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1. Introduction

Atomic diffusion in solids is a kinetic property that affects the rates of
important nonequilibrium phenomena in materials. The kinetics of atomic
redistribution in response to concentration gradients determine not only the
speed, but often also the mechanism by which phase transformations in multi-
component solids occur. In electrode materials for batteries and fuel cells high
mobilities of specific ions ranging from lithium or sodium to oxygen or hydro-
gen are essential. In many instances, diffusion occurs in nondilute regimes in
which different migrating atoms interact with each other. For example, lithium
intercalation compounds such as LixCoO2 and LixC6 which serve as electrodes
in lithium-ion batteries, can undergo large variations in lithium concentrations,
ranging from very dilute concentrations to complete filling of all interstitial
sites available for Li in the host. In nondilute regimes, diffusing atoms inter-
act with each other, both electronically and elastically. A complete theory of
nondilute diffusion in multi-component solids needs to account for the depen-
dence of the energy and migration barriers on the configuration of diffusing
ions.

In this chapter, we present the formalism to describe and model diffusion
in multicomponent solids. With tools from alloy theory to describe config-
urational thermodynamics [1–3], it is now possible to rigorously calculate
diffusion coefficients in nondilute alloys from first-principles. The approach
relies on the use of the alloy cluster expansion which has proven to be an
invaluable statistical mechanical tool that links first-principles energies to the
thermodynamic and kinetic properties of solids with configurational disorder.
Although diffusion is a nonequilibrium phenomenon, diffusion coefficients
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can nevertheless be calculated by considering fluctuations at equilibrium using
Green–Kubo relations [4].

We first elaborate on the atomistic mechanisms of diffusion in solids with
interacting diffusing species. This is followed with a discussion of the rel-
evant Green–Kubo expressions for diffusion coefficients. We then introduce
the cluster expansion formalism to describe the configurational energy of a
multi-component solid. We conclude with several examples of first-principles
calculations of diffusion coefficients in multi-component solids.

2. Migration in Solids with Configurational Disorder

Multi-component crystalline solids under most thermodynamic boundary
conditions are characterized by a certain degree of configurational disorder.
The most extreme example of configurational disorder occurs in a solid
solution in which on average the arrangements of the different components
of the solid approximate randomness. But even ordered compounds exhibit
some degree of disorder due to thermal excitations or slight off-stoichiometry
of the bulk composition. Atoms diffusing over crystal sites of a disordered
solid sample a variety of different local environments along their trajectory.

Diffusion in most crystals can be characterized as a Markov process whereby
atoms after each hop completely thermalize before migrating to the next site
along its trajectory. Hence each hop is independent of all previous hops. With
reasonable accuracy, the rate with which individual atomic hops occur, can be
described with transition state theory according to

� = ν∗ exp
(−�Eb

kB T

)
(1)

where ν∗ is a vibrational prefactor (having units of Hz) and �Eb is an activa-
tion barrier. Within the harmonic approximation, the vibrational prefactor is a
ratio between the vibrational eigenmodes of the solid at the initial state of the
hop to the vibrational eigenmodes when the migrating atom is at the activated
state [5].

In the presence of configurational disorder, the activation barrier and fre-
quency prefactor depend on the local arrangement of atoms around the migrat-
ing atom. Modeling of diffusion in a multicomponent system therefore requires
a knowledge of the dependence of �Eb and ν∗ on configuration. Especially,
the configuration dependence of �Eb is of importance as the hop frequency, �,
depends on it exponentially.

We restrict ourselves here to migration that occurs by individual atomic
hops to adjacent vacant sites. Hence we do not consider diffusion that occurs
through either a ring or intersticialicy mechanism. We also make a distinction
between diffusion of interstitial species and substitutional species.
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2.1. Interstitial Diffusion

Interstitial diffusion occurs in many important materials. A common exam-
ple is the diffusion of carbon atoms over the interstitial sites of bcc or fcc iron
(i.e., steel). Many phase transformations in steel involve the redistribution of
carbon atoms between growing precipitate phases and the consumed matrix
phase. A defining characteristic of interstitial diffusion is the existence of an
externally imposed lattice of sites over which atoms can diffuse. In steel, the
crystallized iron atoms create the interstitial sites for carbon. A similar situation
exists in LixCoO2 in which a crystalline CoO2 host creates an array of intersitial
sites that can be occupied by lithium. While in LixCoO2, the lithium concen-
tration x can be varied from 0 to 1, in steel FeCy , the carbon concentration y
is typically very low. Individual carbon atoms interfere minimally with each
other as they wander over the interstitial sites of iron. In Lix CoO2, however,
as the lithium concentration is typically large, migrating lithium atoms interact
strongly with each other and influence each other’s diffusive trajectories.

Another type of system that we place in the category of interstitial diffusion
is adatom diffusion on the surface of a crystalline substrate. Often a crystalline
surface creates an array of well defined sites on which adsorbed atoms reside,
such as the fcc sites on a (111) terminated surface of an fcc crystal. Diffusion
then involves the migration of adsorbed atoms over these surface sites.

The presence of many diffusing atoms creates a state of configurational
disorder over the interstitial sites that evolves over time as a result of the
activated hops of individual atoms. Not only does the activation barrier of a
migrating atom depend on the local arrangement of the surrounding intersti-
tial atoms, but also the migration mechanism can depend on that arrangement.
This is the case in Lix CoO2, a layered compound consisting of close packed
oxygen planes stacked with an ABCABC sequence. Between the oxygen lay-
ers are alternating layers of Li and Co which occupy octahedral sites of the
oxygen sublattice. Within each lithium plane, the lithium ions occupy a two
dimensional triangular lattice. As lithium is removed from LiCoO2, vacan-
cies are created in the lithium planes. First-principles density functional the-
ory calculations (LDA) have shown that two migration mechanisms for lithium
exchange with an adjacent vacancy exist depending on the arrangement of sur-
rounding lithium atoms [3]. This is illustrated in Fig. 1. If the two sites adjacent
to the end points of the hop (sites (a) and (b) in Fig. 1a) are simultaneously
occupied by lithium ions, then the migration mechanism follows a direct path,
passing through a dumbel of oxygen atoms. The calculated activation barrier
for this mechanism is high, approaching 0.8 eV. This mechanism occurs when
lithium migrates to an isolated vacancy. If, however, one or both of the sites
adjacent to the end points of the hop are vacant (Fig. 1b), then the migrating
lithium follows a curved path which passes through an adjacent tetrahedral
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Figure 1. Two lithium migration mechanims in LixCoO2 depending on the arrangement of
lithium ions around the migrating ion. (a) When both sites a and b are occupied by Li, the
migrating lithium performs a direct hop whereby it has to squeeze through a dumbel of oxygen
ions. This mechanism occurs when the migrating lithium ion hops into an isolated vacancy
(square). (b) When either site a or site b are vacant, the migrating lithium ion performs a curved
hop whereby it passes through a tetrahedrally coordinated site. This mechanism occurs when
the migrating atom hops into a divacancy.

site, out of the plane formed by the Li sites. For this mechanism, the activa-
tion barrier is low, taking values in the vicinity of 0.3–0.4 eV. This mechanism
occurs when lithium migrates into a divacancy. Comparison of the activation
barriers for the two mechanisms clearly shows that lithium diffusion mediated
with divacancies is more rapid than with single vacancies. Nevertheless, we
can already anticipate that the availability of divacancies will depend on the
overall lithium concentration.

The complexity of diffusion in a disordered solid is evident in Fig. 2 which
schematically illustrates a typical disordered arrangement of lithium atoms
within a lithium plane of Lix CoO2. Hop 1, for example, must occur with a
large activation barrier as the lithium is migrating to an isolated vacancy. In
hop 2, lithium migrates to a vacant site that belongs to a divacancy and hence
follows a curved path passing through an adjacent tetrahedral site character-
ized by a low activation barrier. In hop 3, lithium migrates to a vacant site
belonging to two divacancies simultaneously, and hence has two low energy
paths available. Similar complexities can be expected for adatom diffusion on
crystalline substrates.

2.2. Substitutional Diffusion

Substitutional diffusion is qualitatively different from interstitial diffusion
in that an externally imposed lattice of sites for the diffusing atoms is absent.
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Figure 2. A typical disordered lithium-vacancy arrangement within the lithium planes of
Lix CoO2. In a given lithium-vacancy arrangement, several different migration mechanisms
can occur.

Instead, the diffusing atoms themselves form the network of crystal sites. This
describes the situation for most metallic and semiconductor alloys. Vacancies
with which to exchange with do exist in these crystalline alloys, however, the
concentrations are often very dilute. Examples where substitutional diffusion
is relevant are alloys such as Si–Ge, Al–Ti and Al–Li, in which the different
species reside on the same crystal structure, and migrate by exchanging with
vacancies.

As with intersitial compounds, widely varying degrees of local order or dis-
order exist, affecting migration barriers. Al(1−x)Lix for example is metastable
on the fcc crystal structure for low x and forms an ordered L12 compound at
x = 0.25. Diffusion within a solid solution is different than in the ordered com-
pound as the local arrangement of Li and Al are different. Figure 3 illustrates
a diffusive hop of an Al atom to a neighboring vacancy within the ordered L12

Al3Li phase. The energy along the migration path as calculated with LDA is also
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Figure 3. The energy along the migration path of an Al atom hopping into a vacancy (square)
on the lithium sublattice of L12 Al3Li. Lighter atoms are Al, darker atoms are Li.

illustrated in Fig. 3. Clearly, the vacancy prefers the Li sublattice as the energy
of the solid increases as the vacancy migrates from the Li sublattice to the Al
sublattice by exchanging with an Al atom.

3. Green–Kubo Expressions for Diffusion

While diffusion is complex at the atomic length scale, of central importance
at the macroscopic length scale is the rate with which gradients in concentra-
tion dissipate. These rates can be described by diffusion coefficients that relate
atomic fluxes to gradients in concentration. Green–Kubo methods make it
possible to link kinetic coefficients to microscopic fluctuations of appropriate
quantities at equilibrium. In this section we present the relevant Green–Kubo
equations that allow us to calculate diffusion coefficients in multi-component
solids from first-principles. We again make a distinction between interstitial
and substitutional diffusers.
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3.1. Interstitial Diffusion

3.1.1. Single component diffusion

For a single component occuping interstitial sites of a host, such as carbon
in iron, or Li in Lix CoO2, irreversible thermodynamics [4] stipulates that a net
flux J in particles occurs when a gradient in the chemical potential µ of the
interstitial specie exists according to

J =−L∇µ (2)

where L is a kinetic coefficient that depends on the mobility of the diffusing
atoms. Often it is more practical to express the flux in terms of a concentra-
tion gradient instead of a chemical potential gradient as the former is more
accessible experimentally

J =−D∇C. (3)

D in Eq. (3) is the diffusion coefficient and the concentration C refers to the
number of interstitial particles per unit volume. While the true driving force
for diffusion is a gradient in chemical potential, it is nevertheless possible to
work with Eq. (3) provided the diffusion coefficient is expressed as

D = L
(

dµ

dC

)
. (4)

Hence the diffusion coefficient consists of a kinetic factor L and a thermody-
namic factor dµ/dC .

The validity of irreversible thermodynamics is restricted to systems that are
not too far removed from equilibrium. To quantify this, it is useful to mentally
divide the solid into small subregions that are microscopically large enough for
thermodynamic variables to be meaningful yet macroscopically small enough
that the same thermodynamic quantities can be considered constant within each
subregion. Hence, although the solid itself is removed from equilibrium, each
subregion is locally at equilbrium. This is called the local equilibrium approxi-
mation, and it is within this approximation that the linear kinetic equation Eq. (2)
is considered valid.

Within the local equilibrium approximation, the kinetic parameters D and
L can be derived by a consideration of relevant fluctuations at thermodynamic
equilibrium. Crucial in this derivation, is the assumption made by Onsager
in his proof of the reciprocity relations of kinetic parameters, that the regres-
sion of a fluctuation of a particular extensive property around its equilibrium
value occurs on average according to the same linear phenomenological laws
as those governing the regression of artificially induced fluxes of the same
extensive quantity [4]. This regression hypothesis is a consequence of the
fluctuation–dissipation theorem of nonequilibrium statistical mechanics [6].
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Several techniques, collectively referred to as Green–Kubo methods, exist
to link microscopic fluctuations to macroscopic kinetic quantities [7–9].
Neglecting crystallographic anisotropy, the Green–Kubo expression for the
kinetic factor for diffusion can be written as [10–12]

L =

〈(∑
ζ � �Rζ (t)

)2
〉

(2d)t MvskBT
(5)

where � �Rζ (t) is the vector connecting the end points of the trajectory of
particle ζ after a time t , M refers to the total number of interstitial sites avail-
able, vs is the volume per interstitial site, kB is the Boltzmann constant, T is
the temperature and d refers to the dimension of the interstitial network. The
brackets indicate an ensemble average performed at equilibrium.

Often, the diffusion coefficient is also written in an equivalent form as [10]

D = DJF (6)

where

DJ =

〈(∑
ζ � �Rζ (t)

)2
〉

(2d)t N
(7)

and

F =
d
(

µ
kBT

)
d ln(x)

. (8)

N refers to the number of diffusing atoms and x = N/M to the fraction of filled
interstitial sites. F is often called a thermodynamic factor and DJ is sometimes
called the jump-diffusion or self-diffusion coefficient.

A common approximation is to neglect cross correlations between different
diffusing species and to replace DJ with the tracer diffusion coefficient defined as

D∗ =

〈
� �R2

ζ (t)
〉

(2d)t
. (9)

The difference between DJ and D∗ is that the former depends on the square of
the displacement of all the particles while the latter depends on the average of
the square of the displacement of individual diffusing atoms. DJ is a measure
of collective fluctuations of the center of mass of all the diffusing particles.
Figure 4 compares DJ and D∗ calculated with kinetic Monte Carlo simulations
for the LixCoO2 system. Notice in Fig. 4 that DJ is systematically larger than
D∗ for all lithium concentrations x , only approaching D∗ for dilute lithium
concentrations.
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Figure 4. A comparison of the self diffusion coefficient DJ (crosses), and the tracer diffusion
coefficient D∗ (squares), for lithium diffusion in Lix CoO2 calculated at 400 K.

For interstitial components, the chemical potential of the diffusing atoms
is defined as

µ =
dG

dN
=

dg

dx
(10)

where G is the free energy of the crystal containing the interstitial species and
g is the free energy normalized per interstitial site. While the thermodynamic
factor is related to the chemical potential according Eq. (8) it is often convenient
to determine F by considering fluctuations in the number of interstitial atoms
within the grand canonical ensemble (constant µ, T and M).

F =
N

〈N2〉 − 〈N〉2 (11)

Diffusion involves redistribution of particles from subregions of the solid with
a high concentration of interstitial atoms to other subregions with a
low concentration. The thermodynamic factor describes the thermodynamic
response to concentration fluctuations within sub-regions.

3.1.2. Two component system

A similar formalism emerges when two different species reside and diffuse
over the same interstitial sites of a host. This is the case for example for car-
bon and nitrogen diffusion in iron or lithium and sodium diffusion over the
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interstitial sites of a transition metal oxide host. Referring to the two diffusing
species as A and B, the flux equations become

JA = −LAA∇µA − LAB∇µB (12)

JB = −LBA∇µA − LBB∇µB

where Lij (i, j = A or B) are kinetic coefficients similar to L of Eq. (2). As
with Eq. (2), gradients in chemical potential are often not readily accessible
experimentally and Eq. (12) can be written as

JA = −DAA∇CA − DAB∇CB (13)

JB = −DBA∇CA − DBB∇CB.

where the matrix of diffusion coefficients

(
DAA DAB

DB A DB B

)
=
(

L AA L AB

L B A L B B

)⎛⎜⎜⎜⎝
∂µA

∂CA

∂µA

∂CB

∂µB

∂CA

∂µB

∂CB

⎞⎟⎟⎟⎠ (14)

can again be factorized into a product of a kinetic term (the 2×2 L matrix) and
a thermodynamic factor (the 2× 2 matrix of partial derivative of the chemical
potentials).

TheGreen–Kuboexpressions relating themacroscopic diffusion coefficients
to atomic fluctuations are [13, 14]

Lij =

〈(∑
ζ � �Ri

ζ (t)
) (∑

ξ � �R j
ξ (t)

)〉
(2d)tvs MkBT

. (15)

where � �Ri
ζ is the vector linking the end points of the trajectory of atom ζ of

specie i after time t .
Another factorization of D is practical when studying diffusion with a lattice

model description of the interactions between the different constituents residing
on the crystal network

D = L̃Θ̃ (16)

where

L̃ i j =

〈(∑
ζ � �Ri

ζ (t)
) (∑

ξ � �R j
ξ (t)

)〉
(2d)t M

. (17)
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and

�̃i j =
∂
(

µi
kBT

)
∂x j

. (18)

are respectively matrices of kinetic coefficients and thermodynamic factors.
As with the single component intersitial systems the chemical potentials

for a binary component interstitial system are defined as

µi =
∂G

∂Ni
=

∂g

∂xi
(19)

where i refers to either A or B. The components of �̃ can also be written in terms
of variances of the number of particles residing on the M site crystal network at
constant chemical potentials, that is in terms of measures of fluctuations

Θ̃ =
M

Q

( 〈N2
B〉 − 〈NB〉2 − (〈NA NB〉 − 〈NA〉〈NB 〉)

− (〈NB NA〉 − 〈NA〉〈NB 〉) 〈N2
A〉 − 〈NA〉2

)
(20)

where

Q =
(〈

N2
A

〉
− 〈NA〉2

)(〈
N2

B

〉
− 〈NB〉2

)
− (〈NA NB〉 − 〈NA〉 〈NB〉)2

These fluctuations in NA and NB are to be calculated in the grand canonical
ensemble at the chemical potentials µA and µB corresponding to the concentra-
tions at which the diffusion coefficient is desired.

3.2. Substitutional Diffusion

The starting point for treating substitutional diffusion in a binary alloy are
the Green–Kubo relations of Eqs. (14)–(18). However, several modifications
and qualifications are necessary. These arise from the fact that alloys are char-
acterized by a dilute concentration of vacancies and that the crystallographic
sites on which the diffusing atoms reside are not created externally by a host,
but are rather formed by the diffusing atoms themselves. The consequences
of this for diffusion is that the chemical potentials appearing in the thermo-
dynamic factor are not the conventional chemical potentials for the individual
species A and B of a substitutional alloy, but are rather differences in chemi-
cal potentials between that of each diffusing specie and the vacancy chemical
potential. Hence the chemical potentials of Eqs. (12), (14) and (18) need to be
replaced by µ̃i in which

µ̃i = µi − µV (21)
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where µV is the vacancy chemical potential in the solid. The reason for this
modification arises from the fact that the chemical potential appearing in the
Green–Kubo expression for the diffusion coefficient matrix Eq. (14) and
defined in Eq. (19) corresponds to the change in free energy as component i
is added by holding the number of crystalline sites constant, meaning that i is
added at the expense of vacancies. This differs from the conventional chemical
potentials of alloys which are defined as the change in free energy of the solid
as component i is added by extending the crystalline network of the solid.
µ̃i refers to the chemical potential for a fixed crystalline network, while µi

and µV correspond to chemical potentials for a solid in which the crystalline
network is enlarged as more species are added.

The use of µ̃i instead of µi in the thermodynamic factor of the Green–Kubo
expressions for the diffusion coefficients of crystalline solids also follows from
irreversible thermodynamics [15, 16] as well as thermodynamic considerations
of crystalline solids [17]. It can also be understood on physical grounds. By
dividing the crystalline solid up into subregions, diffusion can be viewed as
the flow of particles from one subregion to the next. Because of the constraint
imposed by the crystalline network, the only way for excess atoms from one
sub-region to be accommodated by a neighboring subregion is through the
exchange of vacancies. One subregion gains vacancies the other loses them.
The change in free energy in each subregion due to diffusion occurs by adding
or removing atoms at the expense of vacancies.

Another important modification to the treatment of binary interstitial dif-
fusion is the identification of interdiffusion. Interdiffusion in its most explicit
form refers to the dissipation of concentration gradients by the intermixing
of A and B atoms. It is this phenomenon of intermixing that enters into con-
tinuum descriptions of diffusion couples and phase transformations involving
atomic redistribution.

Kehr et al. [18] demonstrated that in the limit of dilute vacancy concen-
trations, the full 2 × 2 diffusion matrix can be diagonalized producing an
eigenvalue λ+ corresponding to density relaxations due to inhomegeneities in
vacancies and an eigenvalue λ− corresponding to interdiffusion. The diagonal-
ization of the D matrix is accompanied by a coordinate transformation of the
fluxes and the concentration gradients. In matrix notation,

J =−D∇C (22)

where J and ∇C are column vectors containing as elements JA, JB and ∇CA,
∇CB, respectively. Diagonalization of D leads to

D = EλE−1 (23)
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where λ is a diagonal matrix with components λ+ (the larger eigenvalue) and
λ− (the smaller eigenvalue) in the notation of Kehr et al. [18], i.e.,

λ =
(
λ+ 0
0 λ−

)
The flux equation (22) can then be rewritten as

E−1J =−λE−1∇C. (24)

The eigenvalue λ−, which describes the rate with which gradients in the con-
centration of A and B atoms dissipate by an intermixing mode is the most
rigorous formulation of what is commonly referred to as an interdiffusion
coefficient.

4. Cluster Expansion

The Green–Kubo expressions for diffusion coefficients are proportional to
the ensemble averages of the square of the collective distance travelled by the
diffusing particles of the solid. Trajectories of interacting diffusing particles can
be obtained with kinetic Monte Carlo simulations in which particles migrate on
a crystalline network with migration rates given by Eq. (1). The migration rates
of a specific atom, however, depend on the local arrangement of the other dif-
fusing atoms through the configuration dependence of the activation barrier and
frequency prefactor. Ideally, the activation barrier for each local environment
could be calculated from first-principles. Nevertheless, this is computationally
impossible, as the number of configurations are exceedingly large, and first-
principles activation barrier calculations have a high computational cost. It is
here that the cluster expansion formalism [1–3] becomes invaluable as a tool to
extrapolate energy values calculated for a few configurations to determine the
energy for any arrangement of atoms in a crystalline solid.

In this section, we describe the cluster expansion formalism and how it
can be applied to characterize the configuration dependence of the activation
barrier for diffusion. We first focus on describing the configurational energy
of atoms residing at their equilibrium sites, i.e., of the configurational energy
of the end points of any hop.

4.1. General Formalism

We restrict ourselves to binary problems though the cluster expansion for-
malism is valid for systems with any number of species [1, 2]. While it is clear
that two component alloys without crystalline defects such as vacancies are
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binary problems, atoms residing on the interstitial sites of a host can be treated
as a binary system as well, with the interstitial atoms constituting one of the
components and the vacancies the other. In crystals, atoms can be assigned to
well defined sites, even when relaxations from ideal crystallographic positions
occur. There is always a one to one correspondence between each atom and a
crystallographic site. If there are M crystallographic sites, then there are 2M

possible arrangements of two species over those sites. To characterize a partic-
ular configuration, it is useful to introduce occupation variables σi that are +1
(−1) if an A (B which could be an atom different from A or a vacancy) resides
at site i . The vector �σ =(σ1, σ2, . . . , σi , . . . , σM) then uniquely specifies a con-
figuration. The use of �σ , however, is cumbersome and a more versatile way of
uniquely characterizing configurations can be achieved with polynomials φα

of occupation variables defined as [1]

φα(�σ) =
∏
i∈α

σi (25)

where i are sites belonging to a cluster α of crystal sites. Typical examples of
clusters are a nearest neighbor pair cluster, a next nearest neighbor pair clus-
ter, a triplet cluster etc. Examples of clusters on a two dimensional triangular
lattice are illustrated in Fig. 5. There are 2M different clusters of sites and
therefore 2M cluster functions φα(�σ).

It can be shown [1] that the set of cluster functions φα(�σ) form a complete
and orthonormal basis in configuration space with respect to the scalar product

〈 f, g〉 =
1

2M

∑
�σ

f (�σ)g(�σ ) (26)

where f and g are any scalar functions of configuration. The sum in Eq. (26)
extends over all possible configurations of A and B atoms over the M sites of
the crystal. Because of their completeness and orthonormality over the space
of configurations, it is possible to expand any function of configuration f (�σ )
as a linear combination of the cluster functions φα(�σ ). In particular, the con-
figurational energy (with atoms relaxed around the crystallographic positions
of the crystal) can be written as

E(�σ) = Eo +
∑
α

Vαφα(�σ ) (27)

where the sum extends over all clusters α over the M sites. The coefficients
Vα are constants and formally follow from the scalar product of E(�σ) with the
cluster function φα(�σ)

Vα = 〈E(�σ ), φα(�σ)〉 =
1

2M

∑
�σ

E(�σ)φα(�σ ). (28)

Eo is the coefficient of the empty cluster φo = 1 and is the average of E(�σ )
over all configurations. Equation (27) is referred to as a cluster expansion of
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Figure 5. Examples of clusters for a two dimensional triangular lattice.

the configurational energy and the coefficients of the expansion Vα are called
effective cluster interactions (ECI).

Equation (27) can be viewed as a generalized Ising model Hamiltonian
containing not only nearest neighbor pair interactions, but also all other pair
and multibody interactions extending beyond the nearest neighbors. Through
Eq. (28), a formal link is made between the interaction parameters of the
generalized Ising model and the configuration dependent ground state energies
of the solid in each configuration �σ .

Clearly, the cluster expansion for the configurational energy, Eq. (27), is
only useful if it converges rapidly, i.e., there exists a maximal cluster αmax

such that all ECI corresponding to clusters larger than αmax can be neglected.
In this case, the cluster expansion can be truncated to yield

E(�σ) = Eo +
αmax∑
α

Vαφα(�σ) (29)
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A priori mathematical criteria for the convergence of the configurational energy
cluster expansion do not exist. Experience indicates that convergence depends
on the particular system being considered. In general, though, it can be expected
that the lower order clusters extending over a limited range within the crystal will
have the largest contribution in the cluster expansion.

4.2. Symmetry and the Cluster Expansion

Simplifications to the cluster expansion (27) or (29) can be made by taking
the symmetry of the crystal into account [2]. Clusters are said to be equivalent
by symmetry if they can be mapped onto each other with at least one space
group symmetry operation. For example, clusters α and β of Fig. 5 are equiv-
alent since a clockwise rotation of α by 60◦ followed by a translation by the
vector 2�b maps α onto β. The ECI corresponding to clusters that are equivalent
by symmetry have the same numerical value. In the case of α and β of Fig. 5,
Vα = Vβ . All clusters that are equivalent by symmetry are said to belong to an
orbit �α where α is a representative cluster of the orbit. For any arrangement
�σ we can define averages over cluster functions φα(�σ) as

〈φα(�σ)〉 =
1

|�α|
∑
β∈�α

φβ(�σ ) (30)

where the sum extends over all clusters β belonging to the orbit �α and |�α|
represents the number of clusters that are symmetrically equivalent to α. The
〈φα(�σ )〉 are commonly referred to as correlation functions. Using the defi-
nition of the correlation functions and the fact that symmetrically equivalent
clusters have the same ECI, we can rewrite the configurational energy normal-
ized by the number of primitive unit cells Np (i.e., number of Bravais lattice
points of the crystal which is not necessarily equal to the number of crystal
sites M), as

e(�σ) =
E(�σ)

Np
= Vo +

∑
α

mαVα〈φα(�σ)〉 (31)

where mα is the multiplicity of the cluster α, defined as the number of clusters
per Bravais lattice point symmetrically equivalent with α (i.e., mα = |�α|/Np)
and Vo = Eo/Np. The sum in (31) is only performed over the symmetrically
non-equivalent clusters.

4.3. Determination of the ECI

According to Eq. (28), the ECI for the energy cluster expansion are
determined by the first-principles ground state energies for all the different
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configurations �σ . Explicitly calculating the ECI according to the scalar prod-
uct Eq. (28) is intractable. Techniques, such as direct configurational averag-
ing (DCA), though, have been devised to approximate the scalar product (28)
[2, 19, 20]. In recent years, the preferred method of obtaining ECI has been
with an inversion method [21–29]. In this approach, energies E(�σI ) for a set
of P periodic configurations �σI with I = 1, . . . , P are calculated from first-
principles and a truncated form of (31) is inverted such that it reproduces the
E(�σI ) within a tolerable error when Eq. (31) is evaluated for configuration
�σI . The simplest inversion scheme uses a least squares fit. More sophisticated
algorithms involving linear programming techniques [30], cross-validation
optimization [32] or the inclusion of k-space terms to account for long-range
elastic strain have been developed [33, 34].

4.4. Local Cluster Expansion

The traditional cluster expansion formalism described so far is applicable
to the configurational energy of the solid which is an extensive quantity. We
will refer to these expansions as extended cluster expansions. Activation barri-
ers, however, are equal to the difference between the energy of the solid when
the migrating atom is at the activated state and that when the migrating atom
is at the initial equilibrium site. Hence, the configuration dependence of the
activation barrier of an atom needs to be described by a cluster expansion with
no translational symmetry and as such it converges to a fixed value as the sys-
tem size grows. Not only is the activation barrier a function of configuration,
but it also depends on the direction of the hop. This is schematically illustrated
in Fig. 6 in which the end points of the hop have a different configurational
energy. Describing the configuration dependence of the activation barrier inde-
pendent of the direction of the hop is straightforward if a kinetically resolved
activation barrier is introduced [3], defined as

�EKRA = Eact − 1

n

n∑
j=1

E j (32)

∆Eb

∆Eb
∆EKRA

Figure 6. The activation barrier for migration depends on the direction of the hop when the
energies of the end points of the hop are different.
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where Eact is the energy of the solid with the migrating atom at the activated
state and E j are the energies of the solid with the migrating atom at the end
points j of the hop. In most solids, there are n=2 end points to a hop, however,
it is possible that more end points exist. All terms in Eq. (32) depend on the
arrangement of atoms surrounding the end points of the hop and the activated
state. The dependence of �EKRA on configuration can, be described with a
cluster expansion that has a point group symmetry compatible with the sym-
metry of the crystal as well as that of the activated state. For this reason, the
cluster expansion of �EKRA is called a local cluster expansion [3].

The kinetically resolved activation barrier is not the true activation barrier
that enters in the transition state theory expression for the hop frequency, Eq. (1).
It is merely a useful quantity that characterizes the configuration dependence of
the activated state independent of the direction of the hop. The true activation
barrier can be calculated from �EKRA using

�Eb =

⎛⎝�EKRA + 1

n

n∑
j=1

E j

⎞⎠− Ei (33)

where Ei is the energy of the crystal with the migrating atom at the initial site of
the hop. All quantities on the right hand side of Eq. (33) can be described with
either a local cluster expansion (for �EKRA) or an extended cluster expansion
(for the configurational energy of the solid).

5. Practical Implementation

Calculating diffusion coefficients from first-principles in multicomponent
solids involves three steps. First, a variety of ab initio energies for different
atomic arrangements need to be calculated with an accurate first-principles
method. This includes energies for a wide range of atomic arrangements over
the sites of the crystal, as well as energies for migrating atoms placed at acti-
vated states surrounded by different arrangements. The latter calculations are
typically performed with an atom at the activated state in large supercells.
A useful technique to find the activated state between two equilibrium end
points is the nudged elastic band method [31] which determines the lowest
energy path between two equilibrium states. Calculating the vibrational pref-
actor requires a calculation of the phonon density of states for different atomic
arrangements both with the migrating atom at its equilibrium site and at the
activated state. While sophisticated techniques have been devised to charac-
terize the configurational dependence of the vibrational free energy of a solid
[35], for diffusion studies, a convenient simplification is the local harmonic
approximation [36].
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In the second step, the first-principles energy values for different atomic
arrangements are used to determine the coefficients of both a local cluster expan-
sion (for the kinetically resolved activation barriers) and a traditional extended
cluster expansion (for the energy of the crystal with all atoms at non-activated
crystallographic sites) with either a least squares fit or with one of the more
sophisticated methods alluded to above. The cluster expansions enable the cal-
culation of the energy and activation barrier for any arrangement of atoms on
the crystal. They serve as a convenient and robust tool to extrapolate accurate
first-principles energies calculated for a few configurations to the energy of any
configuration. Hence the migration rates of Eq. (1) can be calculated for any
arrangement of atoms.

The final step is the combination of the cluster expansions with kinetic
Monte Carlo simulations to calculate the quantities entering the Green–Kubo
expressions for the diffusion coefficients. Kinetic Monte Carlo simulations
have been discussed extensively elsewhere [3, 37, 38]. Applied to diffusion
in crystals, kinetic Monte Carlo algorithms are used to simulate the stochastic
migrations of many atoms, hopping to neighboring sites with frequencies given
by Eq. (1). A kinetic Monte Carlo simulation starts from a representative
arrangement of atoms (typically obtained with a standard Monte Carlo method
for lattice models). As atoms migrate, their trajectories and the time are kept
track of, enabling the calculation of the quantities between the brackets in the
Green–Kubo expressions. Since the Green–Kubo expressions involve ensem-
ble averages, many kinetic Monte Carlo runs which start from different repre-
sentative initial conditions are necessary. Depending on the desired accuracy,
averages need to be performed over the trajectories departing from between
100 and 10 000 different initial conditions.

6. Examples

Two examples of first-principles calculations of diffusion coefficients in
multi-component solids are reviewed in this section. The first is for lithium
diffusion in LixCoO2 and is an example of nondilute interstitial diffusion. The
second example, diffusion in the fcc based Al–Li alloy, corresponds to a sub-
stitutional system.

6.1. Interstitial Diffusion

LixCoO2 consists of a host structure made up of a CoO2 frame work. Lay-
ers of interstitial sites that can be occupied by lithium ions reside between
O–Co–O slabs. The interstitial sites are octahedrally coordinated by oxygen
and they form two dimensional triangular lattices. As described in Section 2.1,



386 A. Van der Ven and G. Ceder

two migration mechanisms exist for lithium: a single vacancy mechanism
whereby lithium squeezes through a dumbell of oxygen atoms into an isolated
vacancy and a divacancy mechanism in which lithium migrates through an
adjacent tetrahedral site into a vacant site that is part of a divacancy [3]. The
two migration mechanisms are illustrated in Fig. 1.

Not only does the local arrangement of lithium ions around a hopping ion
determine the migration mechanism, it also affects the value of the activation
barrier for a particular migration mechanism. Figure 7 illustrates kinetically
resolved activation barriers calculated from first- principles (LDA) for a vari-
ety of different lithium-vacancy arrangements around the migrating ion at dif-
ferent bulk lithium concentrations [3]. Note that for a given bulk composition,
many possible lithium-vacancy arrangements around an atom in the activated
state exist. The kinetically resolved activation barriers illustrated in Fig. 7 cor-
respond to only a small subset of the these many configurations. The local
cluster expansion is used to extrapolate from this set to all the configurations
needed in a kinetic Monte Carlo simulation.

Figure 7 shows that the activation barrier for the divacancy migration mech-
anism can vary by more that 200 meV with lithium concentration. The increase
in activation barrier upon lithium removal from the host can be traced to the con-
traction of the host along the c-axis as the lithium concentration is reduced [3].
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Figure 7. A sample of first-principles (LDA) kinetically resolved activation barriers �EKRA
for the divacancy hop mechanism (circles) and the single vacancy mechanism (squares).
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This contraction disporportionately penalizes the activated state over the end
point states of the divacancy hop mechanism. Another contribution to the varia-
tion in activation barrier with composition derives from the fact that the activated
state is very close in proximity to a Co ion, which becomes progressively more
oxidized (i.e., its eff ective charge becomes more positive) as the overall lithium
concentration is reduced [3, 29]. This leads to an increase in the electrostatic
repulsion between the activated Li and the Co as x is reduced.

Extended and local cluster expansions can be constructed to describe both
the configurational energy of LixCoO2 and the configuration dependence of the
kinetically resolved activation barriers. An extended cluster expansion for the
first-principles configurational energy of LixCoO2 has been described in detail
in Ref. [29]. This cluster expansion when combined with Monte Carlo simula-
tions accurately predicts phase stability in LixCoO2. In particular, two ordered
lithium-vacancy phases are predicted at x = 1/2 and x = 1/3. Both phases are
observed experimentally [39, 40]. A local cluster expansion for the kinetically
resolved activation barriers has been described in Ref [3].

Figure 8 illustrates calculated diffusion coefficients at 300 K determined by
applying kinetic Monte Carlo simulations to the cluster expansions of LixCoO2

[3]. While the configuration dependence of the activation barriers were rigor-
ously accounted for with the cluster expansions, no attempt in these calcula-
tions was made to describe the migration rate prefactor ν∗ from first- principles.
Instead, a value of 1013 Hz was used for all compositions and environments.
Figure 8(a) shows both DJ and the chemical diffusion coefficient D, while
Fig. 8(b) illustrates the thermodynamic factor F , which was determined by cal-
culating fluctuations in the number of lithium particles in grand canonical Monte
Carlo simulations [3] (see Section 3.1). Notice that the calculated diffusion
coefficient varies by several orders of magnitude with composition, showing
that the assumption of a concentration independent diffusion coefficient in this
system is unjustified. The thermodynamic factor F is a measure for the devia-
tion from ideality. In the dilute limit (x → 0), interactions between lithium ions
are negligible and the configurational thermodynamics approximates that of an
ideal solution. In this limit the thermodynamic factor is 1. As x increases from 0,
and the solid departs from ideal behavior, the thermodynamic factor increases
substantially.

The local minima in DJ and D at x = 1/2 and x = 1/3 are a result of lithium
ordering at those compositions. Lithium-vacancy ordering effectively locks in
lithium ions into energetically favorable sublattice positions which reduces
ionic mobility. The thermodynamic factor on the other hand exhibits peaks
at x = 1/2 and x = 1/3 as the configurational thermodynamics of an ordered
phase deviates strongly from ideal behavior. The peak signifies the fact that
in an ordered phase, a small gradient in composition leads to an enormous
gradient in chemical potential, and hence a large thermodynamic driving force
for diffusion. This partly compensates the reduction in DJ.
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A similar computational approach can be followed to determine for exam-
ple the diffusion coefficient for oxygen diffusion on a platinum (111) surface.
If in addition to oxygen, sulfur atoms are also adsorbed on the platinum sur-
face, Green–Kubo relations for binary interstitial diffusion would be needed.
Furthermore, ternary cluster expansions are then necessary to describe the con-
figuration dependence of the energy and kinetically resolved activation barrier
as there are then three species: oxygen, sulfur and vacancies.

6.2. Substitutional Diffusion

To illustrate diffusion in a binary substitutional solid, we consider the fcc
Al–Li alloy. While Al1−x Lix is predominantly stable in the bcc based crystal
structure, it is metastable in fcc up to x = 0.25. In fact, it is the metastable form
of fcc Al1−xLix that strengthens the important candidate alloy for aerospace
applications.

A first step in determining the diffusion coefficients in this system is an
accurate first-principles characterization of the alloy thermodynamics. This can
be done with a binary cluster expansion for the configurational energy [26]. The
expansion coefficients of the cluster expansion were fit to the first-principles
energies (LDA) of more than 70 different periodic lithium-aluminum arrange-
ments on the fcc lattice [41]. Figure 9(a) illustrates the calculated metastable
fcc based phase diagram of Al1−x Lix obtained by applying Monte Carlo sim-
ulations to the cluster expansion [41]. The phase diagram shows that a solid
solution phase is stable at low lithium concentration and at high temperature.
At x = 0.25, the L12 ordered phase is stable. In this ordered phase the Li atoms
occupy the corner points of the conventional cubic fcc unit cell.

Diffusion in most metals is dominated by a vacancy mechanism. Hence it
is not sufficient to simply characterize the thermodynamics of the strictly
binary Al–Li alloy. Real alloys always have a dilute concentration of vacancies
that wander through the crystal and in the process redistribute the atoms of the
solid. The vacancies themselves have a thermodynamic preference for particular
local environments over others which in turn affects the mobility of the vacan-
cies. Treating vacancies in addition to Al and Li makes the problem a ternary
one and in principles would require a ternary cluster expansion. Nevertheless,
since vacancies are present in dilute concentrations, a ternary cluster expansion
can be avoided by using a local cluster expansion to describe the configuration
dependence of the vacancy formation energy [41]. In effect, the local cluster
expansion serves as a perturbation to the binary cluster expansion to describe the
interaction of a dilute concentration of a third component, in this case
the vacancy. A local cluster expansion for the vacancy formation energy in
fcc Al–Li was constructed by fitting to first-principles (LDA) vacancy forma-
tion energies in 23 different Al–Li arrangements [41]. Combining the vacancy
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formation local cluster expansion with the binary cluster expansion for Al–Li
in Monte Carlo simulations enables a calculation of the equilibrium vacancy
concentration as a function of alloy composition and temperature. Figure 9(b)
illustrates the result for Al–Li at 600 K [41]. While the vacancy concentration
is more or less constant in the solid solution phase, it can vary by an order of
magnitude over a small concentration range in the ordered L12 phase at 600 K.

Another relevant thermodynamic property that is of importance for diffu-
sion is the equilibrium short range order around a vacancy in fcc Al–Li. Monte
Carlo simulations using the cluster expansions predict that the vacancy repels
lithium ions, preferring a nearest neighbor shell rich in aluminum. Illustrated
in Fig. 9(c) is the lithium concentration in shells with varying distance around
a vacancy. The lithium concentration in the first nearest neighbor shell is less
than the bulk alloy composition, while it is slightly higher than the bulk com-
position in the second nearest neighbor shell. This indicates that the vacancy
repels Li and attracts Al. In the ordered phase, stable at 600 K between x = 0.23
and 0.3, the degree of order around the vacancy is even more pronounced as
illustrated in Fig. 9(c). Between x = 0.23 and 0.3, the vacancy is predomi-
nantly surrounded by Al in its first and third nearest neighbor shells and by Li
in its second and fourth nearest neighbor shells. This corresponds to a situa-
tion in which the vacancy occupies the lithium sublattice of the L12 ordered
phase. Clearly the thermodynamic preference of the vacancies for a specific
local environment will have an impact on their mobility through the crystal.

While thermodynamic equilibrium determines the degree of order within
the alloy and which environments the vacancies are attracted to, atomic
migration mediated by a vacancy mechanism involves passing through acti-
vated states, which requires passing over an energy barrier that also depends
on the local degree of order. Contrary to what is predicted for LixCoO2, the
kinetically resolved activation barriers in fcc Al1−xLix are not very sensitive
to configuration and bulk composition [42]. For each type of atom (Al or Li),
the variations in kinetically resolved activation barriers are within the num-
erical errors of the first-principles method (50 meV for a plane wave pseu-
dopotential method using 107 atom supercells). This is likely the result of a
negligible variation in volume of fcc Al1−xLix with composition. But while the
migration barriers do not depend significantly on configuration, they are very
different depending on which atom performs the hop. The first-principles cal-
culated migration barrier for Al hops are systematically between 150 to 200 meV
larger than for Li hops [42].

The thermodynamic tendency of the vacancy to repel lithium atoms deprives
Li of diffusion mediating defects. Kinetically, though, Li has a lower activation
barrier relative to Al for migration into an adjacent vacancy. Hence a trade-off
exists between thermodynamics and kinetics. While Li exchanges more readily
with a neighboring vacancy, thermodynamically it has less access to those vac-
ancies. Quantitatively determining the effect of this trade-off requires explicit
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Figure 10. Calculated interdiffusion coefficient (the λ− eigenvalue of the 2× 2 D matrix) for
fcc Al(1−x)Lix alloy at 600 K.

evaluation of diffusion coefficients. This can be done by applying kinetic Monte
Carlo simulations to cluster expansions that describe the configurational energy
and kinetically resolved activation barriers for Al, Li and dilute vacancies on
the fcc lattice. Figure 10 illustrates the calculated interdiffusion coefficient at
600 K obtained by diagonalizing the D matrix of Eq. (14) [42]. The coefficient
for interdiffusion describes the rate with which the Al and Li atoms intermix
in the presence of a concentration gradient in the two species. The calculated
interdiffusion coefficient is more or less constant in the solid solution phase,
but drops by more than an order of magnitude in the L12 ordered phase. The
thermodynamic preference of the vacancies for the lithium sublattice sites of
L12 dramatically constricts the trajectory of the vacancies, leading to a drop in
overall mobility of Li and Al.

7. Conclusion

In this chapter, we have presented the statistical mechanical formalism that
relates phenomenological diffusion coefficients for multicomponent solids to
microscopic fluctuations of the solid at equilibrium. We have focussed on
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diffusion that is mediated by a vacancy mechanism and have distinguished
between interstitial systems and substitional systems. An important property
of multicomponent solids is the existence of configurational disorder among
the constituent species. This adds a level of complexity in calculating diffu-
sion coefficients from first- principles since the activation barriers vary along
an atom’s trajectory as a result of variations in the local degree of atomic
order. In this respect, the cluster expansion is an invaluable tool to describe the
dependence of the energy, in particular of the activation barrier, on atomic con-
figuration. While the formalism of calculating diffusion coefficients from first-
principles in multicomponent solids has been established, many opportunities
exist to apply it to a wide variety of multicomponent crystalline solids, includ-
ing metals, ceramics and semiconductors. Faster computers and improvements
to electronic structure methods that go beyond density functional theory will
lead to more accurate first-principles approximations to activation barriers and
vibrational prefactors. It is only a matter of time before first-principles diffu-
sion coefficients for multicomponent solids are routinely used in continuum
simulations of diffusional phase transformations and electrochemical devices
such as batteries and fuel cells.
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