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1. Prologue

According to the Westmoreland report [1], “in the next ten years, molecu-
larly based modeling will profoundly affect how new chemistry, biology, and
materials physics are understood, communicated, and transformed to technol-
ogy, both intellectually and in commercial applications. It creates new ways of
thinking – and of achieving.”

Computer modeling of materials can potentially have an enormous impact
in designing or identifying new materials, how they fracture or decompose,
what their optical properties are, and how these and other properties can be
modified. However, materials’ simulations can be no better than the forces
provided by the potentials of interaction among the atoms involved in the
material. Today, these are almost invariably classical, analytical, two- or three-
body potentials, because only such potentials permit the very rapid genera-
tion of forces required by large-scale molecular dynamics. Furthermore, while
such potentials have been laboriously developed over many years, adding new
species frequently demands another long-term effort to generate potentials
for the new interactions. Most simulations also depend upon idealized crys-
talline (periodic) symmetry, making it more difficult to describe the often more
technologically important amorphous materials. If we also want to observe
bond breaking and formation, optical properties, and chemical reactions, we
must have a quantum mechanical basis for our simulations. This requires a
multi-scale philosophy, where a quantum mechanical core is tied to a classical
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atomistic region, which in turn is embedded in a continuum of some sort, like
a reaction field or a finite-element region.

It is now well-known that ab initio quantum chemistry has achieved the
quality of being “predictive” to within established small error bars for most
properties of isolated, relatively small molecules, making it far easier to obtain
requisite information about molecules from applications of theory, than to
attempt complicated and expensive experimental observation. In fact, applied
quantum chemistry as implemented in many widely used computer programs,
ACES II [2], GAUSSIAN, MOLPRO, MOLCAS, QCHEM, etc, has now
attained the status of a tool that is complimentary to those of X-ray struc-
ture determination and NMR and IR spectra in the routine determination of
the structure and spectra of molecules. However, there is an even greater need
for the computer simulations of complex materials to be equally predictive.
Unlike molecules, which can usually be characterized in detail by spectral and
other means, materials are far more complex and cannot usually be investi-
gated experimentally under similarly controlled conditions. They have to be
studied at elevated temperatures and under non-equilibrium conditions. Fre-
quently, the application of the material might be meant for extreme situations
that might not even be accessible in a laboratory. Hence, if we use more eco-
nomical computer models to learn how to suitably modify a material to achieve
an objective, our materials simulations must be “predictive,” to trust both the
qualitative and quantitative consequences of the simulations.

Besides the predictive aspect, another theme that permeates our work with
materials is “chemistry.” By chemistry we mean that unlike the idealized sys-
tems that have been the focus of most of the simulation work in materials
science, we want to consider the essential interactions among many different
molecular species; and, in particular, under stress. As an example, a long un-
solved problem in materials is why water will cause forms of silica to weaken by
several orders of magnitude compared to their dry forms [3–5] while ammonia
with silica shows a different behavior. A proper, quantum mechanically based
simulation should reflect these differences, qualitatively and quantitatively.

The third theme of our work is that by virtue of using a quantum mechanical
(QM) core in multi-scale simulations, unlike all the simulations based upon
classical potentials, we have quantum state specificity. In a problem like etch-
ing silica with CF4, which generates the ething agent, CF3, a classical potential
cannot distinguish between CF+3 , CF−3 , and CF·3, yet obviously the chemistry
will be very different. Furthermore, we also have need for the capability to use
excited electronic states in our simulations, to include species like CF∗3, e.g.,
or to distinguish between different modes of fractures of the silica target, such
as radical dissociation as opposed to ionic dissociation.

Conventionally, the only quantum mechanically based multi-scale dynamics
simulations that would permit as many as 500–1000 atoms in the QM region
were based upon the tight-binding (TB) method, density functional theory
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(DFT) being used only for smaller QM regions. TB is a pervasive term that
covers everything from crude, non-self-consistent descriptions like extended
Hückel theory [6], to quasi-self-consistent schemes based upon Mulliken or
other point charges [7], to a long history of solid state efforts [8, 9], to TB with
three-body terms [10]. The poorest of these do not introduce overlap, self-
consistency, nor explicit consideration of the nuclear–nuclear repulsion terms
that would be essential in any ab initio approach; so in general such methods
cannot correctly describe bond breaking, where charge transfer is absolutely
essential. However, there have been significant improvements on several fronts
in the recent TB literature [11, 12] which are helping to rectify these failings.

The alternative approach to TB is that based upon the semi-empirical
quantum chemistry tradition starting with Pariser and Parr [13, 14], Dewar
et al. [15, 16] and Pople et al. [17, 18], and being extended on several fronts
by Stewart [19–21], Thiel [22], Merz [23], Repasky et al. [24], and Tubert-
Brohman et al. [25]. These “neglect of differential overlap methods,” of which
the most flexible is the NDDO method, meaning “neglect of diatomic differ-
ential overlap” will be our initial focus. Like TB methods, the Hamiltonian
is greatly simplified but not necessarily by limiting all interactions to nearest
neighbors, but instead to operationally limiting interactions to mostly diatomic
units in molecules. We will address some of the details later, but for most of
our purposes, the particular form for the “transfer Hamiltonian” will be at our
disposal and suitable forms with rigorous justification are a prime objective of
our research.

It might be asked why a “Hamiltonian” instead of a potential energy surface?
Fitting the latter especially while including the plethora of bond-breaking
regions, is virtually impossible for even simple molecules. Highly parameter-
ized molecular mechanics (MM) methods [26] can do a good job of generating
a potential energy surface near equilibrium for well-defined and unmodified
molecular units; but bond breaking and formation is outside the scope of MM.
So our objective, instead of the PES (potential energy surface), is to create a
“transfer Hamiltonian” that permit the very rapid determination of, in princi-
ple, all the properties of a molecule; and especially the forces on a PES for
steps of the MD. The transfer Hamiltonian gives us a way to subsum most of
the complications of a PES in a very convenient package that will yield the
energy and first and second derivatives upon command. This has been done
to some degree in rate constant applications for several atom molecules where
the complication is the need for multi-dimensional PES information [27–29].
Here, we conceive of the transfer Hamiltonian as a way to get all the relevant
properties of a molecule including its electronic density, and related proper-
ties like dipole moments, and its photoelectron, electronic, and vibrational
spectra. Except for the latter, these are purely “electronic” properties, which
depend solely on the electronic Schrödinger equation. These should be distin-
guished from forces and the PES itself, which are properties of the total energy.
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The distinction between the two has been at the heart of the principal dilemma
in simplified or semi-emprirical theory, where a set of parameters that give
the total energy are not able to describe electronic properties equally well. It
is also critical that the Hamiltonian be computed very rapidly to accomodate
MD applications, and a form for it needs to be determined such that we retain
the accuracy of the forces and other properties that would come from ab initio
correlated theory. This is more an objective than a fait-accompli, but we will
discuss how to try to accomplish this in this contribution.

Our approach is to appeal to the highest level of ab initio quantum chemistry,
namely coupled-cluster (CC) theory, to use as a basis for a “transfer
Hamiltonian” that embed the accurate, predictive quality CC forces taken from
suitable clusters into it, but in an operator that is of very low rank, making it
possible to do fully self-consistent calculations on ∼500–1000 atoms under-
going MD. Hence, as long as a phenomena is accessible to MD, and if the
transfer Hamiltonian forces retain the accuracy of CC theory, we should be
able to retain the predictive quality of the CC method in materials simulations;
and if we can also describe the electronic properties accurately, we have every-
thing that the Schrödinger equation could tell us about our system. In addition,
we have no problem with changing atoms or adding new molecules to our sim-
ulations, as our transfer Hamiltonian is applicable to any system once trained
to ensure its proper description. We will also develop the transfer Hamilto-
nian approach from DFT considerations in the following to show the essential
consistency between the wavefunction and density functional methods.

Our emphasis on predictability, chemistry, and state specificity, offers a
novel perspective in the field; and the tools we are developing, all tied tog-
ether with highly flexible software, sets the stage for the kinds of simulations
that will lead to reliable materials design. As the Westmoreland report further
states, ‘The top needs required by industry are methods that are “bigger, better,
faster;” (with) more extensive validation, and multiscale techniques.’

2. Introduction

Our objective is predictive simulations of materials. The critical element
in any such simulation are the forces that drive the molecular dynamics. For
a reliable description of bond breaking, as in fracture or chemical reaction, or
to distinguish between a free radical and a cation or anion, to be electronic
state specific; or to account for optical spectra; the forces must be obtained
from a quantum mechanical method. Today’s entirely first-principles, quan-
tum chemical methods are “predictive” for small molecules in the sense that
with a suitable level of electron correlation, notably with coupled-cluster (CC)
theory [30], and large enough basis sets [30, 31]; or to a lesser extent, density
functional theory (DFT) [32–34] the results for molecular structure, spectra,



Achieving predictive simulations with quantum mechanical forces 31

energetics and the associated atomic forces required for these quantities and
for reaction paths are competitive with experiment. In particular, these highly
correlated methods offer accurate results for transient molecules and other ex-
perimentally inaccessible species, and particularly reaction paths that can sel-
dom be known from solely experimental considerations. In terms of ab initio
theory, the established paradigm of results from converging, correlated meth-
ods is MP2<CCSD<CCSD(T)<CCSDT<CCSDT(Q f )<CCSDTQ<Full CI.
The acronyms mean, second-order many-body perturbation theory (MBPT(2),
subject to a Hartree–Fock reference (Moeller–Plesset), coupled-cluster single
and double excitations, plus a non-iterative triples contribution, (T), plus full
CC triples, a non-iterative factorized quadruple contribution, and full quadru-
ples; while the ultimate result in a basis set is the full configuration interation
result. Though the latter can only be obtained for some small molecules in
small basis sets, it provides an unambiguous reference point for the “right”
answer in the basis set (Fig. 1). Notice the comparative convergence of con-
figuration interaction (CI) methods as a function of excitation level, order-by-
order MBPT, and CC theory. The basis set, itself, means the atomic orbital
basis composed of combinations of gaussian orbitals (contracted), which have
been determined from various criteria to span configuration space in a system-
atic fashion. The results in Fig. 1 use a double-zeta plus polarized basis set,
consisting of 4s functions, two sets of p functions and a set of d functions per
atom. We have increasingly accurate bases, cc-pVXC [35] where X ranges
from 2 to 6. When X = 2, we only have s and p orbtials on H, with s, p, d
orbitals on heavier atoms in the first row, C, N, O, F, etc. When we go to a
second row atom like Si, we pick up another s, p set and a set of d functions as

Figure 1. Comparison of CI, MBPT, and CC results with full CI. Results Based on DZP basis
for BH, and H2O at Re, 1.5Re, and 2.0Re.
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well. When we go to X = 3, we get a third s, third set of p functions, a second
set of d functions, and a set of f functions. Clearly, we rapidly go to quite large
basis sets when X � 3. The fundamental problem with using these methods
for large molecules is that after MP2 (∼n5) the above CC calculations scale
non-linearly with the number of basis functions, as ∼n6 for CCSD, ∼n7 for
(T), ∼n8 for CCSDT, etc.

The CC methods now in wide use were developed by the Bartlett group
from 1978 to the present [36], and have now been implemented numerous
times by independent researchers. As for benchmarks toward experiment,
many studies of expected error bars exist in the literature for various levels of
CC. Notably, the book by Helgaker et al. [31] shows many comparisons. We
plot the normal distributions of their results for HF, CCSD and CCSD(T) in
Figs. 2–4 for the pVDZ and pVTZ bases. All ab initio results depend upon
the quality of the basis set as well as the correlation corrections. We can
summarize the results in Table 1.

With a triply polarized basis like cc-pVTZ, the CCSD(T) standard devi-
ations are for structure (∼0.0023 Å), dissociation energies for single bonds
(∼3.5 kcal/mol), harmonic vibrational frequencies(∼5–20 cm−1), excitation
energies (∼0.1 eV for singly excited states) and NMR coupling constants
(∼5 Hz), with similar ones for other properties. From the normal distributions
of errors for bond lengths, dissociation energies, and heats of atomization in
small molecules at various levels of theory, there is a dramatic improvement
of CC methods over SCF, CISD, MP2. There can also be a significant differ-
ence between CCSD and CCSD(T) where the triple excitations are added in a
non-iterative form to CCSD [36]. There is an inadequate database about
transition states and activation barriers, since few are known experimentally.

For complex systems of the type addressed by modern multi-scale simula-
tions [39, 40], maintaining a chain of approximations built upon the quantum
mechanical core like the paradigm above to retain the predictability of the und-
erlying forces is even more important, as there is seldom the extent and quality

Figure 2. Normal distributions of the errors in calculated bond distances for a set of
28 molecules containing first row atoms.
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Figure 3. Normal distributions of the errors in calculated atomization energies for a set of
16 molecules containing first row atoms.

Figure 4. Normal distributions for the errors in calculated reaction enthalpies for a set of
13 reactions containing first row atoms.

Table 1. Bond lengths and dissociation energies as a
function of basis set and method [37, 38]

Band length Dissociation energy

DZ TZ DZ TZ

HF 0.021 0.028 7.12 6.85
MP2 0.013 0.006 7.41 3.28
CCSD(T) 0.016 0.002 8.78 2.88

of molecular specific experimental data available to test the theory that there is
for small molecules Hence, evolving toward predictive simulations is critical
to obtaining accurate, qualitative and quantitative conclusions. So how can we
achieve the predictability we need for materials simulations? The problem is
illustrated in Fig. 5. We can do highly accurate studies of molecular structure,
spectra, and bond breaking for∼20 atoms at the CC level;∼50–200 at the MP2
level; and ∼100–300 at the DFT level. In an isolated case for the energy at a
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Figure 5. Computational accuracy and efficiency of available potential forms compared to the
transfer Hamiltonian.

single geometry (not necessarily forces) with additional tricks we can go much
further to∼1000 atoms [41, 42]. But here we are only concerned with methods
for the forces that can be done on a time scale that can be reasonably tied to MD.
This imposes a severe limitation on the size of system that can be addressed.

The “transfer Hamiltonian” concept [43, 44] is meant to be a way to
retain much of the accuracy of ab initio quantum chemistry, like that from
CCSD; but in a way that permits the description of ∼500–1000 atoms to be
described by QM forces within a time-frame that can be tied to dynamics. We
will first consider the wavefunction viewpoint and then that from DFT. After
discussing the formal structure, we will specify to a particular form for the
transfer Hamiltonian and illustrate its application with numerical results.

3. Transfer Hamiltonian: Wavefunction Approach

In the correlated CC theory we start with the time-independent Schrödinger
equation,

H� = E� (1)

� = exp(T )|0〉 (2)
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and introduce the CC ansatz, by writing the wavefunction in the exponential
form of Eq. (2). The operator

T = T1 + T2 + T3 + · · · (3)

T1 =
∑
a,i

ta
i {a†i} (4)

T2 =
∑

i> j.a>b

tab
i j {a†ib† j} (5)

T3 =
∑

i> j>k,a>b.c

tabs
i j k {a†ib† jc†k} (6)

The T1 generates all single excitations, i.e., T1|0〉=∑
a,i ta

i �
a
i from the vacuum,

usually HF (but could equally well be the Kohn–Sham determinant), meaning
excitation of an electron from an occupied orbital to an unoccupied one. We
use the convention that i, j, k, l represent orbitals occupied in the Fermi vac-
uum, while a, b, c, d are unoccupied, and p, q, r, s are unspecified. T2 does
the same for the double excitations, and T3 the triple excitations. Continua-
tion through Tn for n electrons will give the full CI solution. Multiplying the
Schrödinger equations from the left by exp(−T ), the critical quantity in CC
theory is the similarity transformed Hamiltonian,

exp(−T )H exp(T ) = H (7)

where the Schrodinger equation becomes,

H |0〉 = E |0〉 (8)

|0〉 is the Fermi vacuum, or an independent particle wavefunction, but E(R) =
〈0|H |0〉 is the exact energy at a given geometry, and the exact forces subject
to atomic displacement are

∇E(R) = F(R) (9)

The effects of electron correlation are contained in the cluster amplitudes,
whose equations at a given R are

Qn H |0〉 = 0

where Q1 = |�a
i 〉〈�a

i |, Q2 = |�ab
i j 〉〈�ab

i j |, Q3 = |�abc
i j k 〉〈�abc

i j k |+ · · · . Q1 projec-
tions give the equations for {tai }, and similarly for the other amplitudes. Lim-
iting ourselves to single and double excitations, we have CCSD which is a
highly correlated, accurate wavefunction. Consideration of triples provides,
CCSDT, the state-of-the-art; while for practical application, its non-iterative
forms CCSD[T] and its improved modification, CCSD[T]; is currently con-
sidered the “gold standard” for most molecular studies [36, 43].
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Regardless of choice of excitation, H may be written in second-
quantization as

H = h
p
q p̂†q̂ + 1

2
g pq

rs p̂†q̂† ŝ r̂ + III+ IV+ · · · (10)

where summation of repeated indices is assumed and III and IV indicate three-
and four-body operators. The indices can indicate either atomic or molecular
orbitals. More explicitly, g pq

rs = 〈pq|rs〉 = (pr |qs) =
∫

d1
∫

d2φ∗p(1)φr (1)g12φ
∗
q

(2)φs(2) where the latter two-electron integral indicates the interaction
between the electron distributions associated with electrons 1 and 2, respec-
tively. We use g12 instead of r−1

12 because in the generalized form for H there
may be additional operators of two-electron type besides just the familiar inte-
grals. Such one- and two-electron quantitites further separated into one, two,
and more atomic centers, are the quantitites that will have to be computed
or in the case of simplified theories, approximated, to provide the results we
require. At this point, we have an explicitly correlated, many-particle theory. It
is important to distinguish this from an effective one-particle theory as in DFT
or Hartree–Fock, which are much easier to apply to complicated systems.

To make this connection, we choose to reformulate the many-particle
theory into an effective one-particle form. This is accomplished by insisting
that the energy variation δE = 0, which means the derivative of E with respect
to the orbitals that will compose the single determinant, |�〉, vanish. As our
expressions for tab..

i j.. , the CC equations, will depend upon the integrals over
these orbitals, and consequently H ; this procedure is iterative. As any such
variation of a determinant can be written in the form |�〉= exp(T1)|0〉, the
single excitation projection of H has to vanish,

〈ai |H |0〉 = 0 (11)

= 〈a|ĥT |i〉 (12)

where we introduce the “transfer Hamiltonian” operator, ĥT . Since this matrix
element vanishes between the occupied orbital, i, and the unoccupied orbital,
a, we can use the resolution of the identity 1=

∑
j |j〉〈 j | +∑

b |b〉〈b| to rewrite
this equation in the familiar form,

ĥT |i〉 =
∑

j

λ j i | j〉 = εi |i〉 (13)

where the first form retains the off-diagonal Lagrangian multipliers, while the
second is canonical. The above can equally well be done for HF-SCF theory,
except ĥT = f̂ = t̂+ v̂+ Ĵ− K̂ =h+ Ĵ− K̂ , where we have the kinetic-energy op-
erator, the electron–nuclear attraction term −∑

Z A/|r − RA|, combined tog-
ether into the one-particle element of Eq. (13); the Coulomb repulsion and
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the non-local exchange operator, repectively. The Hartree–Fock effective one-
particle operator, Ĵ − K̂ =

∑
j

∫
d2φ∗j (2)(1 − P12)φ j (2), and there would

be no correlation in the Fock operator. In that case, εi provides the negative
of the Koopmans’ estimate of ionization potentials, and εa the Koopmans’
approximation to the electron affinities. For the correlated ĥT , which is the
one-particle theory originally due to Brueckner [45, 46], all single excitations
vanish from the exact wavefunction, and as a consequence, we have maximum
overlap of the Brueckner determinant with the exact wavefunction, |〈�B |�〉|.
In general, Brueckner theory is not Hermitian, but in any order of perturbation
theory we can insist upon its hermiticity, i.e., 〈i |ĥT |a〉 = 0, and that will be
sufficient for our purposes.

The specific form for the transfer Hamiltonian matrix element is

〈a|ĥT |i〉 = 〈a| f̂ |i〉 + 1

2

[
〈aj ||cb〉tcb

i j − 〈k j ||ib〉 tab
kj

]
(14)

where summation over repeated indices is implied.
Keeping the form of the ĥT operator in the 〈a|ĥT |i〉 matrix element the

same, when a is replaced by an occupied orbital, m, we have

〈m|ĥT |i〉 = 〈m| f̂ |i〉 + 1

2

[
〈mj ||cb〉tcb

i j − 〈k j ||ib〉tmb
kj

]
(15)

Then, we have the Hartree–Fock-like equations but now for the correlated
one-particle operator, ĥT , represented in the basis set, |χ〉, where S = 〈χ|χ〉 is
the overlap matrix,

hT C = SCε (16)

and the (molecular) orbitals are |φ〉 = |χ〉C. The Brueckner determinant, �B,
is composed of the lowest n occupied MOs, |φ0〉= |χ〉C0 In particular, the
matrix elements for the transfer Hamiltonian in terms of the atomic orbital
basis set are

〈µ|hT |ν〉 =
[
h
µ

ν + Pβ
α (gµα

νβ − gµα
βν )

]
(17)

Pν
µ = ci

µcν
i (18)

(summation of repeated indices is assumed),where Pν
µ is the density matrix for

the Brueckner determinant. Hence, subject to modified definitions for h
µ

ν and
gµα
νβ , which we will assume are renormalized to include the critical parts of

the three- and higher-electron effects, we have the matrix ε which contains the
exact ionization potentials for the system.
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The total energy,

E = 〈�B |H |�B〉
=

∑
i

〈i |h|i〉 + 1

2

∑
i, j

〈i j ||i j〉 + 1

4

∑
i, j,a,b

〈i j ||ab〉tab
i j (19)

=
∑

i

〈i |h|i〉 + 1

2

∑
i, j

〈i j |g12|i j〉 (20)

=
1

2
T rP(h+h

′
T ) (21)

g12 = r−1
12 +

1

2

∑
a,b

T2||ab〉〈ab|| (22)

is also written in terms of the reference density matrix P = C0C†
0, evaluated

from the occupied orbital coefficients, C0. The quantityt h
′
T = ε′differs from

the form in Eq. (15), because of the absence of the third term on the RHS. This
term is an orbital relaxation term that only pertains to the ionization poten-
tials, as there we would need to allow the system to relax after the ionization.
Hence, this cannot contribute to the ground state energy, and its manifesta-
tion of that is that the total energy cannot be written in terms of the exact
ionization potentials in Eq. (13), but can be written in terms of an approxi-
mation introduced by h

′
T . The analytical forces for MD can be written eas-

ily, as well. Notice ĥT includes all electron correlation. Once h
µ
ν and gµα

νβ

are specified, which need to be viewed as quantities to be determined to
reproduce the reference results from ab initio correlated calculations, we
obtain self-consistent solutions for the correlated, effective, one-particle
Hamiltonian. The self-consistency is essential in accounting for bond-breaking
and associated charge rearrangement.

The overlap matrix is included for generality, but as is often done in NDDO
type theories, enforcing the ZDO approximation removes it. Another way to
view this is to assume the parameters are based upon using the orthonor-
mal expansion basis, |χ〉 = |χ〉S−1/2 which gives hT = S−1/2hT S−1/2. Devel-
oping this expression to include low-order in some S terms permits us to still
retain the simpler and computationally faster orthogonal form of the eigen-
value equation, yet introduce what is sometimes called “Pauli repulsion” in
the semi-empricial community [22]. A self-consistent solution provides the
coefficients, C and the reference orbital energies, ε′,which as we discussed,
are not the exact Ip’s that would come from including the contributions of the
tmb

jk amplitudes, which contain three-hole line and one-particle line. Such terms
arise in the generalized EOM or Fock space CC theory for ionized, electron
attached, and excited states. In lowest order, tmb

jk =〈mb|| jk〉/(ε j+εk−εb−εm).
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4. Transfer Hamiltonian: Density Functional Viewpoint

The DFT approach to the ĥT starts from a different premise that is actually
simpler, since DFT is already exact in an independent particle form, unlike the
usual many-particle theory above. As is well known, we have the Sham one-
particle Hamiltonian [32] whose first n eigenvectors give the exact density,

ĥ S = t̂ + v̂ + Ĵ + V̂x + V̂ (23)

ĥ S|i〉 = εi |i〉. (24)

hSC = SCε (25)

ρ(1) =
∑

i

φi (1)φ
∗
i (1) =

∑
µ,ν

χµ(1)Pµνχ
∗
ν(1) (26)

and like the above, the density matrix is P = C0C†
0. The highest-occupied MO,

n, has the property that εn = −Ip(n). However, solving these equations does
not provide an energy until we know the functional Exc[ρ], from which we
know that δExc[ρ]/δρ(1) = Vxc(1), to close the cycle. The objective of DFT
is to get the density, ρ, first; and then all other ground state properties follow;
in particular, the energy and forces we need for MD. The transfer Hamilto-
nian in this case will be defined by the condition that ρCCSD = ρKS. Satisfying
this condition means that we could obtain a Vxc from this density by using the
ZMP method [47], but our approach is simply to parameterize the elements
in ĥ S = ĥT in analogy with that in semi-empirical quantum chemistry or TB
such that the density condition is satisfied. This should specify Vxc, and in-
deed, the other terms in ĥT , which is then sufficient to obtain the forces,
{∂E(R)/∂XA}. Note this bypasses the need to use an explicit Exc[ρ],but, of
course, that would always be an option. We can also bypass any explicit treat-
ment of the kinetic energy operator by virtue of parametrization of ĥ = t̂ + v̂
as in the semi-empirical approach discussed below. Besides the density con-
dition, we also have the option to use the force condition in the sense that the
forces can be obtained from CC theory, and then their values directly used to
obtain the parameterized version of ĥ S = ĥT . Ideally, the parameters will be
able to describe both the densities and the forces, although this raises the issue
of the long-term inability of semi-empirical methods to describe structures and
spectra with the same parameters, discussed further in the last section.

As our objective is to be able to define a ĥT that will satisfy many of
the essential elements of ab initio theory, some of interest besides the forces
are the density, and the ionization potential and electron affinity. The latter
define the Mulliken electronegativity, EN = (I − A)/2, which should help to
ensure that our calculations correctly describe the charge distribution in a sys-
tem and the density. We also know the correct long-range behavior of the den-
sity is determined by the homo ionization potential, ρ (r) ∝ exp(−2

√
2I )r,

which is a property of exact DFT. If the density is right, then we also know
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that we will get the correct dipole moments for the molecules involved, and
this is likely to be critical if we hope to correctly describe polar systems like
water, along with their hydrogen bonding.

5. What About Semi-Empirical Methods?

Before embarking upon a particular form for the transfer Hamiltonian
that must inevitably be semi-empiricial or TB type, we can ask what kind of
accuracy is possible with such methods. In an recent paper on PM5, a pa-
rameterized NDDO Hamiltonian, [20, 21] Stewart reports that the PM5 heats
of formation for over ∼1000 molecules composed of H, C, N, O, F, S, Cl,
Br, and I have a mean absolute deviation (MAD) of 4.6 kcal/mol, nearly the
same as DFT using BLYP or BPW91. The errors of PM3 are slightly larger
(5.2) and AM1 (7.2). The largest errors are 27.2, (PM5), 35.1, (PM3), 54.8,
(AM1) and 55.7 for BLYP and 34.5 for BPW91. Using a TZ instead of a DZ
basis for the latter gives some improvement in the worst cases. For Jorgensen’s
reparameterized PM3 and MNDO methods, referred to as PDDG [22, 25], the
MAD heats of formation for 662 molecules limited to H, C, N, and O are
reduced from 8.4 to 5.2, and with some extra PDDG additions, from 4.4 to
3.2 kcal/mol. For geometries, PDDG gets bond lengths to a MAD of 0.016 Å,
2.3◦ bond angle, and 29.0◦ dihedral angle. The principal Ip is typically within
∼0.5 eV – though it can be off by several – which is some 3% more accurate
than PM3 and 12% less accurate than PM5. For dipole moments, the MAD
is 0.24 Debye. There is less information about transition states and activa-
tion barriers, but these methods have seen extensive use for such problems in
chemistry.

Recent TB work termed SCC-DFTB for self-consistent charge density
functional TB [11] is based upon DFT rather than HF and is less empirical,
but still simplified using similar approximations for two-center interactions as
in NDDO, discussed below. It is developed for solids as well as molecules.
For the latter, in 63 organic examples the MAD deviations in bond lengths are
0.012 Å, and angles, 1.80◦. For heats of reaction, in 36 example molecules
composed of H, C, N, O the MAD is 12.5 kcal/mol compared to 11.1 for
DFT-LSD. On the other hand, we can have dramatic failures. None of these
new semi-empirical methods yet even treat Si, much less heavier elements of
the sort that are important in many materials applications. To quote just one
example, in comparisons of nine Zn complexes with B3LYP and CCSD(T),
“MNDO/d failed the case study” and the errors compared to ab initio or DFT
were dramatic.” The authors [48] say “No one semiempiricial model is
applicable for the calculations of the whole variety of structures found in
Zn chemistry.”



Achieving predictive simulations with quantum mechanical forces 41

6. Forms for Tranfer Hamiltonian

Our objective is to model ĥT for the particular phenomena of interest and
for chosen representative systems (i.e. unlike normal semi-empirical theory
we do not expect the parameters to describe many elements at once) in a way
that permits the routine, self-consistent treatment of a very large number of
the same kinds of atoms. We also recognize that the traditional approaches are
built upon approximating the HF-SCF one-particle Hamiltonian, f̂ , not the
more exact DFT or Brueckner approach discussed above. Also, traditionally,
only a minimum basis set of an s orbital on H, and one s and a set of p orbtials
are used on the other atoms, until d orbtials are occupied. Thinking more like
ab initio theory, we do not presuppose such restrictions, but will use polariza-
tion functions and potentially double zeta sets of s and p orbitals on all atoms.
We recognize the attraction of a transfer Hamiltonian that (1) consists solely
of atomic parameters; and (2), is essentially two-atom in form, as all three-
and four-center contributions are excluded. This is the fundamental premise of
all neglect of differential overlap approximations [15, 17, 19]. Hence, as a first
realization, guided by many years of semi-empirical quantum chemistry, we
choose the “neglect of diatomic differential overlap” (NDDO) Hamiltonian,

〈µ|ĥT |ν〉 =
∑
µ∈A

αµνδuv +
∑

µ=α,ν=β
µ,ν∈A

Pβ
α (µα|νβ)− ∑

µβ=να,µ=/β
µ,β∈A

Pβ
α (µβ|να)

+ ∑
µ∈A,ν∈B

1

2
(βu + βv)Sµ

ν +
∑

µ=α∈A,v,β∈B,
ν=β∈B,µ,α∈A

Pβ
α (µα|νβ)

− ∑
µ=/β∈A,
ν=/α∈B

Pβ
α (µβ|να) (27)

consisting of atomic and diatomic units. αµµ is a purely atomic quantity that
represents the one-particle part of the energy of an electron in its atomic
orbital. We would have different values for s, p, d, . . . orbitals, collectively
indicated as αA. The one-center, two-electron terms for atom A are separated
into coulomb and exchange terms and weighted by the density matrix. No exp-
licit correlation operator as in DFT is yet considered. Instead modifications
(parameterizations) of the coulomb and exchange terms are viewed as poten-
tially accomplishing the same objective. βu is an atomic parameter indicative
of each orbital type (s,p,d) on atom A and Sµ

ν is the overlap integral between,
formally, two atomic orbitals on atoms A and B. A Slater type orbital on
atom A is χA =rn−1

A exp (−ζA)Yl,m(ϑA,ϕA), and the overlap integral, Sµ
ν (ζA,ζB)

depends upon ζA and ζB, so it is entirely determined by what the atoms are. So
it, too, consists of atomic parameters.
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The terms which include density matrix elements account for the two-
electron repulsion terms which depend upon the purely one-center two-electron
integral type, (µAνA|µAνA) = γ

µν
AA. A typical choice for the two-center, two-

electron term then becomes [49, 50]

(µAνA|µBνB) ∝
[
r2

AB + (cuv
A + cuv

B )2
]−1/2

(28)

where rAB = RAB + qi and the additive terms cuv are numerically determined
such that the two-center repulsion integral goes to the proper one-center
limiting value. RAB is the distance bewteen atoms A and B, but differs from
rAB due to the multipole method used to compute the two-electron integral.
For (sAsA|pB pB), a monopole and quadrupole are used for the p electron dis-
tribution while a monopole is used for the s distribution. The radial extent of
the multipoles is given by qi = qpB, and is a function of the atomic orbital
exponent ζB on atom B. This form for the two-electron integrals assumes the
correct long-range (1/R) behavior. More general forms for the two-center,
two-electron integrals combine such contributions together from several mul-
tipoles to distingush (ss|ss) from (ss|dd), etc. [19, 51]. This set of approx-
imations defines the NDDO form of the matrix elements of ĥT between two
atomic orbitals.

Now we have to consider the nuclear repulsion contribution to the ene-
rgy,

∑
A,BZA ZB/RAB. Importantly, and unlike in ab initio theory, the effec-

tive atomic number, ZA ,which is chosen initially to be equal to the number of
valence electrons being contributed by atom A, is also made a function of all
RAB in the system. This introduces several new parameters into the calcula-
tion, justified roughly by some ideas of electron screening. The AM1 choice
[16] for the latter reflects screening of the effective nuclear charge with the
parameterized form

ECR = Z ′A Z ′B(sAsA|sBsB)
{

1+ e(−dA RAB) + e(−dB RAB)
}

+ Z ′A Z ′B
RAB

{∑
k

aAke−bA(RAB−CkA)2 +∑
k

aBke−bB(RAB−CkB)2

}
(29)

These core repulsion (CR) parameters, d, b, a and C account for the nuclear
repulsion, which means they contribute to total energies and forces, but not
to purely electronic results. The latter depend upon the electronic parameters
βA,γAA, αA, . . . . In our work, both sets are specified via a genetic algorithm to
ensure that correlated CCSD results are obtained for representative systems,
tailored to the phenomena of interest.

Looking at the above approximations, we see that we retain only one and
two-center two-electron integrals. In principle, we can have a three-center
one-electron integral from 〈µA|ZC/|r − RC‖νB〉, but in NDDO, such terms
are excluded as well. Any approximation of ĥT that is to be tied to ab initio
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results, has to have the property of “saturation.” To achieve this, we insist that
our form for ĥT be fundamentally short range. We see from the above, that
our ĥT depends on two-center interactions, but unlike TB, not just those for
the nearest neighbor atoms but for all the two-body interactions in the system.
This short-range character helps to saturate the atomic parameters for com-
paratively small example systems that are amendable to ab initio correlated
methods. Then once the atomic parameters are obtained, and found to be
unchanged to within a suitable tolerance when redetermined for larger clus-
ters, they define a saturated, self-consistent, correlated, effective one-particle
Hamiltonian that can be readily solved for quite large systems to rapidly
determine the forces required for MD. We also have easy access to the second-
derivatives (Hessians) for definitive saddle point determination, vibrational
frequencies, and interpolation between calculations at different points for MD.

Using H2O as an example for saturation, we can obtain the cartesian force
matrix for the monomer by insisting that our simplified Hamiltonian provide
the same force curves as a function of intra-atomic separation for breaking
the O–H bond with the other degrees of freedom being optimum (i.e. a distin-
guished reaction path). Call this matrix FA. From FA we use a GA to obtain the
Hamiltonian parameters that, in turn, determine h and g elements that make
our transfer Hamiltonian reproduce these values. The more meaningful gradi-
ent norm |F | is used in practice rather than the individual cartesian elements.
Now consider two water molecules interacting. The principal new element
is the dihedral angle that orients one monomer relative to the other, but the
H-bonding and dipole–dipole interaction will cause some small change when
we break an O–H bond in the dimer. Our first approximation to FAB=FA+FB+
VAB. Then by changing our parameters to accomodate the dimer bond break-
ing, we get slightly modified h and g elements in the transfer hamiltonian.
This makes FAB = F ′A+ F ′B. Going to a third unit, we would add V ′

ABC,V
′

AC,V
′

BC
perturbations and repeat the process to define FABC = F ′′A + F ′′B + F ′′C. Since
these atomic based interactions will rapidly fall off with distance, we expect
that relatively quickly we would have a saturated set of parameters for the bond
breaking in water with a relatively small number of clusters. We can obviously
look at other properties, too, such as dipole moments, cluster structures, etc., to
assess their degree of saturation with our ĥT parameters. If we fail to achieve
a satisfactory saturation, then we have to pursue more flexible, or more accu-
rate forms of transfer Hamiltonians. It is essential to identify the terms that
matter, and the DFT form provides complimentary input to the wavefunction
approach in this regard. Also, unlike most semi-empirical methods we do not
limit ourselves to a minimum basis set. The general level we would antici-
pate is CCSD with a double-zeta + polarization basis, while dropping the core
electrons. This is viewed as the quality of ab initio result that we would pursue
for complicated molecules.
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In addition, following the equation-of-motion (EOM) CC approach [52],
we insist that

H R̂k |0〉 = ωk R̂k |0〉 (30)

where R̂k exp (T )|0〉 = �k and ωk is the excitation energy for any ionized, Ik,

electron-attached, Ak,or excited state. In other words, this provides Ips and
Eas that tie to the Mulliken electronegativity, to help to ensure that our trans-
fer Hamiltonian represents the correct charge distribution and density size.
Furthermore, whereas forces and geometries are highly sensitive to the core-
repulsion parameters, properties like I and A are sensitive to the electronic
parameters in the transfer Hamiltonian.

The transfer Hamiltonian procedure is far more general than the particular
choice of Hamiltonian chosen here, since we can choose any expansion of H
or ĥT that is formally correct and include elements to be computed or param-
eters to be determined, to define a transfer Hamiltonian. Furthermore, we can
insist that it satisfy suitable exact and consistency conditions such as having
the correct asymptotic or scaling behavior. Other desirable conditions might
include the satisfaction of the virial and Hellman–Feynman theorems. We can
also choose to do many of the terms like the one-center ones, ab initio, and
keep those values fixed subsequently. Then, our simplified forms 1

2(βu+βv)Sµ
ν

and that of Eq. (29), are the only ones where there is an electronic dependence
upon geometry. Adding this dependence to that from the core–core repulsions,
has to provide the forces that drive the MD. We can explore many other prac-
tical approximations such as supressing self-consistency by setting P = 1, and
impose the restriction that only nearest neighbor two-atom interactions be
retained, to extract a non-self-consistent TB Hamiltonian that should be very
fast in application. We can obviously make many other choices and create, per-
haps, a series of improving approximations to the ab initio results that parallel
their computational demands.

7. Numerical Illustrations

As an illustration of the procedure, consider the prototype system for an
Si–O–Si bond as in silica, pyrosilicic acid (Fig. 6). This molecule has been
frequently used as a simple model for silica. We are interested in the Si-O
bond rupture. Hence, we perform a series of CCSD calculations as a function
of the Si–O distance all the way to the separated radical units, ·Si(OH)3 and
·O–Si(OH)3, relaxing all other degrees of freedom at each point (while avoid-
ing any hydrogen bonding which would be artificial for silica) using now well-
known CC analytical gradient techniques [36]. For each point we compute the
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Figure 6. Structure of pyrosilicic acid.

Figure 7. Comparison of forces from standard semi-empirical theory (AMI) and the transfer
Hamiltonian (TH-CCSD) with coupled-cluster (CCSD) results for dissociation of pyrosilicic
acid into neutral fragments.

gradient norm of the forces for the 3N cartesian coordinates, qI , (3 per atom
A), |F |= ∑3N

I [(∂E/∂qI )
2]1/2 and use the genetic algorithm PIKAIA [53]

to minimize the difference between |F(CCSD)-F(ĥT )| for the transfer
Hamiltonian and the CCSD solution. This is shown in Fig. 7. Since forces
drive the MD, their determination is more relevant for the problem than the po-
tential energy curves, themselves. For this case, we find that fixing the param-
eters in our transfer Hamiltonian that are associated with the core-repulsion
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function is sufficient, leaving the electronic parameters at the standard values
for the AM1 method. As seen in Fig. 7, these new parameters are responsible
for removing AM1s too large repulsion at short Si–O distances and erroneous
behavior shortly beyond the equilibrium point. Hence, to a small tolerance, the
transfer Hamiltonian provides the same forces as that in the highly sophisti-
cated ab initio CCSD method.

In a second study, QM forces permit the description of different electronic
states. As an example, for this system we can also separate pyrosilicic acid into
charged fragments, Si(OH)3+ and O–Si(OH)3−, and in a material undergoing
bond-breaking, we would expect to take multiple paths such as this. A classi-
cal potential has no such capability. Figure 8 shows the curve and once again
we obtain a highly accurate representation from the transfer Hamiltonian, with
the same parameters obtained for the radical dissociation. Hence, our trans-
fer Hamiltonian has the capability of describing the effects of these different
electronic states in simulations, which besides enabling reliable descriptions
of bond-breaking, should have an essential role if a materials’ optical proper-
ties are of interest. Figure 9 shows the integrated force curves to illustrate that
even though the parameters were determined from the forces, the associated
potential energy surfaces are also accurate compared to the reference CCSD
results, and more accurate than the conventional AM1 results. The latter has
an error of ∼0.4 eV between the neutral and charged paths compared to the
CCSD results. We have also investigated the parameter saturation. Moving to
trisilicic acid we obtain the reference results wihout any further change in our
parameters.

Figure 8. Comparison of forces from standard semi-empirical theory (AM1) and the Transfer
Hamiltonian (TH-CCSD) with coupled-cluster (CCSD) results for dissociation of pyrosilicic
acid into charged fragments.
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Figure 9. Comparison of PES for dissociation of pyrosilicic acid. Each curve is labeled by the
Hamiltonian used and the dissociation path followed.

The correct description of complicated phenomena in materials requires
that the approach be able to describe, accurately, a wealth of different valence
states and coordination states of the relevant atoms involved. For example, the
surface structure of silica is known to show three, four, and five coordinate Si
atoms. Hence, a critical test of the ability of the ĥT is how well its form can
account for the observed structure of such species with the same parameters
already determined for bond breaking. In Figs. 10 and 11, we show compar-
isons of the ĥT results for some Six Oy molecules with DFT (B3LYP), var-
ious two-body classical potentials [54, 55], and a three-body potential [56]
frequently used in simulations, and molecular mechanics [26]. The reference
values are from CCSD(T), which are virtually the same as the experimental
values when available. The ĥT results are competitive with DFT and superior
to all classical forms, including even MM with standard parameterization. The
latter is usually quite accurate for molecular structures at equilibrium geome-
tries, but not necessarily for SiO2. MM methods do not attempt to describe
bond breaking.

The comparative timings using the various methods are shown in Table 2
for two different sized systems, pyrosilicic acid and a 108-atom SiO2 nanorod
[57]. The 216-atom version is shown in Fig. 12.

The ĥT procedure is about 3.5 orders of magnitude faster than the gaussian
basis B3LYP DFT results, which is another ∼3.5 orders of magnitude faster
than CCSD[ACESII]. The 108 atom nanorod is clearly well beyond the capac-
ity of CCSD ab initio calculations, but even the DFT result (in this case with a
plane wave basis using the BO-LSD-MD (GGA) program, is excessive, while
the ĥT is again three to four orders of magnitude faster. With streamlining of
programs, we expect that this can still be significantly improved.
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Figure 10. Error in computed Six Oy equilibrium bond lengths relative to CCSD(T) using
various potentials.

Figure 11. Error in computed Six Oy equilibrium bond angles relative to CCSD(T) using
various potentials.
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Table 2. Comparative timings for electronic structure calcu-
lations (IBM RS/6000)

Pyrosilicic acid 108-atom nanorod

Method CPU time (s) Method CPU time (s)

CCSD 8656 CCSD N/A
DFT 375 DFT 85,019

ĥT 0.17 ĥT 43
BKS 0.001 BKS 0.02

Finally, to illustrate the results of a simulation we consider the 216-atom
SiO2 system of Fig. 12, subject to a uniaxial stress, using various classical
potentials and that for our QM transfer Hamiltonian. The equilibrated nanorod
was subjected to uniaxial tension by assigning a fixed velocity (25 m/s) in the
loading direction to the 15 atoms in the caps at each end of the rod. The stress
was computed by summing the forces in the end caps and dividing by the
projected cross sectional area at each time step. The simulations evolved for
(approximately) 10 ps where the system temperature was maintained at 1 K by
velocity rescaling.

Figure 13 shows the computed stress–strain curves. The main differences
between the classical potentials and their QM potentials seems to be the dif-
fernce at the maximum and the long tail indicating surface reconstruction. The
QM potential shows the expected brittle fracture, perhaps a little more than the
classical potentials. The transfer Hamiltonian, retains self-consistency, state
specificity, and permits readily adding other molecules to simulations after
ensuring that they, too, reflect the reference ab initio values for their various
interactions. Hence, the transfer Hamiltonian built upon NDDO or more gen-
eral forms, would seem to offer a practical approach to moving toward the
objective of predictive simulations.

In Fig. 14 we show the same kind of information about bond-breaking in
water, showing the substantial superiority of the ĥT results compared to stan-
dard AM1. A well-known failing of semi-empirical methods is their inabil-
ity to correctly describe H-bonding. In Fig. 15 we compare the equilibrium
structure of the water dimer obtained from the ĥT , ab initio MBPT(2), and
standard semi-empirical theory. It provides the quite hard to describe water
dimer in excellent agreement with the first-principles calculations, contrary to
AM1 which leads to errors in the donor–acceptor O–H bond of 0.15 Å. In this
example, we have to change the electronic parameters along with the core-
core repulsion. We would expect this to be the case for most applications. In
the future, we hope we can develop the ĥT to the point that we will have an
accurate, QM, description of water and its interactions with other species.
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Figure 12. Silica nanorod containing 216 atoms.
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Figure 13. Stress–strain curve for 216-atom silica nanorod with classical and quantum
potentials.

Figure 14. Comparison of forces for O–H bond breaking in water monomer.
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Figure 15. Structure of water dimer using transfer Hamiltonian, MBPT(2), and standard AM1
Hamiltonian. Bond lengths in angstroms and angles in degrees.

8. Future

This article calls for some expectations for the future. We have little doubt
that the future will demand QM potentials and forces in simulations. It seems
to be the single most critical, unsolved, requirement if we aspire toward
“predictive” quality. If we could use high-level CC forces in simulations for
realistic systems, we would be as confident of our results – as long as the phe-
nomena of interest is amendable to classical MD – as we would be for the
determination of molecular properties at that level of theory and basis. Of
course, in many cases we cannot run MD for long enough time periods to
allow some phenomena to manifest themselves, perhaps forcing more of a
kinetic Monte Carlo time extension at that point. We clearly also need much
accelerated MD methods regardless of the choice of forces.

Like the above NDDO and TB methods, DFT as used in practice, is also
a “semi-empirical” theory, as methods like B3LYP now use many parameters
to define their functionals and potentials. Even the bastion of state-of-the-art
ab initio correlated methods – coupled-cluster theory – is not exact because it
depends upon a basis set, as shown in the examples in the introduction. Since
even DFT cannot generally be used in MD simulations involving more than
∼300 atoms, to make progress in this field demands that we have “simpli-
fied” methods that we can argue retain ab initio or DFT accuracy but now for
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>1000 atoms, and that can be readily tied to simulations. In this article, we
have suggested a procedure for doing so. We showed that the many-electron
CC theory could be reformulated into a single determinant form, but at the cost
of having a procedure to reliably introduce the quantites we called gν

µ,g
λδ
µν, gλδη

µνε,
etc. These are complicated quantities that in an ab initio calculation would
depend upon one- and two-electron integrals over the basis functions and the
cluster amplitudes in T̂ . We could directly compute these elements from ab
initio CC methods, to assess their more detailed importance and behavior,
and expect to do so. But we prefer, initially, to obtain most of these elements
from consideration of a smaller set of quantities and parameters like those in
NDDO, or perhaps in TB; and investigate whether those limited numbers of
parameters will be capable of fixing ĥT =

∑
µ,ν |µ〉〈µ|ĥT |ν〉〈ν| to the required

accuracy. We believe in ensuring that ĥT has the correct long- and short-range
behavior, including the united atom and the separated atom limits. We also
want to make sure that the proper balance between the core–core repulsions
and the electronic energy is maintained. In our opinion, this is the origin of
the age-old problem in semi-empirical theory, that there needs to be different
parameters for the total energy, forces, transition states, and those for purely
electronic parameters like the electronic density, or photo-electron, or elec-
tronic spectra. The same features are observed in solid state applications where
the accuracy of cohesive energies and lattice parameters does not transfer to
the band structure. Such electronic properties do not depend upon the core–
core repulsion at all, yet for many of the total energy properties, as we saw for
SiO2, only the core repulsion parameters need to be changed to get agreement
with CCSD. This is not surprising. For total energies and forces, we are fitting
the difference between two large numbers, which is much easier to fit than
the much larger electronic energy, itself. It would be nice to develop a method
that fully accounts for whatever the appropriate cancellation of the core–core
effects with the electronic effects from the beginning. Only an ability to
describe both reliably will pay the dividends of a truly predictive theory.

DFT, MP2, and even higher level methods will continue to progress using
local criteria [41], linear scaling, various density fitting tricks [58] and a
wealth of other schemes; but regardless, if we can make a transfer
Hamiltonian that is already ∼4–5 orders of magnitude faster than DFT, re-
tain and transfer the predictive quality of ab initio or DFT results for clusters
to very large molecules, there will always be a need to describe much larger
systems accurately and smaller systems faster. In fact, it might be argued, that
if such a procedure can be created that will be able to correctly reproduce
high-level ab initio results for representative clusters – and fulfill the satura-
tion property we emphasized – the final results might well exceed those from
a purely ab initio or DFT method for∼1000 atoms. The compromises made to
make such large molecule applications possible, even at one geometry, forces
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restricting the basis sets, or number of grid points, or other assorted elements
to acommodate the size of system. In principle, the transfer Hamiltonian would
not be similarly compromised. Its compromises lie elsewhere.
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