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Molecular dynamics (MD) simulation, in which atom positions are evolved
by integrating the classical equations of motion in time, is now a well estab-
lished and powerful method in materials research. An appealing feature of
MD is that it follows the actual dynamical evolution of the system, making no
assumptions beyond those in the interatomic potential, which can, in princi-
ple, be made as accurate as desired. However, the limitation in the accessible
simulation time represents a substantial obstacle in making useful predictions
with MD. Resolving individual atomic vibrations – a necessity for maintain-
ing accuracy in the integration – requires time steps on the order of femtosec-
onds, so that reaching even one microsecond is very difficult on today’s fastest
processors. Because this integration is inherently sequential in nature, direct,
spatial parallelization does not help significantly; it just allows simulations of
nanoseconds on much larger systems.

Beginning in the late 1990s, methods based on a new concept have been
developed for circumventing this time scale problem. For systems in which the
long-time dynamical evolution is characterized by a sequence of activated
events, these “accelerated molecular dynamics” methods [1] can extend the ac-
cessible time scale by orders of magnitude relative to direct MD, while retaining
full atomistic detail. These methods – hyperdynamics, parallel-replica dynam-
ics, and temperature accelerated dynamics (TAD) – have already been demon-
strated on problems in surface and bulk diffusion and surface growth. With more
development they will become useful for a broad range of key materials prob-
lems, such as pipe diffusion along a dislocation core, impurity clustering, grain

629
S. Yip (ed.),
Handbook of Materials Modeling, 629–648.
c© 2005 Springer. Printed in the Netherlands.



630 B.P. Uberuaga et al.

growth, dislocation climb and dislocation kink nucleation. Here we give an
introduction to these methods, discuss their current strengths and limitations,
and predict how their capabilities may develop in the next few years.

1. Background

1.1. Infrequent Event Systems

We begin by defining an “infrequent-event” system, as this is the type of
system we will focus on in this article. The dynamical evolution of such a sys-
tem is characterized by the occasional activated event that takes the system from
basin to basin, events that are separated by possibly millions of thermal vibra-
tions within one basin. A simple example of an infrequent-event system is an
adatom on a metal surface at a temperature that is low relative to the diffusive
jump barrier. We will exclusively consider thermal systems, characterized by a
temperature T , a fixed number of atoms N , and a fixed volume V ; i.e., the canon-
ical ensemble. Typically, there is a large number of possible paths for escape
from any given basin. As a trajectory in the 3N -dimensional coordinate space
in which the system resides passes from one basin to another, it crosses a (3N–1)-
dimensional “dividing surface” at the ridgetop separating the two basins. While
on average these crossings are infrequent, successive crossings can sometimes
occur within just a few vibrational periods; these are termed “correlated dynam-
ical events” [2–4]. An example would be a double jump of the adatom on the
surface. For this discussion it is sufficient, but important, to realize that such
events can occur. In most of the methods presented below, we will assume that
these correlated events do not occur – this is the primary assumption of transition
state theory – which is actually a very good approximation for many solid-state
diffusive processes. We define the “correlation time” (τcorr) of the system as the
duration of the system memory. A trajectory that has resided in a particular basin
for longer than τcorr has no memory of its history and, consequently, how it got to
that basin, in the sense that when it later escapes from the basin, the probability
for escape is independent of how it entered the state. The relative probability
for escape to a given adjacent state is proportional to the rate constant for that
escape path, which we will define below.

An infrequent event system, then, is one in which the residence time in
a state (τrxn) is much longer than the correlation time (τcorr). We will focus
here on systems with energetic barriers to escape, but the infrequent-event con-
cept applies equally well to entropic bottlenecks.1 The key to the accelerated

1For systems with entropic bottlenecks, the parallel-replica dynamics method can be applied very
effectively [1].
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dynamics methods described here is recognizing that to obtain the right
sequence of state-to-state transitions, we need not evolve the vibrational dynam-
ics perfectly, as long as the relative probability of finding each of the possible
escape paths is preserved.

1.2. Transition State Theory

Transition state theory (TST) [5–9] is the formalism underpinning all of the
accelerated dynamics methods, directly or indirectly. In the TST approxima-
tion, the classical rate constant for escape from state A to some adjacent state
B is taken to be the equilibrium flux through the dividing surface between A
and B (Fig. 1). If there are no correlated dynamical events, the TST rate is the
exact rate constant for the system to move from state A to state B.

The power of TST comes from the fact that this flux is an equilibrium
property of the system. Thus, we can compute the TST rate without ever prop-
agating a trajectory. The appropriate ensemble average for the rate constant
for escape from A, kTST

A→, is

kTST
A→ = 〈|dx/dt | δ(x − q)〉A, (1)

where x ∈ r is the reaction coordinate and x = q the dividing surface bounding
state A. The angular brackets indicate the ratio of Boltzmann-weighted inte-
grals over 6N -dimensional phase space (configuration space r and momentum
space p). That is, for some property P(r,p),

〈P〉 =

∫∫
P(r,p)exp[−H (r,p)/kBT ] dr dp∫∫

exp[−H (r,p)/kBT ] dr dp
, (2)

A

B
Ea

Figure 1. A two-state system illustrating the definition of the transition state theory rate
constant as the outgoing flux through the dividing surface bounding state A.
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where kB is the Boltzmann constant and H (r,p) is the total energy of the
system, kinetic plus potential. The subscript A in Eq. (1) indicates the config-
uration space integrals are restricted to the space belonging to state A. If the
effective mass (m) of the reaction coordinate is constant over the dividing sur-
face, Eq. (1) reduces to a simpler ensemble average over configuration space
only [10],

kTST
A→ =

√
2kBT/πm 〈δ(x − q)〉A . (3)

The essence of this expression, and of TST, is that the Dirac delta function
picks out the probability of the system being at the dividing surface, relative to
everywhere else it can be in state A. Note that there is no dependence on the
nature of the final state B.

In a system with correlated events, not every dividing surface crossing cor-
responds to a reactive event, so that, in general, the TST rate is an upper bound
on the exact rate. For diffusive events in materials at moderate temperatures,
these correlated dynamical events typically do not cause a large change in the
rate constants, so TST is often an excellent approximation. This is a key point;
this behavior is markedly different than in some chemical systems, such as
molecular reactions in solution or the gas phase, where TST is just a starting
point and dynamical corrections can lower the rate significantly [11].

While in the traditional use of TST, rate constants are computed after
the dividing surface is specified, in the accelerated dynamics methods we
exploit the TST formalism to design approaches that do not require knowing in
advance where the dividing surfaces will be, or even what product states might
exist.

1.3. Harmonic Transition State Theory

If we have identified a saddle point on the potential energy surface for
the reaction pathway between A and B, we can use a further approximation
to TST. We assume that the potential energy near the basin minimum is well
described, out to displacements sampled thermally, with a second-order energy
expansion – i.e., that the vibrational modes are harmonic – and that the same is
true for the modes perpendicular to the reaction coordinate at the saddle point.
Under these conditions, the TST rate constant becomes simply

kHTST
A→B = ν0e−Ea/kBT , (4)

where

ν0 =

∏3N
i νmin

i∏3N−1
i νsad

i

. (5)
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Here Ea is the static barrier height, or activation energy (the difference in
energy between the saddle point and the minimum of state A (Fig. 1)), {νmin

i }
are the normal mode frequencies at the minimum of A, and {νsad

i } are the non-
imaginary normal mode frequencies at the saddle separating A from B. This
is often referred to as the Vineyard [12] equation. The analytic integration
of Eq. (1) over the whole phase space thus leaves a very simple Arrhenius
temperature dependence.2 To the extent that there are no recrossings and the
modes are truly harmonic, this is an exact expression for the rate. This har-
monic TST expression is employed in the temperature accelerated dynamics
method (without requiring calculation of the prefactor ν0).

1.4. Complex Infrequent Event Systems

The motivation for developing accelerated molecular dynamics methods
becomes particularly clear when we try to understand the dynamical evolution
of what we will term complex infrequent event systems. In these systems, we
simply cannot guess where the state-to-state evolution might lead. The under-
lying mechanisms may be too numerous, too complicated, and/or have an inter-
play whose consequences cannot be predicted by considering them individually.
In very simple systems we can raise the temperature to make diffusive transi-
tions occur on an MD-accessible time scale. However, as systems become more
complex, changing the temperature causes corresponding changes in the rel-
ative probability of competing mechanisms. Thus, this strategy will cause the
system to select a different sequence of state-to-state dynamics, ultimately lead-
ing to a completely different evolution of the system, and making it impossible
to address the questions that the simulation was attempting to answer.

Many, if not most, materials problems are characterized by such complex
infrequent events. We may want to know what happens on the time scale of
milliseconds, seconds or longer, while with MD we can barely reach one
microsecond. Running at higher T or trying to guess what the underlying
atomic processes are can mislead us about how the system really behaves.
Often for these systems, if we could get a glimpse of what happens at these
longer times, even if we could only afford to run a single trajectory for that
long, our understanding of the system would improve substantially. This, in
essence, is the primary motivation for the development of the methods
described here.

2Note that although the exponent in Eq. (4) depends only on the static barrier height Ea, in this HTST
approximation there is no assumption that trajectory passes exactly through the saddle point.
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1.5. Dividing Surfaces and Transition Detection

We have implied that the ridgetops between basins are the appropriate
dividing surfaces in these systems. For a system that obeys TST, these ridgetops
are the optimal dividing surfaces; recrossings will occur for any other choice of
dividing surface. A ridgetop can be defined in terms of steepest-descent paths
– it is the 3N–1-dimensional boundary surface that separates those points con-
nected by steepest descent paths to the minimum of one basin from those that
are connected to the minimum of an adjacent basin. This definition also leads
to a simple way to detect transitions as a simulation proceeds, a requirement
of parallel-replica dynamics and temperature accelerated dynamics. Intermit-
tently, the trajectory is interrupted and minimized through steepest descent.
If this minimization leads to a basin minimum that is distinguishable from the
minimum of the previous basin, a transition has occurred. An appealing feature
of this approach is that it requires virtually no knowledge of the type of tran-
sition that might occur. Often only a few steepest descent steps are required to
determine that no transition has occurred. While this is a fairly robust detec-
tion algorithm, and the one used for the simulations presented below, more
efficient approaches can be tailored to the system being studied.

2. Parallel-Replica Dynamics

The parallel-replica method [13] is the simplest and most accurate of the
accelerated dynamics techniques, with the only assumption being that the
infrequent events obey first-order kinetics (exponential decay); i.e., for any
time t >τcorr after entering a state, the probability distribution function for the
time of the next escape is given by

p(t) = ktot e−ktott , (6)

where ktot is the rate constant for escape from the state. For example, Eq. (6)
arises naturally for ergodic, chaotic exploration of an energy basin. Parallel-
replica allows for the parallelization of the state-to-state dynamics of such a
system on M processors. We sketch the derivation here for equal-speed proces-
sors. For a state in which the rate to escape is ktot, on M processors the effective
escape rate will be Mktot, as the state is being explored M times faster. Also, if
the time accumulated on one processor is t1, on the M processors a total time of
tsum = Mt1 will be accumulated. Thus, we find that

p(t1) dt1 = Mktot e−Mktott1 dt1 (7a)

p(t1) dt1 = ktot e−ktot tsum dtsum (7b)

p(t1) dt1 = p(tsum) dtsum (7c)
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and the probability to leave the state per unit time, expressed in tsum units, is the
same whether it is run on one or M processors. A variation on this derivation
shows that the M processors need not run at the same speed, allowing the
method to be used on a heterogeneous or distributed computer; see Ref. [13].

The algorithm is schematically shown in Fig. 2. Starting with an N -atom
system in a particular state (basin), the entire system is replicated on each of
M available parallel or distributed processors. After a short dephasing stage
during which each replica is evolved forward with independent noise for a time
�tdeph ≥ τcorr to eliminate correlations between replicas, each processor carries
out an independent constant-temperature MD trajectory for the entire N -atom
system, thus exploring phase space within the particular basin M times faster
than a single trajectory would. Whenever a transition is detected on any proces-
sor, all processors are alerted to stop. The simulation clock is advanced by the
accumulated trajectory time summed over all replicas, i.e., the total time τrxn

spent exploring phase space within the basin until the transition occurred.
The parallel-replica method also correctly accounts for correlated dynam-

ical events (i.e., there is no requirement that the system obeys TST), unlike
the other accelerated dynamics methods. This is accomplished by allowing
the trajectory that made the transition to continue on its processor for a further
amount of time �tcorr ≥ τcorr, during which recrossings or follow-on events
may occur. The simulation clock is then advanced by �tcorr, the final state
is replicated on all processors, and the whole process is repeated. Parallel-
replica dynamics then gives exact state-to-state dynamical evolution, because
the escape times obey the correct probability distribution, nothing about the
procedure corrupts the relative probabilities of the possible escape paths, and
the correlated dynamical events are properly accounted for.

A B C D A

Figure 2. Schematic illustration of the parallel-replica method (after Ref. [1]). The four steps,
described in the text, are (A) replication of the system into M copies, (B) dephasing of the repli-
cas, (C) evolution of independent trajectories until a transition is detected in any of the replicas,
and (D) brief continuation of the transitioning trajectory to allow for correlated events such as
recrossings or follow-on transitions to other states. The resulting configuration is then replicated,
beginning the process again.
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The efficiency of the method is limited by both the dephasing stage, which
does not advance the system clock, and the correlated event stage, during
which only one processor accumulates time. (This is illustrated schemati-
cally in Fig. 2, where dashed line trajectories advance the simulation clock but
dotted line trajectories do not.) Thus, the overall efficiency will be high when

τrxn/M � �tdeph +�tcorr. (8)

Some tricks can further reduce this requirement. For example, whenever
the system revisits a state, on all but one processor the interrupted trajectory
from the previous visit can be immediately restarted, eliminating the dephas-
ing stage. Also, the correlation stage (which only involves one processor) can
be overlapped with the subsequent dephasing stage for the new state on the
other processors, in the hope that there are no correlated crossings that lead to
a different state.

Figure 3 shows an example of a parallel-replica simulation; an Ag(111)
island-on-island structure decays over a period of 1 µs at T = 400 K. Many of
the transitions involve concerted mechanisms.

Parallel-replica dynamics has the advantage of being fairly simple to pro-
gram, with very few “knobs” to adjust – �tdeph and �tcorr, which can be
conservatively set at a few ps for most systems. As multiprocessing environ-
ments become more ubiquitous, with more processors within a node or even
on a chip, and loosely linked Beowulf clusters of such nodes, parallel-replica
dynamics will become an increasingly important simulation tool.

Recently, parallel-replica dynamics has been extended to driven systems,
such as systems with some externally applied strain rate. The requirement here
is that the drive rate is slow enough that at any given time the rates for the
processes in the system depend only on the instantaneous configuration of the
system.

3. Hyperdynamics

Hyperdynamics builds on the basic concept of importance sampling
[14, 15], extending it into the time domain. In the hyperdynamics approach
[16], the potential surface V (r) of the system is modified by adding to it a non-
negative bias potential �Vb(r). The dynamics of the system is then evolved
on this biased potential surface, V (r) + �Vb(r). A schematic illustration is
shown in Fig. 4. The derivation of the method requires that the system obeys
TST – that there are no correlated events. There are also important require-
ments on the form of the bias potential. It must be zero at all the dividing
surfaces, and the system must still obey TST for dynamics on the modified
potential surface. If such a bias potential can be constructed, a challenging
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t = 0.44 µs

t = 0.39 µs

t = 0.00 µs t = 0.15 µs t = 0.25 µs

t = 0.45 µs

t = 0.41 µs t = 0.42 µs

t = 1.00 µs

Figure 3. Snapshots from a parallel-replica simulation of an island on top of an island on the
Ag(111) surface at T = 400 K (after Ref. [1]). On a microsecond time scale, the upper island
gives up all its atoms to the lower island, filling vacancies and kink sites as it does so. This
simulation took 5 days to reach 1µs on 32 1 GHz Pentium III processors.

task in itself, we can substitute the modified potential V (r) + �Vb(r) into
Eq. (1) to find

kTST
A→ =

〈|vA| δ(x − q)〉Ab〈
eβ�Vb(r)

〉
Ab

, (9)

where β = 1/kBT and the state Ab is the same as state A but with the bias
potential �Vb applied. This leads to a very appealing result: a trajectory on
this modified surface, while relatively meaningless on vibrational time scales,
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B

A

C

Figure 4. Schematic illustration of the hyperdynamics method. A bias potential (�V (r)), is
added to the original potential (V (r), solid line). Provided that �V (r) meets certain conditions,
primarily that it be zero at the dividing surfaces between states, a trajectory on the biased
potential surface (V (r) + �V (r), dashed line) escapes more rapidly from each state without
corrupting the relative escape probabilities. The accelerated time is estimated as the simulation
proceeds.

evolves correctly from state to state at an accelerated pace. That is, the relative
rates of events leaving A are preserved:

kTST
Ab→B

kTST
Ab→C

=
kTST

A→B

kTST
A→C

. (10)

This is because these relative probabilities depend only on the numerator of
Eq. (9) which is unchanged by the introduction of �Vb since, by construction,
�Vb = 0 at the dividing surface.

Moreover, the accelerated time is easily estimated as the simulation
proceeds. For a regular MD trajectory, the time advances at each integration
step by �tMD, the MD time step (often on the order of 1 fs). In hyperdynam-
ics, the time advance at each step is �tMD multiplied by an instantaneous boost
factor, the inverse Boltzmann factor for the bias potential at that point, so that
the total time after n integration steps is

thyper =
n∑

j=1

�tMD e�V (r(t j ))/kBT. (11)

Time thus takes on a statistical nature, advancing monotonically but non-
linearly. In the long-time limit, it converges on the correct value for the
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accelerated time with vanishing relative error. The overall computational
speedup is then given by the average boost factor,

boost(hyperdynamics) = thyper/tMD =
〈
e�V (r)/kBT 〉

Ab
, (12)

divided by the extra computational cost of calculating the bias potential and
its forces. If all the visited states are equivalent (e.g., this is common in calcu-
lations to test or demonstrate a particular bias potential), Eq. (12) takes on the
meaning of a true ensemble average.

The rate at which the trajectory escapes from a state is enhanced because
the positive bias potential within the well lowers the effective barrier. Note,
however, that the shape of the bottom of the well after biasing is irrelevant; no
assumption of harmonicity is made.

Figure 5 illustrates an application of hyperdynamics for a two-dimensional,
periodic model potential using a Hessian-based bias potential [16]. The hop-
ping diffusion rate was compared against MD at high temperature, where
the two calculations agreed very well. At lower temperatures where the MD
calculations would be too costly, it is compared against the result computed

1/kBT

In
(D

)

4 6 8 10 12
�25

�20

�15

�10

�5

47

200

3435

8682

Figure 5. Arrhenius plot of the diffusion coefficients for a model potential, showing a compar-
ison of direct MD (©), hyperdynamics (•), and TST+ dynamical corrections (+). The symbols
are sized for clarity. The line is the full harmonic TST approximation, and is indistinguishable
from a least-square line through the TST points (not shown). Also shown are the boost factors,
relative to direct MD, for each hyperdynamics result. The boost increases dramatically as the
temperature is lowered (after Ref. [16]).



640 B.P. Uberuaga et al.

using TST plus dynamical corrections. As the temperature is lowered, the
effective boost gained by using hyperdynamics increased to the point that,
at kBT = 0.09, the boost factor was over 8500. See Ref. [16] for details.

The ideal bias potential should give a large boost factor, have low compu-
tational overhead (though more overhead is acceptable if the boost factor is
very high), and, to a good approximation, meet the requirements stated above.
This is very challenging, since we want, as much as possible, to avoid utiliz-
ing any prior knowledge of the dividing surfaces or the available escape paths.
To date, proposed bias potentials typically have either been computationally
intensive, have been tailored to very specific systems, have assumed localized
transitions, or have been limited to low-dimensional systems. But the poten-
tial boost factor available from hyperdynamics is tantalizing, so developing
bias potentials capable of treating realistic many-dimensional systems remains
a subject of ongoing research by several groups. See Ref. [1] for a detailed
discussion on bias potentials and results generated using various forms.

4. Temperature Accelerated Dynamics

In the temperature accelerated dynamics (TAD) method [17], the idea is to
speed up the transitions by increasing the temperature, while filtering out the
transitions that should not have occurred at the original temperature. This filter-
ing is critical, since without it the state-to-state dynamics will be inappropriately
guided by entropically favored higher-barrier transitions. The TAD method is
more approximate than the previous two methods, as it relies on harmonic
TST, but for many applications this additional approximation is acceptable, and
the TAD method often gives substantially more boost than hyperdynamics or
parallel-replica dynamics. Consistent with the accelerated dynamics concept,
the trajectory in TAD is allowed to wander on its own to find each escape path, so
thatnoprior information is required about the nature of the reactionmechanisms.

In each basin, the system is evolved at a high temperature Thigh (while the
temperature of interest is some lower temperature Tlow). Whenever a transition
out of the basin is detected, the saddle point for the transition is found. The
trajectory is then reflected back into the basin and continued. This “basin con-
strained molecular dynamics” (BCMD) procedure generates a list of escape
paths and attempted escape times for the high-temperature system. Assum-
ing that TST holds and that the system is chaotic and ergodic, the probability
distribution for the first-escape time for each mechanism is an exponential
(Eq. (6)). Because harmonic TST gives an Arrhenius dependence of the rate
on temperature (Eq. (4)), depending only on the static barrier height, we can
then extrapolate each escape time observed at Thigh to obtain a corresponding
escape time at Tlow that is drawn correctly from the exponential distribution at
Tlow. This extrapolation, which requires knowledge of the saddle point
energy, but not the preexponential factor, can be illustrated graphically in an
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Arrhenius-style plot (ln(1/t) vs. 1/T ), as shown in Fig. 6. The time for each
event seen at Thigh extrapolated to Tlow is then

tlow = thigh eEa(βlow−βhigh), (13)

1/T

ln
(1

/t)

1/Tlow1/Thigh

tim
e

tim
e

ln(1/tstop)
ln(1/t short)

low

*

In(νmin)

In(νmin)

T
high

T
low

Figure 6. Schematic illustration of the temperature accelerated dynamics method. Progress
of the high-temperature trajectory can be thought of as moving down the vertical time line at
1/Thigh. For each transition detected during the run, the trajectory is reflected back into the
basin, the saddle point is found, and the time of the transition (solid dot on left time line) is
transformed (arrow) into a time on the low-temperature time line. Plotted in this Arrhenius-like
form, this transformation is a simple extrapolation along a line whose slope is the negative of
the barrier height for the event. The dashed termination line connects the shortest-time transi-
tion recorded so far on the low temperature time line with the confidence-modified minimum
preexponential (ν�min = νmin/ln(1/δ)) on the y-axis. The intersection of this line with the high-
T time line gives the time (tstop, open circle) at which the trajectory can be terminated. With
confidence 1-δ, we can say that any transition observed after tstop could only extrapolate to a
shorter time on the low-T time line if it had a preexponential lower than νmin.
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where, again, β = 1/kBT . The event with the shortest time at low temperature
is the correct transition for escape from this basin.

Because the extrapolation can in general cause a reordering of the escape
times, a new shorter-time event may be discovered as the BCMD is contin-
ued at Thigh. If we make the additional assumption that there is a minimum
preexponential factor, νmin, which bounds from below all the preexponential
factors in the system, we can define a time at which the BCMD trajectory can
be stopped, knowing that the probability that any transition observed after that
time would replace the first transition at Tlow is less than δ. This “stop” time is
given by

thigh,stop ≡ ln(1/δ)

νmin

(
νmintlow,short

ln (1/δ)

)Tlow/Thigh

, (14)

where tlow,short is the shortest transition time at Tlow. Once this stop time is
reached, the system clock is advanced by tlow,short, the transition corresponding
to tlow,short is accepted, and the TAD procedure is started again in the new
basin.

The average boost in TAD can be dramatic when barriers are high and
Thigh/Tlow is large. However, any anharmonicity error at Thigh transfers to
Tlow; a rate that is twice the Vineyard harmonic rate due to anharmonicity at
Thigh will cause the transition times at Thigh for that pathway to be 50% shorter,
which in turn extrapolate to transition times that are 50% shorter at Tlow. If
the Vineyard approximation is perfect at Tlow, these events will occur at twice
the rate they should. This anharmonicity error can be controlled by choosing
a Thigh that is not too high.

As in the other methods, the boost is limited by the lowest barrier, although
this effect can be mitigated somewhat by treating repeated transitions in a
“synthetic” mode [17]. This is in essence a kinetic Monte Carlo treatment of
the low-barrier transitions, in which the rate is estimated accurately from the
observed transitions at Thigh, and the subsequent low-barrier escapes observed
during BCMD are excluded from the extrapolation analysis.

Temperature accelerated dynamics is particularly useful for simulating
vapor-deposited crystal growth, where the typical time scale can exceed min-
utes. Figure 7 shows an example of TAD applied to such a problem. Vapor
deposited growth of a Cu(100) surface was simulated at a deposition rate
of one monolayer per 15 s and a temperature T = 77 K, exactly matching
(except for the system size) the experimental conditions of Ref. [18]. Each
deposition event was simulated using direct MD for 2 ps, long enough for
the atom to collide with the surface and settle into a binding site. A TAD
simulation with Thigh = 550 K then propagated the system for the remaining
time until the next deposition event was required, on average 0.3 s later. The
overall boost factor was ∼107. A key feature of this simulation was that,
even at this low temperature, many events accepted during the growth process



Accelerated molecular dynamics methods 643

1 ML 2 ML

3 ML 4 ML

5 ML

Figure 7. Snapshots from a TAD simulation of the deposition of five monolayers (ML) of
Cu onto Cu(100) at 0.067 ML/s and T =77 K, matching the experimental conditions of Egelhoff
and Jacob [18]. Deposition of each new atom was performed using direct molecular dynamics
for 2 ps, while the intervening time (0.3 s on average for this 50 atom/layer simulation cell) was
simulated using the TAD method. The boost factor for this simulation was ∼107 over direct
MD (after Ref. [1]).

involved concerted mechanisms, such as the concerted sliding of an eight-atom
cluster [1].

This MD/TAD procedure for simulating film growth has been applied also
to Ag/Ag(100) at low temperatures [19] and Cu/Ag(100) [20]. Heteroepitaxial
systems are especially hard to treat with techniques such as kinetic Monte
Carlo because of the increased tendency for the system to go off lattice due



644 B.P. Uberuaga et al.

to mismatch strain, and because the rate table needs to be considerably larger
when neighboring atoms can have multiple types.

Recently, enhancements to TAD, beyond the “synthetic mode” mentioned
above, have been developed that can increase the efficiency of the simulation.
For systems that revisit states, the time required to accept an event can be
reduced for each revisit by taking advantage of the time accumulated in pre-
vious visits [21]. This procedure is exact; no assumptions beyond the ones
required by the original TAD method are needed. After many visits, the pro-
cedure converges. The minimum barrier for escape from that state (Emin) is
then known to within uncertainty δ. In this converged mode (ETAD), the
average time at Thigh required to accept an event no longer depends on δ, and
the average boost factor becomes simply

boost(ETAD) =
t low,short

thigh,stop
= exp

[
Emin

(
1

kBTlow
− 1

kBThigh

)]
(15)

for that state. The additional boost (when converged) compared to the original
TAD can be an order of magnitude or more.

For systems that seldom (or never) revisit the same state, it is still possible
to exploit this extra boost by running in ETAD mode with Emin supplied exter-
nally. One way of doing this is to combine TAD with the dimer method [22].
In this combined dimer-TAD approach, first proposed by Montalenti and Voter
[21], upon entering a new state, a number of dimer searches are used to find
the minimum barrier for escape, after which ETAD is employed to quickly
find a dynamically appropriate escape path. This exploits the power of the
dimer method to quickly find low-barrier pathways, while eliminating the dan-
ger associated with the possibility that it might miss important escape paths.
Although the dimer method might fail to find the lowest barrier correctly, this
is a much weaker demand on the dimer method than trying to find all rele-
vant barriers. In addition, the ETAD phase has some chance of correcting the
simulation during the BCMD if the dimer searches did not find Emin.

5. Outlook

As these accelerated dynamics methods become more widely used and
further developed (including the possible emergence of new methods), their
application to important problems in materials science will continue to grow.
We conclude this article by comparing and contrasting the three methods pre-
sented here, with some guidelines for deciding which method may be most
appropriate for a given problem. We point out some important limitations of
the methods, areas in which further development may significantly increase
their usefulness. Finally, we discuss the prospects for these methods in the
immediate future.
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The key feature of all of the accelerated dynamics methods is that they col-
lapse the waiting time between successive transitions from its natural time (τrxn )
to (at best) a small number of vibrational periods. Each method accomplishes
this in a different way. TAD exploits the enhanced rate at higher temperature,
hyperdynamics effectively lowers the barriers to escape by filling in the basin,
and parallel-replica dynamics spreads the work across many processors.

The choice of which accelerated dynamics method to apply to a problem
will typically depend on three factors. The first is the desired level of accu-
racy in following the exact dynamics of the system. As described previously,
parallel-replica is the most exact of the three methods; the only assumption is
that the kinetics are first order. Not even TST is assumed, as correlated dynami-
cal events are treated correctly in the method. This is not true with hyperdynam-
ics, which does rely upon the assumptions of TST, in particular the absence of
correlated events. Finally, temperature accelerated dynamics makes the further
assumptions inherent in the harmonic approximation to TST, and is thus the most
approximate of the three methods. If complete accuracy is the main goal of the
simulation, parallel-replica is the superior choice.

The second consideration is the potential gain in accessible time scales that
the accelerated dynamics method can achieve for the system. Typically, TAD
is the method of choice when considering this factor. While in all three meth-
ods the boost for escaping from each state will be limited by the smallest bar-
rier, if the barriers are high relative to the temperature of interest, TAD will
typically achieve the largest boost factor. In principle, hyperdynamics can also
achieve very significant boosts, but, in practice, existing bias potentials either
have a very simple form which generally provide limited boosts for complex
many-atom systems, or more sophisticated (e.g., Hessian-based) forms whose
overhead reduces the boosts actually attainable. It may be possible, using prior
knowledge about particular systems, to construct a computationally inexpensive
bias potential which simultaneously offers large boosts, in which case hyper-
dynamics could be competitive with TAD. Finally, parallel-replica dynamics
usually offers the smallest boost given the typical access to parallel computing
today (e.g., tens of processors or fewer per user for continuous use), since the
maximum possible boost is exactly the number of processors. For some systems,
the overhead of, for example, finding saddle points in TAD may be so great that
parallel-replica can give more overall boost. However, in general, the price of
the increased accuracy of parallel-replica dynamics will be shorter achievable
time scales.

It should be emphasized that the limitations of parallel-replica in terms of
accessible time scales are not inherent in the method, but rather are a conse-
quence of the currently limited computing power which is available. As mas-
sively parallel processing becomes commonplace for individual users, and any
number can be used in the study of a given problem, parallel-replica should be-
come just as efficient as the other methods. If enough processors are available
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so that the amount of simulation time each processor has to do for each tran-
sition is on the order of ps, parallel-replica will be just as efficient as TAD or
hyperdynamics. This analysis may be complicated by issues of communica-
tion between processors, but the future of parallel-replica is very promising.

The last main factor determining which method is best suited to a prob-
lem is the shape of the potential energy surface (PES). Both TAD and hyper-
dynamics require that the PES be relatively smooth. In the case of TAD, this is
because saddle points must be found and standard techniques for finding them
often perform poorly for rough landscapes. The same is true for the hyper-
dynamics bias potentials that require information about the shape of the PES.
Parallel-replica, however, only requires a method for detecting transitions. No
further analysis of the potential energy surface is needed. Thus, if the PES
describing the system of interest is relatively rough, parallel-replica dynamics
may be the only method that can be applied effectively.

The temperature dependence of the boost in hyperdynamics and TAD gives
rise to an interesting prediction about their power and utility in the future. Some-
times, even accelerating the dynamics may not make the activated processes
occur frequently enough to study a particular process. A common trick is to raise
the temperature just enough that at least some events will occur in the available
computer time, hoping, of course, that the behavior of interest is still repre-
sentative of the lower-T system. When faster computers become available, the
same system can be studied at a lower, more desirable, temperature. This in turn
increases the boost factor (e.g., see Eqs. (12) and (14)), so that, effectively, there
is a superlinear increase in the power of accelerated dynamics with increas-
ing computer speed. Thus, the accelerated dynamics approaches will become
increasingly more powerful in future years simply because computers keep
getting faster.

A particularly appealing prospect is that of accelerated electronic structure-
based molecular dynamics simulations (e.g., by combining density functional
theory (DFT) or quantum chemistry with the methods discussed here), since
accessible electronic structure time scales are even shorter, currently on the
order of ps. However, because of the additional expense involved in these tech-
niques, the converse of the argument given in the previous paragraph
indicates that, for example, accelerated DFT dynamics simulations will not
give much useful boost on current computers (i.e., using DFT to calculate the
forces is like having a very slow computer). DFT hyperdynamics may be a
powerful tool in 5–10 years, when breakeven (boost = overhead) is reached,
and this could happen sooner with the development of less expensive bias
potentials. TAD is probably close to being viable for combination with DFT,
while parallel-replica dynamics and dimer-TAD could probably be used on
today’s computers for electronic structure studies on some systems.

Currently, these methods are very efficient when applied to systems in which
the barriers are much higher than the temperature of interest. This is often true
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for systems such as ordered solids, but there are many important systems that
do not so cleanly fall into this class, a prime example being glasses. Such sys-
tems are characterized by either a continuum of barrier heights, or a set of low
barriers that describe uninteresting events, like conformational changes in a
molecule. Low barriers typically degrade the boost of all of the accelerated
dynamics methods, as well as the efficiency of standard kinetic Monte Carlo.
However, even these systems will be amenable to study through accelerated
dynamics methods as progress is made on this low-barrier problem.

A final note should be made about the computational scaling of these meth-
ods with system size. While the exact scaling depends on the type of system
and many aspects of the implementation, a few general points can be made. In
the case of TAD, if the work of finding saddles and detecting transitions can
be localized, it can be shown that the scaling goes as N2−Tlow/Thigh [21] for the
simple case of a system that has been enlarged by replication. This is improved
greatly with ETAD, which scales as O(N ), the same as regular MD. Real sys-
tems are more complicated and, typically, lower barrier processes will arise as
the system size is increased. Thus, even hyperdynamics with a bias potential
requiring no overhead might scale worse than N .

The accelerated dynamics methods, as a whole, are still in their infancy.
Even so, they are currently powerful enough to study a wide range of materials
problems that were previously intractable. As these methods continue to mature,
their applicability, and the physical insights gained by their use, can be expected
to grow.
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