
Chapter 8
Wrinkling and Local Instabilities

Compression loaded faces of sandwich members are sometimes subject to
local instability phenomena, the most prominent being the wrinkling or rip-
pling and the intracell buckling or dimpling. This chapter presents the me-
chanics associated with these phenomena and the classical formulas that pre-
dict the conditions for inducing these forms of local instability.

8.1 Wrinkling

Wrinkling refers to a particular form of local instability of the compression
faces of a sandwich panel in which the wavelength of the buckled form is of
the same order as the thickness of the core. This short-wavelength instability
of the faces can occur at lower load levels than the ordinary global, “Euler”,
buckling of the structure, which is characterized by a half-wavelength of the
order of the compressed length of the sandwich panel.

As shown in Figure 8.1, in the case of the global, Euler, buckling, the core
may exhibit a substantial shearing deformation; in the case of local wrinkling
it acts like an elastic foundation and the buckling deformation is mainly con-
fined to the layers adjacent to the face sheets. Wrinkling of a symmetric
configuration can occur in a symmetric mode or an antisymmetric one (Fig-
ure 8.1).

Wrinkling will be considered for wide sandwich panels or sandwich
columns. Thus, referring to Figure 8.2, the panel is so wide that lines along
the y axis can be taken as uncurved. Therefore, a unit width can be treated
as a Euler column.

The classical wrinkling formulas of Hoff and Mautner (1945), Plantema
(1966), and Allen (1969) will be presented in the following.
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Figure 8.1 Buckling modes.

8.1.1 Hoff and Mautner’s Formulas

I. Symmetric Wrinkling
The wrinkled state involves the bending of the faces of thickness hf = f

and the elongation and compression of the core of thickness. hc = 2c. A
short wave on the surface can hardly have any effect upon the material in the
middle of the core when c is large. It is assumed that the displacements occur
only in marginal zones of depth d (Figure 8.3).

Assuming that the face undergoes a sinusoidal displacement and that the
wave damps out linearly (linear decay) through the thickness, the transverse
displacement, w of the top marginal zone is given with respect to the local
coordinate system (x, z) in Figure 8.3, as follows:

w = Bz

d
sin

πx

a
. (8.1)

where the origin of the z coordinate is at the boundary between the affected
and unaffected core regions.

The critical load is now calculated from the requirement that the work
done by the compressive force be equal to the strain energy of bending stored
in the face material plus the strain energy of extension and shear stored in the
core. Because of the symmetry, it is sufficient to calculate the work and the
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Figure 8.2 Definition of the geometry of a sandwich wide panel/beam under axial
compression.

Figure 8.3 Hoff and Mautner’s model for symmetric wrinkling.

strain energy for one-half of the cross-section. The width of the sandwich
perpendicular to the plane of the drawing is taken as unity.

The normal (z directional) strain in the core is
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εzz = ∂w

∂z
= B

d
sin

πx

a
. (8.2)

Thus, the extensional strain energy of the core within one-half wave length
becomes

Ue = Ec

2

∫ a

0

∫ d

0
ε2
zzdxdz = EcB

2a

4d
, (8.3)

where Ec is Young’s modulus of the core.
The axial displacement u is assumed to be negligibly small, thus the shear

strain in the core is given by

γxz = ∂w

∂x
= πBz

ad
cos

πx

a
. (8.4)

Hence, the shear strain energy stored within a half wave length in one half
the core is

Us = Gc

2

∫ a

0

∫ d

0
γ 2

xzdxdz = Gcπ
2B2d

12a
. (8.5)

The strain energy of bending stored in one face sheet is

Uf = Ef If

2

∫ a

0

(
∂2wf

∂x2

)2

dx = π4Ef B2f 3

48a3
, (8.6)

where wf is the transverse displacement from (8.1) at z = d, Ef is Young’s
modulus of the face material, and If = f 3/12 is the moment of inertia of
the face cross-section.

Because of the smallness of f , the displacements at z = d + (f/2) are
taken to be equal to those at z = d. With this same assumption, the shorten-
ing �L of the face sheet can be calculated as

�L = 1

2

∫ a

0

(
∂wf

∂x

)2

dx = π2B2

4a
. (8.7)

The compressive load carried by the core is neglected since Young’s mod-
ulus of the face is typically hundreds to thousands of times that of the core.
Thus, the work done is

W = (σ f
crf )�L = σ f

cr

π2B2f

4a
. (8.8)

The equation
W = Ue + Us + Uf (8.9)

can be solved for σ
f
cr after substitution of the expressions thus developed:
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σ f
cr = Eca

2

π2f d
+ Gcd

3f
+ π2Ef f 2

12a2
. (8.10)

The critical stress in this equation depends upon the parameters d and a.
The actual values of these parameters are those which make the critical stress
a minimum. Consequently, ∂σ

f
cr/∂d and ∂σ

f
cr/∂a must vanish:

∂σ f
cr/∂d = − Eca

2

π2f d2
+ Gc

3f
= 0, (8.11a)

∂σ f
cr/∂a = 2Eca

π2f d
− π2Ef f 2

6a3
= 0, (8.11b)

Simultaneous solution of the two equations gives

d/f = 0.91 3

√
Ef Ec

G2
c

, (8.12a)

a/f = 1.65
6

√
E2

f

EcGc

, (8.12b)

Substitution in the equation for the critical stress yields

σ f
cr = 0.91 3

√
Ef EcGc . (8.13)

This formula is correct only if d is smaller than or equal to c, as may be seen
from Figure 8.3. Thus, from (8.12a), the condition for validity is

0.91f 3

√
Ef Ec

G2
c

≤ c, (8.14a)

that is the core to face thickness ratio,

2c

f
≥ 1.82 3

√
Ef Ec

G2
c

. (8.14b)

When this inequality does not hold, then the marginal zone depth is equal to
half the core thickness, so equation (8.1) is replaced by

w = Bz

c
sin

πx

a
. (8.15)

The expression for the critical stress then becomes



210 8 Wrinkling and Local Instabilities

Figure 8.4 Hoff and Mautner’s assumed shape for anti-symmetric wrinkling.

σ f
cr = Eca

2

π2f c
+ Gcc

3f
+ π2Ef f 2

12a2
. (8.16)

The derivative of σ
f
cr with respect to a must again vanish. This condition

yields

a/f = 1.42 4

√
Ef

Ec

4

√
2c

f
. (8.17)

Substitution in Equation (8.16) gives

σ f
cr = 0.577

√
Ef Ec

√
f

c
+ 0.333Gc

(
c

f

)
. (8.18)

II. Anti-Symmetric Wrinkling
In this case the deflected shape is assumed by Hoff and Mautner as indicated
by the dashed line in Figure 8.4. Again marginal zones of depth d are as-
sumed to which all the extensions are restricted, although shear deformation
occurs throughout the entire core.

For 0 ≤ x ≤ a/2 (i.e. the right segment of the figure), the displacement
of the upper face is assumed to be

wf u = B
(

1 − cos
πx

a

)
, (8.19)
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whereas the displacement of the bottom face is

wfb = 0. (8.20)

Consequently, the displacement wcM of the median line of the core is as-
sumed to be

wcM = B

2

(
1 − cos

πx

a

)
. (8.21)

There are two marginal zones, one for each face sheet. The displacement
of any point in the upper marginal zone is assumed to be

wcu = B

2

(
1 − cos

πx

a

)
+B

2

z1

d

(
1 − cos

πx

a

)
, for 0 ≤ z1 ≤ d. (8.22a)

In the bottom marginal zone

wcb = −B

2

(
1 − cos

πx

a

)
+ B

2

z2

d

(
1 − cos

πx

a

)
, for 0 ≤ z2 ≤ d.

(8.22b)
In the middle portion of the core, the displacement depends on z and is as-
sumed to be as in (8.21), i.e.

wcm = wcM = B

2

(
1 − cos

πx

a

)
, (8.22c)

The extensional strain in the upper marginal zone is

εcu = ∂wcu

∂z1
= B

2d

(
1 − cos

πx

a

)
. (8.23a)

In the lower marginal zone,

εcb = ∂wcb

∂z2
= B

2d

(
1 − cos

πx

a

)
= εcu. (8.23b)

In the middle portion, the extensional strain is zero.
Consequently, the extensional strain energy is

Uε = 2
Ec

2

∫ a/2

0

∫ d

0
ε2
cudxdz1 = Ec

B2a(3π − 8)

16πd
. (8.24)

The shear strain in the upper marginal zone is (axial displacement again
assumed to be negligibly small):

γcu = ∂wcu

∂x
= B

2

(
1 + z1

d

) π

a
sin

πx

a
. (8.25a)
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In the bottom marginal zone

γcb = ∂wcb

∂x
= −B

2

(
1 − z2

d

) π

a
sin

πx

a
. (8.25b)

In the middle portion of the core

γcm = ∂wcm

∂x
= B

2

π

a
sin

πx

a
. (8.25c)

The shear strain energy can be now calculated from

Uγ = Gc

2

∫ a/2

0

[∫ d

0
γ 2

cudz1 +
∫ d

0
γ 2

cbdz2 + γ 2
cm(2c − 2d)

]
dx. (8.26a)

Integration gives

Uγ = π2B2Gc

48a
(3c + d). (8.26b)

In the middle segment of the figure, i.e. for

a

2
≤ x ≤ a, 0 ≤ ξ ≤ a

2
,

the displacements of the faces and the median line of the core, respectively,
are assumed to be

wf u = B

(
1 + sin

πξ

a

)
, (8.27a)

wf b = B

(
1 − cos

πξ

a

)
. (8.27b)

wcM = B

(
1 − 1

2
cos

πξ

a
+ 1

2
sin

πξ

a

)
. (8.27c)

The displacements of points in the upper marginal zone, the middle por-
tion and the bottom marginal zone, respectively, are

wcu = B

(
1 − 1

2
cos

πξ

a
+ 1

2
sin

πξ

a

)
+ Bz1

d

(
1

2
sin

πξ

a
+ 1

2
cos

πξ

a

)
,

(8.28a)

wcm = wcM = B

(
1 − 1

2
cos

πξ

a
+ 1

2
sin

πξ

a

)
, (8.28b)

wcb = B

(
−1 + 1

2
cos

πξ

a
− 1

2
sin

πξ

a

)
+ Bz2

d

(
1

2
sin

πξ

a
+ 1

2
cos

πξ

a

)
.

(8.28c)
The corresponding extensional strains are
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εcu = ∂wcu

∂z1
= B

2d

(
sin

πξ

a
+ cos

πξ

a

)
= εcb = ∂wcb

∂z2
; εcm = 0. (8.29)

The shear strains are

γcu = ∂wcu

∂ξ
= Bπ

2a

(
sin

πξ

a
+ cos

πξ

a

)
+ Bπ

2a

z1

d

(
cos

πξ

a
− sin

πξ

a

)
.

(8.30a)

γcm = ∂wcm

∂ξ
= Bπ

2a

(
sin

πξ

a
+ cos

πξ

a

)
. (8.30b)

γcb = ∂wcb

∂ξ
= −Bπ

2a

(
sin

πξ

a
+ cos

πξ

a

)
+ Bπ

2a

z2

d

(
cos

πξ

a
− sin

πξ

a

)
.

(8.30c)
The strain energy can be calculated as before (Equations (8.24) and

(8.26a) with ξ in place of x). Integration yields

Uε = Ec

B2a(π + 2)

8dπ
, (8.31a)

Uγ = Gc

B2π

8a

[
(π + 2)c + (π − 2)

d

3

]
. (8.31b)

Because of the point symmetry of the distorted shape, the strain energy
in the left half shown in Figure 8.4 is the same as in the right half. The
total strain energy Uc stored in the core is, therefore, the sum of the strain
energies given in Equations (8.31) plus twice those given in Equations (8.24)
and (8.26b), i.e.,

Uc = Ec

B2a(2π − 3)

4πd
+ Gc

B2π

12a
[3c(π + 1) + (π − 1)d] . (8.32)

The strain energy of bending stored in the two faces, Uf , is found by
substituting wf into (Ef If /2)

∫
w′′2

f dx where wf is obtained from (8.27a)
and (8.27b) plus twice the contributions from (8.19) and (8.20), i.e.,

Uf = Ef

B2π4f 3

24a3
. (8.33)

Similarly, the work W done by the external forces is found from
(σ

f
crAf /2)

∫
w′2

f dx where Af is the cross-sectional area of each face sheet,
and wf is given by Equations (8.27a) and (8.27b) plus twice the contribu-
tions from (8.19) and (8.20), i.e.,

W = σ f
cr

B2π2f

2a
. (8.34)
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Substitution in the equation

W = Uf + Uc

and solution for σ
f
cr yields

σ f
cr = β1

(
f

a

)2

+ β2

(
a2

df

)
+ β3

(
c

f

)
+ β4

(
d

f

)
, (8.35a)

where

β1 = π2Ef

12
; β2 = (2π − 3)Ec

2π3
; β3 = (π + 1)Gc

2π
; β4 = (π − 1)Gc

6π
.

(8.35b)
Minimization with respect to a and d, yields

∂σ
f
cr

∂a
= −β1f

2

a4
+ β2

df
= 0; ∂σ

f
cr

∂d
= −β2a

2

d2f
+ β4

f
= 0. (8.36)

Solution of the two equations yields

a/f =
(

β2
1

β2β4

)1/6

= 2.19
6

√
E2

f

EcGc

, (8.37a)

d/f =
(

β1β2

β2
4

)1/3

= 1.50 3

√
Ef Ec

G2
c

. (8.37b)

Substitution into (8.35a) results in the expression

σ f
cr = 3 (β1β2β4)

1/3 + β3(c/f ) = 0.51 3
√

Ef EcGc + 0.66Gc(c/f ). (8.38)

These formulas are valid only if d proves to be smaller than or equal to c,
hence if

c/f ≤ 1.50 3

√
Ef Ec

G2
c

. (8.39)

When this inequality is not satisfied, d must be replaced by c in the ex-
pressions assumed for the deflected shapes. If the calculations are carried out
on the basis of this assumption, the following expression is obtained for the
critical stress (by replacing d with c in (8.35a)):

σ f
cr = β1f

2

a2
+ β2

cf
a2 + (β3 + β4)

c

f
. (8.40a)
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The critical stress is a minimum when

∂σ f
cr/∂a = −β1f

2

a4
+ β2

cf
= 0. (8.40b)

Consequently,

a4 = β1f
3c

β2

and
a/f = 1.98 4

√
Ef /Ec

4
√

c/f . (8.41)

Substitution into Equation (8.40a) gives

σcr = 2
√

β1β2f/c + (β3 + β4)c/f

= 0.417
√

Ef Ec

√
f/c + 0.773Gc(c/f ). (8.42)

Summary: Hoff and Mautner’s wrinkling formulas are (i) for symmetric
wrinkling, the critical stress is from Equation (8.13) provided the inequality
(8.14b) is fulfilled; if not then the critical wrinkling stress is from Equation
(8.18); (ii) for anti-symmetric wrinkling, the critical stress is from Equa-
tion (8.38) provided the inequality (8.39) is fulfilled; if not then the crit-
ical wrinkling stress is obtained from Equation (8.42). Calculations made
by Hoff and Mautner (1945) for a sandwich consisting of papreg faces (a
paper/plastic laminate) and a cellular cellulose acetate core showed that the
anti-symmetric wrinkling would dominate (i.e. the critical stress correspond-
ing to anti-symmetry would be less than that for symmetry) if the core thick-
ness of face thickness ratio, 2c/f , is smaller than 20.6. This is, of course,
only valid for this particular sandwich material system and is not a general
conclusion, but it gives some idea of the level of the parameters influenc-
ing the occurrence of symmetric vs. anti-symmetric wrinkling. Nevertheless,
Equation (8.13) for symmetric wrinkling is the most popular wrinkling for-
mula and the one mostly used, albeit with a factor of 0.5 instead of 0.91 for
safety (e.g. Zenkert, 1997).

8.1.2 Plantema’s Formula

The Plantema (1966) analysis assumes that the points of the core un-
dergo vertical displacements with an exponential decay. With z defined
from the upper face sheet (Figure 8.5) and n denoting the number of half
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Figure 8.5 Plantema’s wrinkling model.

waves over the length L of the panel, the transverse displacement expression
(8.1) becomes

w = Be−kz sin
nπx

L
. (8.43)

Strictly speaking, this equation implies that the core is infinitely thick. It
is also assumed that vertical lines remain vertical during wrinkling (∂u/∂z =
0). Notice that no marginal depth is assumed in this model.

The transverse normal stress σzz and the shear stress τxz in the core are

σzz = Ec

∂w

∂z
and τxz = Gc

∂w

∂x
. (8.44)

The total strain energy per unit width consists of the bending strain energy
in the face and the strain energy in the core associated with the stresses σzz

and τxz computed from

U = Ef If

2

∫ L

0

(
∂2wf

∂x2

)2

dx + 1

2Ec

∫ L

0

∫ ∞

0
σ 2

zzdxdz

+ 1

2Gc

∫ L

0

∫ ∞

0
τ 2
xzdxdz

= B2

(
π4n4

4L3
Ef If + kL

8
Ec + π2n2

8kL
Gc

)
, (8.45)

where If = f 3/12 is the moment of inertia of the face cross-section. For
a plate, the first term in the above equation, Ef If should be replaced by
Ef If /(1 − ν2

f ) where νf is the Poisson ratio of the face.
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In the same manner as for Hoff and Mautner, the stress σxx,c in the core is
neglected in comparison with the stress σxx,f in the faces, and the work done
by the external load, P/2 per unit width, becomes

W = P

4

∫ L

0

(
∂wf

∂x

)2

dx = π2n2B2

8L
P. (8.46)

The total potential is U − W and it contains the parameters B, n and k.
Minimizing this total potential with respect to B, n, and k, and assuming n

to be a continuous variable, we obtain

a = L

n
= 1.26π

[
(Ef If )2

EcGc

]1/6

; k =
[

G2
c

2(Ef If )Ec

]1/3

;

P = 3[2(Ef If )EcGc]1/3. (8.47)

Again, for a plate, Ef If should be replaced by Ef If /(1 − ν2
f ).

Strictly speaking, these equations are valid only for a plate length L = ∞,
but in practice, n will be so large that they may be used for finite values of
L. The ratio a = L/n is the half wavelength of the wrinkles.

For a sandwich plate of unit width, substituting If = f 3/(1 − ν2
f ), with

νf = 0.3, yields

a = 1.78f

(
E2

f

EcGc

)1/6

; k = 1.76

f

(
G2

c

Ef Ec

)1/3

;

P = 1.70f (Ef EcGc)
1/3. (8.48)

It should be noted that the wrinkling stress, P/(2f ), is independent of the
face thickness, f .

8.1.3 Allen’s Formula

Allen’s (1969) formula is based on simplifying the face wrinkling problem
to that of an infinitely long strut (face sheet) attached to an elastic medium
(core), which extends to infinity on one side of the strut. To this extent, the
geometry is the same as that in Plantema’s model (Figure 8.5). The strut
(representing the face sheet of a sandwich with a core of infinite thickness)
is assumed to be of rectangular section, of thickness f and width b in the y

direction.
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The differential equation of the face is

Df

d4wf

dx4
+ (P/2)

d2wf

dx2
= bσ 0

zz, (8.49)

where Df is the flexural rigidity of the face, P is the axial force, wf is the
displacement of the face in the z direction, and bσ 0

zz is the transverse load on
the face (σ 0

zz is the normal stress between face and core).
Suppose that the face buckles into sinusoidal waves with half-wavelength

a, as in Section 8.2, i.e.
wf = B sin

πx

a
. (8.50)

An Airy stress function approach is used to derive the normal stress in the
core, σzz. In particular, the stress function

φ(x, z) = A(1 − dz)e−πz/a sin
πx

a
, (8.51)

satisfies the bi-harmonic

∂4φ

∂x4
+ 2

∂4φ

∂x2∂z2
+ ∂4φ

∂z4
= 0

and results in stresses

σzz = ∂2φ

∂x2
= −A(1 − dz)

π2

a2
e−πz/a sin

πx

a
, (8.52a)

σxx = ∂2φ

∂z2
=

[
(1 − dz)

π

a
+ 2d

]
A

π

a
e−πz/a sin

πx

a
. (8.52b)

At the face/core interface, z = 0

σ 0
zz = ∂2φ

∂x2

∣∣∣
z=0

= −A
π2

a2
sin

πx

a
, (8.53a)

σ 0
xx = ∂2φ

∂z2

∣∣∣
z=0

= A
π

a

(
2d + π

a

)
sin

πx

a
. (8.53b)

It is assumed that the face is attached to the surface of the core and is
permitted to deform in the z direction only; there are no x displacements.
Consequently, the axial strain at the face/core interface, e0

xx , is zero, which
gives

e0
xx = ∂u

∂x

∣∣∣
z=0

= 1

Ec

(σxx − νcσzz) |z=0

= A

Ec

π

a

[
2d + π

a
(1 + νc)

]
sin

πx

a
= 0, (8.54)
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where Ec and νc are the modulus of elasticity and the Poisson ratio of the
core.

Therefore, the constant d must take the value

d = − π

2a
(1 + νc). (8.55)

The displacement w is found by integrating the normal strain equation

∂w

∂z
= ezz = 1

Ec

(σzz − νcσxx) , (8.56a)

resulting in

w =
{[

(1 + νc)
π

a
+ (νc − 1)d

] a

π
− d(1 + νc)z

} A

Ec

π

a
e−πz/a sin

πx

a
.

(8.56b)
Substituting the expression for d, (8.55), and evaluating w at the face/core

interface, z = 0, gives

wf = w|z=0 = π

2a
(1 + νc)(3 − νc)

A

Ec

sin
πx

a
. (8.57a)

Combining with (8.50) gives A in terms of B:

A = BEc

(1 + νc)(3 − νc)

2a

π
, (8.57b)

which can be substituted in the expression for σ 0
zz in (8.53a) which gives

σ 0
zz = −B

a

2πEc

(3 − νc)(1 + νc)
sin

πx

a
. (8.58)

Substituting for wf and σ 0
zz from Equations (8.50) and (8.58) into (8.49)

yields an expression in which (B sin πx/a) cancels, leaving the result

Df

π4

a4
− (P/2)

π2

a2
= − 2πEcb

(3 − νc)(1 + νc)a
. (8.59)

This equation defines the critical value of P for a given a.
It is convenient to write

Df = Ef bf 3

12
; P/2 = σf bf, (8.60)

where Ef is the modulus of elasticity of the face and σf is the compressive
stress in the face. Then from (8.59) (and after cancelling b), we obtain



220 8 Wrinkling and Local Instabilities

σf = π2Ef

12

(
f

a

)2

+ 2Ec

π(3 − νc)(1 + νc)

(
a

f

)
, (8.61)

i.e., a function of a/f .
There is one last step in order to determine the critical wrinkling stress.

We have to minimize σf from (8.61) with respect to a/f :

dσf

d(a/f )
= 0. (8.62)

This gives the following values for the critical stress and the half-wavelength
at which it occurs:

σ cr
f = B1E

1/3
f E2/3

c ; where B1 = 3
[
12(3 − νc)

2(1 + νc)
2
]−1/3

.

(8.63a)(
a

f

)
cr

= C

(
Ef

Ec

)1/3

; where C = π
[
(3 − νc)(1 + νc)/12

]1/3
.

(8.63b)

8.1.4 The Winkler Elastic Foundation Approach

This approach assumes that the core supports the faces as an elastic foun-
dation, i.e. an array of continuously distributed linear springs, as shown in
Figure 8.6. In the anti-symmetrical case, it is seen that the springs remain
unloaded even after wrinkling and, furthermore, the mode of deformation in
the core is shear rather than tension/compression, which the set of springs is
unable to model and, hence, no solution can be derived in this case.

In the symmetrical case, on the other hand, the model becomes more real-
istic since the mode of deformation in the core is both tension/compression
and shear. We can refer again to Figure 8.5 and we suppose that the elastic
foundation modulus is λ, which is the force needed to displace a unit area of
the face through a unit distance in the z direction. Then the corresponding
normal stress at the face/core interface (tension positive) is

σ 0
zz = −λwf . (8.64)

Substituting Equation (8.64) into the differential equation of the face,
Equation (8.49), leads to

d4wf

dx4
+ (P/2)

Df

d2wf

dx2
+ bλ

Df

wf = 0. (8.65)
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Figure 8.6 Winkler elastic foundation model.

The face will assume the same displacement as in Equation (8.50), which,
when substituted into Equation (8.65), yields an expression for P :

P/2 = Df

(π

a

)2 + bλ
( a

π

)2
. (8.66)

To find the critical load we must further minimize P with respect to the
unknown wavelength, a, by setting dP/da = 0, which gives

a4 = π4Df

bλ
(8.67)

and the corresponding critical load from Equation (8.66) is

Pcr/2 = 2
√

Df bλ. (8.68)

An expression for λ in terms of the properties of the core can be found as
follows: since the springs are assumed to be linear, the core stress must be
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independent of z, therefore the core strain is also independent of z and equal
to

εc
zz(x, z) = −σ 0

zz

Ec

= −λwf (x)

Ec

. (8.69)

Integrating with respect to z gives the core displacement as

wc(x, z) = −λwf (x)

Ec

z + e(x). (8.70)

Next we use the fact that wc must be zero for z = c (Figure 8.6), which
gives:

e(x) = λwf (x)

Ec

c. (8.71)

Therefore,

wc(x, z) = −λwf (x)

Ec

(z − c). (8.72)

At z = 0,
wc(x, z)|z=0 = wf , (8.73)

which gives

λ = Ec

c
. (8.74)

This provides the critical load from Equation (8.68), after substituting the
expression for Df from (8.60), as

Pcr/2 = 2bf

√
Ef Ecf

12c
, (8.75)

or the critical stress in the face

σ f
cr = Pcr/2

bf
= 2

√
Ef Ecf

12c
. (8.76)

8.1.5 Example and Comparison of the Wrinkling Formulas

Let us now perform a comparison of the predictions from these different
formulas. We consider a sandwich with isotropic face and core materials
with Ef /Ec = 1,000 and νc = 0 (this case has been historically emphasized
in the early sandwich literature). Also, the plate length to total thickness
ratio, L/h = 5. We will examine a range of face thicknesses defined by the
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Figure 8.7 Wrinkling load calculated from different formulas for a range of thick-
ness ratios, f/h.

ratio of face sheet thickness over total thickness, f/h, between 0.01 and
0.08. Figure 8.7 shows the critical wrinkling load, normalized with the Euler
load for a simply supported configuration (without transverse shear), PE =
π2(EI)eq/L

2. The figure also shows the critical global buckling load, based
on Allen’s formula, which includes transverse shear (see Chapter 7).

We can observe the following: (a) for this configuration, wrinkling defi-
nitely dominates for ratios f/h below about 0.03. Above this level, global
buckling would dominate, although there is a “gray” area between 0.03 and
about 0.04, in which global buckling dominance would depend on the wrin-
kling formula used; (b) the Winkler elastic foundation formula seems to be
outside the “cluster” of the other formulas; (c) for the range of f/h where
wrinkling dominates, all formulas with the exception of the Winkler formula,
are close to each other; among these, the Allen formula is most conservative
and Hoff and Mautner’s the least; (d) based on Hoff and Mautner’s approach,
there is a switch from symmetric to anti-symmetric wrinkling at a ratio f/h

of about 0.044. This is very evident on the curve from the marked disconti-
nuity in the slope of the curve at this point.

An elasticity solution of the wrinkling problem was presented by
Kardomateas (2005) and the same configuration as the above was examined.
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This solution can serve as a benchmark against which all these theories can
be compared. In that work, the elasticity solution was found to be closest to
the Hoff and Mautner prediction, which, however, was above the elasticity
solution. On the contrary, Allen’s formula although not the most accurate,
was always below the elasticity value. The case of orthotropic layers was
also examined and again Allen’s formula was always conservative.

It should be emphasized that the possibility of global buckling should
always be considered as transverse shear drives the critical load for global
buckling to just a fraction of the Euler load (see Figure 8.7).

8.2 Intracell Buckling in Honeycomb Core Sandwich Structures

Intracell buckling is a local buckling phenomenon which can take place in
honeycomb sandwich structures. Intracell buckling, also found in the litera-
ture by the terms “dimpling” or “intercell buckling”, is the buckling of the
face sheet within an individual honeycomb cell. Although the honeycomb
structure will retain part of its load-carrying capacity after intracell buckling
has occurred, the buckled face sheet may have undesirable influences, for
example, it can adversely affect the aerodynamic properties of the structure;
thus, it is important to know the load at which this intracell buckling occurs.

A contrast can be made with the previously treated phenomenon of wrin-
kling, which is local face sheet buckling over a row of several honeycomb
cells (i.e., the buckling wavelength is greater than the honeycomb cell size).
Wrinkling would appear as a sharp trough on the face sheet and would be
accompanied either by the crushing of the honeycomb core or the separa-
tion of the core and face sheet at this sharp trough. When wrinkling occurs,
for all practical purposes, the honeycomb structure has lost its load carrying
capacity.

The oldest intracell buckling formula is the one suggested by Norris and
Krommer (1950), as derived empirically from tests. An early theoretical in-
vestigation was also done by Weikel and Kobayashi (1959).

8.2.1 The Norris Formula

We shall consider two cases of a sandwich panel with square, honeycomb
cells loaded in uniaxial compression: (a) the honeycomb cells are oriented
such that this load is parallel to the diagonal of the cell (Figure 8.8) and
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(b) the honeycomb cells are oriented such that this load is parallel to a cell
wall (Figure 8.9). In both cases, we assume that the honeycomb cell is square
in shape, a being the length of each side. We also assume that, in both cases,
the face sheet is simply supported along its four edges at the cell and that the
thickness of the honeycomb core is large compared to the cell size.

Within these assumptions, let us approximate the face sheet deflection by
a one-term double trigonometric series:

w = A sin
πx

a
sin

πy

a
. (8.77)

In connection with this assumed displacement profile (8.77), we gener-
ally assume a deflection of the form sin(mπx/a) sin(nπy/b), where a and
b are the sides of the rectangle. However, for the simple square geometry
considered here, the minimum load is obtained for m = n = 1.

Denoting by Df the flexural rigidity of the face sheet and by νf Poisson’s
ratio of the face sheet (considered isotropic), the strain energy due to bending
of the face sheet is

UB = Df

2

∫ a

0

∫ a

0

[
w2

,xx + w2
,yy + 2νf w,xxw,yy + 2(1 − νf )w2

,xy

]
dxdy.

(8.78)
The work done by the external force is

W =
∫ a

0

∫ a

0

(
Nxx

w2
,x

2
+ Nyy

w2
,y

2
+ Nxyw,xw,y

)
dxdy. (8.79)

For both loading configurations, the strain energy of bending is

UB = Df π4

2a2
A2. (8.80)

The first loading configuration yields (Figure 8.8): Nxx = Nyy = N/
√

2
and Nxy = −N/

√
2, therefore the work done by the external force is

W = Nπ2
√

2

8
A2. (8.81)

Setting the work done by the external forces equal to the strain energy of
bending, UB = W , and substituting the expression for the bending rigidity
of the face, Df = Ef f 3/[12(1 − ν2

f )], gives the critical load

Ncr = Ef

1 − ν2
f

(
f

a

)2
π2

3
√

2
� 2.3

Ef

1 − ν2
f

(
f

a

)2

. (8.82)
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Figure 8.8 Intracell buckling model with the load parallel to the diagonal of the
honeycomb cell.

Figure 8.9 Intracell buckling model with the load parallel to a cell wall of the
honeycomb core.

The second loading configuration yields (Figure 8.9): Nxx = N , Nyy =
Nxy = 0, therefore

W = Nπ2

8
A2. (8.83)

Again, setting the work done by the external forces equal to the strain
energy of bending, and substituting the expression for the bending rigidity
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of the face, gives the critical load

Ncr = Ef

1 − ν2
f

(
f

a

)2
π2

3
� 3.3

Ef

1 − ν2
f

(
f

a

)2

. (8.84)

Norris provided the formula in terms of an empirical factor Kd , as

Ncr = Kd

Ef

1 − ν2
f

(
f

s

)2

, (8.85)

where s is the diameter of the circle that can be inscribed in the honeycomb
cell and Kd was specified to be about Kd � 2. Obviously, for square cells,
s = a.

From the two derived formulas (8.82) and (8.84), it can be seen that the
orientation of the cells is important, i.e. it makes a difference whether the
uniaxial compression is parallel to the diagonal of the cells (factor of 2.3 in
place of Kd ) or parallel to a side of the cells (factor of 3.3 in place of Kd ).

Weikel and Kobayashi (1959) examined the conditions that would make
intracell buckling dominate over wrinkling and they concluded that intra-
cell buckling would dominate over wrinkling for a value of λa4/Df > 100,
where λ is the apparent core stiffness (when viewed as an elastic foundation,
see Equation (8.74)). In other words, the predominant mode of buckling fail-
ure will be wrinkling for a relatively soft core, but with increased core stiff-
ness, λ, intracell buckling becomes the predominant mode of local buckling
failure.

8.2.2 The Fokker Dimpling Formula

The foregoing formulas can be easily revised for the case of orthotropic
faces. Let us consider the case of the honeycomb cells oriented such that
the applied compressive load is parallel to a cell wall (Figure 8.9). If x ≡ 1,
y ≡ 2, then the strain energy of bending for an orthotropic plate is

UB = 1

2

∫ a

0

∫ a

0

[
D11w

2
,xx + D22w

2
,yy + 2D12w,xxw,yy + 4D66w

2
,xy

]
dxdy,

(8.86a)
where

D11 = E1f
3

12(1 − ν12ν21)
; D22 = E2f

3

12(1 − ν12ν21)
, (8.86b)



228 8 Wrinkling and Local Instabilities

D12 = D11ν21; D66 = G12f
3

12
. (8.86c)

Therefore, by using the displacement profile (8.77), the strain energy of
bending is

UB = (D11 + D22 + 2D12 + 4D66)
π4

8a2
A2. (8.87)

The work done by the external load is the same as in the isotropic face
case and is given by (8.83). Equating the strain energy of bending with the
work done gives the critical load as

Ncr = [D11 + 2(D12 + 2D66) + D22]
π2

a2
. (8.88)

This is known as the “Fokker Dimpling Formula”, as it was first suggested in
a study conducted by the Fokker Aircraft BV for the European Space Agency
(Blaas et al., 1984).

For the case of the honeycomb cells oriented such that the applied com-
pressive load is parallel to the diagonal of the cell (Figure 8.8), we have to
transform the elastic constants to the x and y system oriented at an angle
φ = 45◦ to the principal elastic axes of the face (Lekhnitskii, 1968):

D′
11 = D11 cos4 φ + 2(D12 + 2D66) sin2 φ cos2 φ + D22 sin4 φ

= 1

4
(D11 + D22 + 2D12 + 4D66), (8.89a)

D′
22 = D11 sin4 φ + 2(D12 + 2D66) sin2 φ cos2 φ + D22 cos4 φ = D′

11,

(8.89b)

D′
12 = D12 + [D11 + D22 − 2(D12 + 2D66)] sin2 φ cos2 φ

= 1

2
D12 + 1

4
(D11 + D22 − 4D66) , (8.89c)

D′
66 = D66 + [D11 + D22 − 2(D12 + 2D66)] sin2 φ cos2 φ

= 1

4
(D11 + D22 − 2D12) , (8.89d)

D′
16 = 1

2
[D22 sin2 φ − D11 cos2 φ + (D12 + 2D66) cos 2φ] sin 2φ

= 1

4
(D22 − D11) , (8.89e)
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D′
26 = 1

2
[D22 cos2 φ − D11 sin2 φ − (D12 + 2D66) cos 2φ] sin 2φ = D′

16.

(8.89f)
In this case, the plate behaves as being anisotropic rather than orthotropic.

The strain energy of bending is

UB = 1

2

∫ a

0

∫ a

0
[D′

11w
2
,xx + D′

22w
2
,yy + 2D′

12w,xxw,yy + 4D′
66w

2
,xy

+ 4D′
16w,xxw,xy + 4D′

26w,yyw,xy]dxdy. (8.90)

With the displacement profile (8.77), the strain energy of bending becomes

UB = (D′
11 + D′

22 + 2D′
12 + 4D′

66)
π4

8a2
A2. (8.91)

Equating with the work done by the external load, Equation (8.81), gives the
critical load as

Ncr = (D′
11 + D′

22 + 2D′
12 + 4D′

66)
π2

a2
√

2
. (8.92)

Substituting the expressions of the transformed elastic constants from
(8.89a–d) we obtain

Ncr = 2(D11 + D22)
π2

a2
√

2
. (8.93)

Equation (8.93) is a newly derived formula, given for the first time herein,
that can be used with orthotropic faces when the honeycomb cells are ori-
ented such that the applied compressive load is parallel to the diagonal of the
cell (Figure 8.8).
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