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1. Introduction

Data Mining (DM) has become a powerful tool in a wide range of areas,
from e-commerce, to finance, to bioinformatics, and increasingly, in materials
science [1, 2]. Miners think about problems with a somewhat different focus
than traditional scientists, and DM techniques offer the possibility of making
quantitative predictions in many areas where traditional approaches have had
limited success. Scientists generally try to make predictions through consti-
tutive relations, derived mathematically from basic laws of physics, such as
the diffusion equation or the ideal gas law. However, in many areas, including
materials development, the problems are so complex that constitutive relations
either cannot be derived, or are too approximate or intractable for practical
quantitative use. The philosophy of a DM approach is to assume that useful
constitutive relations exist, and to attempt to derive them primarily from data,
rather than from basic laws of physics.

As an example, consider what will likely stand forever as the greatest
application of DM in the hard sciences, the periodic table. In 1869 Mendeleev
organized the elements based on their properties, without any guiding theory,
into the first modern periodic table [3]. With the advent of quantum theory it
became possible to predict the structure of the periodic table and DM was no
longer strictly necessary, but the results had already been known and used for
many years. Even today, the easy organization of data made possible by the clas-
sifications in the periodic table make it an everyday tool for research scientists.
Mendeleev established a simple ordering based on a relatively small amount of
data, and so could do it on paper. However, today’s data sets can be many orders
of magnitude larger, and an impressive array of computational algorithms have
been developed to automate the task of identifying relationships within data.
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DM is becoming an increasingly valuable tool in the general area of materials
development, and there are good reasons why this area is particularly fruitful for
DM applications. There is an enormous range of possible new materials, and
it is often difficult to physically model the relationships between constituents,
and processing, and final properties. For this reason, materials are primarily still
developed by what one might call informed trial-and-error, where researchers
are guided by experience and heuristic rules to a somewhat restricted space of
constituents and processing conditions, but then try as many combinations as
possible to find materials with desired properties. This is essentially human DM,
where one’s brain, rather than the computer, is being used find correlations, make
predictions, and design optimal strategies. Transferring DM tasks from human
to computer offers the potential to enhance accuracy, handle more data, and
allow wider dissemination of accrued knowledge. Other key drivers for growing
DM use in materials development are ease of access to large databases of mate-
rials properties, new data being generated in large quantities by high-throughput
experiments and quantitative computational models, and improved algorithms,
computer speed, and software packages leading to more effective and easy to
use DM methods. Note that DM is also used in other areas of materials science
beside materials development, e.g., design and manufacturing [4, 5], but this
work will not be discussed here.

The interdisciplinary nature of DM creates a special challenge, since a typ-
ical materials scientist’s education does not provide an introduction to DM
techniques, and the computer scientists and statisticians usually involved in
developing DM methods are equally unlikely to be versed in materials sci-
ence. The goal of this paper is to help foster communication between the
disciplines and show examples of how they can be joined productively. We
introduce DM concepts in a fairly general framework, discuss a few of the
more common methods, and describe how DM is being used to tackle some
materials development problems, including predicting physiochemical prop-
erties of compounds, modeling electrical and mechanical properties, develop-
ing more effective catalysts, and predicting crystal structure. The breadth of
methods and applications makes a comprehensive discussion impossible, but
hopefully this brief introduction will be enough to allow the interested reader
to follow up on specific areas of interest.

2. Key Methods of Data Mining

Data Mining (DM) is a vast and rapidly changing topic, with many differ-
ent techniques appearing in many different fields. Broad reviews of the issues,
methods, and applications are given in Refs. [1, 2] and somewhat less compre-
hensively but more in depth in Refs. [6, 7]. There is some disagreement about
exactly what constitutes DM, as opposed to, e.g., knowledge discovery or
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statistical analysis. We will not worry much about such distinctions, and give
DM the rather all encompassing definition of using your data to obtain
information. This essentially defines every discovery task as some kind of DM,
but there is really a continuum. The more data one has, and the less physical
modeling one includes, then the more time one will spend on data manage-
ment, models, and investigation, and the more DM the task will be. If one has
eight data points of force and acceleration, and one performs a linear regres-
sion to fit mass, it is silly to consider it DM. There is very little time spent on
the data, and one is essentially just fitting an unknown parameter in the known
physical law F = ma. However, if one is trying to predict what song can be a
commercial hit based on a database of song characteristics and sales data, then
the primacy of data, and the absence of any guiding theory, make it clearly a
DM problem [8].

DM in materials development generally focuses on prediction. Relation-
ships are established between desired dependent properties (e.g., melting
temperature or catalytic activity) and independent properties that are easily
controlled and measured (e.g., precursor concentrations or annealing temper-
atures). Once such a relationship is established, dependent properties can be
quickly predicted from independent ones, without having to perform costly
and time consuming experiments. It is then possible to optimize over a large
space of possible independent properties to obtain the desired dependent
property. In general, we will define X as the independent properties or vari-
ables, Y as the dependent properties or variables, F as the derived relationship
between X and Y , and YPred as the predicted values of Y based on F and X .
The goal of a DM effort is usually to determine F such that YPred represents Y
as effectively as possible.

There are several key areas that need to be considered in a DM application
such as the one described above: data management and preparation, prediction
methods, assessment, optimization, and software.

2.1. Data Preparation and Management

Data preparation and management will not be discussed in detail since
the issues are very dependent on the specific data being used. However, the
tasks associated with cleaning and managing the data can often take up the
bulk of a DM project, and should not be underestimated. Data must be stored
so that it can be accessed efficiently, interfaced with equipment, updated, etc.
Solutions can range from simple flat files to sophisticated database software.
Issues often exist with the type and quality of the data, and it is frequently nec-
essary to make significant transformations to bring the data into a universally
comparable format, and to regroup data into appropriate new variables. There
is sometimes erroneous or just missing data, which may need to be dealt with
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in some manner before or during the DM process. Finally, data must be ade-
quately comprehensive to be amenable to DM. It may be necessary to obtain
further data in key areas, perhaps guided by the DM results in an iterative pro-
cedure. These issues are described in many data mining books, e.g., Ref. [7].

2.2. Prediction Methods

Prediction methods form the heart of DM tools relevant for materials
development. Although there are many DM approaches that can be used for
prediction, here we focus only on three of the most popular, linear regression,
neural networks, and classification methods.

Linear regression is often one of the first approaches to try in a DM project,
unless one has reasons to expect nonlinear behavior. It is assumed that the
relationship F is a linear function, and the unknown parameters are determined
by multivariate linear regression to minimize the squared error between YPred

and Y (these methods are discussed in many textbooks, e.g., Refs. [9, 10].
Linear regression is generally performed by matrix manipulations and is very
robust and rapid. There are many variations on strict regression, e.g., adding
weights or transforming variables with logarithms. Some of the most useful
regression tools are those for reducing the number of independent variables
(X), sometimes called dimensional reduction.

It is frequently the case that there are many possible independent variables,
but not all of them will be truly independent or important. Furthermore, the
original data categories may not be optimal, and linear combinations of the
variables, called latent variables, might be more effective. For example, alloy
properties affected by strain will depend on the differences in atomic sizes,
rather than the size of each constituent element separately. It is often difficult
to have enough data to properly fit coefficients for a large number of variables
(e.g., uniformly gridding a space of n variables with m points for each variable
requires nm data points, which rapidly becomes unmanageable. This is some-
time called the “curse of dimensionality” and is a much more significant prob-
lem in nonlinear fitting methods, such as the neural networks described below).
Having too many variables that are not well constrained can lead to overfitting
and poor predictive ability of the function F . Ideally, the DM method will help
the user define and include the most effective latent variables for prediction.
One common method for defining latent variables is Principal Component
Analysis (PCA), which yields latent variables that are orthogonal and ordered
by decreasing variance [11]. Assuming that variance correlates well with the
importance of the latent variable to the dependent variables, then the prin-
cipal components are ordered in a sensible fashion and can be truncated at
some point. Orthogonality assures that latent variables are independent and
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will represent different variations. A limitation of this approach is that no
information about Y is used in picking the variables. Some improvement can
often be obtained by using Partial Least Squares (PLS) regression [9, 12–14],
which is similar in spirit to PCA, but constructs orthogonal latent variables
that maximize the covariance between X and Y . PLS latent variables capture a
lot of the variation of X , but are also well correlated with Y , and so are likely
to provide effective predictions.

However one defines the latent variables, it is important to test their effec-
tiveness, and there are a number of methods to identify statistically significant
variables in a regression (e.g., ANOVA) [7, 9]. Another popular method is to
make use of cross validation, which is discussed below, to exclude variables
that are not predictive.

Neural Network (NN) methods [15] are more general than linear approaches
and have become a popular prediction tool for many areas. NNs loosely model
the functioning of the brain, and consist of a network of neurons that can take
inputs, sum them with weights, operate on the sum with a transfer function,
and then emit an output. The NN is generally viewed as having layers, the first
takes input from outside the NN, and the last outputs the final results to the
user, while layers in between are called hidden and communicate only with
other layers. For the problems considered here, the NN plays the role of the
relationship F between X and Y . The weights of the neurons are unknown
and must be determined by training based on known input X and output Y ,
where the goal is generally to minimize |YPred − Y |. The training process is
analogous to a linear regression, except that the unknown weights are much
more difficult to determine and many different training methods exist. Similar
problems occur with excessive numbers of independent variables, and some
dimensional reduction, e.g., by PCA, may be necessary.

The strength of NNs is that they are very flexible, and with enough train-
ing can in principle represent any function, making them more powerful than
linear methods. However, this increased power comes at a price of increased
complexity. NNs have many choices that must be made correctly for optimal
performance, including the number of layers, the number of neurons in each
layer, the type of transfer function for each neuron, and the method of training
the neural network. In general, training a NN is orders of magnitude slower
than a linear regression, and convergence to the optimal parameters is by no
means assured. NNs also have the drawback that it is less obvious how the X
and Y variables are related than in a linear regression, making intuitive under-
standing more challenging.

The problems of inadequate training and overfitting data are quite serious
with NN’s. Some NN’s make use of “Bayesian regularization” [16–19], which
includes uncertainty in the NN weights and provides some protection against
overfitting. Another common solution is combining predictions from a number
of differently trained NN’s (prediction by “committee”) (this approach is used
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in, e.g., Refs. [20, 21]). Another interesting approach, which can only be used
in cases where one if faced with many similar problems, is to retrain NNs
on related problems, making use of the information already gained in their
previous training (this is done in, e.g., Ref. [22]).

Classification maps data into predefined classes rather than continuous
variables, where the classes are defined based on the dependent properties Y .
For example, if Y is conductivity, one could classify materials into metals and
insulators, and try to predict to which class a material should belong based
on X , rather than performing a full regression of Y on X to predict the con-
tinuous conductivity values. Another example is predicting crystal structure,
where each different structure type can be considered a class, and the goal is to
be able to predict class (assign a structure type) based on the independent data
X . In classification DM the relation F maps X onto categories YPred, rather
than continuous values.

There are a range of different classification methods, as described in most
standard textbooks (we found Ref. [6] particularly lucid on these issues). The
only classification scheme that will be discussed here is the K -nearest neigh-
bor method, which is one of the simplest. This approach requires that one can
define a distance between any two samples, dij = distance between Xiand X j .
Classification for a new Xi is performed by calculating its K nearest neigh-
bors in the existing data set, and then assigning Xi to the class that contains
the most items from the K neighbors. The spirit of this approach underlies
structure maps for crystal structure prediction, discussed in more detail below.
Other classification approaches use Bayesian probabilistic methods, decision
trees, NNs, etc. but will not be described here [1, 6, 7].

There are some issues with defining a metric of success for classifications.
Since YPred and Y represent class occupancies, there is not necessarily any way
to measure a distance between them. One way to view the results is what is
rather wonderfully called a confusion matrix, where matrix element mij gives
the number of times a sample belonging in class Ciwas assigned to C j . In order
to define a metric for success it is important to realize that when assigning
samples to a class there are two parameters that characterize the accuracy,
the fraction of samples correctly placed into the class (true positives), and the
fraction of samples incorrectly placed into the class (false positives). These can
vary independently and their importance can be very dependent on the problem
(for example, in classifying blood as safe, it is important to get as many true
positives as possible, but absolutely essential not to allow any false positives,
since that would allow unsafe blood into the blood supply). Therefore, the
metric for success in classification must be chosen with some care.

Note that clustering, which is similar to classification, is differentiated by
the fact that clustering groups data without the data clusters being predefined.
This is sometimes called “unsupervised” learning and will not be discussed
further here, but can be found in most DM references.
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2.3. Assessment

Cross-validation (CV) [23, 24] is a technique to assess the predictive ability
of a fit and reduce the danger of overfitting. In a CV test with Ndata points,
N − n data points are fit and used to predict the n points excluded from the fit.
The predicted error of the excluded points is the CV score. This process can be
averaged over many possible subsets of the data, which is called “leave n out
CV”. The key concept behind CV is that the CV score is based on data not used
in the fit. For this reason, the CV score will decrease as the model becomes
more predictive, but will start to increase if the model under- or overfits the
data. This in contrast to predicted errors in data that is included in the fit,
which will always decrease with more fitting degrees of freedom.

For example, consider a linear regression on a set of latent variables. The
root mean square (RMS) error in the fit data will be a monotonically decreas-
ing function of the number of latent variables used in the regression. However,
the CV score will generally decrease for the initial principal components, and
then start to increase again as the number of principal components gets large.
The initial decrease in the CV score occurs because statistically meaningful
variables are being added and the regression model is becoming more accu-
rate. The increasing CV score signals that too many variables are being used,
the regression is fitting noise, and that the model is overfit. By minimizing the
CV score it is therefore possible to select an optimal set of latent variables for
prediction. This idea is illustrated schematically in Fig. 1.
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Figure 1. A schematic comparison of the error calculated with data included in the fit (normal
RMS fitting error – solid line) and excluded from the fit (CV score – dashed line).
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Test data is another important assessment tool, and simply refers to a set
of data that is excluded from working data at the beginning of the project and
then used to validate the model at the end of model building. To some extent,
the CV method does this already, but in the common case where the model
is altered to optimize the CV score, it will overestimate the true predictive
accuracy of the model [23]. It is only by testing on an entirely new data set,
which the model has not previously encountered, that a reliable estimate of
the predictive capacity of the model can be established. Sometimes there is
not enough data to create an effective test data set, but it is certainly advisable
to do so if at all possible.

2.3.1. Optimization

Optimization methods [25, 26] are not usually considered DM, but they are
an essential tool of many DM projects. For example, once a predictive model
has been established, one frequently wants to optimize the inputs to give a
desired output. This usually cannot be done with local optimization schemes
(e.g., conjugate gradient methods) due to a rough optimization surface with
many local minima. It is therefore frequently necessary to use an optimization
method capable of finding at least close to the global minimum in a landscape
with many local minima. A detailed discussion of these methods is beyond
the scope of this article, but common approaches include simulated annealing
Monte Carlo, genetic algorithms, and branch and bound strategies. Genetic
algorithms seem to be the most popular in the DM applications discussed
here, and work by “evolving” toward an optimal sample population through
operations such as mixing, changing, and removing samples.

2.3.2. Software

Many DM algorithms are fairly simple, and can be programmed relatively
quickly. Often the underlying numerical operations involve no more than stan-
dard matrix operations, and access to widely available basic linear algebra
subroutines (BLAS) is adequate. However, DM is generally very explorative,
and it is common to try many different approaches. Coding everything from
scratch becomes prohibitive, and will lock the user into the few things they can
readily implement. Fortunately, there are a large number of both free and com-
mercial DM tools available for users. Some tools, like the Neural Net Toolbox
in Matlab, are implemented in languages likely to be familiar to the materi-
als scientist, and are readily accessible. An impressive list of possible tools is
given in Appendix A of Refs. [6, 7]. It should also be remembered that for the
academic user many companies will have special rates, so it is worth exploring
commercial software.
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3. Applications

There are far too many studies using DM methods to offer a comprehen-
sive revue. Therefore, we focus on a few key areas where DM techniques are
highlighted and seem to be playing an increasingly important role.

3.1. Quantitative Structure–Property
Relationships (QSPR)

Quantitative Structure–Property Relationships (QSPR), and the closely
related techniques of Quantitative Structure–Activity Relationships (QSAR),
are based on the fundamental tenet that many molecular properties, from boil-
ing point to biological activity, can be derived from basic descriptors of molec-
ular structure. For some examples, see the general review of using NNs to
predict physiochemical properties in Ref. [27] QSPR/QSAR are generally
considered methods of chemistry, but are closely related to the activities of
a DM material scientist.

QSPR/QSAR is a large field and here we consider only one particularly
illustrative example, the work of Chalk et al., predicting boiling points for
molecules [20]. The boiling point for any given compound is not a particu-
larly hard measurement, but the ability to quickly predict boiling points for
many compounds, particularly ones that only exist as computer models, can
be useful for screening in, e.g., drug design. Computing the boiling point of a
compound directly from physical principles requires a very accurate model of
the energetics and significant computation. Therefore, researchers have gener-
ally turned to DM applications in this area.

Chalk et al. have a database of 6629 molecular structures and boiling
points. The dependent variables Y are taken as the boiling points. A set of
descriptors, X0, are developed based on structural and electronic characteris-
tics (derived from semiempirical atomistic models). A technique called formal
inference-based recursive modeling (FIRM) is then used to asses the relevance
of each variable (this technique will not be described here but allows the
influence of a variable to be tested). A set of 18 descriptors are settled on as
likely to be significant and they are used for the independent variables X . A test
data set of 629 molecules that span the whole range of boiling temperatures is
removed. The remaining 6000 molecules are then used to find the optimal
model function F to map X to Y .

F is represented by a NN, and after some initial testing one is chosen with
18 first layer nodes, 10 nodes in the hidden second layer, and a single node
in the third layer. The transfer functions are all sigmoids (sig(x) = 1/(1 +
exp(−x))) and trained with a back-propagation algorithm. In order to con-
trol for overfitting the data is broken up into 10 disjoint subsets and a “leave
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600 out” cross validation is performed. This trains 10 distinct NNs on 5400
molecules each. The NN training is stopped when the CV score reaches a
minimum. The prediction function F is taken to be a committee, and uses the
mean result of the values predicted by all 10 NNs. The final test for F is done
by comparing the predicted and true boiling points for the 629 molecule test
set, giving errors with a standard deviation of only 19 K (the predicted vs. true
melting temperatures for the test set are shown in Fig. 2). The predictive capac-
ity is good enough that for many of the largest prediction errors it was possible
to go back to the experimental data and show that the input data itself was in
error. One could now imagine using a genetic algorithm and the predicting
function F to search the space of molecular structures to find, e.g., a very high
melting temperature molecule, although no such work was performed by the
authors.

It is worth noting that computation plays an important role in providing
the basic input data in the study. All of the structural and electrostatic descrip-
tors were generated by semi-empirical atomistic models. Using computational
methods can be an efficient way to generate large amounts of descriptor infor-
mation, greatly reducing the amount of experimental work required.

Figure 2. Predicted vs. true boiling points for 629 compounds. Prediction is done by neu-
ral networks fit to 6000 boiling points that did not include the 629 shown here. (After [20],
reproduced with permission).
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3.2. Processing–Structure–Property Relationships

Processing–Structure–Property (PSP) relationships refer to the challenging
materials problem of connecting the processing parameters of a material to
its structure and properties. Processing conditions might include such things
as initial composition of reactants and annealing schedule, while structural
aspects might be crystal structure or grain size, and final properties are such
characteristics as yield stress and corrosion resistance. PSP relationships are
very important because they allow processing parameters to be adjusted to
create optimal materials. PSP relationships tend to involve many different phe-
nomena, with widely varying length and time scales, making direct modeling
extremely challenging. However, analogous to QSPR’s reliance on the fact
that properties must be a function of the structure of the molecules involved,
in PSP relationships we know that properties must follow from structure in
some manner, and that structure is somehow determined by processing. The
assurance that PSP relationships exist, combined with the challenge of directly
modeling them, makes this a good area for DM applications.

One of the most active groups in this area has been Bhadeshia and
co-workers. Bhadeshia’s review in 1999 [21] covers a lot of the material’s
work that had been done up to that time in neural network (NN) modeling,
and he and co-workers have continued to apply NN techniques in PSP appli-
cations to such areas as creep modeling [28, 29], mechanical weld properties
[30, 31], and phase fractions in steel [32]. In general, these studies follow the
DM framework used in QSPR above. Many of the data and codes used by
Bhadeshia et al., as well as many others, can be found online as part of the
Materials Algorithm Project [33].

Malinov and co-workers have also done extensive work with DM tools in
PSP relationships, and have developed a code suite, complete with graphical
user interface, to make use of their models [34]. Their work has focused pri-
marily on Ti alloys [35–37] and nitrocarburized steels [38, 39]. The NN soft-
ware they developed uses a cross validation (CV)-like strategy to assess the
effectiveness of different NN architectures, training methods, and trainings,
so that the best network can be obtained by optimization, rather than intu-
itive choice. It is a general trend in DM applications to try to automatically
optimize as many choices as possible, since this gives the best results with
the least user intervention. Many apparent DM choices, such as which latent
variables or NN architectures to use, can in fact be determined by perform-
ing a large number of tests. Implementing this type of automation is generally
limited by the user’s willingness to code the required tests, the time it takes to
perform the optimization, and the amount of data required for sufficient test-
ing. Also, one should ideally have a test set that is entirely excluded from all
the optimization processes for final testing.
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A particularly interesting application by Malinov et al. is the prediction of
time–temperature-transformation (TTT) diagrams for Ti alloys [34, 35, 37].
TTT diagrams give the time to reach a specified fraction of phase transfor-
mation at each temperature, and for a given phase fraction they are a curve
in time–temperature space. They can be modeled to some extent directly with
Johnson–Mehl–Avrami theory, but Malinov et al. chose to use a NN model
so as to be able to predict for many systems and composition variations. The
details discussed here are all from Ref. [35]. The data set was 189 TTT dia-
grams for Ti alloys, and the independent variables were taken to be the compo-
sitions of the 8 most common alloying elements and oxygen. Some additional
elements that were not prevalent enough in the data set for accurate treatment
had to be removed or mapped onto a Mo equivalent. It should be noted that
the authors are careful to identify the ranges of the concentrations of alloying
elements present in the test set. This is very important, since given the limited
data, it is not clear that this NN would give accurate predictions outside the
concentration ranges used in training.

The dependent variables represented more of a problem, since TTT dia-
grams are curves, not single values. Malinov et al. solved this problem by
representing the TTT diagram as a 23-tuple. Two entries gave the position
of the TTT graph nose, its time and temperature. Ten entries gave the upper
portion of the curve, where each entry was the fractional change in time for
a fixed change in temperature, and ten more the lower portion. Finally, one
entry was reserved for the martensite start temperature. These considerations,
for both the independent and dependent variables, demonstrate some of the
data processing that can be required for successful DM. The final predictions
are quite accurate for test sets, and allowed exploration of the dependence of
TTT curves on alloy composition. A number of TTT diagram predictions for
(at that time) unmeasured materials were given, and some of these have since
been measured, demonstrating reasonably good predictive ability for the NN
model (see Fig. 3) [37].

A set of studies using DM techniques to model Al alloys recently came out
of Southampton University [40–44]. The work by Starink et al. [44] summa-
rizes studies on strength, electrical conductivity, and toughness. These studies
are particularly interesting since they directly compare different DM meth-
ods as well as more physically based modeling, based on known constitutive
relations. Starink et al. make use of linear regression and Bayesian NN mod-
els like those discussed above, but also apply neurofuzzy methods and support
vector machines. We will not discuss these further except to point out that
the latter is a relatively new development that seems to have some improved
ability to give accurate predictions over the more common NN methods, and
will likely grow in importance [45–47]. For the cases of direct comparison,
Starink et al. find that physically based modeling performs slightly better.
However, these examples involve very small data sets (around 30 samples),
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Figure 3. Comparison of predicted and measured TTT diagrams for different Ti alloys. These
predictions were made and published before the experimental measurements were taken. (After
Ref. [37], reproduced with permission.)

so one expects there to be significant undertraining in DM methods. Also of
interest is the over three-fold decrease in predictive error for conductivity when
going from linear to nonlinear DM methods, demonstrating why nonlinear NN
methods have become the dominant tool for many applications.

Starink et al. make some use of the concept of hybrid physical and DM
approaches. This is a very natural idea, but worth mentioning explicitly. The
spirit of DM is often one of using as little physical knowledge as possible,
and allowing the data to guide the results. However, by introducing a cer-
tain amount of physical knowledge, a DM effort can be greatly improved.
As summarized by Starink et al., this can be done through initially choosing
independent variables based on known physics, using functional forms that are
physically motivated in the DM, and using DM to fit remaining errors after a
physical model has been used.

3.3. Catalysis

A particularly exciting area of DM applications at present is in catalysis.
A lot of recent activity in this field has been driven by the advent of high-
throughput experiments, where the ability to rapidly create large data sets has
created a new need for data mining concepts to interpret and guide experiment.
Some reviews in this area can be found in Refs. [48–50].
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Some authors have taken approaches similar to those used in QSPR/QSAR
applications and the PSP modeling described above – finding a NN model to
connect the properties of interest to tractable descriptors, and then exploring
that model to understand dependencies or optimize properties [22, 50–56].
The input independent variables are generally the compositions of possible
alloying materials in the catalyst, and the output is some measure of the cat-
alytic activity. Note that it is quite possible to have multiple final nodes in
the network to output multiple measures of interest, such as conversion of the
reactants and percentages of different products [51, 52]. It is also possible to
look at catalytic behavior for a fixed catalyst under different reactor conditions,
where the reactor conditions become the independent variables [22]. Once a
NN has been trained, the best catalyst can be found through optimization of the
function defined by the NN. This is generally done with a genetic algorithm
[51, 54, 56], but other methods have also been explored [55].

Baerns et al. have done influential work in using a genetic algorithm to
design new catalysts, but have skipped the step of fitting a model altogether,
directly running experiments on each new generation of catalysts suggested
by the genetic algorithm [57–59]. For example, Baerns et al. studied oxidative
dehydrogenation of propane to propene using metal oxide catalysts with up
to eight metal constituents, and found a general trend toward better catalytic
activity with each generation, as shown in Fig. 4. Although optimizing the
direct experimental data limits the number of samples that can be examined
(Baerns et al. generally look at only a few hundred) the results have been
very encouraging, e.g., leading to an effective multicomponent catalyst for
low-temperature oxidation of low-concentration propane [58]. Further success

Figure 4. The best (open bar) and mean (solid bar) yield of propene at each generation of
catalysts created by genetic algorithm. (After [57], reproduced with permission.)
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was obtained in studying oxidative dehydrogenation of propane to propene by
following up on materials suggested by the combinatorial genetic algorithm
search with further noncombinatorial “fundamental” studies [57].

Baerns et al.’s work demonstrates that the best results are sometimes
obtained by combining DM and more traditional approaches. Further improve-
ments in high-throughput methods will make direct iterative optimization of
the experiments increasingly effective, but a fitted model will likely always
be able to explore more samples and provide more rigorous optimization. The
choice to use a fitted model is then a balance between the advantage of being
able to optimize more accurately and the disadvantage of having a less accu-
rate function to optimize. Umegaki et al. suggest that, in direct comparisons,
a combined NN and genetic algorithm approach is more effective than direct
optimization of experimental results, but this is a complex issue and will be
problem dependent [56].

Despite many encouraging successes, DM in catalysis still faces a number
of challenges. As pointed out by Hutchings and Scurrell [49] extending the
independent variables to include more preparation and processing variables
might significantly broaden the search for optimal materials. In addition,
issues related to lifetime, stability, and other aspects of long-term performance
are often difficult to predict and need to be addressed. Finally, Klanner et al.
point out that there are different challenges for optimizing a library over a well
known space of possible compositions and designing a discovery program for
development in areas where there is essentially no precedent [50]. In the case
of development of truly new materials, the problem of using a QSPR/QSAR
approach in catalysis design is complicated because of the inherent difficulties
of characterizing heterogeneous solids to build diverse initial libraries. Structure
is a good metric for measuring diversity of molecular behavior, and therefore
allows relatively easy assembly of diverse libraries for exploration. However,
the very nonlinear behavior of solid catalysts, where activity is often depen-
dent on such subtle details as surface defects, means that at this point there is
no metric for measuring, a priori, the diversity of solid catalysts. Klanner et al.
therefore suggest that development work will have to take place through build-
ing a large initial set of descriptors, based on synthesis data and properties of
the constituent elements, and then use dimensional reduction to get a manage-
able number. Finally, no effort has been made here to make comparisons of DM
to direct kinetic equation modeling in catalysis design. Some comments with
regards to theses methods, and how they can be integrated with DM approaches,
are given in Ref. [60].

It should be noted that the above issue of assembling diverse libraries,
along with using genetic algorithms for intelligent searching, can be viewed
as parts of the general problem of optimized experimental design. This is
not a new area, but has become increasingly important due to the advent of
high-throughput methods. It also encompasses such well developed fields as
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statistical Design of Experiments. This is a fruitful area for statistical and DM
methods, and many of the relevant issues have already been mentioned, but we
will not discuss it further here. The interested reader can consult the review by
Harmon and references therein [48]. Another DM area that has been receiv-
ing increased attention due to high-throughput experiments is correlating the
results of cheap and fast experimental measurements with properties of inter-
est. This becomes particularly important when it is necessary to characterize
large numbers of samples quickly, and careful measurement of the desired
properties is not practical. For a discussion of this issue in high-throughput
polymer research see Refs. [61, 62] and a number of rapid screening tools
and detection schemes used in high-throughput catalysis development are
described in Ref. [63].

3.4. Crystal Structure

The prediction of crystal structure is a classic materials problem that has
been an area of ongoing research for many years. Now that modeling efforts
have made computational materials design a real possibility in many areas, the
problem of predicting crystal structure has become more practically pressing,
since it is usually a prerequisitie for any extensive materials modeling. Crys-
tal structure prediction is an area well suited for DM efforts, since there is
no generally reliable and tractable method to predict structure, and there is a
lot of structural data collected in crystallographic databases (e.g., ICSD [64],
Pauling files [65], CRYSTMET [66], ICDD [67]).

Some of the most successful methods for crystal structure prediction are
what are known as structure maps, reviewed at length in Refs. [68, 69]. Struc-
ture maps exist primarily for binary and ternary compounds, and the best
known examples are probably the Pettifor maps [70]. To understand how
Pettifor maps work, consider the map designed for AB binary alloys. Each
possible element is assigned a number, called the Mendeleev number. Then
each alloy AB can be plotted on a Cartesian axis by assigning it the position
(x, y), where x is the Mendeleev number for element A and y is the Mendeleev
number for element B. At position (x, y) one places a symbol representing the
structure type for alloy AB. When enough data is plotted the like symbols
tend to cluster – in other words, alloys with the same structure type tend to be
located near each other on the map. This can be clearly seen in the Pettifor map
in Fig. 5. The probable structure type for a new alloy can simply be found by
locating where the new alloy should reside in the map and examining the
nearby structure types.

Structure maps were not originally introduced as an example of DM, but
can be understood within that framework. One can extend the idea of using
Mendeleev number to a general “vector map,” which maps each alloy to a



Data mining in materials development 411

Figure 5. An AB binary alloy Pettifor map. Notice that like structure types show a clear
tendency to cluster near one another. Provided by John Rodgers using the CRYSTMET database
[66].

multicomponent vector. The vector components might be any set of descriptors
for the alloy, such as Mendeleev numbers, melting temperatures, or differences
in electronegativities. Once the alloys have been mapped to representative vec-
tors they are amenable to different DM schemes. Since crystal structures are
discrete categories, not continuous values, some sort of classification DM is
going to be required.

Structure maps work by defining a simple Euclidean metric on the alloy
vectors and making the assumption that alloys with the same structure types
will be close together. When a new alloy is encountered its crystal structure
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is predicted by examining the neighborhood of the new alloy in the structure
map. Structure types that appear frequently in a small neighborhood of the
new alloy are good candidates for the alloy’s structure type. This is a geometric
classification scheme, along the lines of K -nearest-neighbors described above.
There is no unique way to define the vectors that create the structure map, and
many different physical quantities, such as electronegativities and effective
radii, have been proposed for constructing structure maps. Ref. [64] lists at
least 53 different atomic parameters that could be used as descriptors to define
a structure map. The most accurate Pettifor maps are built by mapping alloys
to vectors using a specially devised chemical scale [71]. The chemical scale
was motivated by many physical concerns, but is fundamentally an empirical
way to map alloys to vectors, chosen to optimize the clustering of alloys with
the same crystal structures.

A number of new ideas are suggested by viewing crystal structure pre-
diction from a DM framework. First, it is clear that many standard assess-
ment techniques have only recently begun to be incorporated. It was not until
about 20 years after the first Pettifor maps that an effort was made to formal-
ize their clustering algorithm and assess their accuracy using cross validation
techniques (the accuracy was found to very good, in some cases giving correct
predictions for non-unique structures 95% of the time) [72]. Also, the question
of how to assess errors can be fruitfully thought of in terms of false positives
(predicting a crystal structure that is wrong) and false negatives (failing to pre-
dict the crystal structure that is right). For many situations, e.g., predicting
structures to be checked by ab initio methods or used as input for Rietveld
refinements, a false positive is not a large problem, since the error will likely
be discarded at a later stage, but a false negative is critical, since it means
the correct answer will not be found with further investigation. This leads to
the idea of using maps to suggest a candidate structure list, rather than a single
candidate structure [72]. Using a list creates many false positives, but greatly
reduces the chance of false negatives.

A DM perspective on structure prediction encourages one to think of mov-
ing beyond present structure map methods. For example, different metrics,
other classification algorithms, or mining on more complex alloy descriptors,
might yield more accurate results. Some work along these lines has already
occurred, including machine learning based structure maps [73] and NN and
clustering predictions of compound formation [74]. A similarly spirited appli-
cation used partial least squares to predict higher level structural features of
zeolites in terms of simpler structural descriptors [75], and is part of a more
general center focused on DM in materials science [76].

The structure maps have at least two severe limitations. As described above,
they predict structure type given that the alloy has a structure at a given stoi-
chiometry, but do not consider the question of whether or not an alloy will have
an ordered phase at that stoichiometry. This is not a problem when a structure
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is known to exist and one wants to identify it, but in many cases that infor-
mation is not available. There are some successful methods for identifying
alloys as compound forming versus having no-compounds, e.g., Meidema’s
rules [77] or Villar’s maps for ternary compounds [68], but the problem of
identifying when an alloy will show ordering at a given composition has not
been thoroughly investigated in the context of structure maps. However, it is
certainly possible that further DM work could be of value solving this prob-
lem, and some potentially useful methods are discussed below.

Another serious limitation on structure maps is that classification DM is
only effective when an adequate number of samples of each class are available.
There are already thousands of structure types, the number is still increasing,
and only a small percentage of possible multicomponent alloy systems have
been explored [68]. Therefore, it seems unlikely that sufficiently many exam-
ples of all the structure type classes will ever be available for totally general
application of structure maps. Infrequent structure types are less robustly pre-
dicted with structure maps, and totally new structure types cannot be predicted
at all. The problem of limited sampling can be alleviated by restricting the area
of focus, e.g., considering only the most common structure types, which are
likely to be well sampled, or only a subset of alloys, where all the relevant
structure types can be discovered. However, the very significant challenge of
sampling all the relevant structure types creates a need for other methods.

One promising idea is to abandon the use of structure types as the most
effective way to classify structures and replace it with a scheme easier to sam-
ple. An idea along these lines is to classify alloys by the local environments
around each atom [68, 78]. Local environments may in fact be a more rele-
vant method of classification than structure type for understanding physical
properties, and there seem to be far fewer local environments than different
structure types. This is analogous to classifying proteins by their different
folds, which are essential to function and come in limited variety [79].

Computational methods, using different Hamiltonians, offer an increas-
ingly practical route toward crystal structure prediction. Given an accurate
Hamiltonian for an alloy, the stable crystal structures can be calculated by
minimizing the total energy. These techniques can also predict entirely new
structures never seen experimentally, since the prediction is done on the com-
puter. Unfortunately, the structural energy landscape has many local minima,
and it cannot be explored quickly or easily. Researchers in this area therefore
are forced to make a tradeoff between the speed and accuracy of the energy
methods, and the range of possible structures that are explored. For exam-
ple, Jansen has used simple pair potentials to explore the energy landscape,
and then applied more accurate ab initio methods for likely structural candi-
dates [80]. This is a common approach, to optimize with simplified expres-
sions and then use slower and more accurate ab initio energy methods on only
the more promising areas. A similar approach was taken to predict a range of
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inorganic structures from a genetic algorithm [81]. If one restricts the possible
structures, then direct optimization of ab initio energies can be performed.
For example, low cohesive energy structures for 32 possible alloying ele-
ments were found on a four atom, face centered cubic unit cell by optimizing
ab initio energies using a genetic algorithm [82]. Although these approaches
are quite promising, optimizing the energy over the space of all possible atomic
arrangements is generally not practical. It is necessary to find some approach
to guide the calculations to regions of structure space that are likely to have
the lowest energy structures and can be explored effectively.

A practical and common method to guide calculations is sometimes col-
loquially referred as the “round up the usual suspects” approach, borrowing a
quotation from Captain Louis Renault in the end of Casablanca. This approach
simply involves calculating structures one thinks are likely to be ground states
and is another example of human DM, where the scientist is drawing on their
own experience to guide the calculations toward the correct structure.
As mentioned in the introduction, formalizing human DM on the computer
offers many advantages in accuracy, verification, portability, and efficiency.
An improvement can be made by limiting the human component to suggest-
ing a few likely parent lattices, and then fitting simplified Hamiltonians on
each parent lattice to predict stable structures. This approach, called cluster
expansion, has been well validated in many systems [83, 84] and has been
successful in predicting some structures that had not been previously identi-
fied experimentally [85, 86]. However, choosing the correct parent lattice and
performing the fitting required for cluster expansion is at present still difficult
to automate, although efforts along these lines are being made [87].

Ideally, the process of guiding computational crystal structure prediction
would be entirely automated by DM methods. A step in this direction has
been taken by Curtarolo et al. who have demonstrated how one might combine
experimental data, high-throughput computation, and DM methods to guide
new calculations toward likely stable crystal structures [88]. Experimental
information is used to get a list of commonly occurring structure types, and
then these are calculated using automated scripts for a large number of sys-
tems. Mined correlations between structural energies are then used to guide
calculations on new systems toward stable regions, reducing the number of
calculations required to predict crystal structures. This approach can, in the-
ory, be expanded to totally new structure types, since these can be generated
on the computer, and work in this direction is under development.

4. Conclusions

We have seen here a number of different examples of DM applications
in different areas, and it is valuable to step back and note some overall
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features. In general, DM applications in materials development still need to
prove themselves, and relatively few new discoveries have been made using
them. Many of the results in this field consist primarily of exploring new
models to demonstrate that such modeling is possible, that accurate predic-
tions can be made, and that useful understanding of dependencies on key vari-
ables can be obtained. This will inevitably cause some skepticism about the
final utility of the methods, but it is appropriate for a field which is still rela-
tively young and finding its place. A similar evolution has been taken by, e.g.,
ab initio quantum mechanical techniques. It is only recently that these meth-
ods have moved out the stage where the accuracy of the model was the key
issue to the stage where the bulk of papers focus on the materials results,
not the techniques. All the drivers for using DM methods identified in
the introduction, more data, databases, and DM tools, will only become
increasingly forceful with continuing advances in experiment, computation,
algorithms, and information technology. For these reasons, we believe that DM
approaches are going to be increasingly important tools for the modern
materials developer.

A number of the above examples showed the necessity of combining DM
methods with more traditional physical approaches. Whether it is microstruc-
tural modeling in the area of processing–structure–property prediction or
kinetic equation modeling in catalysis design, physical modeling is by no
means standing still, and its utility will continue to expand. In the few cases
where authors make direct comparisons, it is not clear that DM applications
have been more effective [44, 89]. It is already true that DM approaches,
although more data focused, are deeply intertwined with traditional physical
modeling. A researchers knowledge of the physics of the problem strongly
influences such things as choices of descriptors (e.g., exponentiating param-
eters where thermal activation is expected), choices in the predictive model
(e.g., using linear models when linear relationships are expected), and many
unwritten small decisions about how the DM is done. DM and physical
modeling, despite an apparent conflict, are really best used collaboratively,
and effective materials researchers will need to combine both tools to have
maximal impact.

Another important feature to note is the difference between DM in materi-
als science and the more established areas of drug design and QSPR/QSAR.
Although the overall framework is very similar, establishing effective descrip-
tors for independent variables seems to be harder in materials applications.
Bulk materials, more common in traditional materials science applications,
often have atomic-, nano-, and micro-structural features that are hard to
characterize and quantify with effective descriptors. In their absence, further
progress on many problems will require additional descriptors relating to
processing choices.
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Finally, we would like to stress the natural synergy between DM and other
kinds of computational modeling. High-throughput computation can help pro-
vide the wealth of data needed for robust data mining, as was illustrated above
in the use of computationally optimized structures for boiling point model-
ing [20] and crystal structure prediction [80–82, 88]. Impressive examples of
high-throughput ab initio computation providing large amounts of accurate
materials data can be found in Refs. [90–92]. High-throughput computation
not only increases the effectiveness of DM methods, but extends the reach
of computational modeling, since DM methods can help span the challenging
range of length and time scales involved in materials phenomena. The grow-
ing power of DM and other computational methods will only increase their
interdependence in the future.

Finally, on a more personal note, we have found that one of the most valu-
able contributions of DM to our research has been to expand how we think
about problems. DM encourages one to ask how one can make optimal use of
data and to look deeply for patterns that might provide valuable information.
DM makes one think on a large scale, thereby encouraging the automation of
experiment, computation, and data analysis for high-throughput production.
DM also encourages a culture of careful testing for any kind of fitting, through
cross validation and statistical methods. Finally, DM is inherently inderdisci-
plinary, encouraging materials scientists to learn more about analogous prob-
lems and techniques from across the hard and soft sciences, thereby enriching
us all as researchers.
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