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AB INITIO STUDY OF MECHANICAL
DEFORMATION

Shigenobu Ogata
Osaka University, Osaka, Japan

The Mechanical properties of materials under finite deformation are very
interesting and are important topics for material scientists, physicists, and
mechanical and materials engineers. Many insightful experimental tests of the
mechanical properties of such deformed materials have afforded an increased
understanding of their behavior. Recently, since nanotechnologies have started
to occupy the scientific spotlight, we must accept the challenge of studying
these properties in small nano-scaled specimens and in perfect crystals under
ideal conditions.

While state-of-the-art experimental techniques have the capacity to make
measurements in extreme situations, they are still expensive and require spe-
cialized knowledge. However, the considerable improvement in calculation
methods and the striking development of computational capacity bring such
problems within the range of atomic-scale numerical simulations. In particu-
lar, within the past decade, ab initio simulations, which can often give quali-
tatively reliable results without any experimental data as input, have become
readily available.

In this section, we discuss methods for studying the mechanical pro-
perties of materials using ab initio simulations. At present, we have many
ab initio methods that have the potential to perform such mechanical tests.
Here, however, we employ planewave methods based on density functional
theory (DFT) and pseudopotential approximations because they are widely
used in solid state physics. Details of the theory and of more sophisticated,
state-of-the-art techniques can be found in the other section of this volume
and in a review article [1]. Concrete examples of parameters settings appearing
in this section presuppose that the reader is using the VASP (Vienna
Ab initio Simulation Package) code [2, 3] and the ultrasoft pseudopotential.
Other codes based on the same theory, such as ABINIT, CASTEP, and so on,
should basically accept the same parameter settings as on VASP.
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1. Applying Deformation to Supercell

In the planewave methods, we usually use a parallelepiped-shaped super-
cell that has a periodic boundary condition in all directions and includes one
or more atoms. The supercell can be defined by three, linearly independent
basis vectors, h1 = (h11, h12, h13), h2 = (h21, h22, h23), h3 = (h31, h32, h33). In
investigating the phenomena connected with a local atomic displacement, for
example, a slip of the adjacent atomic planes in a crystal, an atomic position
in the supercell can be directly moved within the system of fixed basis vectors.
However, when we need a uniform deformation of the system under consid-
eration, we can accomplish this by changing the basis vectors directly as we
would do, for example, in simulating a phase transition or crystal twinning, and
in calculations of the elastic constants and ideal strength of a perfect crystal.

Let a deformation gradient tensor F represent the uniform deformation of
the system. The F can be defined as

Fij =
dxi

dX j
,

where x and X are, respectively, the positions of a material particle in a
deformed and in a reference state. By using the F, each basis vector is mapped
to a new basis vector h′ via

h ′k = Fkj h j .

For example, for a simple shear deformation, F can be written as,

F =

⎛⎝ 1 0 γ
0 1 0
0 0 1

⎞⎠,
where γ represents the magnitude of the shear corresponding to the engineer-
ing shear strain. In some cases, for ease of understanding, different coordinate
systems for F and for the basis vectors are taken. In this case, F is trans-
formed into the coordinate system for a basis vector by an orthogonal tensor
Q ( Q QT = I).

F′ = Q F QT,

h ′k = F ′kj h j .

2. Simulation Setting

In DFT calculations, the pseudopotential (if the code is not full-potential
code) and the exchange correlation potentials should be carefully selected.
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Since these problems are not particular to deformation analysis, the reader
who needs a more detailed discussion can find it elsewhere. Only a short
commentary is given here.

When we use the pseudopotential in a separable form [4], we need to pay
attention to a possible ghost band [5], because almost all DFT codes use the
separable form to save computational time and memory resources.

Usually the pseudopotentials in the package codes were very carefully
determined to avoid a ghost band in an equilibrium state. However, even when
a pseudopotential does not generate a ghost band in the equilibrium state,
such a band may still appear in a deformed state. Therefore, it is strongly
recommended that a pseudopotential result should be confirmed by compar-
ing it with the result of a full-potential calculation where possible. For the
exchange correlation potential, we can normally use functions derived from
the local density approximation (LDA), generalized gradient approximation
(GGA), and LDA+U. In many cases, the former two methods are equally
accurate. The LDA tends to underestimate lattice constants, and overestimate
elastic constants and strength, and the GGA to overestimate elastic constants
and strength, and underestimate lattice constants. The LDA+U sometimes
offers a significantly improved accuracy [6].

The above discussions of the pseudopotential and exchange-correlation
potential pertain to error sources resulting from theoretical approximations.
However, as well as attending to errors from this source, we should also take
care of numerical errors. Numerical errors in the planewave DFT calculation
usually derive from the finite size of the k-point set and the finite number
of planewaves which are uniquely determined by the supercell shape and the
planewave cut-off energy. With regard to other problems, a good estimation
of the stress tensor to MPa accuracy requires a finer k-point sampling than
does that for an energy estimation with meV accuracy. Figure 1 shows the
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Figure 1. Total energy and stress vs. number of k-points curves for an aluminum primitive
cell under 20% shear in the {111}〈112̄〉 direction.
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convergence of the energy and stress as the number of k-points is increased.
The model supercell is a primitive cell with an fcc structure which contains
just one aluminum atom. An engineering shear strain of 0.2 to the {111}〈112̄〉
direction has already been applied to the primitive cell. Only the shear stress
component corresponding to the shearing direction is shown. Clearly, the stress
converges very slowly even though the energy converges relatively quickly.
Figure 2 shows the stress–strain curves of the Al primitive cell under a {111}
〈112̄〉 shear deformation using two sets of k-points, the normal 15×15×15
and a fine 43×43×43 Monkhorst–Pack Brillouin zone sampling [7]. This
sampling scheme is explained later. The curve for 15×15×15 is significantly
wavy even though the total free energy of the primitive cell agrees to the
order of meV with the energy of the 43×43×43 case. Apparently, a small
set of k-points does not produce a smooth stress–strain curve. This is not a
small problem for the study of mechanical properties of materials, because, in
the above case, the ideal strength, that is, the maximum stress of the stress–
strain curve, is overestimated by 20%, a level which is usually corresponds to
2 ∼ 20 GPa.

Although there are many k-points sampling schemes, in recent practice,
the Monkhorst–Pack sampling scheme is typically used for testing mechani-
cal properties. Since more efficient schemes [8], in which a smaller number
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Figure 2. Shear stress vs. strain curves calculated with different numbers of k-point sets.
A shear deformation in the {111}〈112̄〉 direction is applied.
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of k-points can be used without loss of accuracy, are constructed based on
crystal symmetries, a deformation which would break the crystal symme-
tries would remove their advantage. Therefore, the Monkhorst–Pack scheme is
often favored because of its simplicity. In it, the sampling points are defined in
the following manner:

k(n,m, l) = nb1 + mb2 + lb3,

n,m, l =
2r − q − 1

2q
; r = 1, 2, 3, . . . , q

where bi are the reciprocal lattice vectors of the supercell and n, m, and l are
the mesh sizes for each reciprocal lattice vector direction. Therefore, the total
number of sampled k-points is n×m×l. If we find that, under the symmetries
of the supercell, some of the k-points are equivalent we consider only the
nonequivalent k-points to save computational time.

The planewave cut-off energy should also be carefully determined. We
should use a large enough planewave cut-off energy to achieve a convergence
of energy and stress to the required degree of accuracy. Since the atomic con-
figuration affects the cut-off energy, it is better that we estimate that energy for
the particular atomic configuration under consideration. However, in mechan-
ical deformation analysis, it is difficult to fix the cut-off energy before starting
the simulation because the deformation path cannot be predicted at the sim-
ulation’s starting point. In such a case, we have to add a safety margin of
10–20 % to the cut-off energy estimated from a known atomic configuration,
for example, that of an equivalent structure.

In principle, a complete basis set is necessary to express an arbitrary func-
tion by a linear combination of the basis functions. As discussed above, the
planewave basis set is used to express the wave functions of electrons in ordi-
nary DFT calculations using the pseudopotential. Because a FFT algorithm can
be easily used to calculate the Hamiltonian, we can save computational time. To
achieve completeness, a infinite number of the planewaves is necessary; how-
ever, to perform a practical numerical calculation, we must somehow reduce the
infinite number to a finite one. Fortunately, we can ignore planewaves which
have a higher energy than a cut-off value, termed the planewave cut-off energy,
because the wave functions of electrons in real system do not have a component
of extremely high frequencies.

To estimate the cut-off energy, we can perform a series of calculations with
an increasing cut-off energy for a single system. By this means, we can find
a cut-off energy which is large enough to ensure that the total energy and the
stress convergence of the supercell of interest fall within the required accu-
racy. Usually, the incompleteness of a finite number of planewave basis sets
produces an unphysical stress, that is, a Puley stress. However, by using a large
enough number of planewaves, we can avoid this problem. Therefore, both the
stress convergence check and the energy convergence check are important in
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Figure 3. Shear stress vs. strain curves calculated with different cut-off energies. A shear
deformation in the {111}〈112̄〉 direction is applied.

deformation. Figure 3 shows the stress–strain curves obtained by the use of
different planewave cut-off energies. The model and simulation procedure are
the same as those we have utilized in the above k-point check. Clearly, even
though the error due to a small cut-off energy is small in a near equilibrium
structure, it becomes larger at in a highly strained structure.

3. Mechanical Deformation of Al and Cu

Many ab initio studies of mechanical deformation, such as tensile and shear
deformation studies for metals and ceramics, have been done in the past two
decades. An excellent summary of the history of ab initio mechanical testing
can be found in a review paper written by Šob [9].

Here, we discuss as examples both a fully relaxed and an unrelaxed uni-
form shear deformation analysis [10], that is, an analysis of a pure shear and a
simple shear, for aluminum and copper. The shear mode is the most important
deformation mode in our consideration of the strength of a perfect crystalline
solid. The shear deformation analysis usually involves more computational
cost than the tensile analysis; because the shear deformation breaks many of
the crystal symmetries, many nonequivalent k-points should be treated in the
calculation.
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The following analysis has been performed using the VASP code. The
exchange-correlation density functional potential adopted is the Perdew–Wang
generalized gradient approximation (GGA) [11]; the ultrasoft pseudopoten-
tials [12] are used. Brillouin zone k-point sampling is performed using the
Monkhorst–Pack algorithm, and the integration follows the Methfessel–Paxton
scheme [13] with the smearing width chosen so that the entropic free energy
(a “-T S” term) is less than 0.5 meV/atom. A six atom fcc supercell which
has three {111} layer is used, and 18×25×11 k-points for Al and 12×17×7
k-points for Cu are adopted. The k-point convergence is checked as shown
in Table 1. The carefully determined cut-off energies of the planewaves for
the Al and Cu supercells are 162 and 292 eV, respectively. Incremental affine
shear strains of 1% as described above are imposed on each crystal along the
experimentally determined common slip systems to obtain the correspond-
ing energies and stresses. In each step, the stress components, excluding the
resolved shear stress along the slip system, are kept to a value less than 0.1 GPa
during the simulation.

In Table 2, the equilibrium lattice constants a0 obtained from the energy
minimization are listed and compared with the experimental data. The calcu-
lated relaxed and unrelaxed shear moduli Gr , Gu for the common slip systems
are compared with computed analytical values based on the experimental elas-
tic constants. A value of �γ = 0.5% is used to interpolate the resolved shear
stress (σ ) versus the engineering shear strain (γ ) curves and to calculate the
resolved shear moduli. In the relaxed analysis, the stress components are
relaxed to within a convergence tolerance of 0.05 GPa.

Table 1. Calculated ideal pure shear σr and simple shear strengths σu using
different k-point sets

No. of k-points Al Cu

σ u (GPa) σ r (GPa) σ u (GPa) σ r (GPa)

12× 17 × 7 3.67 2.76 3.42 2.16
18× 25 × 11 3.73 2.84 3.44 2.15
21× 28 × 12 – – 3.45 2.15
27× 38 × 16 3.71 2.84 – –

Table 2. Equilibrium lattice constant (a0), relaxed (Gr )
and unrelaxed (Gu) {111}〈112̄〉 shear moduli of Al and Cu

a0 (Å) Gr (GPa) Gu (GPa)

Al (calc.) 4.04 25.4 25.4
Al (expt.) 4.03 27.4 27.6
Cu (calc.) 3.64 31.0 40.9
Cu (expt.) 3.62 33.3 44.4
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Figure 4. Shear stress vs. displacement curves for Al and Cu of the fully relaxed shear
deformation in the {111}〈112̄〉 direction.

At equilibrium, the Cu is considerably stiffer, with simple and pure shear
moduli greater by 65 and 25%, respectively, than those of the Al. However, the
Al ends up with a 32% larger ideal pure shear strength σ r

m than the Cu, because
it has a longer range of strain before softening (see Fig. 4): γm = 0.200 in the
Al, γm = 0.137 in the Cu.

Figure 5 shows the changes of the iso-surfaces of the valence charge den-
sity during the shear deformation (h≡ Vcellρv , Vcell and ρv are the supercell
volume and valence charge density, respectively). At the octahedral interstice
in Al, the pocket of charge density has cubic symmetry and is angular in shape,
with a volume comparable to the pocket centered on every ion. In contrast, in
Cu, there is no such interstitial charge pocket, the charge density being nearly
spherical about each ion. The Al has an inhomogeneous charge distribution
in the interstitial region and bond directionality, while the Cu has relatively
homogeneous charge distributions and little bond directionality. The charge
density analysis gives a clear view of the electron activity under shear defor-
mation, and sometime informs us about the origin of the mechanical behavior
of the solids.

4. Outlook

Currently, we can perform ab initio mechanical deformation analyses for
many types of materials and for primitive and nano systems. However, in the
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Figure 5. Charge density isosurface change in (a) Al; (b) Cu during the shear deformation in
the {111}〈112̄〉 direction.

near future, the most interesting studies incorporating these analyses might
address not only the mechanical behavior of materials under deformation and
loading, but also the relation between mechanical deformation and loading,
and physical and chemical reactions, such as stress corrosion. For this purpose,
ab initio methods are the most powerful and reliable tools.
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