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We present a review of recent progress in the first-principles study of the
spectroscopic properties of solids and nanostructures employing a many-body
Green’s function approach based on the GW approximation to the electron
self-energy. The approach has been widely used to investigate the excited-
state properties of condensed matter as probed by photoemission, tunneling,
optical, and related techniques. In this article, we first give a brief overview
of the theoretical foundations of the approach, then present a sample of appli-
cations to systems ranging from extended solids to surfaces to nanostructures
and discuss some possible ideas for further developments.

1. Background

A large part of research in condensed matter science is related to the char-
acterization of the electronic properties of interacting many-electron systems.
In particular, an accurate description of the electronic structure and its response
to external probes is essential for understanding the behavior of systems rang-
ing from atoms, molecules, and nanostructures to complex materials. Moreover,
many characterization tools in physics, chemistry and materials science as well
as electro/optical devices are spectroscopic in nature, based on the interaction
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of photons, electrons, or other quanta with matter exciting the system to higher
energy states. Yet, many fundamental questions concerning the conceptual and
quantitative descriptions of excited states of condensed matter and their inter-
actions with external probes are still open. Hence there is a strong need for
theoretical approaches which can provide an accurate description of the excited-
state electronic structure of a system and its response to external probes. In what
follows we discuss some recent progress along a very fruitful direction in the
first-principles studies of the electronic excited-state properties of materials,
employing a many-electron Green’s function approach based on the so-called
GW approximation [1–3].

Solving for the electronic structure of an interacting electron system (in
terms of the many-particle Schrödinger equation) has an intrinsic high com-
plexity: while the problem is completely well defined in terms of the total
number of particles N and the external potential V(r), its solution depends
on 3N coordinates. This makes the direct search for either exact or approxi-
mate solutions to the many-body problem a task of rapidly increasing com-
plexity. Fortunately, in the study of either ground- or excited-state properties,
we seldom need the full solution to the Schrödinger equation. When one is
interested in structural properties, the ground-state total energy is sufficient. In
other cases, we want to study how the system responds to some external probe.
Then knowledge of a few excited-state properties must be added. For instance,
in a direct photoemission experiment, a photon impinges on the system and
an electron is removed. In an inverse photoemission process, an electron is
absorbed and a photon is ejected. In both cases we just have to deal with the
gain or loss of energy of the N electron system when a single particle is added
or removed, i.e., with the one-particle excitation spectrum. If the electron was
not removed after the absorption of the photon, the system evolves from its
ground state to a neutral excited state, and the process may be described by
correlated electron–hole excitation amplitudes.

At the simplest level of treating the many-electron problem, the Hartree–
Fock theory (HF) is obtained by considering the ground-state wavefunction to
be a single Slater determinant of single-particle orbitals. In this way the N-body
problem is reduced to N one-body problems with a self-consistent requirement
due to the dependence of the HF effective potential on the wavefunction. By
the variational theorem, the HF total energy is a variational upper bound of the
ground-state energy for a particular symmetry. The HF-eigenvalues may also
be used as rough estimates of the one-electron excitation energies. The validity
of this procedure hinges on the assumption that the single-particle orbitals in
the N and (N-1) system are the same (Koopman’s theorem), i.e., neglecting the
electronic relaxation of the system. A better procedure to estimate excitation
energies is to perform self-consistent calculations for the N and (N-1) systems
and subtract the total energies (this is called the “�-SCF method” for excitation
energies which has also been used in other theoretical frameworks such as the
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density-functional theory). For infinitely extended system, this scheme gives
the same result as Koopman’s theorem and more refined methods are needed to
address the problem of one-particle (quasiparticle) excitation energies in solids.
The HF theory in general is far from accurate because typically the wavefunc-
tion of a system cannot be written as a single determinant for the ground state
and Koopman’s theorem is a poor approximation.

On the other hand, within density-functional-theory (DFT), the ground-state
energy of an interacting system can be exactly written as a functional of the
ground-state electronic density [4]. When comparing to conventional quantum
chemistry methods, this approach is particularly appealing since solving the
ground-state energy does not rely on the complete knowledge of the N-electron
wavefunction but only on the electronic density, reducing the problem to that
of a self-consistent field calculation. However, although the theory is exact, the
energy functional contains an unknown quantity called the exchange-correlation
energy, Exc[n], that has to be approximated in practical implementations. For
ground-state properties, in particular those of solids and larger molecular sys-
tems, present-day DFT results are comparable or even surpassing in quality to
those from standard ab initio quantum chemistry techniques. Its use has contin-
ued to increase due to a better scaling in computational effort with the number
of atoms in the system.

As in HF theory, the Kohn–Sham eigenvalues of the DFT cannot be directly
interpreted as the quasiparticle excitation energies. Such interpretation has led
to the well-known bandgap problem for semiconductors and insulators: the
Kohn–Sham gap is typically 30–50% less than the observed band gap. Indeed,
the original formulation of the DFT is not applicable to excited states nor to
problems involving time-dependent external fields, thus excluding the calcu-
lation of optical response, quasiparticle excitation spectrum, photochemistry,
etc. Theorems have, however, been proved subsequently for time-dependent
density functional theory (TDDFT) which extends the applicability of the app-
roach to excited-state phenomena [5, 6]. The main result of TDDFT is a set of
time-dependent Kohn–Sham equations that include all the many-body effects
through a time-dependent exchange-correlation potential. As for static DFT,
this potential is unknown and has to be approximated in any practical appli-
cation. TDDFT has been applied with success to the calculations of quantities
such as the electron polarizabilities for the optical spectra of finite systems.
However, TDDFT encounters problems in studying spectroscopic properties
of extended systems [7] and severely underestimates the high-lying excitation
energies in molecules when simple exchange and correlation functionals are
employed. These failures are related to our ignorance of the exact exchange-
correlation potential in DFT. The actual functional relation between density,
n(r), and the exchange-correlation potential, Vxc(r), is highly non-analytical
and non-local. A very active field of current research is in the search of robust,
new exchange-correlation functionals for real material applications.
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Alternatively, a theoretically well-grounded and rigorous approach for the
excited-state properties of condensed matter is the interacting Green’s function
approach. The n-particle Green’s function describes the propagation of the
n-particle amplitude in an interacting electron system. It provides a proper
framework for accurately computing the N-particle excitation properties. For
example, knowledge of the one-particle and two-particle Green’s functions
yields information, respectively, on the quasiparticle excitations and optical
response of a system. The use of this approach for practical study of the
spectroscopic properties of real materials is the focus of the present review.

In the remainder of the article, we first present a brief overview of the
theoretical framework for many-body perturbation theory and discuss the first-
principles calculation of properties related to the one- and two-particle Green’s
functions within the GW approximation to the electron self-energy operator.
Then, we present some selected examples of applications to solids and reduced
dimensional systems. Finally, some conclusions and perspectives are given.

2. Many-body Perturbation Theory
and Green’s Functions

A very successful and fruitful development for computing electron excita-
tions has been a first-principles self-energy approach [1–3, 8] in which the quasi-
particle’s (excited electron or hole) energy is determined directly by calculating
the contribution of the dynamical polarization of the surrounding electrons. In
many-body theory, this is obtained by evaluating the evolution of the ampli-
tude of the added particle via the single-particle Green’s function, G(xt, x ′t ′)=
−i〈N |T {ψ(xt)ψ†(x ′t ′)}|N〉,∗ from which one obtains the dispersion relation
and lifetime of the quasiparticle excited state. There are no adjustable parame-
ters in the theory and, from the equation of motion of the single-particle Green’s
function, the quasiparticle energies Enk and wavefunctions ψnk are determined
by solving a Schrödinger-like equation:

(T + Vext + VH)ψk(r)+
∫

dr�(r,r′;Enk)ψnk(r′) = Enkψnk(r), (1)

where T is the kinetic energy operator, Vext is the external potential due to the
ions, VH is the Hartree potential of the electrons, and � is the self-energy oper-
ator where all the many-body exchange and correlation effects are included.
The self-energy operator describes an effective potential on the quasiparticle

*This corresponds to the Green’s function at zero temperature where |N > is the many-electron ground
state, ψ(xt) is the field operator in the Heisenberg picture, x stands for the spatial coordinates r plus the spin

coordinate, and T is the time ordered operator. In this context, ψ†(xt)|N> represents an (N +1)-electron
state in which an electron has been added at time t onto position r.



Quasiparticle and optical properties of solids and nanostructures 219

resulting from the interaction with all the other electrons in the system. In gen-
eral � is non-local, energy dependent and non-Hermitian, with the imaginary
part giving the lifetime of the excited state. Similarly, from the two-particle
Green’s function, we can obtain the correlated electron–hole amplitude and
excitation spectrum, and hence the optical properties.

For details of the Green’s function formalism and many-body techniques
applied to condensed matter, we refer the reader to several comprehensive
papers in the literature [2, 3, 7–10]. Here we shall just present some of the
main equations used for the quasiparticle and optical spectra calculations. (To
simplify the presentation, we use in the following atomic units, e = h̄ = m = 1.)
In standard textbook, the unperturbed system is often taken to be the non-
interacting system of electrons under the potential Vion(r) + VH(r). However,
for rapid convergence in a perturbation series, it is better to start from a dif-
ferent non-interacting or mean-field scenario, like the Kohn–Sham DFT sys-
tem, which already includes an attempt to describe exchange and correlations
in the actual system. Also, in a many-electron system, the Coulomb interac-
tion between two electrons is readily screened by a dynamic rearrangement
of the other electrons, reducing its strength. It is more natural to describe
the electron–electron interaction in terms of a screened Coulomb potential
W and formulate the self energy as a perturbation series in terms of W. In
this approach [1–3], the electron self-energy can then be obtained from a
self-consistent set of Dyson-like equations:

P(12) = −i
∫

d(34)G(13)G(41+) �(34, 2) (2)

W (12) = v(12)+
∫

d(34)W (13)P(34)v(42) (3)

�(12) = i
∫

d(34)G(14+)W (13)�(42, 3) (4)

G(12) = G0(12)+
∫

d(34)G0(13)[�(34) − δ(34)Vxc(4)]G(42) (5)

�(12, 3) = δ(12)δ(13)+
∫

d(4567)[δ�(12)/δG(45)]

×G(46)G(75)�(67, 3) (6)

where 1 ≡ (x1, t1) and 1+ ≡ (x1, t1 + η)(η >0 infinitesimal). v stands for the
bare Coulomb interaction, P is the irreducible polarization, W is the dynami-
cal screened Coulomb interaction, and � is the so-called vertex function. Here
G0 is the single-particle DFT Green’s function, G0(x, x ′; ω) =

∑
n ψn(x)ψ∗

n
(x)/[ω−εn−iηsgn(µn)], with η a positive infinitesimal and ψn and εn the cor-
responding DFT wavefunctions and eigenenergies. This way of writing down
the equations is in fact appealing since it highlights the important physical
ingredients: the polarization (which contains the response of the system to the
additional particle or hole) is built up by the creation of particle–hole pairs
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(described by the two-particle Green’s functions). The vertex function � con-
tains the information that the hole and the electron interact. This set of equa-
tions defines an iterative approach that allows us to gather information about
quasiparticle excitations and dynamics. The iterative approach of course has
to be approximated. We now describe some of the approximations used in the
literature to address quasiparticle excitations and their subsequent extension
to optical spectroscopy and exciton states.

3. Quasiparticle Excitations: the GW Approach

In practical first-principles implementations, the GW approximation [1] is
employed in which the self-energy operator � is taken to be the first order
term in a series expansion in terms of the screened Coulomb interaction W
and the dressed Green function G of the electron

P(12) = −iG(12)G(21) (7)

�(12) = iG(12+)W (12) (8)

(in frequency space: �(r, r′; ω) = i/2π
∫

dω′e−iω′ηG(r, r′, ω − ω′)W (r, r′,
ω′)). Vertex corrections are not included in this approximation. This corre-
sponds to the simplest approximation for �(123), assuming it to be diagonal in
space and time coordinates, i.e., �(123) = δ(12)δ(13). This has to be comple-
mented with Eq. (5) above. Thus, even at the GW level, we have a many-body
self-consistent problem. Most ab initio GW applications do this self-consistent
loop by (1) taking the DFT results as the mean field and (2) varying the
energy of the quasiparticle but keeping fixed its wavefunction (equal to the
DFT wavefunction). This corresponds to the G0W0 scheme for the calculation
of quasiparticle energy as a first-order perturbation to the Kohn–Sham energy
εnk :

Enk ≈ εnk + 〈nk|�(Enk)− Vxc|nk〉, (9)

where Vxc is the exchange-correlation potential within DFT and |nk > is the
corresponding wavefunction. This “G0 W0” approximation reproduces to within
0.1 eV the experimental band gaps for many semiconductors and insulators
and their surfaces, thus circumventing the well-known bandgap problem
[2, 3]. Also it gives much better HOMO–LUMO gaps and ionization energies
in localized systems, and results for the lifetimes of hot electrons in metals and
image states at surfaces [7]. For some systems, the quasiparticle wavefunction
can differ significantly from the DFT wavefunction; one then needs to solve
the quasiparticle equation, Eq. (1), directly.
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4. Optical Response: the Bethe–Salpeter Equation

From Eqs. (2)–(6) for the GW self energy, we have a non-vanishing func-
tional derivative δ�/δG. One obtains a second-order correction to the bare
vertex �(1)(123) = δ(12)δ(13):

�(2)(123) = δ(12)δ(13) +
∫

d(4567)[δ�(1)(12)/δG0(45)]G0(46)

×G0(75)�(1)(673). (10)

This can be viewed as the linear response of the self-energy to a change in
the total potential of the system. The vertex correction accounts for exchange-
correlation effects between an electron and the other electrons in the screening
density cloud. In particular it includes the electron–hole interaction (excitonic
effects) in the dielectric response∗ . Indeed, the functional derivative of G is
responsible for the attractive direct term in the electron–hole interaction that
goes into the effective two-particle equation, the Bethe–Salpeter equation,
which determines the spectrum and wavefunctions of the correlated electron–
hole neutral excitations created, for example, in optical experiments. Taking as
first-order self energy �(1) = G0W0, it is easy to derive a Bethe–Salpeter equa-
tion, which correctly yields features like bound excitons and changes in absorp-
tion strength in the optical absorption spectra. Within this scheme [7, 10], the
effective two-particle Hamiltonian takes (when static screening is used in W) a
particularly simple, energy-independent form∑

n3n4

[(εn1 − εn2)δn1n3δn2n4 + u(n1n2)(n3n4) −W(n1n2)(n3n4)]A(n3n4)
S

=�SAS
(n1n2) (11)

where AS is the electron–hole amplitude and the matrix elements are taken with
respect to the quasiparticle wavefunctions n1, . . . , n 4 as follows: u(n1n2)(n3n4) =
〈n1n2|u|n3n4〉 and W(n1n2)(n3n4) = 〈n1n3|W |n2n4〉, with u equal to the Coulomb
potential v except for the long-range component q = 0 that is set to zero (that is,
u(q)=4π/q2 but with u(0) = 0). The solution of Eq. (11) allows one to construct
the optical absorption spectrum from the imaginary part of the macroscopic
dielectric function εM :

Im[εM(ω)] = 16πe2/ω2
∑

S

|ê·<0|i/h̄[H, r]|S > |2δ(ω −�S) (12)

*Vertex corrections and self-consistency tend to cancel to a large extent for the 3D homogeneous electron
gas. This cancellation of vertex corrections with self-consistency seems to be a quite general feature.
However, there is no formal justification for it and further work along the direction of including consistently
dynamical effects and vertex corrections should be explored (Aryasetiawan and Gunnarsson, 1998; and
references therein).
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where ê is the normalized polarization vector of the light and i/h̄[H ,r] is the
single-particle velocity operator. The sum runs over all the excited states |S>
of the system (with excitation energy �S) and |0 > is the ground state. One
of the main effects of the electron–hole interaction is the coupling of
different electron–hole configurations (denoted by |he >) which modifies the
usual interband transition matrix elements that appear in Eq. (12) to:
<0|i/h̄[H, r]|S> =

∑holes
h

∑electrons
e A(h,e)

S <h|i/h̄[H, r]|e>.
In this context, the Bethe–Salpeter approach to the calculation of two-particle

excited states is a natural extension of the GW approach for the calculation
of one-particle excited states, within a same theoretical framework and set of
approximations (the GW-BSE scheme). As we shall see below, GW-BSE cal-
culations have helped elucidate the optical spectra for a wide range of systems
from nanostructures to bulk semiconductors to surfaces and 1D polymers and
nanotubes.

5. Applications to Bulk Materials and Surfaces

Since the mid 1980s, the GW approach has been employed with success to
the study of quasiparticle excitations in bulk semiconductors and insulators [2,
3, 9, 11, 12]. In Fig. 1, the calculated GW band gaps of a number of insulating
materials are plotted against the measured quasiparticle gaps [11]. A perfect
agreement between theory and experiment would place the data points on the
diagonal line. As seen from the figure, the Kohn–Sham gaps in the local den-
sity approximation (LDA) significantly underestimate the experimental values,
giving rise to the bandgap problem. Some of the Kohn–Sham gaps are even
negative. However, the GW results (which provide an appropriate description
of particle-like excitations in an interacting systems) are in excellent agreement
with experiments for a range of materials – from the small gap semiconductors
such as InSb, to moderate size gap materials such as GaN and solid C60, and
to the large gap insulators such as LiF. In addition, the GW quasiparticle band
structures for semiconductors and conventional metals in general compare very
well with data from photoemission and inverse photoemission measurements.

Figure 2 depicts the calculated quasiparticle band structure of germanium
[11] and copper [13] as compared to photoemission data for the occupied states
and inverse photoemission data for the unoccupied states. For Ge, the agreement
is within the error bars of experiments. In fact, the conduction band energies
of Ge were theoretically predicted before the inverse photoemission measure-
ment. The results for Cu agree with photoemission data to within 30 meV for
the highest d-band, correcting 90% of the LDA error. The energies of the other
d-bands throughout the Brillouin zone are reproduced within 300 meV, and the
maximum error (about 600 meV) is found for the bottom valence band at the �
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Figure 1. Comparison of the GW bandgap with experiment for a wide range of semicon-
ductors and insulators. The Kohn–Sham eigenvalue gaps calculated within the local density
approximation (LDA) are also included for comparison. (after Ref. [11]).

Figure 2. Calculated GW quasiparticle band structure of Ge (left panel) and Cu (right panel)
as compared with experiments (open and full symbols). In the case of Cu we also provide the
DFT-LDA band structure as dashed lines. (after Ref. [11, 13]).
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Figure 3. Computed GW quasiparticle bandstructure for the Si(111) 2× 1 surface compared
with experimental results (dots). On the left we show a model of the surface reconstruction
(after Ref. [15]).

point, where only 50% of the LDA error is corrected. This level of agreement
for the d-bands cannot be obtained without including self-energy contributions∗ .
Similar results have been obtained for other materials and even for some non-
conventional insulating systems such as the transition metal oxides and metal
hydrides.

The GW approach has also been used to investigate the quasiparticle excita-
tion spectrum of surfaces, interfaces and clusters. Figure 3 gives the example of
the Si(111)2× 1 surface [14, 15]. This surface has a very interesting geometric
and electronic structure. At low temperature, to minimize the surface energy,
the surface undergoes a 2 × 1 reconstruction with the surface atoms forming
buckledπ -bonded chains. The ensuing structure has an occupied and an unoccu-
pied quasi-1D surface-state band, which are dispersive only along theπ -bonded
chains and give rise to a quasiparticle surface-state bandgap of 0.7 eV that is
very different from the bulk Si bandgap of 1.2 eV. The calculated quasiparticle
surface-state bands are compared to photoemission and inversed photoemission
data in Fig. 3. As seen in the figure, both the calculated surface-state band disper-
sion and bandgap are in good agreement with experiment, and these results are
also in accord with results from scanning tunneling spectroscopy (STS) which
physically also probes quasiparticle excitations. But, a long-standing puzzle in
the literature has been that the measured surface-state gap of this system from

*On the other hand, the total bandwidth is still larger than the measured one. This overestimate of the GW
bandwidth for metals with respect to the experimental one seems to be a rather general feature, which is
not yet properly understood.
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optical experiments differs significantly (by nearly 0.3 eV) from the quasipar-
ticle gap, indicative of perhaps very strong electron-hole interaction on this
surface. We shall take up this issue later when we discuss optical response.

Owing to interactions with other excitations, quasiparticle excitations in a
material are not exact eigenstates of the system and thus possess a finite life-
time. The relaxation lifetimes of excited electrons in solids can be attributed to a
variety of inelastic and elastic scattering mechanisms, such as electron–electron
(e–e), electron–phonon (e–p), and electron–imperfection interactions. The the-
oretical framework to investigate the inelastic lifetime of the quasiparticle (due
to electron–electron interaction as manifested in the imaginary part of �) has
been based for many years on the electron gas model of Fermi liquids, char-
acterized by the electron-density parameter rs. In this simple model for either
electrons or holes with energy E very near the Fermi level, the inelastic lifetime
is found to be, in the high-density limit (rs <<1), τ (E)= 263 r−5/2

s (E− EF )
−2

fs, where E and the Fermi energy EF are expressed in eV [16]. A proper treat-
ment of the electron dynamics (quasiparticle damping rates or lifetimes), how-
ever, needs to include bandstructure and dynamical screening effects in order
to be in quantitative comparison with experiment. An illustrative example is
given in Fig. 4 where the quasiparticle lifetimes of electrons and holes in bulk
Cu and Au have been evaluated within the GW scheme, showing an increase in
the lifetime close to the Fermi level as compared to the predictions of the free
electron gas model. For Au, a major contribution from the occupied d states
to the screening yields lifetimes of electrons that are larger than those of elec-
trons in a free-electron-gas model by a factor of about 4.5 for electrons with

Figure 4. Calculated GW electron and hole lifetimes for Cu and Au. Solid and open circles
represent the ab initio calculation of τ(E) for electrons and holes, respectively, as obtained
after averaging over wavevectors and the bandstructure for each k vector. The solid and dotted
lines represent the corresponding lifetime of electrons (solid line) and holes (dotted line) in a
free electron gas with rs = 2.67 for Cu and rs = 3.01 for Au. In the inset for Au the theoretical
results (solid circles) are compared with experimental data (open circles) from Ref. [17]. (after
Refs. [18, 19]).
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energies 1–3 eV above the Fermi level. This prediction is in agreement with a
recent experimental study of ultrafast electron dynamics in Au(111) films [17].

Up until the late 1990s, the situation for ab initio calculation of the opti-
cal properties of real materials was, however, not nearly as good as that for
the quasiparticle properties. As discussed in Section 4, for the optical response
of an interacting electron system, we must also include electron–hole interac-
tion or excitonic effects. The important consequence of such effects is shown
in Fig. 5 where the computed absorption spectrum of SiO2 neglecting electron–
hole interaction is compared with the experimental spectrum [20]. There is
hardly any resemblance between the spectrum from the non-interacting theory
to that of experiment, which has led to extensive debates over the past 40 years
on the nature of the four very sharp peaks observed in the experiment. We shall
return to this technologically important material later.

With the advance of the GW-BSE method [21–24], accurate ab initio calcu-
lation of the optical spectra of materials is now possible. As discussed above,
solving the Bethe–Salpeter equation yields both the excitation energy and the
coupling coefficients among the different electron–hole configurations that form
the excited state. The resulting excited-state energies and electron–hole ampli-
tude can then be used to compute the optical (or energy loss and related) spec-
trum including excitonic effects. The approach has been employed to obtain
quite accurately optical transitions to both the bound and continuum states of
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Figure 5. Comparison of the calculated absorption spectrum of SiO2 including excitonic
effects (continuous curve) and neglecting electron–hole interaction (dot-dashed curve) with
the experimental spectrum (dashed curve) taken from Ref. [25] (after Ref. [20]).
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various materials [7, 10, 21, 22], including reduced dimensional systems and
nanostructures.

For bulk GaAs, the GW-BSE results for the optical absorption are com-
pared with experiments in Fig. 6. We see that even for this simple and well-
known semiconductor, only with the inclusion of electron–hole interaction then
we have good agreement between theory and experiment. The influence of the
electron–hole interaction effects extends over an energy range far above the fun-
damental band gap. As seen from the figure, the optical strength of GaAs is
enhanced by nearly a factor of two in the low frequency regime. Also, the
electron–hole interaction enhances and shifts the second prominent peak (the
so-called E2 peak) structure at 5 eV to much closer to experiment. This very
large shift of about 1/2 eV in the E2 peak is not due to a negative shift of the
transition energies, as one might naively expect from an attractive electron–
hole interaction. The changes in the optical spectrum originate mainly from the
coupling of different electron–hole configurations in the excited states, which
leads to a constructive coherent superposition of the interband transition oscilla-
tor strengths for transitions at lower energies and to a destructive superposition
at energies above 5 eV [21, 22].

In addition to the continuum part of the spectrum, one can also get out the
bound exciton states near the absorption edge from the Bethe–Salpeter equation
from first principles without making use of any effective mass approximation.
For the case of GaAs, we see in Table 1 that the theory basically reproduces
all the observed bound exciton structures to a very high level of accuracy.

Figure 6. Theoretical (continuous line) and measured (dots) optical absorption spectra for
bulk GaAs. The experimental data are taken from Refs. [26, 27]. The calculated spectrum
without inclusion of electron–hole interaction (dashed curve) is also given for completeness
(after Refs. [21, 22]).
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Table 1. Calculated exciton binding energies near the absorption
edge for GaAs. The GW-BSE calculations are from [21, 22] and
the experimental data are from [26]

Binding energy Theory (meV) Experiment (meV)

E1s 4.0 4.2
E2s 0.9 1.0
E2p 0.2–0.7 0–1

The scheme can thus directly be applied to situations in which simple empirical
techniques do not hold. Similarly accurate results have been obtained for the
other semiconductors.

For larger gap materials, exciton effects are even more dramatic in the optical
response as seen for the case of SiO2 [20] in Fig. 5. The quasiparticle gap of
α-quartz is 10 eV. From the ab initio calculation, we learn that all the prominent
peaks seen in the experiment and also in theory when electron–hole interaction
is included are due to transitions to excitonic states. The much-debated peaks in
the experimental spectrum are in fact due to the strong correlations between the
excited electron and hole in resonant excitonic states since these excited states
have energies that are higher than the value for the quasiparticle band gap.

6. Applications to Reduced Dimensional Systems
and Nanostructures

The GW-BSE approach in particular has been valuable in explaining and
predicting the quasiparticle excitations and optical response of reduced dimen-
sional systems and nanostructures. This is because Coulomb interaction effects
in general are more dominant in lower dimensional systems owing to geomet-
rical and symmetry restrictions. As illustrated below, self-energy and electron–
hole interaction effects can be orders of magnitude larger in nanostructures than
in bulk systems made up of the same elements.

A good example of a reduced dimensional system is the conjugated poly-
mers. The optical properties of these technologically important systems are still
far from well understood when compared to conventional semiconductors [28].
For example, there has been much argument in the literature regarding to the
binding energy of excitons in polymers such as poly-phenylene-vinylene (PPV);
values ranging from 0.1 to 1.0 eV had been suggested. Ab initio calculation
using the GW-BSE approach show that excitonic effects in PPV are indeed
dominant and change qualitative the optical spectrum of the material. This is
shown in Fig. 7 where we see that each of the 1D van Hove singularities in the
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Figure 7. Optical absorption spectra of the polymer PPV. Theoretical results with (continuous
line) and without (dashed line) including excitonic effects (after Ref. [28]).

interband absorption spectrum is replaced by a series of sharp peaks due to
excitonic states. The lowest optically active exciton is a bound exciton state;
but the others are strong resonant exciton states giving rise to peak structures
that agree very well with experiment. In particular, when compared to the quasi-
particle gap of 3.3 eV, the theoretical results in Fig. 7 yield a very large binding
energy of nearly 1 eV for the lowest energy bound exciton in PPV.

The reduced dimensionality at a surface can also greatly enhance excitonic
effects. For example, in the case of the Si(111) 2 × 1 surface [28], it is found
that the surface optical spectrum at low frequencies is dominated by a surface-
state exciton which has a binding energy that is an order of magnitude bigger
than that of bulk Si, and one cannot interpret the experimental spectrum without
considering the excitonic effects.

This is illustrated in Fig. 8 where the measured differential reflectivity is
compared with theory. Here we find that the peak in the differential reflectivity
spectrum is dictated by a surface-state exciton with a binding energy of 0.23 eV.
This very large binding energy for the surface-state exciton is to be compared
to the excitonic binding energy in bulk Si which is only 15 meV. The large
enhancement in the electron–hole interaction at this particular surface arises
from the quasi-1D nature of the surface states, which are localized along the
π -bonded atomic chains on the surface. Similar excitonic calculations for the
Ge(111) 2 × 1 reconstructed surface demonstrate how optical differential ref-
lectivity spectra can be used to distinguish between the two possible isomers
of the reconstructed surface (see right panel in Fig. 8). This distinction has
been enabled by the fact that a quantitative comparison between the calculated
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Figure 8. Comparison between experiments and the computed differential reflectivity spectra
with and without electron–hole interaction for the Si(111)2 × 1 surface (left panel) [28] and
for Ge(111)2× 1 (right panel) [29].

and experimental spectrum is possible when electron–hole effects are treated
correctly [29].

Another 1D system of great current interest is the carbon nanotubes [30].
These are tubular structures of graphene with diameter in the range of one
nanometer and length that can be many hundreds of microns or longer. The
carbon nanotubes can be metals or semiconductors depending sensitively on
their geometric structure, which is indexed by a pair of integers (m, n) where m
and n are the two integers specifying the circumferential vector in units of the
two primitive translation vectors of graphene. Recent experimental advances
have allowed the measurement of the optical response of well-characterized
individual, single-walled carbon nanotubes (SWCNTs). For example, absorp-
tion measurement on well-aligned samples of SWCNTs of uniform diameter
of 4 Å grown inside the channels of zeolites has been performed [31]. And,
through the use of photoluminescence excitation techniques, the Rice group has
succeeded in measuring both the first and second optical transition energies of
well identified, individually isolated, semiconducting SWCNTs [32, 33]. The
optical properties of these tubes are found be to quite unusual and cannot be
explained by conventional theories. Because of the reduced dimensionality of
the nanotubes, many-electron (both quasiparticle and excitonic) effects have
been shown to be extraordinarily important in these systems [34, 35].

Figure 9 illustrates the effects of many-electron interactions on the
quasiparticle excitation energies of the carbon nanotubes. Plotted in the fig-
ure are the quasiparticle corrections to the LDA Kohn–Sham energies for the
metallic (3,3) carbon nanotube and the semiconducting (8,0) carbon nanotube.
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Figure 9. Plot of the quasiparticle corrections to the DFT Kohn–Sham eigenvalues due to self-
energy effects as a function of the energy of the states for the metallic (3,3) carbon nanotube
(left panel) and the semiconducting (8,0) carbon nanotube (right panel) (after Refs. [34, 35]).

Figure 10. Calculated quasiparticle density of states (left panel) and optical absorption
spectrum (right panel) for the (3,3) carbon nanotube (after Refs. [34, 35]).

The general trends are that, for the metallic tubes, the corrections are relatively
straight forward. Basically they stretch the bands by ∼15%, as in the case of
graphite [11]. But, the self-energy corrections to the quasiparticle energies of
the semiconducting tubes are quite large. The corrections cause a large open-
ing of the minimum band gap, as well as a stretching of the bands. As seen in
Fig. 9, the self-energy corrections cause the minimum quasiparticle gap of the
(8,0) carbon nanotube to open up by nearly 1 eV.

Many-electron interaction effects play an even more important role in the
optical response of the carbon nanotubes. The calculated optical spectrum of
the metallic (3,3) nanotube (which is one of the 4 Å diameter SWCNTs) is pre-
sented in Fig. 10. The left panel shows the electronic density of states. Because
of the symmetry of the states, only certain transitions between states (indicated
by the arrow A) are optically allowed. The right panel compares the calculated
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imaginary part of the dielectric response function between the case with and
without electron–hole interactions. The optical spectrum of the (3,3) nanotube
is changed qualitatively due to the existence of a bound exciton, even though
the system is metallic. This rather surprising result comes from the fact that,
although the tube is metallic, there is a symmetric gap in the electron–hole spec-
trum (i.e., there are no free electron–hole states of the same symmetry as the
exciton possible in the energy range of the excitonic state). The symmetry gap
is possible here because the (3,3) tube is a 1D metal – i.e., all k-states can have
well-defined symmetry.

Figure 11 depicts the results for the (5,0) tube, which is another metallic
SWCNT of 4 Å in diameter. The surprise here is that, for the range of frequencies
considered, the electron–hole interaction in this tube is a net repulsion
between the excited electron and hole. Unlike the case of bulk semiconductors,
owing to the symmetry of the states involved and metallic screening, the repul-
sive exchange term dominates over the attractive direct term in the electron–
hole interaction. As a consequence, there are no bound exciton states in Fig. 11
and there is a suppression of the optical strength at the van Hove singularities,
especially for the second peak in the spectrum.

One expects the above excitonic effects should be even more pronounce in
the semiconducting nanotubes. Indeed, this is the case. Figure 12 compares the
calculated absorption spectrum of a (8,0) tube between the case with and with-
out electron–hole interactions. The two resulting spectra are qualitatively and
dramatically different. When electron–hole interaction effects are included, the
spectrum is dominated by bona fide and resonant excitonic states. With interac-
tions, each van Hove singularity structure in the non-interacting spectrum gives
rise to a series of exciton states. For the (8,0) tube, the lowest-energy bound
exciton has a binding energy of more than 1 eV. Note that the exciton binding
energy for bulk semiconductors of similar size bandgap is in general only of the

Figure 11. Calculated quasiparticle density of states (left panel) and optical absorption
spectrum (right panel) for the (5,0) carbon nanotube (after Refs. [34, 35]).
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Figure 12. Optical absorption spectra for the (8,0) carbon nanotube (top panel) and the spatial
extent of the excitonic wavefunction along the tube axis for a bound and resonant excitonic state
(after Refs. [34, 35]).

order of tens of meVs. This illustrates again the dominance of many-electron
Coulomb effects in the carbon nanotubes owing to their reduced dimensional-
ity. The bottom two panels in Fig. 12 give the spatial correlation between the
excited electron and hole in two of the exciton states, one bound and one reso-
nant state. The extent of the exciton wavefunction is about 25–30 Å for both of
these states.

In Table 2 we compare the calculated results for the 4 Å diameter tubes with
experimental data. For the samples of 4 Å diameter single-walled carbon nano-
tubes grown in the channels of the zeolite AlPO4-5 crystal, the Hong Kong
group observed three prominent peaks in the optical absorption spectrum [31].
There are only three possible types of carbon nanotubes with a diameter of 4 Å –
(5,0), (4,2) and (3,3). All three types of tubes are expected to be present in these
samples. The theoretical results quantitatively explain from first principles the
three observed peaks and identify their physical origin. The first peak is due to
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Table 2. Comparison between experimental [31] and calculated
main absorption peaks for all possible 4 Å – (5,0), (4,2) and
(3,3) – carbon nanotubes

CNT Theory (eV) Experiment (eV) Character

(5,0) 1.33 1.37 Interband
(4,2) 2.0 2.1 Exciton
(3,3) 3.17 3.1 Exciton

Table 3. Calculated lowest two optical transition energies for the (8,0) and (11,0)
carbon nanotubes compared to experimental values [32, 33]. It is noted that the ratio
between the two transition energies deviates strongly from the value of 2 predicted
by a simple independent-particle model (after Refs. [34, 35])

(8,0) (11,0)

Experiment Theory Experiment Theory

E11 1.6 eV 1.6 eV 1.2 eV 1.1 eV
E22 1.9 eV 1.8 eV 1.7 eV 1.6 eV
E22/E11 1.19 1.13 1.42 1.45

an interband transition van Hove singularity from the (5,0) tubes, whereas the
second peak and third peak are due to the formation of excitons in the (4,2) and
(3,3) tubes, respectively [34–36].

The theoretical results [34, 35] on the larger semiconducting tubes have
also been used to elucidate the findings from photoluminescence excitation
measurements, which yielded detailed information on optical transitions in
individual single-walled nanotubes. Table 3 gives a comparison between exp-
eriment and theory for the particular cases of the (8,0) and (11,0) tubes. The
measured transition energies are in excellent agreement with theory. In par-
ticular, we found that the large reduction in the ratio of the second transition
energy to the first transition energy E22/E11 from the value of 2 (predicted
by simple interband transition theory) is due to a combination of factors –
bandstructure effects, quasiparticle self-energy effects, and excitonic effects.
One must include all these factors to have an understanding of the optical
response of the semiconducting carbon nanotubes.

Another example of low-dimensional systems is clusters. In Fig. 13, we
show some results on the optical spectra of the Na4 cluster calculated using the
GW-BSE approach as well as those from TDLDA and experiment. The mea-
sured spectrum consists of three peaks in the 1.5–3.5 eV range and a broader
feature around 4.5 eV. The agreement between results from TDDFT based cal-
culations and GW-BSE calculations is very good. The comparison with the
experimental peak positions is also quite good, although the calculated peaks
appear shifted to higher energies by approximately 0.2 eV. Good agreement has
been obtained for other small semiconductor and metal clusters.
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Figure 13. Calculation of the optical absorption (proportional to the strength function) of a
Na4 cluster using the GW-BSE scheme (dashed line) (from Ref. [37]) and with TDDFT using
different kernels [38]: TDLDA (solid line), exact-exchange (dotted line). Filled dots represent
the experimental results from Ref. [39] (after Ref. [7]).

The above are just several selected examples, given to illustrate the current
status in ab initio calculations of quasiparticle and optical properties of materi-
als. Similar results have been obtained for the spectroscopic properties of many
other moderately correlated electron systems, in particular for semiconducting
systems, to a typical level of accuracy of about 0.1 eV.

7. Conclusions and Perspectives

We have discussed in this article the theory and applications of an ab initio
approach to calculating electron excitation energies, optical spectra, and exci-
ton states in real materials. The approach is based on evaluating the one-particle
and the two-particle Green’s function, respectively, for the quasiparticle and
optical excitations of the interacting electron system, including relevant electron
self-energy and electron–hole interaction effects at the GW approximation level.
It provides a unified approach to the investigation of both extended and confined
systems from first principles. Various applications have shown that the method
is capable of describing successfully the spectroscopic properties of a range of
systems including semiconductors, insulators, surfaces, conjugated polymers,
small clusters, nanotubes and other nanostructures. The agreement between the-
oretical spectra and data from experiments such as photoemission, tunneling,
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optical and related measurements is in general remarkably good for moderately
correlated electron systems.

A popular alternative scheme to address optical response is TDDFT. In par-
ticular the optical response of simple metal clusters and biomolecules is well
reproduced by the standard TDLDA approximation [7, 40]. However, if we
increase the size of the system towards a periodic structure in one, two or three
dimensions (i.e., polymers, slabs, surfaces or solids), we must be careful with
the form of the exchange-correlation functional employed. In contrast to the
GW-BSE scheme, difficulties arise when applying TDDFT, for example, to long
conjugated molecular chains, where the strong non-locality of the exact func-
tional is not well reproduced in the usual approximations. Similarly, for bulk
semiconductors and insulators, the standard functionals fail to describe the opt-
ical absorption spectra. The reason has been traced to the fact that the exchange
and correlation kernel fxc (which describes the electron–hole interaction within
TDDFT) should behave asymptotically, in momentum space, as 1/q2 as q goes
to 0 [7]. This condition, however, is not satisfied by the LDA or GGA.

Input from the GW-BSE method has in fact been employed to improve the
approximate exchange-correlation functionals for use in the TDDFT scheme
([41] and references therein). Such new many-body based fxc has given results
on the optical loss spectra of bulk materials such as LiF and SiO2 that are in quite
good agreement with the Bethe–Salpeter equation results and with experiments.
(See Fig. 14.) Both spatial nonlocality and frequency dependence of the fxc-
kernel turn out to be important in order to properly describe excitonic effects.
However, quasiparticle effects still need to be embodied properly within this
new approximated TDDFT scheme. An interesting practical question is: which
of the two approaches, the GW-BSE method or the TDDFT, would be more
efficient in computing the optical properties of the different systems of interest
in the future?∗

The overall success of the first-principles many-body Green’s function app-
roach is impressive and has been highly valued. Nevertheless, the G0 W0 scheme
can be refined in some applications. Studies have shown that: (i) inclusion of ver-
tex corrections improves the description of the absolute position of quasiparti-
cle energies although the amount of such corrections depends sensitively on the
model used for the vertex [7, 9]; (ii) vertex effects slightly changes the occupied
bandwidth of the homogeneous electron gas, but this correction is not enough to
fit the experimental results for metals such as Na; (iii) for the bandwidth of sim-
ple metals, self-consistency performed for the homogenous electron gas [42]

*The GW Bethe–Salpeter equation approach offers a clear physical and straightforward picture for the
analysis of results and further improvements. It works over a wide range of systems for both quasiparticle
and optical excitations. The TDDFT approach, on the other hand, is appealing since it computes optical
response more efficiently, but it is appropriate only for neutral excitations and its range of validity is
uncertain because of uncontrolled approximations to the functionals.
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Figure 14. Calculated optical absorption spectra within the GW-BSE approach (continuous
line) and those from a new TDDFT fxc kernel derived from the BSE method (dashed line) are
compared to experiment (open dots). The independent-quasiparticle response (dashed-dotted
line) is also shown (after Ref. [41]).

showed that partially self-consistent GW0 calculations – in which W is calcu-
lated only once using the random-phase-approximation (RPA) so that
Eq. (7) is not included in the iterative process – only slightly increase the G0W0

occupied bandwidth. Results are even worse at full self-consistency without
vertex corrections. The effects of self-consistency thus must be necessarily bal-
anced by the proper inclusion of vertex corrections. This, however, is not the
case for the calculation of total energies where the fully self-consistent GW
solution appears to provide better results than the partial G0W0 procedure. But,
if one is interested in spectroscopic properties, a self-consistent GW procedure
seems to perform worse than the simpler G0W0 scheme.

Experiences from numerous past applications to bulk solids and reduced
dimensional systems have demonstrated that in general the GW scheme is an
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excellent approximation for the evaluation of the quasiparticle and optical prop-
erties of moderately correlated systems. Methods beyond the GW approxima-
tion are expected to be required for the study of the spectral features of highly
correlated systems. The GW-BSE approach described in this article, however,
is arguably the most reliable, practical, and versatile tool we have at present
to tackle the optical and electronic response of real material systems from first
principles. Further developments in the field should address the proper treat-
ment of self-consistency and vertex corrections. This would further extend the
range of applicability of this, already successful, many-body Green’s function
approach.
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