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MODELING COVALENT BOND
WITH INTERATOMIC POTENTIALS

João F. Justo
Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil

Atoms, the elementary carriers of chemical identity, interact strongly with
each other to form solids. It is interesting that those interactions could be
directly mapped to the electronic and structural properties of the resulting
materials. This connection between microscopic and macroscopic worlds is
appealing, and suggests that a theoretical atomistic model could help to model
and build materials with predetermined properties. Atomistic simulations rep-
resent one of the tools that can bridge those two worlds, accessing to infor-
mation on the microscopic mechanisms which, in many cases, could not be
sampled out by experiments.

One of the most important elements in an atomistic simulation is the model
describing the interatomic interactions. In principle, such model should take
into account all the particles (electrons and nuclei) of the system. Quantum
mechanical (or ab initio) methods provide a precise description of those
interactions, but they are computationally prohibitive. As a result, simula-
tions would be restricted to systems involving only up to a thousand (or a few
thousand) atoms, which is not enough to capture many important atomistic
mechanisms. Some approximation, leading to less expensive models, should
be implemented. A radical approach is to describe the interactions by classical
potentials, in which the electronic effects are somehow integrated out, being
taken into account only implicitly. The gain in computational efficiency comes
with a price: a poorer description of the interactions.

Ab initio methods will become increasingly important in materials science
over the next decade. Even using the fastest computers, those methods will
continue being computationally expensive. Therefore, there is a demand for less
expensive models to explore a number of important phenomena, to provide a
qualitative view, scan for trends or insights on atomistic events, which could
be later refined using ab initio methods. Developing an interatomic potential
involves a combination of intuitive thinking, which comes out from our
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knowledge on the nature of the interatomic bonding, and theoretical input.
However, there is no theory which would directly provide the functional form
for an interatomic potential. As a result, depending on the bonding type, con-
siderably distinct approaches have been devised to describe interatomic interac-
tions [1, 2]. In any case, the functional form should have a physical motivation
and enough flexibility, in terms of fitting parameters, to capture the essential as-
pects underlying the interatomic interactions. The next sections discuss the spe-
cific case of modeling the covalent bonding by interatomic potentials, and the
elements which should be present to properly describe such interactions.

1. Pair Potentials

The cohesive energy (Ec) is the relevant property which quantifies cohesion
in a solid. It is given by Ec(Rn, rm), where Rn and rm represent the degrees
of freedom of the n nuclei and m electrons, respectively. While Ec could be
computed by solving the quantum mechanical Schrödinger equation for the
electrons of the system, one should inquire what kind of approximation could
be performed to describe Ec with less expensive methods. One strategy is to
average the electronic effects out, but still keeping the electronic degrees of
freedom explicitly. One of these approaches, called tight-binding method, pro-
vides a realistic description of bonding in solids. However, those models are
still computationally too expensive, although simulations with a few thousand
atoms could be performed. An extreme approach is to remove all the electronic
degrees of freedom, and Ec would be given by Ec(Rn, rm) ≈ Ec(Rn). In this
last case, the electronic effects would be implicitly present in the functional
form.

Several interatomic potentials for covalent bonding have been developed
over the years. Only for silicon, which is considered the prototypical covalent
material, there are more than thirty models which have been extensively used
and tested [3]. This and the following sections discuss the relevant elements of
an interatomic potential to describe a typical covalent material. The discussion
focuses on the two most important models which have been developed for
silicon [4, 5].

Cohesive energy could be determined by the atomic arrangement, in terms
of a many-body expansion [6]

Ec =
n∑
i

V1(Ri)+
n∑

i, j

V2(Ri ,R j )+
n∑

i, j,k

V3(Ri ,R j ,Rk)+ · · · , (1)

in which the sums are over all the n atoms of the system. In principle, Ec could
be determined by an infinite many-body expansion, but the computational
cost scales with nl , where l is the order in which the expansion is truncated.
The one-body terms (V1) are generally neglected, but the two-body (V2) and
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three-body (V3) terms carry most of the relevant effects underlying bonding.
While the V2 and V3 have a simple physical interpretation, intuition for higher
order terms is not so straightforward, and most models have avoided such
terms.

Could the expansion (1) be truncated in a two-body expansion and still cap-
ture the essential properties of covalent bonding? For a long period, pair poten-
tials were used to investigate materials properties, and revealed a number of
fundamental atomistic processes. Models including higher order expansions,
later developed, provided results which were qualitatively consistent with those
early investigations. This sets light on the discussion of pair potentials. Although
they provide an unrealistic description of covalent bonding, they still capture
some of the essential aspects of cohesion.

A typical V2 function has a strong repulsive interaction at short interatomic
separations, changing to an attractive interaction at intermediate separations
which goes smoothly to zero at longer distances. The V2 interaction, between
atoms i and j , can be written as combination of a repulsive (VR) plus an
attractive (VA) interaction in terms of the interatomic distance, ri j = |Ri −R j |.
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Figure 1. The two-body interatomic potential. The figure presents V2 for two models: the
Lennard–Jones (full line) and the Stillinger–Weber (dashed line) potentials. The functions are
plotted normalized in terms of the minimum in energy and equilibrium separation (a).
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The Lennard–Jones potential, shown in Fig. 1, is an example of a pair potential
used to model cohesion in a solid

V2(r) = VR(r)+ VA(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]
, (2)

where ε and σ are free parameters which can be fitted to properties of the mate-
rial. The equilibrium interatomic distance (a) is related to the crystalline lattice
parameter, while the curvature of the potential near a is directly correlated to
the macroscopic bulk modulus.

The functional form in Eq. (2) is long ranged, and the computational cost
scales with n2. On the other hand, this cost could scale linearly with n if a
cut-off function fc(r) were used. This fc(r) function should not change sub-
stantially the interaction for the relevant region of bonding, near the minimum
of V2(r), and should vanish at a certain interatomic distance Rc, defined as the
cut-off of the interaction. Therefore, the two-body interaction is described by
an effective potential V eff

2 (r) = V2(r) fc(r).
The functional form of the Lennard–Jones potential can provide a realis-

tic description of noble gases in condensed phases. Although pair potentials
capture some essential aspects of bonding, there are still some important ele-
ments missing in order to properly describe covalent bonding. If interatomic
interactions were described only by pair potentials, there would be a gain
in cohesive energy if an atom increased its coordination (number of nearest
neighbors). Since there is no energy penalty for increasing coordination, pair
potentials will always lead to closed packed crystalline structures. However,
atoms in covalent materials sit in much more open crystalline structures, such
as hexagonal or the diamond cubic. Pair potentials alone cannot describe the
covalent bonding, and many-body effects must be introduced in the description
of cohesion.

2. Beyond Pair Potentials

The many-body effects [6] could be introduced in Ec by several procedures:
inside the two-body expansion (pair functionals), by an explicit many-body
expansion (cluster potentials), or a combination of both (cluster functionals).
Models which have been successfully developed to describe covalent systems
fit into one of these categories. The Stillinger–Weber [4] and the Tersoff [5]
models can be classified as a cluster potential and as a cluster functional,
respectively.

In a description using only pair potentials, as given by Eq. (2), the cohesive
energy of an individual bond inside a crystal is constant for any atomic coor-
dination. However, this departs from a realistic description. Figure 2(a) shows
the cohesive energy per bond as a function of atomic coordination for several
crystalline structures of silicon. There is a weakening of the bond strength
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Figure 2. (a) Cohesive energy per bond (Ec/bond) as a function of atomic coordination (Z).
Cohesive energies are taken from ab initio calculations (diamond), and the full and dashed
lines represent fitting with a Z−1/2 and exp(−βZ2), respectively. (b) Bond order term b(Z) as
a function atomic coordination taken from ab initio calculations (diamond), and fitted to Z−1/2

(full line) and exp(−βZ2) (dashed line).

with increasing coordination, a behavior that is observed in any material. How-
ever, bond strength weakens very fast with coordination in molecular crystals
and very slow in most metals. That is why molecular solids favor very low
coordinations and metals favor high coordinations. Covalent solids fall
between those two extremes.

Cohesive energy can be written as a sum over all the individual bonds Vij

Ec =
1

2

∑
i, j

Vi j =
1

2

∑
i, j

[
VR(ri j )+ bi j VA(ri j )

]
, (3)

where the parameter bi j controls the strength of the attractive interaction in
Vij . The attractive interaction between two atoms, i.e., the interaction control-
ling cohesion, is a function of the local environment. This dependence could
be translated into a physical quantity called local coordination (Z). As the
coordination increases, valence electrons should be shared with more neigh-
bors, so the individual bond between an atom and its neighbors weakens.
Using chemistry arguments, it can be shown that the bond order term (bi j ),
can be given as a function of the local coordination (Zi ) in atom i by

bi j (Zi) = η Z−1/2
i , (4)

where η is a fitting parameter. Figure 2(b) shows the bond order term as a
function of coordination for several crystalline structures. The Z−1/2 function
is a good approximation for high coordinations, but fails for low coordinations.
It has been recently shown [7] that an exponential behavior for bi j would be
more adequate. The introduction of the bond order term in V2 considerably
improves the description of cohesion in a covalent material. With this new
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term, the equilibrium distance and strength of a bond is also determined by the
local coordination at each atomic center.

Even using a bond order term, covalent bonding still requires a functional
form with some angular dependence to stabilize the open crystalline struc-
tures. Angular functions could be introduced inside the bond order term b(Z),
as developed by Tersoff [5], which becomes b(Z , θ), where θ represents the
angles between adjacent bonds around each atom of the system. Another pro-
cedure is to use an explicit three-body expansion [4]. In terms of energetics,
there is a parallel between two-body and three-body potentials. In the former
case, there is an energy penalty for interatomic distances differing from a cer-
tain equilibrium value. In the later case, there is a penalty for angles differing
from a certain equilibrium value θ0.

The three-body potentials are generally positive, being null at an equilib-
rium angle. The interaction for the (i, j, k) set of atoms is described by

V3(ri j , rik, r jk) = h(ri j )h(rik)g(θi j k), (5)

where the radial functions h(r) goes monotonically to zero with increasing
the interatomic distance. Figure 3 shows the behavior of typical angular
functions g(θ). The Stillinger–Weber model used a three-body expansion,
and the V3 potential was developed as a penalty function with a minimum
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Figure 3. Angular function g(θ) from the Stillinger–Weber (full line) and Tersoff (dashed
line) models.
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at the tetrahedral angle (109.47◦). On the other hand, the Tersoff potential
introduced an angular function inside the bond order term, and the minimum
of the angular term was a fitting parameter.

3. Models

Developing an interatomic potential involves several elements. The first
one is the functional form, which should capture all the properties of covalent
bonding. The functions should have enough flexibility, in terms of number of
free parameters, to allow a description of a wide set of the materials properties.
The second element is the fitting procedure used to find the set of free param-
eters that better describes a predetermined database. The database comprises a
set of crystalline properties (such as cohesive energy, lattice parameter, elastic
constants) and other specific properties (such as the formation energy of point
defects) obtained from experiments or ab initio calculations. Additionally, the
interatomic potential should be transferable, i.e., it should provide a realistic
description of relevant configurations away from the database.

Two interatomic potentials [4, 5] have prevailed over the others in studies
of covalent materials. The Tersoff model is described by a two-body expansion,
including a bond order term

Ec =
1

2

∑
i=/ j

Vi j , (6)

Vij = fc(rij )
[

f R(rij )+ bij f A(ri j )
]
, (7)

where fR(ri j ) and f A(ri j ) are respectively, the repulsive and attractive terms
given by

fR(r) = A exp(−λ1r) and f A(r) =−B exp(−λ2r). (8)

The fc(r) is a cut-off function which is one for the relevant region of bonding
r < S, going smoothly to zero in the range S < r < R. The R and S, which
control the range of interactions, are fitting parameters.

The bij is the bond order term which is given by

bi j =
(

1+ βnζ n
i j

)1/2n
, (9)

ζi j =
∑
k=/ i, j

g(θi j k) exp
[
α3(ri j − rik)

3
]
, (10)

g(θ) = 1+ c2

d2
− c2

d2 + (h − cos θ)2
, (11)

where θij k is the angle between i j and ik bonds.
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The Tersoff potential was fitted to several silicon polytypes, being extended
to other covalent systems, including multi-component materials. The Brenner
potential [8], a model which resembles the Tersoff potential, is widely used to
study hydrocarbon systems.

The Stillinger–Weber potential is the most used model for covalent
materials. It was developed as a three-body expansion

E =
∑
i, j

V2(ri j )+
∑
i, j,k

V3(ri j , rik , r jk). (12)

The two-body term V2(r) is given by

V2(r) = A
[

B

rρ
− 1

]
fc(r), (13)

where the cut-off function fc(r) is given by

fc(r) = exp
[
µ/(r − R)

]
, (14)

if r < R and null otherwise.
The three-body potential V3 is given by:

V3(ri j , rik) = h(ri j )h(rik)g(θi j k), (15)

h(r) = exp
[
γ /(r − R)

]
, (16)

g(θ) = (cos θ + 1/3)2. (17)

This model was fitted to properties of the diamond cubic structure and local
order of liquid silicon.

Other models have been developed to describe covalent materials. Those
models have used different approaches, such as functional forms with up to 50
parameters and extensive database. Some of those models have been compared
with each other, specially in the case of silicon [3]. Such comparisons revealed
that no interatomic potential is suitable for all situations, such that there is still
space for further developments. Recently, a new model for covalent materi-
als was developed [7] and included the features of both the Tersoff and the
Stillinger–Weber models. That model included explicitly bond order terms in
the two-body and three-body interactions, which allowed a better description
of covalent bonding as compared to previous models.

4. Perspectives

Interatomic potentials will continue playing an important role in atomistic
simulations. Although potentials have been successfully applied to investi-
gate covalent materials, they still face several challenges. As new models are
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developed, theoretical input will increasingly prevail over empirical input. So
far, the physical properties of bonding have been introduced by trial and error.
Attempts to improve models have been in the direction of trying new func-
tional forms, going to higher order expansions or increasing the number of
fitting parameters. This will give place to more sophisticated approaches, in
which the functional forms could be directly extracted from theory.

Interatomic potentials also face the challenge to describe materials with
mixed bonding character (metallic, covalent, and ionic altogether). The Tersoff
potential, for example, has been extended to systems with some ionic charac-
ter, but still with prevailing covalent character. That model would not work for
materials with stronger ionic character, requiring at least the introduction of
a long-ranged Coulomb interaction term. Finally, even if sophisticated inter-
atomic potentials are developed, one should keep in mind that every model has
its limited applicability and should always be used with caution.
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