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1. Statistical Ensembles and Computer Simulation

Calculation of thermodynamic quantities in molecular dynamics (MD) and
Monte Carlo (MC) computer simulations is a useful, often employed tool
[1–3]. In this procedure one chooses a particular statistical ensemble for the
computer simulation. Historically, this was the microcanonical, or (EhN)
ensemble for MD and the canonical, or (ThN) ensemble for MC, but there
are several choices available for MD or MC. The notations, (EhN), (ThN)
denote ensembles by the thermodynamic state variables that are constant in
an equilibrium simulation; energy E , shape-size matrix h, particle number
N and temperature T . (There could be other thermodynamic state variables,
gi , i = 1, 2, . . . , such as electric or magnetic field applied to the system, and
these additional variables would be in the defining brackets.) The shape-size
matrix is made up of the three vectors defining the computational MD or
MC cell. If the vectors defining the parallelepiped, containing the particles
in the computational cell, are denoted (a, b, c) then the 3×3 shape-size mat-
rix is defined by having its columns constructed from the three cell vectors,
h = (a, b, c).The volume V of the computational cell is related to the h matrix
by V = det(h). For simplicity, we assume that the atoms in the simulation are
described by classical physics using an effective potential energy function to
describe the inter-particle interactions. Unless explicitly stated otherwise we
suppose that periodic boundary conditions are applied to the particles in the
computational cell. The periodic boundary conditions have the effect of rem-
oving surface effects and, conveniently, making the calculated system proper-
ties approximately equal to those of bulk matter. We assume the system obeys
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the Born–Oppenheimer approximation and can be described by a potential
energy U using classical mechanic and classical statistical mechanics.

2. Ensembles

For a single component system there are eight basic ensembles that are
convenient to introduce. These ensembles and their connection to their reser-
voirs are shown in Fig. 1 [4]. Each ensemble represents a system in contact
with different types of reservoirs. These eight systems are physically realiz-
able and each can be employed in MD or MC simulations. The combined
reservoir is a thermal reservoir, a tension (or stress) and pressure reservoir (the
pressure reservoir in Fig. 1 represents a tension and pressure reservoir) and a
chemical potential reservoir. The reservoirs are used to impose, respectively,

Figure 1. Shown are the eight ensembles for a single component system. The systems interact
through a combined temperature, pressure and chemical potential reservoir. The ensembles on
the left are adiabatically insulated from the reservoir while those on the right are in thermal
contact with the reservoir. Pistons and porous walls allow for volume and particle exchange.
Adiabatic walls are shown cross-hatched while dithermal walls are shown as solid lines. Ensem-
bles on the same line like a and e are related by Laplace and inverse Laplace transformations.
The pressure stands for the pressure and the tension.
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constant temperature, tension and pressure, and chemical potential. The eight
ensembles naturally divide into pairs of ensembles. The left-hand column in
Fig. 1, a–d are constant energy ensembles while ensembles in the right hand
column, e–h have constant temperature. These pairs of ensembles are con-
nected to each other by direct and inverse Laplace transformations, a ↔ e,
et cet. The energies that are associated with each ensemble are related to the
internal energy E by Legendre transformations [4].

The eight ensembles may be defined using the state variables that are held
constant in the ensemble ([5] pp. 293–304). The eight ensembles include the
(EhN) and (ThN) ensembles introduced earlier. Another pair of ensembles is
the (H t and P N) and (T t and P N) ensembles where H = E + VoTr(tε)+ PV
is the enthalpy, tij is the thermodynamic tension tensor, εij the strain tensor, P
the pressure and Tr represents the trace operation. The thermodynamic tension
is a modified stress tensor applied to the system that is introduced in the ther-
modynamics of anisotropic media. Due to definitions in the thermodynamic of
non-linear elasticity we denote the tension and pressure separately. A third pair
of ensembles is the (Lhµ) and (Thµ), where L is the Hill energy L = E−µN
and µ the chemical potential for the one component system. The isothermal
member of this latter pair of ensembles is Gibb’s grand canonical ensemble,
(Thµ) ensemble. The final pair of ensembles is the (R t and Pµ) and (T t and
Pµ) ensembles where R = E+VoTr(tε)+ PV −µN is the R-energy. The latter
member of this ensemble pair was introduced by Guggenheim [6] and is inter-
esting since it has all intensive variables, T, P, µ, and these are all held fixed,
but we know only two of these can be independent. Nevertheless, this ensem-
ble can be used in simulations although its size will increase or decrease in the
simulation. The (R t and P µ) ensemble allows variable particle number along
with variable shape/size. These last four ensembles all have constant chemi-
cal potential and variable particle number. For multi-component systems there
are a series of hybrid ensembles that are useful. As an example, for two com-
ponent systems we can use the (T t and Pµ1 N2) ensemble that is useful for
studying the absorption of species 1 in species 2 as for example the absorption
of hydrogen gas in a solid [7, 8].

Each of the eight ensembles, for a single component system, may be sim-
ulated using either MD or MC simulations. The probability distributions are
exponentials for the isothermal ensembles and power laws for the adiabatic
ensembles. For example, for the (TVN) ensemble the probability density has
the Boltzmann form P(q; T VN) = Ce−U (q)/(kBT ) with U (q) the potential
energy and C a constant. For the (H t and PN) ensemble P(q;H, t,P,N) = CV N

(H−VoTr(tε)−PV−U(q))(3N/2−1). The trial MC moves involve particle moves
and shape/size matrix moves [9]. For the (R t and Pµ) ensemble MC moves
involve particle moves, shape/size matrix moves and attempted creation and
destruction events [10]. For MC simulation of these ensembles one uses the
probability density directly in the simulation, whereas for MD simulations
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ordinary differential equations of motion are solved for equations arising from
Hamilton’s equations.

An important advancement in using MD to simulate different ensembles
was the extended variable approach introduced by Andersen [11]. In this
approach, which some variation is used in all but the (EhN) ensemble,
extra variables are introduced into the system to introduce the variation of
the variable in the ensemble. Although these variations are fictitious it can be
proven that the correct ensemble is generated using these extended variable
schemes. In the original approach for the (H PN) ensemble Andersen intro-
duced an equation of motion for the volume that responds to a force that is
the difference between the internal microscopic pressure and an external con-
stant pressure imposed by the reservoir. This leads to volume fluctuations that
are appropriate to the (H PN) ensemble, see Fig. 1. Nose, thereafter, general-
ized MD to the isothermal ensembles by introducing a mass scaling variable
that allows for energy fluctuations in the (ThN) and the other isothermal en-
sembles [12]. These energy fluctuations mimic the interaction of the system
with the heat reservoir and allow MD to generate the probability densities of
the isothermal ensembles. Which ensemble/ensembles to use, and whether to
use MD or MC depends on user preference and the particular problem under
consideration. For the variable particle number ensembles (those involving
the chemical potential in their designation) one usually employs MC meth-
ods since simulations using these ensembles involve attempted creation and
destruction of particles and this fits naturally with the stochastic nature of
the MC method. However, MD simulations of these ensembles have been
investigated and performed [13].

3. Response Function Calculation

Response functions are thermodynamic properties of the system that are
often measured, such as specific heats, heat capacities, expansion coefficients,
and elastic constants to name a few. Response functions are associated with
derivatives of the basic thermodynamic state variables like energy, pressure,
entropy and include the basic thermodynamic state variables themselves. We
do not include (non-equilibrium) transport properties, such as thermal conduc-
tivity, electrical conductivity, and viscosity, in our discussions since they fall
under a different calculation schema that uses time correlation functions [14].

Formulas, that may be used to calculate response functions in simulations,
may be derived by differentiation of quantities connecting thermodynamic
state variables with integrals over functions of microscopic particle variables.
These formulas are specific to each ensemble, and are standard statistical mec-
hanics relations. Such a quantity, in the canonical ensemble, is the partition
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function Z (T, h, N), which for a N particle system in three-dimensions has the
form

Z(T, h, N) =
1

N !(2π�)3N

∫
e−H(q,p,h)/kBT d3N qd3N p, (1)

where q and p denote the 6N -dimensional phase space canonical coordi-
nates of the system, H the system Hamiltonian, kB Boltzmann’s constant, �

Plank’s constant, and dτ = d3N qd3N p the phase space volume element. The
integral in Eq. (1) is carried out over the entire phase space. Although we
have indicated the Hamiltonian depends on the cell vectors, h, it would also
depend on additional thermodynamic state variables gi . For liquids and gases
the dependence on h is replaced by simple dependence on the volume V ; for
discussions of elastic properties of solids it is important to include the depen-
dence on the shape and size of the system through the shape size matrix h or
some function of h.

The Helmholtz free energy A(T, h, N) is obtained from the canonical
ensemble partition function

A(T, h, N) =−kBT ln Z(T, h, N). (2)

Average values of phase space functions may be calculated using the phase
space probability, which for the canonical ensemble is the integrand in the
partition function in Eq. (1). For example, the canonical ensemble average for
the phase space function f(q,p,h)is

〈 f 〉 =
∫

f e−H/kB T dτ
/
e−H/kB T dτ . (3)

In an MD or MC simulation the thermodynamic quantity 〈 f 〉 is calculated
by using a simple average over the simulation configurations, for MD this is
an average over time, whereas for MC it is an average over the Markov chain
of configurations generated. If the value of f at each configuration (each value
of q, p, h) is fn, n = 1, 2, 3, . . . , M. for M time-steps in MD or trials in MC,
then the average of f for the simulation is

〈 f 〉 =

∑M
n=1 fn

M
. (4)

In the simulation Eq. (4) is the approximation to the phase space average
in Eq. (3). If, for example, H = f , then this average gives the thermodynamic
energy E = 〈H 〉 and the caloric equation of state E = E(T, h, N). The
assumption that Eq. (4) approximates the integral in Eq. (3) is often referred
to in the literature by saying that MD or MC “generates the ensemble”. The
approximate equality of these two results in MD is the quasi-ergodic hypo-
thesis of statistical mechanics which states that ensemble averages, Eq. (3)
and time averages, Eq. (4) are equal. This hypothesis has never been proven
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for realistic Hamiltonians but it is the pillar on which statistical mechanics
rests. In what follows we shall assume that averages over simulation-generated
configurations are equal to statistical mechanics ensemble averages. Thus, we
use formulas from statistical mechanics but calculate the average values in
simulations using Eq. (4) employing MD or MC.

An important point to note is that for calculation of meaningful averages in
a simulation we must “equilibrate” the system before collecting the values fn

in Eq. (4). This is done by carrying out the simulation for a “long enough time”
and then discarding these configurations and starting the simulation from that
point. This removes transient behavior, associated with the particular initial
conditions used to start the simulation, from overly influencing the average in
Eq. (4). How long one must “equilibrate” the system depends on relaxation
rates in the system, that are initially unknown. Tasks like the equilibration of
the system, the estimate of the accuracy of calculated values, and so forth are
part and parcel of the art of carrying out valid and, therefore, useful simula-
tions and must be learned by actually carrying out simulations. In this aspect
computer simulations have a similarity to experimental science, like gaining
experience with the measuring apparatus, but, of course, they are theoretical
calculations made possible by computers.

From our discussion, so far, it might seem, to those who know thermody-
namics, that the problem of calculating all response functions is finished, since
if the Helmholtz free energy is known from Eq. (2) then all response functions
may be calculated by differentiation of the Helmholtz free energy with respect
to various variables. For example, the energy 〈H 〉 may be found from

〈H 〉 = kT 2 ∂(A/kT )

∂T
. (5)

Unfortunately, in MC or MD only average values like Eq. (3), that are ratios
of phase space integrals, can be easily evaluated in simulations and not the 6N -
dimensional phase space integral itself, like Eq. (1). The reason for this is that
in high-dimensions (dimensions greater than say, 10) the numerical methods
used to accurately calculate integrals (e.g., Simpson’s rule) require computer
resources beyond those presently available. For example, in 10 dimensions,
for a grid of 100 intervals in each dimension, 1020 variables are required for
the grid. Even with the most advanced computer, this number of variables is
not easy to handle. In a typical simulation the dimension is typically hun-
dreds or thousands, not ten. One might think that the high dimensional inte-
grals could be calculated directly by MD or MC methods but this also does
not work since the integrand in the high dimensional phase space is rapidly
varying and one cannot sample for long enough to smooth out this rapid varia-
tion. The integral is determined by the value of the integrand in a few pockets
(“equilibrium pockets”) in phase space that will only be sampled infrequently.
For the ratio of high dimensional integrals, MD or MC methods have the
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effect of focusing the sampling on just those important regions. The difficulty,
in high dimensions, of calculating quantities that require the evaluation of an
integral as compared to the ratio of integrals leads to a classification of quan-
tities to be calculated by computer simulation as thermal or mechanical prop-
erties. Thermal properties require the value of the partition function, or some
other high-dimensional integral, for their evaluation whereas mechanical prop-
erties do not require the value of the partition function for their evaluation, but
are a ratio of two high dimensional integrals. As examples, for the canonical
ensemble the Helmholtz free energy is a thermal variable and the energy is a
mechanical variable. Other thermal variables are the entropy, chemical poten-
tial, and Gibbs free energy. Other mechanical variables are temperature, pres-
sure, enthalpy, thermal expansion coefficient, elastic constants, heat capacity,
and so forth. Special methods must be developed for calculating thermal prop-
erties and the calculation of thermal properties is, in general, more difficult.
We have developed novel methods to calculate thermal variables using differ-
ent ensembles [15, 16] but shall not discuss them in detail in this contribution.

As an example of the calculation of a mechanical response function, con-
sider the fluctuation formula for the heat capacity in the canonical ensem-
ble. Differentiation of the average energy 〈H 〉 in Eq. (3) with respect to T
while holding the cell vectors rigid leads to the heat capacity at constant
shape-size CV

CV =
∂〈H 〉
∂T

=
1

kBT 2
(〈H 2〉 − 〈H 〉2). (6)

Recall that in the simulation the average values in Eq. (2) are approximated
by simple averages of the quantity. Thus, in a single canonical ensemble simu-
lation, MC or MD we may calculate the heat capacity of the system at the given
thermodynamic state point by calculating the average value of the square of
the energy, subtracting the average value of the energy squared and dividing
by kBT 2. The quantity,

δH 2 = 〈H 2〉 − 〈H 〉2 , (7)

the variance in probability theory, is called the fluctuation in the energy H.
The fluctuation of quantities enters into the formulas for response functions
for mechanical variables.

It should be noted that a direct way of calculating the heat capacity CV is
to calculate the thermal equation of state at a number of temperatures and then
numerically differentiate 〈H 〉with respect to T . This requires a series of simu-
lations and is not as convenient or as easy to determine an estimate of accuracy
but is simple and is a useful check on the value obtained from the fluctuation
formula, Eq. (6). We refer to this method of calculating response functions
as the direct method. Any mechanical response function can, in principle, be
calculated by the direct method.
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4. Thermodynamics of Anisotropic Media

For the present we choose the reference state to be the equilibrium state
of the system with zero tension applied to the system. The h matrix for this
reference state is ho while for an arbitrary state of tension we have h. The fol-
lowing formulation of the thermodynamics of aniostropic media is consistent
with nonlinear or finite elasticity theory. In the following repeated indices are
summed over. The elastic energy Uel is defined by

Uel = VoTr(tε), (8)

where Vo is the reference volume, t is the thermodynamic tension tensor,
ε is the strain tensor and Tr implies trace. The h matrix maps the particle
coordinates into fractional coordinates, sai, in the unit cube through the
relation xai = hij sa j . The strain of the system relative to the unstressed state is

εij = 1
2(h

T−1
o Gh−1

0 − I )ij , (9)

where G = hT h is the metric tensor. Here ho is the reference value for measur-
ing strain, that is, the value of h when the system is unstrained. This value can
be obtained by carrying out a (Ht and PN) simulation, MD or MC with the
tension set to zero. Equation (9) can be derived by noting that the deformation
gradient can be written in terms of the h matrices as ∂xi/∂xoj = hikh−1

okj , and
using this in the defining relation for the Lagrangian strain of the system. The
thermodynamic tension tensor is defined so that the work done in an infintesi-
mal distortion of the system is given by dW = VoTr(tdε). The stress tensor, σ ,
is related to the thermodynamic tension by

σ = Vohh−1
o thT−1

o hT /V . (10)

The thermodynamic law is

T d S = dE + VoTr(t dε), (11)

where T is the temperature, S the entropy and E the energy of the parti-
cles. Using the definition of the strain, Eq. (9), the thermodynamic law can be
recast as

T d S = dE + VoTr(h−1
o thT−1

o dG)/2. (12)

From this latter we obtain

(∂E/∂Gkn)S =−(Voh−1
o thT−1

o )kn/2. (13)

In the (EhN) ensemble we have the general relation

(∂E/∂Gkn)S = 〈∂H/∂Gkn〉, (14)
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where H is the particle Hamiltonian and the average is the (EhN) ensemble
average. Combining the last two equations leads to

〈∂H/Gkn〉 =−(Voh−1
o thT−1

o )kn/2. (15)

The particle Hamiltonian is transformed by the canonical transformation
xai = hij sa j, pai = hT−1

ij πa j , into

H (sa, πa, h) =
1

2

N∑
a=1

πai G
−1
ij πa j/ma +U (r12, r13, . . .), (16)

where the distance between particles a and b is to be replaced by the relation-
ship r2

ab = sabi Gij sabj and sabi is the fractional coordinate difference between a
and b. The microscopic stress tensor �ij may be obtained by differentiation of
the particle Hamiltonian with respect to the h matrix while holding constant
(sa, πa) : ∂H/∂hij = �ik Akj , where A is the area tensor A=VhT−1. For the
Hamiltonian, Eq. (16), the microscopic stress tensor is

�ij =
1

V

(∑
a

pai paj/ma −
∑
a<b

∂U

∂rab
xabi xabj/rab

)
. (17)

Differentiating the Hamiltonian with respect to the parameters Gkn we
obtain

Mkn ≡ (∂H/∂Gkn) =−(V h−1�hT−1)kn/2, (18)

where � is the microscopic stress tensor, Eq. (17). If the average value of
Eq. (18) is combined with Eq. (15) we obtain

t = V hoh−1〈�〉 hT−1hT
o /Vo. (19)

Comparing Eq. (19) and Eq. (10) we find

σ = 〈�〉 (20)

the stress tensor is the average of the microscopic stress tensor. Equation (20)
holds in all ensembles but the proofs would be different. For the (ThN) ensem-
ble we would use the Helmholtz free energy A=E−TS instead of the energy
E . The counterpart to Eq. (14) would be (∂ A/∂Gkn)T = 〈∂H/∂Gkn〉.

5. Calculation of Elastic Constants in the
(EhN) Ensemble

In order to discuss the calculation of the elastic constants we describe the
system by the microcanonical, (EhN) ensemble. The adiabatic elastic con-
stants are defined as the derivative of the tension by the strain

C (S)
i j kl =−(∂tij/∂εkl)S. (21)
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Note the minus sign in Eq. (21) implies that the tension and stress are pos-
itive for compressive loading. Often the opposite convention is employed and
no minus sign occurs in Eq. (21) in that convention. In the literature of finite
elasticity the elastic constants defined in Eq. (21) are often called stiffness
coefficients or elastic moduli. Assume the system Hamiltonian describing the
system has the form

H (xa, pa) =
1

2

N∑
a=1

p2
a/ma +U (r12, r13, . . .), (22)

where pa is the momentum of particle a, rab is the distance between particle a
and b and the system contains N particles. Let the reference value, ho, denote
the shape-size matrix for the unstressed system and h represent an arbitrary
state of stress. The (EhN) fluctuation formula involving the adiabatic elastic
constants, for a potential that depends only on interparticle distances has the
form

Voh−1
oiph−1

0 j qh−1
okrh−1

onsC
(S)
pqrs = −4δ(Mij Mkn)/kB T

+2NkB (G
−1
in G−1

j k + G−1
ik G−1

j n )

+
N∑

a<b
c<d

〈k(a, b, c, d)sabi sabj sabksabn〉, (23)

where

k(a, b, c, d) = (∂2U/∂rab∂rcd − (∂U/∂rab)δacδbd/rab)/(rabrcd). (24)

The averages in Eq. (23) are calculated using (EhN) simulations, MD or
MC. In (EhN) MD we would solve Newton’s laws for the motion of the par-
ticles: maẍai = −∂U/∂xai to generate configurations to be used to calculate
averages, Eq. (4). In MC we would use the probability density [17]: W(q) =
C(E−U(q))3N/2−1 to generate configurations by attempting a trial move of an
atom q → q(trial), and accepting the move if W(q(trial))/W(q) > random,
where is a random number between 0 and 1. Equations (23) and (24) also holds
for the isothermal elastic constants if one replaces C (S)

pqrs by the isothermal elas-
tic constants, C (T )

pqrs and calculates the average values in Eq. (23) using (ThN)
simulations. The three distinct terms in Eq. (23) are called the fluctuation term
(term involving the fluctuation of M), the kinetic term (term with multiplier
2NkB) and Born term (term containing k (a,b,c,d). Equations (23) and (24) are
valid for any potential that depends only on the distance between particles; it
is valid for many-body forces as long as they can be written in terms of only
the distance between particles. In particular, this would include potentials that
depend on tetrahedral and dihedral angles and, therefore, have many body
forces. For pair wise additive potentials the last term in Eq. (23) reduces to



Ensembles and computer simulation calculation 739

the simpler form
∑N

a<b 〈g(a, b)sabi sabi sabksabn〉, with g(a, b)=(U ′′−2U ′)/r4
ab

where U ′ = r(∂U/∂r).
For many body potentials Eq. (24) will lead to terms that are two-body

Born, three-body Born and so forth. This gives an interesting way of analyz-
ing the contribution of the many body pieces of the potential to the elastic
constants. It should be emphasized that the calculations based on Eqs. (23)
and (24) are exact statistical mechanics formulas that take into account all
anharmonic, temperature dependent and fluctuation effects.

The derivation of Eq. (23) can be obtained by the adiabatic differentiation
of potential method. Define the potential

Xij =
∫

Mij�(E − H (q, p))dτ , (25)

where M is defined in Eq. (18) and � the unit step function. For Eq. (25)
applied to large system one can keep, to good approximation, only the largest
term or

〈Mij 〉� =
∫

Mij�(E − H (q, p))dτ, (26)

where � the phase volume inside the energy shell, H (q, p) = E . The
entropy is related to the phase volume by the Boltzmann relation S = kB ln �.
Differentiation of Eq. (26) with respect to Gkn leads to

Voh−1
oiph−1

0 j qh−1
okrh−1

onsC
(S)
pqrs = − 4δ(Mij Mkn)/kBT + 4〈∂2 H/∂Gij∂Gkn〉.

(27)

Calculating the last term in Eq. (27) leads to Eqs. (23) and (24). More
rigorous derivations of Eq. (23) are discussed by Ray [18].

Equations (23) and (24) have been used to calculate elastic constants in
a nearest neighbor Lennard–Jones (6–12) system in both the microcanonical
and canonical ensemble using MD and compared to calculations of these same
quantities in earlier canonical ensemble MC calculations [19, 20]. These cal-
culations have been reproduced by several workers and now can be used to
check programs that are written to calculate elastic constants. Since there are
thermodynamic relations connecting the adiabatic and isothermal elastic con-
stants (like the thermodynamic formulas connecting CV and CP) this makes it
possible to calculate the adiabatic elastic constants in either the (EhN) ensem-
ble or the (ThN) ensemble, and the same for the isothermal elastic constants. A
comparison of the values in the two ensembles can be looked upon as a strin-
gent test of the validity of the Nose [12] theory for isothermal MD simulations,
[20]. Equations (23) and (24) have also been used to calculate the elastic con-
stants of crystalline and amorphous silicon modeled by the Stillinger–Weber
potential [21, 22]. Equations (23) and (24) allow one to break down the Born



740 J.R. Ray

term into a two-body Born term and a three-body Born term for the Stillinger–
Weber potential. These values have also been checked by a number of workers
and can now be used as program checks.

Equations (23) and (24) were generalized to apply to potentials with an
explicit volume dependent term, such as in metallic potentials, or when using
the Ewald method to evaluate the Coulomb potential. The resulting theory was
then applied to a model of sodium [23]. Another generalization was to study
the calculation of the third-order elastic constants using a generalization of
Eqs. (23) and (24) [24]. For systems where the reference state for measuring
strain is a stressed state of the system, generalizations of Eqs. (23) and (24) are
required. This extension with calculations for a model of solid helium has been
developed [25]. A detailed application of Eqs. (23) and (24) was applied to
embedded atom method potentials for palladium by Wolf et al. [26]. Extension
of (Ht and PN) calculations to higher order elastic constants was given by
Ray [27].

6. Calculation of Elastic Constants in the (Ht and PN)
and (Tt and PN) Ensembles

In these ensembles the shape-size or strain of the system fluctuates. The
Parrinello–Rahman fluctuation formula for the elastic constants involves just
this fluctuation [28]

δ(εij εkl) = kB T (C S
i jkl )

−1/Vo, (28)

where the adiabatic compliance tensor (C S)−1 is the inverse of the elastic
constant tensor,

(C S
i jkl)

−1 =−(∂εij/∂tkl)S, (29)

and S is the entropy. The averages in Eq. (28) are calculated using (Ht and PN)
MD or MC. The same formula, Eq. (28), holds in the (T t and PN) ensemble
if we change to the isothermal elastic constants and calculate averages using
isothermal MD or MC. For MD the extended Hamiltonian for variable shape-
size ensembles has the form [29]

H1(s, π, h,$, f, ρ) =
∑

a

(πT
a G−1πa/(2ma f 2)+U

+Tr($T $)/(2W )+ VoTr(tε)+ PV

+ρ2/(2M)+ (3N + 1)kBTo ln( f )), (30)

where (s,π ) are scaled coordinates and conjugate momenta, U is the potential
energy, (h,$) are the coordinates and momenta of the computational cell, and
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(f,ρ) are the Nose mass scaling variable and its conjugate momenta. The con-
stants W and M are introduced so that h and f satisfy dynamical equations;
note that in classical statistical mechanics equilibrium properties of the system
are independent of the masses and, therefore, are independent of W, M and the
particle masses ma. To is the reservoir temperature in the constant temperature
ensembles. The physical particle variables (xa, pa) are related to the scaled
particle variables by xa = hsa, pa = hT−1πa/ f . The relationship between the
physical variables and the scaled variables may be described by a canonical
transformation defined by h along with a mass scaling transformation with f .
The equations of motion following from this Hamiltonian may be written in
the form

ma f 2s̈si =−∑
(∂U/∂rab)sabi/rab − ma( f 2G−1Ġ + 2 f ḟ )ṡai , (31)

Wḧ = (�− P I )A − h�, (32)

M f̈ = 2K/ f − (3N + 1)kBTo/ f, (33)

where � = Voh−1
o thT−1

o is related to the tension applied to the system and K is
the particle kinetic energy. Equation (31) is just Newton’s law applied to the
particles with the additional modification of the variable cell and the mass scal-
ing variables. Equation (32) is the Parrinello–Rahman equation [28] as gener-
alized [29, 30] to be valid for finite deformations which involves introducing
the tension instead of the stress; this lead to the form of the enthalpy for finite
elasticity in agreement with Thurston [31]. Equation (33), [12] is the equa-
tion of motion for the mass scaling variable which is introduced to drive the
average temperature of the system to the reservoir temperature To in an equi-
librium simulation. If the Nose mass scaling variable satisfies f = 1, df/dt = 0
then Eqs. (31) and (32) are the MD equations of motion for the (Ht and
PN) ensemble and the trajectories yield averages in this ensemble. If the cell
matrix satisfies h = const., dh/dt = 0, then Eqs. (30) and (32) are the equations
of motion for the (ThN) ensemble and the trajectories yield averages in this
ensemble. If the previous conditions on h and f are both satisfied then the
(EhN) ensemble is generated. If Eqs. (30)–(33) are solved in the general case
with f and h varying then the (Tt and PN) ensemble is generated.

The variable cell equations of motion have great utility in studying solid–
solid phase transformations by computer simulation. These same transfor-
mations can be studied using MC methods. In the (Ht and PN) ensemble
the calculation of elastic constants in MD is not as good as in MC. That is,
Eq. (28) converges faster using MC than MD. This is illustrated in detail by
Fay and Ray, 1992 [9] and Karimi et al. 1998 [32]. However, (Ht and PN)
MC elastic constant calculations do not converge as fast as (EhN) MD or MC.
The convergence is governed by the fluctuation terms in either Eq. (23) or
Eq. (28). The fluctuation of the microscopic stress tensor in Eq. (23) converges
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faster than the fluctuation of the shape/size matrix in Eq. (28) in the cases we
have investigated. This is unfortunate since the (EhN) formulas require values
of the second derivatives of the potential whereas the (Ht and PN) fluctua-
tion formulas require only first derivatives in MD or no derivatives in MC.
The derivatives of the potential may not be easy to calculate for a many body
potential although one could employ algebraic computer programs to calculate
the derivatives.

One can calculate elastic constants in the variable particle number ensem-
bles but we have not discovered a case where that offers any advantage over
the four fixed particle number ensembles discussed. If the second derivatives
of the potential can be evaluated or accurately approximated, then the (EhN)
formuals, Eqs. (23) and (24), using either MD or MC are the best choice for
calculating the elastic constants. If the second derivative of the potential is not
available then MC using the probability density P(q; H, t, P, N) = CVN (H −
VoTr(tε)− PV−U(q))(3N/2−1) with Eq. (28) is the best choice. MC calculations
in the (Ht and PN) ensemble also offer the advantage of not having to worry
about the choice of the different fictitious kinetic energy and mass terms intro-
duced in extended MD; these are not unique. Either Eqs. (23) or (28) offers a
convenient way of calculating elastic properties of condensed matter systems
as a function of temperature or other parameters in a way that includes all
anharmonic effects in an exact manner.
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