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Analysis of the free energy is required to understand and predict the equi-
librium behavior of thermodynamic systems, which is to say, systems in which
temperature has some influence on the equilibrium condition. In practice, all
processes in the world around us proceed at a finite temperature, so any appli-
cation of molecular simulation that aims to evaluate the equilibrium behavior
must consider the free energy. There are many such phenomena to which sim-
ulation has been applied for this purpose. Examples include chemical-reaction
equilibrium, protein-ligand affinity, solubility, melting and boiling. Some of
these are examples of phase equilibria, which are an especially important and
practical class of thermodynamic phenomena. Phase transformations are char-
acterized by some macroscopically observable change signifying a wholesale
rearrangement or restructuring occurring at the molecular level. Typically this
change occurs at a specific value of some thermodynamic variable such as the
temperature or pressure. At the exact point where the transition occurs, both
phases are equally stable – have equal free energy – and we find a condition
of phase equilibrium or coexistence [1].

1. Free-Energy Measurement

Free-energy calculations are among the most difficult but most important
encountered in molecular simulation. A key “feature” of these calculations is
their tendency to be inaccurate, yielding highly reproducible results that are
nevertheless wrong, despite the calculation being performed in a way that is
technically correct. Often seemingly innocuous changes in the way the calcu-
lation is performed can introduce (or eliminate) significant inaccuracies. So it
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is important when performing these calculations to have a strong sense of how
they can go awry, and proceed in a way that avoids their pitfalls.

The aim of any free-energy calculation is to evaluate the difference in free
energy between two systems. “System” is used here in a very general sense.
The systems may differ in thermodynamic state (temperature, pressure, chemi-
cal composition), in the presence or absence of a constraint, or most generally
in their Hamiltonian. Often the free energy of one system is known, either
because it is sufficiently simple to permit evaluation analytically (e.g., an ideal
gas or a harmonic crystal), or because its free energy was established by a sepa-
rate calculation. In many cases the free-energy difference is itself the principal
quantity of interest. The important point here is that free-energy calculations
always involve two (or more) systems. We will label these systems A and B
in our subsequent discussion, and their free energy difference will be defined
�F = FB − FA.

Once the systems of interest have been identified, a large variety of meth-
ods are available to evaluate �F . At first glance the methods seem to be
very diverse and unrelated, but they nevertheless can be grouped into two
broad categories: (a) methods based on measurement of density of states and
(b) methods based on work calculations. Implicit in both approaches is the idea
of a path joining the two systems, and one way that specific methods differ is
in how this path is defined. As free energy is a state function, the free-energy
difference of course does not depend on the path, but the performance of a
method can depend greatly on this choice (and other details). It is always pos-
sible to define a parameter λ that locates a position on the path, such that one
value λA corresponds to system A and another value λB indicates system B.
The parameter λ may be continuous or discrete (in fact, it is not uncommon
that it have only two values, λA and λB), and may represent a single variable or
a set of variables, depending on the choice of the path. Moreover, for a given
path, the parameter λ can be viewed as a state variable, such that a free energy
F(λ) can be associated with each value of λ. Thus �F = F(λB) − F(λA).
The term “Landau free energy” is sometimes used in connection with this
dependence.

1.1. Density-of-States Methods

If a system is given complete freedom to move back and forth across the
path joining A and B, it will explore all possible values of the path variable
λ, but it will (in general) not spend equal time at each value. The probability
p(λ) that the system is observed to be at a particular point λ on the path is
related to the value of the free energy there

p(λ) ∝ exp (−F(λ)/kT ) , (1)
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where T is the absolute temperature and k is Boltzmann’s constant. This rela-
tion is the basic idea behind the density-of-states methods. The specific way
in which λ samples values depends on how the simulation is implemented.
Typically density-of-states calculations are performed as part of Monte Carlo
(MC) simulations. In this case sampling includes trial moves in which λ is
perturbed to a new value, and a decision to accept the trial is taken in the usual
MC fashion. It is possible also to have λ vary as part of a molecular dynamics
(MD) simulation. In such a situation λ must couple to the equations of mot-
ion of the system, usually via an extended-Lagrangian formalism [2]. Then λ
follows a deterministic dynamical trajectory akin to the way that the particles’
coordinates do.

In almost all cases of practical interest, conventional Boltzmann sampling
will probe only a small fraction of all possible λ-values. The variation of the
free energy F(λ) can be many times kT when considered over all λ values of
interest, and consequently the probability p(λ) can vary over many orders of
magnitude. Extra measures must therefore be taken to ensure that sufficient
information is gathered over all λ to evaluate the desired free-energy differ-
ence, and one of the features distinguishing different density-of-states meth-
ods is the way that they take these measures. Almost always an artificial bias
φ(λ) must be imposed to force the system to examine values of λ where the
free energy is unfavorable, Usually the aim is to formulate the bias to lead to a
uniform sampling over λ, which is achieved if φ(λ)=−F(λ). Of course, inas-
much as the aim is to evaluate F(λ) it is necessary to set up a scheme in which
the free energy can be estimated either through preliminary simulations or as
part of a systematic process of iteration. The greatest difficulty is found if the
free energy change is extensive, meaning that λ affects the entire system and
not just a small part of it (e.g., a path that results in a change in the thermody-
namic phase, versus a path in which a single molecule is added to the system).
In such cases F(λ) scales with the system size and is likely to vary by very
large amounts with λ. The practical consequence is that the bias must be tuned
very precisely to ensure that good sampling over all λ is accomplished. A
robust solution to the problem is the use of windowing, in which the prob-
lem of evaluating the full free energy profile F(λ) is broken into smaller
problems, each involving only a small range of all λ of interest. Separate
simulations are performed over each λ range, and the composite data are ass-
embled to yield the full profile. Even here there are different ways that one can
proceed, and a popular approach to this end uses the histogram-reweighting
method, which optimally combines the data in a way that accounts for their rel-
ative precision. Histogram reweighting is discussed in another chapter of this
volume.

Within the framework outlined above, the most obvious way to measure
the probability distribution p(λ) is to use a visited-states approach: MC or MD
sampling of λ values is performed, perhaps in the presence of the bias φ, and
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a histogram is recorded of the frequency with which each value (or bin of
values) of λ is occupied. The Wang-Landau method [3, 4] (and its exten-
sions) is the most prominent such technique today. Another approach of this
type applies a history-dependent bias using a Gaussian basis [5]. An alter-
native to visited-states has recently emerged in the form of transition-matrix
methods [6–10]. In such an approach one does not tabulate the occupancy
of each λ value; rather one tallies statistics about the attempts to transition
from one λ to another in a MC simulation. The movement among different
λs forms a Markov process, and knowledge of the transition probabilities is
sufficient to derive the limiting distribution p(λ). Interestingly, even rejected
MC trials contribute information to the transition matrix, so it seems that this
approach is gathering information that is discarded in visited-states meth-
ods. The transition-matrix approach has several other appealing features. The
method can accommodate the use of a bias to flatten the sampling, but the
bias does not enter into the transition matrix, so if the bias is updated as part
of a scheme to achieve a flat distribution the previously recorded transition
probabilities do not have to be discarded, as they must be in visited-states
methods (at least in its simpler formulations). Moreover, if windowing is
applied to obtain uniform samples across λ, it is easy to join data from differ-
ent windows. It is not even required that adjacent windows overlap, just that
they attempt trials (without necessarily accepting) into each other’s domain.
Details of the transition-matrix methods are still being refined, and the versatil-
ity of the approach is currently being explored through its application to differ-
ent problems. Additionally, there are efforts now to combine visited-states and
transition-matrix approaches, exploiting the relatively fast (but rough) con-
vergence of the former while relying on the more complete data collection
abilities of the latter to obtain the best precision [11].

1.2. Work-Based Methods

Classical thermodynamics relates the difference in free energy between
two systems to the work associated with a reversible process that takes one
into the other. A straightforward application of this idea leads to the thermo-
dynamic integration (TI) free-energy method, which has a long history and has
seen widespread application. The TI method is but one of several approaches
in a class based on the connection between �F and the work involved in trans-
forming a system from A to B. A very important development in this area
occurred recently, when Jarzynski showed that �F could be related to work
associated with any such process, not just a reversible one [12–15]. Jarzynski’s
non-equilibrium work (NEW) approach requires evaluation of an ensemble of
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work values, and thus involves repeated transformation from A to B, evaluat-
ing the work each time. The connection to the free energy is then

exp(−�F/kT ) = exp(−W/kT ), (2)

where W is the total work, and the overbar on the right-hand side indicates an
average taken over many realizations of the path from A to B, always start-
ing from an equilibrium A condition. For an equilibrium (reversible) path, the
repeated work measurements will each yield exactly the same value (within
the precision of the calculations), while for an arbitrary non-equilibrium trans-
formation a distribution of work values will be observed. It is remarkable
that these non-equilibrium transformations can be analyzed to yield a quantity
related to the equilibrium states.

The instantaneous work w involved in the transformation λ→ λ+�λ will
in general depend upon the detailed molecular configuration of the system at
the instant of the change. Assuming that there is no process of heat transfer
accompanying the transformation, this work is given simply by the change in
the total energy of the system

w = E(rN ; λ +�λ)− E(rN ; λ). (3)

For sufficiently small �λ, this difference can be given in terms of the
derivative

w =
(

dE(λ)

dλ

)
rN

�λ, (4)

which can be interpreted in terms of a force acting on the parameter λ. The
derivative relation is the natural formulation for use in MD simulations, in
which the work is evaluated by integrating the product of this force times the
displacement in λ over the complete path. The former expression (Eq. (3)) is
more appropriate for MC simulation, in which larger steps in λ are typically
taken across the path from A to B.

Thermodynamic integration is perhaps the first method by which free
energies were calculated by molecular simulation. Thermodynamic integration
methods are usually derived from classical thermodynamics [1], with molecu-
lar simulation appearing simply to measure the integrand. As indicated above,
TI also derives as a special (reversible) case of Jarzynski’s NEW formalism,
whereby �F =W rev for the reversible path. The total work W rev is in turn given
by integration of Eq. (4), leading to:

�F =

λB∫
λA

w(λ) dλ. (5)

Equilibrium values of w are measured in separate simulations at a few
discrete λ points along the path. It is then assumed that w is a smooth function
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of λ, and simple quadrature formulas (e.g., trapezoid rule) can be applied.
The primary mechanism for the failure of TI is the occurrence of a phase
transition, and therefore a discontinuity in w, along the path. Otherwise TI
has been successfully applied to a very wide variety of systems, dating to the
earliest simulations. Its primary disadvantage is that it does not provide direct
measurement of the free energy, and if one is not interested in behavior for
points along the integration path then another approach might be preferred.

TI approximates a reversible path by smoothing equilibrium, ensemble-
averaged, “forces” measured discretely along the path. Alternatively, one can
access a reversible path by mimicking a truly reversible process, i.e., by
attempting to traverse the path via a slow, continuous transition. In this man-
ner the simulation constantly evolves from system A to system B, such that
every MC or MD move is accompanied by a tiny step in λ (or some variation
of this protocol). The differential work associated with these changes is accu-
mulated to yield the total work W , which then approximates the free-energy
difference. The process may proceed isothermally or adiabatically, the latter
being the so-called adiabatic-switch method (and which instead yields the
entropy difference between A and B) [16]. The weakness of these methods
is in the uncertainty on whether the evolution of the system is sufficiently slow
to be considered reversible. Such concerns can be allayed by implementing
the calculation using the Jarzynski free-energy formula, Eq. (9); however this
remedy then requires averaging of repeated realizations of the transition. One
is then led to ask whether it is better to average, say, ten NEW passes, or to
perform a single switch ten times more slowly.

Free-energy perturbation (FEP) is obtained as the special case of the NEW
method in which the transformation from A to B is taken in a single step.
Free-energy perturbation is a well established and widely used method. Its
principal advantage is that it permits �F to be given as an ensemble average
over configurations of the A system, removing the complication and expense
of defining and traversing a path. The working formula emphasizes this feature

exp(−β�F) = 〈exp [−β(EB − EA)]〉A . (6)

A given NEW calculation can in principle be performed in either direction,
starting from A and transforming to B, or vice versa. In practice the calculation
will give different results when applied in one or the other direction; moreover
these results will bracket the correct value of �F . The results differ because
they are inaccurate, and the fact that they bracket the correct value makes it
tempting to take their average as the “best” result. But this practice is not a
good idea, because the magnitude of the inaccuracies is in general not the same
for the two directions [17,18]. In fact, it is not uncommon for one direction to
provide the right result while the other yields an inaccurate one. But it is also
not uncommon in other cases for the average to give a better estimate than
either direction individually. The point is that one often does not know what
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is the best way to interpret the results. The more careful practitioners will
apply sufficient calculation (and perhaps use sufficient stages) until a point is
reached in which the results from each direction match each other. However,
this practice can be wasteful. To understand the problem and its remedy it is
helpful to consider the systems A and B from the perspective of configuration
space.

1.3. Configuration Space

Configuration space is a high-dimensional space of all molecular config-
urations, such that any particular arrangement of the N atoms in real space
is represented by a single point in 3N -dimensional configuration space (more
generally we may consider 6N -dimensional phase space, which includes also
the momenta) [19]. An arbitrary point in configuration space will typically
describe a configuration that is unrealistic and unimportant, in the sense that
one would not expect ever to observe the configuration to arise spontaneously
in course of the system’s natural dynamics. For example, it might be a configu-
ration in which two atoms occupy overlapping positions. Configuration space
will of course contain points that do represent realistic, or important configu-
rations, ones that are in fact observed in the system. It is helpful to consider
the set �* of all such configurations, as we do schematically in Fig. 1. The
enclosing square represents the high-dimensional configuration space, and the
ovals drawn within it represent (in a highly simplified manner) the set of all
important configurations for the systems.

The concept of “important configurations” is relevant to free-energy calcu-
lations because the ease with which a reliable (accurate) free-energy difference
can be measured depends largely on the relation between the �* regions of the
two systems defining the free-energy difference. There are five general possi-
bilities [20], summarized in Fig. 1. In a FEP calculation perturbing from A to
B, the simulation samples the region labeled �∗A and at intervals it examines
its present configuration and gauges its importance to the B system. Three
general outcomes are possible for the difference EB − EA seen in Eq. (6):
(a) it is a large positive number and the contribution to the FEP average is
small; this occurs if the point is in �∗A but not in �∗B ; (b) it is a number of order
unity, and a significant contribution is made to the FEP average; this occurs if
the point is in �∗A and in �∗B; or (c) it is a large negative number, and an enor-
mous contribution is made to the FEP average; this occurs if the point is not in
�∗A but is in �∗B . The third case will arise rarely if ever, because the sampling
is by definition largely confined to the region �∗A. This contradiction (a large
contribution made by a configuration that is never sampled) is the source of the
inaccuracy in FEP calculation, and it arises if any part of �∗B lies outside of �∗A.
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Figure 1. Schematic depiction of types of structures that can occur for the region of important
configurations involving two systems. The square region represents all of phase space, and the
filled regions are the important configurations �∗A and �∗B for the systems “A” and “B”, as
indicated. (a) simple case in which �∗A and �∗B are roughly coincident, and there is no signifi-
cant region of one that lies outside the other; (b) case in which the important configurations of
A and B have no overlap, and energetic barriers prevent each from sampling the other; (c) case
in which one system’s important configurations are a wholly contained, not-very-small subset
of the others; (d) case in which �∗B is a very small subset of �∗A; (e) case in which �∗A and �∗B
overlap, but neither wholly contains the other.

This observation leads us to the most important rule for the reliable applica-
tion of FEP: the reference and target systems must obey a configuration-space
subset relation. That is, the important configuration space of the target system
(B) must be wholly contained within the important configuration space of the
system governing the sampling (A). Failure to adhere to this requirement will
lead to an inaccurate result. Note the asymmetry of the relation “is a subset
of” is directly related to the asymmetry of the FEP calculation. Exchange of
the roles of A and B as target or reference can make or break the accuracy of
the calculation.

For example, consider the free energy change associated with the addi-
tion of a molecule to the system. In this case, �F equals the excess chemical
potential. The A system is one in which the “test” molecule has no interaction
with the others, and the B system is one in which it interacts as all the other
molecules do. Any configuration in which the test molecule overlaps another
molecule is not important to B but is (potentially) important to A – the B sys-
tem may be a subset of A, while A is most certainly not a subset of B. Whether
all of �∗B is within �∗A cannot be stated for the general case. In more complex
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systems (e.g., water) it is likely that there are configurations sampled by B that
would not be important to A, while in simpler systems (a Lennard–Jones fluid
at moderate density) the subset relation is satisfied.

This black-and-white picture, in which the �* regions are well defined
with crisp boundaries, presents only a conceptual illustration of the nature of
the calculations. In reality the “importance” of a given configuration (point in
�) is not so clear-cut, and the �* regions for the A and B systems may overlap
in shades of gray (i.e., degrees of importance).

The discussion here is given in the context of a FEP calculation, but the
same ideas are relevant to the more general NEW calculation. Each increment
of work performed in a NEW calculation must adhere to the subset relation
too. The difference with NEW is that if the change is made sufficiently slowly
(approaching reversibility), then the important phase spaces at each step will
differ by only small amounts (cf. Fig. 1(a)), and the subset relation will be
satisfied. To the extent that a NEW calculation is performed irreversibly, the
issue of inaccuracy and asymmetry becomes increasingly important.

1.4. Staging Strategies

In practice one is confronted with pair of systems for which �F is desired,
and there is no control over whether their �* regions satisfy a subset relation.
Yet FEP and NEW cannot be safely applied unless this condition is met. Two
remedies are possible. Phase space can be redefined, such that a given point in
it can represent different configurations for the A and B systems [21–23]. This
approach has been applied to evaluate free energy differences between crystal
structures (e.g., fcc vs. bcc) of a given model system. The phase-space points
are defined to represent deviations from a perfect-crystal configuration, and the
reference crystal is defined differently for the two systems. The switch from A
to B entails swapping the definition of the reference crystal while keeping the
deviations (i.e., the redefined phase-space point) fixed. With this transforma-
tion, two systems having disjoint �* regions are redefined such that their �*
at least have significant overlap, and perhaps obey the subset requirement.

Multiple staging is a more general approach to deal with systems that do
not satisfy the subset relation [24–26]. Here the desired free energy difference
is expressed in terms of the free energy of one or more intermediate systems,
typically defined only to facilitate the free-energy calculation. Thus,

�F = (FB − FM )+ (FM − FA), (7)

where M indicates the intermediate. Free-energy methods are then brought
to evaluate separately the two differences, between the M and B and M and
A systems, respectively. The M system should be defined such that a subset
relation can be formed between it and both the A and B systems. There are
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several options to this end, depending on the �* relation in place for the A and
B systems. Figure 2 summarizes the possibilities, and the cases are named as
follows:

• Umbrella sampling. Here M is formulated to contain both A and B, and
sampling is performed from it into each [27].

• Funnel sampling. This is possible only if B is already a subset of A. Then
M is defined as a subset of A and superset of B, and each perturbation
stage is performed accordingly [20, 25, 28].

• Overlap sampling. Here M is formulated to be a subset of both A and B,
and sampling is performed on each with pesrturbation into M [29].

General ways to define M to satisfy these requirements are summarized
in Table 1, which also lists the general working equations for each multi-
stage scheme. Umbrella sampling is a well-established method but is has only
recently been viewed from the perspective given here. Bennett’s acceptance-
ratio method is a particular type of overlap sampling in which an optimal

Figure 2. Schematic depiction of types of structures that can occur for the region of important
configurations involving two systems and a weight system formulated for multistage sampling.
The square region represents all of phase space, and the filled regions are the important con-
figurations �∗A , �∗B , and �∗M for the systems A and B, and M as indicated. (a) well formu-
lated umbrella potential defines important configuration that have both �∗A and �∗B as subsets;
(b) safely formulated funnel potential needed to focus sampling on tiny set of configurations �∗B
while still representing all configurations important to A; (c) well formulated overlap potential,
with important configurations formed as a subset of both the A and B systems.

Table 1. Summary of staging methods for free-energy perturbation calculations

Method Formula for e−β(FB−FA) Preferred staging potential, e−βEM

Umbrella sampling

〈
e−β(E B−EM )

〉
M〈

e−β(E A−EM )
〉

M

(
e−β(E A−FA) + e−β(EB−FB)

)
Overlap sampling

〈
e−β(EM−E A)

〉
A〈

e−β(EM−E B )
〉

B

(
e+β(E A−FA) + e+β(EB−FB)

)−1

Funnel sampling
〈

e−β(EM−E A)
〉

A

〈
e−β(EB−EM )

〉
M

No general formulation
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M is selected to minimize the variance of �F ; it is a highly effective and
underappreciated method. The funnel-sampling multistage scheme is new, and
a general, effective formulation for an M system appropriate to it has not
yet been identified. Overlap sampling and umbrella sampling are not partic-
ularly helpful if A and B already satisfy the subset relation – they do not give
much better precision than a simple single-stage FEP calculation taken in the
appropriate direction. However, if implemented correctly they do provide some
measure of safety against problems of inaccuracy, which is useful because in
most cases one usually does not know clearly the nature of the phase-space
relation for the A and B systems, and whether (and which way) a single-stage
calculation is safe to perform between them.

2. Methods for Evaluation of Phase Coexistence

Our perspective now shifts to the calculation of phase coexistence by molec-
ular simulation, for which free-energy methods play a major role. Applications
in this area have exploded over the past decade or so, owing to fundamental
advances in algorithms, hardware, and molecular models. Some of the meth-
ods and concepts surveyed here have been discussed in more detail in recent
reviews [30, 31].

2.1. What is a Phase?

An order parameter is a statistic for a configuration. It is a number (or
perhaps a vector, tensor, or some other set of numbers) that can be calculated
or measured for a system in a particular configuration, and that in some sense
quantifies the configuration. Examples include the density, the mole fraction in
a mixture, the magnetic moment of a ferromagnet, and so on. Some molecular
order parameters are formulated as expansion coefficients of an appropriate
distribution function rendered in a suitable basis set. For example, a natural
choice for crystalline translation order parameters is the value of the structure
factor for an appropriate wave vector k. Orientational order parameters are
widely used in the field of liquid crystals, and a common choice is based on
expansion of the orientation distribution in Legendre polynomials. Usually an
order parameter is defined such that it has a physical manifestation that can be
observed experimentally.

A thermodynamic phase is the set of all configurations that have (or are near)
a given value of an order parameter. Phases are important because a system
will spontaneously change its phase in response to some external perturbation.
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In doing so, the configurations exhibited by the system change from those
associated with one value of the order parameter to those of another. Usually
such a large shift in the predominant configurations will cause the system’s
physical properties (mechanical, electrical, optical, etc.) to change in ways
that might be very useful. A well known example is the boiling of a liquid
to form a vapor. In response to a small change in temperature, the observed
configurations of the system go from those corresponding to a large density to
those for a much smaller density. In both cases the system (being at fixed pres-
sure) is free to adopt any desired density. In changing phase it overwhelmingly
selects configurations for one density over another. This phenomenon, and its
many variants, has a multitude of practical applications.

Clearly, there is a close connection between this molecular picture of a
phase transformation, and the ideas presented above about the important phase
space for a system. When a system changes phase, it is actually changing its
important phase space, and the �* region for the system before and after the
change can relate in any of the ways described in Fig. 1. Analysis of the free
energy is required to identify the location of the phase change quantitatively.
Often the order parameter describing the phase change serves as the path
parameter λ when performing this analysis.

2.2. Conditions for Phase Equilibria

In a typical phase-equilibrium problem one is interested in the two (or
more) phases involved in the transformation. At the exact condition at which
one becomes favored over the other, both are equally stable. Molecular simula-
tion is applied to locate this point of phase equilibrium and to characterize the
coexisting phases. Formally, the thermodynamic conditions of coexistence can
be identified as those minimizing an appropriate free energy, or equivalently
by finding the states in which the intensive “field” variables of temperature,
pressure, and chemical potential (and perhaps others) are equal among the can-
didate phases. Most methods for evaluation of phase equilibria by molecular
simulation are based on identifying the conditions that satisfy the thermody-
namic phase-coexistence criteria, and consequently they require evaluation of
free energies or a free-energy difference. Still there is a lot of variability in the
approaches, because really there are two problems involved in the calculation.
The first is the measurement of the thermodynamic properties, particularly
the free energy, while the second is the numerical “root-finding” problem of
locating the coexistence conditions. Methods differ largely in the way they
combine these two numerical problems, and the most effective and popular
methods synthesize these calculations in elegant ways.



Perspective: free energies and phase equilibria 695

2.3. Direct Contact of Phases, Spontaneous
Transformations

Before turning to the free-energy based approaches for evaluating phase
coexistence, it is worthwhile to consider the more intuitive approaches that
mimic the way phase transitions are studied experimentally. By this we mean
methods in which a system is simulated and the phase it spontaneously adopts
is identified as the stable thermodynamic phase. Two general approaches can
be taken, depending on the types of variables that are fixed in the simulation
(i.e., the governing ensemble).

In the first case, only one size variable is imposed (typically the number
of molecules), and the remaining variables are fields (temperature, pressure,
chemical potential difference). Then a scan is made of one or more of the
fields (e.g., the temperature is increased), and one looks for the condition at
which the phase changes spontaneously (e.g., the system undergoes a sud-
den expansion). For example, the temperature at which this happens, and the
conditions of the phases before and after the transition, characterizes the coex-
istence point. In practice this method is effective only for producing a coarse
description of the phase behavior. It is very easy for a system to remain in a
metastable condition as the field variable moves through the transition point,
and the spontaneous transformation may occur at a point well beyond the true
value. The reverse process is susceptible to the same problem, so the trans-
formation process exhibits hysteresis when the field is cycled back and forth
through the transition value.

In the second case, two or more extensive variables are imposed (i.e., the
number of molecules and the volume), and the system is simulated at a condi-
tion inside the two-phase region. A macroscopic system in this situation would
separate into the two phases, and both would coexist in the given volume. In
principle, this too happens in a molecular simulation, but usually the system
size is not sufficiently large to wash out effects due to the presence of the
interface. In effect, neither bulk phase is simulated. Nevertheless, the direct-
contact method does work in some situations. Solid-fluid phase behavior has
been studied this way. The interface is slow to equilibrate in this system, so one
must be careful to ensure that the simulation begins with a well equilibrated
solid. Vapor-liquid equilibria have also been examined using direct contact of
the phases. Of course, this approach cannot be applied when too close to the
critical point. Often such systems are examined because the interfacial prop-
erties are themselves of direct interest.

Spontaneous formation of phases has been used recently to examine the
behaviors of models that exhibit complex morphologies. Glotzer et al. have
examined the mesophases formed by a wide variety of model nanoparticles,
including hard particles with tethers, and particles with sticky patches [32].
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The systems have been observed to spontaneously form many complex struc-
tures, including columns, lamella, micelles, sheets, double layers, gyroid
phases, and so on. The question remains of the absolute stability of the obs-
erved structures, but their spontaneous formation is a strong indicator that they
are certainly relevant, and could likely be the most stable of all possible phases
at the simulated conditions. The phase behaviors of other types of mesoscale
models are also studied through the direct-observation methods. Systems mod-
eled using dissipative particle dynamics [2, 33] are good candidates for this
treatment, because they have a very soft repulsion and particles can in effect
pass through each other; and as a consequence they equilibrate very quickly.

2.4. Methods Based on Solution of
Thermodynamic Equalities

A well worn approach to the free-energy based evaluation of phase equi-
libria focuses on satisfying the coexistence conditions given in terms of equal-
ity of the field parameters. In this approach each phase is studied separately,
and state conditions are varied systematically until the coexistence conditions
are met. An effective way to attack this problem is to combine the search
for the coexistence point with the evaluation of the free energy through ther-
modynamic integration. For example, to evaluate a vapor-liquid coexistence
point, one can start with a subcooled liquid of known chemical potential (eval-
uated using any of the methods reviewed above), and proceed with a series
of isothermal-isobaric simulations following a line of decreasing pressure. At
each point the chemical potential can be evaluated through the thermodynamic
integration using the measured density

µ(P) = µ(P0)+
P∫

P0

dp/ρ(p). (8)

A similar series of simulations can be performed in the vapor separately, at
the same temperature as the liquid simulations, but increasing the pressure
toward the point of saturation (alternatively, an equation of state might be
applied to characterize the vapor). Once the liquid and vapor simulations reach
an overlapping range of pressures, the chemical potentials computed accord-
ing to Eq. (8) can be examined at each pressure, until the point is found at
which chemical potential is equal across the two phases for a given pressure.

This general approach can be somewhat tedious to implement, but it is per-
haps the most robust of all methods. It is likely to provide a good result for
almost all types of coexistence. It has been applied to many types of phase
equilibria, including those involving solids [34], liquid crystals [35], plastic
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crystals, as well as fluids. The search for the coexistence condition can be
applied using almost any order parameter (density was used in this example),
although one must perhaps put some effort toward developing the appropri-
ate formalism defining a field to couple to the parameter, and implementing
a simulation in which this field is applied. Complications arise if many field
parameters are relevant. For example, if one is studying a mixture, then a sep-
arate field parameter (chemical potential) is needed to couple to each mole-
fraction variable. The problem can be simplified by fixing all but one of the
field variables in the two phases, but often this leads to a statement of the
coexistence problem that is at odds with the problem of real interest (e.g.,
one might want to know the composition of the incipient phase arising from
another phase of given composition, which in the context of vapor-liquid equi-
libria is known as a bubble-point or a dew-point calculation). For mixtures, this
formulation is expressed by the semigrand ensemble [36].

This method, like many others, will suffer when applied to characterize a
weak phase transition, that is, one that is accompanied by only a small change
in the relevant order parameter. The order parameter is related to the slope
of the line that is being mapped in this calculation, and consequently for a
weak transition the slopes of these lines for the two phases will not be very
different from each other. It can be difficult to locate precisely the intersection
of two nearly parallel lines – any errors in the position of the lines will have a
greatly magnified effect on the error in the point of intersection. Therefore the
application of this method to a weak transition can fail if the relevant ensemble
averages and the free energies for the initial points of the integration are not
measured with high precision and accuracy.

2.5. Gibbs Ensemble

A breakthrough in technique for the evaluation of phase coexistence by
molecular simulation arrived in 1987 with the advent of the Gibbs ensemble
[37]. This method presents a very clever synthesis of the problem of locating
the conditions of coexistence and measuring the free energy in the candidate
phases. It accomplishes this through the simulation of both phases simultane-
ously, each occupying its own simulation volume. Although the phases are not
in “physical” contact, they are in contact thermodynamically. This means that
they are capable of exchanging volume and mass in response to the thermo-
dynamic driving forces of pressure and chemical potential difference, respec-
tively. The systems evolve in this way, increasing or decreasing in density with
the mass and volume exchanges, until the point of coexistence is found. Upon
reaching this condition the systems will fluctuate in density about the values
appropriate for the equilibrium state, which can then be measured as a simple
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ensemble average. Details of the method are available in several reviews and
texts [2, 37, 38].

The Gibbs ensemble is the method of choice for straightforward evalua-
tion of vapor–liquid and liquid–liquid equilibria. It does not suffer any par-
ticular complications when applied to mixtures, and it has been applied with
great success to many phase coexistence calculations. However, there are sev-
eral ways in which it can fail. First, an essential element of the technique is
the exchange of molecules at random between the coexisting phases. If trials
of this type are not accepted with sufficient frequency, the systems will not
equilibrate and a poor result is obtained. This problem arises in applications
to large, complex molecules, and/or at low temperatures and high densities. It
can be overcome to a useful degree through the application of special sampling
techniques, such as configurational bias. Second, in its basic form the Gibbs
ensemble is not applicable to equilibria involving solids, or to lattice models.
The problem is only partially due to the difficulty of inserting a molecule into
a solid. The “mass balance” is the more insidious obstacle. The number of
molecules present in each phase at equilibrium is set by the initial number of
molecules and the volume of the composite system of both phases (as well as
the values of the coexistence densities). A defect-free crystal can be set up in
a periodic system using only a particular number of molecules. For example
an fcc lattice in cubic periodic boundaries can be set up using 32, 108, 256,
500, and so on molecules (i.e., 4n3 where n is an integer). When beginning
a Gibbs ensemble calculation there is no simple way to ensure this condition
will be met in the equilibrium system. Tilwani and Wu [39] have treated these
problems with an alternative approach in which an atom is added to the unit
box of the solid and this new unit box is used to fill up (tile) space. In this way,
particles can be added or removed from the system, while the crystal structure
is maintained.

The Gibbs ensemble fails also upon approach to the critical point. As this
condition is reached, contributions to the averages increase for densities in the
region between the two phases. It then becomes possible, even likely, that the
simulated phases will swap their roles as the liquid and vapor phases. This
is not a fatal flaw, but it presents a complication to the method, and it is an
indicator that the general approach is beginning to fail. Thus the consensus
today is that in this region of the phase envelope density-of-states methods
are more suitable for characterizing the coexistence behavior. More generally,
the Gibbs ensemble can encounter difficulty when applied to any weak phase
transition, if only because it is necessary to configure the composite system so
that it lies in the two phase region – this can be difficult to do if this region
is very narrow. Interestingly enough, the Gibbs ensemble can fail also if it
is applied using very large system sizes. In this situation an interface is
increasingly likely to form in one or both phases, and the result is that a clean
separation of phases between the volumes is no longer in place – instead both
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simulation volumes each end up representing both phases. Typically the Gibbs
ensemble is applied for its simplicity and ability to provide quick results, so
the large systems needed to raise this problem are not usually encountered.

2.6. Gibbs–Duhem Integration

The Gibbs–Duhem integration (GDI) method [40] applies thermodynamic
integration to both parts of the combined problem of evaluating the free energy
and locating the point of transition. In particular, the path of integration is
constructed to follow the line of coexistence. All of this is neatly packaged
by the Clapeyron differential equation for the coexistence line, which in the
pressure–temperature plane is [1]

(
dP

dT

)
σ

=
�H

T�V
, (9)

where �H and �V are the differences in molar enthalpy and molar volume,
respectively, between the two phases; the σ subscript indicates a path along
the coexistence line. The GDI procedure treats Eq. (9) as a numerical problem
of integrating an ordinary differential equation. The complication, of course, is
that the right-hand side must be evaluated through molecular simulation at the
temperature and pressure specified by the integration procedure, and moreover
separate simulations are required to characterize both phases involved in the
difference. A simple iterative process is applied to refine the pressure accord-
ing to Eq. (9) after a step in temperature is taken, using preliminary results
for the ensemble averages from the simulations. Predictor-corrector meth-
ods are effective in performing the integration, and inasmuch as the primary
error in the calculation arises from the imprecision of the ensemble averages,
a low-order integration scheme suffices for the purpose.

The GDI method applies much more broadly than indicated in this descrip-
tion. Any type of field variables can be used in the role held by pressure and
temperature in Eq. (9), with appropriate modification to the right-hand side.
For example, integrations have been performed along paths of varying compo-
sition, polydispersity, orientational order, and interparticle-potential softness,
rigidity, or shape [36]. The method applies equally well to equilibria involving
fluids or solids, or other types of phases. It has been used to follow three-phase
coexistence lines too. In this application one must integrate two differential
equations similar to Eq. (9), involving three field variables. In all cases there
are a number of practical implementation issues to consider, such as how the
integration is started, and the proper selection of the functional form of the
field variables (e.g., integration in ln(P) vs. 1/T has advantages for tracing
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vapor–liquid coexistence lines). These issues have been discussed in some
detail in recent reviews [36, 41].

The GDI method has some limitations. It does require an initial point of
coexistence in order to begin the integration procedure. Concerns are often
expressed that errors in this initial point will propagate throughout the inte-
gration, but this problem is not as bad as one might think. A stability analysis
shows that any such errors will be attenuated if the integration is performed in
a direction from a weaker to a stronger transition (e.g., away from the liquid–
vapor critical point toward lower temperatures). On the other hand, if the
integration is performed in the opposite direction, initial and accumulated
errors will be amplified. Regardless it seems that in practice any such prob-
lems do not arise. A related concern is the general difficulty in treating weak
phase transitions. If the differences on the right-hand side of Eq. (9) are small,
and thus may be formed using averages that have stochastic errors comparable
to the differences themselves, then it is clear that the method will not work
well. In such cases one might be better off employing a method that directly
bridges the difference between the phases, such as by mapping the full density
of states in this region.

The basic idea of tracing coexistence lines has been further generalized
for mapping of other classes of phase equilibria, such as tracing of azeotropes
[42], and dew/bubble-point lines [41]. Escobedo has developed and applied a
general framework for these approaches [30, 43–47].

2.7. Mapping the Density of States

Density of states methods evaluate coexisting phases by calculating the full
free-energy profile across the range of values of the order parameter between
and including the two phases. It is only in the past few years that this method
has come to be viewed as generally viable, and even a good choice for evalu-
ating phase coexistence. The effort involved in collecting information for the
intermediate points seems wasteful, although with the approach these data are
needed to obtain the relative free energies of the real states of interest (i.e.,
the coexisting phases). The methods reviewed above are popular because they
avoid this complication and are more efficient because of it. However, there
is some advantage in having the system cycle through the uninteresting states.
It helps to move the sampling through phase space. Thus, a simulated system
might go from a liquid configuration, then to a vapor, and back to the liquid
but in a very different configuration from which it started. This is particularly
important for complex fluids such as polymers (in the context of other phase
equilibria), in which it is otherwise difficult to escape from ergodic traps. Sec-
ond, the intermediate states may be of interest in themselves; they can be used,
for example, to evaluate the surface tension associated with contacting the two
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phases [10]. Third, it may be that the distance between the coexisting phases
is not so large (i.e., the transition is weak), so covering the ground between
them does not introduce so much expense; moreover in such a situation other
methods do not work very well. Regardless, continuing improvements in com-
puting hardware and algorithms (some reviewed above), particularly in paral-
lel methods and architectures, have made the density-of-states strategy look
much more appealing.

We describe the basic approach in the context of vapor–liquid equilibria.
Simulation can be performed in the grand-canonical potential with a chemical
potential selected to be in the vicinity of the coexistence value. The density
of states is mapped as a function of number of molecules at fixed volume;
the transition-matrix method with a biasing potential in N has been found to
be convenient and effective in this application. The resulting density of states
will most likely exhibit two unequal peaks, representing the two nearly coex-
isting phases. Histogram reweighting is then applied to the density of states
to determine the value of the chemical potential that makes the peaks equal in
size. This is taken to be the coexistence value of the chemical potential, and the
positions of the peaks give the molecule numbers (densities) of the coexisting
phases. The coexistence pressure can be determined from the grand potential,
which is available from the density of states. Additional details are presented
by Errington [9].

3. Outlook

The nature of the questions that we address with the help of computer sim-
ulations is changing. Increasingly, we wish to be able to predict the changes
that will occur in a system when external conditions (e.g., temperature, pres-
sure or the chemical potential of one or more species) are changed. In order to
predict the stable phase of a many-body system, or the “native” conformation
of a macromolecule, we need to know the accessible volume in phase space
that corresponds to this state or, in other words, its free energy.

Both the MC and the MD methods were created in effectively the form
in which we use them today. However, the techniques used to compute free
energy differences have expanded tremendously and have become much more
powerful and much more general than they were only a decade ago. Yet,
the roots of some of these techniques go back a long way. For instance, the
density-of-states method was already considered in the late 1950s [48] and
was first implemented in the 1960s [49]. The aim of the present chapter is to
provide a (very concise) review of some of the major developments. As the
developments are in a state of flux, this review provides nothing more than a
snapshot.
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It is always risky to identify challenges for the future, but some seem clear.
First of all, it would seem that there must be a quantum-mechanical counter-
part to Jarzynski’s NEW method. However, it is not at all obvious that this
would lead to a tractable computational scheme. A second challenge has to do
with the very nature of free energy. In its most general (Landau) form, the free
energy of a system is a measure of the available phase space compatible with
one or more constraints. In the case of the Helmholtz free energy, the quanti-
ties that we constrain are simply the volume V and the number of particles N .
However, when we consider the pathway by which a system transforms from
one state to another, the constraint may correspond to a non-thermodynamic
order parameter. In simple cases, we know this order parameter, but often
we do not. We know the initial and final states of the system and hopefully
the transformation between the two can be characterized by one, or a few,
order parameters. If such a low-dimensional picture is correct, it is meaning-
ful to speak of the “free-energy landscape” of the system. However, although
methods exist to find pathways that connect initial and final states in a barrier-
crossing process [50], we still lack systematic ways to construct optimal
low-dimensional order-parameters to characterize the transformation of the
system. To date, most successful schemes to map free-energy landscapes
assume that the true reaction coordinates are spanned by a relatively small
set of supposedly relevant coordinates. However, is not obvious that it will
always be possible to find such coordinates. Yet, without a physical picture
of the constraint or reaction coordinate, free energy surfaces are hardly more
informative than the high-dimensional potential-energy surface from which
they are ultimately derived. Without this knowledge we can still compute the
relative stability of initial and final state (provided we have a criterion to dis-
tinguish the two), but we will be unable to gain physical insight into the factors
that affect the rate of transformation from the metastable to the stable state.
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