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1. Introduction

Stimulated by the progress of computer technology over the past decades,
the field of computer simulation has evolved into a mature branch of modern
scientific investigation. It has had a profound impact in many areas of research
including condensed-matter physics, chemistry, materials and polymer science,
as well as in biophysics and biochemistry. Many problems of interest in all
of these areas involve complex many-body systems and analytical solutions
are generally not available. In this light, atomistic simulations play a particu-
larly important role, giving detailed insight into the fundamental microscopic
processes that control the behavior of complex systems at the macroscopic level.
They provide key and effective tools for providing ab initio predictions, inter-
preting complex experimental data, as well as conducting computational
“experiments” that are difficult or impossible to realize in a laboratory.

In this article, we will discuss one of the most fundamental and difficult
applications of atomistic simulation techniques such as Monte Carlo (MC) [1]
and molecular dynamics (MD) [2, 3]; the determination of those thermody-
namic properties that require determination of the entropy. The entropy, the
chemical potential, and the various free energies are examples of thermal ther-
modynamic properties. In contrast their mechanical counterparts such as the
enthalpy, thermal quantities cannot be computed as simple time, or ensemble,
averages of functions of the dynamical variables of the system and, therefore,
are not directly accessible in MC or MD simulations. Yet, the free energies
are often the most fundamental of all thermodynamic functions. Under appro-
priate constraints they control chemical and phase equilibria, and transition
state estimates of the rates of chemical reactions. Examples of applications
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range from determination of the influence of crystal defects on the mechanical
properties of materials, to the mechanisms of protein folding. The develop-
ment of efficient and accurate techniques for their calculation has therefore
attracted considerable attention during the past fifteen years, and is still a very
active field of research [4].

As detailed in the previous chapter [4], the evaluation of free energies (or,
more specifically free-energy differences) requires simulations that collect data
along a sequence of states on a thermodynamic path linking two equilibrium
states. If the system is at equilibrium at every point along such a path, the
simulated process is quasistatic and reversible, and standard thermodynamic
results may be used to interpret collected data and to estimate the free-energy
difference between the initial and final equilibrium states. The present chapter
generalizes this approach to the case where data is collected during nonequilib-
rium, and thus irreversible, processes. Several important themes will emerge,
making clear why this generalization is of interest, and how nonequilibrium
calculations may be set up to provide both upper and lower bounds (and thus
systematic in addition to statistical error estimates) to the desired thermal
quantities. Additionally, the irreversible process may be optimized in a vari-
ational sense so as to improve such bounds. The statistical–mechanical theory
of nonequilibrium systems within the regime of linear response will prove
particularly helpful in this endeavor. Finally, newly developed re-averaging
techniques have appeared that, in some cases, allow quite precise estimates of
equilibrium thermal quantities directly from nonequilibrium data. The com-
bination of such techniques with near-optimal paths can give well converged
results from relatively short computations.

In the illustrations that follow, for sake of conciseness, we will limit our-
selves to the application of nonequilibrium methods within the realm of the
classical canonical ensemble. For this representative case the relevant ther-
modynamic variables are the number of particles N , the volume V , and the
temperature T ; and the appropriate free energy is the Helmholtz free energy,
A(N, V, T ) = E(N, V, T )− T S(N, V, T ), E and S being the internal energy
and entropy, respectively. However, appropriate generalizations of nonequilib-
rium methods to other classical ensembles, as well as to quantum systems, are
readily available.

2. Equilibrium Free-Energy Simulations

The calculation of thermodynamic quantities by means of atomistic sim-
ulation is rooted in the framework of equilibrium statistical mechanics [5],
which provides the link between the microscopic details of a system and its
macroscopic thermodynamic properties. Let us consider a system consisting
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of N classical particles with masses mi . A microscopic configuration of the
system is fully specified by the set of N particle momenta {pi} and positions
{ri}, and its energy is described in terms of a potential-energy function U ({ri}).
Statistical mechanics in the canonical ensemble then tells us that the distribu-
tion of the particle positions and momenta is given by

ρ(Γ) =
1

Z(N, V, T )
exp(−βH (Γ)), (1)

where Γ ≡ ({p}, {r}) denotes a microstate of the system, β = 1/kB T (with kB

Boltzmann’s constant) and H (Γ) is the classical Hamiltonian. The denomina-
tor in Eq. (1) is referred to as the canonical partition function, defined as

Z(N, V, T ) =
∫

dΓ exp[−βH (Γ)], (2)

and guarantees proper normalization of the distribution function. The mechan-
ical thermodynamic properties such as the internal energy, enthalpy and pres-
sure, can be expressed as ensemble averages over the distribution function
ρ(Γ). Here, the attribute “mechanical” means that the quantity of interest, X ,
is associated with a specific function X = X (Γ) of the microstate, Γ, of the
system and can be written as

〈X〉 =
∫

dΓρ(Γ)X (Γ). (3)

Standard atomistic simulation techniques such as Metropolis MC [1] and
MD [2, 3] provide powerful algorithms for generating sequences of microstates
(Γ1,Γ2, . . . ,ΓM) that are distributed according the particular statistical–
mechanical (e.g., canonical) distribution function of interest. In this manner,
the average implied by Eq. (3) is easily estimated by averaging the func-
tion X (Γ) over a sequence, Γj , of microstates generated using MC or MD
simulation,

〈X〉 = lim
M→∞

1

M

M∑
j=1

X (Γ j ). (4)

Although the partition function Z , itself, is not known this does not present
a problem in the case one is interested in any of the mechanical properties of
the system; since Z is implicit in the generation of the sequence of microstates,
Γi , it is not needed to perform the ensemble average of Eq. (3).

The calculation of thermal quantities is not so straightforward, however.
For example, the Helmholtz free energy

A(N, V, T ) =− 1

β
ln Z(N, V, T ) =− 1

β
ln

(∫
dΓ exp[−βH (Γ)]

)
, (5)
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is seen to be an explicit function of the partition function Z rather than an
average of the type shown in Eq. 3. Therefore, as Z is not directly accessible
in an MC or MD simulation, indirect strategies must be used.

The most widely adopted strategy is to construct a real or artificial ther-
modynamic path that consists of a continuous sequence of equilibrium states
linking two states of interest of the system and then attempt to calculate the
free-energy difference between them. Should the free energy of one of these
states be exactly known, the free energy of the other may then be put on an
absolute basis. This approach provides the basis for the common thermodyna-
mic integration (TI) method. Usually TI relies on the definition of a thermo-
dynamic path in the space of system Hamiltonians. Typically, this involves the
construction of an “artificial” Hamiltonian H (Γ, λ), which, aside from the usual
dependence on the microstate Γ is also a function of some generalized coordi-
nate or switching parameterλ. This generalized Hamiltonian is then constructed
in such a way that it leads to a continuous transformation from the Hamiltonian
of a system of interest to that of a reference system of which the free energy is
known beforehand. Within the canonical ensemble, the Helmholtz free-energy
difference between the initial and final states of the path, characterized by the
switching coordinate values λ1 and λ2, respectively, is then given by

�A ≡ A(λ2; N, V, T )− A(λ1; N, V, T )

=

λ2∫
λ1

dλ′
(
∂ A(λ; N, V, T )

∂λ

)
λ′

=

λ2∫
λ1

dλ′
〈
∂H (Γ, λ)

∂λ

〉
λ′
≡ Wrev, (6)

where A(λ; N, V, T ) is the Helmholtz free energy of the system as a func-
tion of the switching coordinate λ for fixed N , V , and T , and the brackets in
the second integral denote an average evaluated for the canonical ensemble
associated with the generalized coordinate value λ = λ′.

From a thermodynamic standpoint, Eq. (6) may be interpreted in the fol-
lowing way. The free-energy difference between the initial and final states is
equal to the reversible work Wrev done by the generalized thermodynamic driv-
ing force ∂H (Γ, λ)/∂λ along a quasistatic, or reversible process connecting
both states. By quasistatic we mean that the process is carried out so slowly
that the system remains in equilibrium at all times and the instantaneous driv-
ing force is equal to the associated equilibrium ensemble average. In this way,
the TI method represents a numerical discretization of the quasistatic process;
Wrev is estimated by computing the equilibrium ensemble averages of the driv-
ing force on a grid of λ-values on the interval [λ1, λ2], after which the inte-
gration is carried out using standard numerical techniques. For further details
of the TI method and its applications we refer to the chapter by Kofke and
Frenkel [4].
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3. Nonequilibrium Free-Energy Estimation

3.1. Establishing Free-Energy Bounds:
Systematic and Statistical Errors

Nonequilibrium free-energy estimation is an alternative approach to mea-
suring the reversible work Wrev. Instead of discretizing the quasistatic process
in terms of a sequence of independent equilibrium states, the reversible work is
estimated by means of a single, dynamical sequence of nonequilibrium states,
explored along an out-of-equilibrium simulation. This is achieved by introduc-
ing an explicit “time-dependent” element into the originally static sequence of
states by making λ = λ(t) an explicit function of the simulation “time” t . Here
we have used the quotes to emphasize that t should not always be interpreted
as a real physical time. For instance, in contrast to MD simulations, typical
displacement MC simulations do not involve a natural time scale, in case of
which t is simply an index variable that orders the sequence of sampling oper-
ations, measured in simulation steps.

Suppose we choose λ(t) such that λ(0)=λ1 and λ(tsim)=λ2, so that λ varies
between λ1 and λ2 in a time tsim. Accordingly, the Hamiltonian H (Γ, λ) =
H (Γ, λ(t)) also becomes a function of t , and is driven from the initial system
H1 to the final system H2 in the same time. The irreversible work Wirr done by
the driving force along this switching process, defined as

Wirr =

tsim∫
0

dt ′
(

dλ

dt

)
t ′

(
∂H

∂λ

)
λ(t ′)

, (7)

provides an estimator for the reversible work Wrev done along the correspond-
ing quasistatic process.

The point of this nonequilibrium procedure is that values of Wirr can be
found, in principle, from a single simulation, because the integration in Eq. (7)
involves instantaneous values of the function ∂H/∂λ rather than ensemble
averages. If efficient, this would be much less costly than the TI procedure in
Eq. (6), which requires a series of independent equilibrium simulations. But
there is, of course, a trade-off. While the TI method is inherently “exact” in
that the errors are associated only with statistical sampling and the discreteness
of the mesh used for the numerical integration, the irreversible work procedure
provides a biased estimator for Wrev. That is, aside from statistical errors aris-
ing from different choices of initial configurations for calculation of Eq. (7),
the irreversible estimator Wirr is subject to a systematic error �Esyst. Both types
of error are due to the inherently irreversible nature of the nonequilibrium
process.

The statistical errors originate from the fact that, for a fixed and finite sim-
ulation time tsim, the value of the integral in Eq. (7) depends on the initial
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conditions of the nonequilibrium process. In other words, for different initial
conditions, Γ j (t = 0), and a finite simulation time tsim, the value of Wirr in
Eq. (7) is not unique. Instead, it is a stochastic quantity characterized by a
distribution function with a finite variance, giving rise to statistical errors of
the sort arising in any MC or MD simulation. The systematic error manifests
itself in terms of a shift of the mean of the irreversible work distribution with
respect to the value of the ideal quasistatic work Wrev. This shift is caused by
the dissipative entropy production characteristic of irreversible processes [6].
Because the entropy always increases, the systematic error �Ediss is always
positive, regardless of the sign of the reversible work Wrev. In this way, the
average value 〈Wirr〉 of many measurements of the irreversible work will yield
an upper bound to the reversible work Wrev, provided the average is taken over
an ensemble of equilibrated initial conditions � j (t = 0) at the starting point,
t = 0. The importance of satisfying the latter condition was demonstrated by
Hunter et al. [7]. From a purely thermodynamic point of view, the bounding
error is simply a consequence of the Helmholtz inequality. Starting from an
equilibrium initial state, for instance at λ=λ1, the irreversible work upon driv-
ing the system to λ = λ2 is always an upper bound to the actual free-energy
change between the equilibrium states of initial and final systems, i.e.,

〈Wirr〉 ≥ �A = A(λ2; N, V, T )− A(λ1; N, V, T ). (8)

Only in the limit of an ideally quasistatic, or reversible process, represented
by the tsim → ∞ limit, does the inequality in Eq. (8) become the equality,
Wrev = �A, as also manifested in Eq. (6). The preceding ideas are
illustrated conceptually in Fig. 1(a) and (b), which show typical distribution
functions of irreversible work measurements starting from an ensemble of
equilibrated initial conditions. Figure 1(a) compares the results that might be
obtained for irreversible work measurements for two different finite simula-
tion times tsim = t1 and tsim = t2, with t2 > t1 to the ideally reversible tsim →∞
limit. Both finite-time results show distribution functions with a finite variance
and whose mean values have been shifted with respect to the reversible work
value by a positive systematic error. Both the variance and systematic error for
tsim = t1 are larger than the corresponding values for tsim = t2, given that the
latter process proceeds in a slower manner, leading to smaller irreversibility.
Figure 1(b) shows the irreversible work estimators obtained for the reversible
work associated with a quasistatic process in which system 1 is transformed
into system 2 as obtained in the forward (1 → 2) and backward (2 → 1)
directions using the same simulation time tsim. Given that the systematic er-
ror is always positive, the forward and backward processes provide upper and
lower bounds to the reversible work value, respectively. However, in general,
the systematic and statistical errors need not be equal for both directions.
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∆Ediss

(a)

(1 → 2)

(1 → 2)

(2 → 1)

(b)

(t2)

∆Ediss(t1)

tsim � t1

tsim � t2 > t1tsim → ∞

Wrev Wrev

Wirr
Wirr

Figure 1. Conceptual illustration of typical irreversible work distributions obtained from
nonequilibrium simulations. (a) compares the results that might be obtained for irreversible
work measurements for two different finite simulation times tsim = t1 and tsim = t2, with t2 > t1
to the ideally reversible tsim → ∞ limit. (b) shows the irreversible work estimators obtained
for the reversible work associated with a quasistatic process in which system 1 is transformed
into system 2 as obtained in the forward (1 → 2) and backward (2 → 1) directions using the
same simulation time tsim.

3.2. Optimizing Free-Energy Bounds: Insight from
Nonequilibrium Statistical Mechanics

A natural question that arises after considering the discussion in previous
section is how one might tune the nonequilibrium process so as to minimize the
systematic and statistical errors associated with the irreversibility for given ini-
tial and final equilibrium states and a given simulation time tsim. To answer this
question, it is useful to investigate the microscopic origin of entropy produc-
tion in nonequilibrium processes. For this purpose, it is particularly helpful to
consider the particular class of close-to-equilibrium nonequilibrium processes
for which the instantaneous distribution functions of nonequilibrium states
do not deviate too much from the ideally quasistatic equilibrium distribution
functions and where theory of linear response [5] is appropriate. As we will
see later on, it is not too difficult to reach this condition in practical situations.
As described by Onsager’s regression hypothesis [5], when a nonequilibrium
state is not too far from equilibrium, the relaxation of any mechanical property
can be described in terms of the proper equilibrium autocorrelation function.
In other words, the hypothesis states that the relaxation of a nonequilibrium
disturbance is governed by the same laws as the regression of spontaneous
microscopic fluctuations in an equilibrium system.
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Under the assumption of proximity to equilibrium, one can then derive
the following expression for the mean dissipated energy, i.e., the systematic
error �Ediss(tsim), for a series a irreversible work measurements obtained from
nonequilibrium simulations of duration tsim [8–10]:

�Ediss(tsim) =
1

kB T

tsim∫
0

dt ′
(

dλ

dt

)2

t ′
τ [λ(t ′)] var

(
∂H

∂λ

)
λ(t ′)

. (9)

Aside from the switching rate, the integrand in Eq. (9) contains both the
correlation time as well as the equilibrium variance of the driving force
∂H/∂λ. These two factors describe, respectively, how quickly the fluctua-
tions in the driving force decay and how large these fluctuations are in the
equilibrium state. It is clear that the integral is positive-definite, as it must
be. Moreover, it indicates that, for near-equilibrium processes, the systematic
error should be the same for forward and backward processes. This means
that, in the linear–response regime, one can obtain an unbaised estimator for
the reversible work Wrev by combining the results obtained from forward and
backward processes. More specifically, in this regime we have

〈Wirr(1 → 2)〉 = Wrev(1 → 2)+�Ediss, (10)

and

〈Wirr(2 → 1)〉 =−Wrev(1 → 2)+�Ediss, (11)

leading to the unbaised estimator (i.e., subject to statistical fluctuations only)

Wrev(1 → 2) = 1
2 (〈Wirr(1 → 2)〉 − 〈Wirr(2 → 1)〉 . (12)

Concerning minimization of dissipation, Eq. (9) tells us that one should
attempt to reduce both the magnitude of the fluctuations in the driving force
as well as the associated correlation times. This involves both a static compo-
nent, i.e., the magnitude of the equilibrium fluctuations, and a dynamic one,
namely the typical decay time of equilibrium correlations. This shows that not
only the choice of the path, H (λ), but also the simulation algorithm by which
the system is propagated in “time” (i.e., MC or MD simulation) will affect the
dissipation in the irreversible work measurements. Whereas the magnitude of
the equilibrium fluctuations should be algorithm independent (as long as the
algorithms sample the same equilibrium distribution function), the correlation
time is certainly algorithm-dependent. In case of displacement MC simula-
tion, as we will see below, the choice of the maximum displacement param-
eter affects the correlation time τ , and, consequently, the magnitude of the
dissipation.
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Finally, let us now assume that we have a prescribed path H (λ) and a
simulation algorithm to sample the nonequilibrium process between the sys-
tems H (λ1) and H (λ2). How do we now choose the functional form of
the time-dependent switching function λ(t) to minimize the dissipation?
Equation (9) provides us with an explicit answer. To see this, we first perform
a change of integration variable, setting x ′ = t ′/tsim, obtaining

�Ediss(tsim) =
1

tsim
�Ediss[λ(x)], (13)

with

�Ediss[λ(x)] =
1

kB T

1∫
0

dx ′
(

dλ

dx

)2

x ′
τ(λ(x ′)) var

(
∂H

∂λ

)
λ(x ′)

. (14)

Equation (14) is a functional of the common form [11]

S[λ(x)] =

1∫
0

dx F(λ′(x), λ(x), x). (15)

The minimization of the dissipation is thus equivalent to finding the function
λ(x) that minimizes a functional of the type (15) subject to the boundary con-
ditions λ(0)=λ1 and λ(1)=λ2. Standard variational calculus then shows that the
solution is obtained by solving the Euler–Lagrange equation [11] associated
with the functional,

d

dx

∂F

∂λ′
=

∂F

∂λ
, (16)

subject to the mentioned boundary conditions.

4. Applications of Nonequilibrium
Free-Energy Estimation

To illustrate the discussion of the previous sections we will now discuss
a number of applications of nonequilibrium free-energy estimation, demon-
strating the bounding properties of irreversible-work measurements, as well
as aspects of dissipation optimization.

4.1. Harmonic Oscillators

In the first application we consider the problem of computing the free-energy
difference between two systems consisting of 100 identical, independent,
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one-dimensional harmonic oscillators of unit mass with different characteris-
tic frequencies [9]. In particular we will consider the path defined by

H (λ) =
1

2

100∑
i=1

[(1− λ)ω2
1 + λω2

2] x2
i , (17)

with ω1 = 4 and ω2 = 0.5 at a temperature kB T = 2. Note that we are consider-
ing only the potential energy of the oscillators here and have neglected any
kinetic energy contributions. We can do this because the free-energy difference
between two harmonic oscillators at a fixed temperature is determined only
by the configurational part of the partition function. The value of the desired
reversible work Wrev per oscillator associated with a quasistatic modification
of the frequency from ω1 to ω2 is known analytically:

Wrev(ω1 → ω2) =−kB T ln
ω1

ω2
=−4.15888. (18)

The simulation algorithm we utilize is standard Metropolis displacement MC
with a fixed maximum trial displacement �xmax = 0.3. First we consider the
statistics of the irreversible work measurements as a function of the simula-
tion “time” tsim, which here stands for the number of MC sweeps (one sweep
corresponds to one trial displacement per oscillator) per process, for a linear
switching function. The results are shown as the dashed line curves in Fig. 2(a)
and (b), in which each data point represents the mean value of Wirr over
50 independent initial conditions. Figure 2(a) shows that the upper and lower
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Figure 2. Results of irreversible-work measurements per oscillator as a function of the switch-
ing time tsim for the linear (dashed lines) and optimal (solid lines) switching function. The
analytical reversible work value is also shown (dot dashed line). (a) shows the results of
the forward (upperbounds) and backward (lowerbounds) directions. (b) shows the values of
the combined estimator of Eq. (12).
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limit do converge toward the reversible value Wrev, although they do so quite
slowly. The slow convergence becomes more apparent when we consider the
behavior of the combined estimator of Eq. (12) in Fig. 2(b). If the process
were sufficiently slow for linear–response theory to be accurate, the combined
estimator should be unbiased and show no systematic deviation. It is clear that
this is only the case for the slowest process, at tsim =2.56×104 MC sweeps. All
shorter simulations show a systematic deviation, indicating that the associated
processes remain quite far from equilibrium, hampering convergence.

Next, we attempt to minimize dissipation in the simulation by using the
switching function λ(x) that satisfies the Euler–Lagrange Eq. (16). For this
purpose we first measured the equilibrium variance in the driving force and
the characteristic correlation time of decay as a function of λ from a series
of equilibrium simulations (i.e., fixed λ), after which we numerically solved
Eq. (16), subject to the boundary conditions λ(0)=0 and λ(1)=1. The equilib-
rium variances, correlation times and the resulting optimal switching function
are shown in Fig. 3(a)–(c), respectively. The results in Fig. 3(a) and (b) indi-
cate that the main contribution to the dissipation originates from the region
λ ≈ 1, where both the magnitude as well the characteristic decay time of the
fluctuations in the driving force increase sharply. The optimal switching func-
tion in Fig. 3(c) captures this effect, prescribing a slow switching rate where
one should and going faster where one can. The results obtained with this
function for the irreversible work measurements are shown as the red lines in
Fig. 2(a) and (b). The improvement compared to the linear switching func-
tion is quite significant. Figure 2(b), for instance, shows that for tsim as short
as 3.2× 103 MC sweeps, the nonequilibrium process has already reached the
linear–response regime.

The above optimization procedure is useful in cases where the thermody-
namic path H (λ) is prescribed beforehand. This is the case, for instance, for
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Figure 3. (a) The equilibrium variance (∂H/∂λ), and (b) the correlation decay time (in MC
sweeps) as a function of λ. (c) shows the optimal switching function, as determined by numer-
ically solving Euler–Lagrange equation (16).
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the reversible-scaling method [12], in which each state along the fixed path
H (λ) = λV (V is the interatomic interaction potential) represents the physi-
cal system of interest in a different temperature state. In this manner, a sin-
gle irreversible-work simulation along the scaling path provides a continuous
series of estimators of the system’s free energy on a finite temperature interval.
If one has some information about the behavior of the magnitude of the and
correlation-decay times of the fluctuations of the driving force, one may use
the variational method described above to optimize the switching function and
minimize dissipation effects.

4.2. Compression of Confined Lennard–Jones Particles

In the following application we consider a system consisting of 30 Lennard–
Jones particles, constrained to move on the x-axis only. In addition, the parti-
cles are subject to an external field whose strength is controlled by an external
parameter L . More specifically, we consider the path

H (L) = ε

⎡⎣( σ

xi j

)12

−
(

σ

xi j

)6
⎤⎦+ (

2xi

L

)26

, (19)

where xi describes the position of particle i on the x-axis and xi j ≡ |xi − x j |
is the distance between particles i and j . The second term in Eq. (19) is
the external field, which is a very steeply rising potential and has the eff-
ect of confining the particles through very strong interactions with the first
and last particles, effectively causing the 30 particles to lie approximately
evenly spaced between x = ±L/2. Now consider the compression process
wherein L changes from L0 = 30σ to L1 = 26σ , forcing the line of particles to
undergo a one-dimensional compression. As in the previous example, we will
attempt to compute the reversible work associated with this process by mea-
suring the irreversible work 〈Wirr〉 for both process directions. Once again
we utilize the Metropolis MC algorithm, but instead of fixing the algorithm
parameter �xmax, describing the maximum trial displacement, we now con-
sider the effects of changing the sampling algorithm on the convergence
of the upper and lower bounds. Although the variance of the driving force
var (∂H/∂λ) will not be affected, the correlation time will certainly depend on
the choice of �xmax. This is illustrated in Fig. 4, which shows the convergence
of the upper and lower bounds to the reversible work as obtained for 3 dif-
ferent values of �max at a temperature kB T = 0.35ε: �xmax = 0.6σ , 0.1σ , and
0.04σ , respectively. Effectively, the variation of this algorithm parameter may
be thought of as changing the strength of the coupling between the MC “ther-
mostat” and the system of particles. We utilized the linear switching function
which varies L linearly between L0 and L1 in tsim MC sweeps (each sweep
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Figure 4. Results of forward (upperbound) and backward (lowerbound) irreversible-work
measurements (in units of ε) as a function of the switching time tsim for the linear switching
function for three different values of the MC algorithm parameter �xmax.

consisting of 30 MC single-particle trial moves). Each data point and corre-
sponding error bar (±1 standard deviation) were obtained from a set of 21
irreversible work measurements initiated for independent, equilibrated initial
conditions. It is also useful to note that it is not necessary to explicitly compute
the work Wirr by using (7). All that is needed, through the first law of thermo-
dynamics which applies equally to reversible and irreversible processes, is to
calculate the work as Wirr = �E − Q, where �E is the difference in internal
energies of the system between the first and last switching steps, and Q is the
heat accumulated during the switching process. This heat, Q, is simply the
sum of energies added to, or subtracted from, the system as MC configura-
tions evolve during a simulation. Given that these energies, �εi , are already
calculated in determining whether moves for particle i are to be accepted or
rejected according to the canonical exp(−�εi/kBT ), no extra programming
is needed to calculate Wirr.

It is immediately seen that the strength of the system-thermostat coup-
ling through the algorithm parameter �max is indeed a variational parameter
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for the free-energy computations. Accordingly, rather than selecting a pre-set
acceptance ratio of trial moves, as is usually done in equilibrium MC simula-
tions, �xmax should be determined so as to minimize the difference between
the upper and lower bounds to �A. The results show that for all three values of
�xmax, the upper and lower bounds show convergence. Yet, the convergence
properties are clearly different for the three parameter values, giving the best
results for �xmax = 0.1 and the worst for �xmax = 0.04, indicating that the cor-
relation decay time for the fluctuations in the driving force are the shortest for
the former and the longest for the latter.

Nevertheless, the convergence of the bounds is still quite slow, in that
hundreds of thousands of MC sweeps are required to obtain convergence of
to within a few percent. This is a consequence of the strong interactions
between the particles, as their hard cores interact during the compression from
the “ends” of the line of particles and such hard core density gradients are typi-
cally slow to work themselves out through single particle MC moves. Contrary
to the simple harmonic oscillator problem discussed in the previous section,
this problem will be ubiquitous in most atomic and molecular systems in the
condensed phase, seemingly rendering the free-energy computations on real-
istic systems of interest problematic.

The questions that now arise are as to whether we can estimate the system-
atic errors �Ediss from data already in hand and use it to improve the estimates
of Fig. 4; and/or if we can optimize the thermodynamic path to reduce dissi-
pation and achieve better behavior at short switching times; or perhaps both?

4.3. Estimating Equilibrium Work from
Nonequilibrium Data

Recently, Jarzynski [13] has generalized the Gibbs–Feynman identity,

�A = A1 − A0 =−kB T ln〈exp[−(H1 − H0)/kBT ]〉0 (20)

where 〈· · · 〉0 denotes canonical averaging with respect to configurations gen-
erated by H0, and which is the basis of thermodynamic perturbation theory [4],
to finite-time processes. Equation (20) is an identity, but in practice it is useful
only when the configurations generated by canonical sampling with respect to
H0 strongly overlap those generated by H1. For hard core fluids this would
be unusual unless H1 and H0 are quite “close”, resulting in the perturbative
use of Eq. (20). Jarzynski now allows H0 to dynamically approach H1 along
a path, in analogy with the above discussions. The result, in the context dis-
cussed here, suggests that for a given set of N irreversible-work measurements
Wi ≡ Wirr(�i , t = 0), with i = 1, . . . , N , instead of estimating 〈Wirr〉 as the sim-
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ple arithmetic mean of the Wi , one should calculate the Boltzmann weighted
“Jarzynski” (or “Jz”) average

〈W 〉Jz =
1

M

M∑
i=1

exp(−Wi/kB T ), (21)

and then estimate the free energy change as

�AJz ≡ −kBT ln〈W 〉Jz . (22)

In this way bounding is sacrificed, but a more accurate result is not prec-
luded given that, in principle, the Jz-average is unbiased. This approach has
been shown to be effective both in the analysis of simulation data as well as
finite-time polymer extension experiments, which are of course irreversible.
An immediate concern, however, is that, although in the limit of complete
sampling as in the Gibbs–Feynman identity, the Jarzynski results are exact in
the context of a dissipation-free system, incomplete MC sampling may result
in unsatisfactory results.
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Figure 5. Results of forward and backward irreversible-work averages (in units of ε) for
the 30-particle confined Lennard–Jones system as a function of the switching time tsim. The
results show both the simple arithmetic averages as well as the Boltzmann-weighted Jarzynski
averages.
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This is illustrated in Fig. 5, where data used to generate the bounds to
�A in Fig. 4, are plotted over a much larger range of switching times tsim,
and compared to the �AJz estimates. Both the simple arithmetic as well as
the Jarzynski averages for both directions were computed over the 21 inde-
pendent initial conditions. It is evident that, although not giving bounds, the
�AJz estimates indeed improve the upper and lower bounds compared to those
calculated as simple averages. However, the Jarzynski averages become useful
when the convergence of the simple arithmetic averages has reached the order
of less than 1 kB T per particle. In this fashion, although a promising compu-
tational asset, the Jarzynski procedure still requires systematic procedures for
finding more reversible paths.

4.4. Path Optimization through Scaling and
Shifting of Coordinates

As we have seen in the harmonic oscillator and Lennard–Jones problems,
the choice of the thermodynamic path and the used switching function is quite
crucial to the success of nonequilibrium free-energy estimation. In the case
of the harmonic oscillator problem it was relatively straightforward to find
a good switching function by explicitly solving the variational problem in
Eqs. (15) and (16), which lead to an optimized simulation that “spends the
right amount of time along each segment” of the already defined path. Here it
is important to note that this variational optimization should be carried out over
an ensemble averaged Wirr, being identical for every member of the ensemble,
independently of any specific �i (t = 0). This is the reason why early attempts
by Pearlman and Kollman [14] to determine paths “on the fly” by looking
ahead and avoiding strong dissipative collisions in specific configurations may
result in the unintentional introduction of a Maxwell demon [15], violating the
second law of thermodynamics, which is of course the fundamental origin of
the Helmholtz inequality.

Compared to the simple harmonic oscillator problem, the optimization
of the nonequilibrium simulation of the confined Lennard–Jones system is
significantly more challenging because of the strong interactions between the
particles as during the compression of the system. Given that this type of
interaction is expected to occur in most interesting problems, it is of inter-
est to design thermodynamic paths that are different from the ones in which
one simply follows H (λ) as λ runs from an initial to a final value, like we did
in the case of the harmonic oscillator problem.

We now present two approaches that follow this idea and lead to ther-
modynamic paths that are significantly more reversible. Both the coordinate
scaling [16] and coordinate shifting methods discussed below derive from
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the same fundamental thought: is there a (λ-dependent) coordinate system in
which all particles are apparently at rest with relative to one another
during the switching process? In such a coordinate system perhaps all particles
will have little difficulty in remaining close to equilibrium during the whole
switching process, with only the magnitude of their local fluctuations
changing.

4.4.1. Coordinate scaling

Figure 6 illustrates the possibilities of such an approach, when applied to
the simple problem of compression discussed above. Here, in an admittedly
simple example, all particles should be compressed “uniformly,” rather than
by the nonuniform compression generated through the interactions of the con-
fining potential with the particles at both ends of the line. This is accomplished
by writing the coordinates as s(λ) xi , where s(λ) is a (common) scaling param-
eter, which may then be variationally optimized. The greatly improved bounds
of Fig. 6 indicate that a better path has indeed been found. How does this
fit the “at rest” criterion mentioned earlier? If one watches the MC dynamics
in the unscaled “xi ” coordinates using an optimized s(λ), rather than in the
actual physical coordinates, s(λ) xi , it appears that the equilibrium positions
〈xi 〉 do not change during the switching, and thus, indeed, the only irreversibil-
ity arises from the changes in the RMS fluctuations about the equilibrium posi-
tions. It should be noted, however, that, as these scalings may be regarded as a
change in the metric that affects the length and volumes definitions, one should
include a entropic (calculable) correction to obtain the desired free-energy
difference.

Recently, there has been a variety of applications of the scaling approach
[16–18], including the determination of the absolute free energy of Lennard–
Jones clusters and a smooth metric scaling through a first order solid–solid
phase transition, fcc to bcc, with no apparent hysteresis with its resulting
irreversibility.

4.4.2. Coordinate shifting

In the applications of metric scaling, thermodynamic paths are often eas-
ily determined when a clear symmetry is present. Another approach, namely
coordinate shifting is more useful when such symmetries are absent. As an
alternative to writing a moving coordinate using the scaling relation s(λ) xi ,
one can take xi = xfluct

i + x ref
i (λ). Here each particle moves in a concerted fash-

ion along a λ-dependent reference path, chosen by symmetry, or by methods
such as simulated annealing, to avoid strong hard core interactions or other
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likely causes of irreversibility. As λ evolves, only the fluctuation coordinates
xfluct

i are subject to MC variations: should the physical environment of each
particle remain at least roughly constant, one may hope that the fluctuations
from the x ref

i (λ) do not depend strongly on λ. To the extent that this is the
case, the fluctuation coordinates are always at equilibrium, and thus the path is
reversible! Figure 7 illustrates the efficacy of this method for the linear com-
pression problem.

As opposed to coordinate scaling, coordinate shifting does not change the
metric, dispensing the need for entropic corrections and paving the way for
applications involving inhomogeneous systems where the possible absence of
symmetries obscures the choice of an appropriate metric obvious and
complicates the computation of scaling entropy corrections. As is also clear
from the results shown in Figure 7, the finite-time upper and lower bounds
converge sufficiently quickly for the Jarzynski averaging to actually markedly
improve even the shortest-time results. More general “non-linear” combina-
tions of scaling and shifting may also be used to advantage, as in [19].
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Figure 6. Convergence of upper and lower bounds to the free-energy change associated with
the compression of the confined Lennard–Jones system at kB T = 0.35 as a function of the
switching time tsim. The outer pair of lines are from standard finite-time switching, whereas
the inner pair represents the results from finite-time switching using linear metric scaling. The
vertical bars represent the standard error in the mean of 100 replicas.
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Figure 7. Convergence of upper and lower bounds to the free-energy change associated with
the compression of the confined Lennard–Jones system at kB T = 0.35 as a function of the
switching time tsim as obtained by optimized coordinate shifting. The vertical bars represent
the standard error in the mean of 21 replicas. The results obtained with Jarzynski averages are
also shown.

5. Outlook

One of the most fundamental and challenging applications of atomistic
simulation techniques concerns the determination of those thermodynamic
properties that require determination of the entropy, the chemical potential and
the various free energies, which are all examples of thermal thermodynamic
properties. In contrast to their mechanical counterparts (e.g., enthalpy, pres-
sure) they cannot be computed as ensemble (or time) averages, and indirect
strategies must be adopted.

Here, we have discussed the basic aspects of a particular strategy, that
of using nonequilibrium simulations to obtain estimators of reversible work
between equilibrium states. The point of this approach is that, in contrast to
equilibrium methods such as thermodynamic integration, the desired value
can, in principle, be estimated from a single simulation. But there is a trade-off,
in that the nonequilibrium estimators are subject to both systematic and sta-
tistical errors, caused by the inherently irreversible nature of nonequilibrium
processes.
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Yet, the approach allows one to systematically obtain upper and lower
bounds to the requested reversible result by exploring the nonequilibrium pro-
cesses both in forward and backward directions. The bounds for a given pro-
cess become tighter with decreasing process rates. But more importantly, it is
possible to optimize the nonequilibrium process so as to minimize irreversibil-
ity and, for a given process time, decrease the bounds. We have discussed
a number of methods by which to conduct this optimization task, including
explicit functional optimization using standard variational calculus and tech-
niques based on special coordinate transformations aimed at the reduction of
irreversibility.

These techniques have been quite successful so far, allowing accurate
free-energy measurements using relatively short nonequilibrium simulations.
In this light, the idea of using nonequilibrium simulations has now grown
into a robust and efficient computational approach to the problem of com-
puting thermal thermodynamic properties using atomistic simulation methods.
Nevertheless, further development remains necessary, in particular toward
improving/generalizing the existing optimization schemes.
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