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Ionic materials are present in many key technological applications of the
modern era, from solid state batteries and fuel cells, nuclear waste immobiliza
tion, through to industrial heterogeneous catalysis, such as that found in auto-
motive exhaust systems. With the boundless possibilities for their utilization,
it is natural that there has been a long history of computer simulation of their
structure and properties in order to understand the materials science of these
systems at the atomic level.

The classification of materials into different types is, of course, an arbi-
trary and subjective decision. However, when a binary compound is com-
posed of two elements with very different electronegativities, as is the case for
oxides and halides in particular, then it is convenient to regard it as being
an ionic solid. The implication is that, as a result of charge transfer from one
element to the other, the dominant binding force between particles is the
Coulombic attraction between opposite charges. Such materials tend to be
characterized by close-packed, dense structures that show no strong direction-
ality in the bonding.

Typically, most ionic materials possess a large band gap and are therefore
insulating. As a consequence, the notion that the solid is composed of spher-
ical ions whose interactions can be represented by simple distance-dependent
functional forms is quite a reasonable one, since overtly quantum mechani-
cal effects are lesser than in materials where covalent bonding occurs. Thus
it is possible to develop force fields that are specific for ionic materials, and
this approach can be surprisingly successful considering the simplicity of the
interatomic potential model.

When considering how to construct a force field for ionic materials, the
starting point, as is the case for all types of system, is to assume that the total
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energy, Utot, can be decomposed into interactions between different numbers
of atoms:
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1
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Here, Uij is the energy of interaction between a pair of atoms, i and j , or
so-called two-body interaction energy; Uijk is the extra interaction that arises
(beyond the sum of the three two-body energy components for the pairs i − j,
j − k, and i − k) when a triad of atoms is considered, and so forth for higher
order terms. Note that the inverse factorial prefactor is required to avoid double
counting of interactions between particles.

In principle, the above decomposition is exact if carried out to terms of
high enough order. However, in practice it is necessary to truncate the expan-
sion at some point. For many ionic materials it is often sufficient to only in-
clude the two-body term, though the extensions beyond this will be discussed
later.

Imagining an ionic solid as being composed of cations and anions whose
electron densities are frozen, which represents the simplest possible case, the
physical interactions present can be intuitively understood. There will obvi-
ously be a Coulombic attraction between ions of opposite charge, with a corre-
sponding repulsive force between those of like nature. Because ions are
arranged such that the closest neighbours are of opposite sign, this gives rise
to a strong net attractive energy that will tend to contract the solid in order
to lower the energy. In order that an equilibrium structure is obtained there must
be a counterbalancing repulsive force. This arises from the overlap of the elec-
tron densities of two ions, regardless of the sign of their charge, and has its origin
in the Pauli repulsion between electrons. Hence, we can write the breakdown
of the two-body energy in general terms as:

Uij = U Coulomb
i j +U repulsive

i j

While real spherical ions will have a radial electron density distribution, it
is convenient to treat the ions as point charges – i.e., as though all the electron
density is situated at the nucleus. Within this approximation, the electrostatic
interaction of two charged particles is just given by Coulomb’s law;

U Coulomb
i j =

qiq j

4πε0ri j

or, if written in atomic units, as will subsequently be done, we can drop the
constant factor of 4πε0:

U Coulomb
i j =

qi q j

ri j
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The error in the electrostatic energy arising from the point charge approx-
imation is usually subsumed into the repulsive energy contribution, since this
latter term is usually derived by a fitting procedure, rather than from direct
theoretical considerations.

1. Calculating the Electrostatic Energy

Not only is the electrostatic energy the dominant contribution to the
total value, but it turns out that it is actually the most difficult to evaluate.
While it is easy to write down that the electrostatic energy is the sum over all
pairwise interactions, including all periodic images of the unit cell, the com-
plication arises because the sum must be truncated for actual computation.
Unfortunately, the summation is an example of a conditionally convergent
series, i.e., the value of the sum depends on how the truncation is made. The
reason for this can be understood by considering the interactions of a single ion
with all other ions within a given radius, r . The convergence of the energy of
interaction, Ur

tot, is given by the number of interactions, Nr , multiplied by the
magnitude of the interaction, Ur :

Ur
tot =

∑
r

Nr Ur

As r increases, the number of interactions rises in proportion to the surface
area of the cut-off sphere:

Nr ∝ 4πr2.

However, the interaction itself only decreases as the inverse power of r ,
as has been shown previously. Consequently, the magnitude of interaction
potentially increases as the cut-off radius is extended. The fact that the magni-
tude converges in practice relies on the fact that there is cancelation between
interactions with cations and anions.

It turns out that the electrostatic energy of a system actually depends on
the macroscopic state of a crystal due to the long-ranged effect of Coulomb
fields. In other words, it is not purely a property of the bulk crystal, but also
depends, in general, on the nature of the surfaces and of the crystal morphol-
ogy [3]. To make it feasible to define an electrostatic energy that is useful for
the simulation of ionic materials, it is conventional to impose two conditions
on the Coulomb summation:

1. The sum of the charges within the system must be equal to zero:∑
i

qi = 0



482 J.D. Gale

2. The total dipole moment of the system in all directions must also be equal
to zero:

µx = µy = µz = 0

If these conditions are satisfied, the electrostatic energy will always converge
to the same value as the cut-off radius is incremented.

It is also possible to define the electrostatic energy when the dipole
moments along the three Cartesian axes differ from zero. This Coulomb
energy is related to the value obtained when the dipole moment is zero, U 0,
according to the following expression;

U = U 0 + 2π

3V

(
µ2

x + µ2
y + µ2

z

)
where V is the volume of the unit cell. Considering the expression for the
dipole moment in a given direction, α;

µα =
∑

i

qiriα

where riα is the position of the i th ion projected on to this axis, then there
is a complication. Because there are multiple images of the same ion, due to
the presence of periodic boundary conditions, the dipole contribution of any
given ion is an ambiguous quantity. The only way to determine the true dipole
moment is to perform the sum over all ions within the entire crystal, which
includes those ions at the surface. This is the origin of the electrostatic energy
being a macroscopic property of the system.

While it has been stated that the electrostatic energy is convergent if the
above conditions are obeyed, it is not obvious how to achieve this in practice
for a general crystal structure. Various methods have been proposed, the most
reknown of which is that of Evjen who constructed charge neutral shells of
ions about each interacting particle. However, this is more difficult to automate
for a computational implementation and is best for high symmetry structures.

Apart from the need to converge to a defined electrostatic energy, there is
also the issue of how rapidly the sum converges, since it is required that the
calculation be fast for numerical evaluation. By far the dominant approach to
evaluating the electrostatic energy is through the use of the summation method
due to Ewald which aims to accelerate the convergence by partially transform-
ing the expression into reciprocal space. While the details of the derivation are
beyond the scope of this text, and can be found elsewhere [2, 9], the concepts
behind the approach and the final result will be given below.

In Ewald’s approach, a Gaussian charge distribution of equal magnitude,
but opposite sign, is placed at the position of every ion in the crystal.
Because the charges cancel, all but for the contribution from the differing
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shape of the distribution, the resulting electrostatic interaction between ions
is now rapidly convergent when summed out in real space and converges to
the energy U real. In order to recover the original electrostatic energy it is then
necessary to compute two further terms. Firstly, the interaction of the Gaus-
sian charge distributions with each other must be subtracted. Because of the
smooth nature of the electrostatic potential arising from such a distribution,
it is possible to efficiently evaluate this term, U recip, by expanding the charge
density in planewaves with the periodicity of the reciprocal lattice. Again, the
energy contribution is rapidly convergent with respect to the cut-off radius
within reciprocal space. Finally, there is the self-energy, U self, that arises from
the interaction of the Gaussian with itself.

Mathematically, the Ewald sum is derived by a Laplace transform of the
Coulomb energy and the final expressions are given below;

U Coulomb = U real +U recip +U self

U real =
1

2
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where R denotes a real space lattice vector, G represents a reciprocal lattice
vector and η is a parameter that determines the width of the Gaussian charge
distribution. Note that the summation over reciprocal lattice vectors excludes
the case when G = 0.

The key to rapid convergence of the Ewald sum is to choose the optimal
value of η. If the value is small, then the Gaussians are narrow and so the real
space expression converges quickly, while the reciprocal space sum requires a
more extensive summation due to the higher degree of curvature of the charge
density. Choosing a large value of η obviously leads to the inverse situation.
One approach to choosing the convergence parameter is to derive an expres-
sion for the total number of terms to be evaluated in real and reciprocal space
for a given accuracy and then to find the stationary point where this quantity
is at a minimum. The choice of ηopt is then given by;

ηopt =

(
Nπ3

V

)1
3

where N is the number of particles within the unit cell. If the target
accuracy, A, is represented by the given fractional degree of convergence (e.g.,
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A = 0.001 would imply that the energy is converged to within 0.1%), then the
cut-off radii in real and reciprocal space are given as follows:

rmax
opt =

(−ln A

η

)1
2

Gmax
opt = 2(−η ln A)

1
2

Before leaving the evaluation of the electrostatic energy, it is important to
comment on other dimensionalities than three-dimensional (3-D) periodic
boundary conditions. There is also an analogous approach involving a partial
reciprocal space transformation in two dimensions, due to Parry, which can be
employed for slab or surface calculations [6]. For the 1-D case of a polymer,
the Coulomb sum is now absolutely convergent for a charge neutral system.
However, it is still beneficial to use methods that accelerate the convergence,
though there is less concensus as to the most efficient technique.

2. Non-electrostatic Contributions to the Energy

While the electrostatic energy often accounts for the majority of the bind-
ing, the non-Coulombic contributions are equally critical since they determine
the position and shape of the energy minimum. As previously mentioned,
there must always be a short-ranged repulsive force between ions to counter
the Coulomb attraction and therefore prevent the collapse of the solid. Most
work has followed the pioneering work in the field, as embodied in the Born–
Meyer and Born–Lande equations for the lattice energy, by utilizing either an
exponential or inverse power-law repulsive term. This gives rise to two widely
employed functional forms, namely the Buckingham potential;

U short−ranged
i j = Aij exp

(
− ri j

ρi j

)
− Cij

r6
i j

and that due to Lennard–Jones:

U short−ranged
i j =

Bij

rm
i j

− Cij

rn
i j

For the Lennard–Jones potential, the exponents m and n are typically 9–12
and 6, respectively. This latter potential can also be recast in many different
forms by rewriting in terms of the well-depth, ε, and either the distance at
which the potential intercepts the U repulsive

i j = 0 axis, r0, or the position of the
minimum, req. Both the Buckingham and Lennard–Jones potentials have the
same common features – a short-ranged repulsive term and a slightly longer-
ranged attractive term. The latter contribution, often referred to as the C6 term,
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arises as the leading term in the expansion of the dispersion energy between
two non-overlapping charge densities.

When choosing between the use of Buckingham and Lennard–Jones
potentials, there are arguments for and against both. Physically, the expo-
nential form of the Buckingham potential should be more realistic because
electron densities of ions decay with this shape and so it would seem natu-
ral that the repulsion follows the magnitude of the interacting ion densities, at
least for weak overlap. However, in the limit of ri j → 0 the repulsive Bucking-
ham potential tends to Aij , i.e., a constant value that is unphysically low for
nuclear fusion! Worse still, if the coefficient Cij is non-zero, then the potential,
while initially repulsive, goes through a maximum and then tends to −∞ –
a result that is physically absurd. In contrast, the Lennard-Jones potential
behaves sensibly and tends to+∞ as long as m > n. While the false minimum
of the Buckingham potential is not usually a problem for energy minimization
studies, it can be an issue in molecular dynamics where there is a finite proba-
bility of the system gaining sufficient kinetic energy to overcome the repulsive
barrier.

There is a further solution to the problems with the Buckingham potential
at small distances. The problems arise due to the simple power-law expression
for the dispersion energy. However, this is also incorrect at short-range since
the electron densities begin to overlap leading to a reduction of the dispersion
contribution. This can be accounted for by explicitly damping the C6 term as
the distance tends to zero, and the most widely used approach for doing this is
to adopt the form proposed by Tang and Toennies:

U C6
i j =−

[
1−

{
6∑

k=0

(
bri j

)k

k!

}
exp

(−bri j
)] Cij

r6
i j

Occasionally other short-ranged, two-body potentials are choosen, such as
the Morse or a harmonic potential. However, these are normally selected when
acting between two atoms that are bonded. In this situation, the potential is
usually Coulomb-subtracted too, in order that the parameters can be directly
equated with the bond length and curvature.

All the above short-ranged potentials are pairwise in form. However, there
are instances where it is useful to include higher order contributions. For
example, in the case of semi-ionic materials, such as silicates, where there
is a need to reproduce a tetrahedral local coordination geometry, it is common
to include three-body terms that act as a constraint on an angle:

Uijk =
1

2
k3

(
θi j k − θ0

i j k

)2

There are also many variants on this, such as including higher powers of
the deviation of the angle from the equilibrium value and the addition of an
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exponential dependence on the bond lengths so that the potential becomes
smooth and continuous with respect to coordination number changes. For sys-
tems containing particularly polarizable ions, there is also the possibility of
including the three-body contribution to the dispersion energy, as embodied in
the Axilrod–Teller potential.

As with all materials, it is necessary to select the most approriate force field
functional form based on the physical interactions that are likely to dominate in
an ionic material. While this will often consist of just the electrostatic term and
a two-body short-ranged contribution for dense close-packed materials, it may
be necessary to contemplate adding further terms as the degree of covalency
and structural complexity increases.

3. Ion Polarization

Up to this point we have considered ions to have a frozen spherical electron
density that may be represented by a point charge. While this is a reasonable
representation of many cations, it is not as accurate a description for anions
which tend to be much more polarizable. This can be readily appreciated for
the oxide ion, O2− in particular. In this case, the first electron affinity of oxy-
gen is favourable, while the second electron affinity is endothermic due to
the Coulomb repulsion between electrons. Consequently, the second electron
is only bound by the electrostatic potential due to the surrounding cations,
and therefore the distribution of this electron will be strongly perturbed by the
local environment. It is therefore natural to include the polarizability of
anions, and even some larger cations, in ionic potential models when reliable
results are required.

While polarization may occur to arbitrary order, here the focus will be on
the dipole polarizability, α, which is typically the dominant contribution. In
the presence of an electric field, E , the dipole moment, µ, generated is given
by;

µ = αE

and the polarization energy, U dipolar, that results is:

U dipolar =− 1
2αE2

The electric field at an ion is given by the first derivative of the electrostatic
potential with respect to the three Cartesian directions, and therefore can be
calculated from the Ewald summation for a bulk material. In principle, it is
then straightforward to apply the above point ion polarizability correction to
the total energy of a simulation. However, it introduces extra complexity since
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the induced dipole moments will also generate an electric field at all other
ions in the system. Hence, it is necessary to consider the charge–dipole and
dipole–dipole interactions as well. The whole procedure involves iteratively
solving for the dipole moments on the ions until self-consistency is achieved
in a manner analogous to the self-consistent field procedure that occurs in
quantum mechanical methods.

There is one disadvantage to the use of point ion polarizabilities, as
described above, which is that the value of α is a constant. Physically, the
more polarized an ion becomes, the harder it should be to polarize it further,
and so the induced dipole is prevented from reaching extreme values. If the
polarizablity is a constant, a so-called polarization catastrophe can occur in
which the total electrostatic energy becomes exothermic faster than the repul-
sive energy increases leading to the collapse of two ions onto each other. This
is particularly problematic with the Buckingham potential since the energy at
zero distance tends to −∞.

An alternative description of dipolar ion polarization that addresses the
above problem is the shell model introduced by Dick and Overhauser [4].
Their approach is to create a simple mechanical model for polarization by
dividing each ion into two particles, known as the core and the shell. Here
the core can be conceptually thought of as representing the nucleus and core
electrons, while the shell represents the more polarizable valence electrons.
Thus the core is often positively charged, while the shell is negatively charged,
though when utilizing a shell model for a cation it is not uncommon for both
core and shell to share the positive charge. Both particles are Coulombically
screened from each other and only interact via a harmonic restoring
force:

U core−shell = 1
2 kcsr

2
cs

where rcs is the distance between the core and shell.
There are two important consequences of the shell model approach. Firstly,

because the shell enters the simulation as a point particle, the achievement of
electrostatic self-consistency is transformed into a minimization of the shell
coordinates. Consequently, this is achieved concurrently with the optimization
of the real atomic positions (namely the core positions), though at the cost of
doubling the number of variables. While this significantly increases the time
required to invert the Hessian matrix, assuming Newton–Raphson optimiza-
tion is being employed, the convergence rate is also enhanced through all the
information on the coupling of coordinates with the polarization being uti-
lized. Secondly, it is the usual convention for the short-ranged potentials to act
on the shell of a particle, rather than on the core, which leads to the polarizabil-
ity becoming environment dependent. If the force constant (second derivative)
of the short-range potential acting on the shell is kSR and the shell charge is
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qshell, the polarizability of the ion is equal to:

α =
q2

shell

kcs + kSR

Special handling of the shell model is required in some simulations. In
particular, for molecular dynamics the presence of a particle with no mass
potentially complicates the solution of Newton’s equations of motion. How-
ever, there are two solutions to this that parallel the techniques found in elec-
tronic structure methods. One approach is to divide the atomic mass so that
a small fraction is attributed to the shell instead of the core. If chosen to be
small enough, the frequency spectra for the shells is higher than any mode of
the real material, such that the shells are largely decoupled from the nuclear
motions. The disadvantage of this is that a smaller timestep is required in order
to achieve an accurate integration. Alternatively, the shells can be minimized
at every timestep in order to follow the adiabatic surface. Although the same
timestep can now be used as per core-only dynamics, the cost per move is
greatly increased. Similarly in lattice dynamics, it is also necessary to con-
sider the contribution from relaxation of the shell positions to the dynamical
matrix, which will act to soften the energy surface.

Both point ion polarizabilities and the shell model have benefits for inter-
atomic potential simulations of ionic materials. Firstly, they act to stabilize
lower symmetry structures and hence it would not be possible to reproduce
the structural distortion of various materials without their inclusion. Secondly,
they make it possible to determine many materials properties that intrinsi-
cally have a strong electronic component. For instance, both the low and high
frequency dielectric constant tensors may be calculated, where the former is
determined by both the electronic and nuclear contributions, while the latter is
purely dependent on the contribution from the polarization model.

4. Derivation of Ionic Potentials

So far, the typical functional form of the interaction energy in ionic
materials has been described, without discussing how the parameter values
are arrived at within the model. Many aspects are similar to general forcefield
derivation as practiced for organic and inorganic systems, be they ionic or not.
However, there are a few differences also that will be highlighted below.

Given the dominance of the electrostatic contribution for ionic materi-
als, the starting point for any force field is to determine the nature of the
point charges to be employed. There are two broad approaches – either to
employ the formal valence charge or to chose smaller partial charges. The
main advantages of formal charges are that they remove a degree of freedom
from the fitting process and also ensure wide compatability of force fields, in
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that parameters from binary compounds can be combined to model ternary
or more complex phases where the cations do not have the same formal va-
lence charge. Furthermore, when studying defects in materials the vacancy,
interstitial or impurity will be guaranteed to carry the correct total charge. On
the other hand, for materials with a formal valence of greater than +2 it is
argued that formal charges are unrealistic and so partial charges must be used.
Indeed, Mulliken charges from ab initio calculations do suggest that such
materials are not fully ionic. However, the Mulliken charge is only one of sev-
eral charge partitioning schemes. Arguably more pertinent measures of ion-
icity are the Born effective charges that describe the response of the charge
density to an electric field. For a solid, where it is not possible to determine
the charges that best reproduce the external electrostatic potential, as would be
the case for molecules, considering the dipolar response is the next best thing.
It is often the case that formal charges, in combination with a shell model
for polarization, yield very similar Born effective charges to periodic density
functional calculations [6]. Consequently, for low symmetry structures at least,
both formal and partial charges can be equally valid in a well derived model.

Having determined the charge states of the ions, it is then necessary to
derive the short-range and other parameters for the force field by fitting. Par-
ameter derivation falls into one of two classes, either being based on the use
of theoretical or experimental data. While truly ab initio parameter derivation
is desirable, most theoretical procedures are subject to systematic errors and
so empirical fitting to experimental information has tended to be prevalent.

Fitting consists of specifying a training set of observable quantities, that
may be derived theoretically or experimentally, and then varying the parame-
ters in a least squares procedure in order to minimize the discrepancy between
the calculated and observed values [5]. Typically, the training set would con-
sist of one or more structures that represent local energy minima (i.e., stable
states with zero force) and data that provide information as to the curvature
of the energy surface about these minima, such as bulk moduli, elastic con-
stants, dielectric constants, phonon frequencies, etc. Ideally, multiple struc-
tures and as much data as possible should be included in the procedure in
order to maximize transferability and to constrain the parameters to physically
sensible values. Because it is possible to weight the observables according to
their reliability or importance there can never be a single unambiguous fit.

In the above brief statement of what fitting is, it is given that the structural
data is to be used as an observable. However, there are several distinct ways
in which this can be done. If the force field is a perfect fit then the forces
calculated at the observed experimental, or theoretically optimized, structure
should be zero. Hence it is common to use the forces determined at this point as
the observable for fitting, rather than the structure per se, since they are straight
forward to calculate. In practice, the quality of the fit is usually imperfect and
so there will be residual forces. Lowering the forces does not guarantee that the
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discrepancy in the optimized structural parameters will be minimized though,
since this also depends on the curvature. Assuming that the system is within
the harmonic region, the errors in the structure, �x , will be related to residual
force vector, fresid, according to

�x = H−1 fresid

where H is the Hessian matrix containing the second derivatives. Thus one
approach to directly fitting the structure is to use the above expression for the
errors in the structure. Alternatively, the structure can be fully optimized for
each evaluation of the fit quality, which is considerably more expensive, but
guaranteed to be reliable regardless of whether the energy surface is quadratic
or not. This latter method, referred to as relaxed fitting, also possesses the
advantage that any curvature related properties can be evaluated for the struc-
ture of zero force, such that the harmonic expressions employed are truly valid.

The case of a shell model fit deserves special mention here, since the issues
do not usually arise during fits to other types of model. Because of the mapping
of dipoles to a coordinate space representation there is the question of how to
handle the shell positions during a fit. Given that the cores are equated with the
nuclear position, and that it is difficult to ascribe atom-centered dipoles in a
crystal, there is rarely any information on where the shells should be sited. In a
relaxed fit the issue disappears, since the shells just optimize to the position of
minimum force. For a conventional force-based fit then the shells must either
still be relaxed explicitly at each evaluation of the sum of squares, or their
coordinates can be included as variable parameters such that the relaxation
occurs concurrently with the fitting process.

Theoretical derivation of parameters can either closely resemble empirical
fitting, by inputing calculated observables, or alternatively an energy hyper-
surface can be utilized. In this latter case many different structures, usually
sampled from around the energy minima, are specified along with their cor-
responding energies. As a result, the curvature of the energy surface is fitted
directly rather than by assuming harmonic behavior about the minimum. Again
the issue of weighting is particularly important since it tends to be more crucial
to ensure a good quality of fit close to the minimum at the expense of points
that are further away. To date it has been more common to utilize quantum
mechanical data for finite clusters in potential derivation, rather than directly
fitting solid state ab initio information. However, this introduces uncertainties,
since it is not clear how transferable the gas phase cluster data will be to bulk
materials since they are dominated by surface effects.

There are two further theoretical methods for parameter derivation that
deserve a mention, namely electron gas methods and rule-based methods. The
first is particularly significant since it was a popular approach in the early days
of the computer simulation of ionic materials at the atomistic level. In the
electron gas method, the energy of overlapping frozen ion electron densities
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is calculated according to density functional theory as a function of distance.
These energies can then be used directly via splines or fitted to a functional
form. Given that not all ions, such as O2−, are stable in vacu, the ion densities
were usually determined in an appropriate potential well to mimic the lat-
tice environment. The results obtained directly from this procedure where not
always accurate, given the limitations of density functional theory, so often the
distance dependence was shifted to improve the position of the minimum. The
second alternative theoretical approach is to use rules that encapsulate how to
determine interactions from atomic properties, such as the polarizability and
atomic radius, in order to generate force fields of universal applicability. Of
course, this compromises the accuracy of the results for any given system, but
can be useful for systems were there is little known data to fit to.

5. Applications of Ionic Potentials

Having defined the appropriate force field for a material, it is then possi-
ble to calculate many different properties in a very straight forward fashion.
Simulations can be broadly divided into two categories – static and dynamic.
In a static calculation, the structure of a material is optimized to the near-
est local minimum, which may represent one desired polymorph of a system,
as opposed to the global minimum, and then the properties are derived by
consideration of the curvature about that position. For example, many of the
mechanical, vibrational and electrical response properties are all functions of
the second derivatives of the energy with respect to atomic coordinates and
lattice strains. For pair potentials, the determination of these properties is not
dramatically more expensive than the evaluation of the forces, with the exc-
eption of matrix inversions that may be required once the second derivative
matrix has been calculated. This is in contrast to quantum mechanical meth-
ods where the determination of the wavefunction derivatives makes analytical
property calculations almost as expensive as finite difference procedures. In
a dynamical simulation, the probability distribution, composed of many dif-
ferent nuclear configurations, is sampled to provide averaged properties that
depend on temperature. This usually involves performing either molecular
dynamics (in which case the time correlation between data is known) or Monte
Carlo (where configurations are selected randomly according to the Boltzmann
distribution). Fundamentally static and dynamic methods differ because the
former are founded within the harmonic approximation, while the latter allow
for anharmonicity.

For the purposes of this section, the focus will be placed on the static infor-
mation that can be obtained from ionic potentials, but stoichastic simulations
would also be equally as applicable. The first information to be yielded by an
energy minimization is the equilibrium structure. Given that many potentials are
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fitted to such data, it is not surprising that the quality of structural reproduc-
tion, at least for simple binary materials, is usually high. Many force fields are
derived with out explicit reference to temperature, so consequently the struc-
ture that is calculated may contain implicit temperature effects even though
the optimization was performed nominally at zero Kelvin.

As an example of the application of the formal charge, shell model poten-
tial a set of parameters has been derived for alumina. The observables used
consisted of the structure of corundum and its elastic and dielectric constants.
As a starting model, the parameters originally derived by Catlow et al. [1]
were used and subjected to the relax fitting approach. Alumina is a material
that has been much studied already, so the aim here is just to illustrate typical
results yielded by a fit to such a material and some of the related issues. Values
of the calculated properties for corundum, α-Al2O3 are given in Table 1, along
with the comparison against experiment, using the potentials derived, which
are given in Table 2.

Before considering the results, let us consider the parameters that resulted
from the fit since they highlight a number of points. Firstly, by looking at the
shell charges and spring constants it can be seen that the oxide ion is respon-
sible for most of the polarizability of the system as would be expected. This
is a natural result of the fitting process since the charge distribution between
core and shell, as well as the spring constant, was allowed to vary. Secondly, in
accord with this picture the attractive dispersion term for Al–O is set to zero,
though even if allowed to vary it remains small. Finally, the oxygen–oxygen

Table 1. Calculated versus experimental structure
and properties for aluminium oxide in the corundum
structure based on a shell model potential fitted to the
same experimental data

Observable Experiment Calculated

a (Å) 4.7602 4.9084
c (Å) 12.9933 12.9778
Al z (frac) 0.3522 0.3597
O x (frac) 0.3062 0.2987
C11 (GPa) 496.9 567.1
C12 (GPa) 163.6 224.6
C13 (GPa) 110.9 158.1
C14 (GPa) −23.5 −54.3
C33 (GPa) 498.0 453.3
C44 (GPa) 147.4 127.6
C66 (GPa) 166.7 171.2

ε0
11 9.34 8.70

ε0
33 11.54 13.38

ε∞11 3.1 2.88
ε∞33 3.1 3.06
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Table 2. Interatomic potential parameters derived for alumina based on
relax fitting to the experimental observables given in Table 1. The starting
parameters were taken from Catlow et al. and a two-body cut-off distance
of 16.0 Å was employed, while that for the core-shell interaction was 0.8 Å.
All non-Coulombic interactions not explicitly given are implicitly zero. The
shell charges for A1 and O were −0.0395 and −2.0816, respectively

Species 1 Species 2 A (eV) ρ (Å) C (eV/Å6) kcs (eV/Å2)

A1 shell O shell 1012.17 0.32709 0.0 –
O shell O shell 22764.00 0.14900 22.368 –
A1 core A1 shell – – – 331.958
O core O shell – – – 24.625

repulsive term is particularly short-ranged and only makes a minute contribu-
tion at the equilibrium structure. Consequently, the A and ρ values are rarely
varied from the original starting values.

The rhombohedral corundum structure is sufficiently complex that even
though the potential was empirically fitted to this particular system it is still not
possible to achieve a perfect fit. While for many dense high symmetry ionic
compounds it is possible to obtain accuracy of better than 1% for structural
parameters, the moment there are appreciable anisotropic effects it becomes
more difficult. This is illustrated by corundum where it is impossible with the
basic shell model to accurately describe the behavior in the ab plane and along
the c axis simultaneously, leading to an error of 3% in the a and b cell parame-
ters. Not only is this true for the structure, but it is even more valid for the cur-
vature related properties. If the values of C11 and C33 are compared, which are
indicative of the elastic behavior in the two distinct directions, the calculated
values have to achieve a compromise by one value being higher than experi-
ment, while the other is lower. In reality, alumina is elastically fairly isotropic,
but a dipolar model cannot capture this. The above results for alumina also
illustrate the fact that while it is usually possible to reproduce structural pa-
rameters to within a few percent, the errors associated with other properties
can be considerably greater.

As pointed out earlier, although a formal charge model for alumina was
employed, the ions in fact behave as though the system is less than fully ionic
due to the polarizability. The calculated Born effective charges show that alu-
minium has a reduced ionicity with a charge of +2.32 in the ab plane and
a slightly higher value of +2.55 parallel to the c axis. These magnitudes are
in good agreement with assessments of the degree of ionicity of corundum
obtained from ab initio calculations.

There are many more bulk properties that can be readily determined
from interatomic potentials than those given above. For instance, phonon
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frequencies, dispersion curves and densities of states, acoustic velocities,
thermal expansion coefficients, heat capacities, entropies and free energies can
all be obtained from determining the dynamical matrix about an optimized
structure [6]. Other important quantities can also be determined by creating
defects in the system, such as vacancies, interstitials and grain boundaries, or
by locating other stationary points, in particular transition states for ion dif-
fusion. The possibilities are as boundless as the number of physical processes
that can occur in a real material.

6. Discussion

So far, the basic ionic potential approach to the modeling of solids has been
portrayed. While this is very successful for many of the materials for which it
was intended, and that composed the majority of the earlier studies, there are
increasingly many situations where extensions and modifications are required
in order to broaden the scope of the technique. These enhancements recognize
the fact that many systems comprise atoms that are less than fully ionic and
often non-spherical.

One of the most limiting aspects of the ionic model is the use of fixed
charges. It is often the case that potential parameters are derived for the bulk
material alone where a compound is at its most ionic. However, the ideal force
field should also be transferable to lower coordination environments, such as
surfaces and even gas phase clusters. Fundamentally, the problem with any
fixed charge model, be it formally or partially charged, is that it cannot repro-
duce the proper dissociation limit of the interaction. Ultimately, if sufficiently
far removed from each other, an ionic structure should transform into separate
neutral atoms.

There is a more sophisticated way of determining partial charges within
a force field that addresses the above issue, which is to calculate them as an
explicit function of geometry. While this has only been sparsely utilized to
date, due to the extra complexity, it has the potential to capture, through charge-
transfer, many of the higher order polarizabilities beyond the dipole level, as
well as yielding the proper dissociation behavior. The predominant approach
to determining the charges has been via electronegativity equalization [8].
Here the self energy of an ion is expressed as a quadratic function of the charge
in terms of the electronegativity, χ , and hardness, µ:

U self
i (q) = U self

i (0)+ χi q + 1
2µi q

2

When coupled to the electrostatic energy of interaction between the ions,
and solved subject to the condition of charge neutrality for the unit cell, this
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determines the charges on the ions. The main variation between schemes is the
form selected for the Coulomb interaction between ions. While some workers
have used the limiting point-charge interaction of 1

r at all distances, it has been
argued that damped interactions should be used that more realistically mimic
the nature of two-centre integrals (i.e., tend to a constant value as r → 0).

Variable charge schemes have shown some promise, and have clear advan-
tages since they allow multiple oxidation states to be treated with a single set
of parameters, at least in principle. This simplifies the study of materials where
the same cation occurs in multiple oxidation states, since no prior assumption
needs to be made as to the charge ordering scheme. However, there are still many
challenges in this area since it appears that choosing the more formally cor-
rect screened Coulomb interaction leads to the electrostatics only contributing
weakly to the interionic forces to an extent that is unrealistic.

Looking beyond dipolar polarizability, which is a limitation of the most
widely used form of ionic model, there are instances where higher order con-
tributions are important. Here, we consider two examples that highlight the
issues. Experimentally it is observed that many cubic rock salt structured
materials exhibit a so-called Cauchy violation in that the elastic constants C12

and C44 are not equivalent. It has been demonstrated that two-body poten-
tial models are unable to reproduce this phenomenon, and inclusion of dipo-
lar polarizability fails to improve the situation. The Cauchy violation actually
requires a many-body coupling of the interactions through a higher order
polarization. This can be handled through the inclusion of a breathing shell
model. Here the shell is given a finite radius that is allowed to vary with
a harmonic restoring force about an equilibrium value, with the repulsive
short-ranged potential also acting on it. This non-central ion force generates a
Cauchy violation, though always of one particular sign (C44 >C12), while the
experimental values can be in either direction.

A second example of the role of polarization, is in the stability of poly-
morphs of alumina. If the relative energies of alumina adopting different pos-
sible M2O3 structures is examined using most standard interatomic potential
models, including that given in the previous section, then it is found that the
corundum structure (which is the experimental ground state under ambient
conditions) is not the most stable, with the bixbyite form being preferred.
Investigations have demonstrated that the inclusion of quadrupolar polariz-
ability is essential here [7]. This can be readily achieved within the point
ion approach, but is more difficult in the shell model case. While an ellip-
tical breathing shell model can capture the effect, it highlights the fact that
the extension of this mechanical approach to higher order terms becomes
increasingly cumbersome.

While most alkali and alkaline earth metals conform reasonably well to
the ionic model, there are substantial problems with describing many of the
remaining cations in the periodic table. In particular, transition metals ions
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are often non-spherical due to the partial occupancy of the d-orbitals. The
classic example of this is when the anti-bonding e∗g orbitals of an octahedral
ion are half-filled for a particular spin, giving rise to a Jahn–Teller distortion,
as is the case for Cu2+. To describe this effect with a simple potential model
is impossible, except by constructing a highly specific model with different
short-ranged potentials for each metal–ligand interaction, regardless of the fact
that they may be acting between the same species. So far, the only solution
to the problem of ligand–field effects has been to resort to approaches that
mimic the underlying quantum mechanics, but in an empirical fashion. Hence,
most work has utilized the angular overlap model to describe a set of energy
levels that are subsequently populated according to a Fermi–Dirac distribution,
where the states are determined by diagonalizing a 5 × 5 matrix determined
according to the local environment [11]. This approach has been successfully
used to describe the manganate (Mn3+, d4) cation, as well as other systems
within a molecular mechanics framework.

At the heart of the ionic potential method is the electrostatic energy, nor-
mally evaluated according to the Ewald sum when working within 3-D bound-
ary conditions. However, this approach possesses the disadvantage that it scales
at best as N

3
2 , where N again represents the number of atoms within the sim-

ulation cell. In an era when very large scale simulations are being targeted, it
is necessary to also reassess the underlying algorithms to ensure the optimal
efficiency is attained. Consequently, the fundamental task of calculating the
Coulomb energy is still an area of active research. Approaches currently being
employed include the particle-mesh and cell multipole methods. The desirable
characteristics of an algorithm are now that it should both scale linearly with
system size and also be amenable to parallel computation. Both of these can
be achieved as long as the method is local in real space, in some cases with
complementary linear-scaling in reciprocal space, or if a hierarchical scheme
is utlized within the cell multipole method to make the problem increasing
coarse-grained the greater the distance of interaction is. Methods have been
proposed that use a spherical cut-off in real space alone, which naturally sat-
isfies both desirable criteria [10]. However, it becomes difficult to achieve the
defined Ewald limiting value without a considerable prefactor.

7. Outlook

The state of the art in force fields for ionic materials looks set for a grad-
ual evolution that sees it take on board many concepts from other types of
system, while retaining the aim of an accurate evaluation of the electrostatic
energy at the core. For the very short-ranged interactions it is likely that bond
order models, widely used in the semiconductor and hydrocarbon fields, and



Interatomic potential models for ionic materials 497

also closely related to the approach taken for metallic systems, will be blended
with schemes that capture the variation of the charge and higher order multi-
pole moments as a function of structure. The result will be force fields that are
capable of simulating not only one category of material, but several distinct
ones. Development of solid state quantum mechanical methods to increased
levels of accuracy will increasingly provide the wealth of information required
for parameterisation of more complex interatomic potentials for systems, espe-
cially where there is a paucity of experimental data. Ultimately, this will lead
to a seamless transition to models capable of reliably describing interfaces
between ionic and non-ionic systems – currently one of the most challenging
problems in materials science.
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