
Chapter 3
Classical and First-Order Shear Deformation
Analysis of Sandwich Plates

This chapter will present classical laminated plate theory (CLPT) analysis
of composite face sheets and sandwich plates. It is recognized that the trans-
verse shear deformation is not incorporated in CLPT. Shear deformation of
sandwich plates is important and first-order shear deformation analysis will
be outlined. Applications of CLPT and first-order shear deformation analysis
to sandwich panels will be presented. Two experimental sandwich plate tests,
viz. bending under transverse pressure load and twisting, will be described.
Experimental data generated from such tests will be compared to predictions
from plate theory analysis and finite elements.

3.1 Classical Laminated Plate Theory Analysis

Classical laminated plate theory (CLPT) aims to relate the mechanical re-
sponse of a layered plate to that of the individual constituent piles. This the-
ory is an extension of the theory for homogeneous isotropic plates presented
by Timoshenko and Woinowsky-Krieger (1959) to thin laminated plates. The
analysis is most appropriate for thin plates since, as will be shown, this the-
ory does not accommodate transverse shear deformation. Hence, CLPT is
of limited applicability to sandwich panels since they often possess a thick,
shear deformable core. CLPT, however, is applicable to the analysis of the
in-plane response of face sheets and, furthermore, constitutes an important
reference for sandwich panels with in-plane dimensions much greater than
the thickness.
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Figure 3.1 Unbonded and bonded views of a multi-ply laminate consisting of N

plies.

3.1.1 Laminate Nomenclature

Figure 3.1 shows unbonded and bonded views of a laminate consisting of N

orthotropic plies with the fibers oriented at any in-plane direction, θ .
The plies may be unidirectional (as shown) or fabric weaves. For fabric

weaves, the angle θ refers to the warp or weft fiber directions. Figure 3.1
also illustrates the global xyz laminate coordinate system and the local (ply)
coordinate system 123, where the 3 axis is parallel to the thickness coor-
dinate (z) of the laminated plate. The plies in the laminate are numbered
1, 2, . . . , N from bottom and up. The ply index, k, identifies the particular
ply considered, and θk denotes the orientation of ply k.

For the purpose of subsequent analysis, the “ply coordinates”, zk, are de-
fined in Figure 3.2. The origin of the z coordinate is located at the mid-plane
of the laminate. Hence, z0 = −h/2 and zN = h/2, where h is the total thick-
ness of the laminate (Figure 3.2). The ply coordinates indicate the location
of the ply interfaces, and ply k is bound by zk−1 and zk.

The lay-up sequence of a laminate is standardized, see Adams et al.
(2003). The ply orientations in degrees are listed within brackets starting
with the first ply laid up, followed by a slash (/) and then the next ply, and
so on until the top ply. For symmetric laminates, only the bottom half of the
plies are shown, and a subscript capital S follows the right closing bracket.
For example, a six-ply symmetric laminate with plies oriented at 45◦, 0◦,
−30◦, −30◦, 0◦ and 45◦ would be expressed as [45/0/ − 30]s . For symmet-
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Figure 3.2 Definition of the ply coordinates, zk .

ric laminates with an odd number of plies, the center ply is designated with
an overbar.

3.1.2 Kinematics of Deformation

Figure 3.3 shows a flat composite laminate plate before loading and the xyz

coordinate system. Deformation of the laminate plate is expressed using the
displacement vector

u = ui + vj + wk, (3.1)

where (u, v,w) are the components of the displacement vector (Figure 3.3)
and i, j, k are the unit vectors for the x, y, z coordinates. From the displace-
ment components, we can determine the extensional and shear strains,

εx = ∂u

∂x
, (3.2a)

εy = ∂v

∂y
, (3.2b)

εz = ∂w

∂z
, (3.2c)

γyz = ∂v

∂z
+ ∂w

∂y
, (3.2d)
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Figure 3.3 Composite laminate plate before deformation and definition of displace-
ment components.

yxz = ∂u

∂z
+ ∂w

∂x
, (3.2e)

yxy = ∂u

∂y
+ ∂v

∂x
. (3.2f)

Notice here that the strains are assumed to be small (� 1), since Equa-
tions (3.2) include only first-order derivatives.

Figure 3.3 shows an element of the interior of the laminated plate cut
parallel to the y axis. The deformation of this element will be examined in
detail. Figure 3.4 illustrates the element before and after deformation.

When the laminate plate is loaded, the cross-section defined by the line
AB, originally straight and perpendicular to the reference plane (z = 0) will
translate and rotate as shown in Figure 3.4. The y and z axis displacements of
the point O, on the mid-plane, are v0 and w0 (Figure 3.4). It is assumed that
the line segment AB remains straight and normal to the deformed mid-plane.
Further, the segment is assumed to maintain its length during deformation,
implying

w(x, y) = w0(x, y), (3.3)
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Figure 3.4 Element of plate cut parallel to the x axis before and after deformation.

where subscript zero refers to the mid-plane (z = 0). The assumptions con-
stitutes the famous Kirchhoff hypothesis for plates, and implies that flat sec-
tions originally oriented normal to the mid-plane remain flat and normal to
the deformed mid-plane after loading.

Further, because the line AB remains straight and perpendicular to the
deformed mid-plane, the slope of the cross-section, β, in Figure 3.4, is equal
to the slope of the panel, i.e.,

β = ∂w0

∂y
. (3.4)

The y axis displacement of point C, at a distance zc from the mid-plane,
becomes

vc = v0 − βzc. (3.5)

For any point on the line segment we will get

v = v0 − βz. (3.6)

Substitution of Equation (3.4) into (3.6) yields

v(x, y, z) = v0(x, y) − z
∂w0

∂y
. (3.7)

Consideration of a cross-section of the plate cut parallel to the x axis simi-
larly yields
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u(x, y, z) = u0(x, y) − z
∂w0

∂x
. (3.8)

Equations (3.3), (3.7) and (3.8) provide the necessary expressions for the
displacements of the laminate plate. Differentiation of these expressions, ac-
cording to Equations (3.2), yields

εx = ∂u0

∂x
− z

∂2w0

∂x2
, (3.9a)

εy = ∂v0

∂y
− z

∂2w0

∂y2
, (3.9b)

εz = 0, (3.9c)

γyz = 0 = γxz, (3.9d)

γxy = ∂u0

∂y
+ ∂v0

∂x
− 2z

∂2w0

∂x∂y
. (3.9e)

Hence, the CLPT does not accommodate transverse shear deformation and
thickness stretch. The only non-zero strains are the in-plane strains εx, εy

and γxy . These strains are commonly expressed in the following form

⎡
⎢⎣

εx

εy

γxy

⎤
⎥⎦ =

⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ + z

⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ , (3.10)

where [ε0
x, ε

0
y, γ

0
xy] and [κx, κy, κxy] are the strains and curvatures of the ref-

erence mid-plane, defined according to Equations (3.9) as

ε0
x = ∂u0

∂x
, (3.11a)

ε0
y = ∂v0

∂y
, (3.11b)

γ 0
xy = ∂u0

∂y
+ ∂v0

∂x
, (3.11c)

κx = −∂2w0

∂x2
, (3.12a)

κy = −∂2w0

∂y2
, (3.12b)
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Figure 3.5 Illustration of bending and twisting deformation of a laminated plate.
All curvatures shown are positive.

κxy = −2
∂2w0

∂x∂y
. (3.12c)

The mid-plane strains signify membrane loading, since they represent ex-
tension and shear deformation of the mid-plane. The curvatures, κx and κy ,
represent bending deformation, while the curvature, κxy , represents twisting
of the laminated plate, see Figure 3.5.
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Figure 3.6 Orthotropic ply under in-plane stresses σ1, σ2 and τ12.

3.1.3 Stresses in the Laminate

Consider a thin orthotropic ply with the principal material directions 1-2-
3 loaded in the 1-2 plane of the ply as shown in Figure 3.6. The relation
between stresses [σ1, σ2, τ12] and strains [ε1, ε2, γ12] becomes (Hyer, 1998)⎡

⎢⎣
σ1

σ2

τ12

⎤
⎥⎦ =

⎡
⎢⎣

Q11 Q12 0

Q12 Q22 0

0 0 Q66

⎤
⎥⎦
⎡
⎢⎣

ε1

ε2

γ12

⎤
⎥⎦ , (3.13)

where the stiffness, Qij , can be expressed

Q11 = E1/(1 − ν112ν21), (3.14a)

Q12 = ν12E2/(1 − ν12ν21) = v21E1/(1 − ν12ν21), (3.14b)

Q22 = E2/(1 − ν12ν21), (3.14c)

Q66 = G12. (3.14d)

Here, E1 and E2 represent the principal moduli in the fiber direction (1 in
Figure 3.6) and the transverse direction (2 in Figure 3.6). ν12 and ν21 are the
associated Poisson ratios, and G12 is the in-plane shear modulus.

For a ply within the laminate where the fibers are oriented at an angle, θ , to
the global x coordinate of the laminate, Figure 3.7, the stresses, strains, and
stiffnesses must be transformed to the new x–y axes. It may be shown that
transformed relation between in-plane stresses and strains for the “off-axis”
ply, Figure 3.7, will take the following form (Hyer, 1998):⎡

⎢⎣
σx

σy

τxy

⎤
⎥⎦

k

=
⎡
⎢⎣

Q̄11Q̄12Q̄16

Q̄12Q̄22Q̄26

Q̄16Q̄26Q̄66

⎤
⎥⎦

k

⎡
⎢⎣

εx

εy

γxy

⎤
⎥⎦ , (3.15)
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Figure 3.7 Off-axis ply element under in-plane loading.

Figure 3.8 Variations of bending strain and stress in a [0/90]s laminate subject to
pure bending loading.

where the elements, Q̄ij , of the stiffness matrix for ply k are defined in terms
of the principal stiffnesses, Qij , and the ply orientation, θk, in Appendix A.
The subscript k on the stresses signifies that the stresses may vary in a dis-
continuous manner from ply to ply, even if the strains vary in a continuous
manner (Equations (3.10)).

Figure 3.8 illustrates the variations of strain, εx , and stress, σx , in a [0/90]s
laminate under pure bending load. The stress, σx , is greater in the 0◦ plies
than the 90◦ plies because the 0◦ plies have the fibers aligned with the lon-
gitudinal direction (x axis), while the 90◦ plies have the fibers aligned with
the y axis. Typically, Young’s modulus (E) is a factor 5–15 greater in the 0◦
direction than in the transverse direction.



48 3 Classical and First-Order Shear Deformation Analysis of Sandwich Plates

Figure 3.9 Force and moment resultants for an element of a laminate plate.

3.1.4 Force and Moment Resultants

Force and moment resultants, defined for an element of the laminate (Fig-
ure 3.9), are obtained by integrating the stresses over the thickness of the
laminate

(Nx,Ny,Nxy) =
∫ h/2

−h/2
(σx, σy, τxy)dz, (3.16a)

(Mx,My,Mxy) =
∫ h/2

−h/2
(σx, σy, τxy)zdz. (3.16b)

Because the stresses vary in a continuous manner within a ply but may jump
across the ply boundaries as shown in Figure 3.8, the integrations are con-
ducted for each ply (k) defined by the ply coordinates zk−1 and zk, and then
the results are added.⎡

⎢⎣
Nx

Ny

Nxy

⎤
⎥⎦ =

∫ h/2

−h/2

⎡
⎢⎣

σx

σy

τxy

⎤
⎥⎦ dz =

N∑
k=1

∫ zk

zk−1

⎡
⎢⎣

σx

σy

τxy

⎤
⎥⎦

k

dz, (3.17a)

⎡
⎢⎣

Mx

My

Mxy

⎤
⎥⎦ =

∫ h/2

−h/2

⎡
⎢⎣

σx

σy

τxy

⎤
⎥⎦ zdz =

N∑
k=1

∫ zk

zk−1

⎡
⎢⎣

σx

σy

τxy

⎤
⎥⎦

k

zdz. (3.17b)

The force and moment resultants have units of force per unit length and
moment per unit length, and are generally dependent on the in-plane coor-
dinates, x and y, but do not depend on the thickness coordinate (z) after
integration.
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Substitution of the in-plane stresses given by Equations (3.15) into (3.17)
yields, after integration,⎡

⎢⎣
Nx

Ny

Nxy

⎤
⎥⎦ =

⎡
⎢⎣

A11A12A16

A12A22A26

A16A26A66

⎤
⎥⎦

⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ +

⎡
⎢⎣

B11B12B16

B12B22B26

B16B26B66

⎤
⎥⎦

⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ , (3.18)

⎡
⎢⎣

Mx

My

Mxy

⎤
⎥⎦ =

⎡
⎢⎣

B11B12B16

B12B22B26

B16B26B66

⎤
⎥⎦

⎡
⎢⎣

ε0
y

ε0
y

γ 0
xy

⎤
⎥⎦ +

⎡
⎢⎣

D11D12D16

D12D22D26

D16D26D66

⎤
⎥⎦

⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ . (3.19)

The [A], [B], and [D] matrices in Equations (3.18) and (3.19) govern the re-
sponse of a laminated plate to forces and moments. The [A] matrix is called
“extensional stiffness matrix”, the [B] matrix is called “coupling stiffness
matrix”, and the [D] matrix is called “bending stiffness matrix” in accor-
dance with their roles for the mechanical behavior of a laminated plate. The
[A] matrix relates extensional and shear strains to the force resultants, and
the [D] matrix relates bending and twisting curvatures to the moment resul-
tants. The [B] matrix appears both in the equations for the force resultants
and moment resultants and acts to couple the responses in extension and
bending.

The elements of the stiffness matrices are given by

Aij =
N∑

k=1

(Q̄ij )k(zk − zk−1), (3.20a)

Bij = 1

2

N∑
k=1

(Q̄ij )k(z
2
k − z2

k−1), (3.20b)

Dij = 1

3

N∑
k=1

(Q̄ij )k(z
3
k − z3

k−1). (3.20c)

It may be shown that Bij = 0 in Equations (3.18) and (3.19) for laminates
with a symmetrical lay-up sequence. Hence, such laminates possess no cou-
pling between the extensional and bending responses which greatly simpli-
fies the analysis of the response. Face laminates are commonly laid-up in
a symmetric manner. Furthermore, face laminates are usually “balanced”,
which means that for an off-axis ply with fiber orientation angle θ , there is
a corresponding layer with orientation angle −θ , which will have the conse-
quence that A16 = A26 = 0 in Equations (3.18). These terms, if non-zero,
signify coupling between extensional and shear response, which is undesir-
able.
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3.1.5 Effective Engineering Elastic Constants of Laminates

When analyzing sandwich beams and panels, it is convenient to establish the
effective engineering constants of the face laminates. Such constants are pri-
marily the in-plane extensional and shear moduli, although sometimes the
out-of-plane moduli are demanded. In this section we will present method
to calculate the in-plane engineering constants based on the laminate exten-
sional stiffness matrix.

Consider a symmetric and balanced laminated plate. According to the dis-
cussion in Section 3.1.4, the response to in-plane loading is given by⎡

⎢⎣
Nx

Ny

Nxy

⎤
⎥⎦ =

⎡
⎢⎣

A11 A12 0

A12 A22 0

0 0 A66

⎤
⎥⎦
⎡
⎢⎣

εx

εy

γxy

⎤
⎥⎦ . (3.21)

Notice here that the laminate strains coincide with the mid-plane strains due
to the absence of bending curvatures (Equations (3.10)). For the purpose of
establishing the effective engineering constants, it is more convenient to use
the compliance (inverted) version of Equation (3.21), i.e.,⎡

⎢⎣
εx

εy

γxy

⎤
⎥⎦ =

⎡
⎢⎣

a11 a12 0

a12 a22 0

0 0 a66

⎤
⎥⎦
⎡
⎢⎣

Nx

Ny

Nxy

⎤
⎥⎦ , (3.22)

where

a11 = A22

A11A22 − A2
12

, (3.23a)

a12 = −A12

A11A22 − A2
12

, (3.23b)

a22 = A11

A11A22 − A2
12

, (3.23c)

a66 = 1

A66
. (3.23d)

To further facilitate the deformation of the engineering constants, it is recog-
nized that the average stresses σ̄x , σ̄y and τ̄xy are given by

σ̄x = Nx

h
, (3.24a)
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σ̄y = Ny

h
, (3.24b)

τ̄xy = Nxy

h
. (3.24c)

With this, Equations (3.22) may be written as⎡
⎢⎣

εx

εy

γxy

⎤
⎥⎦ = h

⎡
⎢⎣

a11 a12 0

a12 a22 0

0 0 a66

⎤
⎥⎦
⎡
⎢⎣

σ̄x

σ̄y

γ̄xy

⎤
⎥⎦ . (3.25)

These equations may be compared to those for an orthotropic homogeneous
material loaded in the principal system (Figure 3.6)⎡

⎢⎣
ε1

ε2

γ12

⎤
⎥⎦ =

⎡
⎢⎣

l/E1 −ν12/E1 0

−ν21/E2 1/E2 0

0 0 1/G12

⎤
⎥⎦
⎡
⎢⎣

σ1

σ2

τ12

⎤
⎥⎦ . (3.26)

Direct comparison between Equations (3.25) and (3.26) yields the effective
engineering constants of the laminated plate according to

Ex = 1

ha11
, (3.27a)

νxy = −a12

a11
, (3.27b)

Ey = 1

ha22
, (3.27c)

νyx = −a12

a22
, (3.27d)

Gxy = 1

ha66
. (3.27e)

Notice also that the Poisson ratios are not independent

νxy = νxy

Ex

Ey

, (3.28)

which conforms to established orthotropic material behavior.
Equations (3.27) are very convenient for reducing a large set of ply me-

chanical properties and ply orientation angles into a set of four independent
engineering constants.
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Figure 3.10 Definition of nomenclatures for sandwich plate.

For estimation of the effective out-of-plane stiffnesses Ez,Gxz and Gyx of
the laminate several methods exists, see, e.g., Chou et al. (1972) and Bogetti
et al. (2004). It should be pointed out that such methods are much more
involved than the determination of the in-plane engineering constants. As a
first estimate for a laminate consisting of transversely isotropic plies, it could
be assumed that

Ez
∼= E3 = E2, (3.29a)

Gxz
∼= Gyz

∼= G13 = G12. (3.29b)

Such estimates are expected to be reasonable for laminates utilizing unidi-
rectional transversely isotropic plies, where the properties in the out-of-plane
direction should be close to those in the in-plane transverse direction.

3.2 First-Order Shear Deformation Analysis of a Sandwich Plate

Consider a sandwich plate consisting of face sheets of thicknesses h1 and
h2, and a core of thickness hc, see Figure 3.10. The faces and core may be
isotropic or orthotropic with their principal directions along xyz, see Fig-
ure 3.10. The core may be corrugated (web), honeycomb, a foamed material,
or balsa wood, (Figure 1.4). Such cores display macroscopic mechanical be-
havior that may be characterized as isotropic or orthotropic, i.e. having three
mutually perpendicular planes of elastic symmetry (Hyer, 1998).

The early texts on sandwich structures forwarded by Plantema (1966) and
Allen (1969), as well as the more recent text by Zenkert (1997), analyze the
deflection, w, of sandwich panels using “partial deflections”, i.e., deflections
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due to bending and shear separately, and obtain the total deflection by adding
solutions for each mode of deformation. Analysis of sandwich plates and
beams, however, is most conveniently performed extending the first-order
shear deformation theory for homogeneous and isotropic plates developed
by Reissner (1945) and Mindlin (1951) to sandwich plates with orthotropic
face sheets. Such extensions were done by several authors, e.g. Libove and
Batdorf (1948) and Whitney (1987). In this text we will forward the first-
order shear deformation plate theory in a form similar to that presented for
flat sandwich panels by Whitney (1987) who assumed that the in-plane dis-
placements u and v of the faces are those at the face/core interfaces. Here we
will modify the Whitney theory by assuming that the in-plane displacements
of the faces are those at the centroids of the face sheets. This is consistent
with traditional sandwich theory (Allen, 1969).

Figure 3.10 shows that the origin of the coordinate system xyz is placed
at the center of the core, i.e., z = 0 in the core mid-plane. This is differ-
ent from classical laminated plate theory where z = 0 in the geometrical
mid-plane of the panel (Figure 3.10). The analysis is based on the following
assumptions:

(i) The face sheets are thin compared to the core, i.e., h1, h2 � hc and in a
state of plane stress (σz = τxz = τyz = 0).

(ii) The in-plane stresses, σx, σy , and τxy , in the core are negligible.
(iii) In-plane displacements, u and v, are uniform through the thickness of

the face sheets and assume their mid-plane (centroidal) values.
(iv) The out-of-plane displacement, w, is independent of the z coordinate,

i.e., the thickness strain, εz = ∂w/∂z = 0.
(v) The in-plane displacements in the core, u and v, are linear in the thick-

ness coordinate, z.

Based on the assumptions (iv) and (v), the displacements of the core are

u = u0(x, y) + zψx(x, y), (3.30a)

v = v0(x, y) + zψy(x, y), (3.30b)

w = w0(x, y), (3.30c)

where u0, v0 and w0 are the displacements at the core mid-plane, see Fig-
ure 3.11, and ψx and ψy are the rotations of cross-sections originally perpen-
dicular to the x and y axes, respectively. From continuity of displacements at
the face/core interfaces (z = ±hc/2), and assumption (iii), the displacements
of the bottom and top face sheets become (Figure 3.11)
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Figure 3.11 Illustration of displacement u for sandwich element oriented along the
x axis.

u(bottom) = u0 − (hc + h1)

2
ψx, (3.31a)

u(top) = u0 + (hc + h2)

2
ψx, (3.31b)

v(bottom) = v0 − (hc + h1)

2
ψy, (3.31c)

v(top) = v0 + (hc + h2)

2
ψy, (3.31d)

w = w0, (3.31e)

where “bottom” and “top” refer to the lower and upper face sheets, respec-
tively.

Figure 3.12 shows a section of a sandwich plate cut in the x–z plane. The
core element ACFD represents a section of the core with the surfaces AC and
DF perpendicular to the x axis before deformation. After deformation, point
B displaces to assume a position at B′, and the vertical upwards displace-
ment of point B (originally at z = 0) is w, and that of the adjacent point E
assuming the new position E′ is w + (∂w/∂w)dx, where ∂w/∂x is the slope
of the panel along the x axis.

Similar to classical plate theory for homogeneous and isotropic materials
(Timoshenko and Woinowsky-Krieger, 1959), and classical laminated plate
theory (see above), first-order shear deformation theory assumes that plane
sections of the core, originally perpendicular to the plane of the sandwich
panel remain plane after deformation. According to this theory, however,
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Figure 3.12 Deformation of core element in the x–z plane.

the cross-sections may not necessarily remain perpendicular to the deformed
middle surface of the core, as shown in Figure 3.12. The slope of the mid-
dle surface, ∂w/∂x differs from the magnitude of the rotation of the cross-
section, |ψx|, and the difference (βx) constitutes the shear deformation. From
Figure 3.12, it is recognized that

βx = ∂w

∂x
− |ψx |, (3.32)
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where the rotation, ψx , as shown in Figure 3.12 is negative (ψx < 0) while
the slope is shown positive. Hence, the shear strain is

γxy = ψx + ∂w

∂x
. (3.33)

This analysis applies to all points at position x and hence implies that the
shear strain is uniform through the thickness of the core. Similar considera-
tions may be formulated for core sections perpendicular to the y axis.

The in-plane strains are obtained from Equations (3.2a, b and f) and (3.30)

εx = ε0
x + zκx, (3.34a)

εy = ε0
y + zκx, (3.34b)

γxy = γ 0
xy + zκxy, (3.34c)

where [ε0
x, ε

0
y, γ

0
xy] are the mid-core strains defined by

ε0
x = ∂u0

∂x
, (3.35a)

ε0
y = ∂v0

∂y
, (3.35b)

γ 0
xy = ∂u0

∂y
+ ∂v0

∂x
(3.35c)

and the mid-core curvatures [κx, κy, κxy] are

κx = ∂ψx

∂x
, (3.36a)

κy = ∂ψy

∂y
, (3.36b)

κxy = ∂ψx

∂y
+ ∂ψy

∂x
. (3.36c)

The out-of-plane shear strains, γyz and γxz, are defined in Equations (3.2d,
e) which, combined with Equations (3.30), yield

γxz = ψx + ∂w

∂x
, (3.37a)

γyz = ψy + ∂w

∂y
. (3.37b)
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The out-of-plane extensional strain in the core, εz, vanishes according to
assumption (iv).

Labeling the bottom and top face sheets by (1) and (2), their in-plane
strains become (Equations (3.36)),

Bottom

εx(1) = ε0
x − (hc + h1)

2
κx, (3.38a)

εy(1) = ε0
y − (hc + h1)

2
κy, (3.38b)

γxy(1) = γ 0
xy − (hc + h1)

2
κxy. (3.38c)

Top

εx(2) = ε0
x + (hc + h2)

2
κx, (3.38d)

εy(2) = ε0
y + (hc + h2)

2
κy, (3.38e)

γxy(2) = γ 0
xy + (hc + h2)

2
κxy. (3.38f)

The force and moment resultants for a sandwich element (Figure 3.13) are
obtained by integrating the stresses over the element thickness,

(Nx,Ny,Nxy) =
∫ −hc/2

−(hc/2+h1)

(σx(1), σy(1), τxy(1))dz

+
∫ hc/2+h2

hc/2
(σx(2), σy(2), τxy(2))dz, (3.39a)

(Mx,My,Mxy) =
∫ −hc/2

−(hc/2+h1)

(σx(1), σy(1), τxy(1))zdz

+
∫ hc/2+h2

hc/2
(σx(2), σy(2), τxy(2))zdz, (3.39b)

(Qx,Qy) =
∫ hc/2

−hc/2
(τxz, τyz)dz. (3.39c)

Notice that the in-plane normal and in-plane shear stresses in the core are
neglected by virtue of assumption (ii).
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Figure 3.13 Force and moment resultants for a sandwich element.

The in-plane stresses in each ply (k) of the face sheets are given by Equa-
tion (3.15) ⎡

⎢⎣
σx(i)

σy(i)

τxy(i)

⎤
⎥⎦

k

=
⎡
⎢⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎥⎦

k

⎡
⎢⎣

εx(i)

εy(i)

γxy(i)

⎤
⎥⎦ , (3.40)

where k is the ply index (Figure 3.1) and i = 1 for the lower face, and i = 2
for the upper face. The matrix in Equation (3.40) is the transformed plane
stress stiffness matrix as defined in Appendix A.

Substitution of the in-plane stresses given by Equations (3.40) into the
expressions for the force and moment resultants (3.39a, b) yields⎡
⎢⎣

Nx

Ny

Nxy

⎤
⎥⎦ =

⎡
⎢⎣

A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤
⎥⎦
⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ +

⎡
⎢⎣

B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤
⎥⎦
⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ ,

(3.41)

⎡
⎢⎣

Mx

My

Mxy

⎤
⎥⎦ =

⎡
⎢⎣

C11 C12 C16

C12 C22 C26

C16 C26 C66

⎤
⎥⎦
⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ +

⎡
⎢⎣

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤
⎥⎦
⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ ,

(3.42)
where

Aij = Aij (1) + Aij (2), (3.43a)
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Bij = (hc + h2)

2
Aij (2) − (hc + h1)

2
Aij (1), (3.43b)

Cij = Cij (1) + Cij (2), (3.43c)

Dij = (hc + h2)

2
Cij (2) − (hc + h1)

2
Cij (1), (3.43d)

with

Aij (1), Cij (1) =
∫ −hc/2

−(hc/2+h1)

Q̄ij (1, z)dz (bottom face), (3.44a)

Aij (2), Cij (2) =
∫ hc/2+h2

hc/2
Q̄ij (1, z)dz (top face). (3.44b)

It may be shown that a symmetric sandwich plate, i.e., where the top and
bottom faces are laid-up such that the mid-plane (z = 0) of the sandwich
panel is a symmetry (mirror) plane; for example, the bottom face (#1) is a
[0/90] laminate and the top face (#2) is a [90/0] laminate, fulfills the follow-
ing equations:

Aij (1) = Aij (2), (3.45a)

Cij (1) = −Cij (2). (3.45b)

As a result, Equations (3.45) in (3.43) give

Aij = 2Aij (2), (3.46a)

Bij = 0 = Cij , (3.46b)

Dij = (hc + hf )Cij (2), (3.46c)

where hf = h1 = h2, is the face thickness.
Consequently, for such a panel the constitutive Equations (3.41) and

(3.42) uncouple and become

⎡
⎢⎣

Nx

Ny

Nxy

⎤
⎥⎦ =

⎡
⎢⎣

A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤
⎥⎦
⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ , (3.47)

⎡
⎢⎣

Mx

My

Mxy

⎤
⎥⎦ =

⎡
⎢⎣

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤
⎥⎦
⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ . (3.48)
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Another simplification of the analysis is obtained by treating the face sheets
as homogeneous materials with average stiffnesses

Q̄ij (1) = Aij (1)/h1, (3.49a)

Q̄ij (2) = Aij (2)/h2. (3.49b)

For this case, the integrals in Equations (3.44) become

Cij (1) = −Aij (1)

2
(hc + h1), (3.50a)

Cij (2) = Aij (2)

2
(hc + h2). (3.50b)

Substitution in Equations (3.43) gives

Aij = Aij (1) + Aij (2), (3.51a)

Bij = (hc + h2)

2
Aij (2) − (hc + h1)

2
Aij (1), (3.51b)

Cij = Bij , (3.51c)

Dij =
(

hc + h1

2

)2

Aij (2) +
(

hc + h2

2

)2

Aij (2). (3.51d)

For a symmetric sandwich with homogeneous faces: Aij (1) = Aij (2) =
Q̄ij (f )hf , and h1 = h2 = hf , which leads to

Aij = 2Aij (2) = 2Q̄ij (f )hf , (3.52a)

Bij = Cij = 0, (3.52b)

Dij = 2

(
hc + hf

2

)2

Q̄ij (f )hf . (3.52c)

The expression for the flexural stiffness, Equation (3.52c), is the plate
equivalent to the beam equation (1.8) for a sandwich beam with thin faces.

For calculation of the transverse shear resultants, Qx and Qy , defined in
Equation (3.39c) and shown in Figure 3.13, the shear stresses in the core, τxz

and τyz, are given in terms of the shear strains, γxz and γyz by

τxz = Gxzγxz, (3.53a)

τyz = Gyzγyz, (3.53b)

where Gxz and Gyz are the transverse shear moduli of the core.
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In shear deformation theory for homogeneous plates, it is customary to
use a correction factor (k), or correction factors (k1 and k2) for the trans-
verse shear strains as introduced by Reissner (1945), Mindlin (1951), and
Chow (1971), although a single factor is most commonly used for both trans-
verse shear strains. The factor k is introduced as a multiplicative parameter
in the constitutive relations between transverse shear forces and transverse
shear strains (see, e.g., Whitney, 1987). The need for a correction factor in
first-order theory for homogeneous plates originates from the fact that the
transverse shear strains and shear stresses are uniform through the thickness
instead of the classical parabolic shear stress distribution with zero shear
stresses on the surfaces of the plate. The correction factor k is determined
from exact solutions for the shear stresses at the center of the plate in terms
of the transverse shear forces or from the total strain energy due to trans-
verse shear forces (Whitney, 1987). Whitney (1972) determined two correc-
tion factors (k1 and k2) for the transverse shear strains in a sandwich panel
by fitting the first-order shear results to an exact solution by Pagano (1970a).
Most commonly, however, shear correction factors are not used for sand-
wich panels since the core shear stress indeed is fairly constant throughout
the thickness of the core (see, e.g., Section 2.2). Furthermore, the faces are
assumed free from shear stresses (assumption (i)). With no shear correction
factor, integration of the (constant) shear stress given by Equations (3.37)
into (3.53) over the core thickness (Equation (3.39c)) yields

Qx = hcGxz

(
ψx + ∂w

∂x

)
, (3.54a)

Qy = hcGyz

(
ψy + ∂w

∂y

)
. (3.54b)

3.2.1 Alternative Form of the Constitutive Equations for a
Sandwich Plate Element

The force and moment resultants given by Equations (3.41) and (3.42) may
be written in compressed form as

[N] = [N][ε0] + [B][κ], (3.55a)

[M] = [C][ε0] + [D][κ], (3.55b)

where [N] and [M] represent the 3×1 force and moment resultants, [A], [B],
[C] and [D] are the 3 × 3 elastic stiffness matrices, and [ε0] and [κ] are the
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3 × 1 core mid-plane strains and curvatures, respectively. Equations (3.55)
may also be written as [

N

M

]
=

[
A B

C D

][
ε0

κ

]
, (3.56)

where the ABCD matrix is of dimension 6 × 6.
Equations (3.56) are convenient when force and moment resultants are

to be determined from known mid-core strains and curvatures. Often it is
desirable to express the core mid-core strains and curvatures in terms of force
and moment resultants, and this is achieved by inversion of the 6×6 ABCD

matrix in Equations (3.56)[
ε0

κ

]
=

[
a b

c d

][
N

M

]
, (3.57)

where expressions for the 3 × 3 compliance matrices [a], [b], [c] and [d] in
terms of [A], [B], [C] and [D] are provided in Appendix B.

3.2.2 Equilibrium Equations

The equilibrium equations for force and moment resultants are presented by
Whitney (1987). These equations are

∂Nx

∂x
+ ∂Nxy

∂y
= 0, (3.58a)

∂Nxy

∂x
+ ∂Ny

∂y
= 0, (3.58b)

∂Mx

∂x
+ ∂Mxy

∂y
− Qx = 0, (3.58c)

∂Mxy

∂x
+ ∂My

∂y
− Qy = 0, (3.58d)

∂Qx

∂x
+ ∂Qy

∂y
+ Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+ Ny

∂2w

∂y2
+ q = 0, (3.58e)

with
q = σz(h/2) − σz(−h/2), (3.58f)

where h is the thickness of the sandwich plate.
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Figure 3.14 Definition of normal and tangential directions for a rectangular panel.

3.2.3 Boundary Conditions for a Rectangular Panel

We will consider a rectangular panel with the x and y coordinate axes parallel
to the edges of the panel such as shown in Figure 3.14. The proper boundary
conditions are necessary to guarantee achievement of a unique solution of the
governing equations. Such conditions may be achieved by inspection of the
problem which will reveal some of the more obvious boundary conditions.
Other boundary conditions may be obtained by applying energy principles
and calculus of variations (Whitney, 1987). Boundary conditions for rectan-
gular plates refer to the normal and tangential in-plane directions as defined
in Figure 3.14.

Boundary conditions specified for the present shear deformation theory
requires specification of displacements, forces, and moments with respect to
the normal and tangential directions of the panel (Figure 3.14). Five bound-
ary conditions are generally required.

Simply-Supported

Figure 3.15 illustrates simply supported conditions for the edge x = 0, i.e.,
the deflection, w, is zero along the edge and at the same time, the edge can
rotate freely with respect to a line along the edge (x = 0), i.e., Mx = 0 along
this edge.
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Figure 3.15 Illustration of simply-supported boundary conditions at x = 0.

Furthermore, the edge is assumed not to transfer normal and shear forces
and prohibit rotations of the panel along the y axis, i.e., Nx = Nxy = 0, and
the rotations ψy = 0 along this edge. In summary, we have

w(0, y) = Mx(0, y) = Nx(0, y) = Nxy(0, y) = ψy(0, y) = 0. (3.59)

If all edges are simply supported, similar conditions apply for the edges x =
a, y = 0, and y = b.

Hinged-Free Perpendicular to the Edge

If the edge, x = 0, is moment-free (hinged) and free to move in a direction
normal to the edge (here along the x axis), the following conditions apply

Nx(0, y) = v0(0, y) = Mx(0, y) = ψy(0, y) = w(0, y) = 0. (3.60)

Hinged-Free Parallel to the Edge

If the edge, x = 0, is hinged and free to move tangentially, the following
conditions apply:

u0(0, y) = Nxy(0, y) = Mx(0, y) = ψy(0, y) = w(0, y) = 0. (3.61)

Clamped

If the edge, x = 0, is clamped or “built-in”, the deflection, w, along the edge
is zero and the rotations, ψx and ψy , as well as mid-core displacements u0

and v0 (Equations (3.30)), are zero, i.e.

w(0, y) = ψx(0, y) = ψy(0, y) = u0(0, y) = v0(0, y) = 0. (3.62)
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Free Edge

If the edge, x = 0, is completely unconstrained, there are no resulting normal
and shear forces in the plane, no bending and twisting moments, and no
transverse shear force, i.e.,

Nx(0, y) = Nxy(0, y) = Mx(0, y) = Mxy(0, y) = Qx(0, y) = 0. (3.63)

3.3 Analysis of a Transversely Loaded Sandwich Plate

Sandwich panels are common structural elements in sandwich constructions
such as boat hulls and containers. Analysis of flat sandwich panels of rec-
tangular shape have been conducted by several investigators, e.g. Yen et al.
(1951), Reissner (1948), Hoff (1950), and Riber (1997), and both linear small
deflection analysis and geometrical nonlinear behavior have been addressed.
In this section we will present analysis of the small deflection response of
simply supported rectangular sandwich panels under transverse loading.

The strain-displacement relations for the core are those of Equa-
tions (3.30):

u = u0 + zψx, (3.64a)

v = v0 + zψy, (3.64b)

w = w0. (3.64c)

The face displacements are specified in Equations (3.31). The sandwich
panel is assumed to be of symmetric construction and the face sheets are
treated as homogeneous specially orthotropic materials. Hence, the consti-
tutive relations for the force and moment resultants are given by (Equa-
tions (3.47) and (3.48))⎡

⎢⎣
Nx

Ny

Nxy

⎤
⎥⎦ =

⎡
⎢⎣

A11 A12 0

A12 A22 A26

0 0 A66

⎤
⎥⎦
⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ , (3.65)

⎡
⎢⎣

Mx

My

Mxy

⎤
⎥⎦ =

⎡
⎢⎣

D11 D12 0

D12 D22 0

0 0 D66

⎤
⎥⎦
⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ , (3.66)

where, according to Equations (3.52),
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Aij = 2Aij (f ), (3.67a)

Dij = 2

(
hc + hf

2

)2

Aij (f ). (3.67b)

For transverse shear loading, the constitutive equations (3.54) read

Qx = hcGxz

(
ψx + ∂w

∂x

)
, (3.68a)

Qy = hcGyz

(
ψy + ∂w

∂y

)
. (3.68b)

Substitution of the constitutive equations (3.65), (3.66) and (3.68) into the
equilibrium equations (3.58) yields the following set of governing differen-
tial equations valid for symmetric sandwich panels with specially orthotropic
or isotropic face sheets:

A11
∂u0

∂x2
+ (A12 + A66)

∂2v0

∂x∂y
+ A66

∂2u0

∂y2
= 0, (3.69a)

A22
∂2v0

∂y2
+ (A12 + A66)

∂2u0

∂x∂y
+ A66

∂2v0

∂x2
= 0, (3.69b)

D11
∂2ψx

∂x2
+ (D12 + D66)

∂2ψy

∂x∂y
+ D66

∂2ψx

∂y2
− hcGxz

(
ψx + ∂w

∂x

)
= 0,

(3.69c)

D22
∂2ψy

∂y2
+ (D12 + D66)

∂2ψx

∂x∂y
+ D66

∂2ψy

∂x2
− hcGyz

(
ψy + ∂w

∂y

)
= 0,

(3.69d)

hcGxz

(
∂ψx

∂x
+ ∂2w

∂x2

)
+ HcGyz

(
∂ψy

∂y
+ ∂2w

∂y2

)
+ q = 0. (3.69e)

We will specifically apply these equations to a transversely loaded sand-
wich panel of planar dimension a and b with the edges hinged and uncon-
strained parallel to the edges, see Figure 3.16. Specifically, the conditions
stipulated for the edge defined by x = 0 in Equation (3.61) apply to all
edges.

The transverse loading is most commonly represented by a double Fourier
series (see, e.g., Whitney, 1987)

q(x, y) =
∞∑

m=1

∞∑
n=1

qmn sin
mπx

a
sin

nπy

b
. (3.70)
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Figure 3.16 Rectangular sandwich panel under transverse loading.

The Fourier coefficients, qmn, are determined from the actual load distrib-
ution, q(x, y), using

qmn = 4

ab

∫ a

0

∫ b

0
q(x, y) sin

mπx

a
sin

nπy

b
dxdy. (3.71)

A common loading case studied is uniform pressure over the entire panel
surface, q = q0 = constant. For this case, Equation (3.71) yields

qmn = 16q0

π2mn
, m, n odd, (3.72a)

qmn = 0, m, n even. (3.72b)

Another important case is the rectangular area of uniform pressure shown in
Figure 3.17. For this type of loading, Equation (3.71) yields

qmn = 16q0

π2mn
sin

mπξ

a
sin

mπη

b
sin

mπc

2a
sin

nπd

2b
, (3.73)

where ξ and η are the x and y coordinates of the center of the rectangle and c

and d are the lengths of the rectangle along the x and y axes, see Figure 3.17.

A concentrated load, P , applied at (x, y) = (ξ, η) may be represented by

qmn = 4P

ab
sin

mπξ

a
sin

nπη

b
. (3.74)

By increasing the number of terms in the series, Equation (3.70), the exact
solution will be approached asymptotically. The number of terms required
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Figure 3.17 Rectangular panel loaded with uniform load over a rectangular region
of the panel.

for a converged solution of the quantity of interest, i.e., deflection, strain or
stress, must be examined for each case.

The analysis of a transversely loaded panels will here assume a simple
one term case, i.e. m = n = 1, i.e. in Equation (3.70),

q(x, y) = q0 sin
πx

a
sin

πy

b
. (3.75)

Boundary conditions for rectangular panels are discussed in Section 3.2.3. In
particular, the hinged-free tangential conditions defined in Equation (3.61)
are assumed here. For the edges parallel to the y axis, x = 0 and a (Fig-
ure 3.16), the following conditions apply:

u0 = 0, (3.76a)

Nxy = A66

(
∂u0

∂y
+ ∂v0

∂x

)
= 0, (3.76b)

w = 0, (3.76c)

ψy = 0, (3.76d)

Mx = D11
∂ψx

∂x
+ D12

∂ψy

∂y
= 0. (3.76e)
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For the edges parallel to the x axis, y = 0 and b, the conditions are

v0 = 0, (3.77a)

Nxy = A66

(
∂u0

∂y
+ ∂v0

∂x

)
= 0, (3.77b)

w = 0, (3.77c)

ψx = 0, (3.77d)

My = D12
∂ψx

∂x
+ D22

∂ψy

∂y
= 0. (3.77e)

A solution that satisfies the boundary conditions (3.76) and (3.77) consistent
with the loading function, Equation (3.75), is given by

u0 = A sin
πx

a
cos

πy

b
, (3.78a)

v0 = B cos
πx

a
sin

πy

b
, (3.78b)

ψx = C cos
πx

a
sin

πy

b
, (3.78c)

ψy = D sin
πx

a
cos

πy

b
, (3.78d)

w = E sin
πx

a
sin

πy

b
. (3.78e)

Substitution of Equations (3.78) into the governing equations (3.69) yields
five equations conveniently expressed into the following matrix equation:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

H11 H12 0 0 0

H12 H22 0 0 0

0 0 H33 H34 H35

0 0 H34 H44 H45

0 0 H35 H45 H55

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A

B

C

D

E

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

q0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.79)

The elements Hij of the symmetric 5 × 5 matrix are given by

H11 = A11

a2
+ A66

b2
, (3.80a)

H12 = A12 + A66

ab
, (3.80b)
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H22 = A22

b2
+ A66

a2
, (3.80c)

H33 = π2D11

a2
+ π2D66

b2
+ hcGxz, (3.80d)

H34 = π(D12 + D66)

ab
, (3.80e)

H35 = πhcGxz

a
, (3.80f)

H44 = π2D22

b2
+ π2D66

a2
+ hcGyz, (3.80g)

H45 = πhcGyz

b
, (3.80h)

H55 = π2hc

(
Gxz

a2
+ Gyz

b2

)
. (3.80i)

Inversion of the H matrix, Equation (3.79), provides the constants A, B, C,
D and E. The plate deflection is given by (Equation (3.78e))

w = E sin
πx

a
sin

πy

b
, (3.81a)

with
E = h33q0, (3.81b)

where

h33 = H33H44 − H 2
34

det[Hsub] . (3.82)

[Hsub] represents the following 3×3 submatrix defined by the last three rows
and columns of the full matrix of Equation (3.79)

[Hsub] =
⎡
⎢⎣

H33H34H35

H34H44H45

H35H45H55

⎤
⎥⎦ . (3.83)

The maximum deflection, wmax, occurs at the panel center (x = a/2, y =
b/2) and is given by

wmax = E = h33q0. (3.84)

A square (a = b) sandwich panel with unidirectional composite face sheets
over an isotropic foam core is considered. The face sheets are assumed to
consist of carbon/epoxy with the following mechanical properties:
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E1 = 125 GPa, E2 = 5 GPa,

ν12 = 0.25, G12 = 2.5 GPa.

The core considered is a H100 PVC foam with a shear modulus, G =
60 MPa. The thicknesses of the face sheets and core are hf = 2 mm and
hc = 16 mm. Calculations of the deflection, wmax, were conducted over a
range of panel sizes. The side length, a, of the square panel was varied from
0.1 to 1.2 m. The bending stiffness elements Dij were calculated from Equa-
tion (3.52c) which specifically applies to a symmetric sandwich with thin
homogeneous face sheets.

Figure 3.18 displays the maximum deflection vs. the panel size, see the
curve labeled SDPT (shear deformation plate theory). Also shown is the so-
lution given by classical laminated plate theory (CLPT) (Whitney, 1987),

wmax = q0a
4

π4D(m = n = 1)
, (3.85)

where D(m = n = 1) is a bending stiffness term given by

D(m = n = 1) = D11 + 2(D12 + 2D66) + D22. (3.86)

As discussed earlier, the CLPT formulation does not accommodate interlam-
inar shear deformation. Figure 3.18 shows that the CLPT results provide a
lower bound to the deflection of the plate.

Figure 3.18 shows that the deflection of small plates with a thick core
are quite substantially influenced by transverse shear deformation, while the
deflection of larger panels is less affected by this mode of deformation and
may be analyzed using CLPT.

3.4 Analysis of Sandwich Plate Twist Test

Tsai (1965) developed a plate twist test to determine the engineering elastic
constants of orthotropic plates. The test utilized a square panel loaded at one
corner and supported at the other corners. The panel response was analyzed
using classical orthotropic plate theory (Lekhnitskii, 1968). By twisting a 0◦
panel and loading beams cut from the panel in bending, Tsai (1965) was able
to determine all five elastic compliance constraints. Mure (1986) developed
a two-point loading configuration of the plate twist test in order to deter-
mine the twisting stiffness (D66) of corrugated core cardboard panels. Vinson



72 3 Classical and First-Order Shear Deformation Analysis of Sandwich Plates

Figure 3.18 Maximum deflection of a square sandwich plate under transverse pres-
sure load. CLPT and SDPT refer to classical laminated plate theory and shear de-
formation plate theory.

(1999) examined the test principle analytically in an effort to determine the
in-plane shear strength of the face sheets, face/core adhesive or core, what-
ever constituent was the weakest. The plate twist test is also used to measure
the in-plane shear modulus of plywood panels according to ASTM Standard
D3044 (2000).

3.4.1 Classical Laminated Plate Theory Analysis

Figure 3.19 shows the two-point twist loading of a sandwich plate consid-
ered here. In this configuration, two diagonally opposite corners are loaded
downwards by concentrated forces of magnitude P/2, while the other two
corners are supported.

The sandwich plate is assumed to consist of identical isotropic or specially
orthotropic faces. According to CLPT, the slopes of the middle surface are
assumed to coincide (in magnitude) with the rotations of the cross-sections.
Notice that this theory neglects transverse shear deformation. The following
expressions for the plate curvatures defined in Equations (3.12) apply:

κx = −∂2w

∂x2
, (3.87a)
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Figure 3.19 Illustration of loading and support conditions for the two-point sand-
wich plate twist test.

κy = −∂2w

∂y2
, (3.87b)

κxy = −2
∂2w

∂y∂x
. (3.87c)

For a symmetric sandwich consisting of isotropic or specially orthotropic ho-
mogeneous face sheets, the pure twisting response is expressed by Equation
(3.19)

Mxy = D66κxy, (3.88)

where the twisting stiffnesses, D66, is given by Equation (3.20c) applied to a
symmetric sandwich

D66 = (G12)f hf

(
2h2

f

3
+ 2h2

c

2
+ hf hc

)
+ (G12)ch

3
c

12
. (3.89)

where (G12)f and (G12)c are the in-plane shear moduli of the face and core
and hf and hc are the face and core thicknesses.

The twist loading shown in Figure 3.19 produces a twisting moment given
by Timoshenko and Woinowsky-Krieger (1959),

Mxy = P/4. (3.90)

A combination of Equations (3.88) and (3.90) yields

κxy = −2
∂2w

∂x∂y
= P

4D66
. (3.91)
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The solution for the plate deflection representing a state of pure uniform twist
curvature is, according to Lekhnitskii (1968), a second-order polynomial in
x and y

w(x, y) = c0 + c1x + c2y + c3xy. (3.92)

The boundary conditions for the panel are (Figure 3.19),

w(a/2,−b/2) = w(−a/2, b/2) = 0, (3.93a)

∂w

∂x
(0, 0) = ∂w

∂y
(0, 0) = 0. (3.93b)

Equations (3.91)–(3.93) yield

c0 = ab

4
c5, (3.94a)

c1 = c2 = 0, (3.94b)

c3 = −P

8D66
. (3.94c)

Hence, the panel deflection becomes

w(x, y) = −P

8D66

(
ab

4
+ xy

)
. (3.95)

The deflection of the loaded corners is given by δ = |w(a/2, b/2)|. Equa-
tion (3.95) yields

δ = Pab

16D66
. (3.96)

The plate compliance is given by C = δ/P . Hence,

C = ab

16D66
. (3.97)

Measuring the compliance of the twisted plate should thus provide a
means for determination of the twist stiffness D66. It is noted that the only
material parameters entering the expression for D66, Equation (3.89), are
the in-plane shear moduli for the faces and the core, (G12)f and (G12)c. In
most cases, the contribution to D66 from the core (the last term in Equa-
tion (3.89)) can be neglected because soft sandwich cores typically have
(G12)c � (G12)f . For such a case, the twist test should provide a means
to determine the in-plane shear modulus of the face sheets. As will be dis-
cussed in the next section, however, low modulus cores are susceptible to
transverse shear deformation which will elevate the plate compliance.
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3.4.2 Finite Element Analysis

It was pointed out that the compliance expression, Equation (3.97), does not
include contributions due to transverse shear deformation. It is well known
that shear deformation may influence the response of sandwich panels quite
significantly, see Section 3.3. Furthermore, application of localized load to
a sandwich panel is known to cause indentation deformation (Frostig et al.,
1992; Thomsen, 1977). In order to further analyze, a sandwich panel under
twist loading, finite element analysis was conducted by Aviles et al. (2009).
A sandwich panel with a 25 mm thick foam core and 1 mm thick aluminum
faces (E = 70 GPa, ν = 0.3) was examined. The in-plane panel dimensions
were 30.5 × 30.5 (cm). To reduce indentation deformation at load introduc-
tion and support points, square 10 × 10 (mm) areas were introduced at the
contact regions at the corners, where the vertical displacement of the nodes
was constrained to be uniform. Since sandwich panels are prone to trans-
verse shear deformation in the core, a range of core shear moduli from 11.5
to 758 MPa was examined. The face sheets and core were modeled using
the finite element code ANSYS (2006). All panels utilized the same mesh
consisting of 3D eight-noded solid brick elements (SOLID 45).

Figure 3.20 presents the compliance of the sandwich panels calculated
from FEA and CLPT vs. core-to-face shear modulus ratio (Gc/Gf ). The
compliance predicted by CLPT is fairly constant, since D66 is very little in-
fluenced by variations in Gc. The compliance predicted by FEA, on the other
hand, decreases rapidly with increased core stiffness, until a plateau region
is reached which coincides with the CLPT prediction. Convergence occurs
for modulus ratios, Gc/Gf > 14. The large compliance for core materials
with small core shear modulus is attributed to transverse shear deformation
of the core (Aviles et al., 2009).

The results show that the compliance is extremely sensitive to changes
in core shear modulus, Gc, when Gc is below about 100 MPa. Notice that
several commercial PVC cores have shear modulus in this range (Table 1.3).
Further, CLPT provides a very low estimate of the compliance unless the
core is stiff. Thus, in general, the plate twist test is not a viable alternative
to direct shear testing of the face sheets (Chapter 2). Further information on
this test is provided in Aviles et al. (2009) and in Section 3.5.2.
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Figure 3.20 Compliance vs. core-to-face shear modulus ratio (Gc/Gf ) for a 30.5×
30.5 (cm) sandwich panel. Gf = 26.9 GPa.

3.5 Testing of Sandwich Panels

3.5.1 Pressure Loading of a Sandwich Plate

Testing of sandwich panels under distributed loading has been conducted by
several investigators. The test is quite complex since it involves application
of pressure over a quite large area in a controlled manner, while the edge
conditions of the panel should be representative for those assumed in the
analysis. Most reported test set-ups involve a pressurized water-filled rubber
bladder to distribute the load over the panel surface in a uniform and con-
trolled manner. The pressure in the bladder is controlled in order to achieve
an accurate measure of the transverse load intensity, q(x, y). Such an ap-
proach has been pursued by Rothschild et al. (1992), Bau-Madsen et al.
(1992), Wennhage and Zenkert (1998), and Hayman et al. (1998).

Wennhage and Zenkert (1998) designed a test frame that was fitted in a
large compression testing machine for testing of 0.85 × 0.85 (m) sandwich
panels with a 25 mm thick H100 PVC foam core and 1 mm thick aluminum
alloy faces (E = 70 GPa). The core mechanical properties are listed in Ta-
ble 3.2. The faces were bonded to the core using a polyurethane adhesive.
The panels were instrumented with four “shear plugs” consisting of 3 cm di-
ameter cylindrical plugs of H100 core with a properly calibrated strain gage
mounted at 45◦ to the cylinder axis (Moyer et al., 1992). The upper face of
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Figure 3.21 Location of surface mounted strain gages on sandwich panel (open
circles) and core shear plugs (filled circles). The dotted line indicates line of support.

Table 3.1 Mechanical properties for H100 PVC foam core.

Shear modulus Shear yield strength Compressive strength

G τy σc

38 MPa 1.4 MPa 1.7 MPa

the sandwich panel was instrumented with ten 0◦/90◦ strain gage rosettes,
see the outline in Figure 3.21.

Notice that all strain gages, except for the one in the left corner, where the
support lines intersect, were placed along the horizontal and vertical center
lines representing symmetries of the panel. Figure 3.22 illustrates schemati-
cally the compression test procedure using the bladder system.

The testing rig consists of an upper frame made from rigid steel I beams
with semi-circular rods of 20 mm diameter bolted to the lower surface of the
I beams, Figure 3.22. The lower frame was made from rigid steel C beams.
The primary purpose of the lower frame was to constrain the in-plane ex-
pansion of the rubber bladder. The rubber bladder was made from 2 mm
thick EPDM rubber. It was filled with water and sealed prior to testing. The
rounded steel bars are intended to provide simply supported edge boundary
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Figure 3.22 Principle of pressure loading of sandwich panel. Cross-sectional view
in the x–z plane.

Figure 3.23 Top view of test panel and support structure.

conditions (Equation (3.59)) along the periphery of the panel, see the top
view of the panel and the upper and lower frames shown in Figure 3.23.

In addition to the strain gage instrumentation (Figure 3.21), six displace-
ment gages were attached to the upper loading platen of the test frame to
measure the out-of-plane deflection of the panel along the symmetry lines
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(x = 0.4 and y = 0.4 m, Figure 3.21). The applied pressure loading was se-
lected to maintain linear-elastic stress-strain behavior of all the constituents
with a maximum stress less than or equal to 60% of the corresponding yield
stress.

Test Results

The compressive load was increased to a maximum value of 50 kN, corre-
sponding to a distributed pressure of 78 kPa over the 0.8 × 0.8 (m) test area.
Such a pressure is not expected to cause compressive yielding of the H100
PVC foam core, see the material properties listed in Table 3.2.

It was found that the panel initially deviated somewhat from the ideal
flat shape, i.e. it was slightly warped. All out-of-plane displacements read-
ings were therefore corrected for deviation from flatness by subtracting the
initial displacements from the actual readings. Upon further loading, the
panels made full contact with the upper support fixture (Figure 3.22). Fig-
ure 3.24 shows experimental displacement data collected along symmetry
lines (x = 0.4 and y = 0.4 m, Figure 3.21). Figure 3.24 also shows predic-
tion of deflections from first-order sandwich plate analysis, see Section 3.5,
using the loading function given by Equations (3.72) and simply supported
boundary conditions (Equation (3.59)).

The experimental data reveal approximate symmetry with respect to the
x and y directions, and there is good agreement between prediction and ex-
perimental data. Figure 3.25 shows the core shear stress results determined
from the “shear plugs” embedded in the core. The shear stress is calculated
from the measured shear strains using

τxz = Gcγxz. (3.98)

The predictions using sandwich plate theory analysis are overall in good
agreement with the experimental data.

3.5.2 Plate Twist Testing

A test fixture for twist testing of sandwich panels was designed to repre-
sent the two-point configuration sketched in Figure 3.19. In this test con-
figuration, two opposite corners are supported and two opposite corners are
loaded. The fixture was designed for square panels with size up to about
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Figure 3.24 Measured and predicted plate deflections along symmetry lines (x =
0.4 m, y = 0.4 m).

30 × 30 (cm). Figure 3.26 shows a photograph of the test fixture with a
slightly loaded sandwich panel. The fixture consists of a 30.5 × 30.5 × 1.28
(cm) aluminum plate bolted to the base of the test frame. To introduce load,
a 46.5 cm long steel bar of cross-section 2.54 × 3.56 (cm) was attached to
the load cell in the moving cross-head of the test machine. To allow testing
of different size panels, multiple holes for attachment of support and loading
pins were drilled in the bottom aluminum plate and in the steel bar, the outer-
most at a distance of 40.5 cm. The diagonally aligned holes in the aluminum
base plate and longitudinal holes in the steel bar were spaced at increments
of 1.27 cm. For loading and support of the panel at the desired points, steel
pins of 9.5 mm diameter with hemispherical ends were inserted in the appro-
priate holes in the bottom plate and loading bar. The radius of the loading
and support pin surfaces in contact with the panel was 4.75 mm.

A total of five square 30.5 × 30.5 (cm) (nominal dimensions) sandwich
panels were prepared using aluminum face sheets and H80, H100, and H200
PVC foam cores. Panel dimensions and thicknesses of the constituents pan-
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Figure 3.25 Core shear stress along symmetry section of the panel (y = 0.4 m).

Figure 3.26 Sandwich plate twist test fixture.

els are listed in Table 3.3. The face sheets were nominally 1.5 and 2.25 mm
thick labeled “thin” and “thick”. The nominal core thickness was 12.7 mm.
Table 3.2 lists the twisting stiffness, D66, for each panel calculated from
CLPT (Equation (3.89)) based on nominal face and core thicknesses.
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Table 3.2 Dimensions and twist stiffness (D66) of sandwich panels.

Panel Core hf (mm) hc (mm) h (mm) a (cm) D66 (kNm)

H80/Thin H80 1.50 12.5 16.4 30.6 4.09
H100/Thick1 H100 2.26 12.8 17.6 30.6 6.90
H100/Thick2 H100 2.25 12.5 15.6 30.6 7.00
H200/Thin H200 1.50 12.5 17.1 30.2 4.10
H200/Thick H200 2.24 12.4 17.4 30.6 6.83

Figure 3.27 Load vs. deflection graphs for sandwich test panels.

Prior to testing of the sandwich panels, the machine/fixture compliance
was determined by loading the fixture without a sandwich panel and mea-
suring load and displacement. For testing a sandwich panel, the panel was
inserted in the fixture, and adjusted so that the edges were aligned with the
edges of the base plate, with the same amount of overhang at each edge.
The deflection of the panel was measured using the cross-head displace-
ment. The loading area was 27 × 27 (cm) in all tests. This corresponds to
a nominal overhang length of about 1.75 cm. During testing of a sandwich
panel, the first loading cycle revealed a stiffening nonlinear response at small
loads. This was the result of local indentation deformation at load introduc-
tion and support locations, and slack in the fixture. Prior to the actual panel
test, each panel was loaded to the maximum, and unloaded to about 500 N.
This loading-unloading cycle was repeated a number of times until the load-
ing and unloading load vs. displacement curves virtually coincided.

Figure 3.27 shows the experimental load vs. displacement curves for all
the test panels (Table 3.3). Over the range of load levels from 0–2 kN, the
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Table 3.3 Measured (Exp.), and CLPT and FEA predicted compliance values of
sandwich panels.

Panel C (µm/N)

Exp. CLPT FEA

H80/Thin 4.26 1.42 2.96
H100/Thick 3.01 0.85 1.91
H200/Thin 2.51 1.42 1.75
H200/Thick 1.82 0.85 1.27

response is linear and the loading and unloading curves virtually coincide.
As expected, increased core density and face thickness result in a stiffer re-
sponse.

After completion of the twist testing, the compliance of each specimen
was determined from the load-displacement curves shown in Figure 3.27.
Finite element analysis (FEA) of the actual test panels was conducted as
explained in Section 3.4.2. The FEA was based on the nominal plate di-
mensions and an overhang of 15 mm. In all cases square 10 × 10 (mm)
constrained areas were used at the load introduction and support regions.

Table 3.3 summarizes compliance values determined experimentally
(Exp.) (corrected for machine compliance) and compliance values calculated
from CLPT and FEA. The results in Table 3.3 reveal that CLPT substantially
underestimates the compliance of the tested panels. The experimental results
confirm the earlier assessment that CLPT is not accurate for analyzing the
sandwich plate twist test, at least not for the sandwich panels considered
here. The finite element predictions are much more close to the measured
values, although the measured compliance values exceed the FEA predic-
tions. The difference between FEA predictions and measured compliance
value is attributed to more excessive indentation at load introduction and
support points than accounted for in the finite element analysis.
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