
Chapter 9
Fracture Mechanics Analysis of Face/Core
Debonds

The superior performance of light-weight sandwich structures requires that
the face sheets be successfully bonded to the core. Lack of bonding, or in-
adequate bonding, will compromise the transfer of shear stress between the
face and core, and if debonding occurs over a large area, the debond is likely
to grow further. It is also obvious that the face/core adhesion may vary in
a large panel with composite face sheets due to inadequate wet-out of the
face fabrics resulting in “islands” of poor face/core bonding. Service loads
are also known to be a potential source for face/core debonding, in particu-
lar wave-slamming loads on the bottom of a ship hull or hard object impact
loads transverse to the surface of a sandwich structure.

The face/core interface in a sandwich panel may be toughened by the
addition of a thin low fiber content fabric layer such as a continuous fiber mat
(CFM) or a chopped strand mat (CSM). Such a mat will provide a transition
zone between the high modulus face sheets and the low modulus core and
may improve the face/core adhesion. The preparation of the core bonding
surfaces is also very important, as discussed by Pfund (2005). Ideally, the
critical link for the separation of the face and core should not be the actual
interface between face and core. If the adhesive layer is strong and tough,
debonding tends to occur in the face sheet in the form of delamination or
inside the core, see the scheme in Figure 9.1.

The morphology of the face/core interface is thus an important factor. The
actual morphology depends of the core material and the manner in which the
face sheets are attached to the core. For example, if fiber composite faces are
used, fabric preforms may be injected with resin, forming the face sheets and
the face/core bond simultaneously creating an integral, co-cured sandwich
structure (Advani and Sozer, 2002). Alternatively, preformed composite or
metal faces may be attached to the core using adhesive bonding procedures.

L.A. Carlsson and G.A. Kardomateas, Structural and Failure Mechanics of Sandwich 231
Composites, Solid Mechanics and its Applications 121, DOI 10.1007/978-1-4020-3225-7_9, 
© Springer Science+Business Media B.V. 2011 



232 9 Fracture Mechanics Analysis of Face/Core Debonds

Figure 9.1 Crack growth scenarios in foam core sandwich.

The face/core debond is commonly represented as a sharp discontinuity,
i.e. a crack, and the condition when this crack will propagate are analyzed
using fracture mechanics principles. This chapter aims to review the frac-
ture mechanics of face/core interface cracks and analysis of the crack path in
sandwich-test specimens. For sandwich specimens that fail after developing
large fiber bridging zones behind the crack tip, linear elastic fracture me-
chanics becomes inadequate and cohesive zone models may better represent
the fracture process.

9.1 Linear Elastic Fracture Mechanics Concepts

Fracture mechanics is a science developed to analyze the tendency for a pre-
existing crack in a structure to grow as a result of applied external loads. The
presence of a crack reduces the strength of the structure and, if the crack is
sufficiently long, the structure will fall below the designed limit load. The
assessment of the defect criticality for the structural performance is a major
objective of fracture mechanics. Another common situation where fracture
mechanics has been found extremely useful is in the prediction of the maxi-
mum crack size that can be allowed in a structure.

The field of fracture mechanics traditionally involves applied mechanics
and materials science. Applied mechanics relates external loads applied to a
flawed, or cracked, structural component to crack-tip stress fields and elas-
tic deformations of the material in the vicinity of the crack tip. Materials
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Figure 9.2 Modes of crack loading and definition of stress components: (a) mode I
(opening), (b) mode II (forward shear), and (c) mode III (tearing).

science, on the other hand, views fracture mechanics as a means of charac-
terizing the fracture resistance of a material and this understanding will aid
in the development of improved processing strategies and materials design.

Most published work on fracture mechanics concerns fracture of isotropic
materials such as metals and polymers (Ewalds and Wanhill, 1989; Kinloch
and Young, 1983) although there are more recent compilations on fracture
mechanics of composites (e.g., Friedrich, 1989; Armanios, 1996). The re-
view article by Hutchinson and Suo (1992) is an excellent source for fracture
mechanics of orthotropic and layered dissimilar materials.

Fracture mechanics analysis is most commonly concerned about the open-
ing mode of fracture, i.e. mode I, associated with opening displacements of
the crack faces and tensile stresses near the crack tip (see Figure 9.2a). In
general, analysis of the forward shear (mode II) and tearing modes (mode
III), illustrated in Figures 9.2b and c, is required. Figure 9.2 also shows a
commonly used xyz coordinate system and the associated stress element
with σ y , τxy and τyz, being the dominant mode I, mode II, and mode III
stresses. As discussed by Hutchinson and Suo (1992), an interface crack be-
tween two dissimilar materials is inherently loaded in mixed mode because
of the mismatch in material properties across the crack interface. This means
that both normal and shear stresses act on the interface in front of the crack
tip.



234 9 Fracture Mechanics Analysis of Face/Core Debonds

We will first consider a true interface crack between a homogeneous,
isotropic or orthotropic face sheet and a homogeneous, isotropic core, i.e.,
the case shown at the far right in Figure 9.1. It is recognized that such a
crack constitutes a “bimaterial interface crack” according to the terminol-
ogy of Suo and Hutchinson (1990). For foam-cored sandwich structures, the
combination of stiff faces and a soft core is associated with a tremendous
stiffness mismatch. Face-to-core modulus ratios in the range from 100 to
1,000 are common. A bimaterial crack displays some peculiar behavior due
to the mismatch in elastic stiffnesses across the crack plane. Mixed mode
loading is inherent at the tip of a bimaterial interface crack even if the global
load is pure mode I. The asymmetries of moduli and Poisson’s ratios across
the interface cause mixed mode loading at the crack tip because tensile and
shear stresses must appear along the interface to maintain continuity in dis-
placements between the two materials. The stresses near the crack tip ex-
perience the typical square root singularity of homogeneous fracture and,
in addition, oscillatory behavior (Williams, 1959; England, 1965; Erdogan,
1965; Rice and Sih, 1965). Hutchinson (1990) proposed the following com-
plex representation of the interfacial normal and shear stresses (σy and τxy),
see Figure 9.3, ahead of the crack tip (θ = 0):

σy + iτxy = (K1 + iK2)x
iε

√
2πx

, (9.1)

where x is the distance from the tip along the interface, i = √−1, and
K = K1+iK2 is called “the complex stress intensity factor” for an interfacial
crack (Hutchinson, 1990). Notice here that K1 and K2 do not represent the
opening and sliding modes as KI and KII do in classical fracture mechanics
and no simple physical interpretation of K1 and K2 exists. The parameter ε

is called the “oscillatory index” (Hutchinson, 1990), defined in terms of one
of Dundurs’ (1969) elastic mismatch parameters, β,

ε = 1

2π
ln

(
1 − β

1 − β

)
, (9.2a)

β = 1

2

G1(1 − 2ν2) − G2(1 − 2ν1)

G1(1 − ν2) + G2(1 − ν1)
, (9.2b)

where subscripts 1 and 2 on the shear modulus G and Poisson’s ratio ν rep-
resent the (isotropic) materials above and below the crack plane. The para-
meter β vanishes if both materials are identical (G1 = G2), and when both
materials are incompressible (ν1 = ν2 = 1/2).
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Figure 9.3 Stress element near a bimaterial crack tip.

With xiε = cos(ε ln x) + i sin(ε ln x), it is noted that xiε in Equation (9.1)
is a function that changes sign infinitely often, thus oscillating in a violent
manner as the distance x tends to zero. Also, the near tip displacements of
the crack face behind the crack tip display oscillatory behavior.

He and Hutchinson (1989) argued that the oscillation is a mathematical
artifact of the elasticity solution and showed that the oscillatory region is
usually exceedingly small. They proposed a consistent, pragmatic approach
to suppress the role of the oscillations by assuming ε = 0 = β both in
the evaluation of fracture toughness and in the subsequent application of the
toughness data for prediction of crack propagation. For this case, the mode I
and mode II stress intensity factors, KI and KII, assume their classical, con-
ventional relation to the opening (σy) and shear stresses (τxy) at the interface
ahead of the crack tip (θ = 0).

Suo (1990) examined a crack between two orthotropic solids (or one or-
thotropic and one isotropic) and determined the near tip stress and displace-
ment fields. For the case where ε = β = 0, the following expressions for the
stresses and crack flank displacements were derived:

(
H22

H11

)1/2

σy + iτxy = KI + iKII√
2πx

, (9.3a)

(
H11

H22

)1/2

δI + iδII = 2H11(KI + iKII)
√

x√
2π

, (9.3b)

where the stress components are defined in the element shown in Figure 9.3.
δI and δII are the opening (y directional) and sliding (x directional) displace-
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Figure 9.4 Opening (δI) and sliding (δII) displacements of the crack surfaces behind
the crack tip.

ments of a point located at a distance, x, behind the crack tip before the
cracked structure is loaded, see Figure 9.4.

The parameters H11 and H22 are defined in terms of the orthotropic com-
pliances (bij ) of the materials above and below the crack plane, Figure 9.3,

H11 =
2∑

i=1

[
2nλ1/4(b11b22)

1/2]
i
, (9.4a)

H22 =
2∑

i=1

[
2nλ−1/4(b11b22)

1/2]
i
, (9.4b)

where i = 1 for the material above the crack, and i = 2 for the material
below the crack, and

ni =
[

1

2
(1 + ρi)

]1/2

. (9.5)

λ and ρ are defined below in terms of bij , where the subscripts i, j refer to
the material description and assume values of 1, 2, and 6,

λ = b11

b22
, (9.6a)

ρ = b12 + b66/2√
b11b22

, (9.6b)

bij =
⎧⎨
⎩

sij (plane stress),

sij − si3 sj3

s33
(plane strain).

(9.6c)

sij (i, j = 1, 2, 6) are the compliance elements defined by, e.g., Hyer (1998),
for a specially orthotropic material with the 1 direction along the x axis, 2
direction along the y axis, and 3 direction along the z axis.
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s11 = 1

E1
, s12 = −υ12

E1
, s13 = −υ13

E1
,

s22 = 1

E2
, s23 = −υ23

E2
, s33 = 1

E3
,

s44 = 1

G23
, s55 = 1

G13
, s66 = 1

G12
. (9.7)

Once the stress intensity factors are determined, the energy release rate is
obtained according to Suo (1990),

G = H11

4
[K2

I + K2
II]. (9.8)

If both materials above and below the crack plane are isotropic, Equation
(9.3a) simplifies to (9.1), and (9.3b) simplifies to

δ1 + iδII = 4

√
x

2π

(
1

Ē1
+ 1

Ē2

)
(KI + iKII), (9.9)

where Ē = E/(1 − ν2) for plane strain, where ν is Poisson’s ratio, and
Ē = E for plane stress. Subscripts 1 and 2 denote the materials above and
below the crack plane. For this case the energy release rate, Equation (9.8),
becomes

G = 1

2

(
1

Ē1
+ 1

Ē2

)
(K2

I + K2
II). (9.10)

If both materials above and below the crack plane are the same, and if they
are isotropic, the crack face displacements become

δ + iδII = 8

√
x

2π

(KI + KII)

Ē
(9.11)

and the energy release rate becomes

G = K2
I + K2

II

Ē
. (9.12)

It should be pointed out that the area of bimaterial fracture mechanics is still
emerging. Several approaches, such as the method of distributed dislocations
to represent a crack-like discontinuity, have emerged since the pioneering
works of Eshelby et al. (1953) and Stroh (1958). Ting (1986) extended this
approach to anisotropic materials and Kardomateas and co-workers applied
it to bimaterial cracks between dissimilar anisotropic materials (see Huang
and Kardomateas, 2001; Liu et al., 2004; Li and Kardomateas, 2006). This
last paper also considers crack branching (crack kinking), which is an im-
portant failure mode of sandwich structures, see Section 9.2.
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9.1.1 Finite Element Crack Closure Method

Several studies of debonding and delamination of composite materials ex-
press the crack loading in terms of the energy release rate, G. Since the frac-
ture toughness, Gc, typically depends on the fracture mode, it is common
to separate G into “components” corresponding to the opening and shearing
modes of fracture, i.e.,

G = GI + GII + GIII. (9.13)

Theoretically, the mode separations is based on Irwin’s contention that if the
crack extends by a small amount, �a, the energy absorbed in the process is
equal to the work required to close the crack to its original length (Irwin,
1958). This equality is expressed in the following crack closure integrals

GI = lim
�a→0

1

2�a

∫ �a

0
σy(�a − r, 0)v̄(r, π)dr, (9.14a)

GII = lim
�a→0

1

2�a

∫ �a

0
τxy(�a − r, 0)ū(r, π)dr, (9.14b)

GIII = lim
�a→0

1

2�a

∫ �a

0
τyz(�a − r, 0)w̄(r, π)dr, (9.14c)

where r is the radial distance from the crack tip, σy , τxy , and τyz are the
normal and shear stresses ahead of the crack tip, and v̄, ū and w̄ are the
relative opening and sliding displacements between points on the crack faces
behind the crack tip.

The mode separation assumes that the crack will extend in a planar fash-
ion, which it may or may not. For mixed mode loading, the crack may tend
to deflect (kink) and propagate in a different plane than the original reference
plane. This will be discussed in the next section. Furthermore, as pointed out
by several authors, if the crack is at a bimaterial interface, the oscillations of
stresses and displacements near the crack tip discussed early in this chapter
will make the separation of G into components (Equations (9.13) and (9.14))
problematic (Raju et al., 1988).

The crack closure integrals in Equations (9.14) have been implemented
into a finite element computation by Rybicki and Kanninen (1977). This
method is called “the finite element crack closure method” and has been
widely applied to fracture problems, see the review by Kruger (2004).
Berggreen (2004) developed a method to extract the stress intensity factors
from a finite element solution of the near crack-tip displacements called the
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Figure 9.5 The crack-closure technique in finite elements. FH and FV are horizon-
tal and vertical forces applied to close the crack. (a) Original configuration, (b) con-
figuration after release of crack-tip nodes, (c) the released nodes are brought back
to their initial position by application of nodal forces.

“crack surface displacement extrapolation method”. This method has been
applied to several bimaterial crack problems.

Figure 9.5 illustrates the crack-closure method applied to a finite-element
mesh of a mixed mode I and mode II two-dimensional problem. A certain
crack extension �a may be introduced in the finite-element mesh by re-
leasing duplicate nodes at the crack tip. The resulting deformations are the
relative opening and sliding crack-tip deformations. By applying forces to
the released nodes in two orthogonal directions, it is possible to close the
crack tip to its original state. The products of crack-tip nodal displacements
and forces enable GI and GII to be evaluated numerically.

For the plane situation illustrated in Figure 9.5, GI and GII become

GI = FV �v

2b�a
, (9.15a)

GII = FH �u

2b�a
(9.15b)

where b is the width, FH and FV are the horizontal and vertical crack-closure
forces, and �u and �v are the horizontal and vertical increments of displace-
ments required to bring the released nodes to their original positions. Notice
that the far-field load applied is held constant in the steps illustrated in Fig-
ure 9.5. For mode III, GIII is similarly obtained as

GIII = FT �w

2b�a
(9.16)

where FT is the magnitude of the crack-closure forces applied parallel to the
crack front and �w is the z directional incremental displacement required to
close the crack.
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Implicit in the calculations outlined above is the requirement that the ele-
ments enclosing the crack-tip are identical in size. Consequently, �a is equal
to the distance between adjacent nodes. This constraint can be relaxed in case
a non-uniform crack tip mesh is used, but the calculations of GI, GII and GIII

must be modified (see Rybicki and Kanninen, 1977).
It should be observed that the released nodes are assumed to displace in

opposite directions with the same magnitude. This is the situation encoun-
tered in symmetric crack geometries and specimens. For asymmetric crack
geometries and cracks between dissimilar materials, the displacements of
the released nodes may no longer be of equal magnitude and the procedure
will have to be modified. The basic principle, as for the homogeneous and
symmetric case discussed above, is the calculation of the work required to
bring the nodes back to their original position, before they were released. For
further details on the crack closure method, see, e.g. Kruger (2004).

9.2 Crack Kinking Analysis

If a sandwich structure that contains a face/core debond is loaded, the debond
may propagate under certain conditions governed by the crack driving force
and the fracture resistance of the material around the tip of the debond. It has
been observed that face/core debonds in foam-cored sandwich specimens
and panels may propagate at the face/core interface or it may deflect, “kink”,
away from the interface and propagate inside the foam core, see Figure 9.6.

Erdogan and Sih (1963) examined crack propagation in a homogeneous,
isotropic, brittle plastic sheet. Specifically, a plate containing a central crack
of length 2a loaded in biaxial tension was analyzed using the Griffith theory
assuming the crack will grow in a direction where the energy release per
unit crack extension is maximum. They found that the crack growth initiates
at the tip and extends in a plane perpendicular to the direction of maximum
tangential stress, σθ as confirmed by experiments. The near tip stress element
in polar coordinates (r, θ) is shown in Figure 9.7.

Following the analysis of Erdogan and Sih (1963), Prasad and Carlsson
(1994a) considered a crack of length 2a in a homogeneous, isotropic material
loaded under plane strain in mixed mode I and mode II. The stresses near the
right crack tip, illustrated in Figure 9.7, can be expressed as

σr = 1√
2πr

cos
θ

2

(
KI

(
1 + sin2 θ

2

)
+ 3

2
KII sin θ − 2KII tan

θ

2

)
,

(9.17a)
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Figure 9.6 Growth scenarios of a face/core debond in foam-cored sandwich.

Figure 9.7 Near tip stresses in a cracked sheet.

σθ = 1√
2πr

cos
θ

2

(
KI cos2 θ

2
− 3

2
KII sin θ

)
, (9.17b)

τrθ = 1

2
√

2πr
cos

θ

2
(KI sin θ + KII (3 cos θ − 1)) . (9.17c)

To determine the kink angle, �, Figure 9.8, for a general mixed mode
loading case, one may determine the direction where the stress σθ is maxi-
mum. This direction coincides with the direction, θ = �, where the shear
stress τrθ vanishes. An explicit expression for � was derived by Prasad and
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Figure 9.8 Definition of kink angle, �, for a crack under mixed mode loading.

Carlsson (1994a) based on Equation (9.17c) with τrθ = 0 for θ = �, which
yields

sin �

3 cos � − 1
= KII

KI
. (9.18)

To solve for the angle � in terms of the mode ratio KII/KI, the following
trigonometric identities are employed:

sin2 �

2
+ cos2 �

2
= 1, (9.19a)

cos � = cos2 �

2
− sin2 �

2
, (9.19b)

sin � = 2 sin
�

2
− cos

�

2
. (9.19c)

Substitution of Equations (9.19) in (9.18) yields

sin �
2 cos �

2

cos2 �
2 − 2 sin2 �

2

= KII

KI
. (9.20)

After factoring out cos2(�/2), this equation simplifies to

tan �
2

1 − 2 tan2 �
2

= KII

KI
. (9.21)
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Substitution of x = tan(�/2) into Equation (9.21) yields

2KIIx
2 + KIx = KII. (9.22)

Solving the quadratic yields

tan
�

2
= −1 ± √

1 + 8(KII/KI)
2

4(KII/KI)
. (9.23)

Hence, the kink angle may be expressed as

� = 2 tan−1

[
−1 ±

√
1 + 8(KII/KI)

2

4KII/KI

]
. (9.24)

Pure mode I, KII = 0, yields a kink angle, � = 0, i.e., self-similar prop-
agation, while pure mode II yields � = ±70.5◦, where the + sign refers
to kinking down as shown in Figure 9.8 (KII > 0) and the − sign refers to
kinking up (KII < 0).

This analysis thus provides the direction of kinking if it were to occur
in a homogeneous and isotropic material. The initiation of the kinked crack
growth occurs under mixed mode conditions and the fracture toughness, Kc,
may depend upon the amount of mode II present, i.e., the mode ratio KII/KI.
Hence, for a given material, it is necessary to experimentally measure the
fracture toughness at various mode mixes. Experimentally it has been found
that the fracture toughness increases with increased shear loading (increasing
mode ratio, KII/KI) (Liechti and Chai, 1992).

For a face/core crack, the various growth scenarios illustrated in Figure 9.1
point to one possibility that the initial debond lies between two widely dis-
similar material, i.e. between a stiff face and a compliant (soft) core. Crack
kinking for such a case has been examined by He and Hutchinson (1989)
who considered a crack at the interface between two dissimilar isotropic ma-
terials, #1 above the interface, and #2 below the interface. A straight crack
segment denoted “kinked crack” in Figure 9.6b, of short length compared
to the “parent”, interface crack (Figure 9.6a) was specifically analyzed. The
stress field prior to kinking is thus the singularity field of an interface crack
which corresponds to a strain energy release rate, G, available for further
propagation along the interface or kinking into the core. The analysis pro-
vides the energy release rate of the kinked crack, Gk, using an extensive
numerical solution of the governing integral equations. The energy release
rate and kink angle results are presented graphically for any given combi-
nations of materials above and below the interface specified in terms of an
elastic mismatch parameter α (Dundurs, 1969),
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α = E1 − E2

E1 + E2
, (9.25)

where E = E for plane stress, and E = E/(1 − υ2) for plane strain. Sub-
scripts 1 and 2 on Young’s modulus represents the materials above and below
the crack plane.

He and Hutchinson (1989) examined the energy release rate ratio Gk/G

and found that this ratio increases with increasing compliance of the mater-
ial into which the crack kinks. They suggested that the crack would remain
at the interface only if the compliant material is tough and the interface is
relatively brittle. Furthermore, as discussed by Hutchinson and Suo (1992),
the kink angle that maximizes, Gk, is also the angle where KII = 0, i.e.,
the kinked crack propagates under pure mode I as for the homogeneous case
discussed earlier. The considerations discussed above were expressed in an
energy inequality governing kinking,

Gk
max

G
>

GIC

GC

, (9.26)

where Gk
max is the maximum energy release rate for the kinked crack with

respect to kink angle, � and G is the energy release rate of the interface
crack. GIC and GC are the mode I fracture toughness of the core, and the
interface fracture toughness, respectively.

Predictions of the crack propagation path in a sandwich panel according
to the above analysis thus requires experimental data on the core fracture
toughness, GIC , and the interface toughness, GC , at the mixed mode loading
(KI, KII) acting on the tip of the interface crack. Measurement of GIC for the
core is quite straightforward, but the measurement of the interface toughness,
GC , is more difficult, unless Gc is low and the crack propagates at the inter-
face. If the interface is much tougher than the core, however, experimental
determination of GC becomes very difficult since the crack would not select
such a high resistance path. Without a value of GC the analysis could still
be used in a semi-quantitative sense providing the direction � of the kinked
crack and the driving force for kinking indicated by the energy release ratio
Gk

max/G.

9.2.1 Crack Path in Foam-Cored DCB Specimens

Understanding of the factors that govern the crack path in foam-cored sand-
wich structures is essential for the design of such structures. Furthermore,
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Figure 9.9 Precrack in a foam core DCB specimen. ξ is a parameter specifying the
location of the precrack below the upper face in the core (0 ≤ ξ ≤ 1).

Figure 9.10 Crack kinking in foam-cored sandwich DCB specimen. Positive kink
angle � is defined as shown (“down”).

measurement of face/core debond toughness requires that the crack remains
at the face/core interface. It has been found that kinking of the crack into
the core is a common occurrence in DCB testing of foam-cored sandwich
specimens (see Prasad and Carlsson, 1994b). Kinking would disqualify the
test data for interface toughness.

When a foam core sandwich DCB specimen is tested, it is common to
slightly extend the precrack beyond the tip of the artificial film insert at the
face/core interface and this may tend to bring the precrack into the core be-
low the face/core interface, as shown in Figure 9.9. If the DCB specimen is
prepared from a sandwich panel without a starter film, the precrack needs to
be cut into the core, near the face/core interface, which also tends to produce
a precrack such as the one illustrated in Figure 9.9.

As discussed in Section 9.2, a crack in a foam-cored DCB specimen may
not propagate in a self-similar manner, but kink up or down in a certain direc-
tion quantified by the kink angle � (Figure 9.10). The direction of kinking
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Figure 9.11 Positive shear stress and kink angle.

is indicated by the sign of the angle � (� > 0 in Figure 9.10). The positive
sign of the kink angle in Figure 9.10 is consistent with a positive shear stress
ahead of the crack tip, see Figure 9.11. Furthermore, a positive shear stress
ahead of the crack tip is consistent with the direction of sliding of the crack
faces behind the crack tip, as shown in Figure 9.4.

Analysis of the kinking angle and critical load required to initiate kink-
ing of a crack (Section 9.2) requires the stress intensity factors and energy
release rate at the front of the parent crack. Such analysis, however, requires
substantial detail since the definition of stress intensity factors is based on
stresses and displacements in a very small region (singular domain) near the
crack tip.

As a simpler alternative to detailed fracture mechanics is the beam the-
ory analysis presented by Carlsson et al. (2006). If the influence of the small
singular field domain near the crack tip is neglected, it is possible to deter-
mine the relative sliding displacement, shown in Figure 9.4, from the bending
strains

δii = r(εL
x − εU

x ), (9.27)

where εx represents the near crack tip bending strains in the crack flanks,
superscripts L and U denote the lower (L) and upper (U ) sub-beams (legs),
and r is the distance from the crack tip. According to this analysis, kinking
would be promoted by a bending strain mismatch between the lower and
upper legs of the DCB sandwich specimen, i.e. δII 	= 0 in Equation (9.26).
δII > 0 would promote kinking downwards and δII < 0 would promote
kinking upwards. Zero difference would promote self-similar growth (if the
initial crack is within the core).
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To quantify the strain mismatch, a DCB specimen with the generic crack
configuration shown in Figure 9.9 is considered. The crack is located at dis-
tance ξhc from the upper face/core (F/C) interface and a distance (1 − ξ)hc

from the lower F/C interface, where hc is the core thickness and the para-
meter ξ is bounded by 0 ≤ ξ ≤ 1. Consequently, ξ = 0 corresponds to a
crack at the upper F/C interface, and ξ = 1 represents a crack at the lower
F/C interface. The face sheets may have different moduli (Ef 1 and Ef 2)
and thicknesses (h1 and h2). We will here assume that each face sheet can be
considered as homogeneous isotropic or orthotropic and the core is isotropic.
The bending of each leg of the DCB is modeled using a laminated beam for-
mulation where the extensional, coupling, and bending stiffness matrices of
classical laminated plate theory, i.e. [A], [B] and [D] as defined in Equations
(3.18) and (3.19), are replaced by three scalar stiffnesses, A, B and D given
by

A =
N∑

k=1

(Ex)k(zk − zk−1), (9.28a)

B = 1

2

N∑
k=1

(Ex)k(z
3
k − z3

k−1), (9.28b)

D = 1

3

N∑
k=1

(Ex)k(z
3
k − z3

k−1), (9.28c)

where the ply coordinates zk are defined for a general laminate in Figure 3.2.
Application of this analysis to the bending of the lower and upper legs of

the DCB specimen shown in Figure 9.9, each subject to a load P , yields the
strains εL

x and εU
x as required for Equation (9.27).

εL
x b

Pa
= hL/2 − BL/AL

DL − B2
L/AL

(lower), (9.29a)

εU
x b

Pa
= hU/2 + BU/AU

DU − B2
U/AU

(upper), (9.29b)

where hL and hU are the thicknesses of the lower and upper legs,

hL = h1 + (1 − ξ)hc, (9.30a)

hU = h2 + ξhc. (9.30b)

The extensional, coupling, and bending stiffness of the lower and upper legs
are obtained from Equations (9.28),
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AL = Ef 1h1 + Ec(1 − ξ)hc, (9.31a)

AU = Ef 2h2 + Ecξhc, (9.31b)

BL = h1hc(1 − ξ)

2
(Ec − Ef 1), (9.31c)

BU = ξh2hc(1 − ξ)

2
(Ef 2 − Ec), (9.31d)

DL = 1

12
[Ef 1(h

3
1 + 3h1h

2
c(1 − ξ)2) + Ec((1 − ξ)3h3

c + 3h2
1hc(1 − ξ))],

(9.31e)

DU = 1

12
[Ec(ξ

3h3
c + 3ξhch

2
c) + Ef 2(h

3
2 + 3ξ 2h2

chc)], (9.31f)

where Ef 1 and Ef 2 are the effective Young’s moduli of the lower and upper
face sheets, respectively, and Ec is the core modulus.

An example (Carlsson et al., 2006) is a symmetric DCB specimen con-
sisting of 2.4 mm thick glass/vinylester faces and a 16 mm thick H100 PVC
foam core. The face and core moduli are Ef 1 = Ef 2 = 27.6 GPa and
Ec = 105 MPa. The crack tip strains in the lower and upper legs of the
DCB specimen were calculated from Equations (9.29) as a function of the
crack position in the core (0 ≤ ξ ≤ 1). Figure 9.12 shows the crack tip
strains in the upper and lower legs vs. ξ . The graph shows that the strains are
equal (δII = 0) at three locations of the crack, i.e., ξ = 0.08, 0.5, and 0.92.
Consequently, a crack located at these locations is expected to propagate in
a self-similar manner. Further, according to this analysis, a crack located at
the top interface (ξ = 0), would kink down (εL

x > εU
x ) until it reaches an

equilibrium location where the strains are equal (ξ = 0.08). This is a sta-
ble location since Figure 9.13 indicates that any small perturbation of the
crack location (up or down) would tend to return the crack to the ξ = 0.08
location. Similarly, a crack at the lower F/C interface (ξ = 1) would kink
up (εL

x > εU
x ) until a stable position is reached at ξ = 0.92. The actual dis-

tance from the upper and lower interface to the stable locations is only about
1.3 mm for this specimen, and a crack propagating at this location would be
considered as “near interface”. A crack positioned in the upper half region of
the core between ξ = 0.08 and 0.5 would kink up and approach the ξ = 0.08
location while a crack located in the lower half would kink down. A center
crack (ξ = 0.5) would potentially remain at the center, but Figure 9.12 in-
dicates that this configuration is not stable since any small disturbance (up
or down) would promote kinking up or down towards the stable ξ = 0.08 or
0.92 locations.

Several other cases were examined by Carlsson et al. (2006).
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Figure 9.12 Crack tip strains in lower and upper legs of a symmetric DCB speci-
men.

9.3 Cohesive Zone Models of Face/Core Interface Failure

Producers of sandwich structures sometimes add a mat of continuous fibers
called a “continuous filament mat” (CFM), or a “chopped strand mat”
(CSM), between the face and core. The purpose of such a design is to in-
crease the resin content between face and core to avoid “dry spots” and im-
prove the resistance to face/core debonding by the increased resin content.
The CFM and CSM may also add an additional toughening mechanism pro-
vided by fiber bridging the crack surfaces, see the photograph in Figure 9.13
showing face/core separation in a sandwich beam with a CSM added be-
tween face and core evidencing large-scale fiber bridging.

In cases where bridging zones develop, the actual material separation dis-
placements across the crack faces can be quite substantial and the large-scale
fracture process zone makes linear elastic fracture mechanics concepts dif-
ficult to satisfy. In many cases, the global response of a cracked sandwich
structure, or fracture test specimen, remains linear, while the material sepa-
ration process near the crack tip behaves nonlinear. This situation is conve-
niently represented by a cohesive zone model, where the tensile strength and
the work of fracture become connected using a specific traction/separation
(T/S) law (Argon, 2000). Figure 9.14 shows an idealized T/S law. As shown,
the crack will start to open when the crack tip stress exceeds the cohesive
strength σ0. Once the crack opens up, the cohesion of the material elements
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Figure 9.13 Fiber bridging observed during face/core separation in a sandwich
beam with a 450 g/m2 CSM. (Courtesy of Lundsgaard et al., 2008)

behind the crack tip will not be totally lost, as in linear elastic fracture me-
chanics, until the crack opening exceeds the critical value uc

n.
As discussed by Nairn (2009) and shown in Figure 9.15, a cohesive zone

is associated with two crack tips, viz. the notch root where the traction is
zero and the actual crack tip where the material separation is initiated (see
Figure 9.15). At the beginning of the fracture process, the bridging zone
develops by extension of the crack tip while the notch root remains fixed.
As will be discussed below, this process is associated with a rising resistance
curve (R curve). After further loading, if a steady-state is reached, the crack
tip and notch root propagate at the same rate, corresponding to a constant
length of the bridging zone and self-similar growth.

Figure 9.15 also illustrates the separation of the crack flanks at the notch
root, u∗

n where the traction vanishes. The fracture process in a test specimen
or structure occurs in a “process zone” defining a layer of total thickness, �.
The process zone is comprised of parts of the face and core materials above
and below the interface where fiber pull-out, plastic deformation, and other
complex, nonlinear material separation processes occur, see Figure 9.15. In
modeling of cohesive failure of fracture test specimens, the local response
of the material separation law typically demands a numerical finite element
solution with special cohesive elements where the T/S law is specified and
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Figure 9.14 Schematic representation of a traction/separation law representing the
failure process.

Figure 9.15 Process zone around the crack tip.

assigned along the anticipated crack propagation path, which, for a sandwich
structure, is commonly along the face/core interface (Ostergaard, 2007). The
layer thickness, �, of the process zone is typically neglected.

An important tool in cohesive zone modeling is the J integral proposed
by Rice (1968).

J =
∫
�

(
� dx2 − σijnj

∂ui

∂xi

ds

)
, (9.32)
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Figure 9.16 Path � for calculation of the J integral with normal nj . x1 is a coordi-
nate along the crack propagation path and x2 is perpendicular to the crack plane.

where � is any counter-clockwise path surrounding the crack faces, with nj

being the outwards directed normal vector to the path, �, see Figure 9.16. x1

is a coordinate along the crack plane, and ui is the displacement vector and
ds is an element of �.

� is the strain energy density given by

� =
∫ ε

0
σij dεij , (9.33)

where σij and εij are i, j elements of the stress and strain tensors, re-
spectively, and repetition of an index denotes summation over the range
i, j = 1, 2, 3.

For the pure normal opening loading considered here, a cohesive law (Fig-
ure 9.14) can be expressed as

σn = σn(un). (9.34)

When the stress on the interface reaches its ultimate value, σ0, the fracture
process is initiated. Before that, all deformation of the specimen is accommo-
dated by the continuum. Figure 9.17 schematically illustrates the distribution
of normal stress acting in the cohesive zone.

Evaluation of the J integral around the cohesive zone (Li and Ward, 1987;
Bao and Suo, 1992) provides the relation between the cohesive law and the
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Figure 9.17 Normal stress, σn, in the cohesive zone.

fracture resistance:

Jr =
∫ u∗

n

0
σndun + J0, (9.35)

where u∗
n is the maximum separation distance encountered at any specific

crack length (Figure 9.18). As shown in Figure 9.18, at the beginning of the
fracture test no fibers are bridging the crack and the crack will advance when
JR = J0. Upon further loading and extension of the crack tip (Figure 9.18),
the first term in Equation (9.35) will start to contribute as a result of devel-
opment of the bridging zone.

As the crack propagates further, the bridging zone will become more and
more developed and extend behind the crack tip corresponding to a rising R
curve, i.e., a plot of JR vs. �a, where �a is the extension of the crack tip
from its initial value (a0), see Figure 9.19. Once the maximum end open-
ing, un, reaches its critical value, uc

n, the bridging zone is fully developed,
corresponding to a steady-state fracture toughness, JR = Jss . Nairn (2009)
has argued that the energy stored in the bridging fibers may be recovered
upon unloading the specimen and that a true R curve determination prior to
steady-state should subtract this contribution to the J integral. However, this
should not be an issue for continuous loading considered here.
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Figure 9.18 Extension of crack tip and development of bridging zone.

Figure 9.19 Schematic R curve showing crack growth resistance, JR , vs. crack
extension in a material where fiber bridging develops.

As discussed by Ostlund (1995) and Sorensen and Jacobsen (1998), the
bridging fibers represent distributed discrete forces, here smeared into a con-
tinuum mechanics cohesive stress, σn. Such an approach is assumed appro-
priate if there is a sufficient number of bridging fibers per unit area.
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Figure 9.20 Crack with large scale bridging subject to mixed mode loading. After
Sorensen and Kirkegaard (2006).

The cohesive law, σn = σn(un), may be determined from the measured re-
sistance curve. Differentiation of Equation (9.35) yields (Li and Ward, 1989)

σn(un) = dJR

dun

. (9.36)

Such an approach requires that JR has been determined as a function of the
end opening, u∗

n. Hence, the test must employ special displacement measur-
ing devices that allow recording of u∗

n (Lundsgaard et al., 2008).
So far the description has been limited to mode I fracture. The treatment of

mixed mode fracture using a cohesive law approach requires consideration of
both normal and shear stresses σn and τnt that act in the cohesive zone, and
normal and tangential crack face displacements, un and ut . Sorensen and
Kirkegaard (2006) present a consistent approach to establish mixed mode
cohesive laws for specimens displaying large-scale bridging. The approach
utilizes the J integral applied to the novel test method consisting of a DCB
specimen (Section 11.7) where the legs are loaded with edge couples as op-
posed to shear forces in the traditional, standard DCB test. The normal and
shear traction/separation stresses are extracted from the J integral in com-
bination with measured normal and tangential crack face displacements at
the end of the cohesive zone. Figure 9.20 illustrates the crack region with a
large-scale bridging zone subject to mixed mode loading.

The crack opening and sliding displacements un and ut are defined as the
relative displacements of the upper and lower crack surfaces (Figure 9.20).
The critical values of un and ut are denoted uc

n and uc
t . The normal and shear

stresses acting over the cohesive zone are denoted by σn and τnt . Calculation
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of the J integral for a path, � (Figure 9.16) starting and ending outside the
bridging zone, along the lower crack face, around the crack tip and back
along the upper crack face, yields the result

JR =
∫ u∗

n

0
σn (un, ut ) dun +

∫ u∗
t

0
τnt (un, ut)dut + J0. (9.37)

By partially differentiating Equation (9.37) with respect to un and ut , the
cohesive stresses become

σn = ∂JR

∂un

, (9.38a)

τnt = ∂JR

∂uτ

. (9.38b)

Hence, in this manner the cohesive stresses, i.e. traction/separation (T /S)
law, can be determined directly from the measured resistance curve and mea-
sured values of the opening and sliding displacements. At steady-state crack
propagation, the bridging zone is fully developed and should translate simi-
larly with the growing crack along the interface.

9.4 An Expression for the Energy Release Rate of Face/Core
Debonds in Sandwich Beams

A loading which can be especially detrimental for a sandwich structure is
compression because these debonds are susceptible to buckling and subse-
quent rapid growth during the post-buckling phase. Typically, post-buckling
solutions are derived in terms of forces and moments at the debond sec-
tion (Kardomateas and Huang, 2003). Therefore, expressions for the energy
release rate in terms of these quantities are particularly useful. Such expres-
sions were first derived by Yin and Wang (1984) for delaminated monolithic
composites, and extended by Suo and Hutchinson (1990) to a delaminated
bi-material (thin film on a substrate). The sandwich configuration is, how-
ever, a “tri-material”, i.e. two face sheets, which need not be the same, and
a core. This is the configuration treated in this section. Specifically, we use
the J integral to obtain a closed form algebraic expression for the energy
release rate, G, for a debonded sandwich beam. The most general case of
an “asymmetric” sandwich is considered, i.e. the bottom face sheet is not
necessarily of the same material and thickness as the top face sheet. The ex-
pression derived is in terms of forces and moments (which are typical outputs
of post-buckling solutions) acting on the debonded section.
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Figure 9.21 (a) Sandwich cross-section with the acting forces and moments; (b)
the J integral path.

We consider a sandwich beam consisting of two face sheets of thicknesses
hf 1 and hf 2, and extensional moduli Ef 1 and Ef 2, respectively. The core, of
thickness hc, has an extensional modulus, Ec (Figure 9.21a).

In the region of the debond, the sandwich beam consists of two parts: the
debonded upper face sheet (referred to as the “debonded part”, of thickness
hf 1) and the part below the debond (“substrate part”, of thickness hc + hf 2,
which includes the core and the lower face sheet). A unit width is assumed.
The region outside the debond is referred to as the “base part” and consists
of the entire section of the sandwich beam, i.e., of thickness hf 1 + hc + hf 2.
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We shall denote the base part with “b”, the debonded part with “d”, and the
substrate part with “s”.

A characteristic of sandwich construction is that the neutral axis for the
base and the substrate parts is in general no longer at the center of the cor-
responding sections. With respect to a reference axis x through the middle
of the core, the neutral axis of the base section is defined at a distance eb

(Figure 9.21a), as:

eb

(
Ef 1hf 1 + Echc + Ef 2hf 2

)
= Ef 2hf 2

(
hf 2

2
+ hc

2

)
− Ef 1hf 1

(
hf 1

2
+ hc

2

)
, (9.39a)

and that of the substrate part is at a distance es , given by

es

[
Echc + Ef 2hf 2

] = Ef 2hf 2

(
hf 2

2
+ hc

2

)
. (9.39b)

Moreover, while for the debonded face, which is homogeneous, the bend-
ing rigidity per unit width is

Dd = Ef 1

h3
f 1

12
. (9.40a)

For the base part the equivalent flexural rigidity of the sandwich section per
unit width is (Figure 9.21a)

Db = Ef 1

h3
f 1

12
+ Ef 1hf 1

(
hf 1

2
+ hc

2
+ eb

)2

+ Ef 2

h3
f 2

12

+ Ef 2hf 2

(
hf 2

2
+ hc

2
− eb

)2

+ Ec

h3
c

12
+ Echce

2
b, (9.40b)

and for the substrate (again, per unit width)

Ds = Ec

h3
c

12
+ Echce

2
s + Ef 2

h3
f 2

12
+ Ef 2hf 2

(
hf 2

2
+ hc

2
− es

)2

. (9.40c)

Figure 9.21a shows a segment of the plate containing the debond front (crack
tip). A section of the plate ahead of the crack tip carries the compressive
axial force Pb and bending moment Mb, per unit width of the plate (base part
loads).

Behind the crack tip, the cross-section above the debond (debonded part)
carries the loads Pd and Md and the cross-section below the debond (sub-
strate part) carries the loads Ps and Ms . It is assumed that these forces and
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moments have already been determined from the post-buckling solution of
the plate. It should be noted that in this derivation we consider only the ef-
fects of the axial forces and bending moments; shear forces are neglected. In
addition, force and moment (about the neutral axis of the base part) equilib-
rium conditions hold as follows:

Pb = Pd + Ps, (9.40d)

Mb − Md − Ms − Pd

(
hf 1

2
+ hc

2
+ eb

)
+ Ps(es − eb) = 0. (9.40e)

If we set
(EA)b = Ef 1hf 1 + Echc + Ef 2hf 2, (9.41a)

then the axial stress in the base part is

σ (b)
xx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Pb

(EA)b

Ef 1 − MbEf 1

Db

y if eb + hc

2
≤ y ≤ eb + hc

2
+ hf 1

[debonded face],

− Pb

(EA)b

Ec − MbEc

Db

y if eb − hc

2
≤ y ≤ eb + hc

2
[core],

− Pb

(EA)b

Ef 2 − MbEf 2

Db

y if eb − hc

2
− hf 2 ≤ y ≤ eb − hc

2
[lower face].

(9.41b)
Superimposing −σ (b)

xx on the stresses behind and ahead of the debond front
in the system in Figure 9.21a, would result in the system in Figure 9.21b,
whose energy release rate and stress intensity factors would be the same as
in the original system (Figure 9.21a) since the system of base part stresses
acting alone would produce a non-singular stress field. In this way, we can
express the energy release rate in just two parameters.

The forces acting on the system in Figure 9.21b are

P ∗ =
∫ eb+ hc

2 +hf 1

eb+ hc
2

(−σ (b)
xx )dy − Pd. (9.42a)

Substituting σ (b)
xx from (9.41b) and performing the integration results in P ∗

in the form
P ∗ = C1Pb + C2Mb − Pd, (9.42b)

where

C1 = Ef 1hf 1

(EA)b

; C2 = Ef 1hf 1

2Db

(2eb + hf 1 + hc). (9.42c)
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Likewise,

M∗
d = Md −

∫ eb+ hc
2 +hf 1

eb+ hc
2

(−σ (b)
xx )

[
y −

(
eb + hc

2
+ hf 1

2

)]
dy. (9.43a)

Again substituting σ (b)
xx from (9.41b) and performing the integration results

in M∗
d in the form

M∗
d = Md − C3Mb, (9.43b)

where

C3 = Ef 1

Db

h3
f 1

12
. (9.43c)

The corresponding moment M∗
s in the substrate part is obtained from equi-

librium, Figure 9.21b,

M∗
s = P ∗

(
es + hc

2
+ hf 1

2

)
− M∗

d . (9.43d)

Referring now to Figure 9.21b, the stresses in the cross-section of the
debonded face produced by the tensile load P ∗ and the bending moment M∗

d

are

σxx = P ∗

hf 1
+ Ef 1

M∗
d

Dd

η ; −hf 1

2
≤ η ≤ hf 1

2
, (9.44a)

σyy = τxy � 0, (9.44b)

where η is the normal coordinate measured from the mid-plane of the
debonded face. In Figure 9.21b, the cross-section of the sandwich ahead of
the debond front is subjected to vanishing stress and strain. In the region
behind the debond front we assume εzz = 0 (plane strain). It follows that

σzz = ν(f 1)
xz σxx; εxx = σxx − ν

(f 1)
zx σzz

Ef 1
= 1 − ν

(f 1)
zx ν

(f 1)
xz

Ef 1
σxx, (9.44c)

where ν
(f 1)
xz and ν

(f 1)
zx are the Poisson ratios of the debonded (orthotropic)

face sheet.
With the J integral path shown in Figure 9.21b, the following expression

holds along the vertical path across the debonded face:

dJ = Wdy − T
∂u
∂x

ds; dy = −ds, (9.44d)

where W is the strain energy density, T is the traction vector and u the dis-
placement vector (Budiansky and Rice, 1973).
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Since

W = 1

2
(σxxεxx + σzzεzz) = 1

2
σxxεxx; T

∂u
∂x

= −σxxεxx, (9.44e)

and since ds = dη, and by use of (9.44c):

dJ = −1

2
σxxεxxds + σxxεxxds = 1

2
σxxεxxds = 1 − ν

(f 1)
zx ν

(f 1)
xz

Ef 1
σ 2

xxdη,

(9.44f)
Substituting σxx from (9.44a), we obtain the contribution of the debonded

face to the J integral:

J1 =
∫ hf 1

2

− hf 1
2

(1 − ν
(f 1)
zx ν

(f 1)
xz )

2Ef 1

(
P ∗

hf 1
+ Ef 1

M∗
d

Dd

η

)2

dη

= (1 − ν
(f 1)
zx ν

(f 1)
xz )

2Ef 1

(
P ∗2

hf 1
+ E2

f 1

M∗2
d

D2
d

h3
f 1

12

)
. (9.45)

Similarly, if we set
(EA)s = Echc + Ef 2hf 2, (9.46a)

then the stresses in the cross-section below the debond in Figure 9.21b,
which are produced by the compressive force P ∗ and the bending moment
M∗

s are

σxx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− P ∗

(EA)s

Ec + M∗
s Ec

Ds

ξ if −es − hc

2
≤ ξ ≤ −es + hc

2
[core]

− P ∗

(EA)s

Ef 2 + M∗
s Ef 2

Ds

ξ if −es + hc

2
≤ ξ ≤ −es + hc

2
+ hf 2

[lower face]
(9.46b)

and
σyy = τxy � 0, (9.46c)

where ξ is the normal coordinate measured from the neutral axis of this
cross-section. Again, following the same arguments as before, i.e. that the
cross-section of the sandwich ahead of the debond front is subjected to van-
ishing stress and strain and that in the region behind the debond front we
have εzz = 0 (plane strain), we obtain the the following expression along a
vertical path below the debond:

dJ = 1

2
σxxεxxds − σxxεxxds = 1 − ν(i)

zx ν(i)
xz

Ei

σ (i)2
xx dξ, (9.46d)
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where i refers to the core (c) or the lower face sheet (f2).
Hence the contribution of the vertical path below the debond to the J

integral is

J2 =
∫ −es+ hc

2

−es− hc
2

(1 − ν(c)
zx ν(c)

xz )

2Ec

σ (c)2
xx dξ

+
∫ −es+ hc

2 +hf 2

−es+ hc
2

(1 − ν
(f 2)
zx ν

(f 2)
xz )

2Ef 2
σ (f2)2

xx dξ. (9.46e)

Substituting the corresponding expressions from (9.46b) and performing
the integration leads to

J2 = P ∗2

(EA)2
s

H1 + P ∗M∗
s

(EA)sDs

H2 + M∗2
s

D2
s

H3, (9.47a)

where

H1 = 1 − ν(c)
zx ν(c)

xz

2
Echc + 1 − ν

(f 2)
zx ν

(f 2)
xz

2
Ef 2hf 2, (9.47b)

H2 = 1 − ν(c)
zx ν(c)

xz

2
Echc2es + 1 − ν

(f 2)
zx ν

(f 2)
xz

2
Ef 2hf 2

(
2es − hc − hf 2

)
,

(9.47c)

H3 = 1 − ν(c)
zx ν(c)

xz

2
Echc

(
h2

c

12
+ e2

s

)

+ 1 − ν
(f 2)
zx ν

(f 2)
xz

2
Ef 2hf 2

[
h2

f 2

3
+

(
hc

2
− es

)(
hc

2
+ hf 2 − es

)]
,

(9.47d)

The sum of the two integrals (9.45) and (9.47a) represents the energy release
rate since the remaining portions of the path make no contribution to the J

integral, i.e.
G = J1 + J2 (9.48)

or

G = (1 − ν
(f 1)
zx ν

(f 1)
xz )

2Ef 1

(
P ∗2

hf 1
+ E2

f 1

M∗2
d

D2
d

h3
f 1

12

)

+
(

P ∗2

(EA)2
s

H1 + P ∗M∗
s

(EA)sDs

H2 + M∗2
s

D2
s

H3

)
, (9.49)

where H1, H2 and H3 are given in (9.47b–d).
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