ̄)

[
aq(w, T µ̄v)+ aq(v, T µ̄w)

]}
(34)
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and associated Rayleigh quotient

F(t ; µ̄) = min
v∈X

T (v, v ; t ; µ̄)

‖v‖2
X

; (35)

it is readily demonstrated that F(t ; µ̄) is concave in t [24], and hence Dµ̄≡
{µ∈R

P |F(µ− µ̄; µ̄)≥ 0} is perforce convex. We next introduce semi-norms
| · |q : X →R+,0 such that

|aq(w, v)| ≤ �q |w|q |v|q, ∀w, v ∈ X, 1 ≤ q ≤ Q,

CX = supw∈X

Q∑
q=1
|w|2q

‖w‖2
X

,

(36)

for positive parameter-independent constants �q , 1≤ q ≤ Q, and CX ; it is
often the case that �1(µ)= Constant, in which case the q = 1 contribution to
the sum in (34) and (36) may be discarded. (Note that CX is typically indepen-
dent of Q, since the aq are often associated with non-overlapping subdomains
of �.) Finally, we define

�(µ; µ̄) ≡ CX max
q∈{1,...,Q}

(
�q

∣∣∣∣∣�q(µ)−�q(µ̄)

−
P∑

p=1

(µ− µ̄)(p)
∂�q

∂µ(p)
(µ̄)

∣∣∣∣∣∣
⎞⎠, (37)

for µ≡ (µ(1), . . . , µ(P)) ∈ R
P.

We now introduce points µ̄j and associated polytopes P µ̄j ⊂Dµ̄j , 1≤ j ≤ J,
such that

D ⊂
J⋃

j=1

P µ̄ j , (38)

min
ν∈V µ̄ j

√
F(ν − µ̄ j ; µ̄ j )− max

µ∈P µ̄ j
�(µ; µ̄ j ) ≥ εββ(µ̄

j ), 1 ≤ j ≤ J.

(39)

Here V µ̄j is the set of vertices associated with the polytope P µ̄j – for exam-
ple, P µ̄j may be a simplex with |V µ̄j |= P + 1 vertices; and εβ ∈ ]0, 1[ is a
prescribed accuracy constant. Our lower bound is then given by

β̃(µ) = max
j∈{1,...,J }|µ∈P µ̄ j

εββ(µ̄ j ). (40)

In fact, β̃(µ) of (40) may not strictly honor our condition β̃(µ)> εββ(µ);
however, as the latter relates to accuracy, approximate satisfaction suffices.
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(Recall that β̃(µ) appears in the denominator of our error bound; hence, even
a relative inf–sup discrepancy of 80%, εβ ≈ 1/5, is acceptable.) It can be eas-
ily demonstrated that β(µ)≥ β̃(µ)≥ εββ0 > 0, ∀µ∈D, which thus ensures
well-posed and rigorous error bounds.

We now turn to the offline–online decomposition. The offline stage com-
prises two parts: the generation of a set of points and polytopes–vertices,
µ̄j and P µ̄j , V µ̄j , 1≤ j ≤ J ; and the verification that (38) (trivial) and (39)
(nontrivial) are indeed satisfied. We focus on verification; generation – quite
involved – is described in detail in [23]. To verify (39), the essential obser-
vation is that the expensive terms – “truth” eigenproblems associated with F ,
(35), and β, (18) – are limited to a finite set of vertices,

J +
J∑

j=1

|V µ̄j |,

in total; only for the extremely inexpensive – and typically algebraically very
simple – �(µ; µ̄j ) terms must we consider minimization over the polytopes.
The online stage (40) is very simple: a search/look-up table, with complexity
logarithmic in J and polynomial in P .

We close by remarking on the properties of F(µ− µ̄; µ̄) that play an imp-
ortant role. First, F(µ− µ̄; µ̄)≤β2(µ), ∀µ∈Dµ̄ (say, for the case in which
�q(µ)= µ(q), 1≤ q ≤ Q = P): this ensures the lower bound result. Second,
F(t ; µ̄) is concave in t (note that in general β(µ) is neither (quasi-) con-
cave nor (quasi-) convex in µ [24]): this ensures a tractable offline computa-
tion. Third, F(µ− µ̄; µ̄) is “tangent”∗ to β(µ) at µ= µ̄ – the cruder estimate
�(µ; µ̄) is a second-order correction: this controls the growth of J (for
example, relative to simpler continuity bounds [17]).

3.4. Sample Construction: A Greedy Algorithm

Our error estimation procedures also allow us to pursue more rational con-
structions of our parameter samples SN , Sdu

Ndu (and hence spaces WN , W du
Ndu )

[18]. We consider here only the primal problem – in which our error criterion is
‖u(µ)− uN (µ)‖X ≡‖e(µ)‖X ≤ εtol; similar approaches may be developed for
the dual – ‖ψ(µ)−ψNdu(µ)‖X ≤ εdu

tol, and hence the output – |s(µ)− sN (µ)| ≤
εs

tol. We denote the smallest primal error tolerance anticipated as εtol, min – this
must be determined a priori offline; we then permit εtol ∈ [εtol, min,∞[ to be
specified online. We also introduce +F ∈DnF , a very fine random sample over
the parameter domain D of size nF� 1.

*To make this third property rigorous we must in general consider non-smooth analysis and also possibly
a continuous spectrum as N →∞.
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We first consider the offline stage. We assume that we are given a sample
SN , and hence space WN and associated reduced-basis approximation (pro-
cedure to determine) uN (µ), ∀µ∈D. We then calculate µ∗N = arg maxµ∈+F

�N (µ) – �N (µ) is our “online” error bound (23) that, in the limit of nF→∞
queries, may be evaluated (on average) in O(N2 Q2) operations; we next app-
end µ∗N to SN to form SN + 1, and hence WN + 1. We now continue this process
until N = Nmax such that ε∗Nmax

= εtol,min, where ε∗N ≡�N (µ∗N ), 1≤ N ≤ Nmax.
In the online stage, given any desired εtol ∈ [εtol, min,∞[ and any new value

of µ∈D “in the field”, we first choose N from a pre-tabulated array such that
ε∗N

(≡ �N (µ∗N )
)

= εtol. We next calculate uN (µ) and �N (µ), and then verify
that – and if necessary, subsequently increase N such that – the condition
�N (µ)≤ εtol is indeed satisfied. (We should not and do not rely on the finite
sample +F for either rigor or sharpness.)

The crucial point is that �N (µ) is an accurate and “online-inexpensive” –
O(1) effectivity and N -independent asymptotic complexity – surrogate for the
true (very-expensive-to-calculate) error ‖u(µ)− uN (µ)‖X . This surrogate per-
mits us to (i) offline – here we exploit low average cost – perform a much more
exhaustive (nF� 1) and, hence, meaningful search for the best samples SN and,
hence, most rapidly uniformly convergent spaces WN ,∗ and (ii) online – here
we exploit low marginal cost – determine the smallest N , and hence, the most
efficient approximation, for which we rigorously achieve the desired accuracy.

4. A Linear Example: Helmholtz-Elasticity

4.1. Problem Description

We consider a two-dimensional thin plate with a horizontal crack at the
(say) interface of two lamina: the (original) domain �o(z, L) ⊂ R

2, shown in
Fig. 1, is defined as [0, 2]× [0, 1] \�o

C, where �o
C≡{x1∈ [b− L/2, b+ L/2],

x2 = 1/2} defines the idealized crack. The left surface of the plate is secured;
the top and bottom boundaries are stress-free; and the right boundary is sub-
jected to a vertical oscillatory uniform traction at frequency ω. We model
the plate as plane-stress linear isotropic elastic with (scaled) density unity,
Young’s modulus unity, and Poisson ratio 0.25; the latter determine the
(parameter-independent) constitutive tensor Eijk�. Our P = 3 input is µ≡
(µ(1), µ(2), µ(3))≡ (ω2, b, L); our output is the (oscillatory) amplitude of the
average vertical displacement on the right edge of the plate.

*We may in fact view our offline sampling process as a (greedy, parameter space, “L∞(D)”) variant of the
POD economization procedure [25] in which – thanks to �N (µ) – we need never construct the “rejected”
snapshots.
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L

b

Figure 1. (Original) domain for the Helmholtz elasticity example.

The governing equation for the displacement uo(xo; µ)∈ Xo(µ) is there-
fore ao(uo(µ), v; µ)= f o(v), ∀ v ∈ Xo(µ), where Xo(µ) is a quadratic finite
element truth approximation subspace (of dimension N = 14,662) of X e(µ)≡
{v ∈ (H 1(�o(b, L)))2 | v|xo

1 = 0 = 0 }; here

ao(w, v ; µ) ≡
∫

�o(b,L)

wi, j Ei jk�vk,� − ω2wivi ,

(vi, j denotes ∂vi/∂x j and repeated physical indices imply summation), and
f o(v)≡ ∫

xo
1 = 2 v2. The crack surface is hence modeled extremely simplisti-

cally – as a stress-free boundary. The output so(µ) is given by so(µ)=
�o(uo(µ)), where �o(v)= f o(v); we are thus “in compliance”.

We now map �o(b, L) via a continuous piecewise-affine transformation to
a fixed domain �. This new problem can now be cast precisely in the desired
abstract form, in which �, X , and (w, v)X are independent of the parameter
µ: as required, all parameter dependence now enters through the bilinear and
linear forms; in particular, our affine assumption (7) applies for Q = 10. In the
Appendix we summarize the �q(µ), aq(w, v), 1≤ q ≤ Q; the bound condi-
tioner (·, ·)X ; and the resulting continuity constants �q and semi-norms | · |q ,
1≤ q ≤ Q, and norm equivalence parameter CX .

The (undamped, nonradiating) Helmholtz equation exhibits resonances.
Our techniques can treat near resonances, as well as large frequency ranges,
quite well [18, 23]. For our illustrative purposes here, we choose the parameter
domain D (⊂ R

P = 3)≡ (ω2 ∈ [3.2, 4.8])×(b ∈ [0.9, 1.1])× (L ∈ [0.15, 0.25]);
D contains no resonances – β(µ)≥ β0 > 0, ∀µ∈D – however, ω2 = 3.2 and
4.8 are close to corresponding natural frequencies, and hence the problem is
distinctly noncoercive.

4.2. Numerical Results

We first consider the inf–sup lower bound construction. We show in Fig. 2
β2(µ) and F(µ−µ̄; µ̄) for µ̄=µ̄1=(4.0, 1.0, 0.2); for purposes of presentation
we keep µ(1) = (ω2 = 4.0) fixed and vary µ(2)(= b) and µ(3)(= L). We observe
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Figure 2. β2(µ) and F(µ− µ̄; µ̄) for µ̄ = (4, 1, 0.2) as a function of (b, L); ω2 = 4.0.

that (in this particular case, even without �(µ; µ̄)), F(µ− µ̄; µ̄) is a lower
bound for β2(µ); that F(µ− µ̄; µ) is concave; and that F(µ− µ̄; µ) is tan-
gent to β2(µ) at µ= µ̄. Thanks to the latter, we can cover D (for ε̄β = 0.2) such
that (38) and (39) are satisfied with only J = 84 polytopes; in this particular
case the P µ̄ j , 1≤ j ≤ J, are hexahedrons such that |Vµ j |= 8, 1 ≤ j ≤ J .

Armed with the inf–sup lower bound, we can now pursue the adaptive
sampling strategy described in the previous section. We recall that our prob-
lem is compliant, and hence we need only consider the primal variable (and
subsequently set ψNdu = N (µ)=−uN (µ) and εdu

Ndu = N (µ)= εN (µ)). For εtol, min

= 10−3 and nF = 729 we obtain Nmax = 32 such that εNmax ≡�Nmax(µ
pr
Nmax

)=
9.03× 10−4.

We present in Table 1 �N,max,rel, ηN,ave, �s
N,max, and ηs

N,ave as a func-
tion of N . Here �N,max,rel is the maximum over +Test of �N (µ)/‖uNmax‖max,
ηN,ave is the average over +Test of �N (µ)/‖u(µ)− uN (µ)‖X , �s

N,max,rel is
the maximum over +Test of �s

N (µ)/|sNmax |max, and ηs
N,ave is the average over

+Test of �s
N (µ)/|s(µ)− sN (µ)|. Here +Test ∈ (DI)343 is a random parame-

ter sample of size 343; ‖uNmax‖max≡ maxµ∈+Test ‖uNmax(µ)‖X = 2.0775 and
|sNmax |max≡ maxµ∈+Test |sNmax(µ)|= 0.089966; and �N (µ) and �s

N (µ) are
given by (23) and (27), respectively. We observe that the RB approximation –
in particular, for the output – converges very rapidly, and that our rigorous
error bounds are in fact quite sharp. The effectivities are not quite O(1) pri-
marily due to the relatively crude inf–sup lower bound; but note that, thanks
to the rapid convergence of the RB approximation, O(10) effectivities do not
significantly affect efficiency – the induced increase in RB dimension N is
quite modest.

We turn now to computational effort. For (say) N = 24 and any given µ
(say, (4.0, 1.0, 0.2)) – for which the error in the reduced-basis output sN (µ)



Real-time solution of parametrized partial differential equations 1547

Table 1. Numerical results for Helmholtz elasticity

N �N,max,rel ηN,ave �s
N,max,rel ηs

N,ave

12 1.54 × 10−1 13.41 3.31× 10−2 15.93

16 3.40 × 10−2 12.24 2.13× 10−3 14.86

20 1.58 × 10−2 13.22 4.50× 10−4 15.44

24 5.91 × 10−3 12.56 4.81× 10−5 14.45

28 2.42 × 10−3 12.44 9.98× 10−6 14.53

relative to the truth approximation s(µ) is certifiably less than �s
N (µ) (= 4.94×

10−7) – the Online Time (marginal cost) to compute both sN (µ) and �s
N (µ)

is less than 0.0030 the Total Time to directly calculate the truth result s(µ)=
�(u(µ)). The savings will be even larger for problems with more complex
geometry and solution structure, in particular in three space dimensions.

As desired, we achieve efficiency due to (i) our choice of sample, (ii) our
rigorous stopping criterion �s

N (µ), and (iii) our affine parameter dependence
and associated offline–online computational procedures; and we achieve rigor-
ous certainty – the reduced-basis predictions may serve in “deployed” decision
processes with complete confidence (or at least with the same confidence as the
underlying physical model and associated truth finite element approximation).
The true merit of the approach is best illustrated in the deployed–real-time
context of parameter identification (crack assessment) and adaptive mission
optimization (load maximization); see Ref. [24] for an example.

5. A Nonlinear Example: Natural Convection

Obviously nonlinear equations do not admit the same degree of generality
as linear equations. We thus present our approach to nonlinear equations for
a particular quadratically nonlinear elliptic problem: the steady Boussinesq
incompressible Navier–Stokes equations. This example permits us to identify
the key new computational and theoretical ingredients; then, in Outlook, we
contemplate more general (higher-order) nonlinearities.

5.1. Problem Description

We consider Prandtl number Pr = 0.7 Boussinesq natural convection in a
square cavity (x1, x2)∈�≡ [0, 1]× [0, 1]; the Pr = 0 limit is described in
greater detail in [22, 26]. The governing equations for the velocity U= (U1,U2),
pressure p, and temperature θ are the (coupled) incompressible steady Navier–
Stokes and thermal convection–diffusion equations. Our single parameter
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(P = 1) is the Grashof number, µ≡Gr, which is the ratio of the buoyancy
forces (induced by the temperature field) to the momentum dissipation mech-
anisms; we consider Gr∈D≡ [1.0, 1.0× 104]. This flow is a model problem
for Bridgman growth of semi-conductor crystals; future work shall address
geometric (angle, aspect ratio) and Pr variation, and higher Gr – all of which
are important in actual materials processing applications.

In terms of the general mathematical formulation, (5), u(µ)≡ (U1,U2,
p, θ, λ)(µ), where λ is a Lagrange multiplier associated with the pressure
zero-mean condition. Our solution u(µ) resides in the space X ≡ XU × X p ×
X θ ×R, where XU ⊂ (H 1

0 (�))2, X p ⊂ L2(�) (respectively, X θ ⊂{v ∈ H 1(�)
|v|x1 = 0 = 0}) is a classical P2−P1 Taylor–Hood Stokes (respectively, P2 scalar)
finite element approximation subspace [5]; X is of dimension N = 2869. We
associate to X the inner product and norm

(w, v)X =

(∫
�

∂Wi

∂x j

∂Vi

∂x j
+ Wi Vi + rq + ∂χ

∂xi

∂φ

∂xi
+ χφ

)
+ κα

and ‖w‖X =
√
(w,w)X , respectively, where w = (W1, W2, r, χ, κ) and v =

(V1, V2, q, φ, α).
The strong (or distributional) form of the governing equations is then

√
Gr u j

∂ui

∂x j
=−√Gr

∂p

∂xi
+√Gr θδi2 + ∂2ui

∂x j∂x j
, i = 1, 2,

∂ui

∂xi
= λ,

√
Gr Pr u j

∂θ

∂x j
=

∂2θ

∂x j∂x j
,

with boundary–normalization conditions u|∂� = 0 on the velocity,
∫
� p = 0 on

the pressure, and ∂θ/∂n|�1
= 1, θ |�0

= 0, ∂θ/∂n|�s
= 0 on the temperature;

the flow is thus driven by the flux imposed on �1. Here δij is the Kronecker-
delta, ∂� is the boundary of �, and �0 = {x1 = 0, x2 ∈ [0, 1]} (left side),
�1 = {x1 = 1, x2 ∈ [0, 1]} (right side), and �s = {x1 ∈ ]0, 1[ , x2 = 0} ∪ {x1 ∈
]0, 1[ , x2 = 1} (top and bottom). It is readily derived that λ= 0; however, we
retain this term as a computationally convenient and stable fashion by which to
impose the zero-mean pressure condition on the truth finite element solution.
Our output of interest is the average temperature over �1: s(Gr)= �(u(Gr)),
where

�(v = (V1, V2, q, φ, α)) ≡
∫
�1

φ; (41)

note that s−1(Gr) is the traditional “Nusselt number”.
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The weak form of our partial differential equations is then given by (5),
where

g(w, v ; Gr) ≡ a0(w, v ; Gr)+ 1
2a1(w,w, v ; Gr)− f (v), (42)

a0(w
1, v ; Gr) ≡

[ ∫
�

∂W 1
i

∂x j

∂Vi

∂x j
−

∫
�

∂W 1
i

∂xi
q + κ1

∫
�

q + α

∫
�

r1

+
∫
�

∂χ1

∂xi

∂φ

∂xi

]
+√Gr

[
−

∫
�

χ1V2 −
∫
�

r1 ∂Vi

∂xi

]
,

(43)

a1(w
1, w2, v ; Gr) ≡ √Gr

[
−

∫
�

(
W 1

j W 2
i +W 2

j W 1
i

) ∂Vi

∂x j

+ Pr
∫
�

(
W 2

j

∂χ1

∂x j
+ W 1

j

∂χ2

∂x j

)
φ

]
, (44)

f (v) ≡
∫
�1

φ; (45)

here w1 = (W 1
1 , W 1

2 , r1, χ1, κ1), w2 = (W 2
1 , W 2

2 , r2, χ2, κ2) , and v = (V1, V2, q,
φ, α). Note that, even though � = f , we are not in “compliance” as g is not
bilinear, symmetric; however, we are “close” to compliance, and thus might
anticipate rapid output convergence.

We next observe that a0(w
1, v ; Gr) and a1(w

1, w2, v ; Gr) satisfy (a nonlin-
ear version of) our assumption of affine parameter dependence (7). In particular,
we may write

a0(w
1, v ; Gr) =

Q0∑
q=1

�
q
0(Gr)aq

0 (w
1, v), (46)

a1(w
1, w2, v ; Gr) =

Q1∑
q=1

�
q
1(Gr)aq

1 (w
1, w2, v), (47)

for Q0 = 2 and Q1 = 1. In particular, �1
0(Gr)= 1, �2

0(Gr)=
√

Gr, and �1
1(Gr)=√

Gr; the corresponding parameter-independent bilinear and trilinear forms
should be clear from (43) and (44). We shall exploit (46) and (47) in our
offline–online decomposition.

We define the derivative (about z ∈ X ) bilinear form dg(·, ·; z; Gr) : X ×
X →R as

dg(w, v ; z; Gr) ≡ a0(w, v ; Gr)+ a1(w, z, v ; Gr)
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which clearly inherits the affine structure (46) and (47) of g; we note that, for
our simple quadratic nonlinearity, g(z+w, v ; Gr)= g(z, v ; Gr)+ dg(w, v ; z;
Gr)+ (1/2) a1(w,w, v ; Gr). We then associate to dg(·, ·; z; Gr) our Babuška
inf–sup and continuity “constants”

β(z; Gr) ≡ inf
w∈X

sup
v∈X

dg(w, v ; z; Gr)

‖w‖X‖v‖X
,

γ (z; Gr) ≡ sup
w∈X

sup
v∈X

dg(w, v ; z; Gr)

‖w‖X‖v‖X
,

respectively; these constants now depend on the state z about which we
linearize. We shall confirm a posteriori that a solution to our problem does
indeed exist for all Gr in the chosen D; we can further demonstrate [22] that
the manifold {u(Gr)|Gr∈D} upon which we focus is a nonsingular (isolated)
solution branch, and thus β(u(Gr))≥ β0 > 0, ∀ Gr∈D.∗ We can also verify
γ (z; Gr) ≤ 2

√
Gr (1+ ρU (ρU +Prρθ) ‖z‖X ), where

ρU ≡ sup
V∈XU

‖V ‖L4(�)

‖V ‖XU
, ρθ ≡ sup

φ∈Xθ

‖φ‖L4(�)

‖φ‖H1(�)

(48)

are Sobolev embedding constants [27, 28]; for V ∈ XU , ‖V‖Ln(�)≡
(
∫
�(Vi Vi)

n/2)1/n, 1≤ n <∞, (W, V )XU ≡ ∫
� (∂Wi/∂x j )(∂Vi/∂x j )+Wi Vi ,

and ‖V‖XU ≡ (V, V )
1/2
XU .

We present in Fig. 3(a) a plot of s(Gr); as expected, for low Gr we obtain
the conduction solution, s(Gr)= 1; at higher Gr, the larger buoyancy terms
create more vigorous flows and hence more effective heat transfer. We show
in Fig. 3(b) the velocity and temperature distribution at Gr = 104; we observe
the familiar “S”-shaped natural convection profile.

5.2. Reduced-Basis Approximation

For simplicity of exposition we shall not address here the adjoint in the non-
linear (approximation or error estimation) context [22], and we shall thus only
consider RB treatment of the primal problem, (5) and (42). Our RB (Galerkin)

*We note that our truth approximation is div-stable in the sense that the “Brezzi” inf–sup parameter, βBr,
is bounded from below (independent of N ):

βBr ≡ inf
{q∈X p |

∫
�

q=0}
sup

V∈XU

∫
�

q(∂Vi/∂xi )

‖V ‖XU ‖q‖L2(�)

> 0;

this is a necessary condition for “Babuška” inf–sup stability of the linearized operator dg(·, ·, z; Gr).
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Figure 3. (a) Inverse Nusselt number s(Gr) as a function of Gr; and (b) velocity and temper-
ature field for Gr = 104.

approximation is thus: for given Gr ∈ D, evaluate sN (Gr)= �(uN (Gr)), where
uN (Gr)≡ (UN , pN , θN , λN )(Gr)∈WN ≡ W U

N ×W p
N ×W θ

N ×W λ
N satisfies

g(uN (Gr), v ; Gr) = 0, ∀ v ∈ WN ,

for � and g defined in (41) and (42)–(45). There are two new ingredients: cor-
rect choice of WN to ensure div-stability; and efficient offline–online treatment
of the nonlinearity.

We first address WN . To begin, we assume that N = 4m for m a positive int-
eger, and we introduce a sequence of nested parameter samples SN ≡{µpr

1 ∈
D, . . . , µ

pr
N/4 ∈D} in terms of which we may then define the components of

WN . It is simplest to start with W p ≡ span{p(µn), 1≤ n≤ N/4, and p̄},
where p̄ = 1 is the constant function; we then choose W U

N ≡ span{U (µpr
n ),

S p(µpr
n ), 1≤ n≤N/4}, where for q ∈ L2(�), Sq ∈ XU satisfies

(Sq, V )XU =
∫
�

∂Vi

∂xi
q, ∀ V ∈ XU ;

we next define W θ
N ≡ span{θ(µpr

n ), 1≤ n≤ N/4}; and, finally, W λ
N ≡R. Note

that W U
N must be chosen such that the RB approximation satisfies

the Brezzi div-stability condition; for our problem, the domain � and hence,
the span of the supremizers do not depend on the parameter, and therefore the
choice of W U

N is simple – the more general case is addressed in [29]. We ob-
serve that dim(W U

N )= (N/2), dim(W p
N )= (N/4)+ 1, dim(W θ

N )= (N/4), and
dim(W λ

N )= 1, and hence dim(WN )= N + 2.∗

*In fact, we can explicitly eliminate (the zero coefficient of) p̄ and λN (= 0) from our RB discrete equations,
and thus the effective dimension of WN is N . In the RB context, for which each member p(µ

pr
n ) of W p

N is
explicitly zero-mean, the services of the Lagrange multiplier are no longer required.
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For our nonlinear problem, the essential computational kernel is the inner
Newton update: given a kth iterate uk

N (Gr), the Newton increment δuk
N (Gr)

satisfies dg(δuk
N (Gr), v ; uk

N (Gr); Gr)=−g(uk
N (Gr), v ; Gr), ∀v ∈ X . If we now

expand uk
N (Gr) =

∑N
n=1 uk

N n(Gr) ζn – where WN = span{ζn, 1≤ n≤ N} – and
δuk

N (Gr) =
∑N

j=1 δuk
N j (Gr) ζ j , we obtain [17] the linear set of equations

N∑
j=1

{
Q0∑
q=1

�
q
0(Gr) aq

0 (ζ j , ζi)

+
N∑

n=1

Q1∑
q ′=1

�
q ′
1 (Gr)uk

Nn(Gr)aq ′
1 (ζ j , ζn, ζi)

}
δk

N j (Gr)

=− g(uk
N (Gr), ζi ; Gr), 1 ≤ i ≤ N,

where (from (42))

−g(uk
N (Gr), ζi ; Gr) = f (ζi)−

N∑
j=1

{ Q0∑
q=1

�
q
0(Gr) aq

0 (ζ j , ζi)

+1

2

N∑
n=1

Q1∑
q=1

uk
N n(Gr)�q

1(Gr)aq
1 (ζ j , ζn, ζi)

}
uk

N j (Gr)

is the residual for v = ζi .
We can now directly apply the offline–online procedure [7–9] described

earlier for linear problems, except now we must perform summations both
“over the affine parameter dependence” and “over the reduced-basis coeffi-
cients” (of the current Newton iterate about which we linearize).∗ The opera-
tion count for the predominant Newton update component of the online stage
is then – per Newton iteration – O(N3) to assemble the residual, −g(uk

N (Gr),
ζi ; Gr), 1≤ i ≤ N , and O(N3) to assemble and invert the N × N Jacobian. The
essential point is that the online complexity is independent of N , thanks to off-
line generation and storage of the requisite parameter independent quantities
(for example, aq

1 (ζ j , ζn, ζi )).
For this particular nonlinear problem, there is relatively little additional

cost associated with the nonlinearity. However, our success depends crucially
on the low-order polynomial nature of our nonlinearity: in general, standard
Galerkin procedures will yield Nn+ 1 complexity for an nth order (n≥ 2)
polynomial nonlinearity. Although symmetries can be invoked to modestly
improve the scaling with N and n [18], in any event new approaches will be

*In essence – we shall see this again in the error estimation context – our quadratic nonlinearity effectively
introduces N additional “parameter-dependent functions” and “parameter-independent forms” associated
with the coefficients of our field-variable expansion and our trilinear form, respectively; however, these
new parameter contributions are correlated in ways that we can gainfully exploit.
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required for nonpolynomial nonlinearities; we discuss these new procedures
for efficient treatment of general nonaffine and nonlinear operators in Outlook.

5.3. A Posteriori Error Estimation

The motivation for rigorous a posteriori error estimation is even more self-
evident in the case of nonlinear problems. Fortunately, there is a rich mathe-
matical foundation upon which to build the necessary computational structure.
We first introduce the former; we then describe the latter. For simplicity, we
develop here error bounds only for the primal energy norm, ‖u(µ)−uN (µ)‖X ;
we can also develop error bounds for the output – however, good effectivities
will require consideration of the dual [22].

5.3.1. Error bounds

We require some slight modifications to our earlier (linear) preliminaries.
In particular, we introduce T µ

N : X → X such that, for any w ∈ X , (T µ
N w, v)X =

dg(w, v ; uN (µ); µ), ∀v ∈ X ; we then define σN (w; µ)≡‖T µ
N w‖X/‖w‖X . Our

inf–sup and continuity constants – now linearized about the reduced-basis sol-
ution – can then be expressed as βN (µ)≡ β(uN (µ); µ)= infw ∈ X σN (w; µ),
and γN (µ)≡ γ (uN (µ); µ)= supw∈ X σN (w; µ), respectively; as before, we
shall need a nonnegative lower bound for the inf–sup parameter, β̃N (µ), such
that βN (µ)≥ β̃N (µ)≥ 0, ∀ µ∈D.

As in the linear case, the dual norm of the residual, εN (µ) of (22), shall
play a central role; the (negative of the) residual for our current nonlinear prob-
lem is given by (42) for w = uN (µ). We also introduce a new combination of
parameters τN (µ)≡ 2ρ(µ)εN (µ)/β̃2

N (µ), where ρ(µ)= 2
√

GrρU (ρU +Prρθ)
depends on the Sobolev embedding constants ρU and ρθ of (48); in essense,
τN (µ) is an appropriately “nondimensionalized” measure of the residual.
Finally, we define N∗(µ) such that τN (µ)< 1 for N ≥ N∗(µ); we require
N∗(µ) ≤ Nmax, ∀ µ ∈ D. (The latter is a condition on Nmax that reflects both
the convergence rate of the RB approximation and the quality of our inf–sup
lower bound.) We recall that µ≡Gr∈D≡ [1.0, 1.0× 104].

Our error bound is then expressed, for any µ∈D and N ≥ N∗(µ), as

�N (µ) =
β̃N (µ)

ρ(µ)

(
1−√

1− τN (µ)
)
. (49)

The main result can be very simply stated: if N ≥ N∗(µ), there exists a unique
solution u(µ) to (5) in the open ball

B
(

uN (µ),
β̃N (µ)

ρ(µ)

)
≡

{
z ∈ X

∣∣∣∣ ‖z − uN (µ)‖X <
β̃N (µ)

ρ(µ)

}
; (50)
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furthermore,

‖u(µ)− uN (µ)‖X ≤ �N (µ). (51)

The proof, given in Ref. [22], is a slight specialization of a general abstract
result [30, 31] that in turn derives from the Brezzi–Rappaz–Raviart (BRR)
framework for the analysis of variational approximations of nonlinear par-
tial differential equations [32]; the central ingredient is the construction of an
appropriate contraction mapping which then forms the foundation for a stan-
dard fixed-point argument. On the basis of the main proposition (50) and
(51) we can further prove several important corollaries related to the well-
posedness of the truth approximation (5), and – similar to the linear result
(24) – the effectivity of our error bound (49) [22].

We note that, as εN (µ)→ 0, we shall certainly satisfy N ≥ N∗(µ); fur-
thermore the upper bound to the true error, �N (µ) of (49), is asymptotic
to εN (µ)/β̃N (µ). We may derive these limits directly and rigorously from
(49) and (51), or more heuristically from the equation for the error e(µ)≡
u(µ)−uN (µ),

dg(e(µ), v; uN (µ); µ) =−g(uN (µ), v; µ)− 1
2 a1(e(µ), e(µ), v; µ).

(52)

We conclude that the nonlinear case shares much in common with the limiting
linear case. However, there are also important differences: even for τN (µ)< 1,
we must (in general) admit the possibility of other solutions to (5) – solutions
outside B(uN (µ), β̃N/ρ(µ)) – that are not near uN (µ); and for τN (µ)≥ 1, we
cannot even be assured that there is indeed any solution u(µ) near uN (µ).
This conclusion is not surprising: for “noncoercive” nonlinear problems the
error equation (51) may in general admit no or several solutions; we can only
be certain that a small (isolated) solution exists, (50) and (51), if the residual
is sufficiently small. The theory informs us that the appropriate measure of the
residual is τN (µ), which reflects both the stability of the operator (β̃N (µ)) and
the strength of the nonlinearity (ρ(µ)).

As in the linear case, the real computational challenge is the develop-
ment of efficient procedures for the calculation of the necessary a posteriori
quantities:∗ the dual norm of the residual, εN (µ); the inf–sup lower bound,
β̃N (µ); and – new to our nonlinear problem – the Sobolev constants, ρU and
ρθ . We now turn to these considerations.

*Typically, the BRR framework provides a nonquantitative a priori or a posteriori justification of asymp-
totic convergence. In our context, there is a unique opportunity to render the BRR theory completely pre-
dictive: actual a posteriori error estimators that are quantitative, rigorous, sharp, and (online) inexpensive.
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5.3.2. Offline-online computational procedures

The dual norm of the residual. Fortunately, the duality relation of the linear
case, (29), still applies – g(w, v ; µ) of (42) is nonlinear in w, but of course
linear in v . For our nonlinear problem, the negative of the residual, (42), for
w = uN (µ), may be expressed in terms of the reduced-basis expansion (12) as

−g(uN (µ), v; µ) = f (v)−
N∑

n=1

uN n(µ)

{
Q0∑
q=1

�
q
0(µ)aq

0 (ζn, v)

+ 1

2

Q1∑
q ′=1

N∑
n′=1

�
q ′
1 (µ) uN n′(µ)aq ′

1 (ζn, ζn′ , v)

}
, (53)

where we recall that µ≡Gr. If we insert (53) in (29) and apply linear super-
position, we obtain

ê(µ) = C +
N∑

n=1

uN n(µ)

⎧⎨⎩
Q0∑
q=1

�
q
0(µ)Lq

n +
Q1∑

q ′=1

N∑
n′=1

�
q ′
1 (µ)uN n′(µ)Qq ′

n n′

⎫⎬⎭,

where C ∈ X satisfies (C, v)X = f (v), ∀ v ∈ X , Lq
n ∈ X satisfies (Lq

n, v)X =
− aq

0 (ζn, v), ∀ v ∈ X , 1≤ n≤ N , 1≤ q ≤ Q0, and Qq
n n′ ∈ X satisfies Qq

n n′ =−aq
1 (ζn, ζn′ , v)/2, ∀ v ∈ X , 1≤ n, n′ ≤ N , 1≤ q ≤ Q1; the latter are again

simple (vector) Poisson problems. It thus follows that [22]

‖ê(µ)‖2
X = (C, C)X +

N∑
n=1

uN n(µ)

{
2

Q0∑
q=1

�
q
0(µ)(C,Lq

n)X +
N∑

n′=1

uN n′(µ)

×
{

2
Q1∑
q=1

�
q
1(µ)(C,Qq

n n′)X +
Q0∑
q=1

Q0∑
q ′=1

�
q
0(µ)�

q ′
0 (µ)(Lq

n,L
q ′
n′)X

+
N∑

n′′=1

uN n′′(µ)

{
2

Q0∑
q=1

Q1∑
q ′=1

�
q
0(µ)�

q ′
1 (µ)(Lq

n,Q
q ′
n′ n′′)X

+
N∑

n′′′=1

uN n′′′(µ)
Q1∑
q=1

Q1∑
q ′=1

�
q
1(µ)�

q ′
1 (µ)(Qq

n n′,Q
q ′
n′′n′′′)X

}}}

from which we can directly calculate the requisite dual norm of the residual
through (28).

We can now readily adapt the offline–online procedure developed in the lin-
ear case; however, our summation “over the affine dependence” now involves a
double summation “over the reduced-basis coefficients”. The operation count
for the online stage is thus (to leading order) O(Q2

1 N4); the essential point is that
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the online complexity is again independent of N – thanks to offline generation
and storage of the requisite parameter-independent inner products (for exam-
ple, (Qq

n n′,Q
q ′
n′′ n′′′)X , 1≤ n, n′, n′′, n′′′ ≤ N , 1≤ q, q ′ ≤ Q1). Although the N4

online scaling is certainly less than pleasant, the error bound is calculated only
once – at the termination of the Newton iteration – and hence in actual practice
the additional online cost attributable to the residual dual norm computation is
in fact not too large. However, the quartic scaling with N is again a memento
mori that, for higher order (than quadratic) nonlinearities, standard Galerkin
procedures are not viable; we discuss the alternatives further in Outlook. �

Lower bound for the inf–sup parameter. Our procedure for the linear case
can be readily adopted: we need “only” incorporate the N additional parameter-
dependent “coefficient functions” – in fact, the RB coefficients – that appear
in the linearized-about-uN (µ) derivative operator. Hence, for our nonlinear
problem, the bilinear form T of (34) and Rayleigh quotient F of (35) now con-
tain sensitivity derivatives of these additional “coefficient functions”; further-
more, the �(µ, µ̄) function of (37) – our second-order remainder term – now
includes the deviation of the RB coefficients from linear parameter depen-
dence. Further details are provided in Ref. [22] (for Pr = 0) for the case in
which WN ≡ W U

N is divergence-free. �
Sobolev continuity constant. We present here the procedure for calcula-

tion of ρU ; the procedure for ρθ is similar. We first note [27, 28] that ρU =
(1/δ̂min)

1/2, where (δ̂, ξ̂ ) ∈ (R+, XU ) satisfies

(ξ̂ , V )XU = δ̂

∫
�

ξ̂ j ξ̂ j ξ̂i Vi , ∀V ∈ XU , ‖ξ̂‖4
L4(�) = 1,

and (δ̂min, ξ̂min) denotes the ground state. To solve this eigenproblem, and in
particular to ensure that we realize the ground state, we pursue a homotopy
procedure.

Towards that end, we introduce a parameter h ∈ [0, 1] (and associated small
increment �h) and look for (δ(h), ξ(h))∈ (R+, XU ) that satisfies

(ξ(h), V )XU = δ(h)

(
h
∫
�

ξ j (h)ξ j(h)ξi(h)Vi

+ (1− h)
∫
�

ξi(h)Vi

)
,∀V ∈ XU ,

h‖ξ‖4
L4(�) + (1− h)‖ξ‖2

L2(�) = 1; (54)

(δmin(h), ξmin(h)) denotes the ground state. We observe that (δmin(1), ξmin(1))=
(δ̂min, ξ̂min); and that (δmin(0), ξmin(0)) is the lowest eigenpair of the standard
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(vector) Laplacian “linear” eigenproblem. Our homotopy procedure is simple:
we first set hold = 0 and find (δmin(0), ξmin(0)) by standard techniques; then,
until hnew = 1, we set hnew ← hold+�h, solve (54) for (δmin(hnew), ξmin(hnew))
by Newton iteration initialized to (δmin(hold), ξmin(hold)), and update hold ←
hnew. For our domain, we find (offline) ρU = 0.6008, ρθ = 0.2788; since ρU and
ρθ are parameter-independent, no online computation is required. �

5.3.3. Sample construction

The greedy algorithm developed in the linear case requires some modifi-
cation in the nonlinear context. The first issue is that, to evaluate our error
bound �N (µ), we must appeal to our inf–sup lower bound; however, in the
nonlinear case, this inf–sup lower bound, β̃N (µ), is defined with respect to the
linearized state uNmax(µ) [22]. In short, to determine the “next” sample point
µN+1 we must already know SNmax – and hence µN+1. To avoid this circular
reference during the offline sample generation process, we replace our inf–sup
lower bound with a crude (for example, piecewise constant over D) approxi-
mation to β(u(µ)); once the samples are constructed, we revert to our rigor-
ous (and now calculable) lower bound, β̃N (µ). The second issue is that, in the
nonlinear context, our error bound is not operative until τN (µ)< 1; hence, the
greedy procedure must first select on arg maxµ∈+F τN (µ) – until τN (µ)< 1 over
D – and only subsequently select on arg maxµ∈+F �N (µ) [Prud’homme, pri-
vate communication]. The resulting sample will ensure not only rapid conver-
gence to the exact solution, but also rapid convergence to a certifiably accurate
solution.

5.4. Numerical Results

We present in Table 2 ‖u(µ̃N )− uN (µ̃N )‖X/‖u(µ̃N )‖X , �N,rel(µ̃N )≡
�N (µ̃N )/‖uN (µ̃N )‖X , and ηN (µ̃N )≡�N (µ̃N )/‖e(µ̃N )‖X for 8≤ N ≤ Nmax =
40; here

µ̃N ≡ arg max
µ∈+Test

‖u(µ)− uN (µ)‖X

‖u(µ)‖X

and +Test is a random parameter grid of size nTest = 500.
We observe very rapid convergence of uN (µ) to u(µ) over D (more

precisely, +Test) – our samples SN are optimally constructed to provide uni-
form convergence. The output error decreases even more rapidly: maxµ∈+Test

|s(µ)− sN (µ)|/s(µ)= 1.34× 10−1, 2.80× 10−4, and 9.79× 10−7 for N = 8,
16, and 24, respectively; this “superconvergence” is a vestige of near compli-
ance. As regards a posteriori error estimation, we observe that N∗(µ̃N )= 24
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Table 2. Convergence and effectivity results for the natural convection
problem; the “*” signifies that N∗(µ̃N )> N , which in turn indicate that
τN (µ̃N )≥ 1

N
‖u(µ̃N )− uN (µ̃N )‖X

‖u(µ̃N )‖X
�N,rel(µ̃N ) ηN (µ̃N )

8 3.28× 10−1 * *

16 1.45× 10−2 * *

24 1.80× 10−4 7.47× 10−4 4.15

32 8.05× 10−7 7.60× 10−6 9.44

40 4.60× 10−8 8.69× 10−7 18.93

is relatively small – we can (respectively, can not) provide a definitive err-
or bound for N ≥ 24 (respectively, N < 24); more generally, we find that
N∗(µ)≤ 24, ∀ µ∈D. We note that the effectivities are quite good∗ – in fact,
considerably better than the worst-case predictions of our effectivity corollary.
(The higher effectivity at N = 40 is undoubtedly due to round-off in the online
summation.)

The results of Table 2 are based on an inf–sup lower bound construction
with J = 28 elements: points µ̄ j and polytopes (here segments) P µ̄ j , 1≤ j ≤ J .
The accuracy of the resulting lower bound is reflected in the modest N∗(µ) and
the good effectivities reported in Table 2. Most of the points µ̄j are clustered
at larger Gr, as might be expected.

Finally, we note that the total online computational time on a Pentium
M 1.6 GHz processor to predict uN (Gr), sN (Gr), and �N (Gr) to a relative
accuracy (in the energy norm) of 10−3 is – ∀Gr∈D – 300 ms; this should be
compared to 50 s for direct finite element calculation of the truth solution,
u(Gr), s(Gr). We achieve computational savings of O(100): N is very small
thanks to (i) the good convergence properties of SN and hence WN , and (ii) the
rigorous and sharp stopping criterion provided by �N (Gr); and the marginal
computational complexity to evaluate sN (Gr) and �N (Gr) depends only on N
and not on N – thanks to the offline–online decomposition. The computational
savings will be even more significant for more complex problems particularly
in three spatial dimensions; it is critical to recall that we realize these savings
without compromising rigorous certainty.†

*It is perhaps surprising that the BRR theory – not really designed for quantitative service – yields such
sharp results. However, it is important to note that, as εN (µ)→ 0, �N (µ) ∼ εN (µ)/β̃N (µ), and thus the
more pessimistic bounds (in particular ρ) are absent – except in τN (µ).
†We admit that the extension of our results to much larger Gr is not without difficulty. The more
complex flow structures and the stronger nonlinearity will degrade the convergence rate and a posteri-
ori error bounds – and increase N and J ; and (inevitable) limit points and bifurcations will require special
precautions.
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6. Outlook

We address here some of the more obvious questions that arise in review-
ing the current state of affairs. As a first question: How many parameters P can
we consider – for P how large are our techniques still viable? It is undeniably
the case that ultimately we should anticipate exponential scaling (of both N
and certainly J ) as P increases, with a concomitant unacceptable increase cer-
tainly in offline but also perhaps in online computational effort. Fortunately, for
smaller P , the growth in N is rather modest, as (good) sampling procedures will
automatically identify the more interesting regions of parameter space. Unfor-
tunately, the growth in J is more problematic: we shall require more efficient
construction and verification procedures for our inf–sup lower bound samples.
In any event, treatment of hundreds (or even many tens) of truly independent
parameters by the global methods described in this chapter is clearly not prac-
ticable; in such cases, more local approaches must be pursued.∗

A second question: How can we efficiently treat problems with non-affine
parameter dependence and (more than quadratic) state-space nonlinearity?
Both these issues are satisfactorily addressed by a new “empirical interpola-
tion” approach [33]. In this approach, we replace a general nonaffine non-
linear function of the parameter µ, spatial coordinate x , and field variable
u(x ; µ), H(u; x ; µ), by a collateral RB expansion: in particular, we approx-
imate H(uN (x ; µ); x ; µ) – as required in our RB projection for uN (µ) – by
HM(x ; µ)=

∑M
m=1 dm(µ)ξm(x). The critical ingredients of the approach are

(i) a “good” collateral RB sample, SH
M = {µH

1 , . . . , µH
M }, and approximation

space, span{ξm =H(u(µH
m ); x ; µH

m ), 1≤m≤M}, (ii) a stable and inexpensive
interpolation procedure by which to determine (online) the dm(µ), 1≤m≤M ,
and (iii) effective a posteriori error bounds with which to quantify the effect of
the newly introduced truncation. It is perhaps only in the latter that the tech-
nique is somewhat disappointing: the error estimators – though quite sharp
and very efficient – are completely (provably) rigorous upper bounds only in
certain restricted situations.

Finally, a third question, again related to generality: What class of PDEs
can be treated? In addition to the elliptic equations discussed in this paper,
parabolic equations can also be addressed satisfactorily from both the app-
roximation and error estimation points of view [24, 34, 35]:† much of the
elliptic technology directly applies, except that time now appears as an addi-
tional parameter; this parabolic framework can be viewed as an extension of

*We do note that at least some problems with ostensibly many parameters in fact involve highly coupled
or correlated parameters: certain classes of shape optimization certainly fall into this category. In these
situations, global progress can be made.
†To date we have experience with only stable parabolic systems such as the heat equation; unstable systems
present considerable difficulty, in particular if long-time solutions are desired.
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time-domain model reduction procedures [19, 25, 36]. Unfortunately, treat-
ment of hyperbolic problems does not look promising: although RB meth-
ods can perform quite well anecdotally, in general the underlying smoothness
(in parameter µ) and stability will no longer obtain; as a result, both the
approximation properties and error estimators will suffer.

We close by noting that the offline aspects of the approaches described are
both complicated and computationally expensive. The former can be at least
partially addressed by appropriate software and architectures [37]; however,
the latter will in any event remain. It follows that these techniques will really
only be viable in situations in which there is truly an imperative for real-time
certified response: a real premium on (i) greatly reduced marginal cost (or
asymptotic average cost), and (ii) rigorous characterization of certainty; or
equivalently, a very high (opportunity) cost associated with (i) slow response
– long latency times, and (ii) incorrect (or unsafe) decisions or actions. There
are many classes of materials and materials processing problems and contexts
for which the methods are appropriate; and certainly there are many classes
of materials and materials processing problems and contexts for which more
classical techniques remain distinctly preferred.

Appendix A Helmholtz Elasticity Example

We first define a reference domain corresponding to the geometry b = br = 1
and L = L r = 0.2. We then map �o(b, L)→�≡�o(br, L r) by a continuous
piecewise-affine (in fact, piecewise-dilation-in-x1 ) transformation. We define
three subdomains, �1≡ ] 0, br− L r/2 [× ] 0, 1 [ , �2≡ ] br− L r/2, br+ L r/
2 [× ] 0, 1[,�3 ≡ ]br+ L r/2, 2 [×] 0, 1 [, such that �̄= �̄1 ∪ �̄2 ∪ �̄3.

We may then express the resulting bilinear form a(w, v ; µ) as an affine
sum (7) for Q = 10; the particular �q(µ), aq(w, v), 1≤ q ≤ 10, as shown in
Table 3. (Recall that w = (w1, w2) and v = (v1, v2).) The constitutive constants
in Table 3 are given by

c11 =
1

1− ν2
, c22 = c11, c12 =

ν

1− ν2
, c66 =

1

2(1+ ν)
,

where ν = 0.25 is the Poisson ratio (and the normalized Young’s modulus is
unity); recall that we consider plane stress and a linear isotropic solid.

We now define our inner product-cum-bound conditioner as

(w, v)X ≡
∫
�

c11
∂v1

∂x1

∂w1

∂x1
+ c22

∂v2

∂x2

∂w2

∂x2
+ c66

∂v2

∂x1

∂w2

∂x1
+ c66

∂v1

∂x2

∂w1

∂x2

+w1v1 + w2v2

=
Q∑

q=2

aq(w, v) ;
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Table 3. Parametric functions �q (µ) and parameter-independent bilinear forms
aq (w, v) for the two-dimensional crack problem

q �q (µ) aq (w, v)

1 1 c12

∫
�

(
∂v1

∂x1

∂w2

∂x2
+ ∂v2

∂x2

∂w1

∂x1

)
+ c66

∫
�

(
∂v1

∂x2

∂w2

∂x1
+ ∂v2

∂x1

∂w1

∂x2

)
2

br − L r/2

b − L/2
c11

∫
�1

(
∂v1

∂x1

∂w1

∂x1

)
+ c66

∫
�1

(
∂v2

∂x1

∂w2

∂x1

)
3

L r

L
c11

∫
�2

(
∂v1

∂x1

∂w1

∂x1

)
+ c66

∫
�2

(
∂v2

∂x1

∂w2

∂x1

)
4

2− br − L r/2

2− b − L/2
c11

∫
�3

(
∂v1

∂x1

∂w1

∂x1

)
+ c66

∫
�3

(
∂v2

∂x1

∂w2

∂x1

)
5

b − L/2

br − L r/2
c22

∫
�1

(
∂v2

∂x2

∂w2

∂x2

)
+ c66

∫
�1

(
∂v1

∂x2

∂w1

∂x2

)
6

L

L r
c22

∫
�2

(
∂v2

∂x2

∂w2

∂x2

)
+ c66

∫
�2

(
∂v1

∂x2

∂w1

∂x2

)
7

2− b − L/2

2− br − L r/2
c22

∫
�3

(
∂v2

∂x2

∂w2

∂x2

)
+ c66

∫
�3

(
∂v1

∂x2

∂w1

∂x2

)
8 −ω2 b − L/2

br − L r/2

∫
�1

w1v1 + w2v2

9 −ω2 L

L r

∫
�2

w1v1 + w2v2

10 −ω2 2− b − L/2

2− br − L r/2

∫
�3

w1v1 + w2v2

thanks to the Dirichlet conditions at x1 = 0 (and also the wivi term), (·, ·)X

is appropriately coercive. We now observe that �(µ)= 1 (�1 = 0) and we can
thus disregard the q = 1 term in our continuity bounds. We may then choose
|v|2q = aq(v, v), 2≤ q≤ Q, since the aq(·, ·) are positive semi-definite; it thus
follows from the Cauchy–Schwarz inequality that �q = 1, 2≤ q ≤ Q; further-
more, from (36), we directly obtain CX = 1.
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[32] F. Brezzi, J. Rappaz, and P. Raviart, “Finite dimensional approximation of nonlinear
problems. Part I: Branches of nonsingular solutions,” Numerische Mathematik, 36,
1–25, 1980.



1564 N.N. Cuong et al.

[33] M. Barrault, N.C. Nguyen, Y. Maday, and A.T. Patera, “An “empirical interpolation”
method: application to efficient reduced-basis discretization of partial differential
equations,” C. R. Acad. Sci. Paris, Série I, 339, 667–672, 2004.

[34] D. Rovas, Reduced-Basis Output Bound Methods for Parametrized Partial Differen-
tial Equations, PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA,
2002.

[35] M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approxima-
tions of parametrized parabolic partial differential equations, M2AN Math. Model.
Numer. Anal., To appear, 2005.

[36] Z.J. Bai, “Krylov subspace techniques for reduced-order modeling of large-scale
dynamical systems.”, Appl. Numer. Math., 43, 9–44, 2002.

[37] C. Prud’homme, D.V. Rovas, K. Veroy, and A.T. Patera, “A mathematical and
computational framework for reliable real-time solution of parametrized partial
differential equations,” M2AN Math. Model. Numer. Anal., 36, 747–771, 2002.


