
Chapter 5
Elasticity Solutions for Sandwich Structures

This chapter presents the theory of elasticity solutions for sandwich plates or
shells. Elasticity solutions are significant because they provide a benchmark
for assessing the performance of the various plate or shell theories or various
numerical methods such as the finite element method. Most of these solutions
are an extension of the corresponding solutions for monolithic anisotropic
bodies which have been developed primarily by Lekhnitskii (1963). This
chapter does not cover all problems of the theory of elasticity for sandwich
bodies, but presents only some of the most studied ones in an attempt to col-
lect the accumulated recent progress in this field. Section 5.1 on sandwich
rectangular plates is adapted from Pagano (1970a), which was extended to
the case of positive discriminant materials by Kardomateas (2008a) and Sec-
tion 5.2 on sandwich shells from Kardomateas (2001).

5.1 A Rectangular Sandwich Plate with Orthotropic Face Sheets
and Core

We consider a sandwich plate consisting of orthotropic face sheets of thick-
ness h1 = f1 and h2 = f2 and an orthotropic core of thickness hc = 2c, such
that the various axes of elastic symmetry are parallel to the plate axes x, y,
and z (Figure 5.1). The plate is simply supported. A normal traction σz =
q0(x, y) is applied on the upper surface but the lower surface is traction-free.

Let us denote each layer by i where i = f1 for the upper face-sheet, i = c

for the core and i = f2 for the lower face-sheet. Then, for each layer, the
orthotropic strain-stress relations are
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Figure 5.1 Definition of geometry and loading for the sandwich plate.
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, (i = f1, c, f2),

(5.1)
where ci

ij are the stiffness constants (we have used the notation 1 ≡ x, 2 ≡ y,
3 ≡ z).

Using the strain-displacement relations

εxx = u,x; εyy = v,y; εzz = w,z, (5.2a)
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γyz = w,y + v,z; γxz = u,z + w,x; γxy = u,y + v,x, (5.2b)

and the equilibrium relations

σxx,x + τxy,y + τxz,z = 0, (5.3a)

τxy,x + σyy,y + τyz,z = 0, (5.3b)

τxz,x + τyz,y + σzz,z = 0, (5.3c)

leads to the following governing field equations in terms of the displacements
for each layer:

ci
11u,xx + ci

66u,yy + ci
55u,zz + (ci

12 + ci
66)v,xy + (ci

13 + ci
55)w,xz = 0, (5.4a)

(ci
12 + ci

66)u,xy + ci
66v,xx + ci

22v,yy + ci
44v,zz + (ci

23 + ci
44)w,yz = 0, (5.4b)

(ci
13 + ci

55)u,xz + (ci
23 + ci

44)v,yz + ci
55w,xx + ci

44w,yy + ci
33w,zz = 0. (5.4c)

In the following, we shall drop the superscript i that refers to the layers
(core or face sheets) on the understanding that the derived relations will hold
for each layer.

For a simply supported plate, an appropriate solution for the displace-
ments would be in the form

u = U(z) cos px sin qy, (5.5a)

v = V (z) sin px cos qy, (5.5b)

w = W(z) sin px sin qy, (5.5c)

where
p = nπ/a; q = mπ/b (n,m = 1, 2, 3, . . .). (5.5d)

These displacements, in conjunction with the corresponding strains and
stresses from (5.2) and (5.1), would satisfy the simple support edge condi-
tions:

at x = 0, a : w = v = σxx = 0. (5.5e)

at y = 0, b : w = u = σyy = 0. (5.5f)

Assuming that

[U(z), V (z),W(z)] = [U0, V0,W0]esz, (5.5g)

where U0, V0 and W0 are constants, and substituting (5.5) into (5.4) results
in the following system of algebraic equations:
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(c11p
2 +c66q

2 −c55s
2)U0+(c12 +c66)pqV0 −(c13 +c55)psW0 = 0, (5.6a)

(c12 +c66)pqU0 +(c22q
2 +c66p

2 −c44s
2)V0 −(c23 +c44)qsW0 = 0, (5.6b)

(c13 +c55)psU0 + (c23 +c44)qsV0 + (c55p
2 +c44q

2 −c33s
2)W0 = 0. (5.6c)

Non-trivial solutions of this system exist only if the determinant of the
coefficients vanishes, which leads to

A0s
6 + A1s

4 + A2s
2 + A3 = 0, (5.7)

where
A0 = −c33c44c55, (5.8a)

A1 = p2
[
c44(c11c33 − c2

13) + c55(c33c66 − 2c13c44)
]+

+q2
[
c55(c22c33 − c2

23) + c44(c33c66 − 2c23c55)
]
, (5.8b)

A2 = −p4 [c66(c11c33 − c2
13) + c55(c11c44 − 2c13c66)

]
+ p2q2[−c11(c22c33 − c2

23) − 2(c12 + c66)(c13 + c55)(c23 + c44)

− 2c44c55c66 + 2c11c23c44 + c12c33(c12 + 2c66) + c13c22(c13 + 2c55)
]

− q4 [c66(c22c33 − c2
23) + c44(c22c55 − 2c23c66)

]
, (5.8c)

A3 = p6c11c55c66 + p4q2 [c55(c11c22 − c2
12) + c66(c11c44 − 2c12c55)

]
+ p2q4 [c44(c11c22 − c2

12) + c66(c22c55 − 2c12c44)
] + q6c22c44c66.

(5.8d)

With the substitution
β = s2, (5.9)

Equation (5.7), which defines the parameter s, can be written in the form of
a cubic equation as

β3 + a1β
2 + a2β + a3 = 0, ai = Ai/A0 (i = 1, 2, 3). (5.10)

Let

Q = 3a2 − a2
1

9
; R = 9a1a2 − 27a3 − 2a3

1

54
; D = Q3 + R2. (5.11a)

The last quantity, D, is the discriminant, which determines the nature of the
solution.
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5.1.1 Negative Discriminant D

If D < 0, then all roots are real and different as follows:

β1 = 2
√−Q cos

(
θ

3

)
− a1

3
, (5.11b)

β2 = 2
√−Q cos

(
θ + 2π

3

)
− a1

3
, (5.11c)

β3 = 2
√−Q cos

(
θ + 4π

3

)
− a1

3
, (5.11d)

where
cos θ = R/

√
−Q3 . (5.11e)

Corresponding to the three roots are the displacements functions defined
in Equations (5.5a–c)

U(z) =
3∑

j=1

Uj(z); V (z) =
3∑

j=1

Vj(z); W(z) =
3∑

j=1

Wj(z). (5.12)

If βj < 0 then sj = ±i
√|βj | and if we set

mj = √|βj | , (5.13a)

then sj = ±imj . From (5.5g) for each pair of roots sj , we can write

Uj(z) = Ucj cos mjz + Usj sin mjz, (5.13b)

Vj(z) = Vcj cos mjz + Vsj sin mjz, (5.13c)

Wj(z) = Wcj sin mjz + WSj cos mjz, (5.13d)

Substituting directly into (5.5a–c) and then into the equilibrium equations
(5.4b, c), leads to the following two equations for Vcj and Wsj :

• from (5.4b) collecting terms of cos mjz:

Vcj

(
c66p

2 + c22q
2 + c44m

2
j

)−Wsj(c23+c44)qmj = −(c12+c66)pqUcj ,

(5.13e)
• from (5.4c) collecting terms of sin mjz:

Vcj (c23+c44)qmj +Wsj

(
c55p

2 + c44q
2 + c33m

2
j

) = (c13+c55)pmjUcj ,

(5.13f)
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These two equations can be solved for Vcj and Wsj in terms of Ucj . Similar
equations can be derived for Vsj and Wsj by collecting terms of sin mjz in
(5.4b) and of cos mjz in (5.4c). In the end, we obtain the following expres-
sions:

Uj(z) = Ucj cos mjz + Usj sin mjz, (5.13g)

Vj(z) = Bj

�j

Ucj cos mjz + Bj

�j

Usj sin mjz, (5.13h)

Wj(z) = −Cj

�j

Usj cos mjz + Cj

�j

Ucj sin mjz, (5.13i)

where

�j = (
c66p

2 + c22q
2 + c44m

2
j

) (
c55p

2 + c44q
2 + c33m

2
j

)
+ (c23 + c44)

2q2m2
j , (5.13j)

Bj = pq
[ − (c12 + c66)

(
c55p

2 + c44q
2 + c33m

2
j

)
+ (c13 + c55)(c23 + c44)m

2
j

]
, (5.13k)

Cj = pmj

[ (
c66p

2 + c22q
2 + c44m

2
j

)
(c13 + c55)

+ (c12 + c66)(c23 + c44)q
2]. (5.13l)

If βj > 0, we set
mj = √

βj . (5.14a)

By following an analogous procedure, we can write

Uj(z) = Ucj cosh mjz + Usj sinh mjz, (5.14b)

Vj(z) = Bj

�j

Ucj cosh mjz + Bj

�j

Usj sinh mjz, (5.14c)

Wj(z) = Cj

�j

Ucj sinh mjz + Cj

�j

Usj cosh mjz, (5.14d)

where

�j = (
c66p

2 + c22q
2 − c44m

2
j

) (
c55p

2 + c44q
2 − c33m

2
j

)
+ (c23 + c44)

2q2m2
j , (5.14e)
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Bj = −pq
[
(c12 + c66)

(
c55p

2 + c44q
2 − c33m

2
j

)
+ (c13 + c55)(c23 + c44)m

2
j

]
, (5.14f)

Cj = pmj

[− (
c66p

2 + c22q
2 − c44m

2
j

)
(c13 + c55)

+ (c12 + c66)(c23 + c44)q
2]. (5.14g)

Hence, the independent parameters are the six constants Uc1, Uc2, Uc3, Us1,
Us2, Us3 which, for convenience, we rename g1, g2, g3, g4, g5 and g6, respec-
tively. Then the displacements are as follows:

U(z) = du1g1 + du2g2 + du3g3 + du4g4 + du5g5 + du6g6, (5.15a)

with the z-dependent coefficients defined for j = 1, 2, 3,

duj =
{

cos mjz, if βj < 0,
cosh mjz, if βj > 0,

(5.15b)

du(j+3) =
{

sin mjz, if βj < 0,
sinh mjz, if βj > 0.

(5.15c)

In the following expressions (5.16–5.20), �j , Bj and Cj refer to (5.13j–l) if
βj < 0, and to (5.14e–g) if βj > 0. With this remark we can set V (z) in the
form

V (z) = dv1g1 + dv2g2 + dv3g3 + dv4g4 + dv5g5 + dv6g6, (5.16a)

where, again, for j = 1, 2, 3,

dvj =

⎧⎪⎪⎨
⎪⎪⎩

Bj

�j

cos mjz, if βj < 0

Bj

�j

cosh mjz, if βj > 0,
(5.16b)

dv(j+3) =

⎧⎪⎪⎨
⎪⎪⎩

Bj

�j

sin mjz, if βj < 0

Bj

�j

sinh mjz, if βj > 0,
(5.16c)

and

W(z) = dw1g1 + dw2g2 + dw3g3 + dw4g4 + dw5g5 + dw6g6, (5.17a)



110 5 Elasticity Solutions for Sandwich Structures

where the z-dependent coefficients again are defined for j = 1, 2, 3,

dwj =

⎧⎪⎪⎨
⎪⎪⎩

Cj

�j

sin mjz, if βj < 0,

Cj

�j

sinh mjz, if βj > 0,
(5.17b)

dw(j+3) =

⎧⎪⎪⎨
⎪⎪⎩

−Cj

�j

cos mjz, if βj < 0,

Cj

�j

cosh mjz, if βj > 0.
(5.17c)

The corresponding stresses are derived by substituting the above displace-
ment expressions into (5.5), (5.1) and (5.2). We present the explicit expres-
sions for the stresses σzz, τyz and τxz because these enter into the interface
conditions. The stress σzz can be written in the form

σzz = (bzz1g1 + bzz2g2 + bzz3g3 + bzz4g4 + bzz5g5 + bzz6g6) sin px sin qy,

(5.18a)
The z-dependent coefficients are defined for j = 1, 2, 3 as

bzzj =

⎧⎪⎪⎨
⎪⎪⎩

−
(

c13p + c23q
Bj

�j

− c33
Cj

�j

mj

)
cos mjz, if βj < 0

−
(

c13p + c23q
Bj

�j

− c33
Cj

�j

mj

)
cosh mjz, if βj > 0

(5.18b)

bzz(j+3) =

⎧⎪⎪⎨
⎪⎪⎩

−
(

c13p + c23q
Bj

�j

− c33
Cj

�j

mj

)
sin mjz, if βj < 0

−
(

c13p + c23q
Bj

�j

− c33
Cj

�j

mj

)
sinh mjz, if βj > 0

(5.18c)
Next,

τyz = (
byz1g1 + byz2g2 + byz3g3 + byz4g4 + byz5g5 + byz6g6

)
sin px cos qy,

(5.19a)
with the z-dependent coefficients defined for j = 1, 2, 3 as

byzj =

⎧⎪⎪⎨
⎪⎪⎩

c44

(
q

Cj

�j

− mj

Bj

�j

)
sin mjz, if βj < 0

c44

(
q

Cj

�j

+ mj

Bj

�j

)
sinh mjz, if βj > 0

(5.19b)
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byz(j+3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−c44

(
q

Cj

�j

− mj

Bj

�j

)
cos mjz, if βj < 0

c44

(
q

Cj

�j

+ mj

Bj

�j

)
cosh mjz, if βj > 0

(5.19c)

Finally,

τxz = (bxz1g1 + bxz2g2 + bxz3g3 + bxz4g4 + bxz5g5 + bxz6g6) cos px sin qy,

(5.20a)
with the z-dependent coefficients defined for j = 1, 2, 3 as

bxzj =

⎧⎪⎪⎨
⎪⎪⎩

c55

(
p

Cj

�j

− mj

)
sin mjz, if βj < 0

c55

(
p

Cj

�j

+ mj

)
sinh mjz, if βj > 0

(5.20b)

bxz(j+3) =

⎧⎪⎪⎨
⎪⎪⎩

−c55

(
p

Cj

�j

− mj

)
cos mjz, if βj < 0

c55

(
p

Cj

�j

+ mj

)
cosh mjz, if βj > 0

(5.20c)

5.1.2 Positive Discriminant D

If D > 0, where the discriminant D is defined in (5.11a), then the cubic
equation (5.10) has one real root and two complex conjugates.

With R and D defined in (5.11a), we further define

S = 3
√

R + √
D ; T = 3

√
R − √

D. (5.21a)

Then with

µR = −1

2
(S + T ) − a1

3
; µI = 1

2

√
3(S − T ), (5.21b)

the two complex conjugate roots are

β1 = µR + iµI ; β2 = µR − iµI . (5.21c)

The real root is
β3 = S + T − a1

3
. (5.21d)
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The real root is dealt with in the same manner as for the case of a negative
discriminant (Section 5.1.1).

Next we shall consider how to deal with the complex conjugate roots. In
terms of the modulus r and amplitude θ of these complex numbers,

r =
√

µ2
R + µ2

I ; θ = tan−1

(
µI

µR

)
(5.21e)

these roots can be set in the form

β1 = r(cos θ + i sin θ); β2 = r(cos θ − i sin θ). (5.21f)

From (5.9), we now seek the square roots of β1 and β2. Thus, in terms of

γ1 = √
r cos

θ

2
; γ2 = √

r sin
θ

2
, (5.21g)

the corresponding roots of the sixth-order equation (5.7), si , are

s1,2 = ±(γ1 + iγ2); s3,4 = ±(γ1 − iγ2). (5.21h)

Corresponding to these four roots, the displacement functions take the
form

Uη(z) = a1ηe
γ1z cos γ2z + a2ηe

γ1z sin γ2z

+ a3ηe
−γ1z cos γ2z + a4ηe

−γ1z sin γ2z, (5.22)

where η = u, v,w corresponds to the U , V , W displacements and the aiη are
constants. Of the 12 constants appearing in (5.22) only four are independent.
The eight relations that exist among these constants are found by substituting
the displacements along with (5.5) into the equilibrium equations (5.4).

For convenience, let us set

r1 = c44(γ
2
1 + γ 2

2 ) + c66p
2 + c22q

2, (5.23a)

r2 = c44(γ
2
1 + γ 2

2 ) − c66p
2 − c22q

2, (5.23b)

r3 = c55(γ
2
1 + γ 2

2 ) + c11p
2 + c66q

2, (5.23c)

r4 = c55(γ
2
1 + γ 2

2 ) − c11p
2 − c66q

2, (5.23d)

and
e1 = r1(c13 + c55) − q2(c12 + c66)(c23 + c44), (5.23e)

e2 = r2(c13 + c55) + q2(c12 + c66)(c23 + c44), (5.23f)
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e3 = r3(c23 + c44) − p2(c12 + c66)(c13 + c55), (5.23g)

e4 = r4(c23 + c44) + p2(c12 + c66)(c13 + c55), (5.23h)

In this way, we obtain the following relations for the coefficients in the
displacement expression for V (z), Equation (5.22), in terms of the coeffi-
cients in the expression for U(z):

a1v = ξ11a1u + ξ12a2u, a2v = ξ21a1u + ξ22a2u, (5.24a)

a3v = ξ33a3u + ξ34a4u, a4v = ξ43a3u + ξ44a4u, (5.24b)

where

ξ11 = ξ22 = ξ33 = ξ44 = q(e1e3γ
2
2 + e2e4γ

2
1 )

p(γ 2
2 e2

1 + γ 2
1 e2

2)
. (5.24c)

ξ12 = −ξ21 = −ξ34 = ξ43 = qγ1γ2(e2e3 − e1e4)

p(γ 2
2 e2

1 + γ 2
1 e2

2)
. (5.24d)

Also, the following relations for the coefficients in the expression for
W(z), Equation (5.22), in terms of the coefficients in the expression for U(z):

a1w = f11a1u + f12a2u, a2w = f21a1u + f22a2u, (5.25a)

a3w = f33a3u + f34a4u, a4w = f43a3u + f44a4u, (5.25b)

where

f11 = f22 = −f33 = −f44

= (c12 + c66)pqγ1 − r2γ1ξ11 − r1γ2ξ21

q(c23 + c44)(γ
2
1 + γ 2

2 )
, (5.25c)

f12 = −f21 = f34 = −f43

= −(c12 + c66)pqγ2 + r2γ1ξ12 + r1γ2ξ22

q(c23 + c44)(γ
2
1 + γ 2

2 )
. (5.25d)

Now, coming to the real root β3, we set

m3 = √|β3|, (5.26)

then if β3 < 0 and following (5.13g–l) we can write

U3(z) = a5u cos m3z + a6u sin m3z, (5.27a)
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V3(z) = B3

�3
a5u cos m3z + B3

�3
a6u sin m3z, (5.27b)

W3(z) = −C3

�3
a6u cos m3z + C3

�3
a5u sin m3z, (5.27c)

where

�3 = (
c66p

2 + c22q
2 + c44m

2
3

) (
c55p

2 + c44q
2 + c33m

2
3

)+(c23+c44)
2q2m2

3,

(5.27d)

B3 = pq
[ − (c12 + c66)

(
c55p

2 + c44q
2 + c33m

2
3

)
+ (c13 + c55)(c23 + c44)m

2
3

]
, (5.27e)

C3 = pm3
[ (

c66p
2 + c22q

2 + c44m
2
3

)
(c13 + c55)

+ (c12 + c66)(c23 + c44)q
2]. (5.27f)

If β3 > 0 then, following (5.14b–g)

U3(z) = a5u cosh m3z + a6u sinh m3z, (5.28a)

V3(z) = B3

�3
a5u cosh m3z + B3

�3
a6u sinh m3z, (5.28b)

W3(z) = C3

�3
a5u sinh m3z + C3

�3
a6u cosh m3z, (5.28c)

where

�3 = (
c66p

2 + c22q
2 − c44m

2
3

) (
c55p

2 + c44q
2 − c33m

2
3

)+(c23+c44)
2q2m2

3,

(5.28d)

B3 = −pq
[
(c12 + c66)

(
c55p

2 + c44q
2 − c33m

2
3

)
+ (c13 + c55)(c23 + c44)m

2
3

]
, (5.28e)

C3 = pm3
[− (

c66p
2 + c22q

2 − c44m
2
3

)
(c13 + c55)

+ (c12 + c66)(c23 + c44)q
2
]
. (5.28f)

Hence, if we consider the constants a1u, a2u, a3u, a4u, a5u, a6u as inde-
pendent, which for convenience we rename again as g1, g2, g3, g4, g5, g6, re-
spectively, the displacement U(z) is of the form (5.15a) with the z-dependent
coefficients defined as
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du1 = eγ1z cos γ2z; du2 = eγ1z sin γ2z, (5.29a)

du3 = e−γ1z cos γ2z; du4 = e−γ1z sin γ2z, (5.29b)

du5 =
{

cos m3z, if β3 < 0,
cosh m3z, if β3 > 0,

(5.29c)

du6 =
{

sin m3z, if β3 < 0,
sinh m3z, if β3 > 0.

(5.29d)

In the following expressions (5.30–5.34), �3, B3 and C3 are from (5.27d–f)
if β3 < 0, and from (5.28d–f) if β3 > 0. With this observation, the displace-
ment V (z) is of the form (5.16a), where

dv5 =

⎧⎪⎪⎨
⎪⎪⎩

B3

�3
cos m3z, if β3 < 0

B3

�3
cosh m3z, if β3 > 0

(5.30c)

dv6 =

⎧⎪⎪⎨
⎪⎪⎩

B3

�3
sin m3z, if β3 < 0

B3

�3
sinh m3z, if β3 > 0.

(5.30d)

Similarly, the displacement W(z) is of the form (5.17a) with the z-dependent
coefficients:

dw1 = (f11 cos γ2z + f21 sin γ2z)e
γ1z; dw2 = (f12 cos γ2z + f22 sin γ2z)e

γ1z,

(5.31a)

dw5 =

⎧⎪⎪⎨
⎪⎪⎩

C3

�3
sin m3z, if β3 < 0,

C3

�3
sinh m3z, if βj > 0,

(5.31c)

dw6 =

⎧⎪⎪⎨
⎪⎪⎩

−C3

�3
cos m3z, if β3 < 0,

C3

�3
cosh m3z, if β3 > 0.

(5.31d)

dw3 = (f33 cos γ2z+f43 sin γ2z)e
−γ1z; dw4 = (f34 cos γ2z+f44 sin γ2z)e

−γ1z,

(5.31b)

dv1 = (ξ11 cos γ2z + ξ21 sin γ2z)e
γ1z ; dv2 = (ξ12 cos γ2z + ξ22 sin γ2z)e

γ1z,

(5.30a)
dv3 = (ξ33 cos γ2z+ξ43 sin γ2z)e

−γ1z ; dv4 = (ξ34 cos γ2z+ξ44 sin γ2z)e
−γ1z,

(5.30b)
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The corresponding stresses are derived by substituting the above displace-
ment expressions into (5.5), (5.1), and (5.2). We present the explicit expres-
sions for σzz, τyz and τxz, which enter into the interface conditions. σzz is of
the form (5.18a) with the z-dependent coefficients defined as

bzz1 = [c33(f11γ1 + f21γ2) − c13p − c23qξ11]eγ1z cos γ2z

+ [c33(f21γ1 − f11γ2) − c23qξ21]eγ1z sin γ2z, (5.32a)

bzz2 = [c33(f12γ1 + f22γ2) − c23qξ12]eγ1z cos γ2z

+ [c33(f22γ1 − f12γ2) − c13p − c23qξ22]eγ1z sin γ2z, (5.32b)

bzz3 = −[c33(f33γ1 − f43γ2) + c13p + c23qξ33]e−γ1z cos γ2z

− [c33(f43γ1 + f33γ2) + c23qξ43]e−γ1z sin γ2z, (5.32c)

bzz5 =

⎧⎪⎪⎨
⎪⎪⎩

−
(

c13p + c23q
B3

�3
− c33

C3

�3
m3

)
cos m3z, if β3 < 0

−
(

c13p + c23q
B3

�3
− c33

C3

�3
m3

)
cosh m3z, if β3 > 0

(5.32e)

bzz6 =

⎧⎪⎪⎨
⎪⎪⎩

−
(

c13p + c23q
B3

�3
− c33

C3

�3
m3

)
sin m3z, if β3 < 0

−
(

c13p + c23q
Bj

�3
− c33

C3

�3
m3

)
sinh m3z, if β3 > 0

(5.32f)
τyz is of the form (5.19a) with the z-dependent coefficients defined as

byz1 = c44e
γ1z[(ξ11γ1 + ξ21γ2 + qf11) cos γ2z

+ (ξ21γ1 − ξ11γ2 + qf21) sin γ2z], (5.33a)

byz2 = c44e
γ1z[(ξ12γ1 + ξ22γ2 + qf12) cos γ2z

+ (ξ22γ1 − ξ12γ2 + qf22) sin γ2z], (5.33b)

byz3 = c44e
−γ1z[(qf33 + ξ43γ2 − ξ33γ1) cos γ2z

+ (qf43 − ξ33γ2 − ξ43γ1) sin γ2z], (5.33c)

byz4 = c44e
−γ1z[(qf34 + ξ44γ2 − ξ34γ1) cos γ2z

+ (qf44 − ξ34γ2 − ξ44γ1) sin γ2z], (5.33d)

bzz4 = −[c33(f34γ1 − f44γ2) + c23qξ34]e−γ1z cos γ2z

−[c33(f44γ1 + f34γ2) + c13p + c23qξ44]e−γ1z sin γ2z. (5.32d)
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byz5 =

⎧⎪⎪⎨
⎪⎪⎩

c44

(
q

C3

�3
− m3

B3

�3

)
sin m3z, if β3 < 0,

c44

(
q

C3

�3
+ m3

B3

�3

)
sinh m3z, if β3 > 0,

(5.33e)

byz6 =

⎧⎪⎪⎨
⎪⎪⎩

−c44

(
q

C3

�3
− m3

B3

�3

)
cos m3z, if β3 < 0,

c44

(
q

C3

�3
+ m3

B3

�3

)
cosh m3z, if β3 > 0.

(5.33f)

Finally, τxz is of the form (5.20a) with the z-dependent coefficients defined
as

bxz1 = c55e
γ1z[(γ1 + pf11) cos γ2z + (pf21 − γ2) sin γ2z], (5.34a)

bxz2 = c55e
γ1z[(γ2 + pf12) cos γ2z + (pf22 + γ1) sin γ2z], (5.34b)

bxz3 = c55e
−γ1z[(pf33 − γ1) cos γ2z + (pf43 − γ2) sin γ2z], (5.34c)

bxz4 = c55e
−γ1z[(pf34 + γ2) cos γ2z + (pf44 − γ1) sin γ2z], (5.34d)

bxz5 =

⎧⎪⎪⎨
⎪⎪⎩

c55

(
p

C3

�3
− m3

)
sin m3z, if β3 < 0 ,

c55

(
p

C3

�3
+ m3

)
sinh m3z, if β3 > 0,

(5.34e)

bxz6 =

⎧⎪⎪⎨
⎪⎪⎩

−c55

(
p

C3

�3
− m3

)
cos m3z, if β3 < 0,

c55

(
p

C3

�3
+ m3

)
cosh m3z, if β3 > 0.

(5.34f)

5.1.3 Isotropic Layers

In the event that one of the layers in the sandwich panel is isotropic (this is
more common for the core) with extensional modulus E and Poisson’s ratio
ν, then the following relationships for the material constants hold:

c11 = c22 = c33 = E
1 − ν

(1 − 2ν)(1 + ν)
, (5.35a)

c12 = c13 = c23 = c11
ν

1 − ν
; c66 = c55 = c44 = c11

1 − 2ν

2(1 − ν)
. (5.35b)
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In this case we find that D vanishes and the solution to Equation (5.10)
consists of three equal roots, βi = p2 + q2. Therefore, the solutions to (5.7)
occur in the form of three repeated pairs of roots, si = ±λ, where

λ = (p2 + q2)1/2. (5.36)

In this case, the displacement functions take the form

Uη(z) = (a1η + a3ηz + a5ηz
2)eλz + (a2η + a4ηz + a6ηz

2)e−λz, (5.37)

where η = u, v,w corresponds to the U,V,W displacements and the aiη

are constants. Of the 18 constants appearing in (5.37), only six are indepen-
dent. The various relations that exist among these constants are found by
substituting (5.37) and (5.5) into (5.4), in which the relations (5.35) for the
isotropic material constants are used. In this way we deduce the following
12 relations:

a5η = a6η = 0; η = u, v,w, (5.38a)

qa3u = pa3v; λa3u = pa3w, (5.38b)

qa4u = pa4v; λa4u = −pa4w, (5.38c)

pa1u + qa1v − λa1w = −λ

p
(4ν − 3)a3u, (5.38d)

pa2u + qa2v + λa2w = λ

p
(4ν − 3)a4u. (5.38e)

Hence, if we consider the constants a1u, a2u, a3u, a4u, a1v, and a2v as in-
dependent, which for convenience we rename g1, g2, g3, g4, g5, g6, respec-
tively, the displacement U(z) is of the form (5.15a) with the z-dependent
coefficients defined as

du1 = eλz ; du2 = e−λz; du3 = zeλz ; du4 = ze−λz ; du5 = du6 = 0.

(5.39)
The displacement V (z) is of the form (5.16a) where

dv1 = dv2 = 0; dv3 = q

p
zeλz; dv4 = q

p
ze−λz; dv5 = eλz; dv6 = e−λz,

(5.40)
and the displacement W(z) is of the form (5.17a) where,

dw1 = p

λ
eλz ; dw2 = −p

λ
e−λz ; dw3 =

(
4ν − 3

p
+ λ

p
z

)
eλz, (5.41a)
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dw4 =
(

4ν − 3

p
− λ

p
z

)
e−λz ; dw5 = q

λ
eλz ; dw6 = −q

λ
e−λz. (5.41b)

The corresponding stresses are derived by substituting the above displace-
ment expressions into (5.5), (5.1), and (5.2). We present again the explicit
expressions for σzz, τyz, and τxz, which come into the interface conditions.
σzz is of the form (5.18a) with the z-dependent coefficients defined as

bzz1 = c11p
1 − 2ν

1 − ν
eλz ; bzz2 = c11p

1 − 2ν

1 − ν
e−λz, (5.42a)

bzz3 = c11
λ(1 − 2ν)

p(1 − ν)
eλz [λz − 2(1 − ν)] , (5.42b)

bzz4 = c11
λ(1 − 2ν)

p(1 − ν)
e−λz [λz + 2(1 − ν)] , (5.42c)

bzz5 = c11q
1 − 2ν

1 − ν
eλz ; bzz6 = c11q

1 − 2ν

1 − ν
e−λz. (5.42d)

τyz is of the form (5.19a) with the z-dependent coefficients defined as

byz1 = c11(1 − 2ν)

2(1 − ν)

pq

λ
eλz ; byz2 = −c11(1 − 2ν)

2(1 − ν)

pq

λ
e−λz, (5.43a)

byz3 = c11(1 − 2ν)

(1 − ν)
(2ν − 1 + λz)

q

p
eλz, (5.43b)

byz4 = c11(1 − 2ν)

(1 − ν)
(2ν − 1 − λz)

q

p
e−λz, (5.43c)

byz5 = c11(1 − 2ν)

2(1 − ν)

(
q2

λ
+ λ

)
eλz; byz6 = −c11(1 − 2ν)

2(1 − ν)

(
q2

λ
+ λ

)
e−λz.

(5.43d)
τxz is of the form (5.20a) with the z-dependent coefficients defined as

bxz1 = c11(1 − 2ν)

2(1 − ν)

(
p2

λ
+ λ

)
eλz; bxz2 = −c11(1 − 2ν)

2(1 − ν)

(
p2

λ
+ λ

)
e−λz,

(5.44a)

bxz3 = c11(1 − 2ν)

(1 − ν)
(2ν − 1 + λz) eλz, (5.44b)

bxz4 = c11(1 − 2ν)

(1 − ν)
(2ν − 1 − λz) e−λz, (5.44c)

bxz5 = c11(1 − 2ν)

2(1 − ν)

pq

λ
eλz; bxz6 = −c11(1 − 2ν)

2(1 − ν)

pq

λ
e−λz. (5.44d)
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From this analysis, we can see that the stresses in each layer (i), where i =
f1, c, f2, are described by six constants: g

(i)
j , g

(i)

j+3, j = 1, 2, 3. Therefore,
for the sandwich panel, a total of 18 constants are to be determined.

There are three traction conditions at each of the two core/face-sheet in-
terfaces, giving a total of six conditions. In a similar fashion, there are three
displacement continuity conditions at each of the two core/face-sheet inter-
faces, giving another six conditions. Finally, there are three traction bound-
ary conditions on each of the two plate outer surfaces, giving an another six
conditions, i.e. a total of 18 equations.

Finally, for completeness, we also give the detailed expressions for the
in-plane stresses σxx, σyy and τxy . σxx can be written in the form

σxx = (bxx1g1 + bxx2g2 + bxx3g3 + bxx4g4 + bxx5g5 + bxx6g6) sin px sin qy,

(5.45)
where the z-dependent coefficients bxxj are found from the bzzj expressions
(5.18b–c) and (5.32a–f) by replacing c33 with c13, c13 with c11 and c23 with
c12. In the same manner, σyy is given by

σyy = (
byy1g1 + byy2g2 + byy3g3 + byy4g4 + byy5g5 + byy6g6

)
sin px sin qy,

(5.46)
where the z-dependent coefficients byyj are again found from the bzzj expres-
sions (5.18b–c) and (5.32a–f) by now replacing c33 with c23, c13 with c12 and
c23 with c22. Finally, the shear stress, τxy , is

τxy = (
bxy1g1 + bxy2g2 + bxy3g3 + bxy4g4 + bxy5g5 + bxy6g6

)
cos px sin qy.

(5.47)
For orthotropic layers with D < 0, the z-dependent coefficients are de-

fined for j = 1, 2, 3 as

bxyj =

⎧⎪⎪⎨
⎪⎪⎩

c66

(
q + p

Bj

�j

)
cos mjz, if βj < 0,

c66

(
q + p

Bj

�j

)
cosh mjz, if βj > 0,

(5.48a)

bxy(j+3) =

⎧⎪⎪⎨
⎪⎪⎩

c66

(
q + p

Bj

�j

)
sin mjz, if βj < 0,

c66

(
q + p

Bj

�j

)
sinh mjz, if βj > 0.

(5.48b)
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In the expressions (5.48) and (5.49), �j and B3 refer to (5.13j–k) if βj <

0, and to (5.14e–f) if βj > 0. Further, �3 and B3 refer to (5.27d–e) if β3 < 0
and to (5.28d–e) if β3 > 0. With this note, for orthotropic layers with D > 0,
the z-dependent coefficients are

bxy1 = c66e
γ1z[(q + pξ11) cos γ2z + pξ21 sin γ2z], (5.49a)

bxy2 = c66e
γ1z[pξ12 cos γ2z + (q + pξ22) sin γ2z], (5.49b)

bxy3 = c66e
−γ1z[(q + pξ33) cos γ2z + pξ43 sin γ2z], (5.49c)

bxy4 = c66e
−γ1z[pξ34 cos γ2z + (q + pξ44) sin γ2z], (5.49d)

bxy5 =

⎧⎪⎪⎨
⎪⎪⎩

c66

(
q + p

B3

�3

)
cos m3z, if β3 < 0

c66

(
q + p

B3

�3

)
cosh m3z, if β3 > 0

(5.49e)

bxy6 =

⎧⎪⎪⎨
⎪⎪⎩

c66

(
q + p

B3

�3

)
sin m3z, if β3 < 0

c66

(
q + p

B3

�3

)
sinh m3z, if β3 > 0

(5.49f)

For isotropic materials, the z-dependent coefficients are:

bxy1 = c11(1 − 2ν)

2(1 − ν)
qeλz ; bxy2 = c11(1 − 2ν)

2(1 − ν)
qe−λz, (5.50a)

bxy3 = c11(1 − 2ν)

1 − ν
qzeλz, (5.50b)

bxy4 = c11(1 − 2ν)

1 − ν
qze−λz, (5.50c)

bxy5 = c11(1 − 2ν)

2(1 − ν)
peλz ; bxy6 = c11(1 − 2ν)

2(1 − ν)
pe−λz. (5.50d)

5.1.4 Examples

As an illustration of the above, let us consider a symmetric sandwich
plate with unidirectional carbon/epoxy faces and a hexagonal glass/phenolic
honeycomb core. This material combination is very common in the
aerospace/rotorcraft industry (although the faces would be multidirec-
tional for most applications). The orthotropic face moduli are (in GPa):
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E
f

1 = 181, E
f

2 = E
f

3 = 10.3, G
f

23 = 5.96, G
f

12 = G
f

31 = 7.17;
and the face Poisson’s ratios: ν

f

12 = ν
f

13 = 0.277, ν
f

32 = 0.400. The
orthotropic honeycomb core moduli are (in GPa): Ec

1 = Ec
2 = 0.032,

Ec
3 = 0.300, Gc

23 = Gc
31 = 0.048, Gc

12 = 0.013; and the core Pois-
son’s ratios: νc

12 = νc
32 = νc

31 = 0.25. The thickness of each face sheet is
f1 = f2 = 2 mm and the core thickness 2c = 16 mm. The plate is square
with a = b = 10h, where h is the total thickness of the sandwich plate.

We further assume that a transverse load is applied at the top face sheet of
the form

q0(x, y) = Q0 sin px sin qy, (5.51)

and in the definition of p and q in (5.5d), we further assume m = n = 1.
Note that a general load can be expanded in a series of terms of the type
(5.51).

For each layer, the compliance constants are given by

a11 = 1

E1
; a12 = −ν21

E2
; a13 = −ν31

E3
, (5.52a)

a22 = 1

E2
; a23 = −ν32

E3
; a33 = 1

E3
, (5.52b)

a44 = 1

G23
; a55 = 1

G13
; a66 = 1

G12
. (5.52c)

The stiffness matrix is the inverse of the compliance matrix. The inversion
leads to the following formulas for the cij :

c11 = E1
(1 − ν23ν32)

C0
; c12 = E2

(ν12 + ν13ν32)

C0
; c13 = E3

(ν13 + ν12ν23)

C0
,

(5.52d)

c22 = E2
(1 − ν13ν31)

C0
; c23 = E3

(ν23 + ν21ν13)

C0
; c33 = E3

(1 − ν12ν21)

C0
,

(5.52e)
c44 = G23 ; c55 = G13 ; c66 = G12, (5.52f)

where

C0 = 1 − (ν12ν21 + ν23ν32 + ν13ν31) − (ν12ν23ν31 + ν21ν13ν32). (5.52g)

Substituting the corresponding constants leads to the following β’s:

• Face sheets, D > 0, therefore two complex conjugate roots and one real
root:

β
f

1 = 342.5 + i316.3; β
f

2 = 342.5 − i316.3 ; β
f

3 = 6150.2.
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• Core, D > 0, therefore again two complex conjugate roots and one real
root:

βc
1 = 158.9 + i49.2; βc

2 = 158.9 − i49.2 ; βc
3 = 131.6.

Since we have a positive discriminant for both the face sheet and the core,
the corresponding positive discriminant formulas for the coefficients in the
expressions of the displacements and stresses are applicable. The solution is
obtained by imposing the following.

There are three traction conditions at the lower face-sheet/core interface,
z = −c:

(a) σ (c)
zz = σ

(f2)
zz |z=−c, which gives

6∑
j=1

b
(c)
zzj |z=−cg

(c)
j =

6∑
j=1

b
(f2)

zzj |z=−cg
(f2)

j , (5.53a)

(b) τ (c)
yz = τ

(f2)
yz |z=−c, which gives

6∑
j=1

b
(c)
yzj |z=−cg

(c)
j =

6∑
j=1

b
(f2)

yzj |z=−cg
(f2)

j , (5.53b)

and
(c) τ (c)

xz = τ
(f2)
xz |z=−c, which gives

6∑
j=1

b
(c)
xzj |z=−cg

(c)
j =

6∑
j=1

b
(f2)

xzj |z=−cg
(f2)

j . (5.53c)

There are also three displacement continuity conditions at the lower
core/face-sheet interfaces:

(a) U(c) = U(f2) at z = −c, which results in

6∑
j=1

d
(c)
uj |z=−cg

(c)
j =

6∑
j=1

d
(f2)

uj |z=−cg
(f2)

j , (5.53d)

(b) V (c) = V (f2) at z = −c, which gives

6∑
j=1

d
(c)
vj |z=−cg

(c)
j =

6∑
j=1

d
(f2)

vj |z=−cg
(f2)

j , (5.53e)

and
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(c) W(c) = W(f2) at z = −c, which gives

6∑
j=1

d
(c)
wj |z=−cg

(c)
j =

6∑
j=1

d
(f2)

wj |z=−cg
(f2)

j . (5.53f)

Next, there are three traction conditions at the upper face-sheet/core inter-
face, z = c:

(a) σ
(f1)
zz = σ (c)

zz |z=c, which gives

6∑
j=1

b
(c)
zzj |z=cg

(c)
j =

6∑
j=1

b
(f1)

zzj |z=cg
(f1)

j , (5.54a)

(b) τ
(f1)
yz = τ (c)

yz |z=c, which gives

6∑
j=1

b
(c)
yzj |z=cg

(c)
j =

6∑
j=1

b
(f1)

yzj |z=cg
(f1)

j , (5.54b)

and
(c) τ

(f1)
xz = τ (c)

xz |z=c, which gives

6∑
j=1

b
(c)
xzj |z=cg

(c)
j =

6∑
j=1

b
(f1)

xzj |z=cg
(f1)

j . (5.54c)

The corresponding displacement continuity conditions at the upper face-
sheet/core interface, z = c are

(a) U(f1) = U(c) at z = c, which gives

6∑
j=1

d
(c)
uj |z=cg

(c)
j =

6∑
j=1

d
(f1)

uj |z=cg
(f1)

j , (5.54d)

(b) V (f1) = V (c) at z = c, which gives

6∑
j=1

d
(c)
vj |z=cg

(c)
j =

6∑
j=1

d
(f1)

vj |z=cg
(f1)

j , (5.54e)

and
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(c) W(f1) = W(c) at z = c, which gives

6∑
j=1

d
(c)
wj |z=cg

(c)
j =

6∑
j=1

d
(f1)

wj |z=cg
(f1)

j . (5.54f)

Finally, three traction conditions exist on each of the two outer surfaces.
The traction free conditions at the lower outer surface, z = −(c + f2), can
be written as follows:

(a) σzz|z=−(c+f2) = 0, which gives

6∑
j=1

b
(f2)

zzj |z=−(c+f2)g
(f2)

j = 0, (5.55a)

(b) τyz|z=−(c+f2) = 0, which gives

6∑
j=1

b
(f2)

yzj |z=−(c+f2)g
(f2)

j = 0, (5.55b)

and
(c) τxz|z=−(c+f2), which gives

6∑
j=1

b
(f2)

xzj |z=−(c+f2)g
(f2)

j = 0. (5.55c)

For the upper surface, where the transverse pressure q0 is applied:

(a) σzz|z=(c+f1) = q0, which gives

6∑
j=1

b
(f1)

zzj |z=(c+f1)g
(f1)

j = Q0, (5.55d)

(b) τyz|z=(c+f1) = 0, which gives

6∑
j=1

b
(f1)

yzj |z=(c+f1)g
(f1)

j = 0, (5.55e)

and
(c) τxz|z=(c+f1) = 0, which gives

6∑
j=1

b
(f1)

xzj |z=(c+f1)g
(f1)

j = 0. (5.55f)
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Figure 5.2 Transverse displacement, W , at the top face sheet and at y = b/2,
as a function of x for a = b = 10htot (carbon/epoxy faces and glass/phenolic
honeycomb core).

Therefore, we have a system of 18 linear algebraic equations with 18 un-
knowns, g

(f2)

j , g
(c)
j and g

(f1)

j , j = 1, 6.
A square sandwich panel with size a = b = 10htot, where htot (= h) is

the thickness of the panel, was considered first. The resulting transverse dis-
placement profile w at the top surface, z = c + f1, and at y = b/2, is shown
in Figure 5.2. The displacement is normalized with 100hQ0/E

f

1 . In this fig-
ure, we also show the predictions from the classical plate theory which does
not include transverse shear. Furthermore, the displacement profile obtained
from the first-order core shear theory is also shown. The classical and first-
order shear theories are outlined in detail in Chapter 3. It can be seen that the
classical plate theory is unconservative and quite inaccurate. Furthermore,
the first-order shear is too conservative and also quite inaccurate (although
considerably better than the classical plate theory).

To illustrate the effect of plate size, Figure 5.3 shows the displacement
profiles for a plate five times larger, i.e., with a = b = 50h. For this case,
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Figure 5.3 Transverse displacement, W , at the top face sheet and at y = b/2, as a
function of x for a = b = 50htot.

the first-order shear theory is close to the elasticity, as expected. The classical
plate theory is still quite inaccurate. These figures demonstrate clearly the
large effect of transverse shear, which is an important feature of sandwich
structures.

5.2 A Cylindrical Sandwich Shell with Orthotropic Layers

We consider next the elastic equilibrium of a body in the form of a hollow
round cylinder (a tube) of sandwich construction which consists of two face-
sheets and a core (Figure 5.4). All three layers are made from a material
with cylindrical orthotropy. The body is under the influence of stresses dis-
tributed along the lateral surface and on the ends. Let us assume that (1) the
axis of orthotropy coincides with the geometric axis of the body; (2) there
are planes of elastic symmetry normal to the axis of the cylinder; (3) the
stresses acting on the outer and inner surfaces are normal and distributed
uniformly, and (4) the stresses which act on the end surfaces reduce to forces
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Figure 5.4 Cross-section of a cylindrical sandwich shell under internal pressure
(p), external pressure (q), and axial loading (P , normal to the plane of the figure).

which are directed along the axis and to twisting moments. We denote the
thickness of the outer face-sheet by h1 = f1, that of the inner face-sheet
by h2 = f2, and that of the core by hc = c. The inner radius is a and
the outer b, where, of course, b = a + f2 + c + f1. The shell thickness is
h = b − a.

Let us denote each layer by i where i = f1 for the outer face-sheet, i = c

for the core and i = f2 for the inner face-sheet. Then, for each layer, the
orthotropic strain-stress relations are
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε(i)
rr

ε
(i)
θθ

ε(i)
zz

γ
(i)
θz

γ (i)
rz

γ
(i)
rθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai
11 ai

12 ai
13 0 0 0

ai
12 ai

22 ai
23 0 0 0

ai
13 ai

23 ai
33 0 0 0

0 0 0 ai
44 0 0

0 0 0 0 ai
55 0

0 0 0 0 0 ai
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ (i)
rr

σ
(i)
θθ

σ (i)
zz

τ
(i)
θz

τ (i)
rz

τ
(i)
rθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (i = f1, c, f2)

(5.56)
where ai

ij are the compliance constants (we have used the notation 1 ≡ r,
2 ≡ θ , 3 ≡ z).

We have taken the axis of the body as the z axis of the cylindrical coordi-
nate system, and the polar x axis is arbitrary in the plane of one of the end
sections. The following notations are introduced: p and q are the internal
and external pressures, respectively; P is the axial force; M is the twisting
moment. Let us introduce the following notation for certain constants which
enter into the stress formulas and depend on the elastic constants:

βi
11 = ai

11 − ai 2
13

ai
33

; βi
22 = ai

22 − ai 2
23

ai
33

, (5.57a)

βi
12 = ai

12 − ai
13a

i
23

ai
33

, (5.57b)

and

ki =
√

βi
11

βi
22

; µi = 1

ai
44

; ξi = ai
13 − ai

23

βi
22 − βi

11

, (5.58)

where i = f1, c, f2.
Remark. In the case of isotropy (ai

13 = ai
23 and βi

22 = βi
11), ξ equals zero

and all the formulas in this section will still be valid.
Now, if we assume that the applied external stresses are the same at all

the cross-sections (do not vary with z) and, in addition, that the stresses de-
pend only on the distance r from the axis, then the stresses in each of the
orthotropic layers can be written in terms of two stress functions, F (i)(r)

and �(i)(r), (i = f1, c, f2) so that

σ (i)
rr (r) = F (i)′(r)

r
; σ

(i)
θθ (r) = F (i)′′(r), (5.59a)

τ
(i)
rθ = 0; τ (i)

rz = 0; τ
(i)
θz = −�(i)′(r), (5.59b)
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σ (i)
zz = C(i) − 1

a33

[
ai

13σ
(i)
rr + ai

23σ
(i)
θθ

]
, (5.59c)

where i = f1, c, f2.
Under the aforementioned assumptions, the equations of equilibrium and

the condition that the displacements are single-valued functions of the coor-
dinates, will be satisfied if

F (i)(r) = C(i)

2
ξir

2 + C
(i)
2

1 + ki

r1+ki + C
(i)
3

1 − ki

r1−ki , (5.60a)

�(i)(r) = − θ̄ (i)µi

2
r2. (5.60b)

where i = f1, c, f2.
The constants C(i), C

(i)
2 , C

(i)
3 , θ̄ (i) are found from the conditions on the

cylindrical lateral surfaces (e.g. applied uniform internal and/or external
pressure) and the conditions on the ends (e.g. applied axial load or axial
strain or twisting moment).

Therefore, from Equations (5.59), the stresses are

σ (i)
rr (r) = C(i)ξi + C

(i)

2 rki−1 + C
(i)

3 r−ki−1, (5.61a)

σ
(i)
θθ (r) = C(i)ξi + C

(i)

2 kir
ki−1 − C

(i)

3 kir
−ki−1, (5.61b)

τ
(i)
θz (r) = θ̄ (i)µir, (5.61c)

σ (i)
zz (r) = C(i)

[
1 − (ai

13 + ai
23)

ai
33

ξi

]
− C

(i)
2

(ai
13 + ai

23ki)

ai
33

rki−1

− C
(i)
3

(ai
13 − ai

23ki)

ai
33

r−ki−1. (5.61d)

where i = f1, c, f2.
Denoting by u(i)

r , u
(i)
θ and w(i) the displacements in the radial, circumfer-

ential and axial direction, respectively, the displacement field for this case,
excluding rigid body translation and rotation, is given as

u(i)
r (r, z) = U(i)(r) ; u

(i)
θ (r, z) = θ̄ (i)zr + V (i)(r);

w(i)(r, z) = C(i)ai
33z + W(i)(r), (5.62)

where U(i), V (i) and W(i) are found from the strain-displacement relations
and the stress field (5.59) from the following:
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∂U(i)

∂r
= βi

11σ
(i)
rr + βi

12σ
(i)
θθ + ai

13C
(i), (5.63a)

1

r

∂V (i)

∂θ
+ U(i)

r
= βi

12σ
(i)
rr + βi

22σ
(i)
θθ + ai

23C
(i), (5.63b)

1

r

∂U(i)

∂θ
+ ∂V (i)

∂r
− V (i)

r
= 0; ∂W(i)

∂r
= 0; 1

r

∂W(i)

∂θ
= 0. (5.63c)

Therefore, with the definitions (5.57) for ki and ξi , the displacement field
which satisfies these equations and would result in strains, is found by inte-
grating (5.63), as

U(i)(r) = C(i)
[
ai

13 + ξi(β
i
11 + βi

12)
]
r + C

(i)
2

(βi
11 + kiβ

i
12)

ki

rki

− C
(i)
3

(βi
11 − kiβ

i
12)

ki

r−ki , (5.64a)

V (i)(r) = 0 ; W(i)(r) = 0. (5.64b)

5.2.1 Generalized Plane Deformation of an Orthotropic Sandwich
Tube Subjected to Internal and/or External Pressures

Let us assume that the sandwich cylinder considered in the previous sec-
tion is subject to pressures p and q distributed uniformly on the inner and
outer surfaces, respectively, and has infinite length (generalized plane defor-
mation assumption). Then, not only the stresses, but also the displacements
do not depend on z. Alternatively, this is the assumption we would make if
the cylinder were securely fixed at the ends (εz = 0). Consequently, we can
assume

C(i) = θ̄ (i) = 0. (5.65)

The traction conditions at the core/face-sheet interfaces give

σ (f2)
rr |r=a+f2 = σ (c)

rr |r=a+f2; σ (c)
rr |r=b−f1 = σ (f1)

rr |r=b−f1 . (5.66)

Applying (5.61) and (5.65), this gives

C
(f2)

2 (a + f2)
kf2−1 + C

(f2)

3 (a + f2)
−kf2−1

= C
(c)

2 (a + f2)
kc−1 + C

(c)

3 (a + f2)
−kc−1, (5.67a)

C
(c)
2 (b − f1)

kc−1 + C
(c)
3 (b − f1)

−kc−1

= C
(f1)

2 (b − f1)
kf1−1 + C

(f1)

3 (b − f1)
−kf1−1. (5.67b)



132 5 Elasticity Solutions for Sandwich Structures

The displacement continuity at the core/face-sheet interfaces is, in turn,

U(f2)|r=a+f2 = U(c)|r=a+f2; U(c)|r=b−f1 = U(f1)|r=b−f1 . (5.68)

which, by use of (5.64a) and (5.65), gives

C
(f2)

2

(β
f2
11 + kf2β

f2
12 )

kf2

(a + f2)
kf2 − C

(f2)

3

(β
f2
11 − kf2β

f2
12)

kf2

(a + f2)
−kf2

= C
(c)
2

(βc
11 + kcβ

c
12)

kc

(a + f2)
kc − C

(c)
3

(βc
11 − kcβ

c
12)

kc

(a + f2)
−kc ,

(5.69a)

C
(c)
2

(βc
11 + kcβ

c
12)

kc

(b − f1)
kc − C

(c)
3

(βc
11 − kcβ

c
12)

kc

(b − f1)
−kc

= C
(f1)

2

(β
f1
11 + kf1β

f1
12)

kf1

(b − f1)
kf1 − C

(f1)

3

(β
f1
11 − kf1β

f1
12 )

kf1

(b − f1)
−kf1 .

(5.69b)

The conditions of applied internal and external pressures on the inner and
outer surfaces (r = a, b) are

σ (f2)
rr |r=a = −p ; σ (f1)

rr |r=b = −q, (5.70)

which gives

C
(f2)

2 akf2 −1 + C
(f2)

3 a−kf2 −1 = −p; C
(f1)

2 bkf1 −1 + C
(f1)

3 b−kf1 −1 = −q,

(5.71)
The six unknowns C

(i)
2 , C

(i)
3 (i = f1, c, f2) are solved in terms of p and q

using a system of six linear equations formed by Equations (5.67a, b), (5.69a,
b) and (5.71). Then, the stresses are found by Equations (5.61).

Since there is no stress τθz, there is no resultant twisting moment. The
stresses σzz on the ends and in any cross-section reduce to an axial force P

which can be found from

P

2π
=

∫ b

a

σzzrdr =
∫ a+f2

a

σ (f2)
zz rdr +

∫ b−f1

a+f2

σ (c)
zz rdr +

∫ b

b−f1

σ (f1)
zz rdr.

(5.72)
Using (5.61d), this becomes

P

2π
= −(D2 + D3). (5.73a)



Structural and Failure Mechanics of Sandwich Composites 133

where

D2 = C
(f1)

2

(a
f1
13 + a

f1
23kf1)

a
f1
33(kf1 + 1)

[
b(kf1+1) − (b − f1)

(kf1+1)
]

+ C
(c)

2

(ac
13 + ac

23kc)

ac
33(kc + 1)

[
(b − f1)

(kc+1) − (a + f2)
(kc+1)

]

+ C
(f2)

2

(a
f2
13 + a

f2
23kf2)

a
f2
33(kf2 + 1)

[
(a + f2)

(kf2+1) − a(kf2+1)
]
, (5.73b)

D3 = C
(f1)

3

(a
f1
13 − a

f1
23kf1)

a
f1
33(−kf1 + 1)

[
b(−kf1+1) − (b − f1)

(−kf1+1)
]

+ C
(c)
3

(ac
13 − ac

23kc)

ac
33(−kc + 1)

[
(b − f1)

(−kc+1) − (a + f2)
(−kc+1)

]

+ C
(f2)

3

(a
f2
13 − a

f2
23kf2)

a
f2
33(−kf2 + 1)

[
(a + f2)

(−kf2+1) − a(−kf2 +1)
]
. (5.73c)

5.2.2 An Orthotropic Hollow Sandwich Cylinder Loaded by an
Axial Force

We now assume that the shell is loaded by stresses distributed on the ends
and which reduce to a tensile force P . The stresses at the ends are applied
so that a uniformly distributed constant axial strain, ε0, exists throughout the
section. Note also that no resultant twisting moment is assumed to exist and
θ̄ i = 0.

From (5.62) the axial strain is C(i)ai
33, and the first condition is

C(f2)a
f2
33 = C(c)ac

33 = C(f1)a
f1
33 = ε0. (5.74)

i.e., the constants C(i) are non-zero.
Next, the traction conditions (5.66) at the face-sheet/core interfaces give

by use of (5.61a) and (5.74):

ε0
ξf2

a
f2
33

+ C
(f2)

2 (a + f2)
kf2 −1 + C

(f2)

3 (a + f2)
−kf2 −1

= ε0
ξc

ac
33

+ C
(c)

2 (a + f2)
kc−1 + C

(c)

3 (a + f2)
−kc−1, (5.75a)



134 5 Elasticity Solutions for Sandwich Structures

ε0
ξc

ac
33

+ C
(c)
2 (b − f1)

kc−1 + C
(c)
3 (b − f1)

−kc−1

= ε0
ξf1

a
f1
33

+ C
(f1)

2 (b − f1)
kf1−1 + C

(f1)

3 (b − f1)
−kf1−1. (5.75b)

The displacement continuity at the face-sheet/core interfaces, (5.68), by
use of (5.64a) and (5.74) becomes

ε0
(a

f2
13 + ξf2(β

f2
11 + β

f2
12 ))

a
f2
33

(a + f2) + C
(f2)

2

(β
f2
11 + kf2β

f2
12)

kf2

(a + f2)
kf2

− C
(f2)

3

(β
f2
11 − kf2β

f2
12)

kf2

(a + f2)
−kf2 = ε0

(ac
13 + ξc(β

c
11 + βc

12))

ac
33

(a + f2)

+ C
(c)
2

(βc
11 + kcβ

c
12)

kc

(a + f2)
kc − C

(c)
3

(βc
11 − kcβ

c
12)

kc

(a + f2)
−kc ,(5.76a)

ε0
(ac

13 + ξc(β
c
11 + βc

12))

ac
33

(b − f1) + C
(c)
2

(βc
11 + kcβ

c
12)

kc

(b − f1)
kc

− C
(c)

3

(βc
11 − kcβ

c
12)

kc

(b − f1)
−kc = ε0

(a
f1
13 + ξf1(β

f1
11 + β

f1
12 ))

a
f1
33

(b − f1)

+ C
(f1)

2

(β
f1
11 + kf1β

f1
12 )

kf1

(b − f1)
kf1 − C

(f1)

3

(β
f1
11 − kf1β

f1
12)

kf1

(b − f1)
−kf1 .

(5.76b)

Next, the condition of traction-free lateral surfaces is expressed by

σ (f2)
rr |r=a = 0; σ (f1)

rr |r=b = 0, (5.77)

which gives

ε0
ξf2

a
f2
33

+ C
(f2)

2 akf2 −1 + C
(f2)

3 a−kf2 −1 = 0, (5.78a)

ε0
ξf1

a
f1
33

+ C
(f1)

2 bkf1−1 + C
(f1)

3 b−kf1−1 = 0. (5.78b)

Again, the solution is found by solving for the six constants C
(i)

2 , C
(i)

3 ,
(i = f1, c, f2) in terms of ε0, from the six linear equations (5.75a, b), (5.76a,
b) and (5.78a, b).
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An expression for the resultant applied force P in terms of ε0 can be found
by integrating σzz as in (5.72), and this now gives, by using (5.61d),

P

2π
= −(D1 + D2 + D3), (5.79a)

where D2 and D3 are given by (5.73b, c) and

D1/ε0 =
[

1 − (a
f1
13 + a

f1
23)

a
f1
33

ξf1

] [
b2 − (b − f1)

2
]

2a
f1
33

+
[

1 − (ac
13 + ac

23)

ac
33

ξc

] [
(b − f1)

2 − (a + f2)
2
]

2ac
33

+
[

1 − (a
f2
13 + a

f2
23)

a
f2
33

ξf2

] [
(a + f2)

2 − a2
]

2a
f2
33

. (5.79b)

Of course, the axial stress σzz is non-uniformly distributed over the cross-
section as opposed to the axial strain, ε0, assumed to be uniform.

5.2.3 Sandwich Shell Theory Expressions

We refer to a cylindrical coordinate system z, θ and r, in which z and θ are
in the axial and circumferential directions and r is in the (radial) direction.
The corresponding displacements at any point are denoted by w, v and u.

In addition to Equation (5.56) which is in terms of the compliance con-
stants, we shall use the stress-strain relations in terms of the stiffness con-
stants, as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ (i)
rr

σ
(i)
θθ

σ (i)
zz

τ
(i)
θz

τ (i)
rz

τrθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ci
11 ci

12 ci
13 0 0 0

ci
12 ci

22 ci
23 0 0 0

ci
13 ci

23 ci
33 0 0 0

0 0 0 ci
44 0 0

0 0 0 0 ci
55 0

0 0 0 0 0 ci
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε(i)
rr

ε
(i)
θθ

ε(i)
zz

γ
(i)
θz

γ (i)
rz

γ
(i)
rθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (i = f1, c, f2),

(5.80)
where we have again used the notation 1 ≡ r, 2 ≡ θ , 3 ≡ z.

The sandwich shell theory employed is a version of Love’s (1927) shell
theory extended to shear deformable structures (but note the absence of shear
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in this case of orthotropy). The core is assumed to carry only shear stresses
and the face sheets carry the normal stresses, therefore the extensional and
bending stiffnesses of the shell are based exclusively on the face-sheet stiff-
nesses. On the contrary, transverse shear stress resultants (should they exist)
are based exclusively on the shear stiffnesses of the core.

Taking into account the displacement distribution through the thickness
assumed in the shell theory, we can easily see that in the generalized plane
deformation problems under consideration, the displacement field through-
out the shell is

u(r, θ, z) = u0 ; v(r, θ, z) = 0 w(r, θ, z) = ε0z, (5.81a)

where u0 is a constant and ε0 is the uniform axial strain.
The relationships for the strains throughout the shell, corresponding to

Love’s (1927) shell theory are

εrr = 0 ; εθθ = u0

R
; εzz = ε0, (5.81b)

where R is the mid-surface radius. The shear strains are all zero. Notice that
in these simplified, axisymmetric, generalized plane deformation problems,
there is no difference between first-order shear deformation and classical
solutions.

The stress resultants of interest are

Nθ = C22ε
0
θθ + C23ε

0
zz; Nz = C23ε

0
θθ + C33ε

0
zz; Nzθ = 0, (5.81c)

where ε0
ij are the mid-surface strains, identical to the ones in (5.81b). More-

over, the Cij are the shell stiffness constants, determined by the face-sheets
(in the context of sandwich shell formulation) by

Cij = f1c
f1
ij + f2c

f2
ij , (i, j = 2, 3). (5.81d)

For external pressure, the equilibrium equations in terms of the stress re-
sultants are satisfied if

Nθ = −qR. (5.82a)

Furthermore, based on the assumptions of the problem for the external pres-
sure case, ε0 = 0. Then (5.81c) and (5.81b) give

u0 = −qR2/C22 ; εθθ = −qR/C22. (5.82b)

Subsequently by using (5.80) the stresses are:
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σrr = −q
ci

12R

C22
; σθθ = −q

ci
22R

C22
; σzz = −q

ci
23R

C22
(i = f2, c, f1),

(5.82c)
For axial loading with a uniform axial strain ε0, the equilibrium equations

are satisfied if Nθ = 0, which, by using (5.81c) and (5.81b), gives

u0 = −ε0RC23/C22 ; εθθ = −ε0C23/C22. (5.83a)

Subsequently, Nz can be obtained from (5.81c) as

Nz = ε0

(
C33 − C2

23

C22

)
. (5.83b)

Then the stresses are found by using (5.80):

σrr = ε0

(
ci

13 − ci
12

C23

C22

)
; σθθ = ε0

(
ci

23 − ci
22

C23

C22

)
;

σzz = ε0

(
ci

33 − ci
23ε0

C23

C22

)
, (5.83c)

where i = f1, c, f2.
As an illustrative example, the stress and displacement distribution was

determined for a sandwich composite circular cylindrical shell of outer ra-
dius b = 1 m, a ratio of outside over inside radii, b/a = 1.20, ratios of
face-sheet thicknesses over shell thickness, f2/h = f1/h = 0.10.

The face sheets are made from unidirectional E-glass/polyester with the
fiber direction along the circumference, with moduli in GPa: E

(f1,f2)

2 = 40,
E

(f1,f2)

1 = E
(f1,f2)

3 = 10, G
(f1,f2)

13 = 3.5, G
(f1,f2)

12 = G
(f1,f2)

23 = 4.5, and
Poisson’s ratios ν

(f1,f2)

31 = 0.40, ν
(f1,f2)

21 = ν
(f1,f2)

23 = 0.26. Note that 1 is the
radial (r), 2 is the circumferential (θ), and 3 the axial (z) direction. The core
modulus and Poisson’s ratio are assumed to be Ec = 75 MPa and νc = 0.30.
Notice that the compliance constants for the orthotropic face sheets are given
by (5.32a–c).

For the case of pure external pressure, q, Figure 5.5 shows the radial dis-
placement U(r), normalized with qR2/C22 (C22 is defined in (5.81d)) plot-
ted vs. r/R. The elasticity solution (Section 5.2.1) predicts a non-uniform
displacement as opposed to the shell theory.

For the case of pure axial loading by a uniform applied axial strain ε0, Fig-
ure 5.6 shows the displacement, U(r), normalized with ε0RC23/C22. Again,
the elasticity solution (Section 5.2.2) predicts a non-uniform displacement
distribution as opposed to the shell theory.
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Figure 5.5 Radial displacement, U(r) vs. normalized radius (r/R), for a cylindrical
sandwich shell of mean radius, R, under uniform external pressure, q .

Also note that because of the orthotropy and the axisymmetric geometry,
there are no shear stresses generated from internal/external pressure and axial
loading. Therefore even a first-order shear deformation theory would not
result in improved shell theory predictions.

Finally, it should be pointed out that the concept of sandwich construction
may not be ideal for the loading and structure analyzed. This is because in
the case considered there is no shear in the core and to really take advantage
of the sandwich concept, the core should carry the shear and the face sheet
should support the normal stresses. If the cylinder is loaded in compression,
however, and buckling occurs, then the core would support the shear, and the
solution presented can be used as the exact pre-buckling state of stress and
displacement in the formulation of the buckling problem.

5.2.4 Torsion of a Sandwich Shaft

Let us consider the more general case of off-axis orientation of the material,
but with one plane of elastic symmetry normal to the cylinder axis. Hence,
ai

45, ai
16, ai

26 and ai
36 are non-zero, and the strain-stress relations becomes
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Figure 5.6 Radial displacement, U(r) vs. normalized radius (r/R), for a cylindrical
sandwich shell of mean radius, R, under uniformly applied axial strain, ε0.

⎡
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ (i)
rr

σ
(i)
θθ

σ (i)
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τ
(i)
θz

τ (i)
rz

τ
(i)
rθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (i = f1, c, f2).

(5.84a)
The equations of equilibrium are satisfied for

σ (i)
rr = σ

(i)
θθ = σ (i)

zz = τ
(i)
rθ = τ (i)

rz = 0 ; τ
(i)
θz = θ̄ (i)

ai
44

r, (5.84b)

and the displacement field (excluding rigid body rotation and translation)
that results from these stresses can be found from the strain-displacement
relations and the strain-stress relations, which in this case become

∂U(i)

∂r
= 0 ; 1

r

∂V (i)

∂θ
+ U(i)

r
= 0 ; 1

r

∂U(i)

∂θ
+ ∂V (i)

∂r
− V (i)

r
= 0, (5.85a)

where i = f1, c, f2.
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∂W(i)

∂r
= ai

45τ
(i)
θz = ai

45

θ̄ (i)

ai
44

r ; 1

r

∂W(i)

∂θ
= ai

44τ
(i)
θz − θ̄ (i)r = 0. (5.85b)

The resulting displacement field obtained by integrating the above rela-
tions is

u(i)
r = 0 ; uθ = θ̄ (i)rz ; w(i) = θ̄ (i) a

(i)

45

a
(i)
45

r2

2
+ di. (5.86)

where di are constants to be determined from face/core interface displace-
ment continuity requirements.

The continuity of displacement, uθ , at the face-sheet/core interfaces re-
sults in a constant relative angle of twist, θ̄ (i):

θ̄ (i) = θ̄ (i = f1, c, f2). (5.87)

The continuity of the displacement, w, at the face-sheet/core interfaces in
turn results in equations for the constants di in terms of the axial displace-
ment, w, expressions (5.86).

The resultant twisting moment, M, is then found from

M

2π
=

∫ b

a

τθzr
2dr =

∫ a+f2

a

τ
(f2)

θz r2dr +
∫ b−f1

a+f2

τ
(c)
θz r2dr +

∫ b

b−f1

τ
(f1)

θz r2dr.

(5.88)
Using (5.84b) and (5.87) results in the following expression:

M

2π
= θ̄

4

{
[(a + f2)

4 − a4]
a

(f2)

44

+ [(b − f1)
4 − (a + f2)

4]
a

(c)

44

+ [b4 − (b − f1)
4]

a
(f1)

44

}
.

(5.89)
If ai

45 = 0 for all three layers, then w(i) = 0, and the cross-sections will
remain planar and not warp.

We have presented in this chapter some fundamental cases regarding
three-dimensional elasticity of sandwich structures. Elasticity solutions for
other cases, e.g. a hollow orthotropic sandwich cylinder loaded by bending
moments applied at the ends, or an orthotropic sandwich curved bar, loaded
by couples or terminal forces, can be found by extending these solutions.
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