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Preface

The need for a text focusing on the structural behavior and failure character-
istics of sandwich materials and structures has emerged during recent years
as a consequence of the increased acceptance of this structural concept in
several weight critical applications. Much new research in this subject area
has been reported and a new journal devoted to this specific topic has been
successfully launched.1 In addition to the more or less traditional topics, this
book covers two topics of sandwich structures which seem not to have been
systematically presented thus far in the existing book literature, namely the
failure mechanisms (face/core debonding, core cracking, etc.) and the asso-
ciated fracture mechanics treatment and the benchmark elasticity solutions
for several classical mechanics problems (sandwich plate under transverse
loading, sandwich shell under internal pressure, etc.).

The subject matter is laid out in the following way: Chapter 1 defines
the concept of structural sandwich, highlights some important structural ap-
plications, and introduces some of the more common core concepts. By
simple analysis of sandwich beams, important stiffnesses and strengths of
the constituent faces and core are identified. Typical face and core material
properties are listed. Chapter 2 describes test methods for determination of
mechanical properties of face and core. Chapter 3 provides the framework
for first-order shear deformation plate theory for analysis of stresses and
displacement of flat sandwich panels and beams. This analysis is applied
to determine bending deflections, buckling loads, and twisting response of
sandwich beams and panels. In Chapter 4, analysis and description of the
three-point test method for sandwich beams is outlined and examples are
provided. Chapter 5 outlines elasticity theory for sandwich plates and shells,
and presents application of this theory to cylindrical shell structures under

1 Journal of Sandwich Structures and Materials (J.R. Vinson, Editor).

xi



xii Preface

pressure and torsion loading. In Chapter 6, high-order core shear theories
are presented. Chapters 7 and 8 are devoted to analysis and experimental
test methods for some very important failure modes of sandwich panels, viz.
global buckling and face wrinkling. Another important failure mode of sand-
wich panels is face/core separation, and analysis and testing related to this
failure mode is presented in the four final chapters (Chapters 9 through 12).
At the end of the book we have cited the literature which includes several
already published texts on sandwich structures.

This book does not cover all aspects of sandwich structures. We have not
considered dynamic loading of a sandwich body nor have we touched upon
questions of plasticity and large deformations or the behavior at elevated
temperatures. Further, important topics such as failure of sandwich struc-
tures under cyclic loads (fatigue), and localized failures due to concentrated
static and dynamic loads, and failure of core joints are not addressed. We
have rather focused on some topics that have received much attention in the
research and engineering community. We would thus like to acknowledge at
this point the need for attention to topics not included in this text.

This work would not have been possible without help from our friends and
colleagues. Both of us very much value the long-term support and friendship
of Dr. Yapa D.S. Rajapakse of the Office of Naval Research (ONR). His
vision and directions for research have been beneficial, not only for our re-
search but also for stimulating a transition from metal structures to much
more efficient composite structures for naval applications. The first author
(LAC) would like to express his gratitude to the late Dr. Alf de Ruvo for
introducing me to sandwich structures as a graduate student and the many
years of fruitful cooperation on sandwich structures at SCA Research. Sup-
port from DIAB through Chris Kilbourn and Baltek through Kurt Feichtinger
in the form of supply of core materials for experimental testing has been
most beneficial. Several of our colleagues have provided encouragement and
critique, and we would like to acknowledge Profs George Simitses, Victor
Birman, Charles W. Bert, Shuki Frostig, Dan Zenkert, Karl-Axel Olsson,
Hassan Mahfuz, and Christian Berggreen. In particular, Professor Frostig
provided valuable input on Chapter 6 (High-Order Theories). Moreover,
our graduate students have made invaluable contributions. We owe thanks
to Francis Aviles, Catherine Ferrie, Haiying Huang, Valeria LaSaponara,
Andrew Layne, Renfu Li, Xiaoming Li, Tomas Nordstrand, Poorvi Patel,
Srinivas Prasad, Mina Pelegri, Catherine Phan, Felipe Ramirez, Magnus
Renman, Scott Sendlein, Vinod Vadakke, and Gilmer Viana. The 2004 sum-
mer visit at NAVSEA in Carderock by the first author enabled cooperation
in research on sandwich specimens and panels with Douglas Loup, Diane
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Hoyns, and Robert Matteson. Typing assistance by Alejandra Quesada, Riti
Waghray, Trudy Jeffries, Nicole Carr, Laura Thornton, Anu Maharaj, and
Megan Crosara, and graphics production by Shawn Pennell, Laurie Don-
ahue, and Joshua Kahn have been most helpful. Finally, we would like to
extend our thanks to Ms. Nathalie Jacobs of Springer (Dordrecht, the Nether-
lands) and Ms. Jolanda Karada of Karada Publishing Services (Slovenia) for
their patience and flexibility in making this work possible.

We hope that this book will enable the specialists who encounter ques-
tions in the structural and failure mechanics of sandwich composites to
have the basic material of this topic at their fingertips, including the recent
advances, and to utilize it in their research or engineering practice.

Leif A. Carlsson, Boca Raton, Florida
George A. Kardomateas, Atlanta, Georgia





Chapter 1
Introduction

A structural sandwich typically consists of two thin “face sheets” made from
stiff and strong relatively dense material such as metal or fiber composite
bonded to a thick lightweight material called “core”. This concept mimics an
I-beam, but in two dimensions, where the face sheets support bending loads
and the core transfers shear force between the faces in a sandwich panel
under load. Figure 1.1 illustrates flat and curved elements from a sandwich
structure.

Sandwich structures allow optimization of structures that are weight-
critical such as parts of airplanes, space structures, sporting goods, naval
structures, and blades for wind-power generation (see Figure 1.2).

In addition to providing a very efficient load-carrying structure, the sand-
wich concept enables design of multi-functional structures. Figure 1.3 shows
an example of the enclosed mast of USS Radford, where stealth properties,
i.e., invisibility to radar, is accomplished by embedding radar absorbing ma-
terials in the core.

In addition to advanced structural applications, the sandwich concept has
long been utilized in packaging materials, such as corrugated paper board
(Figure 1.4), and in natural materials and structures such as human and ani-
mal bones and skulls and wings of birds (see Gibson and Ashby, 1997).

Core materials are classified within two broad categories, i.e., “cellular”
and “structural”. Cellular implies that the material consists of “cells” con-
taining open space enclosed by walls in a repetitive manner so that space-
filling is achieved (see Figure 1.5). Cellular foams, e.g. polymer or metal
foams, honeycomb core, and balsa wood, are very common in structural ap-
plications. Web core is a structural core that consists of a continuous web
made from a solid material formed in such a way that it separates the faces
and becomes effective in transferring shear forces.

1
Composites, Solid Mechanics and its Applications 121, DOI 10.1007/978-1-4020-3225-7_1, 
L.A. Carlsson and G.A. Kardomateas, Structural and Failure Mechanics of Sandwich

© Springer Science+Business Media B.V. 2011 



2 1 Introduction

Figure 1.1 Flat and curved elements of a sandwich structure.

Because core materials are lightweight and stiffness and strength of mate-
rials scale with density (Gibson and Ashby, 1997), the core is commonly the
weak constituent of a sandwich. In some instances, the bond between face
and core may be critical for the integrity of the sandwich.

Proper selection of face and core materials requires understanding of the
mechanics of sandwich structures. In this introductory chapter, we will ex-
amine some basic loading cases and failure modes of sandwich structures.
Understanding of the contribution from the faces and core to important struc-
tural stiffnesses and strengths of a sandwich panel will guide the designer
towards selection of appropriate materials and enable him or her to design a
weight efficient and reliable structure. With almost no exceptions, sandwich
structures utilize flat or curved panels (Figure 1.1). Still, much can be learned
by consideration of a simpler sandwich structure, viz. a beam. This chapter
will emphasize beams. Panels made from sandwich are examined in some
detail in later chapters.

1.1 Bending Stiffness of a Sandwich Beam

The overall bending stiffness ExI of a sandwich beam is readily obtained
from the parallel axis theorem (PAT) (Gere, 2004), which provides ExI in
terms of the moduli and thicknesses of the constituents. For a symmetrical
cross-section shown in Figure 1.6, PAT yields

ExI = Ec
xIc + 2Ef

x If , (1.1)

where Ic and If are the moments of inertia of the core and each face sheet
with respect to the neutral axis (y axis).

Ic = bh3
c

12
, (1.2a)
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Figure 1.2 Examples of sandwich structures.

If = bh3
f

12
+ bhf d2

4
. (1.2b)

Hence, the bending stiffness per unit width of the sandwich beam becomes

ExI

b
= Ec

xh
3
c

12
+ Ef

x

(
h3

f

6
+ hf d2

2

)
. (1.3)
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Figure 1.3 Cross-section of sandwich used to enclose the USS Radford mast.

Figure 1.4 Corrugated core sandwich used in packaging boxes.

The quantity ExI/b is commonly referred to as “bending stiffness”, Dx .
Simplification of Equation (1.3) yields

Dx = Ef
x hf d2

[
h3

c

12hf d2

(
Ec

x

E
f
x

)
+ 1

6

(
hf

d

)2

+ 1

2

]
. (1.4)

Sandwich structures are requested to be lightweight. Determination of op-
timal stiffness requires consideration of the density. The weight, W , of the
sandwich beam, normalized by the beam width and length, is given by

W

bl
= 2hf ρf + hcρc, (1.5)
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Figure 1.5 Core concepts utilized in sandwich structures.

where ρf and ρc are the densities (mass/unit volume) of the faces and core.
The average (effective) density of the sandwich, ρ∗, becomes

ρ∗ = 2
hf

h
ρf + hc

h
ρc, (1.6)

where h is the total thickness of the sandwich (h = 2hf + hc). Figure 1.7
shows Dx normalized by E

f
x hf d2, and ρ∗ normalized by ρf , plotted vs.

the core/face thickness ratio (hc/hf ), for a typical sandwich consisting of
aluminum face sheets and a H100 PVC foam core with: E

f
x = 70 GPa,

Ec
x = 0.1 GPa, ρf = 2.7 g/cm3, and ρc = 0.1 g/cm3. Properties of typical

face and core materials are provided in Tables 1.1 through 1.4. Inspection of
the results in Figure 1.7 reveals that both the bending stiffness and density de-
crease with an increasing core-to-face thickness ratio. The normalized bend-
ing stiffness decreases rapidly at small thickness ratios and approaches 1/2
asymptotically, while the normalized density shows a continuous decrease
with hf /hc.
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Figure 1.6 Cross-sectional view of a symmetric sandwich beam. “C” represents the
centroid location for each of the face sheets, and y the neutral axis of the beam.

Figure 1.7 Bending stiffness and density of a sandwich beam vs. core-to-face thick-
ness ratio. Face sheets are aluminum and the core is a H100 PVC foam.

The first term within the brackets of Equation (1.4) represents the bend-
ing stiffness contribution from the core, which is small by virtue of the
small core-to-face modulus ratio (0.00143) for this combination and remains
small for most other combinations of face and core materials, see Tables 1.1
through 1.4. The second term within the brackets in Equation (1.4) makes
a significant contribution only for very thick faces (see Figure 1.7). Most
practically used sandwich structures utilize thin face sheets, and the strictly
geometry-dependent second term can be neglected in comparison to the third
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Figure 1.8 Sandwich element under pure bending.

term (1/2). We may at this point establish a limit on core/face thickness ratio
above which the contribution from the second term to the bending stiffness
is below 1%. Equation (1.4) yields

hc/hf ≥ 5.35. (1.7)

If this inequality is satisfied, the faces may be considered “thin”, and the
bending stiffness becomes

Dx = E
f
x hf d2

2
. (1.8)

This equation identifies the two most important factors for achieving high
bending stiffness, i.e., high face sheet modulus, E

f
x , and a large distance,

d, between the face sheet’s centroids. A large value of the face sheet thick-
ness, hf , however, seemingly beneficial, will not be favorable from a weight
point of view, see Figure 1.7. Consequently, from a bending stiffness and
weight point of view, the most favorable sandwich design utilizes thin, high-
modulus face sheets over a low-density core.

1.2 Stresses in the Face Sheets and Core

Consider the element of a sandwich under pure bending loads in Figure 1.8.
Most core materials are compliant and do not significantly contribute to the
bending rigidity. For such a case, and if the faces are thin compared to the
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Figure 1.9 Free body diagram illustrating internal forces in the face sheets.

core, it is recognized that the bending moment, M, is equilibrated by internal
tension and compression forces of equal magnitude acting at the centroids
of the face sheets (“a couple”), as illustrated in the free body diagram in
Figure 1.9.

If the bending stresses in the core are neglected, equilibrium of the ele-
ment in Figure 1.9 yields an average bending stress in the face sheets

σ = M

bdhf

, (1.9)

where d is the distance between the centroids of the faces, d = hc + hf ,
where hc and hf are the core and face thicknesses, respectively, and b is
the width of the element (Figure 1.6). Notice that σ is tensile (positive) in
the top face and compressive (negative) in the bottom face for the loading
considered. Consequently, the face sheets need to be strong in tension and
compression to be able to support the bending load.

If a sandwich beam is loaded by a bending moment that varies along the
length of the beam, equilibrium analysis (Gere, 2004) shows that there will
be a shear force, V , acting transversely to the beam axis (Figure 1.10).

V = dM

dx
. (1.10)

The shear stress, τxz, acting on the core, is obtained from equilibrium
consideration of the element mm1ab shown in the lower part of Figure 1.11.
The horizontal (x axis) force due to the stress, σ , acting on the left side of
the element is

F1 = σbhf = M

d
. (1.11)
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Figure 1.10 Element of a sandwich beam under variable bending moment.

The corresponding horizontal force acting on the right side of the element is

F2 = M + dM

d
. (1.12)

The horizontal force due to the shear stress acting on the core surface at
section ab is

F3 = τxz bdx. (1.13)

Notice that the top surface (mm1) is free from shear stress. Equilibrium
yields

τxz = dM

dx

1

bd
= V

bd
. (1.14)

This equation shows that the shear stress in the core, calculated based on
the thin face/compliant core assumptions, is uniform (independent of the z

coordinate). Exact analysis (Zenkert, 1997) reveals that the shear stress de-
creases almost linearly from the value, V/(bd), at the face/core interfaces, to
zero at the outer face surfaces. Equation (1.14) highlights the need for select-
ing a core material that is strong in shear. Further, as will be discussed later,
for low modulus core material (Tables 1.2–1.4), shear deformation in the core
may be excessive and may govern the overall deformation of the sandwich.
Therefore, to avoid extensive shear deformation in sandwich structures, a
core material with sufficiently high shear modulus must be used.
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Figure 1.11 Sandwich elements considered in the calculations of core shear stress.

1.3 Local Failures

In addition to face failure in tension or compression, and core failure in
shear, sandwich panels may fail locally through a host of failure modes to
be discussed in detail in subsequent chapters. One such failure mode is “face
wrinkling”, sketched in Figure 1.12. Such a failure mode may occur in sand-
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Figure 1.12 Wrinkling of the face sheets in compression loaded sandwich ele-
ments.

wich beams and panels with a soft homogeneous core (e.g. polymer foam
or balsa wood core) under in-plane uniaxial compression loading. Wrinkling
may also occur on the compression side of a sandwich panel or beam under
bending. It manifests itself as a short wave-length buckling (local buckling)
instability of the faces.

The wrinkling failure mode has been the subject of much research, as
will be further discussed in Chapter 7. Such analysis shows that a high core
stiffness will prevent such failures, in particular the out-of-plane extensional
and shear stiffness.

For honeycomb-cored sandwich panels with thin faces, it is possible that
the face sheets buckle between the supporting cells, as illustrated for square
cells in Figure 1.13. Such a failure mode is called “intracell buckling” or
“face dimpling” and this will be discussed later in this text. For the purpose
of this chapter it is noticed that the local face buckling stress is proportional
to the product of face modulus and face thickness squared (Ef h2

f ).
Sandwich panels with a web core (Figure 1.5) loaded in compression per-

pendicular to the corrugations (see Figure 1.14), may fail by local buckling
of unsupported segments of both face and web core (Plantema, 1966).

Figure 1.15 shows that local buckling of a web-cored sandwich is a pos-
sible failure mode also when the panel is loaded in compression parallel to
the corrugations.

The critical load for buckling of the face or web is proportional to the
product of modulus and the ratio of thickness to unsupported length squared,
i.e. E(hf /λ)2 for face buckling of the sandwich loaded perpendicular to the
corrugations (Figure 1.14).

Sandwich panels with honeycomb or web-cores may also buckle locally
when the sandwich is loaded in shear. As a guideline, such failures are cir-
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Figure 1.13 Local face buckling in a honeycomb-cored sandwich.

Figure 1.14 Web-cored sandwich loaded perpendicular to the corrugations.

cumvented by using short segments of high local bending stiffness (Eh3)
where h is the wall thickness of the honeycomb or web core.

Sandwich structures may suffer from failure due to concentrated loads
acting normal to the plane of the sandwich panel, see Figure 1.16. Localized
loads may occur due to hard object impact loading (dropped tools or hull/log
collision for example), and at fittings and joints between panel sections.

Failure of sandwich beams due to localized loads have been analyzed by,
e.g., Thomsen (1977), Ashby et al. (2000), and Steeves and Fleck (2004).
Concentrated loads acting transverse to the plane of the sandwich may pro-
duce substantial local deformations of the faces and core, and induce a com-
plex state of stress in the affected regions of the face and core. For the pur-
poses of this chapter, it suffices to mention that the analysis of Ashby et al.
(2000), provides an expression where the indentation load is directly propor-
tional to the out-of-plane compression strength of the core. Consequently,
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Figure 1.15 Local face buckling in corrugated core sandwich loaded parallel to the
corrugations.

the out-of-plane compression stiffnes and strength of the core are important
for the ability of the sandwich to resist localized loads.

1.4 Face and Core Materials

The preceding analysis of the stiffness and strength of sandwich has identi-
fied several important properties of the face sheets and core. The face sheets
need to be stiff and strong in tension and compression to resist the bending
and wrinkling loads. The core needs to be stiff and strong under shear and
extension in the thickness direction to provide resistance to wrinkling and
local indentation failure. At the same time, the core should be of low den-
sity in order to minimize the structural weight. Such demands are conflicting
since, in general, low density materials are less stiff and strong than materi-



14 1 Introduction

Figure 1.16 Local indentation failure due to concentrated load acting on a sandwich
panel.

Figure 1.17 Modulus-density chart for various classes of materials. After Ashby
(1999).

als of higher density. The selection of face and core materials may be guided
by Ashby’s materials property charts (Ashby, 1999). An example of such a
chart is shown in Figure 1.17.

According to the guidelines outlined above, the face sheets should be
made from high modulus materials, i.e., composite laminates or light-weight
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alloys (see Figure 1.17). The core should be of low density. Consequently,
foamed polymers or balsa wood are common selections. In addition to the
modulus-density chart shown above, Ashby (1999) presents material prop-
erty charts for several other important mechanical as well as thermal insula-
tion properties. Such graphs are extremely useful procedures for the proper
selection of materials for given structural and thermal requirements.

Some typical mechanical properties of face and core materials will be pro-
vided. The mechanical properties of heterogeneous materials such as hon-
eycomb core, foams, and wood are average properties, representative for a
large volume of material, being part of a sandwich structure. The face mate-
rials may be made from isotropic metals or anisotropic composite laminates.
Typically, however, the laminates are symmetric and balanced (same num-
ber of plies at positive and negative angles), which simplifies their mechani-
cal description. It must be recognized that the mechanical properties of face
laminates vary depending on type of fiber, ply orientation, and volume frac-
tions of fiber and matrix. The type of matrix material will also influence the
mechanical properties of the composite. In most applications of sandwich
structures, however, the matrix is a thermoset resin such as epoxy, polyester,
or vinylester, with much less stiffness and strength than the fibers. Conse-
quently, for fiber-dominated lay-ups, the influence of matrix on the static,
short-term mechanical properties is quite small.

Table 1.1 lists density and mechanical properties of some typical face ma-
terials. The properties represent short-term, room temperature values, as de-
termined by standard test methods. It must be pointed out that such properties
should not be used for actual design purposes since the properties may vary
depending on temperature and humidity, and several other controlled and
uncontrolled factors. The metal properties were obtained from Daniel and
Ishai (2006) and Gere (2004). The S-glass/EP properties were determined
by Aviles (2005), while the E-glass/EP and AS4-Carbon/EP properties were
determined by Alif and Carlsson (1997).

Cores for sandwich panels are grouped in web core, honeycomb core,
foams, and end-grain balsa wood (see Figure 1.5). It should again be pointed
out that the most important core properties are the out-of-plane extensional
and shear stiffnesses and strengths. It is not always possible or meaningful
to test the core isolated without the presence of the faces since the faces tend
to stabilize the core, especially for web and honeycomb cores. Furthermore,
the mechanical stiffnesses of web cores are highly dependent on the geom-
etry and the material of the web and, for these reasons, it is very difficult
to list properties for such cores. For honeycomb cores, the most common
materials are Nomex, which is an aramid fiber paper impregnated with a
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Table 1.1 Mechanical properties of face materials. ρ = density, E = Young’s
modulus, G = shear modulus, ν = Poisson’s ratio, X = strength, T = tension,
C = compression.

Material ρ E G ν XT Xc

g/cm3 GPa GPa MPa MPa

Aluminum (2024-T3) 2.80 73 27.4 0.33 414 414
Steel (AISI 1025) 7.80 207 80.0 0.30 394 394
Titanium 4.40 108 42.4 0.30 550 475
S-Glass/EP1 1.73 20.6 3.10 0.12 261 177
E-Glass/EP1 2.00 26.6 4.63 0.144 422 410
AS4-Carbon/EP1 1.63 59.5 4.96 0.047 584 491

1The composites consist of woven 0 and 90◦fibers in an epoxy (EP) matrix.

Table 1.2 Mechanical properties of honeycomb core. ρ = density, G = shear mod-
ulus, S = shear strength, W = width direction, L = length direction. From Zenkert
(1997).

Material ρ GL GW SL SW

g/cm3 MPa MPa MPa MPa

Paper 0.056 141 38 1.3 0.48
Aluminum 0.070 460 200 2.2 1.50
Nomex 0.080 69 44 2.2 1.00
Nomex 0.129 112 64 3.2 1.70

polymer resin, usually phenolic, or aluminum alloy. The method of manu-
facturing of honeycomb core provides a structure with double walls in one
direction and single walls in the other. As a result, the mechanical properties
are different in the two in-plane principal directions (width W and length L).
Mechanical properties of honeycomb cores are considered in great detail by
Gibson and Ashby (1997). Product literature sometimes reports on modulus
and strength in compression and shear, see, e.g., Hexcel product information
www.hexcel.com), while other sources of data, e.g., Vinson (1999), reports
only shear moduli. It is not practical to reproduce the very large amount of
data on honeycomb cores available in a publication of this nature. Here we
will only reproduce some typical data provided by Zenkert (1997), see Ta-
ble 1.2.

Foams are very common core materials. Most commercial foams are made
from polymers, although there is much interest in metallic foams (Ashby
et al., 2000), and more recently carbon foams (Sihn and Rice, 2002). The

http://www.hexcel.com
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Table 1.3 Mechanical properties of various polymer foams. ρ = density, G = shear
modulus, S = shear strength. Data obtained from Zenkert (1997), DIAB∗ and
Rohacell∗∗.

Material ρ G S

g/cm3 MPa MPa

Polyurethane 0.04 4 0.25
PVC H100 0.10 40 1.40
PVC HD130 0.13 40 1.50
PMI 110IG 0.11 50 2.40

∗www.diabgroup.com; ∗∗www.roehm.com

Table 1.4 Mechanical properties of balsa wood core. ρ = density, G = shear mod-
ulus (out-of-plane), S = shear strength (out-of-plane). From www.alcanairex.com.

Product Designation ρ G S

g/cm3 MPa MPa

SB50 0.100 110 1.91
SB100 0.151 157 2.94
SB150 0.244 302 4.85

most common polymers used are polyurethane, polyvinylchloride (PVC),
and polymethacrylimide (PMI). Such foams are closed-cell structures, mak-
ing them isotropic and resistant to water penetration.

Balsa wood core is used as the core in structural sandwich panels be-
cause of its low density combined with good mechanical properties and
a closed-cell structure. As a result of the unidirectional orientation of the
fibers along the longitudinal direction of the wood (Figure 1.5), balsa wood
is highly anisotropic, with much higher stiffness and strength in the longi-
tudinal (along the grain) than in the radial and tangential directions. Balsa
wood utilized as the core in a sandwich structure, is delivered in the de-
sired thickness in the form of small square blocks with the L-direction (fiber
direction) in the through-thickness direction, assembled in a panel held to-
gether with a scrim cloth on the top and bottom. The blocks are randomly
oriented in the plane of the sandwich making the effective properties of the
core in-plane isotropic. End-grain balsa wood core is available over a range
of densities between about 0.1 to 0.3 g/cm3. Typical mechanical proper-
ties of end grain balsa wood, obtained from Baltek (www.alcanairex.com
or www.alcanbaltek.com) are provided in Table 1.4.

http://www.diabgroup.com
http://www.roehm.com
http://www.alcanairex.com
http://www.alcanairex.comorwww.alcanbaltek.com
http://www.alcanairex.comorwww.alcanbaltek.com


Chapter 2
Characterization of the Mechanical Properties
of Face Sheet and Core Materials

Determination of mechanical properties of face sheets and core materials
is important for analysis and design of sandwich structures. In many cases,
especially for metals, mechanical property data exists in handbooks and text-
books on materials science and strength of materials (e.g., Gere, 2004). For
composites, the large variety of fibers, matrix materials, ply lay-ups, and fiber
volume fractions makes mechanical testing a necessity. The core may be cor-
rugated, honeycomb, or foam as shown in Figure 1.5. The determination of
the mechanical properties may be very challenging, especially for corrugated
and honeycomb cores. For balsa wood, the anisotropy of the material causes
further complications.

2.1 Face Mechanical Properties

2.1.1 Isotropic Face Sheets

For isotropic materials such as metal alloys, it is normally sufficient to per-
form a tensile test, which provides Young’s modulus, E, Poisson’s ratio, ν,
the yield strength, σys, and the ultimate strength, σult, defined according to

E = σ

εL

(εL � 1), (2.1)

v = −εT

εL

(εL � 1), (2.2)

where σ is the tensile stress (force per unit cross-section area) and εL and εT

are the longitudinal and transverse strains. The yield strength, σys, is defined
as the constant flow stress observed in some metal alloys after the linear
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elastic region or from the intersection of a line parallel to the initial linear
response curve (with slope of E), but with a 0.2% strain offset. The ultimate
strength, σ ult, is defined as the maximum stress the material can endure. Fur-
ther details are provided in Gere (2004), and the ASTM E8 standard (1998).

A complete characterization of the material demands the shear modulus,
G, defined according to

G = τ

γ
(γ � 1), (2.3)

where τ is the shear stress and γ is the (engineering) shear strain. For
isotropic materials, however, the shear modulus is not an independent quan-
tity. With knowledge of E and ν it is possible to establish the shear modulus,
G, according to Gere (2004)

G = E

2(1 + ν)
. (2.4)

Hence, there is no need for an independent shear test. The yield strength
in shear, τys, may also be estimated from the tensile yield strength (Norton,
2003), as

τys
∼= 0.57 σys. (2.5)

Because face alloys are available in the form of sheet materials, a flat test
coupon is machined as illustrated in Figure 2.1. Prior to testing, the cross-
sectional dimensions of the gage section should be measured. The tensile test
coupon should be instrumented with strain gages oriented axially and trans-
versely at the center of the gage region for measurement of the longitudinal
and transverse strains, εL, and εT . ASTM E8 (1998) stipulates the use of ex-
tensometers for strain measurement, but electrical resistance strain gages are
more accurate and demanded if Poisson’s ratio, ν, is also to be determined.

Several details of test procedures are common to all types of mechanical
testing. These details include, for example, correctly installing the specimen
in the grips of the test frame or in the test fixture and ensuring that align-
ment is proper. Machine settings, such as load range, displacement speed, as
well as calibrations of the load cell and strain gage instrumentation, and data
acquisition systems, should be checked. The ASTM collection of standards
includes several standards specific to sandwich structures.
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Figure 2.1 Tensile test specimen for metal face sheets (ASTM E8, 1998).

2.1.2 Composite Face Sheets

Composite face sheets for aerospace sandwich structures typically consist of
laminates formed by stacking unidirectional plies of pre-impregnated unidi-
rectional glass or carbon fibers embedded in a polymer matrix (epoxy, bis-
maleimid, etc.). Such laminates require processing in autoclaves at elevated
temperatures and pressures over extended periods of times which leads to
excellent quality (negligible void content) and high fiber volume fraction.
The face sheets may be produced separately and subsequently adhesively
bonded to the core or the sandwich may be co-cured. In the boating industry,
wet lay-up procedures and room temperature cure of polyester or vinylester
resins are quite common. Such procedures are cost-efficient for reasonable
volumes but do not produce laminates with very high fiber volume fractions.
Furthermore, lack of vacuum bagging leads to high void contents. A method
that has become popular in ship structures consists of injection of resin in
dry fiber mats that are placed on both sides of a core panel. This procedure
saves time and often leads to improved bonding between face and core. The
process is called vacuum assisted resin transfer molding (VARTM) and has
been patented by Seeman (1990). Further details and comprehensive reviews
of composite processing methods are provided by Advani and Sozer (2002).

Regardless of the way composites are manufactured, face laminates (with
some rare exceptions) consist of fibers oriented in the plane of the laminate,
making them anisotropic, especially when comparing in-plane, and out-of-
plane stiffnesses, see Figure 2.2.

As there are no fibers oriented in the through-thickness direction (along
the z axis in Figure 2.2), the out-of-plane extensional and shear stiffnesses of
the laminate are of the same order as those for the polymer matrix, i.e. they
are low (Hyer, 1998). Fortunately, as has been discussed, sandwich panels
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Figure 2.2 Fibers are oriented in the plane of the laminate (xy plane) resulting in
anisotropic properties.

are loaded in such a way that the dominant loading of the face sheets is in
the plane (membrane) and the low out-of-plane stiffnesses of the faces do
not greatly influence the overall behavior of the structure. When performing
three-dimensional (3D) stress analysis, or 2D plane stress or plane strain
analysis, numerical values of out-of-plane stiffnesses are required as input.
Although most standard test methods are designed for determining in-plane
stiffnesses and strength of composite laminates, there are ASTM standard
test methods and analytical schemes available for estimation of out-of-plane
elastic stiffnesses (Hyer, 1998).

If the laminate is made from unidirectional prepreg it is common practice
to make unidirectional laminates (fibers are oriented in one direction only)
and characterize the mechanical stiffnesses and strengths of this basic build-
ing block of a composite laminate. A detailed description of test methods for
characterization of the composite lamina is provided by Adams et al. (2003).
With a full set of unidirectional lamina properties, it is possible to predict
the overall stiffness and strength properties of the laminate. Such an analy-
sis is based on classical laminated plate theory (CLPT), reviewed by Hyer
(1998). This procedure is recommended for preliminary design analysis, but
is no substitute for the mechanical characterization of the laminate used in
an actual sandwich structure. Furthermore, this procedure does not readily
apply to laminates formed by resin impregnation (VARTM). In this chapter,
we will therefore describe test methods for mechanical characterization of
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composite laminates. The most important mechanical properties of the face
sheets are the tensile, compressive and shear stiffnesses, and strengths.

Laminates from the face sheets should be symmetric and balanced. Sym-
metric means that the ply configurations above and below the geometrical
midplane (z = 0 in Figure 2.2) are mirror-images of each other (notice that
the laminate shown in Figure 2.2 is not symmetric). Symmetry thus requires
that, for each ply above the midplane, there is an identical ply (material,
thickness, and fiber orientation) at the same distance below the midplane.
Balanced means that the number of off-axis plies oriented in a certain posi-
tive angle (θ) should be balanced by the same number of plies oriented in the
negative angle (−θ). As discussed for example by Hyer (1998), such lami-
nates should be free from extension/bending and extension/shear couplings.
Such couplings may promote undesired deformation shapes and complicate
the analysis of the mechanical response quite substantially.

Many tests require end tabs to prevent crushing of the regions of the spec-
imen in contact with gripping surfaces. End tabs are designed to achieve
a gradual transfer of load into the test specimen. Most common are glass
fabric/epoxy end tabs bonded adhesively to the test specimen’s gripping re-
gions. A detailed description of end-tab attachment procedures is presented
in Adams et al. (2003). End tabs are typically bonded to the composite panel
before specimens are machined in the orientations desired (x and y in Fig-
ure 2.2). Specimens may be cut using a thin abrasive disk in a tile cutter or
surface grinder.

Tension Test Procedures

The tension test for composite materials is described in the ASTM D3039
Standard (2000) and by Adams et al. (2003). A laminate tensile specimen is
typically about 225 mm long and 25 mm wide, see Figure 2.3. The specimen
may be tabbed as shown in Figure 2.3, although lower strength composites
may be tested without tabs (Adams et al., 2003). For a tensile test, two strain
gages are mounted at the center of each specimen, one in the longitudinal
direction and the other in the transverse direction, so that both the axial stiff-
ness, Ex , and major Poisson’s ratio, νxy , can be determined. Notice that the x

and 0◦ directions coincide for laminates. Multiple strain gages may be used
for increased confidence in the results.

The specimen should be mounted in the grips of the test machine and
tested at a cross-head rate of about 0.5 to 1 mm/min. Avoid unprotected
eyes in the test area. The strain readings may be recorded continuously or
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Figure 2.3 Straight-sided tension test specimen with adhesively bonded end tabs
and strain gages. Tab angle θ may be between 5 and 90◦.

at discrete load intervals to provide the required number of data points. The
stress-strain data should allow determination of Young’s modulus, Ex , Pois-
son’s ratio, νxy , and the ultimate strength in tension, σ ult

x , of the laminate

Ex = σx

εx

(εx � 1), (2.6a)

νxy = −εy

εx

(εx � 1), (2.6b)

where σx is the axial stress (load per unit cross-section area), and εx and εy

are the longitudinal and transverse strains, respectively, i.e., the strains in the
0 and 90◦ directions, see Figure 2.3. The tensile strength, Xt , is defined as
the maximum stress measured during the test.

Compression Test Procedures

Because face laminates are thin, global buckling of a compression loaded
test specimen is a possibility that must be prevented. Thus, if the specimen
is long, some type of lateral restraint fixturing is required. It is important to
ensure that this fixturing does not create a redundant load path.

Compression test fixtures are classified as “shear-loaded” or “end-
loaded”, depending on how load is introduced into the gage section. Com-
pression testing of shear and end-loaded specimens requires attention and
care since the failure mechanism is very sensitive to misalignment and im-
perfections. Any misalignment of the test specimen can induce bending of
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the specimen and promote failure by global buckling. The specimen must
be checked for proper alignment of the loading surfaces. The ends of end-
loaded specimens must be flat, mutually parallel, and perpendicular to the
specimen axis. Specified parallel and perpendicular tolerances are typically
in the order of 0.03 mm. Specimen end flatness is particularly important, so
that the loading is centered around the central axis of the specimen and local
end crushing is avoided. Uniformity of specimen thickness from end to end
within 0.06 mm is a common requirement. Variations in thickness of any of
the tabbing strips, along with variations in thickness of the adhesive bond
lines, must be checked. Specimen bending and buckling cannot usually be
detected visually during the compression test or by microscopic examination
of the failed specimen. The use of two strain gages, mounted “back-to-back”
on opposite faces of the specimen, is the only reliable method of detecting
bending and buckling, by a difference in the strains.

Certain test preparation and test procedures need to be followed and care-
ful attention must be directed towards detection of eccentric loading pro-
moting bending and buckling of the specimen, as well as end-crushing in
the end-loaded fixtures (Adams et al., 2003; ASTM D3410, 2003; ASTM
D6641, 2001).

The IITRI compression test fixture shown in Figure 2.4 has long been
recognized as a reliable standardized test procedure (ASTM D3410, 2003),
which employs a tabbed unsupported short gage length specimen with the
load introduced through shear. The IITRI test specimen is typically between
140–155 mm long and 25 mm wide. The gage length varies between 10 and
25 mm depending on the specimen thickness (ASTM D3410, 2003).

End-loaded test fixtures are sometimes used (Adams et al., 2003), al-
though none has been approved as ASTM standard. A “combined loading”
compression (CLC) test method, where the load is introduced both by shear
and end pressure is ASTM standard D6641 (2001), see Figure 2.5.

The shear-loading component is achieved by clamping pairs of lateral
support blocks, which have high-friction contact surfaces, to each end of
the specimen. The end-loading component is induced directly because each
end of the specimen is flush with the outer surfaces of the support blocks.
The fraction of shear loading can be increased by increasing the torque in
the clamping screws. The target is to achieve just enough shear loading to
avoid crushing of the ends of the specimen. It is possible to test an unt-
abbed, straight-sided specimen. This simplifies specimen preparation. A typ-
ical specimen is 140 mm long and 12 mm wide with an unsupported gage
length of 12 mm. Such a gage length and the recess opening in the fixture
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Figure 2.4 IITRI compression test fixture and tabbed test specimen.

(Figure 2.5) allows sufficient room to use bonded strain gages (see ASTM
D6641, 2001, and Adams et al., 2003, for further details).

From a properly conducted test, it should be possible to determine
Young’s modulus, Ex , and the compressive strength, Xc. Ex is defined in
Equation (2.1), with εx being the average of the front and backside strains if
two gages are used. The compressive strength Xc is defined as the magnitude
of the maximum stress recorded during the test.

Shear Test Procedures

Face laminates commonly contain 0, 90◦ and angle-plies, e.g., plies with
the fibers oriented at ±45◦ to the axis of reference. For such laminates, the
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Figure 2.5 The Wyoming combined loading compression (CLC) fixture.

rail and Iosipescu shear test methods shown in Figure 2.6 are applicable
for determination of the in-plane shear modulus and strength. Both the rail
and Iosipescu shear tests are ASTM standards (ASTM D4255, 2002; ASTM
D5379, 2001). Laminates containing angle-ply fibers do not have weak shear
planes (which is structurally beneficial), leading to a tortuous failure path and
an extensive zone of damage, which makes testing and interpretation of test
results challenging.

The rail shear loading configuration in Figure 2.6a produces an essentially
pure shear loading over the gage section of the specimen (the 12.7 mm wide
portion of the specimen exposed between the rails). The rail shear test speci-
men is shown in Figure 2.7a. There are six clearance holes to allow clamping
the specimen to the rails. A strain gage rosette, oriented at ±45◦ with respect
to the specimen longitudinal axis should be bonded to the center of the test
section. Sometimes only a single 45◦ gage is used. If added confidence is re-
quired, both sides of the gage section may be instrumented with strain gages.

A two-rail shear test is conducted by loading a test specimen in tension
between the pairs of rails, as indicated in Figure 2.6a. It is important that
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Figure 2.6 (a) Rail shear test, (b) Iosipescu shear test.

Figure 2.7 (a) Rail-shear specimen, (b) Iosipescu specimen. All dimensions in mm.

the rails do not slip during the test. If slipping occurs, the clamping bolts
can bear against the clearance holes in the specimen, inducing local stress
concentrations leading to premature failure. This, of course, results in an un-
acceptable test. For very high shear strength composites the clamping forces
have to be very high to avoid slipping of the rails. A bolt torque of 100 Nm is
specified in ASTM D4255 (2002), which is very high for a 9.5 mm diameter
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bolt. Commercially available fixtures have thermal-sprayed tungsten carbide
particle gripping surfaces to improve the shear transfer of load.

The average shear stress is

τxy = P

A
, (2.7)

where P is the applied load, and A is the area of the specimen cross-section
parallel to the rails (length times thickness of the specimen). The shear strain,
γxy , is determined from the ±45◦ strain gage readings according to Adams
et al. (2003)

γxy = |ε(45◦)| + |ε(−45◦)| (2.8)

or, if a single 45◦ gage is used,

γxy = 2|ε(45◦)|. (2.9)

The specimen is loaded at a cross-head rate of 1–10 mm/min The shear
stress-shear strain curve (τxy vs. γxy) may be constructed from load and strain
data collected and reduced according to Equations (2.7)–(2.9). The in-plane
shear modulus, Gxy , is determined from the slope of the initial linear region
of the curve τxy vs. γxy ,

Gxy = τxy

γxy

(γxy � 1). (2.10)

Shear strength Sxy is the maximum shear stress value.
The Iosipescu test specimen shown in Figure 2.7b, is much smaller than

the rail shear specimen (Figure 2.7a). The test fixture, shown in Figure 2.6b,
allows a specimen of up to 12.7 mm in thickness, although a thickness of
about 2.5 mm is more common. The top and bottom edges must be carefully
machined to be flat, parallel to each other, and perpendicular to the faces
of the specimen, to avoid out-of-plane bending and twisting when the load
is applied. It is convenient to machine the V-shaped notches on a stack of
specimen using a grinding wheel. The specimen should be instrumented with
a ±45◦ strain gage rosette attached to one or both sides of the notched test
region, as shown in Figure 2.7b. The dimensions of the specimen, including
the length between the notches, should be measured.

The Iosipescu test fixture should be set up for compressive loading. The
upper half of the test fixture should be attached to the moving cross-head of
the testing machine. Failure should occur within 1–10 minutes, correspond-
ing to a cross-head rate at about 1–10 mm/min.

The shear modulus and strength are determined as for the rail shear test
discussed earlier. Notice that the shear stress, τxy , is defined as load divided
by the cross-section area between the notches of the specimen.



30 2 Mechanical Properties of Face Sheet and Core Materials

Figure 2.8 Representative element of core material.

2.2 Core Mechanical Properties

A volume of core material (Figure 2.8) large enough to represent the be-
havior of the core in a typical sandwich structure is selected. Testing of the
element will provide average (homogenized) mechanical properties of the
core. The properties of honeycomb and web cores, however, are very differ-
ent with and without the support from the face sheets, and usually specimens
from the core are adhesively bonded to a rigid test fixture to approximate
the constraint from the faces. Notice, however, that if the faces are thin and
of low bending stiffness, they may deform in bending under in-plane shear
and bending loads, see, e.g., Libove and Hubka (1951) and Nordstrand et al.
(1994). Such behavior substantially complicates the analysis of the response.

The actual size of the core element depends on the type of core and what
kind of test that is to be conducted. For honeycomb and web cores (Fig-
ure 1.5) the size of core element should be quite large. For example, the out-
of-plane tension test of a honeycomb core (to be discussed) requires at least
60 cells in the test specimen according to ASTM C297 (2004). Most foam
cores, on the other hand, have quite small cells (order of mm), allowing the
use of smaller test specimens.
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Figure 2.9 Trough-thickness tension test setup.

2.2.1 Tension Test Procedures

Tension testing of the core is commonly conducted in the through-thickness
direction. ASTM C297 (2004) describes bonding of an element of the core
(or sandwich) to metal loading blocks that are loaded in uniaxial tension until
the specimen fails. Figure 2.9 shows the test configuration used by Viana and
Carlsson (2002), for testing of PVC foam cores between adhesively bonded
aluminum blocks of circular cross-sections. The loading fixture should be
self-aligning, which may be accomplished by using a universal joint (Fig-
ure 2.9). The specimen gage length (LG in Figure 2.9) is defined by the
thickness of the foam panel. ASTM C297 (2004) specifies 40–50 mm thick
end blocks with a square or circular cross-section in order to prevent non-
uniform deformation (and stress concentrations) during loading. The mini-
mum cross-sectional area is 625 mm2 for foam and balsa wood cores, and
depends on the cell size for honeycomb cores. The ASTM C297 standard
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recommends an area accommodating at least 60 cells for honeycomb cores.
This standard does not specify the cross-sectional dimension for web cores.
The largest area recommended for this type of test is 5,625 mm2.

Although the ASTM C297 (2004) standard test is designed specifically
for tensile strength determination of the core, it is possible to determine the
out-of-plane modulus of the core, Ez, if an extensometer is fitted to the edge
of the core specimen. It should, however, be pointed out that the end blocks
constrain lateral determation of the core which tends to increase the apparent
modulus and strength. Mechanical properties should ideally be determined
under uniaxial stress conditions using longer specimens.

After measuring the cross-sectional dimensions and the gage length of
the test specimen, it is loaded to failure at a cross-head rate of 0.5 mm/min.
Modulus, Ez, and strength, Zt , are determined from

Ez = σz

εz

(εz � 1), (2.11)

Zt = Pult

A
, (2.12)

where σz = P/A (load/unit cross-section area), εz is the strain, and Pult is
the failure load of the specimen. Notice here that the only acceptable failure
mode defining core strength is the one where the core fails. Such a failure
may be difficult or impossible to achieve for honeycomb cores and end grain
balsa wood cores where the adhesive bond may be the weakest link.

2.2.2 Compression Testing

The out-of-plane compression modulus and strength of the core are funda-
mental properties that govern wrinkling failure and resistance to localized
loading. A compression test method consisting of loading a short specimen
between parallel metal platens is outlined in ASTM Standard C365 (2003).
Such a test may be performed on a core or sandwich specimen. The test spec-
imen should be machined from a core or sandwich panel and should have a
circular or square cross-section. The minimum cross-sectional area should
be at least 625 mm2 for foam and balsa cores. For web-cores, ASTM C365
does not provide guidance on the specimen size, but the instructions for hon-
eycomb cores are helpful: for honeycomb cores with cell size below 6 mm,
the cross-sectional area should be 2,500 mm2. For cells greater than 6 mm,
the area should be 5,800 mm2. To avoid crushing of the ends of honeycomb



Structural and Failure Mechanics of Sandwich Composites 33

Figure 2.10 Stress-strain curve for compression loading of cellular materials.

cores, the ends may be reinforced with a layer of resin, or thin faces may be
bonded to the core. With reinforced ends the test is called “stabilized com-
pression test”, while tests on unreinforced honeycomb core is called a “bare
compression test”.

The specimen should be tested between two parallel platens at
0.5 mm/min. The loading platens should be self-aligned through a spheri-
cal ball joint to promote a uniform distribution of compressive stress over
the end surfaces. Deflection of the specimen during loading may be mon-
itored using the cross-head travel or, more accurately, by an extensometer
fitted to the top and bottom ends of the gage section of the specimen.

As discussed by Gibson and Ashby (1997), compression loading of cel-
lular materials tends to produce a stress-strain curve of the type shown in
Figure 2.10, where the stress reaches a constant plateau level after the initial
linear region of response and a steeply increasing region at large strains.

The initial linear region corresponds to elastic extensional and bending
deformation of the cell walls, while the plateau region occurs due to the for-
mation of a band where localized buckling and collapse of the cell walls
occurs. Upon further deformation, this band progresses through the gage re-
gion until all the empty space within the core is consumed and the cell walls
begin to impinge on each other and take the direct load in compression. At
this point (or before) the compression test should be stopped to protect the
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Figure 2.11 Core element under shear stresses τxz and τyz.

test equipment. The modulus and strength, Ez are Zc, are reduced from the
compressive stress strain curve (Figure 2.10).

2.2.3 Shear Testing

For core materials, the out-of-plane shear response is of major importance,
see Section 1.2. The out-of-plane shear moduli Gxz and Gyz and shear
strengths Sxz and Syz are determined by subjecting a core element to shear
stresses τxz and τyz as defined in Figure 2.11.

The ASTM standard C273 (2000), i.e. the plate shear test (Figure 2.12),
considers a sandwich or core specimen adhesively bonded to two steel blocks
that are loaded in tension to produce out-of-plane shear loading of the core.

The plate shear test does not produce a pure uniform state of shear in the
entire test specimen. By using long specimens and adjusting the specimen
length so that the line of load passes through the diagonally opposite corners
of the specimen (see Figure 2.13), it is possible to minimize the influence
of secondary stresses on the response. Notice that the line of load action is
defined by the centers of the pins at A and B in Figure 2.13.
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Figure 2.12 Plate shear specimen.

Figure 2.13 Specimen length is adjusted so that the line of load is passing through
opposite corners of the shear specimen.

The test specimen should have a width of 50 mm or more, and a length of
more than 12 times the thickness, while the loading line condition discussed
above should be targeted as closely as possible. The dimensions of the test
specimen (length, thickness, and width) should be measured before adhe-
sively bonding the specimen to the loading platens. In order to determine
shear strength of strong core materials, a very strong aerospace grade epoxy
adhesive is required. Notice that a thick and flexible bond layer may deform
in shear and add to the measured compliance. Such effects will reduce the
apparent shear modulus of the core. Alignment of the specimen during bond-
ing is important but may be difficult to achieve without proper care since the
uncured, low viscosity adhesive is slippery.

After mounting the fixture assembly in the test frame, a fixture that sup-
ports a LVDT or an extensometer may be attached to each of the steel plates
in order to allow direct measurement of the shear displacement during the
test. Figure 2.14 shows a photograph of such an arrangement. The specimen
should be loaded at a cross-head rate of 0.5 mm/min, while recording load
vs. shear displacement until failure of the test specimen occurs. If the spec-
imen fails at the specimen/steel plate interface, the test will not provide the
shear strength of the core, while the shear modulus determined from the test
at low stress and strain levels may still be valid unless the adhesive is very
flexible.

The shear stress (τxz or τyz) is determined from
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Figure 2.14 LVDT is attached to the plate shear test for measurement of shear
displacement.

Figure 2.15 Schematic shear stress vs. shear strain curve for core material.
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τ = P

Lb
, (2.13)

where L and b are the length and width of the test specimen. The shear
modulus, Gxz or Gyz, is determined from

G = τ

γ
, (2.14)

where γ = u/hc, with u being the shear displacement of the loading plates
and hc the core thickness. The shear modulus is determined using the ini-
tial linear-elastic region of response (see Figure 2.15). The shear strength is
determined using the maximum load. Sometimes a yield strength in shear,
τys, is evaluated using a 2% offset shear strain (ASTM C273, 2000). Fig-
ure 2.15 illustrates schematically a shear stress vs. shear strain curve, and
the determination of the yield stress.



Chapter 3
Classical and First-Order Shear Deformation
Analysis of Sandwich Plates

This chapter will present classical laminated plate theory (CLPT) analysis
of composite face sheets and sandwich plates. It is recognized that the trans-
verse shear deformation is not incorporated in CLPT. Shear deformation of
sandwich plates is important and first-order shear deformation analysis will
be outlined. Applications of CLPT and first-order shear deformation analysis
to sandwich panels will be presented. Two experimental sandwich plate tests,
viz. bending under transverse pressure load and twisting, will be described.
Experimental data generated from such tests will be compared to predictions
from plate theory analysis and finite elements.

3.1 Classical Laminated Plate Theory Analysis

Classical laminated plate theory (CLPT) aims to relate the mechanical re-
sponse of a layered plate to that of the individual constituent piles. This the-
ory is an extension of the theory for homogeneous isotropic plates presented
by Timoshenko and Woinowsky-Krieger (1959) to thin laminated plates. The
analysis is most appropriate for thin plates since, as will be shown, this the-
ory does not accommodate transverse shear deformation. Hence, CLPT is
of limited applicability to sandwich panels since they often possess a thick,
shear deformable core. CLPT, however, is applicable to the analysis of the
in-plane response of face sheets and, furthermore, constitutes an important
reference for sandwich panels with in-plane dimensions much greater than
the thickness.
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Figure 3.1 Unbonded and bonded views of a multi-ply laminate consisting of N

plies.

3.1.1 Laminate Nomenclature

Figure 3.1 shows unbonded and bonded views of a laminate consisting of N

orthotropic plies with the fibers oriented at any in-plane direction, θ .
The plies may be unidirectional (as shown) or fabric weaves. For fabric

weaves, the angle θ refers to the warp or weft fiber directions. Figure 3.1
also illustrates the global xyz laminate coordinate system and the local (ply)
coordinate system 123, where the 3 axis is parallel to the thickness coor-
dinate (z) of the laminated plate. The plies in the laminate are numbered
1, 2, . . . , N from bottom and up. The ply index, k, identifies the particular
ply considered, and θk denotes the orientation of ply k.

For the purpose of subsequent analysis, the “ply coordinates”, zk, are de-
fined in Figure 3.2. The origin of the z coordinate is located at the mid-plane
of the laminate. Hence, z0 = −h/2 and zN = h/2, where h is the total thick-
ness of the laminate (Figure 3.2). The ply coordinates indicate the location
of the ply interfaces, and ply k is bound by zk−1 and zk.

The lay-up sequence of a laminate is standardized, see Adams et al.
(2003). The ply orientations in degrees are listed within brackets starting
with the first ply laid up, followed by a slash (/) and then the next ply, and
so on until the top ply. For symmetric laminates, only the bottom half of the
plies are shown, and a subscript capital S follows the right closing bracket.
For example, a six-ply symmetric laminate with plies oriented at 45◦, 0◦,
−30◦, −30◦, 0◦ and 45◦ would be expressed as [45/0/ − 30]s . For symmet-
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Figure 3.2 Definition of the ply coordinates, zk .

ric laminates with an odd number of plies, the center ply is designated with
an overbar.

3.1.2 Kinematics of Deformation

Figure 3.3 shows a flat composite laminate plate before loading and the xyz

coordinate system. Deformation of the laminate plate is expressed using the
displacement vector

u = ui + vj + wk, (3.1)

where (u, v,w) are the components of the displacement vector (Figure 3.3)
and i, j, k are the unit vectors for the x, y, z coordinates. From the displace-
ment components, we can determine the extensional and shear strains,

εx = ∂u

∂x
, (3.2a)

εy = ∂v

∂y
, (3.2b)

εz = ∂w

∂z
, (3.2c)

γyz = ∂v

∂z
+ ∂w

∂y
, (3.2d)
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Figure 3.3 Composite laminate plate before deformation and definition of displace-
ment components.

yxz = ∂u

∂z
+ ∂w

∂x
, (3.2e)

yxy = ∂u

∂y
+ ∂v

∂x
. (3.2f)

Notice here that the strains are assumed to be small (� 1), since Equa-
tions (3.2) include only first-order derivatives.

Figure 3.3 shows an element of the interior of the laminated plate cut
parallel to the y axis. The deformation of this element will be examined in
detail. Figure 3.4 illustrates the element before and after deformation.

When the laminate plate is loaded, the cross-section defined by the line
AB, originally straight and perpendicular to the reference plane (z = 0) will
translate and rotate as shown in Figure 3.4. The y and z axis displacements of
the point O, on the mid-plane, are v0 and w0 (Figure 3.4). It is assumed that
the line segment AB remains straight and normal to the deformed mid-plane.
Further, the segment is assumed to maintain its length during deformation,
implying

w(x, y) = w0(x, y), (3.3)
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Figure 3.4 Element of plate cut parallel to the x axis before and after deformation.

where subscript zero refers to the mid-plane (z = 0). The assumptions con-
stitutes the famous Kirchhoff hypothesis for plates, and implies that flat sec-
tions originally oriented normal to the mid-plane remain flat and normal to
the deformed mid-plane after loading.

Further, because the line AB remains straight and perpendicular to the
deformed mid-plane, the slope of the cross-section, β, in Figure 3.4, is equal
to the slope of the panel, i.e.,

β = ∂w0

∂y
. (3.4)

The y axis displacement of point C, at a distance zc from the mid-plane,
becomes

vc = v0 − βzc. (3.5)

For any point on the line segment we will get

v = v0 − βz. (3.6)

Substitution of Equation (3.4) into (3.6) yields

v(x, y, z) = v0(x, y) − z
∂w0

∂y
. (3.7)

Consideration of a cross-section of the plate cut parallel to the x axis simi-
larly yields
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u(x, y, z) = u0(x, y) − z
∂w0

∂x
. (3.8)

Equations (3.3), (3.7) and (3.8) provide the necessary expressions for the
displacements of the laminate plate. Differentiation of these expressions, ac-
cording to Equations (3.2), yields

εx = ∂u0

∂x
− z

∂2w0

∂x2
, (3.9a)

εy = ∂v0

∂y
− z

∂2w0

∂y2
, (3.9b)

εz = 0, (3.9c)

γyz = 0 = γxz, (3.9d)

γxy = ∂u0

∂y
+ ∂v0

∂x
− 2z

∂2w0

∂x∂y
. (3.9e)

Hence, the CLPT does not accommodate transverse shear deformation and
thickness stretch. The only non-zero strains are the in-plane strains εx, εy

and γxy . These strains are commonly expressed in the following form

⎡
⎢⎣

εx

εy

γxy

⎤
⎥⎦ =

⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ + z

⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ , (3.10)

where [ε0
x, ε

0
y, γ

0
xy] and [κx, κy, κxy] are the strains and curvatures of the ref-

erence mid-plane, defined according to Equations (3.9) as

ε0
x = ∂u0

∂x
, (3.11a)

ε0
y = ∂v0

∂y
, (3.11b)

γ 0
xy = ∂u0

∂y
+ ∂v0

∂x
, (3.11c)

κx = −∂2w0

∂x2
, (3.12a)

κy = −∂2w0

∂y2
, (3.12b)
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Figure 3.5 Illustration of bending and twisting deformation of a laminated plate.
All curvatures shown are positive.

κxy = −2
∂2w0

∂x∂y
. (3.12c)

The mid-plane strains signify membrane loading, since they represent ex-
tension and shear deformation of the mid-plane. The curvatures, κx and κy ,
represent bending deformation, while the curvature, κxy , represents twisting
of the laminated plate, see Figure 3.5.
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Figure 3.6 Orthotropic ply under in-plane stresses σ1, σ2 and τ12.

3.1.3 Stresses in the Laminate

Consider a thin orthotropic ply with the principal material directions 1-2-
3 loaded in the 1-2 plane of the ply as shown in Figure 3.6. The relation
between stresses [σ1, σ2, τ12] and strains [ε1, ε2, γ12] becomes (Hyer, 1998)⎡

⎢⎣
σ1

σ2

τ12

⎤
⎥⎦ =

⎡
⎢⎣

Q11 Q12 0

Q12 Q22 0

0 0 Q66

⎤
⎥⎦
⎡
⎢⎣

ε1

ε2

γ12

⎤
⎥⎦ , (3.13)

where the stiffness, Qij , can be expressed

Q11 = E1/(1 − ν112ν21), (3.14a)

Q12 = ν12E2/(1 − ν12ν21) = v21E1/(1 − ν12ν21), (3.14b)

Q22 = E2/(1 − ν12ν21), (3.14c)

Q66 = G12. (3.14d)

Here, E1 and E2 represent the principal moduli in the fiber direction (1 in
Figure 3.6) and the transverse direction (2 in Figure 3.6). ν12 and ν21 are the
associated Poisson ratios, and G12 is the in-plane shear modulus.

For a ply within the laminate where the fibers are oriented at an angle, θ , to
the global x coordinate of the laminate, Figure 3.7, the stresses, strains, and
stiffnesses must be transformed to the new x–y axes. It may be shown that
transformed relation between in-plane stresses and strains for the “off-axis”
ply, Figure 3.7, will take the following form (Hyer, 1998):⎡

⎢⎣
σx

σy

τxy

⎤
⎥⎦

k

=
⎡
⎢⎣

Q̄11Q̄12Q̄16

Q̄12Q̄22Q̄26

Q̄16Q̄26Q̄66

⎤
⎥⎦

k

⎡
⎢⎣

εx

εy

γxy

⎤
⎥⎦ , (3.15)
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Figure 3.7 Off-axis ply element under in-plane loading.

Figure 3.8 Variations of bending strain and stress in a [0/90]s laminate subject to
pure bending loading.

where the elements, Q̄ij , of the stiffness matrix for ply k are defined in terms
of the principal stiffnesses, Qij , and the ply orientation, θk, in Appendix A.
The subscript k on the stresses signifies that the stresses may vary in a dis-
continuous manner from ply to ply, even if the strains vary in a continuous
manner (Equations (3.10)).

Figure 3.8 illustrates the variations of strain, εx , and stress, σx , in a [0/90]s
laminate under pure bending load. The stress, σx , is greater in the 0◦ plies
than the 90◦ plies because the 0◦ plies have the fibers aligned with the lon-
gitudinal direction (x axis), while the 90◦ plies have the fibers aligned with
the y axis. Typically, Young’s modulus (E) is a factor 5–15 greater in the 0◦
direction than in the transverse direction.
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Figure 3.9 Force and moment resultants for an element of a laminate plate.

3.1.4 Force and Moment Resultants

Force and moment resultants, defined for an element of the laminate (Fig-
ure 3.9), are obtained by integrating the stresses over the thickness of the
laminate

(Nx,Ny,Nxy) =
∫ h/2

−h/2
(σx, σy, τxy)dz, (3.16a)

(Mx,My,Mxy) =
∫ h/2

−h/2
(σx, σy, τxy)zdz. (3.16b)

Because the stresses vary in a continuous manner within a ply but may jump
across the ply boundaries as shown in Figure 3.8, the integrations are con-
ducted for each ply (k) defined by the ply coordinates zk−1 and zk, and then
the results are added.⎡

⎢⎣
Nx

Ny

Nxy

⎤
⎥⎦ =

∫ h/2

−h/2

⎡
⎢⎣

σx

σy

τxy

⎤
⎥⎦ dz =

N∑
k=1

∫ zk

zk−1

⎡
⎢⎣

σx

σy

τxy

⎤
⎥⎦

k

dz, (3.17a)

⎡
⎢⎣

Mx

My

Mxy

⎤
⎥⎦ =

∫ h/2

−h/2

⎡
⎢⎣

σx

σy

τxy

⎤
⎥⎦ zdz =

N∑
k=1

∫ zk

zk−1

⎡
⎢⎣

σx

σy

τxy

⎤
⎥⎦

k

zdz. (3.17b)

The force and moment resultants have units of force per unit length and
moment per unit length, and are generally dependent on the in-plane coor-
dinates, x and y, but do not depend on the thickness coordinate (z) after
integration.
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Substitution of the in-plane stresses given by Equations (3.15) into (3.17)
yields, after integration,⎡

⎢⎣
Nx

Ny

Nxy

⎤
⎥⎦ =

⎡
⎢⎣

A11A12A16

A12A22A26

A16A26A66

⎤
⎥⎦

⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ +

⎡
⎢⎣

B11B12B16

B12B22B26

B16B26B66

⎤
⎥⎦

⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ , (3.18)

⎡
⎢⎣

Mx

My

Mxy

⎤
⎥⎦ =

⎡
⎢⎣

B11B12B16

B12B22B26

B16B26B66

⎤
⎥⎦

⎡
⎢⎣

ε0
y

ε0
y

γ 0
xy

⎤
⎥⎦ +

⎡
⎢⎣

D11D12D16

D12D22D26

D16D26D66

⎤
⎥⎦

⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ . (3.19)

The [A], [B], and [D] matrices in Equations (3.18) and (3.19) govern the re-
sponse of a laminated plate to forces and moments. The [A] matrix is called
“extensional stiffness matrix”, the [B] matrix is called “coupling stiffness
matrix”, and the [D] matrix is called “bending stiffness matrix” in accor-
dance with their roles for the mechanical behavior of a laminated plate. The
[A] matrix relates extensional and shear strains to the force resultants, and
the [D] matrix relates bending and twisting curvatures to the moment resul-
tants. The [B] matrix appears both in the equations for the force resultants
and moment resultants and acts to couple the responses in extension and
bending.

The elements of the stiffness matrices are given by

Aij =
N∑

k=1

(Q̄ij )k(zk − zk−1), (3.20a)

Bij = 1

2

N∑
k=1

(Q̄ij )k(z
2
k − z2

k−1), (3.20b)

Dij = 1

3

N∑
k=1

(Q̄ij )k(z
3
k − z3

k−1). (3.20c)

It may be shown that Bij = 0 in Equations (3.18) and (3.19) for laminates
with a symmetrical lay-up sequence. Hence, such laminates possess no cou-
pling between the extensional and bending responses which greatly simpli-
fies the analysis of the response. Face laminates are commonly laid-up in
a symmetric manner. Furthermore, face laminates are usually “balanced”,
which means that for an off-axis ply with fiber orientation angle θ , there is
a corresponding layer with orientation angle −θ , which will have the conse-
quence that A16 = A26 = 0 in Equations (3.18). These terms, if non-zero,
signify coupling between extensional and shear response, which is undesir-
able.



50 3 Classical and First-Order Shear Deformation Analysis of Sandwich Plates

3.1.5 Effective Engineering Elastic Constants of Laminates

When analyzing sandwich beams and panels, it is convenient to establish the
effective engineering constants of the face laminates. Such constants are pri-
marily the in-plane extensional and shear moduli, although sometimes the
out-of-plane moduli are demanded. In this section we will present method
to calculate the in-plane engineering constants based on the laminate exten-
sional stiffness matrix.

Consider a symmetric and balanced laminated plate. According to the dis-
cussion in Section 3.1.4, the response to in-plane loading is given by⎡

⎢⎣
Nx

Ny

Nxy

⎤
⎥⎦ =

⎡
⎢⎣

A11 A12 0

A12 A22 0

0 0 A66

⎤
⎥⎦
⎡
⎢⎣

εx

εy

γxy

⎤
⎥⎦ . (3.21)

Notice here that the laminate strains coincide with the mid-plane strains due
to the absence of bending curvatures (Equations (3.10)). For the purpose of
establishing the effective engineering constants, it is more convenient to use
the compliance (inverted) version of Equation (3.21), i.e.,⎡

⎢⎣
εx

εy

γxy

⎤
⎥⎦ =

⎡
⎢⎣

a11 a12 0

a12 a22 0

0 0 a66

⎤
⎥⎦
⎡
⎢⎣

Nx

Ny

Nxy

⎤
⎥⎦ , (3.22)

where

a11 = A22

A11A22 − A2
12

, (3.23a)

a12 = −A12

A11A22 − A2
12

, (3.23b)

a22 = A11

A11A22 − A2
12

, (3.23c)

a66 = 1

A66
. (3.23d)

To further facilitate the deformation of the engineering constants, it is recog-
nized that the average stresses σ̄x , σ̄y and τ̄xy are given by

σ̄x = Nx

h
, (3.24a)
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σ̄y = Ny

h
, (3.24b)

τ̄xy = Nxy

h
. (3.24c)

With this, Equations (3.22) may be written as⎡
⎢⎣

εx

εy

γxy

⎤
⎥⎦ = h

⎡
⎢⎣

a11 a12 0

a12 a22 0

0 0 a66

⎤
⎥⎦
⎡
⎢⎣

σ̄x

σ̄y

γ̄xy

⎤
⎥⎦ . (3.25)

These equations may be compared to those for an orthotropic homogeneous
material loaded in the principal system (Figure 3.6)⎡

⎢⎣
ε1

ε2

γ12

⎤
⎥⎦ =

⎡
⎢⎣

l/E1 −ν12/E1 0

−ν21/E2 1/E2 0

0 0 1/G12

⎤
⎥⎦
⎡
⎢⎣

σ1

σ2

τ12

⎤
⎥⎦ . (3.26)

Direct comparison between Equations (3.25) and (3.26) yields the effective
engineering constants of the laminated plate according to

Ex = 1

ha11
, (3.27a)

νxy = −a12

a11
, (3.27b)

Ey = 1

ha22
, (3.27c)

νyx = −a12

a22
, (3.27d)

Gxy = 1

ha66
. (3.27e)

Notice also that the Poisson ratios are not independent

νxy = νxy

Ex

Ey

, (3.28)

which conforms to established orthotropic material behavior.
Equations (3.27) are very convenient for reducing a large set of ply me-

chanical properties and ply orientation angles into a set of four independent
engineering constants.
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Figure 3.10 Definition of nomenclatures for sandwich plate.

For estimation of the effective out-of-plane stiffnesses Ez,Gxz and Gyx of
the laminate several methods exists, see, e.g., Chou et al. (1972) and Bogetti
et al. (2004). It should be pointed out that such methods are much more
involved than the determination of the in-plane engineering constants. As a
first estimate for a laminate consisting of transversely isotropic plies, it could
be assumed that

Ez
∼= E3 = E2, (3.29a)

Gxz
∼= Gyz

∼= G13 = G12. (3.29b)

Such estimates are expected to be reasonable for laminates utilizing unidi-
rectional transversely isotropic plies, where the properties in the out-of-plane
direction should be close to those in the in-plane transverse direction.

3.2 First-Order Shear Deformation Analysis of a Sandwich Plate

Consider a sandwich plate consisting of face sheets of thicknesses h1 and
h2, and a core of thickness hc, see Figure 3.10. The faces and core may be
isotropic or orthotropic with their principal directions along xyz, see Fig-
ure 3.10. The core may be corrugated (web), honeycomb, a foamed material,
or balsa wood, (Figure 1.4). Such cores display macroscopic mechanical be-
havior that may be characterized as isotropic or orthotropic, i.e. having three
mutually perpendicular planes of elastic symmetry (Hyer, 1998).

The early texts on sandwich structures forwarded by Plantema (1966) and
Allen (1969), as well as the more recent text by Zenkert (1997), analyze the
deflection, w, of sandwich panels using “partial deflections”, i.e., deflections
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due to bending and shear separately, and obtain the total deflection by adding
solutions for each mode of deformation. Analysis of sandwich plates and
beams, however, is most conveniently performed extending the first-order
shear deformation theory for homogeneous and isotropic plates developed
by Reissner (1945) and Mindlin (1951) to sandwich plates with orthotropic
face sheets. Such extensions were done by several authors, e.g. Libove and
Batdorf (1948) and Whitney (1987). In this text we will forward the first-
order shear deformation plate theory in a form similar to that presented for
flat sandwich panels by Whitney (1987) who assumed that the in-plane dis-
placements u and v of the faces are those at the face/core interfaces. Here we
will modify the Whitney theory by assuming that the in-plane displacements
of the faces are those at the centroids of the face sheets. This is consistent
with traditional sandwich theory (Allen, 1969).

Figure 3.10 shows that the origin of the coordinate system xyz is placed
at the center of the core, i.e., z = 0 in the core mid-plane. This is differ-
ent from classical laminated plate theory where z = 0 in the geometrical
mid-plane of the panel (Figure 3.10). The analysis is based on the following
assumptions:

(i) The face sheets are thin compared to the core, i.e., h1, h2 � hc and in a
state of plane stress (σz = τxz = τyz = 0).

(ii) The in-plane stresses, σx, σy , and τxy , in the core are negligible.
(iii) In-plane displacements, u and v, are uniform through the thickness of

the face sheets and assume their mid-plane (centroidal) values.
(iv) The out-of-plane displacement, w, is independent of the z coordinate,

i.e., the thickness strain, εz = ∂w/∂z = 0.
(v) The in-plane displacements in the core, u and v, are linear in the thick-

ness coordinate, z.

Based on the assumptions (iv) and (v), the displacements of the core are

u = u0(x, y) + zψx(x, y), (3.30a)

v = v0(x, y) + zψy(x, y), (3.30b)

w = w0(x, y), (3.30c)

where u0, v0 and w0 are the displacements at the core mid-plane, see Fig-
ure 3.11, and ψx and ψy are the rotations of cross-sections originally perpen-
dicular to the x and y axes, respectively. From continuity of displacements at
the face/core interfaces (z = ±hc/2), and assumption (iii), the displacements
of the bottom and top face sheets become (Figure 3.11)
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Figure 3.11 Illustration of displacement u for sandwich element oriented along the
x axis.

u(bottom) = u0 − (hc + h1)

2
ψx, (3.31a)

u(top) = u0 + (hc + h2)

2
ψx, (3.31b)

v(bottom) = v0 − (hc + h1)

2
ψy, (3.31c)

v(top) = v0 + (hc + h2)

2
ψy, (3.31d)

w = w0, (3.31e)

where “bottom” and “top” refer to the lower and upper face sheets, respec-
tively.

Figure 3.12 shows a section of a sandwich plate cut in the x–z plane. The
core element ACFD represents a section of the core with the surfaces AC and
DF perpendicular to the x axis before deformation. After deformation, point
B displaces to assume a position at B′, and the vertical upwards displace-
ment of point B (originally at z = 0) is w, and that of the adjacent point E
assuming the new position E′ is w + (∂w/∂w)dx, where ∂w/∂x is the slope
of the panel along the x axis.

Similar to classical plate theory for homogeneous and isotropic materials
(Timoshenko and Woinowsky-Krieger, 1959), and classical laminated plate
theory (see above), first-order shear deformation theory assumes that plane
sections of the core, originally perpendicular to the plane of the sandwich
panel remain plane after deformation. According to this theory, however,
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Figure 3.12 Deformation of core element in the x–z plane.

the cross-sections may not necessarily remain perpendicular to the deformed
middle surface of the core, as shown in Figure 3.12. The slope of the mid-
dle surface, ∂w/∂x differs from the magnitude of the rotation of the cross-
section, |ψx|, and the difference (βx) constitutes the shear deformation. From
Figure 3.12, it is recognized that

βx = ∂w

∂x
− |ψx |, (3.32)
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where the rotation, ψx , as shown in Figure 3.12 is negative (ψx < 0) while
the slope is shown positive. Hence, the shear strain is

γxy = ψx + ∂w

∂x
. (3.33)

This analysis applies to all points at position x and hence implies that the
shear strain is uniform through the thickness of the core. Similar considera-
tions may be formulated for core sections perpendicular to the y axis.

The in-plane strains are obtained from Equations (3.2a, b and f) and (3.30)

εx = ε0
x + zκx, (3.34a)

εy = ε0
y + zκx, (3.34b)

γxy = γ 0
xy + zκxy, (3.34c)

where [ε0
x, ε

0
y, γ

0
xy] are the mid-core strains defined by

ε0
x = ∂u0

∂x
, (3.35a)

ε0
y = ∂v0

∂y
, (3.35b)

γ 0
xy = ∂u0

∂y
+ ∂v0

∂x
(3.35c)

and the mid-core curvatures [κx, κy, κxy] are

κx = ∂ψx

∂x
, (3.36a)

κy = ∂ψy

∂y
, (3.36b)

κxy = ∂ψx

∂y
+ ∂ψy

∂x
. (3.36c)

The out-of-plane shear strains, γyz and γxz, are defined in Equations (3.2d,
e) which, combined with Equations (3.30), yield

γxz = ψx + ∂w

∂x
, (3.37a)

γyz = ψy + ∂w

∂y
. (3.37b)
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The out-of-plane extensional strain in the core, εz, vanishes according to
assumption (iv).

Labeling the bottom and top face sheets by (1) and (2), their in-plane
strains become (Equations (3.36)),

Bottom

εx(1) = ε0
x − (hc + h1)

2
κx, (3.38a)

εy(1) = ε0
y − (hc + h1)

2
κy, (3.38b)

γxy(1) = γ 0
xy − (hc + h1)

2
κxy. (3.38c)

Top

εx(2) = ε0
x + (hc + h2)

2
κx, (3.38d)

εy(2) = ε0
y + (hc + h2)

2
κy, (3.38e)

γxy(2) = γ 0
xy + (hc + h2)

2
κxy. (3.38f)

The force and moment resultants for a sandwich element (Figure 3.13) are
obtained by integrating the stresses over the element thickness,

(Nx,Ny,Nxy) =
∫ −hc/2

−(hc/2+h1)

(σx(1), σy(1), τxy(1))dz

+
∫ hc/2+h2

hc/2
(σx(2), σy(2), τxy(2))dz, (3.39a)

(Mx,My,Mxy) =
∫ −hc/2

−(hc/2+h1)

(σx(1), σy(1), τxy(1))zdz

+
∫ hc/2+h2

hc/2
(σx(2), σy(2), τxy(2))zdz, (3.39b)

(Qx,Qy) =
∫ hc/2

−hc/2
(τxz, τyz)dz. (3.39c)

Notice that the in-plane normal and in-plane shear stresses in the core are
neglected by virtue of assumption (ii).
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Figure 3.13 Force and moment resultants for a sandwich element.

The in-plane stresses in each ply (k) of the face sheets are given by Equa-
tion (3.15) ⎡

⎢⎣
σx(i)

σy(i)

τxy(i)

⎤
⎥⎦

k

=
⎡
⎢⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎥⎦

k

⎡
⎢⎣

εx(i)

εy(i)

γxy(i)

⎤
⎥⎦ , (3.40)

where k is the ply index (Figure 3.1) and i = 1 for the lower face, and i = 2
for the upper face. The matrix in Equation (3.40) is the transformed plane
stress stiffness matrix as defined in Appendix A.

Substitution of the in-plane stresses given by Equations (3.40) into the
expressions for the force and moment resultants (3.39a, b) yields⎡
⎢⎣

Nx

Ny

Nxy

⎤
⎥⎦ =

⎡
⎢⎣

A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤
⎥⎦
⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ +

⎡
⎢⎣

B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤
⎥⎦
⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ ,

(3.41)

⎡
⎢⎣

Mx

My

Mxy

⎤
⎥⎦ =

⎡
⎢⎣

C11 C12 C16

C12 C22 C26

C16 C26 C66

⎤
⎥⎦
⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ +

⎡
⎢⎣

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤
⎥⎦
⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ ,

(3.42)
where

Aij = Aij (1) + Aij (2), (3.43a)



Structural and Failure Mechanics of Sandwich Composites 59

Bij = (hc + h2)

2
Aij (2) − (hc + h1)

2
Aij (1), (3.43b)

Cij = Cij (1) + Cij (2), (3.43c)

Dij = (hc + h2)

2
Cij (2) − (hc + h1)

2
Cij (1), (3.43d)

with

Aij (1), Cij (1) =
∫ −hc/2

−(hc/2+h1)

Q̄ij (1, z)dz (bottom face), (3.44a)

Aij (2), Cij (2) =
∫ hc/2+h2

hc/2
Q̄ij (1, z)dz (top face). (3.44b)

It may be shown that a symmetric sandwich plate, i.e., where the top and
bottom faces are laid-up such that the mid-plane (z = 0) of the sandwich
panel is a symmetry (mirror) plane; for example, the bottom face (#1) is a
[0/90] laminate and the top face (#2) is a [90/0] laminate, fulfills the follow-
ing equations:

Aij (1) = Aij (2), (3.45a)

Cij (1) = −Cij (2). (3.45b)

As a result, Equations (3.45) in (3.43) give

Aij = 2Aij (2), (3.46a)

Bij = 0 = Cij , (3.46b)

Dij = (hc + hf )Cij (2), (3.46c)

where hf = h1 = h2, is the face thickness.
Consequently, for such a panel the constitutive Equations (3.41) and

(3.42) uncouple and become

⎡
⎢⎣

Nx

Ny

Nxy

⎤
⎥⎦ =

⎡
⎢⎣

A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤
⎥⎦
⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ , (3.47)

⎡
⎢⎣

Mx

My

Mxy

⎤
⎥⎦ =

⎡
⎢⎣

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤
⎥⎦
⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ . (3.48)
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Another simplification of the analysis is obtained by treating the face sheets
as homogeneous materials with average stiffnesses

Q̄ij (1) = Aij (1)/h1, (3.49a)

Q̄ij (2) = Aij (2)/h2. (3.49b)

For this case, the integrals in Equations (3.44) become

Cij (1) = −Aij (1)

2
(hc + h1), (3.50a)

Cij (2) = Aij (2)

2
(hc + h2). (3.50b)

Substitution in Equations (3.43) gives

Aij = Aij (1) + Aij (2), (3.51a)

Bij = (hc + h2)

2
Aij (2) − (hc + h1)

2
Aij (1), (3.51b)

Cij = Bij , (3.51c)

Dij =
(

hc + h1

2

)2

Aij (2) +
(

hc + h2

2

)2

Aij (2). (3.51d)

For a symmetric sandwich with homogeneous faces: Aij (1) = Aij (2) =
Q̄ij (f )hf , and h1 = h2 = hf , which leads to

Aij = 2Aij (2) = 2Q̄ij (f )hf , (3.52a)

Bij = Cij = 0, (3.52b)

Dij = 2

(
hc + hf

2

)2

Q̄ij (f )hf . (3.52c)

The expression for the flexural stiffness, Equation (3.52c), is the plate
equivalent to the beam equation (1.8) for a sandwich beam with thin faces.

For calculation of the transverse shear resultants, Qx and Qy , defined in
Equation (3.39c) and shown in Figure 3.13, the shear stresses in the core, τxz

and τyz, are given in terms of the shear strains, γxz and γyz by

τxz = Gxzγxz, (3.53a)

τyz = Gyzγyz, (3.53b)

where Gxz and Gyz are the transverse shear moduli of the core.
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In shear deformation theory for homogeneous plates, it is customary to
use a correction factor (k), or correction factors (k1 and k2) for the trans-
verse shear strains as introduced by Reissner (1945), Mindlin (1951), and
Chow (1971), although a single factor is most commonly used for both trans-
verse shear strains. The factor k is introduced as a multiplicative parameter
in the constitutive relations between transverse shear forces and transverse
shear strains (see, e.g., Whitney, 1987). The need for a correction factor in
first-order theory for homogeneous plates originates from the fact that the
transverse shear strains and shear stresses are uniform through the thickness
instead of the classical parabolic shear stress distribution with zero shear
stresses on the surfaces of the plate. The correction factor k is determined
from exact solutions for the shear stresses at the center of the plate in terms
of the transverse shear forces or from the total strain energy due to trans-
verse shear forces (Whitney, 1987). Whitney (1972) determined two correc-
tion factors (k1 and k2) for the transverse shear strains in a sandwich panel
by fitting the first-order shear results to an exact solution by Pagano (1970a).
Most commonly, however, shear correction factors are not used for sand-
wich panels since the core shear stress indeed is fairly constant throughout
the thickness of the core (see, e.g., Section 2.2). Furthermore, the faces are
assumed free from shear stresses (assumption (i)). With no shear correction
factor, integration of the (constant) shear stress given by Equations (3.37)
into (3.53) over the core thickness (Equation (3.39c)) yields

Qx = hcGxz

(
ψx + ∂w

∂x

)
, (3.54a)

Qy = hcGyz

(
ψy + ∂w

∂y

)
. (3.54b)

3.2.1 Alternative Form of the Constitutive Equations for a
Sandwich Plate Element

The force and moment resultants given by Equations (3.41) and (3.42) may
be written in compressed form as

[N] = [N][ε0] + [B][κ], (3.55a)

[M] = [C][ε0] + [D][κ], (3.55b)

where [N] and [M] represent the 3×1 force and moment resultants, [A], [B],
[C] and [D] are the 3 × 3 elastic stiffness matrices, and [ε0] and [κ] are the
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3 × 1 core mid-plane strains and curvatures, respectively. Equations (3.55)
may also be written as [

N

M

]
=

[
A B

C D

][
ε0

κ

]
, (3.56)

where the ABCD matrix is of dimension 6 × 6.
Equations (3.56) are convenient when force and moment resultants are

to be determined from known mid-core strains and curvatures. Often it is
desirable to express the core mid-core strains and curvatures in terms of force
and moment resultants, and this is achieved by inversion of the 6×6 ABCD

matrix in Equations (3.56)[
ε0

κ

]
=

[
a b

c d

][
N

M

]
, (3.57)

where expressions for the 3 × 3 compliance matrices [a], [b], [c] and [d] in
terms of [A], [B], [C] and [D] are provided in Appendix B.

3.2.2 Equilibrium Equations

The equilibrium equations for force and moment resultants are presented by
Whitney (1987). These equations are

∂Nx

∂x
+ ∂Nxy

∂y
= 0, (3.58a)

∂Nxy

∂x
+ ∂Ny

∂y
= 0, (3.58b)

∂Mx

∂x
+ ∂Mxy

∂y
− Qx = 0, (3.58c)

∂Mxy

∂x
+ ∂My

∂y
− Qy = 0, (3.58d)

∂Qx

∂x
+ ∂Qy

∂y
+ Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+ Ny

∂2w

∂y2
+ q = 0, (3.58e)

with
q = σz(h/2) − σz(−h/2), (3.58f)

where h is the thickness of the sandwich plate.
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Figure 3.14 Definition of normal and tangential directions for a rectangular panel.

3.2.3 Boundary Conditions for a Rectangular Panel

We will consider a rectangular panel with the x and y coordinate axes parallel
to the edges of the panel such as shown in Figure 3.14. The proper boundary
conditions are necessary to guarantee achievement of a unique solution of the
governing equations. Such conditions may be achieved by inspection of the
problem which will reveal some of the more obvious boundary conditions.
Other boundary conditions may be obtained by applying energy principles
and calculus of variations (Whitney, 1987). Boundary conditions for rectan-
gular plates refer to the normal and tangential in-plane directions as defined
in Figure 3.14.

Boundary conditions specified for the present shear deformation theory
requires specification of displacements, forces, and moments with respect to
the normal and tangential directions of the panel (Figure 3.14). Five bound-
ary conditions are generally required.

Simply-Supported

Figure 3.15 illustrates simply supported conditions for the edge x = 0, i.e.,
the deflection, w, is zero along the edge and at the same time, the edge can
rotate freely with respect to a line along the edge (x = 0), i.e., Mx = 0 along
this edge.
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Figure 3.15 Illustration of simply-supported boundary conditions at x = 0.

Furthermore, the edge is assumed not to transfer normal and shear forces
and prohibit rotations of the panel along the y axis, i.e., Nx = Nxy = 0, and
the rotations ψy = 0 along this edge. In summary, we have

w(0, y) = Mx(0, y) = Nx(0, y) = Nxy(0, y) = ψy(0, y) = 0. (3.59)

If all edges are simply supported, similar conditions apply for the edges x =
a, y = 0, and y = b.

Hinged-Free Perpendicular to the Edge

If the edge, x = 0, is moment-free (hinged) and free to move in a direction
normal to the edge (here along the x axis), the following conditions apply

Nx(0, y) = v0(0, y) = Mx(0, y) = ψy(0, y) = w(0, y) = 0. (3.60)

Hinged-Free Parallel to the Edge

If the edge, x = 0, is hinged and free to move tangentially, the following
conditions apply:

u0(0, y) = Nxy(0, y) = Mx(0, y) = ψy(0, y) = w(0, y) = 0. (3.61)

Clamped

If the edge, x = 0, is clamped or “built-in”, the deflection, w, along the edge
is zero and the rotations, ψx and ψy , as well as mid-core displacements u0

and v0 (Equations (3.30)), are zero, i.e.

w(0, y) = ψx(0, y) = ψy(0, y) = u0(0, y) = v0(0, y) = 0. (3.62)
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Free Edge

If the edge, x = 0, is completely unconstrained, there are no resulting normal
and shear forces in the plane, no bending and twisting moments, and no
transverse shear force, i.e.,

Nx(0, y) = Nxy(0, y) = Mx(0, y) = Mxy(0, y) = Qx(0, y) = 0. (3.63)

3.3 Analysis of a Transversely Loaded Sandwich Plate

Sandwich panels are common structural elements in sandwich constructions
such as boat hulls and containers. Analysis of flat sandwich panels of rec-
tangular shape have been conducted by several investigators, e.g. Yen et al.
(1951), Reissner (1948), Hoff (1950), and Riber (1997), and both linear small
deflection analysis and geometrical nonlinear behavior have been addressed.
In this section we will present analysis of the small deflection response of
simply supported rectangular sandwich panels under transverse loading.

The strain-displacement relations for the core are those of Equa-
tions (3.30):

u = u0 + zψx, (3.64a)

v = v0 + zψy, (3.64b)

w = w0. (3.64c)

The face displacements are specified in Equations (3.31). The sandwich
panel is assumed to be of symmetric construction and the face sheets are
treated as homogeneous specially orthotropic materials. Hence, the consti-
tutive relations for the force and moment resultants are given by (Equa-
tions (3.47) and (3.48))⎡

⎢⎣
Nx

Ny

Nxy

⎤
⎥⎦ =

⎡
⎢⎣

A11 A12 0

A12 A22 A26

0 0 A66

⎤
⎥⎦
⎡
⎢⎣

ε0
x

ε0
y

γ 0
xy

⎤
⎥⎦ , (3.65)

⎡
⎢⎣

Mx

My

Mxy

⎤
⎥⎦ =

⎡
⎢⎣

D11 D12 0

D12 D22 0

0 0 D66

⎤
⎥⎦
⎡
⎢⎣

κx

κy

κxy

⎤
⎥⎦ , (3.66)

where, according to Equations (3.52),
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Aij = 2Aij (f ), (3.67a)

Dij = 2

(
hc + hf

2

)2

Aij (f ). (3.67b)

For transverse shear loading, the constitutive equations (3.54) read

Qx = hcGxz

(
ψx + ∂w

∂x

)
, (3.68a)

Qy = hcGyz

(
ψy + ∂w

∂y

)
. (3.68b)

Substitution of the constitutive equations (3.65), (3.66) and (3.68) into the
equilibrium equations (3.58) yields the following set of governing differen-
tial equations valid for symmetric sandwich panels with specially orthotropic
or isotropic face sheets:

A11
∂u0

∂x2
+ (A12 + A66)

∂2v0

∂x∂y
+ A66

∂2u0

∂y2
= 0, (3.69a)

A22
∂2v0

∂y2
+ (A12 + A66)

∂2u0

∂x∂y
+ A66

∂2v0

∂x2
= 0, (3.69b)

D11
∂2ψx

∂x2
+ (D12 + D66)

∂2ψy

∂x∂y
+ D66

∂2ψx

∂y2
− hcGxz

(
ψx + ∂w

∂x

)
= 0,

(3.69c)

D22
∂2ψy

∂y2
+ (D12 + D66)

∂2ψx

∂x∂y
+ D66

∂2ψy

∂x2
− hcGyz

(
ψy + ∂w

∂y

)
= 0,

(3.69d)

hcGxz

(
∂ψx

∂x
+ ∂2w

∂x2

)
+ HcGyz

(
∂ψy

∂y
+ ∂2w

∂y2

)
+ q = 0. (3.69e)

We will specifically apply these equations to a transversely loaded sand-
wich panel of planar dimension a and b with the edges hinged and uncon-
strained parallel to the edges, see Figure 3.16. Specifically, the conditions
stipulated for the edge defined by x = 0 in Equation (3.61) apply to all
edges.

The transverse loading is most commonly represented by a double Fourier
series (see, e.g., Whitney, 1987)

q(x, y) =
∞∑

m=1

∞∑
n=1

qmn sin
mπx

a
sin

nπy

b
. (3.70)
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Figure 3.16 Rectangular sandwich panel under transverse loading.

The Fourier coefficients, qmn, are determined from the actual load distrib-
ution, q(x, y), using

qmn = 4

ab

∫ a

0

∫ b

0
q(x, y) sin

mπx

a
sin

nπy

b
dxdy. (3.71)

A common loading case studied is uniform pressure over the entire panel
surface, q = q0 = constant. For this case, Equation (3.71) yields

qmn = 16q0

π2mn
, m, n odd, (3.72a)

qmn = 0, m, n even. (3.72b)

Another important case is the rectangular area of uniform pressure shown in
Figure 3.17. For this type of loading, Equation (3.71) yields

qmn = 16q0

π2mn
sin

mπξ

a
sin

mπη

b
sin

mπc

2a
sin

nπd

2b
, (3.73)

where ξ and η are the x and y coordinates of the center of the rectangle and c

and d are the lengths of the rectangle along the x and y axes, see Figure 3.17.

A concentrated load, P , applied at (x, y) = (ξ, η) may be represented by

qmn = 4P

ab
sin

mπξ

a
sin

nπη

b
. (3.74)

By increasing the number of terms in the series, Equation (3.70), the exact
solution will be approached asymptotically. The number of terms required
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Figure 3.17 Rectangular panel loaded with uniform load over a rectangular region
of the panel.

for a converged solution of the quantity of interest, i.e., deflection, strain or
stress, must be examined for each case.

The analysis of a transversely loaded panels will here assume a simple
one term case, i.e. m = n = 1, i.e. in Equation (3.70),

q(x, y) = q0 sin
πx

a
sin

πy

b
. (3.75)

Boundary conditions for rectangular panels are discussed in Section 3.2.3. In
particular, the hinged-free tangential conditions defined in Equation (3.61)
are assumed here. For the edges parallel to the y axis, x = 0 and a (Fig-
ure 3.16), the following conditions apply:

u0 = 0, (3.76a)

Nxy = A66

(
∂u0

∂y
+ ∂v0

∂x

)
= 0, (3.76b)

w = 0, (3.76c)

ψy = 0, (3.76d)

Mx = D11
∂ψx

∂x
+ D12

∂ψy

∂y
= 0. (3.76e)
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For the edges parallel to the x axis, y = 0 and b, the conditions are

v0 = 0, (3.77a)

Nxy = A66

(
∂u0

∂y
+ ∂v0

∂x

)
= 0, (3.77b)

w = 0, (3.77c)

ψx = 0, (3.77d)

My = D12
∂ψx

∂x
+ D22

∂ψy

∂y
= 0. (3.77e)

A solution that satisfies the boundary conditions (3.76) and (3.77) consistent
with the loading function, Equation (3.75), is given by

u0 = A sin
πx

a
cos

πy

b
, (3.78a)

v0 = B cos
πx

a
sin

πy

b
, (3.78b)

ψx = C cos
πx

a
sin

πy

b
, (3.78c)

ψy = D sin
πx

a
cos

πy

b
, (3.78d)

w = E sin
πx

a
sin

πy

b
. (3.78e)

Substitution of Equations (3.78) into the governing equations (3.69) yields
five equations conveniently expressed into the following matrix equation:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

H11 H12 0 0 0

H12 H22 0 0 0

0 0 H33 H34 H35

0 0 H34 H44 H45

0 0 H35 H45 H55

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A

B

C

D

E

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

q0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.79)

The elements Hij of the symmetric 5 × 5 matrix are given by

H11 = A11

a2
+ A66

b2
, (3.80a)

H12 = A12 + A66

ab
, (3.80b)
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H22 = A22

b2
+ A66

a2
, (3.80c)

H33 = π2D11

a2
+ π2D66

b2
+ hcGxz, (3.80d)

H34 = π(D12 + D66)

ab
, (3.80e)

H35 = πhcGxz

a
, (3.80f)

H44 = π2D22

b2
+ π2D66

a2
+ hcGyz, (3.80g)

H45 = πhcGyz

b
, (3.80h)

H55 = π2hc

(
Gxz

a2
+ Gyz

b2

)
. (3.80i)

Inversion of the H matrix, Equation (3.79), provides the constants A, B, C,
D and E. The plate deflection is given by (Equation (3.78e))

w = E sin
πx

a
sin

πy

b
, (3.81a)

with
E = h33q0, (3.81b)

where

h33 = H33H44 − H 2
34

det[Hsub] . (3.82)

[Hsub] represents the following 3×3 submatrix defined by the last three rows
and columns of the full matrix of Equation (3.79)

[Hsub] =
⎡
⎢⎣

H33H34H35

H34H44H45

H35H45H55

⎤
⎥⎦ . (3.83)

The maximum deflection, wmax, occurs at the panel center (x = a/2, y =
b/2) and is given by

wmax = E = h33q0. (3.84)

A square (a = b) sandwich panel with unidirectional composite face sheets
over an isotropic foam core is considered. The face sheets are assumed to
consist of carbon/epoxy with the following mechanical properties:
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E1 = 125 GPa, E2 = 5 GPa,

ν12 = 0.25, G12 = 2.5 GPa.

The core considered is a H100 PVC foam with a shear modulus, G =
60 MPa. The thicknesses of the face sheets and core are hf = 2 mm and
hc = 16 mm. Calculations of the deflection, wmax, were conducted over a
range of panel sizes. The side length, a, of the square panel was varied from
0.1 to 1.2 m. The bending stiffness elements Dij were calculated from Equa-
tion (3.52c) which specifically applies to a symmetric sandwich with thin
homogeneous face sheets.

Figure 3.18 displays the maximum deflection vs. the panel size, see the
curve labeled SDPT (shear deformation plate theory). Also shown is the so-
lution given by classical laminated plate theory (CLPT) (Whitney, 1987),

wmax = q0a
4

π4D(m = n = 1)
, (3.85)

where D(m = n = 1) is a bending stiffness term given by

D(m = n = 1) = D11 + 2(D12 + 2D66) + D22. (3.86)

As discussed earlier, the CLPT formulation does not accommodate interlam-
inar shear deformation. Figure 3.18 shows that the CLPT results provide a
lower bound to the deflection of the plate.

Figure 3.18 shows that the deflection of small plates with a thick core
are quite substantially influenced by transverse shear deformation, while the
deflection of larger panels is less affected by this mode of deformation and
may be analyzed using CLPT.

3.4 Analysis of Sandwich Plate Twist Test

Tsai (1965) developed a plate twist test to determine the engineering elastic
constants of orthotropic plates. The test utilized a square panel loaded at one
corner and supported at the other corners. The panel response was analyzed
using classical orthotropic plate theory (Lekhnitskii, 1968). By twisting a 0◦
panel and loading beams cut from the panel in bending, Tsai (1965) was able
to determine all five elastic compliance constraints. Mure (1986) developed
a two-point loading configuration of the plate twist test in order to deter-
mine the twisting stiffness (D66) of corrugated core cardboard panels. Vinson
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Figure 3.18 Maximum deflection of a square sandwich plate under transverse pres-
sure load. CLPT and SDPT refer to classical laminated plate theory and shear de-
formation plate theory.

(1999) examined the test principle analytically in an effort to determine the
in-plane shear strength of the face sheets, face/core adhesive or core, what-
ever constituent was the weakest. The plate twist test is also used to measure
the in-plane shear modulus of plywood panels according to ASTM Standard
D3044 (2000).

3.4.1 Classical Laminated Plate Theory Analysis

Figure 3.19 shows the two-point twist loading of a sandwich plate consid-
ered here. In this configuration, two diagonally opposite corners are loaded
downwards by concentrated forces of magnitude P/2, while the other two
corners are supported.

The sandwich plate is assumed to consist of identical isotropic or specially
orthotropic faces. According to CLPT, the slopes of the middle surface are
assumed to coincide (in magnitude) with the rotations of the cross-sections.
Notice that this theory neglects transverse shear deformation. The following
expressions for the plate curvatures defined in Equations (3.12) apply:

κx = −∂2w

∂x2
, (3.87a)
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Figure 3.19 Illustration of loading and support conditions for the two-point sand-
wich plate twist test.

κy = −∂2w

∂y2
, (3.87b)

κxy = −2
∂2w

∂y∂x
. (3.87c)

For a symmetric sandwich consisting of isotropic or specially orthotropic ho-
mogeneous face sheets, the pure twisting response is expressed by Equation
(3.19)

Mxy = D66κxy, (3.88)

where the twisting stiffnesses, D66, is given by Equation (3.20c) applied to a
symmetric sandwich

D66 = (G12)f hf

(
2h2

f

3
+ 2h2

c

2
+ hf hc

)
+ (G12)ch

3
c

12
. (3.89)

where (G12)f and (G12)c are the in-plane shear moduli of the face and core
and hf and hc are the face and core thicknesses.

The twist loading shown in Figure 3.19 produces a twisting moment given
by Timoshenko and Woinowsky-Krieger (1959),

Mxy = P/4. (3.90)

A combination of Equations (3.88) and (3.90) yields

κxy = −2
∂2w

∂x∂y
= P

4D66
. (3.91)



74 3 Classical and First-Order Shear Deformation Analysis of Sandwich Plates

The solution for the plate deflection representing a state of pure uniform twist
curvature is, according to Lekhnitskii (1968), a second-order polynomial in
x and y

w(x, y) = c0 + c1x + c2y + c3xy. (3.92)

The boundary conditions for the panel are (Figure 3.19),

w(a/2,−b/2) = w(−a/2, b/2) = 0, (3.93a)

∂w

∂x
(0, 0) = ∂w

∂y
(0, 0) = 0. (3.93b)

Equations (3.91)–(3.93) yield

c0 = ab

4
c5, (3.94a)

c1 = c2 = 0, (3.94b)

c3 = −P

8D66
. (3.94c)

Hence, the panel deflection becomes

w(x, y) = −P

8D66

(
ab

4
+ xy

)
. (3.95)

The deflection of the loaded corners is given by δ = |w(a/2, b/2)|. Equa-
tion (3.95) yields

δ = Pab

16D66
. (3.96)

The plate compliance is given by C = δ/P . Hence,

C = ab

16D66
. (3.97)

Measuring the compliance of the twisted plate should thus provide a
means for determination of the twist stiffness D66. It is noted that the only
material parameters entering the expression for D66, Equation (3.89), are
the in-plane shear moduli for the faces and the core, (G12)f and (G12)c. In
most cases, the contribution to D66 from the core (the last term in Equa-
tion (3.89)) can be neglected because soft sandwich cores typically have
(G12)c � (G12)f . For such a case, the twist test should provide a means
to determine the in-plane shear modulus of the face sheets. As will be dis-
cussed in the next section, however, low modulus cores are susceptible to
transverse shear deformation which will elevate the plate compliance.



Structural and Failure Mechanics of Sandwich Composites 75

3.4.2 Finite Element Analysis

It was pointed out that the compliance expression, Equation (3.97), does not
include contributions due to transverse shear deformation. It is well known
that shear deformation may influence the response of sandwich panels quite
significantly, see Section 3.3. Furthermore, application of localized load to
a sandwich panel is known to cause indentation deformation (Frostig et al.,
1992; Thomsen, 1977). In order to further analyze, a sandwich panel under
twist loading, finite element analysis was conducted by Aviles et al. (2009).
A sandwich panel with a 25 mm thick foam core and 1 mm thick aluminum
faces (E = 70 GPa, ν = 0.3) was examined. The in-plane panel dimensions
were 30.5 × 30.5 (cm). To reduce indentation deformation at load introduc-
tion and support points, square 10 × 10 (mm) areas were introduced at the
contact regions at the corners, where the vertical displacement of the nodes
was constrained to be uniform. Since sandwich panels are prone to trans-
verse shear deformation in the core, a range of core shear moduli from 11.5
to 758 MPa was examined. The face sheets and core were modeled using
the finite element code ANSYS (2006). All panels utilized the same mesh
consisting of 3D eight-noded solid brick elements (SOLID 45).

Figure 3.20 presents the compliance of the sandwich panels calculated
from FEA and CLPT vs. core-to-face shear modulus ratio (Gc/Gf ). The
compliance predicted by CLPT is fairly constant, since D66 is very little in-
fluenced by variations in Gc. The compliance predicted by FEA, on the other
hand, decreases rapidly with increased core stiffness, until a plateau region
is reached which coincides with the CLPT prediction. Convergence occurs
for modulus ratios, Gc/Gf > 14. The large compliance for core materials
with small core shear modulus is attributed to transverse shear deformation
of the core (Aviles et al., 2009).

The results show that the compliance is extremely sensitive to changes
in core shear modulus, Gc, when Gc is below about 100 MPa. Notice that
several commercial PVC cores have shear modulus in this range (Table 1.3).
Further, CLPT provides a very low estimate of the compliance unless the
core is stiff. Thus, in general, the plate twist test is not a viable alternative
to direct shear testing of the face sheets (Chapter 2). Further information on
this test is provided in Aviles et al. (2009) and in Section 3.5.2.
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Figure 3.20 Compliance vs. core-to-face shear modulus ratio (Gc/Gf ) for a 30.5×
30.5 (cm) sandwich panel. Gf = 26.9 GPa.

3.5 Testing of Sandwich Panels

3.5.1 Pressure Loading of a Sandwich Plate

Testing of sandwich panels under distributed loading has been conducted by
several investigators. The test is quite complex since it involves application
of pressure over a quite large area in a controlled manner, while the edge
conditions of the panel should be representative for those assumed in the
analysis. Most reported test set-ups involve a pressurized water-filled rubber
bladder to distribute the load over the panel surface in a uniform and con-
trolled manner. The pressure in the bladder is controlled in order to achieve
an accurate measure of the transverse load intensity, q(x, y). Such an ap-
proach has been pursued by Rothschild et al. (1992), Bau-Madsen et al.
(1992), Wennhage and Zenkert (1998), and Hayman et al. (1998).

Wennhage and Zenkert (1998) designed a test frame that was fitted in a
large compression testing machine for testing of 0.85 × 0.85 (m) sandwich
panels with a 25 mm thick H100 PVC foam core and 1 mm thick aluminum
alloy faces (E = 70 GPa). The core mechanical properties are listed in Ta-
ble 3.2. The faces were bonded to the core using a polyurethane adhesive.
The panels were instrumented with four “shear plugs” consisting of 3 cm di-
ameter cylindrical plugs of H100 core with a properly calibrated strain gage
mounted at 45◦ to the cylinder axis (Moyer et al., 1992). The upper face of
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Figure 3.21 Location of surface mounted strain gages on sandwich panel (open
circles) and core shear plugs (filled circles). The dotted line indicates line of support.

Table 3.1 Mechanical properties for H100 PVC foam core.

Shear modulus Shear yield strength Compressive strength

G τy σc

38 MPa 1.4 MPa 1.7 MPa

the sandwich panel was instrumented with ten 0◦/90◦ strain gage rosettes,
see the outline in Figure 3.21.

Notice that all strain gages, except for the one in the left corner, where the
support lines intersect, were placed along the horizontal and vertical center
lines representing symmetries of the panel. Figure 3.22 illustrates schemati-
cally the compression test procedure using the bladder system.

The testing rig consists of an upper frame made from rigid steel I beams
with semi-circular rods of 20 mm diameter bolted to the lower surface of the
I beams, Figure 3.22. The lower frame was made from rigid steel C beams.
The primary purpose of the lower frame was to constrain the in-plane ex-
pansion of the rubber bladder. The rubber bladder was made from 2 mm
thick EPDM rubber. It was filled with water and sealed prior to testing. The
rounded steel bars are intended to provide simply supported edge boundary
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Figure 3.22 Principle of pressure loading of sandwich panel. Cross-sectional view
in the x–z plane.

Figure 3.23 Top view of test panel and support structure.

conditions (Equation (3.59)) along the periphery of the panel, see the top
view of the panel and the upper and lower frames shown in Figure 3.23.

In addition to the strain gage instrumentation (Figure 3.21), six displace-
ment gages were attached to the upper loading platen of the test frame to
measure the out-of-plane deflection of the panel along the symmetry lines
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(x = 0.4 and y = 0.4 m, Figure 3.21). The applied pressure loading was se-
lected to maintain linear-elastic stress-strain behavior of all the constituents
with a maximum stress less than or equal to 60% of the corresponding yield
stress.

Test Results

The compressive load was increased to a maximum value of 50 kN, corre-
sponding to a distributed pressure of 78 kPa over the 0.8 × 0.8 (m) test area.
Such a pressure is not expected to cause compressive yielding of the H100
PVC foam core, see the material properties listed in Table 3.2.

It was found that the panel initially deviated somewhat from the ideal
flat shape, i.e. it was slightly warped. All out-of-plane displacements read-
ings were therefore corrected for deviation from flatness by subtracting the
initial displacements from the actual readings. Upon further loading, the
panels made full contact with the upper support fixture (Figure 3.22). Fig-
ure 3.24 shows experimental displacement data collected along symmetry
lines (x = 0.4 and y = 0.4 m, Figure 3.21). Figure 3.24 also shows predic-
tion of deflections from first-order sandwich plate analysis, see Section 3.5,
using the loading function given by Equations (3.72) and simply supported
boundary conditions (Equation (3.59)).

The experimental data reveal approximate symmetry with respect to the
x and y directions, and there is good agreement between prediction and ex-
perimental data. Figure 3.25 shows the core shear stress results determined
from the “shear plugs” embedded in the core. The shear stress is calculated
from the measured shear strains using

τxz = Gcγxz. (3.98)

The predictions using sandwich plate theory analysis are overall in good
agreement with the experimental data.

3.5.2 Plate Twist Testing

A test fixture for twist testing of sandwich panels was designed to repre-
sent the two-point configuration sketched in Figure 3.19. In this test con-
figuration, two opposite corners are supported and two opposite corners are
loaded. The fixture was designed for square panels with size up to about
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Figure 3.24 Measured and predicted plate deflections along symmetry lines (x =
0.4 m, y = 0.4 m).

30 × 30 (cm). Figure 3.26 shows a photograph of the test fixture with a
slightly loaded sandwich panel. The fixture consists of a 30.5 × 30.5 × 1.28
(cm) aluminum plate bolted to the base of the test frame. To introduce load,
a 46.5 cm long steel bar of cross-section 2.54 × 3.56 (cm) was attached to
the load cell in the moving cross-head of the test machine. To allow testing
of different size panels, multiple holes for attachment of support and loading
pins were drilled in the bottom aluminum plate and in the steel bar, the outer-
most at a distance of 40.5 cm. The diagonally aligned holes in the aluminum
base plate and longitudinal holes in the steel bar were spaced at increments
of 1.27 cm. For loading and support of the panel at the desired points, steel
pins of 9.5 mm diameter with hemispherical ends were inserted in the appro-
priate holes in the bottom plate and loading bar. The radius of the loading
and support pin surfaces in contact with the panel was 4.75 mm.

A total of five square 30.5 × 30.5 (cm) (nominal dimensions) sandwich
panels were prepared using aluminum face sheets and H80, H100, and H200
PVC foam cores. Panel dimensions and thicknesses of the constituents pan-
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Figure 3.25 Core shear stress along symmetry section of the panel (y = 0.4 m).

Figure 3.26 Sandwich plate twist test fixture.

els are listed in Table 3.3. The face sheets were nominally 1.5 and 2.25 mm
thick labeled “thin” and “thick”. The nominal core thickness was 12.7 mm.
Table 3.2 lists the twisting stiffness, D66, for each panel calculated from
CLPT (Equation (3.89)) based on nominal face and core thicknesses.
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Table 3.2 Dimensions and twist stiffness (D66) of sandwich panels.

Panel Core hf (mm) hc (mm) h (mm) a (cm) D66 (kNm)

H80/Thin H80 1.50 12.5 16.4 30.6 4.09
H100/Thick1 H100 2.26 12.8 17.6 30.6 6.90
H100/Thick2 H100 2.25 12.5 15.6 30.6 7.00
H200/Thin H200 1.50 12.5 17.1 30.2 4.10
H200/Thick H200 2.24 12.4 17.4 30.6 6.83

Figure 3.27 Load vs. deflection graphs for sandwich test panels.

Prior to testing of the sandwich panels, the machine/fixture compliance
was determined by loading the fixture without a sandwich panel and mea-
suring load and displacement. For testing a sandwich panel, the panel was
inserted in the fixture, and adjusted so that the edges were aligned with the
edges of the base plate, with the same amount of overhang at each edge.
The deflection of the panel was measured using the cross-head displace-
ment. The loading area was 27 × 27 (cm) in all tests. This corresponds to
a nominal overhang length of about 1.75 cm. During testing of a sandwich
panel, the first loading cycle revealed a stiffening nonlinear response at small
loads. This was the result of local indentation deformation at load introduc-
tion and support locations, and slack in the fixture. Prior to the actual panel
test, each panel was loaded to the maximum, and unloaded to about 500 N.
This loading-unloading cycle was repeated a number of times until the load-
ing and unloading load vs. displacement curves virtually coincided.

Figure 3.27 shows the experimental load vs. displacement curves for all
the test panels (Table 3.3). Over the range of load levels from 0–2 kN, the
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Table 3.3 Measured (Exp.), and CLPT and FEA predicted compliance values of
sandwich panels.

Panel C (µm/N)

Exp. CLPT FEA

H80/Thin 4.26 1.42 2.96
H100/Thick 3.01 0.85 1.91
H200/Thin 2.51 1.42 1.75
H200/Thick 1.82 0.85 1.27

response is linear and the loading and unloading curves virtually coincide.
As expected, increased core density and face thickness result in a stiffer re-
sponse.

After completion of the twist testing, the compliance of each specimen
was determined from the load-displacement curves shown in Figure 3.27.
Finite element analysis (FEA) of the actual test panels was conducted as
explained in Section 3.4.2. The FEA was based on the nominal plate di-
mensions and an overhang of 15 mm. In all cases square 10 × 10 (mm)
constrained areas were used at the load introduction and support regions.

Table 3.3 summarizes compliance values determined experimentally
(Exp.) (corrected for machine compliance) and compliance values calculated
from CLPT and FEA. The results in Table 3.3 reveal that CLPT substantially
underestimates the compliance of the tested panels. The experimental results
confirm the earlier assessment that CLPT is not accurate for analyzing the
sandwich plate twist test, at least not for the sandwich panels considered
here. The finite element predictions are much more close to the measured
values, although the measured compliance values exceed the FEA predic-
tions. The difference between FEA predictions and measured compliance
value is attributed to more excessive indentation at load introduction and
support points than accounted for in the finite element analysis.



Chapter 4
First-Order Shear Analysis of Sandwich Beams

In this chapter the first-order, two-dimensional shear deformation theory
analysis presented in Chapter 3 is specialized to beams. First a general analy-
sis of sandwich beams is developed which is subsequently applied to a three-
point flexure loaded sandwich beam. Simplified beam analysis is developed
by reducing the 3 × 3 plate stiffness matrices [A], [B], [C] and [D] to sin-
gle stiffnesses A, B, C and D, and explicit expressions valid for symmetric
beams with thin face sheets are derived. In the final section, three-point flex-
ure testing of sandwich beams and analysis to determine the bending and
shear stiffnesses from measured compliance data are outlined.

4.1 Analysis of Sandwich Beams

Although sandwich beams are rarely used as structural members, sandwich
beams are convenient test specimens and such a test may constitute a simple
way to determine the properties of a sandwich panel. Here we will consider
beam specimens with thin faces. We will further assume the faces can be
treated as homogeneous materials with the stiffnesses Aij , Bij , Cij and Dij

given by Equation (3.51).
For the purpose of analysis of sandwich beams loaded in flexure, it is con-

venient to present Equations (3.41) and (3.42) in a compact form, Equation
(3.56) [

N

M

]
=

[
A B

C D

][
ε0

κ

]
, (4.1)

where the left-hand side is the 6 × 1 column vector formed by the six force
and moment resultants, and the ABCD matrix is a 6 × 6 matrix formed by

L.A. Carlsson and G.A. Kardomateas, Structural and Failure Mechanics of Sandwich 85
Composites, Solid Mechanics and its Applications 121, DOI 10.1007/978-1-4020-3225-7_4, 
© Springer Science+Business Media B.V. 2011 



86 4 First-Order Shear Analysis of Sandwich Beams

Figure 4.1 Bending of a sandwich beam.

the four 3 × 3 basic stiffness matrices in Equations (3.55), [ε0] and [κ] rep-
resent the 6 × 1 column vector defined by the three mid-plane strains and
three curvatures. To proceed, it is convenient to use the inverted form of
Equations (4.1) [

ε0

κ

]
=

[
a b

c d

][
N

M

]
. (4.2)

For bending of a beam by moments M, the components of the 6 × 1 column
force and moment vector become

Mx = M/b, (4.3a)

Nx = Ny = Nxy = My = Mxy = 0, (4.3b)

where b is the width of the beam, see Figure 4.1.
The curvatures [κ], are obtained from Equations (4.2) with [N] = [0],

[κ] = [d][M]. (4.4)

In particular, we will assume that the face laminates are free from bend-
ing/twisting coupling such that d16 = 0, or d16 is so small it can be ne-
glected. Hence, application of bending moments Mx will not cause twisting
of the beam, i.e., κxy = 0. The primary curvature of interest is κx which is
given by
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κx = d11Mx, (4.5)

where d11 is the flexural compliance of the sandwich beam.
The curvature, κx , is given by (Equation (3.36a))

κx = dψx

dx
. (4.6)

The bending strain and transverse shear strain are given by Equations (3.35a)
and (3.37a)

εx = ε0
x + zκx, (4.7a)

γxz = ψx + dw

dx
. (4.7b)

Equation (3.54a) defines the constitutive equation for transverse shear

Qx = hcGxz

(
ψx + dw

dx

)
. (4.8)

Substituting the moment, Mx = κx/d11 (Equation (4.5)) with κx given by
Equation (4.6) and the shear force given by Equation (4.8) substituted into
the equilibrium Equation (3.60c) yields a differential equation for bending

d2ψx

dx2
−

(
ψx + dw

dx

)
hcGxzd11 = 0 (4.9)

Another differential equation governing bending of the beam is obtained by
combining Equations (3.58c) and (4.8) which yields

dw

dx
= −ψx + 1

hcGxz

dMx

dx
. (4.10)

This equation is convenient for several beam-bending problems where the
variation of moment along the beam, i.e., Mx = Mx(x), is known from static
equilibrium considerations.

4.2 Three-Point Flexure Loading of a Sandwich Beam

A symmetric sandwich beam under three-point flexure loading as shown in
Figure 4.2 is considered. The faces are assumed to be thin symmetric and
balanced composite laminates (Bij = A16 = A26 = 0) or they could be made
from an isotropic metal. Such laminates may contain non-zero D16 and D26
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Figure 4.2 Sandwich beam under three-point flexural loading.

terms, but we will assume they are small and have negligible influence on
the response.

With the xz coordinate system as shown in Figure 4.2 (x = 0 at the left
support), the bending moment in the left half of the beam is

Mx = −Px

2b
, 0 ≤ x ≤ L

2
. (4.11)

This, combined with Equations (4.5) and (4.6), yields

dψx

dx
= −d11Px

2b
(4.12)

which integrates to

ψx(x) = −d11Px2

4b
+ C1. (4.13)

To determine the constant, C1, we consider the axial displacements of the
beam (Equation (3.34a))

u(x) = u0(x) + zψx. (4.14)

Symmetry of the beam displacements for the left and right halves of the
beam, i.e., with respect to x = L/2, may be imposed by requiring vanishing
of the axial displacements at the beam mid-span, i.e.,

u

(
L

2

)
= 0 (4.15)

which, according to Equation (4.14), leads to

u0

(
L

2

)
= ψx

(
L

2

)
= 0. (4.16)
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The condition ψx

(
L
2

) = 0 in Equation (4.13) provides the constant of inte-
gration

C1 = d11PL2

16b
. (4.17)

Substitution of Equation (4.13) with C1 given by (4.17) into (4.10), yields

dw

dx
= PL2d11

16b

(
4
( x

L

)2 − 1

)
− P

2bhcGxz

. (4.18)

Notice that the slope is non-zero at the center on the span, x = L/2

dw

dx
= −P

2bhcGxz

. (4.19)

Analysis of the right half of the beam would yield a slope at x = L/2 given
by

dw

dx
= P

2bhcGxz

. (4.20)

Such a discontinuity of slope is consistent with the discontinuity of shear
force (Qx) across the beam center and the formulation of the first-order shear
theory, although more refined theories would provide no such discontinuity.

To obtain the deflection of the beam, Equation (4.18) is integrated

w(x) = Pd11x
3

12b
− PL2d11x

16b
− Px

2hcbGxz

+ C2, (4.21)

where C2 = 0 to guarantee w(0) = 0. Hence, the beam deflection is given
by

w(x) = P

2b

[
d11x

3

6
− L2xd11

8
− x

hcGxz

]
, (4.22)

where 0 ≤ x ≤ L/2.

In many cases, the magnitude of displacement, i.e., the deflection of the
beam at the point of load application is of particular interest

δ = |w(L/2)| = PL3d11

48b
+ PL

4hcbGxz

. (4.23)

The bending compliance, d11, is often replaced by the bending stiffness, Dx ,
in order to obtain a consistent formulation expressing the beam deflection
in bending and shear stiffnesses rather than the mixed formulation in Equa-
tion (4.23)

Dx = 1

d11
. (4.24)
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This yields

δ = PL3

48bDx

+ PL

4hcbGxz

. (4.25)

This equation is often used as a basis for experimental determination of bend-
ing and shear stiffnesses of a sandwich beam (Dx and hcbGxz) as will be
discussed later.

4.3 Simplified Analysis of Bending Stiffness of Sandwich Beams

Bending stiffness calculation in general requires calculation of the
A,B,C,D stiffness matrices, compilation of those in the form of the 6 × 6
matrix in Equation (4.1), and inversion of the 6 × 6 matrix to arrive at the
6 × 6 compliance matrix in Equation (4.2) so that the bending compliance
element, d11, and bending stiffness, Dx (Equation (4.24)) can be determined.
A set of matrix manipulations to accomplish this purpose are listed in Ap-
pendix B. Alternatively, the 6 × 6 ABCD matrix may directly be inverted
using a matrix solver. While this procedure is formally straightforward, it
does not lend itself to “backside of the envelope” estimates of the bending
stiffness, Dx .

A simplified analysis for calculations of Dx may be obtained by assum-
ing a one-dimensional (plane) state of stress in each face sheet. Hence, the
following simplified stress-strain relations apply:

σx(1) = E1εx(1), (4.26a)

σx(2) = E2εx(2), (4.26b)

where E1 and E2 are the effective Young’s moduli of the bottom and top
face sheets (1 and 2) (Section 3.1.5) respectively. The strain, εx , is given by
Equation (4.7a)

εx = ε0
x + zκx, (4.27)

where ε0
x is the mid-core strain, z is the thickness coordinate (z = 0 at the

center of the core), Figure 4.3, and κx is the curvature at z = 0. Consequently,

εx(1) = ε0
x − (hc − h1)

2
κx, (4.28a)

εx(2) = ε0
x + (hc + h2)

2
κx. (4.28b)
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Figure 4.3 Variation of strain and stress in a sandwich beam under bending.

Integration of the stresses over the cross-section yields the axial force re-
sultant, Nx , and bending moment, Mx , according to Equations (3.39a, b)

Nx = Aε0
x + Bκx, (4.29a)

Mx = Cε0
x + Dκx, (4.29b)

with the stiffness A,B,C,D given by

A = A1 + A2, (4.30a)

B = 1

2
((hc + h2)A2 − (hc + h1)A1), (4.30b)

C = B, (4.30c)

D = 1

4
((hc + h2)

2A2 + (hc + h1)
2A1), (4.30d)

where A1 and A2 are the extensional stiffnesses of the face sheets

A1 = E1h1, (4.31a)

A2 = E2h2. (4.31b)

Notice that Equation (4.29 constitutes the one-dimensional form of Equa-
tions (3.41) and (3.42). If the sandwich is symmetric, h1 = h2 = hf , and
E1 = E2 = Ef , Equations (4.30) and (4.31) give

A = 2Ef hf , (4.32a)
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Figure 4.4 Geometrically unsymmetric sandwich.

B = C = 0, (4.32b)

D = (hc + hf )2

2
Ef hf . (4.32c)

It is observed that the bending stiffness of a symmetric sandwich beam with
thin faces is governed by the extensional stiffness of the face sheets, i.e. the
product of face modulus and face thickness. Notice that Equation (4.32c) is
identical to Equation (2.8) (with d = hc +hf ) derived using the parallel axis
theorem for a symmetric sandwich beam with thin faces.

4.3.1 Bending without Axial Force

Unsymmetric beams are characterized by non-zero B and C stiffnesses. For
bending of such a beam without axial force, substitution of Nx = 0 in Equa-
tion (4.29a) gives

ε0
x = −Bκx

A
. (4.33)

Substitution into Equation (4.29b) with C = B yields

Mx =
(

D − B2

A

)
κx, (4.34)

which enables calculation of the bending stiffness, Dx (ratio of Mx/κx)

Dx = D − B2

A
. (4.35)
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Since B 	= 0 for unsymmetric beams, this equation shows that such beams
will have reduced bending stiffness compared to a symmetric beam. Substi-
tution of Equations (4.30) into (4.35) yields

Dx = (2hc + h1 + h2)
2A1A2

4(A1 + A2)
. (4.36)

To illustrate the influence of asymmetry on the bending stiffness of a sand-
wich beam, consider the asymmetric sandwich beam shown in Figure 4.4.
The faces are assumed to be of the same material, i.e., E1 = E2 = Ef ,
but of different thicknesses, while the sum of the face sheet thicknesses,
h1 + h2 = hf , is constant,

h1 = (1 − ξ)hf , (4.37a)

h2 = ξhf . (4.37b)

The parameter, 0 = ξ = 1, partitions the thicknesses of the faces. Notice that
the total thickness, h, of the sandwich is constant, irrespective of the value
of ξ .

It is recognized that ξ = 0.5 corresponds to a symmetric sandwich,
while any other value corresponds to a (geometrically) unsymmetric panel.
It should be pointed out that asymmetry could also be introduced by using
different face materials (E1 	= E2).

For the sandwich in Figure 4.4, it may be readily shown that the bending
stiffness is given by

Dx = (2hc + hf )2Echf ξ(1 − ξ)

4
. (4.38)

Dx may be normalized with its (maximum) value for a symmetric sandwich
beam (ξ = 0.5)

Ds
x = (2hc + hf )2Ehf

16
. (4.39)

Figure 4.5 shows Dx plotted vs. the thickness parameter ξ . It is observed
that the asymmetry reduces the bending stiffness slightly when ξ is close to
0.5. The curve is symmetric around ξ = 0.5 verifying invariance of bend-
ing stiffness if the thicker face is on top or bottom. For highly asymmetric
beams, where one face is much stiffer than the other, the reduction in bending
stiffness is quite severe.

The results here demonstrate that the optimal bending stiffness is achieved
by making sandwich beams symmetric. Other design considerations, how-
ever, may demand an asymmetric sandwich (see, e.g., Satapathy and Vinson,
2000).
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Figure 4.5 Influence of asymmetry on bending stiffness of sandwich beam.

4.4 Three-Point Flexure Testing of Sandwich Beams

Testing and data reduction for a sandwich beam loaded in three-point flexure
(Figure 4.2) will be discussed. Testing of sandwich beams may be conducted
for a variety of reasons. For testing in the linear-elastic regime at small loads,
the purpose is most commonly determination of the shear and bending stiff-
nesses of the beam. Testing the beam to failure may be done to determine the
tensile or compressive strengths of the faces or the shear strength of the core.
These failure modes may be achieved by specific design of the sandwich
beam and testing geometry.

4.4.1 Evaluation of Flexural and Shear Stiffnesses

Three-point flexure loading of sandwich beams with a soft core or web core
is complicated by local out-of-plane deformations of the face sheets at sup-
port and load introduction regions, as schematically illustrated in Figure 4.6.
For web-core sandwich beams, indentation is accentuated if the loading and
support locations coincide with unsupported regions of the web core. If the
core is very weak in the out-of-plane direction, the sandwich beam could be
reinforced by removing a section of the core at load introduction and support
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Figure 4.6 Local deformation of a face sheet in a flexure-loaded sandwich beam.

Figure 4.7 Method to compensate for the indentation at supports in three-point
flexure testing.

regions and replace it with a stronger (high density) core. Such reinforce-
ments, however, tend also to increase the shear stiffness of the beam.

Local deformation under the central load introduction line is expected
to be more severe than at the supports because this load is twice as large
as the support loads. If local deformation is expected or detected in trial
tests, the sandwich beam flexure test standard ASTM C393 (2000) recom-
mends placing narrow strips between load introduction and support points
and the sandwich in order to distribute the load over a larger area. Rub-
ber pads may also be used. ASTM C393 also provides some general in-
structions for the selection of testing machines, fixturing, and instrumen-
tation. It is common procedure to use circular steel rods of 25.4 mm di-
ameter at the load introduction and support regions. For measuring deflec-
tion, δ, of the beam under the central loading line, a displacement gage
with an accuracy within ±0.025 mm should be used. A linear variable
differential transformer (LVDT) (see Adams et al., 2003), is often a good
choice.

A method to compensate for the possible influence of local indentation
at the support regions in a three-point flexure test (Figure 4.3), was imple-
mented by Alfredsson et al. (2007) by placing two additional LVDTs above
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the supports (see Figure 4.7). By measuring the indentation displacements δ1

and δ3, in addition to the central displacement at the bottom of the beam δ2,
it is possible to compensate for indentation at the supports and isolate the de-
flection due to flexure and shear deformation of the beam by subtracting the
average indentation (δ1+δ3)/2) from the total measured central displacement
δ2. This method also compensates for load-cell and fixture deformations.

The ASTM C293 standard stipulates that the sandwich beam test spec-
imen should have a width greater or equal to twice the thickness, and the
length is typically 25 times the thickness in order to allow testing over a
reasonable range of span lengths. Furthermore, the specimen length should
be equal to the span length, L, plus an overhang length of 50 mm or half
the sandwich thickness if the sandwich is thicker than 100 mm. After the
test specimens are prepared, measure the specimen dimensions at several lo-
cations and the span length. ASTM C393 does not specify the cross-head
speed. A speed of 2.5 mm/min is commonly used.

The bending stiffness of the sandwich beam, Dx , and the shear modu-
lus, Gxz, of the core may be determined using the three-point flexure test.
Consider the deflection formula (Equation (4.25))

δ = PL3

48bDx

+ PL

4hcbGxz

. (4.40)

The compliance, C = δ/P , of the three-point flexure specimen becomes

C = L3

48bDx

+ L

4hcbGxz

. (4.41)

Allen (1969) proposed data reduction for the three-point flexure test based
on Equation (4.41) expressed in two ways

C

L
= L2

48bDx

+ 1

4bhcGxz

, (4.42a)

C

L3
= 1

4bhcGxz

1

L2
+ 1

48bDx

. (4.42b)

Consequently, if the compliance of a sandwich beam loaded in three-point
flexure is determined over a range of span lengths and the results are plotted
in linear graphs, i.e., C/L vs. L2, and C/L3 vs. 1/L2, see Figure 4.8, it is
possible to determine the flexural and shear stiffnesses from the slopes m1

and m2 of the graphs, according to Equation (4.42)

m1 = 1

48bDx

, (4.43a)
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Figure 4.8 Graphical evaluation of bending and shear stiffnesses of a sandwich
beam.

m2 = 1

4bhcGxz

. (4.43b)

The slopes are best evaluated by fitting a linear equation to the data. Once the
slopes are established, the required quantities, Dx and Gxz, are easily solved.

Example

To demonstrate the procedure for determining bending and shear stiffness,
actual test data for a sandwich beam determined in a laboratory course at
Florida Atlantic are considered. The sandwich beam consisted of 3.02 mm
thick 6061-T6 aluminum face sheets over a 26 mm thick H80 PVC foam
core. The total length of the beam was 610 mm and the width (b) 52 mm.
Notice that the width is twice the beam thickness, and the length about
24 times the beam thickness satisfying the ASTM C293 requirements. The
beam was tested in three-point flexure at span lengths, L, of 25.4, 35.6, 45.7,
and 55.9 cm. The deflection, δ, under the central load was measured with a
LVDT. The load levels were adjusted to obtain a reasonable part of the initial
linear response region without causing yielding of the face sheets and core.
Span lengths and measured compliance values are listed in Table 4.1.

First, it is verified that the face sheets may be considered “thin”. Equa-
tion (1.7) stipulates that a sandwich with a core-to-face thickness ratio
greater than 5.35 may be considered as “thin faced”. For the specific panel
considered, the core-to-face thickness ratio is 26/3.02 = 8.61. Hence, we
can apply the theory outlined above. Figure 4.9 shows the compliance data
listed in Table 4.1 formatted and graphed according to Figure 4.8.
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Table 4.1 Span lengths and compliance values for a three-point flexure loaded sand-
wich beam.

L (cm) C (µm/N )

25.4 1.59
35.6 2.38
45.7 3.18
55.9 4.13

Figure 4.9 Determination of bending and shear stiffnesses for sandwich panel con-
sisting of aluminum faces and H80 PVC foam core.

Fitting straight lines to the data allowed determination of the slopes, m1

and m2,
m1 = 4.35 × 10−6 (Nm2)−1,

m2 = 5.933 × 10−6 N−1.

Solving for Dx and Gxy , using the slopes and Equations (4.43) yields Dx =
9.21 × 104 Nm, and Gxz = 31.2 MPa. Calculation of the face modulus from
the value of Dx using Equation (4.32c) yields Ef = 72.5 GPa which is in
close agreement with the value listed for aluminum in Table 1.1. The core
shear modulus determined here (31.2 MPa) is very close to that provided for
H80 PVC foam by DIAB, Gxz = 31 MPa (www.diabgroup.com).
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4.4.2 Evaluation of Core Shear Strength and Face Compression
Strength

In addition to measurement of the elastic flexural and shear stiffnesses, the
three-point flexure test may be used to determine the shear strength of the
core and compression strength of the face sheets. Such testing requires spe-
cific design of the test since both failure modes will not occur simultane-
ously. To achieve the desired failure mode of the beam, the stresses in the
face sheets and core needs to be determined. We will here examine a sym-
metric sandwich beam, i.e. with identical face sheets, each of thickness hf

and elastic modulus Ef bonded to a low modulus core.
The tensile and compressive stresses in the face sheets are obtained from

Equations (4.26), (4.28), (4.33) and (4.34).

σx(1) = −Ef (hc + hf )Mx

2D
, (4.44a)

σx(2) = Ef (hc + hf )Mx

2D
, (4.44b)

where 1 and 2 refer to the bottom and top face sheets, respectively, and hf

and hc are the face and core thicknesses. Mx is the bending moment per
unit width and D is bending stiffness. Substitution of the expression for the
bending stiffness Equation (4.32c), yields

σx(1) = −Mx

(hc + hf )hf

, (4.45a)

σx(2) = Mx

(hc + hf )hf

. (4.45b)

Consequently, the magnitudes of bending stress are the same in both face
sheets.

To determine the variation of the magnitude of bending stress (|σx(1)| =
|σx(2)| = σx) along the span (x), the bending moment given by Equa-
tion (4.11) is substituted into (4.45)

σx(x) = Px

2b(hc + hf )hf

, 0 ≤ x ≤ L

2
, (4.46)

where σx(x) is the magnitude of the stress. Notice that the stress in the lower
face sheet (#1) is tensile (> 0) and the stress in the top face (#2) is compres-
sive. The highest stress σx(x) occurs at the center span, x = L/2,
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σx(max) = PL

4b(hf + hc)hf

. (4.47)

Another possible failure mode of the sandwich is core shear failure if the core
shear stress, τxz, becomes excessive. Hence, analysis of the core shear stress
is required. The transverse shear force, Qx , is determined from the variation
of bending moment, i.e., using the equilibrium equation (3.58c), applied to
(4.11),

Qx = dMx

dx
= −P

2b
. (4.48)

The core shear stress τxz is determined from the assumption that the core
carries the entire shear force

τxz = −P

2bhc

. (4.49)

Consequently, the shear stress is uniform though the thickness of the core and
along the length of the beam (although a sign reversal occurs at x = L/2).

The ratio of maximum bending stress in the face sheet and shear stress in
the core (Equations (4.47) and (4.49)) becomes

σx(max)

τxz

= L

2hf (1 + hf /hc)
. (4.50)

This expression can be utilized for determining the geometry where a tran-
sition from core shear failure and face sheet failure occurs. Consider, for
example, a sandwich beam with 1 mm thick aluminum face sheets over a
30 mm thick PVC H100 foam core. Face and core material properties are
listed in Tables 1.1 and 1.3. In Table 1.1, it is noted that the tensile and com-
pressive strengths of aluminum are the same (XL = XC = 414 MPa). The
core shear strength is 1.4 MPa. Substitution of the face and core strengths and
thicknesses into Equation (4.50) yields a transition span length, L = 0.61 m.
Hence, if such a beam is loaded in flexure at a span length L < 0.61 m, the
beam would fail by core shear. Beams with span lengths greater than 0.61 m
would fail by face failure. Equation (4.50) may be also used for sizing the
thickness of the face sheets so that the beam fails in the desired failure mode.
Tensile failure rarely occurs in symmetric sandwich beams since structural
materials used as face sheets typically are less strong in compression than in
tension, see Table 1.1. If the material is stronger in tension than in compres-
sion, and tensile failure of such a beam is desired, a thicker top face must be
used. This corresponds to an unsymmetric sandwich, however, and strength
determination requires analysis of this specific case with C = B 	= 0 in
Section 4.3.
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A sandwich beam could also fail by face sheet wrinkling on the com-
pression side, as discussed in Chapter 8. The face wrinkling stress, σw,
determined using Equation (8.13) is σf = 614 MPa (Ef = 73 GPa,
Ec

z = 105 MPa, Gc
xz = 40 MPa). Since σw exceeds the strength of alu-

minum (414 MPa), this particular sandwich beam is expected to fail on the
compression side by face yielding failure.

To measure the core shear strength using the three-point flexure test, it is
necessary to set the span length, L, below the transitional value provided by
Equation (4.50). If a nominal value of the core shear strength is not available,
it is necessary to reduce the span length until the specimen actually fails by
core shear. For determination of the strength of the face sheet, it is necessary
to use a long span length L or thin face hf according to Equation (4.50). If
the strength ratio is not known, it is necessary to test specimens at increasing
span lengths until face failure is observed. The possibility for competing
failure modes for the compression loaded face sheet, such as local buckling
(face wrinkling or face dimpling) (Chapter 8) should be examined.



Chapter 5
Elasticity Solutions for Sandwich Structures

This chapter presents the theory of elasticity solutions for sandwich plates or
shells. Elasticity solutions are significant because they provide a benchmark
for assessing the performance of the various plate or shell theories or various
numerical methods such as the finite element method. Most of these solutions
are an extension of the corresponding solutions for monolithic anisotropic
bodies which have been developed primarily by Lekhnitskii (1963). This
chapter does not cover all problems of the theory of elasticity for sandwich
bodies, but presents only some of the most studied ones in an attempt to col-
lect the accumulated recent progress in this field. Section 5.1 on sandwich
rectangular plates is adapted from Pagano (1970a), which was extended to
the case of positive discriminant materials by Kardomateas (2008a) and Sec-
tion 5.2 on sandwich shells from Kardomateas (2001).

5.1 A Rectangular Sandwich Plate with Orthotropic Face Sheets
and Core

We consider a sandwich plate consisting of orthotropic face sheets of thick-
ness h1 = f1 and h2 = f2 and an orthotropic core of thickness hc = 2c, such
that the various axes of elastic symmetry are parallel to the plate axes x, y,
and z (Figure 5.1). The plate is simply supported. A normal traction σz =
q0(x, y) is applied on the upper surface but the lower surface is traction-free.

Let us denote each layer by i where i = f1 for the upper face-sheet, i = c

for the core and i = f2 for the lower face-sheet. Then, for each layer, the
orthotropic strain-stress relations are
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Figure 5.1 Definition of geometry and loading for the sandwich plate.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ (i)
xx

σ (i)
yy

σ (i)
zz

τ (i)
yz

τ (i)
xz

τ (i)
xy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ci
11 ci

12 ci
13 0 0 0

ci
12 ci

22 ci
23 0 0 0

ci
13 ci

23 ci
33 0 0 0

0 0 0 ci
44 0 0

0 0 0 0 ci
55 0

0 0 0 0 0 ci
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε(i)
xx

ε(i)
yy

ε(i)
zz

γ (i)
yz

γ (i)
xz

γ (i)
xy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (i = f1, c, f2),

(5.1)
where ci

ij are the stiffness constants (we have used the notation 1 ≡ x, 2 ≡ y,
3 ≡ z).

Using the strain-displacement relations

εxx = u,x; εyy = v,y; εzz = w,z, (5.2a)
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γyz = w,y + v,z; γxz = u,z + w,x; γxy = u,y + v,x, (5.2b)

and the equilibrium relations

σxx,x + τxy,y + τxz,z = 0, (5.3a)

τxy,x + σyy,y + τyz,z = 0, (5.3b)

τxz,x + τyz,y + σzz,z = 0, (5.3c)

leads to the following governing field equations in terms of the displacements
for each layer:

ci
11u,xx + ci

66u,yy + ci
55u,zz + (ci

12 + ci
66)v,xy + (ci

13 + ci
55)w,xz = 0, (5.4a)

(ci
12 + ci

66)u,xy + ci
66v,xx + ci

22v,yy + ci
44v,zz + (ci

23 + ci
44)w,yz = 0, (5.4b)

(ci
13 + ci

55)u,xz + (ci
23 + ci

44)v,yz + ci
55w,xx + ci

44w,yy + ci
33w,zz = 0. (5.4c)

In the following, we shall drop the superscript i that refers to the layers
(core or face sheets) on the understanding that the derived relations will hold
for each layer.

For a simply supported plate, an appropriate solution for the displace-
ments would be in the form

u = U(z) cos px sin qy, (5.5a)

v = V (z) sin px cos qy, (5.5b)

w = W(z) sin px sin qy, (5.5c)

where
p = nπ/a; q = mπ/b (n,m = 1, 2, 3, . . .). (5.5d)

These displacements, in conjunction with the corresponding strains and
stresses from (5.2) and (5.1), would satisfy the simple support edge condi-
tions:

at x = 0, a : w = v = σxx = 0. (5.5e)

at y = 0, b : w = u = σyy = 0. (5.5f)

Assuming that

[U(z), V (z),W(z)] = [U0, V0,W0]esz, (5.5g)

where U0, V0 and W0 are constants, and substituting (5.5) into (5.4) results
in the following system of algebraic equations:



106 5 Elasticity Solutions for Sandwich Structures

(c11p
2 +c66q

2 −c55s
2)U0+(c12 +c66)pqV0 −(c13 +c55)psW0 = 0, (5.6a)

(c12 +c66)pqU0 +(c22q
2 +c66p

2 −c44s
2)V0 −(c23 +c44)qsW0 = 0, (5.6b)

(c13 +c55)psU0 + (c23 +c44)qsV0 + (c55p
2 +c44q

2 −c33s
2)W0 = 0. (5.6c)

Non-trivial solutions of this system exist only if the determinant of the
coefficients vanishes, which leads to

A0s
6 + A1s

4 + A2s
2 + A3 = 0, (5.7)

where
A0 = −c33c44c55, (5.8a)

A1 = p2
[
c44(c11c33 − c2

13) + c55(c33c66 − 2c13c44)
]+

+q2
[
c55(c22c33 − c2

23) + c44(c33c66 − 2c23c55)
]
, (5.8b)

A2 = −p4 [c66(c11c33 − c2
13) + c55(c11c44 − 2c13c66)

]
+ p2q2[−c11(c22c33 − c2

23) − 2(c12 + c66)(c13 + c55)(c23 + c44)

− 2c44c55c66 + 2c11c23c44 + c12c33(c12 + 2c66) + c13c22(c13 + 2c55)
]

− q4 [c66(c22c33 − c2
23) + c44(c22c55 − 2c23c66)

]
, (5.8c)

A3 = p6c11c55c66 + p4q2 [c55(c11c22 − c2
12) + c66(c11c44 − 2c12c55)

]
+ p2q4 [c44(c11c22 − c2

12) + c66(c22c55 − 2c12c44)
] + q6c22c44c66.

(5.8d)

With the substitution
β = s2, (5.9)

Equation (5.7), which defines the parameter s, can be written in the form of
a cubic equation as

β3 + a1β
2 + a2β + a3 = 0, ai = Ai/A0 (i = 1, 2, 3). (5.10)

Let

Q = 3a2 − a2
1

9
; R = 9a1a2 − 27a3 − 2a3

1

54
; D = Q3 + R2. (5.11a)

The last quantity, D, is the discriminant, which determines the nature of the
solution.
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5.1.1 Negative Discriminant D

If D < 0, then all roots are real and different as follows:

β1 = 2
√−Q cos

(
θ

3

)
− a1

3
, (5.11b)

β2 = 2
√−Q cos

(
θ + 2π

3

)
− a1

3
, (5.11c)

β3 = 2
√−Q cos

(
θ + 4π

3

)
− a1

3
, (5.11d)

where
cos θ = R/

√
−Q3 . (5.11e)

Corresponding to the three roots are the displacements functions defined
in Equations (5.5a–c)

U(z) =
3∑

j=1

Uj(z); V (z) =
3∑

j=1

Vj(z); W(z) =
3∑

j=1

Wj(z). (5.12)

If βj < 0 then sj = ±i
√|βj | and if we set

mj = √|βj | , (5.13a)

then sj = ±imj . From (5.5g) for each pair of roots sj , we can write

Uj(z) = Ucj cos mjz + Usj sin mjz, (5.13b)

Vj(z) = Vcj cos mjz + Vsj sin mjz, (5.13c)

Wj(z) = Wcj sin mjz + WSj cos mjz, (5.13d)

Substituting directly into (5.5a–c) and then into the equilibrium equations
(5.4b, c), leads to the following two equations for Vcj and Wsj :

• from (5.4b) collecting terms of cos mjz:

Vcj

(
c66p

2 + c22q
2 + c44m

2
j

)−Wsj(c23+c44)qmj = −(c12+c66)pqUcj ,

(5.13e)
• from (5.4c) collecting terms of sin mjz:

Vcj (c23+c44)qmj +Wsj

(
c55p

2 + c44q
2 + c33m

2
j

) = (c13+c55)pmjUcj ,

(5.13f)
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These two equations can be solved for Vcj and Wsj in terms of Ucj . Similar
equations can be derived for Vsj and Wsj by collecting terms of sin mjz in
(5.4b) and of cos mjz in (5.4c). In the end, we obtain the following expres-
sions:

Uj(z) = Ucj cos mjz + Usj sin mjz, (5.13g)

Vj(z) = Bj

�j

Ucj cos mjz + Bj

�j

Usj sin mjz, (5.13h)

Wj(z) = −Cj

�j

Usj cos mjz + Cj

�j

Ucj sin mjz, (5.13i)

where

�j = (
c66p

2 + c22q
2 + c44m

2
j

) (
c55p

2 + c44q
2 + c33m

2
j

)
+ (c23 + c44)

2q2m2
j , (5.13j)

Bj = pq
[ − (c12 + c66)

(
c55p

2 + c44q
2 + c33m

2
j

)
+ (c13 + c55)(c23 + c44)m

2
j

]
, (5.13k)

Cj = pmj

[ (
c66p

2 + c22q
2 + c44m

2
j

)
(c13 + c55)

+ (c12 + c66)(c23 + c44)q
2]. (5.13l)

If βj > 0, we set
mj = √

βj . (5.14a)

By following an analogous procedure, we can write

Uj(z) = Ucj cosh mjz + Usj sinh mjz, (5.14b)

Vj(z) = Bj

�j

Ucj cosh mjz + Bj

�j

Usj sinh mjz, (5.14c)

Wj(z) = Cj

�j

Ucj sinh mjz + Cj

�j

Usj cosh mjz, (5.14d)

where

�j = (
c66p

2 + c22q
2 − c44m

2
j

) (
c55p

2 + c44q
2 − c33m

2
j

)
+ (c23 + c44)

2q2m2
j , (5.14e)
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Bj = −pq
[
(c12 + c66)

(
c55p

2 + c44q
2 − c33m

2
j

)
+ (c13 + c55)(c23 + c44)m

2
j

]
, (5.14f)

Cj = pmj

[− (
c66p

2 + c22q
2 − c44m

2
j

)
(c13 + c55)

+ (c12 + c66)(c23 + c44)q
2]. (5.14g)

Hence, the independent parameters are the six constants Uc1, Uc2, Uc3, Us1,
Us2, Us3 which, for convenience, we rename g1, g2, g3, g4, g5 and g6, respec-
tively. Then the displacements are as follows:

U(z) = du1g1 + du2g2 + du3g3 + du4g4 + du5g5 + du6g6, (5.15a)

with the z-dependent coefficients defined for j = 1, 2, 3,

duj =
{

cos mjz, if βj < 0,
cosh mjz, if βj > 0,

(5.15b)

du(j+3) =
{

sin mjz, if βj < 0,
sinh mjz, if βj > 0.

(5.15c)

In the following expressions (5.16–5.20), �j , Bj and Cj refer to (5.13j–l) if
βj < 0, and to (5.14e–g) if βj > 0. With this remark we can set V (z) in the
form

V (z) = dv1g1 + dv2g2 + dv3g3 + dv4g4 + dv5g5 + dv6g6, (5.16a)

where, again, for j = 1, 2, 3,

dvj =

⎧⎪⎪⎨
⎪⎪⎩

Bj

�j

cos mjz, if βj < 0

Bj

�j

cosh mjz, if βj > 0,
(5.16b)

dv(j+3) =

⎧⎪⎪⎨
⎪⎪⎩

Bj

�j

sin mjz, if βj < 0

Bj

�j

sinh mjz, if βj > 0,
(5.16c)

and

W(z) = dw1g1 + dw2g2 + dw3g3 + dw4g4 + dw5g5 + dw6g6, (5.17a)
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where the z-dependent coefficients again are defined for j = 1, 2, 3,

dwj =

⎧⎪⎪⎨
⎪⎪⎩

Cj

�j

sin mjz, if βj < 0,

Cj

�j

sinh mjz, if βj > 0,
(5.17b)

dw(j+3) =

⎧⎪⎪⎨
⎪⎪⎩

−Cj

�j

cos mjz, if βj < 0,

Cj

�j

cosh mjz, if βj > 0.
(5.17c)

The corresponding stresses are derived by substituting the above displace-
ment expressions into (5.5), (5.1) and (5.2). We present the explicit expres-
sions for the stresses σzz, τyz and τxz because these enter into the interface
conditions. The stress σzz can be written in the form

σzz = (bzz1g1 + bzz2g2 + bzz3g3 + bzz4g4 + bzz5g5 + bzz6g6) sin px sin qy,

(5.18a)
The z-dependent coefficients are defined for j = 1, 2, 3 as

bzzj =

⎧⎪⎪⎨
⎪⎪⎩

−
(

c13p + c23q
Bj

�j

− c33
Cj

�j

mj

)
cos mjz, if βj < 0

−
(

c13p + c23q
Bj

�j

− c33
Cj

�j

mj

)
cosh mjz, if βj > 0

(5.18b)

bzz(j+3) =

⎧⎪⎪⎨
⎪⎪⎩

−
(

c13p + c23q
Bj

�j

− c33
Cj

�j

mj

)
sin mjz, if βj < 0

−
(

c13p + c23q
Bj

�j

− c33
Cj

�j

mj

)
sinh mjz, if βj > 0

(5.18c)
Next,

τyz = (
byz1g1 + byz2g2 + byz3g3 + byz4g4 + byz5g5 + byz6g6

)
sin px cos qy,

(5.19a)
with the z-dependent coefficients defined for j = 1, 2, 3 as

byzj =

⎧⎪⎪⎨
⎪⎪⎩

c44

(
q

Cj

�j

− mj

Bj

�j

)
sin mjz, if βj < 0

c44

(
q

Cj

�j

+ mj

Bj

�j

)
sinh mjz, if βj > 0

(5.19b)
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byz(j+3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−c44

(
q

Cj

�j

− mj

Bj

�j

)
cos mjz, if βj < 0

c44

(
q

Cj

�j

+ mj

Bj

�j

)
cosh mjz, if βj > 0

(5.19c)

Finally,

τxz = (bxz1g1 + bxz2g2 + bxz3g3 + bxz4g4 + bxz5g5 + bxz6g6) cos px sin qy,

(5.20a)
with the z-dependent coefficients defined for j = 1, 2, 3 as

bxzj =

⎧⎪⎪⎨
⎪⎪⎩

c55

(
p

Cj

�j

− mj

)
sin mjz, if βj < 0

c55

(
p

Cj

�j

+ mj

)
sinh mjz, if βj > 0

(5.20b)

bxz(j+3) =

⎧⎪⎪⎨
⎪⎪⎩

−c55

(
p

Cj

�j

− mj

)
cos mjz, if βj < 0

c55

(
p

Cj

�j

+ mj

)
cosh mjz, if βj > 0

(5.20c)

5.1.2 Positive Discriminant D

If D > 0, where the discriminant D is defined in (5.11a), then the cubic
equation (5.10) has one real root and two complex conjugates.

With R and D defined in (5.11a), we further define

S = 3
√

R + √
D ; T = 3

√
R − √

D. (5.21a)

Then with

µR = −1

2
(S + T ) − a1

3
; µI = 1

2

√
3(S − T ), (5.21b)

the two complex conjugate roots are

β1 = µR + iµI ; β2 = µR − iµI . (5.21c)

The real root is
β3 = S + T − a1

3
. (5.21d)
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The real root is dealt with in the same manner as for the case of a negative
discriminant (Section 5.1.1).

Next we shall consider how to deal with the complex conjugate roots. In
terms of the modulus r and amplitude θ of these complex numbers,

r =
√

µ2
R + µ2

I ; θ = tan−1

(
µI

µR

)
(5.21e)

these roots can be set in the form

β1 = r(cos θ + i sin θ); β2 = r(cos θ − i sin θ). (5.21f)

From (5.9), we now seek the square roots of β1 and β2. Thus, in terms of

γ1 = √
r cos

θ

2
; γ2 = √

r sin
θ

2
, (5.21g)

the corresponding roots of the sixth-order equation (5.7), si , are

s1,2 = ±(γ1 + iγ2); s3,4 = ±(γ1 − iγ2). (5.21h)

Corresponding to these four roots, the displacement functions take the
form

Uη(z) = a1ηe
γ1z cos γ2z + a2ηe

γ1z sin γ2z

+ a3ηe
−γ1z cos γ2z + a4ηe

−γ1z sin γ2z, (5.22)

where η = u, v,w corresponds to the U , V , W displacements and the aiη are
constants. Of the 12 constants appearing in (5.22) only four are independent.
The eight relations that exist among these constants are found by substituting
the displacements along with (5.5) into the equilibrium equations (5.4).

For convenience, let us set

r1 = c44(γ
2
1 + γ 2

2 ) + c66p
2 + c22q

2, (5.23a)

r2 = c44(γ
2
1 + γ 2

2 ) − c66p
2 − c22q

2, (5.23b)

r3 = c55(γ
2
1 + γ 2

2 ) + c11p
2 + c66q

2, (5.23c)

r4 = c55(γ
2
1 + γ 2

2 ) − c11p
2 − c66q

2, (5.23d)

and
e1 = r1(c13 + c55) − q2(c12 + c66)(c23 + c44), (5.23e)

e2 = r2(c13 + c55) + q2(c12 + c66)(c23 + c44), (5.23f)
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e3 = r3(c23 + c44) − p2(c12 + c66)(c13 + c55), (5.23g)

e4 = r4(c23 + c44) + p2(c12 + c66)(c13 + c55), (5.23h)

In this way, we obtain the following relations for the coefficients in the
displacement expression for V (z), Equation (5.22), in terms of the coeffi-
cients in the expression for U(z):

a1v = ξ11a1u + ξ12a2u, a2v = ξ21a1u + ξ22a2u, (5.24a)

a3v = ξ33a3u + ξ34a4u, a4v = ξ43a3u + ξ44a4u, (5.24b)

where

ξ11 = ξ22 = ξ33 = ξ44 = q(e1e3γ
2
2 + e2e4γ

2
1 )

p(γ 2
2 e2

1 + γ 2
1 e2

2)
. (5.24c)

ξ12 = −ξ21 = −ξ34 = ξ43 = qγ1γ2(e2e3 − e1e4)

p(γ 2
2 e2

1 + γ 2
1 e2

2)
. (5.24d)

Also, the following relations for the coefficients in the expression for
W(z), Equation (5.22), in terms of the coefficients in the expression for U(z):

a1w = f11a1u + f12a2u, a2w = f21a1u + f22a2u, (5.25a)

a3w = f33a3u + f34a4u, a4w = f43a3u + f44a4u, (5.25b)

where

f11 = f22 = −f33 = −f44

= (c12 + c66)pqγ1 − r2γ1ξ11 − r1γ2ξ21

q(c23 + c44)(γ
2
1 + γ 2

2 )
, (5.25c)

f12 = −f21 = f34 = −f43

= −(c12 + c66)pqγ2 + r2γ1ξ12 + r1γ2ξ22

q(c23 + c44)(γ
2
1 + γ 2

2 )
. (5.25d)

Now, coming to the real root β3, we set

m3 = √|β3|, (5.26)

then if β3 < 0 and following (5.13g–l) we can write

U3(z) = a5u cos m3z + a6u sin m3z, (5.27a)
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V3(z) = B3

�3
a5u cos m3z + B3

�3
a6u sin m3z, (5.27b)

W3(z) = −C3

�3
a6u cos m3z + C3

�3
a5u sin m3z, (5.27c)

where

�3 = (
c66p

2 + c22q
2 + c44m

2
3

) (
c55p

2 + c44q
2 + c33m

2
3

)+(c23+c44)
2q2m2

3,

(5.27d)

B3 = pq
[ − (c12 + c66)

(
c55p

2 + c44q
2 + c33m

2
3

)
+ (c13 + c55)(c23 + c44)m

2
3

]
, (5.27e)

C3 = pm3
[ (

c66p
2 + c22q

2 + c44m
2
3

)
(c13 + c55)

+ (c12 + c66)(c23 + c44)q
2]. (5.27f)

If β3 > 0 then, following (5.14b–g)

U3(z) = a5u cosh m3z + a6u sinh m3z, (5.28a)

V3(z) = B3

�3
a5u cosh m3z + B3

�3
a6u sinh m3z, (5.28b)

W3(z) = C3

�3
a5u sinh m3z + C3

�3
a6u cosh m3z, (5.28c)

where

�3 = (
c66p

2 + c22q
2 − c44m

2
3

) (
c55p

2 + c44q
2 − c33m

2
3

)+(c23+c44)
2q2m2

3,

(5.28d)

B3 = −pq
[
(c12 + c66)

(
c55p

2 + c44q
2 − c33m

2
3

)
+ (c13 + c55)(c23 + c44)m

2
3

]
, (5.28e)

C3 = pm3
[− (

c66p
2 + c22q

2 − c44m
2
3

)
(c13 + c55)

+ (c12 + c66)(c23 + c44)q
2
]
. (5.28f)

Hence, if we consider the constants a1u, a2u, a3u, a4u, a5u, a6u as inde-
pendent, which for convenience we rename again as g1, g2, g3, g4, g5, g6, re-
spectively, the displacement U(z) is of the form (5.15a) with the z-dependent
coefficients defined as
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du1 = eγ1z cos γ2z; du2 = eγ1z sin γ2z, (5.29a)

du3 = e−γ1z cos γ2z; du4 = e−γ1z sin γ2z, (5.29b)

du5 =
{

cos m3z, if β3 < 0,
cosh m3z, if β3 > 0,

(5.29c)

du6 =
{

sin m3z, if β3 < 0,
sinh m3z, if β3 > 0.

(5.29d)

In the following expressions (5.30–5.34), �3, B3 and C3 are from (5.27d–f)
if β3 < 0, and from (5.28d–f) if β3 > 0. With this observation, the displace-
ment V (z) is of the form (5.16a), where

dv5 =

⎧⎪⎪⎨
⎪⎪⎩

B3

�3
cos m3z, if β3 < 0

B3

�3
cosh m3z, if β3 > 0

(5.30c)

dv6 =

⎧⎪⎪⎨
⎪⎪⎩

B3

�3
sin m3z, if β3 < 0

B3

�3
sinh m3z, if β3 > 0.

(5.30d)

Similarly, the displacement W(z) is of the form (5.17a) with the z-dependent
coefficients:

dw1 = (f11 cos γ2z + f21 sin γ2z)e
γ1z; dw2 = (f12 cos γ2z + f22 sin γ2z)e

γ1z,

(5.31a)

dw5 =

⎧⎪⎪⎨
⎪⎪⎩

C3

�3
sin m3z, if β3 < 0,

C3

�3
sinh m3z, if βj > 0,

(5.31c)

dw6 =

⎧⎪⎪⎨
⎪⎪⎩

−C3

�3
cos m3z, if β3 < 0,

C3

�3
cosh m3z, if β3 > 0.

(5.31d)

dw3 = (f33 cos γ2z+f43 sin γ2z)e
−γ1z; dw4 = (f34 cos γ2z+f44 sin γ2z)e

−γ1z,

(5.31b)

dv1 = (ξ11 cos γ2z + ξ21 sin γ2z)e
γ1z ; dv2 = (ξ12 cos γ2z + ξ22 sin γ2z)e

γ1z,

(5.30a)
dv3 = (ξ33 cos γ2z+ξ43 sin γ2z)e

−γ1z ; dv4 = (ξ34 cos γ2z+ξ44 sin γ2z)e
−γ1z,

(5.30b)
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The corresponding stresses are derived by substituting the above displace-
ment expressions into (5.5), (5.1), and (5.2). We present the explicit expres-
sions for σzz, τyz and τxz, which enter into the interface conditions. σzz is of
the form (5.18a) with the z-dependent coefficients defined as

bzz1 = [c33(f11γ1 + f21γ2) − c13p − c23qξ11]eγ1z cos γ2z

+ [c33(f21γ1 − f11γ2) − c23qξ21]eγ1z sin γ2z, (5.32a)

bzz2 = [c33(f12γ1 + f22γ2) − c23qξ12]eγ1z cos γ2z

+ [c33(f22γ1 − f12γ2) − c13p − c23qξ22]eγ1z sin γ2z, (5.32b)

bzz3 = −[c33(f33γ1 − f43γ2) + c13p + c23qξ33]e−γ1z cos γ2z

− [c33(f43γ1 + f33γ2) + c23qξ43]e−γ1z sin γ2z, (5.32c)

bzz5 =

⎧⎪⎪⎨
⎪⎪⎩

−
(

c13p + c23q
B3

�3
− c33

C3

�3
m3

)
cos m3z, if β3 < 0

−
(

c13p + c23q
B3

�3
− c33

C3

�3
m3

)
cosh m3z, if β3 > 0

(5.32e)

bzz6 =

⎧⎪⎪⎨
⎪⎪⎩

−
(

c13p + c23q
B3

�3
− c33

C3

�3
m3

)
sin m3z, if β3 < 0

−
(

c13p + c23q
Bj

�3
− c33

C3

�3
m3

)
sinh m3z, if β3 > 0

(5.32f)
τyz is of the form (5.19a) with the z-dependent coefficients defined as

byz1 = c44e
γ1z[(ξ11γ1 + ξ21γ2 + qf11) cos γ2z

+ (ξ21γ1 − ξ11γ2 + qf21) sin γ2z], (5.33a)

byz2 = c44e
γ1z[(ξ12γ1 + ξ22γ2 + qf12) cos γ2z

+ (ξ22γ1 − ξ12γ2 + qf22) sin γ2z], (5.33b)

byz3 = c44e
−γ1z[(qf33 + ξ43γ2 − ξ33γ1) cos γ2z

+ (qf43 − ξ33γ2 − ξ43γ1) sin γ2z], (5.33c)

byz4 = c44e
−γ1z[(qf34 + ξ44γ2 − ξ34γ1) cos γ2z

+ (qf44 − ξ34γ2 − ξ44γ1) sin γ2z], (5.33d)

bzz4 = −[c33(f34γ1 − f44γ2) + c23qξ34]e−γ1z cos γ2z

−[c33(f44γ1 + f34γ2) + c13p + c23qξ44]e−γ1z sin γ2z. (5.32d)



Structural and Failure Mechanics of Sandwich Composites 117

byz5 =

⎧⎪⎪⎨
⎪⎪⎩

c44

(
q

C3

�3
− m3

B3

�3

)
sin m3z, if β3 < 0,

c44

(
q

C3

�3
+ m3

B3

�3

)
sinh m3z, if β3 > 0,

(5.33e)

byz6 =

⎧⎪⎪⎨
⎪⎪⎩

−c44

(
q

C3

�3
− m3

B3

�3

)
cos m3z, if β3 < 0,

c44

(
q

C3

�3
+ m3

B3

�3

)
cosh m3z, if β3 > 0.

(5.33f)

Finally, τxz is of the form (5.20a) with the z-dependent coefficients defined
as

bxz1 = c55e
γ1z[(γ1 + pf11) cos γ2z + (pf21 − γ2) sin γ2z], (5.34a)

bxz2 = c55e
γ1z[(γ2 + pf12) cos γ2z + (pf22 + γ1) sin γ2z], (5.34b)

bxz3 = c55e
−γ1z[(pf33 − γ1) cos γ2z + (pf43 − γ2) sin γ2z], (5.34c)

bxz4 = c55e
−γ1z[(pf34 + γ2) cos γ2z + (pf44 − γ1) sin γ2z], (5.34d)

bxz5 =

⎧⎪⎪⎨
⎪⎪⎩

c55

(
p

C3

�3
− m3

)
sin m3z, if β3 < 0 ,

c55

(
p

C3

�3
+ m3

)
sinh m3z, if β3 > 0,

(5.34e)

bxz6 =

⎧⎪⎪⎨
⎪⎪⎩

−c55

(
p

C3

�3
− m3

)
cos m3z, if β3 < 0,

c55

(
p

C3

�3
+ m3

)
cosh m3z, if β3 > 0.

(5.34f)

5.1.3 Isotropic Layers

In the event that one of the layers in the sandwich panel is isotropic (this is
more common for the core) with extensional modulus E and Poisson’s ratio
ν, then the following relationships for the material constants hold:

c11 = c22 = c33 = E
1 − ν

(1 − 2ν)(1 + ν)
, (5.35a)

c12 = c13 = c23 = c11
ν

1 − ν
; c66 = c55 = c44 = c11

1 − 2ν

2(1 − ν)
. (5.35b)
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In this case we find that D vanishes and the solution to Equation (5.10)
consists of three equal roots, βi = p2 + q2. Therefore, the solutions to (5.7)
occur in the form of three repeated pairs of roots, si = ±λ, where

λ = (p2 + q2)1/2. (5.36)

In this case, the displacement functions take the form

Uη(z) = (a1η + a3ηz + a5ηz
2)eλz + (a2η + a4ηz + a6ηz

2)e−λz, (5.37)

where η = u, v,w corresponds to the U,V,W displacements and the aiη

are constants. Of the 18 constants appearing in (5.37), only six are indepen-
dent. The various relations that exist among these constants are found by
substituting (5.37) and (5.5) into (5.4), in which the relations (5.35) for the
isotropic material constants are used. In this way we deduce the following
12 relations:

a5η = a6η = 0; η = u, v,w, (5.38a)

qa3u = pa3v; λa3u = pa3w, (5.38b)

qa4u = pa4v; λa4u = −pa4w, (5.38c)

pa1u + qa1v − λa1w = −λ

p
(4ν − 3)a3u, (5.38d)

pa2u + qa2v + λa2w = λ

p
(4ν − 3)a4u. (5.38e)

Hence, if we consider the constants a1u, a2u, a3u, a4u, a1v, and a2v as in-
dependent, which for convenience we rename g1, g2, g3, g4, g5, g6, respec-
tively, the displacement U(z) is of the form (5.15a) with the z-dependent
coefficients defined as

du1 = eλz ; du2 = e−λz; du3 = zeλz ; du4 = ze−λz ; du5 = du6 = 0.

(5.39)
The displacement V (z) is of the form (5.16a) where

dv1 = dv2 = 0; dv3 = q

p
zeλz; dv4 = q

p
ze−λz; dv5 = eλz; dv6 = e−λz,

(5.40)
and the displacement W(z) is of the form (5.17a) where,

dw1 = p

λ
eλz ; dw2 = −p

λ
e−λz ; dw3 =

(
4ν − 3

p
+ λ

p
z

)
eλz, (5.41a)
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dw4 =
(

4ν − 3

p
− λ

p
z

)
e−λz ; dw5 = q

λ
eλz ; dw6 = −q

λ
e−λz. (5.41b)

The corresponding stresses are derived by substituting the above displace-
ment expressions into (5.5), (5.1), and (5.2). We present again the explicit
expressions for σzz, τyz, and τxz, which come into the interface conditions.
σzz is of the form (5.18a) with the z-dependent coefficients defined as

bzz1 = c11p
1 − 2ν

1 − ν
eλz ; bzz2 = c11p

1 − 2ν

1 − ν
e−λz, (5.42a)

bzz3 = c11
λ(1 − 2ν)

p(1 − ν)
eλz [λz − 2(1 − ν)] , (5.42b)

bzz4 = c11
λ(1 − 2ν)

p(1 − ν)
e−λz [λz + 2(1 − ν)] , (5.42c)

bzz5 = c11q
1 − 2ν

1 − ν
eλz ; bzz6 = c11q

1 − 2ν

1 − ν
e−λz. (5.42d)

τyz is of the form (5.19a) with the z-dependent coefficients defined as

byz1 = c11(1 − 2ν)

2(1 − ν)

pq

λ
eλz ; byz2 = −c11(1 − 2ν)

2(1 − ν)

pq

λ
e−λz, (5.43a)

byz3 = c11(1 − 2ν)

(1 − ν)
(2ν − 1 + λz)

q

p
eλz, (5.43b)

byz4 = c11(1 − 2ν)

(1 − ν)
(2ν − 1 − λz)

q

p
e−λz, (5.43c)

byz5 = c11(1 − 2ν)

2(1 − ν)

(
q2

λ
+ λ

)
eλz; byz6 = −c11(1 − 2ν)

2(1 − ν)

(
q2

λ
+ λ

)
e−λz.

(5.43d)
τxz is of the form (5.20a) with the z-dependent coefficients defined as

bxz1 = c11(1 − 2ν)

2(1 − ν)

(
p2

λ
+ λ

)
eλz; bxz2 = −c11(1 − 2ν)

2(1 − ν)

(
p2

λ
+ λ

)
e−λz,

(5.44a)

bxz3 = c11(1 − 2ν)

(1 − ν)
(2ν − 1 + λz) eλz, (5.44b)

bxz4 = c11(1 − 2ν)

(1 − ν)
(2ν − 1 − λz) e−λz, (5.44c)

bxz5 = c11(1 − 2ν)

2(1 − ν)

pq

λ
eλz; bxz6 = −c11(1 − 2ν)

2(1 − ν)

pq

λ
e−λz. (5.44d)
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From this analysis, we can see that the stresses in each layer (i), where i =
f1, c, f2, are described by six constants: g

(i)
j , g

(i)

j+3, j = 1, 2, 3. Therefore,
for the sandwich panel, a total of 18 constants are to be determined.

There are three traction conditions at each of the two core/face-sheet in-
terfaces, giving a total of six conditions. In a similar fashion, there are three
displacement continuity conditions at each of the two core/face-sheet inter-
faces, giving another six conditions. Finally, there are three traction bound-
ary conditions on each of the two plate outer surfaces, giving an another six
conditions, i.e. a total of 18 equations.

Finally, for completeness, we also give the detailed expressions for the
in-plane stresses σxx, σyy and τxy . σxx can be written in the form

σxx = (bxx1g1 + bxx2g2 + bxx3g3 + bxx4g4 + bxx5g5 + bxx6g6) sin px sin qy,

(5.45)
where the z-dependent coefficients bxxj are found from the bzzj expressions
(5.18b–c) and (5.32a–f) by replacing c33 with c13, c13 with c11 and c23 with
c12. In the same manner, σyy is given by

σyy = (
byy1g1 + byy2g2 + byy3g3 + byy4g4 + byy5g5 + byy6g6

)
sin px sin qy,

(5.46)
where the z-dependent coefficients byyj are again found from the bzzj expres-
sions (5.18b–c) and (5.32a–f) by now replacing c33 with c23, c13 with c12 and
c23 with c22. Finally, the shear stress, τxy , is

τxy = (
bxy1g1 + bxy2g2 + bxy3g3 + bxy4g4 + bxy5g5 + bxy6g6

)
cos px sin qy.

(5.47)
For orthotropic layers with D < 0, the z-dependent coefficients are de-

fined for j = 1, 2, 3 as

bxyj =

⎧⎪⎪⎨
⎪⎪⎩

c66

(
q + p

Bj

�j

)
cos mjz, if βj < 0,

c66

(
q + p

Bj

�j

)
cosh mjz, if βj > 0,

(5.48a)

bxy(j+3) =

⎧⎪⎪⎨
⎪⎪⎩

c66

(
q + p

Bj

�j

)
sin mjz, if βj < 0,

c66

(
q + p

Bj

�j

)
sinh mjz, if βj > 0.

(5.48b)
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In the expressions (5.48) and (5.49), �j and B3 refer to (5.13j–k) if βj <

0, and to (5.14e–f) if βj > 0. Further, �3 and B3 refer to (5.27d–e) if β3 < 0
and to (5.28d–e) if β3 > 0. With this note, for orthotropic layers with D > 0,
the z-dependent coefficients are

bxy1 = c66e
γ1z[(q + pξ11) cos γ2z + pξ21 sin γ2z], (5.49a)

bxy2 = c66e
γ1z[pξ12 cos γ2z + (q + pξ22) sin γ2z], (5.49b)

bxy3 = c66e
−γ1z[(q + pξ33) cos γ2z + pξ43 sin γ2z], (5.49c)

bxy4 = c66e
−γ1z[pξ34 cos γ2z + (q + pξ44) sin γ2z], (5.49d)

bxy5 =

⎧⎪⎪⎨
⎪⎪⎩

c66

(
q + p

B3

�3

)
cos m3z, if β3 < 0

c66

(
q + p

B3

�3

)
cosh m3z, if β3 > 0

(5.49e)

bxy6 =

⎧⎪⎪⎨
⎪⎪⎩

c66

(
q + p

B3

�3

)
sin m3z, if β3 < 0

c66

(
q + p

B3

�3

)
sinh m3z, if β3 > 0

(5.49f)

For isotropic materials, the z-dependent coefficients are:

bxy1 = c11(1 − 2ν)

2(1 − ν)
qeλz ; bxy2 = c11(1 − 2ν)

2(1 − ν)
qe−λz, (5.50a)

bxy3 = c11(1 − 2ν)

1 − ν
qzeλz, (5.50b)

bxy4 = c11(1 − 2ν)

1 − ν
qze−λz, (5.50c)

bxy5 = c11(1 − 2ν)

2(1 − ν)
peλz ; bxy6 = c11(1 − 2ν)

2(1 − ν)
pe−λz. (5.50d)

5.1.4 Examples

As an illustration of the above, let us consider a symmetric sandwich
plate with unidirectional carbon/epoxy faces and a hexagonal glass/phenolic
honeycomb core. This material combination is very common in the
aerospace/rotorcraft industry (although the faces would be multidirec-
tional for most applications). The orthotropic face moduli are (in GPa):
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E
f

1 = 181, E
f

2 = E
f

3 = 10.3, G
f

23 = 5.96, G
f

12 = G
f

31 = 7.17;
and the face Poisson’s ratios: ν

f

12 = ν
f

13 = 0.277, ν
f

32 = 0.400. The
orthotropic honeycomb core moduli are (in GPa): Ec

1 = Ec
2 = 0.032,

Ec
3 = 0.300, Gc

23 = Gc
31 = 0.048, Gc

12 = 0.013; and the core Pois-
son’s ratios: νc

12 = νc
32 = νc

31 = 0.25. The thickness of each face sheet is
f1 = f2 = 2 mm and the core thickness 2c = 16 mm. The plate is square
with a = b = 10h, where h is the total thickness of the sandwich plate.

We further assume that a transverse load is applied at the top face sheet of
the form

q0(x, y) = Q0 sin px sin qy, (5.51)

and in the definition of p and q in (5.5d), we further assume m = n = 1.
Note that a general load can be expanded in a series of terms of the type
(5.51).

For each layer, the compliance constants are given by

a11 = 1

E1
; a12 = −ν21

E2
; a13 = −ν31

E3
, (5.52a)

a22 = 1

E2
; a23 = −ν32

E3
; a33 = 1

E3
, (5.52b)

a44 = 1

G23
; a55 = 1

G13
; a66 = 1

G12
. (5.52c)

The stiffness matrix is the inverse of the compliance matrix. The inversion
leads to the following formulas for the cij :

c11 = E1
(1 − ν23ν32)

C0
; c12 = E2

(ν12 + ν13ν32)

C0
; c13 = E3

(ν13 + ν12ν23)

C0
,

(5.52d)

c22 = E2
(1 − ν13ν31)

C0
; c23 = E3

(ν23 + ν21ν13)

C0
; c33 = E3

(1 − ν12ν21)

C0
,

(5.52e)
c44 = G23 ; c55 = G13 ; c66 = G12, (5.52f)

where

C0 = 1 − (ν12ν21 + ν23ν32 + ν13ν31) − (ν12ν23ν31 + ν21ν13ν32). (5.52g)

Substituting the corresponding constants leads to the following β’s:

• Face sheets, D > 0, therefore two complex conjugate roots and one real
root:

β
f

1 = 342.5 + i316.3; β
f

2 = 342.5 − i316.3 ; β
f

3 = 6150.2.
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• Core, D > 0, therefore again two complex conjugate roots and one real
root:

βc
1 = 158.9 + i49.2; βc

2 = 158.9 − i49.2 ; βc
3 = 131.6.

Since we have a positive discriminant for both the face sheet and the core,
the corresponding positive discriminant formulas for the coefficients in the
expressions of the displacements and stresses are applicable. The solution is
obtained by imposing the following.

There are three traction conditions at the lower face-sheet/core interface,
z = −c:

(a) σ (c)
zz = σ

(f2)
zz |z=−c, which gives

6∑
j=1

b
(c)
zzj |z=−cg

(c)
j =

6∑
j=1

b
(f2)

zzj |z=−cg
(f2)

j , (5.53a)

(b) τ (c)
yz = τ

(f2)
yz |z=−c, which gives

6∑
j=1

b
(c)
yzj |z=−cg

(c)
j =

6∑
j=1

b
(f2)

yzj |z=−cg
(f2)

j , (5.53b)

and
(c) τ (c)

xz = τ
(f2)
xz |z=−c, which gives

6∑
j=1

b
(c)
xzj |z=−cg

(c)
j =

6∑
j=1

b
(f2)

xzj |z=−cg
(f2)

j . (5.53c)

There are also three displacement continuity conditions at the lower
core/face-sheet interfaces:

(a) U(c) = U(f2) at z = −c, which results in

6∑
j=1

d
(c)
uj |z=−cg

(c)
j =

6∑
j=1

d
(f2)

uj |z=−cg
(f2)

j , (5.53d)

(b) V (c) = V (f2) at z = −c, which gives

6∑
j=1

d
(c)
vj |z=−cg

(c)
j =

6∑
j=1

d
(f2)

vj |z=−cg
(f2)

j , (5.53e)

and



124 5 Elasticity Solutions for Sandwich Structures

(c) W(c) = W(f2) at z = −c, which gives

6∑
j=1

d
(c)
wj |z=−cg

(c)
j =

6∑
j=1

d
(f2)

wj |z=−cg
(f2)

j . (5.53f)

Next, there are three traction conditions at the upper face-sheet/core inter-
face, z = c:

(a) σ
(f1)
zz = σ (c)

zz |z=c, which gives

6∑
j=1

b
(c)
zzj |z=cg

(c)
j =

6∑
j=1

b
(f1)

zzj |z=cg
(f1)

j , (5.54a)

(b) τ
(f1)
yz = τ (c)

yz |z=c, which gives

6∑
j=1

b
(c)
yzj |z=cg

(c)
j =

6∑
j=1

b
(f1)

yzj |z=cg
(f1)

j , (5.54b)

and
(c) τ

(f1)
xz = τ (c)

xz |z=c, which gives

6∑
j=1

b
(c)
xzj |z=cg

(c)
j =

6∑
j=1

b
(f1)

xzj |z=cg
(f1)

j . (5.54c)

The corresponding displacement continuity conditions at the upper face-
sheet/core interface, z = c are

(a) U(f1) = U(c) at z = c, which gives

6∑
j=1

d
(c)
uj |z=cg

(c)
j =

6∑
j=1

d
(f1)

uj |z=cg
(f1)

j , (5.54d)

(b) V (f1) = V (c) at z = c, which gives

6∑
j=1

d
(c)
vj |z=cg

(c)
j =

6∑
j=1

d
(f1)

vj |z=cg
(f1)

j , (5.54e)

and
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(c) W(f1) = W(c) at z = c, which gives

6∑
j=1

d
(c)
wj |z=cg

(c)
j =

6∑
j=1

d
(f1)

wj |z=cg
(f1)

j . (5.54f)

Finally, three traction conditions exist on each of the two outer surfaces.
The traction free conditions at the lower outer surface, z = −(c + f2), can
be written as follows:

(a) σzz|z=−(c+f2) = 0, which gives

6∑
j=1

b
(f2)

zzj |z=−(c+f2)g
(f2)

j = 0, (5.55a)

(b) τyz|z=−(c+f2) = 0, which gives

6∑
j=1

b
(f2)

yzj |z=−(c+f2)g
(f2)

j = 0, (5.55b)

and
(c) τxz|z=−(c+f2), which gives

6∑
j=1

b
(f2)

xzj |z=−(c+f2)g
(f2)

j = 0. (5.55c)

For the upper surface, where the transverse pressure q0 is applied:

(a) σzz|z=(c+f1) = q0, which gives

6∑
j=1

b
(f1)

zzj |z=(c+f1)g
(f1)

j = Q0, (5.55d)

(b) τyz|z=(c+f1) = 0, which gives

6∑
j=1

b
(f1)

yzj |z=(c+f1)g
(f1)

j = 0, (5.55e)

and
(c) τxz|z=(c+f1) = 0, which gives

6∑
j=1

b
(f1)

xzj |z=(c+f1)g
(f1)

j = 0. (5.55f)
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Figure 5.2 Transverse displacement, W , at the top face sheet and at y = b/2,
as a function of x for a = b = 10htot (carbon/epoxy faces and glass/phenolic
honeycomb core).

Therefore, we have a system of 18 linear algebraic equations with 18 un-
knowns, g

(f2)

j , g
(c)
j and g

(f1)

j , j = 1, 6.
A square sandwich panel with size a = b = 10htot, where htot (= h) is

the thickness of the panel, was considered first. The resulting transverse dis-
placement profile w at the top surface, z = c + f1, and at y = b/2, is shown
in Figure 5.2. The displacement is normalized with 100hQ0/E

f

1 . In this fig-
ure, we also show the predictions from the classical plate theory which does
not include transverse shear. Furthermore, the displacement profile obtained
from the first-order core shear theory is also shown. The classical and first-
order shear theories are outlined in detail in Chapter 3. It can be seen that the
classical plate theory is unconservative and quite inaccurate. Furthermore,
the first-order shear is too conservative and also quite inaccurate (although
considerably better than the classical plate theory).

To illustrate the effect of plate size, Figure 5.3 shows the displacement
profiles for a plate five times larger, i.e., with a = b = 50h. For this case,
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Figure 5.3 Transverse displacement, W , at the top face sheet and at y = b/2, as a
function of x for a = b = 50htot.

the first-order shear theory is close to the elasticity, as expected. The classical
plate theory is still quite inaccurate. These figures demonstrate clearly the
large effect of transverse shear, which is an important feature of sandwich
structures.

5.2 A Cylindrical Sandwich Shell with Orthotropic Layers

We consider next the elastic equilibrium of a body in the form of a hollow
round cylinder (a tube) of sandwich construction which consists of two face-
sheets and a core (Figure 5.4). All three layers are made from a material
with cylindrical orthotropy. The body is under the influence of stresses dis-
tributed along the lateral surface and on the ends. Let us assume that (1) the
axis of orthotropy coincides with the geometric axis of the body; (2) there
are planes of elastic symmetry normal to the axis of the cylinder; (3) the
stresses acting on the outer and inner surfaces are normal and distributed
uniformly, and (4) the stresses which act on the end surfaces reduce to forces
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Figure 5.4 Cross-section of a cylindrical sandwich shell under internal pressure
(p), external pressure (q), and axial loading (P , normal to the plane of the figure).

which are directed along the axis and to twisting moments. We denote the
thickness of the outer face-sheet by h1 = f1, that of the inner face-sheet
by h2 = f2, and that of the core by hc = c. The inner radius is a and
the outer b, where, of course, b = a + f2 + c + f1. The shell thickness is
h = b − a.

Let us denote each layer by i where i = f1 for the outer face-sheet, i = c

for the core and i = f2 for the inner face-sheet. Then, for each layer, the
orthotropic strain-stress relations are
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε(i)
rr

ε
(i)
θθ

ε(i)
zz

γ
(i)
θz

γ (i)
rz

γ
(i)
rθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai
11 ai

12 ai
13 0 0 0

ai
12 ai

22 ai
23 0 0 0

ai
13 ai

23 ai
33 0 0 0

0 0 0 ai
44 0 0

0 0 0 0 ai
55 0

0 0 0 0 0 ai
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ (i)
rr

σ
(i)
θθ

σ (i)
zz

τ
(i)
θz

τ (i)
rz

τ
(i)
rθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (i = f1, c, f2)

(5.56)
where ai

ij are the compliance constants (we have used the notation 1 ≡ r,
2 ≡ θ , 3 ≡ z).

We have taken the axis of the body as the z axis of the cylindrical coordi-
nate system, and the polar x axis is arbitrary in the plane of one of the end
sections. The following notations are introduced: p and q are the internal
and external pressures, respectively; P is the axial force; M is the twisting
moment. Let us introduce the following notation for certain constants which
enter into the stress formulas and depend on the elastic constants:

βi
11 = ai

11 − ai 2
13

ai
33

; βi
22 = ai

22 − ai 2
23

ai
33

, (5.57a)

βi
12 = ai

12 − ai
13a

i
23

ai
33

, (5.57b)

and

ki =
√

βi
11

βi
22

; µi = 1

ai
44

; ξi = ai
13 − ai

23

βi
22 − βi

11

, (5.58)

where i = f1, c, f2.
Remark. In the case of isotropy (ai

13 = ai
23 and βi

22 = βi
11), ξ equals zero

and all the formulas in this section will still be valid.
Now, if we assume that the applied external stresses are the same at all

the cross-sections (do not vary with z) and, in addition, that the stresses de-
pend only on the distance r from the axis, then the stresses in each of the
orthotropic layers can be written in terms of two stress functions, F (i)(r)

and �(i)(r), (i = f1, c, f2) so that

σ (i)
rr (r) = F (i)′(r)

r
; σ

(i)
θθ (r) = F (i)′′(r), (5.59a)

τ
(i)
rθ = 0; τ (i)

rz = 0; τ
(i)
θz = −�(i)′(r), (5.59b)
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σ (i)
zz = C(i) − 1

a33

[
ai

13σ
(i)
rr + ai

23σ
(i)
θθ

]
, (5.59c)

where i = f1, c, f2.
Under the aforementioned assumptions, the equations of equilibrium and

the condition that the displacements are single-valued functions of the coor-
dinates, will be satisfied if

F (i)(r) = C(i)

2
ξir

2 + C
(i)
2

1 + ki

r1+ki + C
(i)
3

1 − ki

r1−ki , (5.60a)

�(i)(r) = − θ̄ (i)µi

2
r2. (5.60b)

where i = f1, c, f2.
The constants C(i), C

(i)
2 , C

(i)
3 , θ̄ (i) are found from the conditions on the

cylindrical lateral surfaces (e.g. applied uniform internal and/or external
pressure) and the conditions on the ends (e.g. applied axial load or axial
strain or twisting moment).

Therefore, from Equations (5.59), the stresses are

σ (i)
rr (r) = C(i)ξi + C

(i)

2 rki−1 + C
(i)

3 r−ki−1, (5.61a)

σ
(i)
θθ (r) = C(i)ξi + C

(i)

2 kir
ki−1 − C

(i)

3 kir
−ki−1, (5.61b)

τ
(i)
θz (r) = θ̄ (i)µir, (5.61c)

σ (i)
zz (r) = C(i)

[
1 − (ai

13 + ai
23)

ai
33

ξi

]
− C

(i)
2

(ai
13 + ai

23ki)

ai
33

rki−1

− C
(i)
3

(ai
13 − ai

23ki)

ai
33

r−ki−1. (5.61d)

where i = f1, c, f2.
Denoting by u(i)

r , u
(i)
θ and w(i) the displacements in the radial, circumfer-

ential and axial direction, respectively, the displacement field for this case,
excluding rigid body translation and rotation, is given as

u(i)
r (r, z) = U(i)(r) ; u

(i)
θ (r, z) = θ̄ (i)zr + V (i)(r);

w(i)(r, z) = C(i)ai
33z + W(i)(r), (5.62)

where U(i), V (i) and W(i) are found from the strain-displacement relations
and the stress field (5.59) from the following:
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∂U(i)

∂r
= βi

11σ
(i)
rr + βi

12σ
(i)
θθ + ai

13C
(i), (5.63a)

1

r

∂V (i)

∂θ
+ U(i)

r
= βi

12σ
(i)
rr + βi

22σ
(i)
θθ + ai

23C
(i), (5.63b)

1

r

∂U(i)

∂θ
+ ∂V (i)

∂r
− V (i)

r
= 0; ∂W(i)

∂r
= 0; 1

r

∂W(i)

∂θ
= 0. (5.63c)

Therefore, with the definitions (5.57) for ki and ξi , the displacement field
which satisfies these equations and would result in strains, is found by inte-
grating (5.63), as

U(i)(r) = C(i)
[
ai

13 + ξi(β
i
11 + βi

12)
]
r + C

(i)
2

(βi
11 + kiβ

i
12)

ki

rki

− C
(i)
3

(βi
11 − kiβ

i
12)

ki

r−ki , (5.64a)

V (i)(r) = 0 ; W(i)(r) = 0. (5.64b)

5.2.1 Generalized Plane Deformation of an Orthotropic Sandwich
Tube Subjected to Internal and/or External Pressures

Let us assume that the sandwich cylinder considered in the previous sec-
tion is subject to pressures p and q distributed uniformly on the inner and
outer surfaces, respectively, and has infinite length (generalized plane defor-
mation assumption). Then, not only the stresses, but also the displacements
do not depend on z. Alternatively, this is the assumption we would make if
the cylinder were securely fixed at the ends (εz = 0). Consequently, we can
assume

C(i) = θ̄ (i) = 0. (5.65)

The traction conditions at the core/face-sheet interfaces give

σ (f2)
rr |r=a+f2 = σ (c)

rr |r=a+f2; σ (c)
rr |r=b−f1 = σ (f1)

rr |r=b−f1 . (5.66)

Applying (5.61) and (5.65), this gives

C
(f2)

2 (a + f2)
kf2−1 + C

(f2)

3 (a + f2)
−kf2−1

= C
(c)

2 (a + f2)
kc−1 + C

(c)

3 (a + f2)
−kc−1, (5.67a)

C
(c)
2 (b − f1)

kc−1 + C
(c)
3 (b − f1)

−kc−1

= C
(f1)

2 (b − f1)
kf1−1 + C

(f1)

3 (b − f1)
−kf1−1. (5.67b)
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The displacement continuity at the core/face-sheet interfaces is, in turn,

U(f2)|r=a+f2 = U(c)|r=a+f2; U(c)|r=b−f1 = U(f1)|r=b−f1 . (5.68)

which, by use of (5.64a) and (5.65), gives

C
(f2)

2

(β
f2
11 + kf2β

f2
12 )

kf2

(a + f2)
kf2 − C

(f2)

3

(β
f2
11 − kf2β

f2
12)

kf2

(a + f2)
−kf2

= C
(c)
2

(βc
11 + kcβ

c
12)

kc

(a + f2)
kc − C

(c)
3

(βc
11 − kcβ

c
12)

kc

(a + f2)
−kc ,

(5.69a)

C
(c)
2

(βc
11 + kcβ

c
12)

kc

(b − f1)
kc − C

(c)
3

(βc
11 − kcβ

c
12)

kc

(b − f1)
−kc

= C
(f1)

2

(β
f1
11 + kf1β

f1
12)

kf1

(b − f1)
kf1 − C

(f1)

3

(β
f1
11 − kf1β

f1
12 )

kf1

(b − f1)
−kf1 .

(5.69b)

The conditions of applied internal and external pressures on the inner and
outer surfaces (r = a, b) are

σ (f2)
rr |r=a = −p ; σ (f1)

rr |r=b = −q, (5.70)

which gives

C
(f2)

2 akf2 −1 + C
(f2)

3 a−kf2 −1 = −p; C
(f1)

2 bkf1 −1 + C
(f1)

3 b−kf1 −1 = −q,

(5.71)
The six unknowns C

(i)
2 , C

(i)
3 (i = f1, c, f2) are solved in terms of p and q

using a system of six linear equations formed by Equations (5.67a, b), (5.69a,
b) and (5.71). Then, the stresses are found by Equations (5.61).

Since there is no stress τθz, there is no resultant twisting moment. The
stresses σzz on the ends and in any cross-section reduce to an axial force P

which can be found from

P

2π
=

∫ b

a

σzzrdr =
∫ a+f2

a

σ (f2)
zz rdr +

∫ b−f1

a+f2

σ (c)
zz rdr +

∫ b

b−f1

σ (f1)
zz rdr.

(5.72)
Using (5.61d), this becomes

P

2π
= −(D2 + D3). (5.73a)
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where

D2 = C
(f1)

2

(a
f1
13 + a

f1
23kf1)

a
f1
33(kf1 + 1)

[
b(kf1+1) − (b − f1)

(kf1+1)
]

+ C
(c)

2

(ac
13 + ac

23kc)

ac
33(kc + 1)

[
(b − f1)

(kc+1) − (a + f2)
(kc+1)

]

+ C
(f2)

2

(a
f2
13 + a

f2
23kf2)

a
f2
33(kf2 + 1)

[
(a + f2)

(kf2+1) − a(kf2+1)
]
, (5.73b)

D3 = C
(f1)

3

(a
f1
13 − a

f1
23kf1)

a
f1
33(−kf1 + 1)

[
b(−kf1+1) − (b − f1)

(−kf1+1)
]

+ C
(c)
3

(ac
13 − ac

23kc)

ac
33(−kc + 1)

[
(b − f1)

(−kc+1) − (a + f2)
(−kc+1)

]

+ C
(f2)

3

(a
f2
13 − a

f2
23kf2)

a
f2
33(−kf2 + 1)

[
(a + f2)

(−kf2+1) − a(−kf2 +1)
]
. (5.73c)

5.2.2 An Orthotropic Hollow Sandwich Cylinder Loaded by an
Axial Force

We now assume that the shell is loaded by stresses distributed on the ends
and which reduce to a tensile force P . The stresses at the ends are applied
so that a uniformly distributed constant axial strain, ε0, exists throughout the
section. Note also that no resultant twisting moment is assumed to exist and
θ̄ i = 0.

From (5.62) the axial strain is C(i)ai
33, and the first condition is

C(f2)a
f2
33 = C(c)ac

33 = C(f1)a
f1
33 = ε0. (5.74)

i.e., the constants C(i) are non-zero.
Next, the traction conditions (5.66) at the face-sheet/core interfaces give

by use of (5.61a) and (5.74):

ε0
ξf2

a
f2
33

+ C
(f2)

2 (a + f2)
kf2 −1 + C

(f2)

3 (a + f2)
−kf2 −1

= ε0
ξc

ac
33

+ C
(c)

2 (a + f2)
kc−1 + C

(c)

3 (a + f2)
−kc−1, (5.75a)
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ε0
ξc

ac
33

+ C
(c)
2 (b − f1)

kc−1 + C
(c)
3 (b − f1)

−kc−1

= ε0
ξf1

a
f1
33

+ C
(f1)

2 (b − f1)
kf1−1 + C

(f1)

3 (b − f1)
−kf1−1. (5.75b)

The displacement continuity at the face-sheet/core interfaces, (5.68), by
use of (5.64a) and (5.74) becomes

ε0
(a

f2
13 + ξf2(β

f2
11 + β

f2
12 ))

a
f2
33

(a + f2) + C
(f2)

2

(β
f2
11 + kf2β

f2
12)

kf2

(a + f2)
kf2

− C
(f2)

3

(β
f2
11 − kf2β

f2
12)

kf2

(a + f2)
−kf2 = ε0

(ac
13 + ξc(β

c
11 + βc

12))

ac
33

(a + f2)

+ C
(c)
2

(βc
11 + kcβ

c
12)

kc

(a + f2)
kc − C

(c)
3

(βc
11 − kcβ

c
12)

kc

(a + f2)
−kc ,(5.76a)

ε0
(ac

13 + ξc(β
c
11 + βc

12))

ac
33

(b − f1) + C
(c)
2

(βc
11 + kcβ

c
12)

kc

(b − f1)
kc

− C
(c)

3

(βc
11 − kcβ

c
12)

kc

(b − f1)
−kc = ε0

(a
f1
13 + ξf1(β

f1
11 + β

f1
12 ))

a
f1
33

(b − f1)

+ C
(f1)

2

(β
f1
11 + kf1β

f1
12 )

kf1

(b − f1)
kf1 − C

(f1)

3

(β
f1
11 − kf1β

f1
12)

kf1

(b − f1)
−kf1 .

(5.76b)

Next, the condition of traction-free lateral surfaces is expressed by

σ (f2)
rr |r=a = 0; σ (f1)

rr |r=b = 0, (5.77)

which gives

ε0
ξf2

a
f2
33

+ C
(f2)

2 akf2 −1 + C
(f2)

3 a−kf2 −1 = 0, (5.78a)

ε0
ξf1

a
f1
33

+ C
(f1)

2 bkf1−1 + C
(f1)

3 b−kf1−1 = 0. (5.78b)

Again, the solution is found by solving for the six constants C
(i)

2 , C
(i)

3 ,
(i = f1, c, f2) in terms of ε0, from the six linear equations (5.75a, b), (5.76a,
b) and (5.78a, b).
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An expression for the resultant applied force P in terms of ε0 can be found
by integrating σzz as in (5.72), and this now gives, by using (5.61d),

P

2π
= −(D1 + D2 + D3), (5.79a)

where D2 and D3 are given by (5.73b, c) and

D1/ε0 =
[

1 − (a
f1
13 + a

f1
23)

a
f1
33

ξf1

] [
b2 − (b − f1)

2
]

2a
f1
33

+
[

1 − (ac
13 + ac

23)

ac
33

ξc

] [
(b − f1)

2 − (a + f2)
2
]

2ac
33

+
[

1 − (a
f2
13 + a

f2
23)

a
f2
33

ξf2

] [
(a + f2)

2 − a2
]

2a
f2
33

. (5.79b)

Of course, the axial stress σzz is non-uniformly distributed over the cross-
section as opposed to the axial strain, ε0, assumed to be uniform.

5.2.3 Sandwich Shell Theory Expressions

We refer to a cylindrical coordinate system z, θ and r, in which z and θ are
in the axial and circumferential directions and r is in the (radial) direction.
The corresponding displacements at any point are denoted by w, v and u.

In addition to Equation (5.56) which is in terms of the compliance con-
stants, we shall use the stress-strain relations in terms of the stiffness con-
stants, as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ (i)
rr

σ
(i)
θθ

σ (i)
zz

τ
(i)
θz

τ (i)
rz

τrθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ci
11 ci

12 ci
13 0 0 0

ci
12 ci

22 ci
23 0 0 0

ci
13 ci

23 ci
33 0 0 0

0 0 0 ci
44 0 0

0 0 0 0 ci
55 0

0 0 0 0 0 ci
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε(i)
rr

ε
(i)
θθ

ε(i)
zz

γ
(i)
θz

γ (i)
rz

γ
(i)
rθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (i = f1, c, f2),

(5.80)
where we have again used the notation 1 ≡ r, 2 ≡ θ , 3 ≡ z.

The sandwich shell theory employed is a version of Love’s (1927) shell
theory extended to shear deformable structures (but note the absence of shear
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in this case of orthotropy). The core is assumed to carry only shear stresses
and the face sheets carry the normal stresses, therefore the extensional and
bending stiffnesses of the shell are based exclusively on the face-sheet stiff-
nesses. On the contrary, transverse shear stress resultants (should they exist)
are based exclusively on the shear stiffnesses of the core.

Taking into account the displacement distribution through the thickness
assumed in the shell theory, we can easily see that in the generalized plane
deformation problems under consideration, the displacement field through-
out the shell is

u(r, θ, z) = u0 ; v(r, θ, z) = 0 w(r, θ, z) = ε0z, (5.81a)

where u0 is a constant and ε0 is the uniform axial strain.
The relationships for the strains throughout the shell, corresponding to

Love’s (1927) shell theory are

εrr = 0 ; εθθ = u0

R
; εzz = ε0, (5.81b)

where R is the mid-surface radius. The shear strains are all zero. Notice that
in these simplified, axisymmetric, generalized plane deformation problems,
there is no difference between first-order shear deformation and classical
solutions.

The stress resultants of interest are

Nθ = C22ε
0
θθ + C23ε

0
zz; Nz = C23ε

0
θθ + C33ε

0
zz; Nzθ = 0, (5.81c)

where ε0
ij are the mid-surface strains, identical to the ones in (5.81b). More-

over, the Cij are the shell stiffness constants, determined by the face-sheets
(in the context of sandwich shell formulation) by

Cij = f1c
f1
ij + f2c

f2
ij , (i, j = 2, 3). (5.81d)

For external pressure, the equilibrium equations in terms of the stress re-
sultants are satisfied if

Nθ = −qR. (5.82a)

Furthermore, based on the assumptions of the problem for the external pres-
sure case, ε0 = 0. Then (5.81c) and (5.81b) give

u0 = −qR2/C22 ; εθθ = −qR/C22. (5.82b)

Subsequently by using (5.80) the stresses are:
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σrr = −q
ci

12R

C22
; σθθ = −q

ci
22R

C22
; σzz = −q

ci
23R

C22
(i = f2, c, f1),

(5.82c)
For axial loading with a uniform axial strain ε0, the equilibrium equations

are satisfied if Nθ = 0, which, by using (5.81c) and (5.81b), gives

u0 = −ε0RC23/C22 ; εθθ = −ε0C23/C22. (5.83a)

Subsequently, Nz can be obtained from (5.81c) as

Nz = ε0

(
C33 − C2

23

C22

)
. (5.83b)

Then the stresses are found by using (5.80):

σrr = ε0

(
ci

13 − ci
12

C23

C22

)
; σθθ = ε0

(
ci

23 − ci
22

C23

C22

)
;

σzz = ε0

(
ci

33 − ci
23ε0

C23

C22

)
, (5.83c)

where i = f1, c, f2.
As an illustrative example, the stress and displacement distribution was

determined for a sandwich composite circular cylindrical shell of outer ra-
dius b = 1 m, a ratio of outside over inside radii, b/a = 1.20, ratios of
face-sheet thicknesses over shell thickness, f2/h = f1/h = 0.10.

The face sheets are made from unidirectional E-glass/polyester with the
fiber direction along the circumference, with moduli in GPa: E

(f1,f2)

2 = 40,
E

(f1,f2)

1 = E
(f1,f2)

3 = 10, G
(f1,f2)

13 = 3.5, G
(f1,f2)

12 = G
(f1,f2)

23 = 4.5, and
Poisson’s ratios ν

(f1,f2)

31 = 0.40, ν
(f1,f2)

21 = ν
(f1,f2)

23 = 0.26. Note that 1 is the
radial (r), 2 is the circumferential (θ), and 3 the axial (z) direction. The core
modulus and Poisson’s ratio are assumed to be Ec = 75 MPa and νc = 0.30.
Notice that the compliance constants for the orthotropic face sheets are given
by (5.32a–c).

For the case of pure external pressure, q, Figure 5.5 shows the radial dis-
placement U(r), normalized with qR2/C22 (C22 is defined in (5.81d)) plot-
ted vs. r/R. The elasticity solution (Section 5.2.1) predicts a non-uniform
displacement as opposed to the shell theory.

For the case of pure axial loading by a uniform applied axial strain ε0, Fig-
ure 5.6 shows the displacement, U(r), normalized with ε0RC23/C22. Again,
the elasticity solution (Section 5.2.2) predicts a non-uniform displacement
distribution as opposed to the shell theory.
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Figure 5.5 Radial displacement, U(r) vs. normalized radius (r/R), for a cylindrical
sandwich shell of mean radius, R, under uniform external pressure, q .

Also note that because of the orthotropy and the axisymmetric geometry,
there are no shear stresses generated from internal/external pressure and axial
loading. Therefore even a first-order shear deformation theory would not
result in improved shell theory predictions.

Finally, it should be pointed out that the concept of sandwich construction
may not be ideal for the loading and structure analyzed. This is because in
the case considered there is no shear in the core and to really take advantage
of the sandwich concept, the core should carry the shear and the face sheet
should support the normal stresses. If the cylinder is loaded in compression,
however, and buckling occurs, then the core would support the shear, and the
solution presented can be used as the exact pre-buckling state of stress and
displacement in the formulation of the buckling problem.

5.2.4 Torsion of a Sandwich Shaft

Let us consider the more general case of off-axis orientation of the material,
but with one plane of elastic symmetry normal to the cylinder axis. Hence,
ai

45, ai
16, ai

26 and ai
36 are non-zero, and the strain-stress relations becomes
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Figure 5.6 Radial displacement, U(r) vs. normalized radius (r/R), for a cylindrical
sandwich shell of mean radius, R, under uniformly applied axial strain, ε0.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε(i)
rr

ε
(i)
θθ

ε(i)
zz

γ
(i)
θz

γ (i)
rz

γ
(i)
rθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai
11 ai

12 ai
13 0 0 ai

16

ai
12 ai

22 ai
23 0 0 ai

26

ai
13 ai

23 ai
33 0 0 ai

36

0 0 0 ai
44 ai

45 0

0 0 0 ai
45 ai

55 0

ai
16 ai

26 ai
36 0 0 ai

66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ (i)
rr

σ
(i)
θθ

σ (i)
zz

τ
(i)
θz

τ (i)
rz

τ
(i)
rθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (i = f1, c, f2).

(5.84a)
The equations of equilibrium are satisfied for

σ (i)
rr = σ

(i)
θθ = σ (i)

zz = τ
(i)
rθ = τ (i)

rz = 0 ; τ
(i)
θz = θ̄ (i)

ai
44

r, (5.84b)

and the displacement field (excluding rigid body rotation and translation)
that results from these stresses can be found from the strain-displacement
relations and the strain-stress relations, which in this case become

∂U(i)

∂r
= 0 ; 1

r

∂V (i)

∂θ
+ U(i)

r
= 0 ; 1

r

∂U(i)

∂θ
+ ∂V (i)

∂r
− V (i)

r
= 0, (5.85a)

where i = f1, c, f2.
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∂W(i)

∂r
= ai

45τ
(i)
θz = ai

45

θ̄ (i)

ai
44

r ; 1

r

∂W(i)

∂θ
= ai

44τ
(i)
θz − θ̄ (i)r = 0. (5.85b)

The resulting displacement field obtained by integrating the above rela-
tions is

u(i)
r = 0 ; uθ = θ̄ (i)rz ; w(i) = θ̄ (i) a

(i)

45

a
(i)
45

r2

2
+ di. (5.86)

where di are constants to be determined from face/core interface displace-
ment continuity requirements.

The continuity of displacement, uθ , at the face-sheet/core interfaces re-
sults in a constant relative angle of twist, θ̄ (i):

θ̄ (i) = θ̄ (i = f1, c, f2). (5.87)

The continuity of the displacement, w, at the face-sheet/core interfaces in
turn results in equations for the constants di in terms of the axial displace-
ment, w, expressions (5.86).

The resultant twisting moment, M, is then found from

M

2π
=

∫ b

a

τθzr
2dr =

∫ a+f2

a

τ
(f2)

θz r2dr +
∫ b−f1

a+f2

τ
(c)
θz r2dr +

∫ b

b−f1

τ
(f1)

θz r2dr.

(5.88)
Using (5.84b) and (5.87) results in the following expression:

M

2π
= θ̄

4

{
[(a + f2)

4 − a4]
a

(f2)

44

+ [(b − f1)
4 − (a + f2)

4]
a

(c)

44

+ [b4 − (b − f1)
4]

a
(f1)

44

}
.

(5.89)
If ai

45 = 0 for all three layers, then w(i) = 0, and the cross-sections will
remain planar and not warp.

We have presented in this chapter some fundamental cases regarding
three-dimensional elasticity of sandwich structures. Elasticity solutions for
other cases, e.g. a hollow orthotropic sandwich cylinder loaded by bending
moments applied at the ends, or an orthotropic sandwich curved bar, loaded
by couples or terminal forces, can be found by extending these solutions.



Chapter 6
High-Order Sandwich Panel Theories

The effects of transverse shear and core compressibility are of high impor-
tance in sandwich structures, having an influence on the entire structural
behavior including bending, buckling and vibrations. The unusually large
transverse shear effects arise due to the very low shear modulus of the core
in relation to the extensional modulus of the face sheets. The compressibil-
ity effects arise due to the soft nature of the core. This chapter presents two
one-dimensional high-order core shear theories for sandwich beams or wide
plates, namely the “High-Order Sandwich Panel Theory” (HSAPT), and the
more recent “Extended High-Order Sandwich Panel Theory” (EHSAPT). It
should be noted that the basic assumptions regarding the face sheets kinemat-
ics and face sheet constitutives are the same in all theories and the differences
are in dealing with the core kinematics and constitutive relations. In addition,
although these theories are presented for the simpler one-dimensional beam
configuration, they can be easily extended to the two-dimensional plate or
shell geometries. Other high-order theories for sandwich structures available
in the literature are briefly outlined.

6.1 Basic Assumptions

In the following, we consider a sandwich beam of length a with a core of
thickness 2c and top and bottom face sheets of thicknesses ft and fb, re-
spectively. as shown in Figure 6.1. A Cartesian coordinate system (x, y, z)

is defined at one end of the beam and its origin is placed at the middle of the
core. Only loading in the x–z plane is considered to act on the beam which
solely causes displacements in the x and z directions designated by u and w,
respectively.

L.A. Carlsson and G.A. Kardomateas, Structural and Failure Mechanics of Sandwich 141
Composites, Solid Mechanics and its Applications 121, DOI 10.1007/978-1-4020-3225-7_6, 
© Springer Science+Business Media B.V. 2011 



142 6 High-Order Sandwich Panel Theories

Figure 6.1 Definition of the sandwich configuration.

The superscripts t , b, and c refer to the top face sheet, bottom face sheet,
and core, respectively. The subscript 0 refers to the middle surface of the
corresponding layer. For example, ut

0 denotes the mid-surface displacement
in the x direction of the top face sheet. We should also note that the rigidities
and all applied loadings are per unit width.

The displacements of the top and bottom face sheets are assumed to satisfy
the Euler–Bernoulli assumptions: Therefore, the displacement field for the
top face sheet, c ≤ z ≤ c + ft , is

wt(x, z) = wt
0(x); ut (x, z) = ut

0(x) −
(

z − c − ft

2

)
wt

0,x (x), (6.1a)

and for the bottom face sheet, −(c + fb) ≤ z ≤ −c:

wb(x, z) = wb
0(x); ub(x, z) = ub

0(x) −
(

z + c + fb

2

)
wb

0,x (x). (6.1b)

The only non-zero strain in the faces is the axial strain which, in the general
nonlinear case (necessary, for example, for buckling), is

εt,b
xx (x, z) = ut,b

,x (x, z) + 1

2

[
w

t,b
0,x(x)

]2
. (6.1c)
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If a linear analysis is pursued, the second (squared) term in (6.1c) is ne-
glected.

We assume plane stress in the orthotropic face sheets, thus the non-zero
stresses for the faces are

σ t,b
xx = C

t,b
11 εt,b

xx ; σ t,b
zz = C

t,b
13 εt,b

xx . (6.2)

6.2 The “High-Order Sandwich Panel Theory” (HSAPT)

This theory, proposed by Frostig et al. (1992), was developed for sandwich
panels, i.e. beams and wide beams in cylindrical bending, and plates and
shells. It has been applied successfully for linear and nonlinear cases. In this
theory, the displacement functions are a result of the solution of the gov-
erning equations of the theory rather than pre-assumed patterns. The theory
yields a transverse displacement in the core that is quadratic in z, and an
in-plane displacement that is cubic. The resulting shear stress in the core τ c

does not depend on z, i.e. it is only a function of x.
This theory is expressed in terms of five generalized coordinates, the

ut
0(x), wt

0(x), ub
0(x), wb

0(x) and τ c(x).
In the following, the equations of the theory have been adapted from

Frostig et al. (1992) for the present sandwich geometric and coordinate con-
figuration.

In this theory, the displacement field of the core depends on the general-
ized coordinates in the following way:

wc(x, z) = wb
0(x) + z + c

2c

[
wt

0(x) − wb
0(x)

] − z2 − c2

2Cc
33

τ c
,x(x), (6.3a)

and

uc(x, z) = ub
0(x) + z + c

Cc
55

τ c(x) − 1

2Cc
33

[
(z + c)2c − (z + c)3

3

]
τ c
,xx(x)

− (z + c)2

4c
wt

0,x(x) −
[
ft

2
− (z + c)2

4c
+ (z + c)

]
wb

0,x(x),

(6.3b)

where Cc
33 = Ec and Cc

55 = Gc. Notice that in order to define the displacement
patterns explicitly in the core, three compatibility conditions are required:
two at the upper face-core interface and a single one in the vertical direction
at the lower interface.
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The stresses in the core are

σ c
xx � 0; σ c

zz = Ecε
c
zz; τ c

xz = τ c = Gcγ
c
xz. (6.3c)

The governing equations are formulated in terms of five unknowns: the
two displacements in each face, wt

0, ut
0 and wb

0 , ub
0 and the shear stress in the

core, τ c. Referring to the configuration in Figure 6.1, the governing equations
in the case of a sandwich beam with isotropic face sheets read for the linear
case (i.e. neglecting the second term in the strains (6.1c)):

˜(EA)b

d2ub
0(x)

dx2
+ τ c(x) + p̃b = 0, (6.4a)

−
(

c + fb

2

)
dτ c(x)

dx
+ Ec

2c

[
wb

0(x) − wt
0(x)

]

+ ˜(EI)b
d4wb

0(x)

dx4
+ dm̃b(x)

dx
− q̃b = 0, (6.4b)

˜(EA)t

d2ut
0(x)

dx2
− τ c(x) + p̃t = 0, (6.4c)

−
(

c + ft

2

)
dτ c(x)

dx
+ Ec

2c

[
wt

0(x) − wb
0(x)

]

+ ˜(EI)t
d4wt

0(x)

dx4
+ dm̃t (x)

dx
− q̃t = 0, (6.4d)

and

− 2c3

3Ec

d2τ c(x)

dx2
+ 2c

τ c(x)

Gc

−
(

c + ft

2

)
dwt

0(x)

dx

−
(

c + fb

2

)
dwb

0(x)

dx
+ ub

0(x) − ut
0(x) = 0, (6.4e)

where q̃i , p̃i (i = t, b) are the distributed transverse (vertical), and in-plane
(horizontal) loads per unit width, and m̃i the distributed bending moments
per unit width at the upper and lower face sheets. Moreover, ˜(EA)t,b and
˜(EI)t,b are the axial and flexural rigidities of the top and bottom face sheets

per unit width, i.e. ˜(EA)t,b = (EA)t,b/b and ˜(EI)t,b = (EI)t,b/b, where b is
the width.
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The first four equations (6.4a–d) are due to equilibrium in the longitudinal
and transverse directions of the two face sheets and the last one (6.4e) is a
result of the compatibility condition at the lower face-core interface in the
longitudinal direction.

Although the equations are coupled, the linearity of the equations allow
the use of well-known solution procedures for ordinary differential equa-
tions.

6.3 The “Extended High-Order Sandwich Panel Theory”
(EHSAPT)

The HSAPT sandwich theory is very effective in dealing with sandwich con-
figurations where the assumption of negligible in-plane rigidity of the core
is justified, such as a weak core. However, as it will be shown in Section 6.4,
for applications involving stiffer cores the HSAPT cannot accurately pre-
dict the shear and axial stress distributions in the core. Thus, in this section
we present the “Extended High-Order Sandwich Panel Theory” (EHSAPT)
panel theory which, as will be shown in the following, is applicable to all
cores, either weak or strong.

In this theory, recently formulated by Frostig (2010) and Phan et al.
(2010), the in-plane rigidity of the core is considered in addition to the com-
pressibility of the core in the transverse direction. The displacement field of
the core is as in the HSAPT, i.e. the transverse displacement in the core is
of second order in the transverse coordinate and the in-plane displacements
are of third order in the transverse coordinate. The novelty of this theory
is that it allows for three generalized coordinates in the core (the axial and
transverse displacements at the centroid of the core, and the rotation at the
centroid of the core) instead of just one (mid-point transverse displacement)
commonly adopted in other available theories. It will proven in Section 6.4,
by comparison to the elasticity solution, that this approach results in superior
accuracy, especially for the cases of stiffer cores, for which cases the other
available sandwich computational models cannot correctly predict the stress
fields. Thus, this theory can be used with any combinations of core and face
sheets and not only the very “soft” cores that the HSAPT demands. The the-
ory is derived so that all core/facesheet displacement continuity conditions
are fulfilled. The full nonlinear version of the theory is outlined.

While the face sheets can change their length only, the core can change
both its thickness and length. The displacement fields considered for the core
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follow the resulting fields of the HSAPT model (see Frostig et al., 1992) and
they read

wc(x, z) = wc
0(x) + wc

1(x)z + wc
2(x)z2, (6.5a)

uc(x, z) = uc
0(x) + φc

0(x)z + uc
2(x)z2 + uc

3(x)z3, (6.5b)

where wc
0 and uc

0 are the transverse and in-plane displacements, respectively,
φc

0 is the slope at the centroid of the core, while wc
1, wc

2 and uc
2, uc

3 are the
transverse the in-plane unknown functions to be determined by the transverse
and the in-plane compatibility conditions applied at the upper (z = c) and
lower (z = −c) face-core interfaces,

Hence, using the compatibility condition in the transverse direction (z-
axis) at the upper and the lower face core interfaces

wc(x, c) = wt
0(x); wc(x,−c) = wb

0(x), (6.5c)

yields the following distribution of the transverse displacement:

wc(x, z) =
(

− z

2c
+ z2

2c2

)
wb

0(x)+
(

1 − z2

c2

)
wc

0(x)+
(

z

2c
+ z2

2c2

)
wt

0(x).

(6.6)
The axial displacement of the core, uc(x, z), is determined through the

fulfillment of the compatibility conditions in the in-plane direction at z = c

and −c, i.e.,

uc(x, c) = ut
0(x) + ft

2
wt

0,x (x), (6.7a)

and

uc(x,−c) = ub
0(x) − fb

2
wb

0,x (x). (6.7b)

Hence, after some algebraic manipulation:

uc(x, z) = z

(
1 − z2

c2

)
φc

0(x) + z2

2c2

(
1 − z

c

)
ub

0 +
(

1 − z2

c2

)
uc

0

+ z2

2c2

(
1 + z

c

)
ut

0 + fbz
2

4c2

(
−1 + z

c

)
wb

0,x + ftz
2

4c2

(
1 + z

c

)
wt

0,x.

(6.8)

Therefore, this theory is expressed in terms of seven generalized coordi-
nates (unknown functions of x): two for the top face sheet, wt

0, ut
0, two for

the bottom face sheet, wb
0, ub

0, and three for the core, wc
0, uc

0 and φc
0.

The strains can be obtained from the displacements using the linear strain-
displacement relations. For the core, the transverse normal strain is
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εc
zz = ∂wc

∂z
=

(
z

c2
− 1

2c

)
wb

0 − 2z

c2
wc

0 +
(

z

c2
+ 1

2c

)
wt

0, (6.9)

and the shear strain

γ c
zx = ∂uc

∂z
+ ∂wc

∂x
=

(
1 − 3z2

c2

)
φc

0 +
(

z

c2
− 3z2

2c3

)
ub

0

−
(

2z

c2

)
uc

0 +
(

z

c2
+ 3z2

2c3

)
ut

0

+
[
−

(
c + fb

2c2

)
z +

(
2c + 3fb

4c3

)
z2

]
wb

0,x +
(

1 − z2

c2

)
wc

0,x

+
[(

c + ft

2c2

)
z +

(
2c + 3ft

4c3

)
z2

]
wt

0,x. (6.10)

There is also a non-zero linear axial strain in the core εc
xx = duc/dx, which

has the same structure as Equation (6.8), but with the generalized function
coordinates replaced by one-order higher derivative with respect to x.

We assume an orthotropic core with stress-strain relations⎡
⎣ σ c

xx

σ c
zz

τ c
xz

⎤
⎦ =

⎡
⎣Cc

11 Cc
13 0

Cc
13 Cc

33 0
0 0 Cc

55

⎤
⎦

⎡
⎣ εc

xx

εc
zz

γ c
xz

⎤
⎦ , (6.11)

where C
t,b,c
ij are the corresponding stiffness constants and we have used the

notation 1 ≡ x, 3 ≡ z, and 55 ≡ xz.
The governing equations and boundary conditions are derived from the

variational principle
δ(U + V ) = 0, (6.12)

where U is the strain energy of the sandwich beam, and V is the potential
due to the applied loading. The first variation of the strain energy per unit
width of the sandwich beam is

δU =
∫ a

0

[ ∫ −c

−c+fb

σ b
xxδε

b
xxdz +

∫ c

−c

(
σ c

xxδε
c
xx + σ c

zzδε
c
zz + τ c

zxδγ
c
zx

)
dz

+
∫ c+ft

c

σ t
xxδε

t
xxdz

]
dx, (6.13a)

and the first variation of the external potential per unit width due to several
general loading conditions is
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δV = −
∫ a

0

(
p̃t δut

0 + p̃bδub
0 + q̃t δwt

0 + q̃bδwb
0 + m̃tδwt

0,x + m̃bδwb
0,x

)
dx

− Ñ t δut
0

∣∣a
x=0 − Ñbδub

0

∣∣a
x=0 − Ṽ t δwt

0

∣∣a
x=0 − Ṽ bδwb

0

∣∣a
x=0

− M̃t δwt
0,x

∣∣a
x=0 − M̃bδwb

0,x

∣∣a
x=0 −

(∫ c

−c

ñcδuc + ṽcδwc

)
dz

∣∣a
x=0,

(6.13b)

where p̃t,b is the distributed in-plane force (along x) per unit width, q̃t,b is the
distributed transverse (along z) force per unit width and m̃t,b is the distributed
moment per unit width on the top and bottom face sheets. Moreover, Ñ t,b is
the end axial force per unit width, Ṽ t,b is the end shear force per unit width
and M̃t,b is the end moment per unit width at the top and bottom face sheets,
at the ends x = 0, a. In addition, ñc is the end axial force per unit width and
ṽc is the end shear force per unit width in the core at the ends x = 0, a.

In the following we assume that ñc and ṽc are constants. In this case,∫ c

−c

ñcδucdz = ñcc

[
1

3

(
δub

0 + δut
0

) + 4

3

(
δuc

0

) − fb

6
δwb

0,x + ft

6
δwt

0,x

]
,

(6.13c)∫ c

−c

ṽcδwcdz = ṽcc

(
1

3
δwb

0 + 4

3
δwc

0 + 1

3
δwt

0

)
. (6.13d)

Of course, the theory can admit any variation of ñc and ṽc along z; for exam-
ple, a bending moment on the core would correspond to a linear variation of
ñc with respect to z. However, for most practical purposes, loads are applied
to the face sheets and not to the core.

For sandwich panels made from orthotropic materials, we can substitute
the stresses in terms of the strains from the constitutive relations, and then
the strains in terms of the displacements and the displacement profiles, and
finally apply the variational principle. Thus, we can write a set of nonlinear
governing differential equations (DEs) in terms of the seven unknown
generalized coordinates as follows:

Top face sheet DEs (two nonlinear):

δut
0 : −

(
4

5
Cc

55 + 2c2

35
Cc

11

∂2

∂x2

)
φc

0 −
(

7

30c
Cc

55 + c

35
Cc

11

∂2

∂x2

)
ub

0

−
(

4

3c
Cc

55 + 2c

15
Cc

11

∂2

∂x2

)
uc

0 +
(

47

30c
Cc

55 − αt
1

∂2

∂x2

)
ut

0
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−
(

αb
2

∂

∂x
− cfb

70
Cc

11

∂3

∂x3

)
wb

0 +
(

β1
∂

∂x

)
wc

0

+
(

αt
3

∂

∂x
− 3cft

35
Cc

11

∂3

∂x3

)
wt

0 = p̃t + F t
u, (6.14a)

where F t
u is the nonlinear term

F t
u = Ct

11ftw
t
0,xw

t
0,xx, (6.14b)

and p̃t is the distributed in-plane force (along x) per unit width at the top
face; and

δwt
0:

(
αt

4

∂

∂x
+ c2ft

35
Cc

11

∂3

∂x3

)
φc

0 +
(

αt
5

∂

∂x
+ cft

70
Cc

11

∂3

∂x3

)
ub

0

+
(

αt
6

∂

∂x
+ cft

15
Cc

11

∂3

∂x3

)
uc

0 +
(

−αt
3

∂

∂x
+ 3cft

35
Cc

11

∂3

∂x3

)
ut

0

+
(

1

6c
Cc

33 + β2
∂2

∂x2
− cfbft

140
Cc

11

∂4

∂x4

)
wb

0 +
(

− 4

3c
Cc

33 + αt
7

∂2

∂x2

)
wc

0

+
(

7

6c
Cc

33 + αt
8

∂2

∂x2
+ αt

9

∂4

∂x4

)
wt

0 = q̃t − m̃t
,x + F t

w. (6.15a)

where F t
w is the nonlinear term

F t
w = Ct

11ft

[
wt

0,xu
t
0,xx + ut

0,xw
t
0,xx + 3

2
(wt

0,x)
2wt

0,xx

]
, (6.15b)

and q̃t is the distributed transverse (along z) force per unit width, and m̃t is
the distributed moment per unit width on the top face sheet.

Core DEs (three linear):

δuc
0: −

(
4

3c
Cc

55 + 2c

15
Cc

11

∂2

∂x2

)
ub

0 +
(

8

3c
Cc

55 − 16c

15
Cc

11

∂2

∂x2

)
uc

0

−
(

4

3c
Cc

55 + 2c

15
Cc

11

∂2

∂x2

)
ut

0 +
(

αb
6

∂

∂x
+ cfb

15
Cc

11

∂3

∂x3

)
wb

0

−
(

αt
6

∂

∂x
+ cft

15
Cc

11

∂3

∂x3

)
wt

0 = 0, (6.16a)
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δφc
0 :

(
8c

5
Cc

55 − 16c3

105
Cc

11

∂2

∂x2

)
φc

0 +
(

4

5
Cc

55 + 2c2

35
Cc

11

∂2

∂x2

)
ub

0

−
(

4

5
Cc

55 + 2c2

35
Cc

11

∂2

∂x2

)
ut

0 −
(

αb
4

∂

∂x
+ c2fb

35
Cc

11

∂3

∂x3

)
wb

0

+
(

β3
∂

∂x

)
wc

0 −
(

αt
4

∂

∂x
+ c2ft

35
Cc

11

∂3

∂x3

)
wt

0 = 0, (6.16b)

and

δwc
0 : −

(
β3

∂

∂x

)
φc

0 +
(

β1
∂

∂x

)
ub

0 −
(

β1
∂

∂x

)
ut

0

+
(

− 4

3c
Cc

33 + αb
7

∂2

∂x2

)
wb

0 +
(

8

3c
Cc

33 − 16c

15
Cc

55

∂2

∂x2

)
wc

0

+
(

− 4

3c
Cc

33 + αt
7

∂2

∂x2

)
wt

0 = 0. (6.16c)

Bottom face sheet DEs (two nonlinear):

δub
0 :

(
4

5
Cc

55 + 2c2

35
Cc

11

∂2

∂x2

)
φc

0 +
(

47

30c
Cc

55 − αb
1

∂2

∂x2

)
ub

0

−
(

4

3c
Cc

55 + 2c

15
Cc

11

∂2

∂x2

)
uc

0 −
(

7

30c
Cc

55 + c

35
Cc

11

∂2

∂x2

)
ut

0

+
(

−αb
3

∂

∂x
+ 3cfb

35
Cc

11

∂3

∂x3

)
wb

0 −
(

β1
∂

∂x

)
wc

0

+
(

αt
2

∂

∂x
− cft

70
Cc

11

∂3

∂x3

)
wt

0 = p̃b + F̂ b
u , (6.17a)

where Fb
u is the nonlinear term

Fb
u = Cb

11fbw
b
0,xw

b
0,xx, (6.17b)

and p̃b is the distributed in-plane force (along x) per unit width at the bottom
face; and

δwb
0 :

(
αb

4

∂

∂x
+ c2fb

35
Cc

11

∂3

∂x3

)
φc

0 +
(

αb
3

∂

∂x
− 3cfb

35
Cc

11

∂3

∂x3

)
ub

0

−
(

αb
6

∂

∂x
+ cfb

15
Cc

11

∂3

∂x3

)
uc

0 −
(

αb
5

∂

∂x
+ cfb

70
Cc

11

∂3

∂x3

)
ut

0



Structural and Failure Mechanics of Sandwich Composites 151

+
(

7

6c
Cc

33 + αb
8

∂2

∂x2
+ αb

9

∂4

∂x4

)
wb

0 +
(

− 4

3c
Cc

33 + αb
7

∂2

∂x2

)
wc

0

+
(

1

6c
Cc

33 + β2
∂2

∂x2
− cfbft

140

∂4

∂x4

)
wt

0 = q̃b − m̃b
,x + Fb

w, (6.18a)

where Fb
w is the nonlinear term:

Fb
w = Cb

11fb

[
wb

0,xu
b
0,xx + ub

0,xw
b
0,xx + 3

2
(wb

0,x)
2wb

0,xx

]
. (6.18b)

and q̃b is the distributed transverse (along z) force per unit width and m̃b is
the distributed moment per unit width on the bottom face sheet.

In the above expressions, the following constants are defined for i = t, b:

αi
1 = 6c

35
Cc

11 + fiC
i
11; αi

2 = 1

30
Cc

13 +
(

1

30
− 7fi

60c

)
Cc

55, (6.19a)

αi
3 = −11

30
Cc

13 +
(

19

30
+ 47fi

60c

)
Cc

55; αi
4 = 4c

15
Cc

13 +
(

4c

15
+ 2fi

5

)
Cc

55,

(6.19b)

αi
5 = − 1

30
Cc

13 +
(

− 1

30
+ 7fi

60c

)
Cc

55; αi
6 = 2

3
Cc

13 +
(

2

3
+ 2fi

3c

)
Cc

55,

(6.19c)

αi
7 = −fi

5
Cc

13 −
(

2c

15
+ fi

5

)
Cc

55, (6.19d)

αi
8 = 11fi

30
Cc

13 −
(

4c

15
+ 19fi

30
+ 47fi

2

120c

)
Cc

55, (6.19e)

αi
9 = fi

3

12
Ci

11 + 3cfi
2

70
Cc

11, (6.19f)

and

β1 = 2

5
(Cc

13 + Cc
55), (6.19g)

β2 = fb + ft

60
Cc

13 +
(

c

15
+ fb + ft

60
− 7fbft

120c

)
Cc

55, (6.19h)

β3 = 8c

15
(Cc

13 + Cc
55). (6.19i)

Boundary conditions (BCs) at x = 0, a are either “natural” or “kine-
matic”, referred to as “either” and “or” in the remainder of this section. At
each end there are nine boundary conditions, three for each face sheet and
three for the core:
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Top face sheet BCs (three):

(i) Either δut
0 = 0 or(

2c2

35
Cc

11

∂

∂x

)
φc

0 +
(

c

35
Cc

11

∂

∂x

)
ub

0 +
(

2c

15
Cc

11

∂

∂x

)
uc

0

+
[(

6c

35
Cc

11 + ftC
t
11

)
∂

∂x

]
ut

0 +
(

1

30
Cc

13 − cfb

70
Cc

11

∂2

∂x2

)
wb

0

−
(

2

5
Cc

13

)
wc

0 +
(

11

30
Cc

13 + 3cft

35
Cc

11

∂2

∂x2

)
wt

0

= Ñ t + ñcc

3
+ Bt

u, (6.20a)

where Ñ t is the end axial force per unit width at the top face and ñc is
the end axial force per unit width at the the core (at the end x = 0 or
x = a) and the nonlinear term

Bt
u = −ft

2
Ct

11(w
t
0,x)

2. (6.20b)

(ii) Either δwt
0 = 0 or

−
[

2(2c + 3ft )

15
Cc

55 + c2ft

35
Cc

11

∂2

∂x2

]
φc

0

+
[
(2c − 7ft)

60c
Cc

55 − cft

70
Cc

11

∂2

∂x2

]
ub

0

−
[

2(c + ft)

3c
Cc

55 + cft

15
Cc

11

∂2

∂x2

]
uc

0

+
[
(38c + 47ft )

60c
Cc

55 − 3cft

35
Cc

11

∂2

∂x2

]
ut

0

+
[(

fb

60
Cc

13 − β2

)
∂

∂x
+ cfbft

140
Cc

11

∂3

∂x3

]
wb

0

−
(

αt
7

∂

∂x

)
wc

0 +
[(

11ft

60
Cc

13 − αt
8

)
∂

∂x
− αt

9

∂3

∂x3

]
wt

0

= Ṽ t + m̃t + ṽcc

3
+ Bt

w, (6.21a)

where Bt
w is the nonlinear term
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Bt
w = −ft

2
Ct

11w
t
0,x

[
2ut

0,x + (wt
0,x)

2] , (6.21b)

and Ṽ t is the end shear force per unit width in the top face and ṽc is the
end shear force per unit width in the core (at the end x = 0 or x = a).

(iii) Either δwt
0,x = 0 or(

c2ft

35
Cc

11

∂

∂x

)
φc

0 +
(

cft

70
Cc

11

∂

∂x

)
ub

0 +
(

cft

15
Cc

11

∂

∂x

)
uc

0

+
(

3cft

35
Cc

11

∂

∂x

)
ut

0 +
(

ft

60
Cc

13 − cfbft

140
Cc

11

∂2

∂x2

)
wb

0

−
(

ft

5
Cc

13

)
wc

0 +
(

11ft

60
Cc

13 + αt
9

∂2

∂x2

)
wt

0 = M̃t + ñccft

6
,

(6.22)

where M̃t is the end moment per unit width at the top face (at the end
x = 0 or x = a).

Core BCs (three):

(
2c

15
Cc

11

∂

∂x

)
ub

0 +
(

16c

15
Cc

11

∂

∂x

)
uc

0 +
(

2c

15
Cc

11

∂

∂x

)
ut

0

−
(

2

3
Cc

13 + cfb

15
Cc

11

∂2

∂x2

)
wb

0 +
(

2

3
Cc

13 + cft

15
Cc

11

∂2

∂x2

)
wt

0 = 4̃ncc

3
.

(6.23a)

(ii) Either δφc
0 = 0 or(
16c3

105
Cc

11

∂

∂x

)
φc

0 −
(

2c2

35
Cc

11

∂

∂x

)
ub

0 +
(

2c2

35
Cc

11

∂

∂x

)
ut

0

+
(

4c

15
Cc

13 + c2fb

35
Cc

11

∂2

∂x2

)
wb

0 −
(

8c

15
Cc

13

)
wc

0

+
(

4c

15
Cc

13 + c2ft

35
Cc

11

∂2

∂x2

)
wt

0 = 0. (6.23b)

(iii) Either δwc
0 = 0 or

Cc
55

[
8c

15
φc

0 − 2

5
ub

0 + 2

5
ut

0 + (2c + 3fb)

15
wb

0,x

+ 16c

15
wc

0,x + (2c + 3ft )

15
wt

0,x

]
= 4

3
ṽcc. (6.23c)

(i) Either δuc
0 = 0 or,
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Bottom face sheet BCs (three):

(i) Either δub
0 = 0 or

−
(

2c2

35
Cc

11

∂

∂x

)
φc

0 +
[(

6c

35
Cc

11 + fbC
b
11

)
∂

∂x

]
ub

0

+
(

2c

15
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∂

∂x

)
uc
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(

c

35
Cc

11

∂

∂x

)
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0

−
(

11

30
Cc

13 + 3cfb

35
Cc

11

∂2

∂x2

)
wb

0 +
(

2

5
Cc

13

)
wc

0

+
(

− 1

30
Cc

13 + cft

70
Cc

11

∂2

∂x2

)
wt

0 = Ñb + ñcc

3
+ Bb

u, (6.24a)

where Ñb is the end axial force per unit width at the bottom face and
the nonlinear term,

Bb
u = −fb

2
Cb

11(w
b
0,x)

2. (6.24b)

(ii) Either δwb
0 = 0 or

−
[

2(2c + 3fb)

15
Cc

55 + c2fb

35
Cc

11

∂2

∂x2

]
φc

0

+
[
−(38c − 47fb)

60c
Cc

55 + 3cfb

35
Cc

11

∂2

∂x2

]
ub

0

+
[

2(c + fb)

3c
Cc

55 + cfb
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Cc

11

∂2

∂x2

]
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0

+
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(−2c + 7fb)

60c
Cc

55 + cfb

70
Cc

11

∂2

∂x2

]
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0

+
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11fb
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Cc

13 − αb
8

)
∂

∂x
− αb

9

∂3

∂x3

]
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0 −
(

αb
7

∂

∂x

)
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0

+
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Cc

13 − β2

)
∂

∂x
+ cfbft
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Cc

11

∂3

∂x3

]
wt

0

= Ṽ b + m̃b + ṽcc

3
+ Bb

w, (6.25a)

where Bb
w is the nonlinear term

Bb
w = −fb

2
Cb

11w
b
0,x

[
2ub

0,x + (wb
0,x)

2
]
. (6.25b)
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and Ṽ b is the end shear force per unit width at bottom face.
(iii) Either δwb

0,x = 0 or

(
c2fb

35
Cc

11

∂

∂x

)
φc

0 −
(

3cfb

35
Cc

11

∂
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)
ub

0 −
(
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)
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)
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0

−
(
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5
Cc

13

)
wc

0 +
(
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60
Cc

13 − cfbft

140
Cc

11

∂2

∂x2

)
wt

0

= M̃b − ñccfb

6
. (6.26)

where M̃b is the end moment per unit width at the bottom face.

In the above equations the tilde denotes the known external boundary values.

6.4 Application to a Simply Supported Sandwich Beam

In this section we shall study the response of a simply supported sandwich
beam under a transversely applied load of the form:

q̃t (x) = q0 sin
πx

a
. (6.27)

The numerical results for several typical sandwich plate configurations with
orthotropic layers will be compared with the results using the elasticity so-
lution. The elasticity solution for sandwich plates is outlined in Chapter 5.
For beams, a similar solution can be derived. Indeed, Pagano (1969) pre-
sented a three-dimensional elasticity solution for a laminated or sandwich
beam for the case of a positive discriminant of the quadratic characteristic
equation, which is formed from the orthotropic material constants, and only
when these two real roots are positive. The isotropic case, in which there
are two equal real roots, was also outlined. Recently, Kardomateas and Phan
(2010) extended the Pagano (1969) solution to the case of (i) negative dis-
criminant, which results in two complex conjugate roots of the quadratic
equation, and (ii) positive discriminant but with real negative roots. The
case of a negative discriminant is actually frequently encountered in sand-
wich construction where the orthotropic core is stiffer in the transverse di-
rection than in-plane. Notice that we here refer to the elasticity solution
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Table 6.1 Material properties. Moduli data are in GPa

Carbon/ E-Glass/ Balsa Glass-Phenolic
Epoxy Polyester Wood Honeycomb
Face Face Core Core

E1 181 40.0 0.671 0.032
E2 10.3 10.0 0.158 0.032
E3 10.3 10.0 7.72 0.300
G23 5.96 3.5 0.312 0.048
G13 7.17 4.5 0.312 0.048
G12 7.17 4.5 0.200 0.013
ν32 0.40 0.40 0.49 0.25
ν31 0.016 0.260 0.23 0.25
ν12 0.277 0.065 0.66 0.25

for a sandwich beam (1D) which is different from the one for a sandwich
plate (2D) as outlined in Chapter 5.

Thus, the results from the HSAPT and the EHSAPT theories will be com-
pared with the elasticity results from Kardomateas and Phan (2010). In addi-
tion, the classical model and the first-order shear deformation theory (FOSD)
will be examined.

For the EHSAPT theory, boundary conditions for x = 0, a (Figure 6.1)
utilize the seven kinematic conditions

ut
0 = ub

0 = uc
0 = φc

0 = 0; wt
0 = wb

0 = wc
0 = 0, (6.28)

and the two natural boundary conditions (6.22) and (6.26).
All these are satisfied by displacements in the form

ut
0 = Ut

0 cos
πx

a
; uc

0 = Uc
0 cos

πx

a
;

φc
0 = �c

0 cos
πx

a
; ub

0 = Ub
0 cos

πx

a
, (6.29a)

wt
0 = Wt

0 sin
πx

a
; wc

0 = Wc
0 sin

πx

a
; wb

0 = Wb
0 sin

πx

a
. (6.29b)

We consider the linear problem, which means that the nonlinear terms
F t,b

u,w in the governing differential equations and the nonlinear terms Bt,b
u,w in

the boundary conditions are neglected.
Substituting Equation (6.29) into the governing equations (6.12–6.19) re-

sults in a system of seven linear equations for the seven unknown constants
Ut

0, Uc
0 , �c

0, Ub
0 , Wt

0, Wc
0 , Wb

0 .
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Figure 6.2 Transverse displacement, w, at the top, z = c +f , for a sandwich beam
with carbon/epoxy faces and glass phenolic honeycomb core.

We will consider sandwich configurations with faces made from either
carbon/epoxy or E-glass/polyester unidirectional composite and core made
from either hexagonal glass/phenolic honeycomb or balsa wood. The prop-
erties for these materials are listed in Table 6.1.

The two face sheets are assumed identical with thickness ft = fb =
f = 2 mm. The core thickness is 2c = 16 mm. The total thickness of
the beam is h = 2f + 2c = 20 mm and the span length of the beam is
a = 20h = 400 mm.

In the following, the displacements are normalized with

wnorm = 3q0a
4

2π4E
f

1 f 3
. (6.30)

and the stresses with q0.
The normalized displacement of the top face sheet is plotted as a function

of x, for a sandwich beam with carbon/epoxy faces and glass phenolic hon-
eycomb core in Figure 6.2. In this figure, we also show the predictions from
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Figure 6.3 Through-thickness distribution of the axial stress, σxx , in the core at
x = a/2 for the case of carbon/epoxy faces and glass phenolic honeycomb core.

classical beam theory, which does not include transverse shear, as well as the
First-Order Shear Deformation (FOSD) theory. From Figure 6.2, we can see
that both the classical and first-order shear approaches appear inadequate.
The classical theory is too unconservative and the first-order shear theory is
too conservative; this clearly demonstrates the need for higher-order theo-
ries in dealing with sandwich structures. In this regard, both the HSAPT and
the EHSAPT give a displacement profile which is essentially identical to the
elasticity solution. In Figure 6.2 we can also readily observe the large effect
of transverse shear, which is an important feature of sandwich structures.

The distribution of the axial stress in the core, σxx, as a function of z at
the midspan location, x = a/2 (where the bending moment is maximum),
is plotted in Figure 6.3, again for the case of carbon/epoxy faces and glass
phenolic honeycomb core. The EHSAPT predicts a stress profile practically
identical to the Elasticity. Note that the HSAPT neglects the in-plane rigidity
of the core, and this yields a zero axial stress. The classical and first-order
shear theories give practically identical predictions but they are in apprecia-
ble error by comparison to the elasticity, the error increasing towards the
lower end of the core (z = −c). All curves are linear.
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Notice also that for the elasticity and the extended high-order theory there
is no symmetry with regard to the mid-plane (z = 0) unlike in the classical
and first-order shear theories.

The through-thickness distribution of the transverse normal stress in the
core, σzz, at the midspan location, x = a/2, is shown in Figure 6.4a for the
case of E-glass/polyester faces and balsa wood core.

Only the profiles using elasticity, the HSAPT and the EHSAPT are pre-
sented, since the FOSD theory and the classical theories consider the core to
be incompressible. Both high-order theories are practically coinciding with
the elasticity curve and all are nearly linear. However, the theories differ
when the transverse normal strain is examined in Figure 6.4b with the present
extended high-order theory being very close to the elasticity theory.

Figures 6.5 and 6.6 show the through-thickness distribution of the trans-
verse shear stress in the core, τxz, at x = a/10, i.e. near the ends where shear
is expected to be significant, for the cases of carbon/epoxy faces and glass
phenolic honeycomb core (Figure 6.5) and E-glass/polyester faces and balsa
wood core (Figure 6.6).

For the very soft core case of Figure 6.5, the shear stress is nearly con-
stant and all theories practically coincide with the elasticity. The elasticity
data show that the range of the shear stress variation is about 0.05% of the
maximum value, i.e. the shear stress is practically constant. This case of a
very soft core would justify the neglect of the in-plane rigidity of the core
made in the HSAPT.

For the case of the E-glass/polyester faces and balsa wood core, however,
the shear stress shows a noticeable distribution (about 5%) through the thick-
ness, which is very nicely captured by the EHSAPT, which is very close to
the elasticity (Figure 6.6). For this sandwich configuration, it is obvious that
a theory based on a constant shear stress assumption would not capture this
distribution.

This issue is further explored by considering a sandwich construction
in which both the face sheets and the core are isotropic. By varying the
face/core modulus ratio, we can change the shear stress in the core. Thus,
we assume that the face sheets are made from an isotropic alloy with
Ef = 100 GPa and the core is made from isotropic material having a mod-
ulus Ec such that the ratio Ef /Ec assumes the values of 50, 5 and 2. The
Poisson ratios are assumed to be νf = νc = 0.30. Figure 6.7 shows the
shear stress distribution through the thickness. For a modulus ratio of 2, the
maximum over minimum shear stress ratio is about 2. On the contrary, for a
modulus ratio of 50, the shear stress range is very small, with the correspond-
ing maximum over minimum shear stress ratio being only about 1.04. The
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(a)

(b)

Figure 6.4 Through-thickness distribution of normal stress, σzz (a) and strain, εzz

(b) in the core at x = a/2 for the case of E-glass/polyester faces and balsa wood
core.
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Figure 6.5 Through-thickness distribution of transverse shear stress, τxz, in the core
at x = a/10 for the case of carbon/epoxy faces and glass phenolic honeycomb core.

EHSAPT is capable of capturing the shear stress profile in all cases, even in
the most demanding case of Ef /Ec = 2, and in all cases it is very close to
the elasticity solution. On the contrary, a constant shear stress assumption,
as in the HSAPT, would be applicable only for sandwich beams with large
ratios of Ef /Ec.

6.5 Other High-Order Sandwich Panel Theories

There are a few two-dimensional high-order theories, formulated for sand-
wich plates and shells, which will be briefly outlined. In the Hohe et al.
(2006) plate theory, the transverse displacement in the core, wc, is assumed
to be a linear function of the thickness coordinate, z, and the in-plane dis-
placements, uc and vc are quadratic in z. Accordingly, one can easily see
that for this theory the strain in the transverse direction is constant, i.e.,
εc
zz = (wb − wt)/(2c), and that the transverse displacement of the mid-

dle of the core is equal to the average of the transverse displacements of
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Figure 6.6 Through-thickness distribution of the transverse shear stress, τxz, in the
core at x = a/10 for the case of E-glass/polyester faces and balsa wood core.

the top and bottom face sheets wc(x, y, 0) = (wt + wb)/2. Therefore, this
theory is in terms of six generalized coordinates: ut

0, vt
0, wt ; ub

0, vb
0 and

wb. Thus, this theory cannot capture the nearly linear distribution of trans-
verse normal stress and strain through the thickness, which is predicted from
elasticity; instead this theory would result in a nearly constant transverse
normal stress.

In the Li and Kardomateas (2008) high-order plate/shell theory, the trans-
verse displacement in the core wc is of fourth order in the transverse coor-
dinate z, and the in-plane displacements uc and vc are of fifth order. In this
theory there are seven generalized coordinates: ut

0, vt
0, wt , wc

0, ub
0, vb

0 , wb,
i.e. one more than in the Hohe et al. (2006) theory, namely, the mid-plane
transverse displacement in the core wc

0. This theory produces distributions of
tranverse normal stress and strain which are close to the elasticity results, but
the profile is nonlinear unlike the nearly linear profile predicted by elasticity.

It should be noted that when it comes to the transverse displacement pro-
files, both the Hohe et al. (2006) and the Li and Kardomateas (2008) theories
show an excellent agreement and for all practical purposes identical to the
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Figure 6.7 Through-thickness shear-stress distribution in the core at z = a/10 for
the case of E-glass/polyester faces and balsa wood core.

exact elasticity solution. However, as has been demonstrated in this chapter,
the theories may differ in the prediction of stresses and may be be signifi-
cantly off the corresponding elasticity solution.



Chapter 7
Global Buckling of Sandwich Columns and
Wide Panels

The most important issue regarding buckling of sandwich structures is the
effect of transverse shear which can significantly reduce the Euler critical
load. Simply put, the effect of transverse shear absolutely cannot be ne-
glected. Therefore, all formulas for sandwich buckling are essentially ways
to include this effect into the Euler formulas. Two basic ways for including
transverse shear in column buckling are the Engesser (1891) and the Haringx
(1948, 1949) approaches. Both of these approaches are also outlined by
Timoshenko (1936).

In this chapter, some of the most widely used column buckling approaches
will be presented and compared, followed by the application of first-order
shear analysis to the buckling of wide panels and simply supported rectan-
gular panels. Panel compression test methods and data reduction analysis for
the evaluation of the critical load will be presented along with examples and
collapse strength estimates.

7.1 The Engesser Approach

The Engesser approach is based on considering the additional slope and
hence the additional curvature produced by the shear force. Consider the
fixed-free sandwich column shown in Figure 7.1a, which is loaded axially by
a compressive load P . When buckling occurs, there will be shear forces act-
ing on the cross-sections of the column (Figure 7.1b). The magnitude of the
shear force Q acting at a cross-section mm can be found from Figure 7.1c:

Q � P
dw

dx
. (7.1)

L.A. Carlsson and G.A. Kardomateas, Structural and Failure Mechanics of Sandwich 165
Composites, Solid Mechanics and its Applications 121, DOI 10.1007/978-1-4020-3225-7_7, 
© Springer Science+Business Media B.V. 2011 



166 7 Global Buckling of Sandwich Columns and Wide Panels

Figure 7.1 Forces and moments acting on a buckled sandwich column.

Note that at the section mm there will also be an axial force, Paxial � P .
The change in slope of the deflection curve produced by the shear force is

βQ

AGeq
, (7.2)

where A is the total cross-sectional area of the column, Geq is the “equiva-
lent” or “effective” modulus in shear, and β is a correction factor depending
on the shape of the cross-section, which accounts for the fact that shear is
not distributed uniformly throughout the section. If the section is rectangular
and the column homogeneous isotropic, then Geq = G = shear modulus of
the homogeneous material and β = 1.2. We shall discuss both Geq and β for
sandwich construction later in this section.

The rate of change of slope produced by the shear force Q represents the
additional curvature due to shear and, from Equation (7.1), this is equal to

β

AGeq

dQ

dx
= βP

AGeq

d2w

dx2
.

The total curvature of the deflection curve is now obtained by adding the
curvature produced by the shear force to the curvature produced by the bend-
ing moment. Thus, for the column of Figure 7.1a, the differential equation
for the deflection curve becomes:
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d2w

dx2
= M

(EI)eq
+ β

AGeq

dQ

dx
, (7.3a)

or
d2w

dx2
= P(δ − w)

(EI)eq
+ βP

AGeq

d2w

dx2
, (7.3b)

where (EI)eq is the “equivalent” or “effective” bending rigidity of the sand-
wich cross-section (see Chapter 4 and discussion later).

Equation (7.3b) can be written as

d2w

dx2
= P

(EI)eq[1 − βP/(AGeq)](δ − w) . (7.4)

If we set

k2 = P

(EI)eq[1 − βP/(AGeq)] , (7.5a)

we can write (7.4) in the form

d2w

dx2
+ k2w = k2δ. (7.5b)

The general solution of this equation is

w = A1 cos kx + A2 sin kx + δ , (7.5c)

in which A1 and A2 are constants of integration. These constants are deter-
mined from the fixed end conditions:

w = dw

dx
= 0 at x = 0. (7.5d)

These two conditions are fulfilled if

A1 = −δ, A2 = 0 (7.5e)

and then
w = δ(1 − cos kx). (7.5f)

The condition at the free end of the column requires that

w = δ at x = L, (7.5g)

which is satisfied if
δ cos kL = 0. (7.6)
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For a non-zero δ, the smallest value of kl which satisfies Equation (7.6) is
kl = π/2, which when combined with (7.5) gives

P

(EI)eq[1 − βP/(AGeq)] = π2

4L2
. (7.7)

Solving for P gives the critical load:

Pcr = PE

1 + βPE/(AGeq)
, (7.8)

where PE = π2(EI)eq/(4L2) represents the Euler critical load for this case.

7.2 The Haringx Approach

In this approach, due to the shear strain, γ , there is an additional slope mea-
sured from the normal to the section to the tangent to the axis of the deflected
column. This additional slope is added to the slope, θ , due to the bending mo-
ment, measured from the x axis to the normal to the cross-section. Thus the
slope of the deflected curve is by use of Equation (7.2):

dw

dx
= θ + γ = θ + βQ

AGeq
. (7.9)

The axial force P has a component in the direction normal to the section
equal to P cos θ � P and a component

Q = P sin θ � Pθ. (7.10)

Substituting in Equation (7.9), the slope becomes

dw

dx
= θ + βPθ

AGeq
= θ

(
1 + βP

AGeq

)
. (7.11)

Observing that
dθ

dx
= M

(EI)eq
= P(δ − w)

(EI)eq
,

we obtain from Equation (7.11) the following expression for the curvature:

d2w

dx2
= P(δ − w)

(EI)eq

(
1 + βP

AGeq

)
. (7.12)
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The difference between Equation (7.12) and the previous equation (7.4)
is due to the fact that in the derivation of Equation (7.4) the shear force is
calculated from the total slope dw/dx of the deflection curve (see Equation
(7.1)), whereas in the derivation of Equation (7.12), only the angle of rotation
of the cross-section is used (see Equation (7.10)).

Solving the differential equation (7.12) in the same manner as before we
find that the critical load is

Pcr =
√

1 + 4βPE/(AGeq) − 1

2β/(AGeq)
. (7.13)

Now one important note regarding Haringx’s formula: In a recent paper,
Bazant and Beghini (2006) showed that the Engesser and Haringx-type the-
ories are equivalent (i.e., one to follow from the other) provided that a proper
transformation of the shear modulus of the core, Gc, is made. However, this
transfomation implies that Gc of the soft core is a function of the axial stress
in the stiff face sheets. This paradox was clarified by showing that the ener-
getic variational analysis merely requires that the shear stiffness of the cross-
section, characterized by Gc of the core, to be a function of the axial force
in the face sheets. In other words, if the Haringx-type theory was used with
a constant shear modulus, results as in Equation (7.13) would be obtained.
However, if the shear modulus is updated as a function of the axial load, then
the results are expected to agree with Engesser’s formula.

Equations (7.8) and (7.13), the first (Engesser’s) are the most widely used.
The Haringx formula is expected to have accuracy issues if a constant shear
modulus is used (this will be confirmed in Section 7.6). In fact, the global
buckling formulas for sandwich columns in the literature provide ways of
defining the Geq and (EI)eq for use in the Engesser’s formula (7.8). In the
following, we outline the Allen (1969), the Bazant and Cedolin (1991), and
the Huang and Kardomateas (2002) approaches for defining these quan-
tities.

7.3 Allen’s Formulas

7.3.1 Thin Faces

With regard to the cross-section in Figure 7.2, Allen’s formula for thin faces
assumes that the equivalent bending rigidity is due to the face sheets only
and the face sheets are considered as two areas f b, where b is the width of
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Figure 7.2 Sandwich cross-section.

the beam, located at a distance c + f/2 from the mid-axis (the neutral axis
of the section), i.e.

(EI)eq = 2Ef bf

(
c + f

2

)2

. (7.14a)

The equivalent shear modulus of the section is just the shear modulus of
the core, and the shear correction factor in Equation (7.8) becomes

β

AGeq
= 1

b(2c + f )Gc

. (7.14b)

Then, Equation (7.8) for a simply-supported column becomes

Pcr = PE

1 + PE/(AGc)
; PE = π2

L2
2Ef bf

(
c + f

2

)2

. (7.14c)

An alternative form of the above equation is

1

Pcr
= 1

PE

+ 1

AGc

, A = b(2c + f ). (7.15)

This formula shows that when the sandwich construction involves a core of
very low shear modulus, the critical load would be dominated by the second
term of Equation (7.15), i.e. by the core, and it would approach the value
AGc. On the other hand, if the core shear modulus is very high, the critical
load would be dominated by the first term of Equation (7.15), and it would
approach the Euler load PE .
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7.3.2 Thick Faces

When the faces are thick, see Section 1.1, the bending rigidity of the faces
about their own separate centroidal axes cannot be neglected. Therefore, the
equivalent rigidity is now

(EI)eq = Ef I = Ef (I1 + If ), I1 = 2bf

(
c + f

2

)2

, If = bf 3

6
.

(7.16)
Note that again the bending rigidity of the core is neglected.

The Allen approach consists of considering that, at the buckled state, there
occur two superimposed displacements, w1 (the ordinary bending displace-
ment) and w2, an additional displacement associated with the shear defor-
mation of the core.

The interaction between the bending stiffness of the faces and the shear
stiffness of the core can be seen most easily if we first consider a sandwich
with a core which is rigid in shear (Gc = ∞). A deflection w1 occurs in
accordance with ordinary bending theory. This deflection is associated with
a bending moment M1 and a shear force Q1, the latter being

−Q1 = (EI)eq
d3w1

dx3
= Ef I1

d3w1

dx3
+ Ef If

d3w1

dx3
. (7.17)

The first term on the right-hand side of Equation (7.17) represents the
shear force carried by the beam as a whole, supposing the faces to undergo
only uniform extension or contraction without bending locally. In this state
the shear stress τ is uniform across the thickness of the core and diminishes
linearly to zero across the thickness of each face. The first term may therefore
be replaced by −b(2c + f )τ where τ is the shear stress in the core:

−Q1 = −b(2c + f )τ + Ef If

d3w1

dx3
. (7.18)

As a result of the shear stress τ , the core undergoes a shear strain γc =
τ/Gc which corresponds to an additional beam deflection w2.

The shear deformation is illustrated in Figure 7.3, which shows a simply
supported beam under three point bending. The points a, b, . . . lie on the
mid-lines of the faces and do not move horizontally (as in the ordinary bend-
ing w1, case) but instead are displaced just vertically by w2. The faces and
the longitudinal center-line of the beam tilt, and the relationship between
this additional slope of the beam dw2/dx and the core shear strain can be
obtained from Figure 7.4:
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Figure 7.3 Additional beam deflection, w2, due to transverse shear.

Figure 7.4 Schematic of the relationship between additional slope of the beam due
to transverse shear and core shear strain.

cγc =
(

c + f

2

)
dw2

dx
, (7.19a)

therefore

τ =
(

1 + f

2c

)
Gc

dw2

dx
. (7.19b)

Substitution in Equation (7.18) yields

−Q1 = −AGc

dw2

dx
+ Ef If

d3w1

dx3
, where A = b(2c + f )2

2c
. (7.20)

Rearranging the above equation and substituting Q1 = −(EI)eqd
3w1/dx3

gives
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dw2

dx
= −(EI)eq

AGc

(
1 − If

I

)
d3w1

dx3
= Q1

AGc

(
1 − If

I

)
. (7.21)

The additional transverse deflection w2 corresponds to an additional shear
force Q2, since the faces must share this extra deflection and, in order to do
so, they must be subjected to an additional bending moment and shear force,
hence the total shear force is

Q = Q1 + Q2 = Q1 − Ef If

d3w2

dx3
.

Substitution of d3w2/dx3 from (7.21) provides a differential equation for
Q1:

d2Q1

dx2
− λ2Q1 = −λ2Q, (7.22a)

where

λ2 = AGc

Ef If (1 − If /I )
. (7.22b)

Now the total shear force is (Equation (7.1))

Q = P
dw

dx
= P

(
dw1

dx
+ dw2

dx

)
.

Using (7.21) for the slope dw2/dx in terms of Q1, we obtain the following
differential equation for Q1:

d2Q1

dx2
−

(
λ2 − P

Ef If

)
Q1 = −λ2P

dw1

dx
. (7.23)

Substituting Q1 = −(EI)eqd
3w1/dx3 gives a differential equation for w1:

d5w1

dx5
−

(
λ2 − P

Ef If

)
d3w1

dx3
= − λ2P

(EI)eq

dw1

dx
. (7.24)

Consider the case of simply-supported ends; then the boundary conditions
are w1 = d2w1/dx2 = 0 at x = 0, L. These conditions are fulfilled by a
sinusoidal displacement:

w1 = a1 sin
πx

L
.

Substitution into (7.24) gives the following:[
π4

L4
+

(
λ2 − P

Ef If

)
π2

L2
− λ2P

Ef I

]
a1 = 0,
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from which we obtain the critical load:

Pcr =
π4

L4 + λ2π2

L2

π2

L2Ef If
+ λ2

Ef I

. (7.25)

This can be expressed in a more general form by using the following defini-
tions:

PE = π2Ef I

L2
, PEf = π2Ef If

L2
, Pc = AGc = b(2c + f )2

2c
Gc, (7.26)

where PE is the Euler load of the entire sandwich column, PEf is the Euler
load of the two faces when they buckle as independent struts, and Pc may be
described as the shear buckling load, which is essentially numerically equal
to the shear stiffness AGc. In terms of these quantities, the critical load from
Equation (7.25) can be expressed in the general form

Pcr = PE

⎡
⎣1 + PEf

Pc
− P 2

Ef

PcPE

1 + PE

Pc
− PEf

Pc

⎤
⎦ . (7.27)

When the faces are very thin, PEf → 0 and Equation (7.27) coincides
with the thin face formula (7.15).

One additional note: Allen’s thick face formula, (7.27), turns out to be the
prediction from the high-order sandwich panel theory (HSAPT) discussed in
Section 6.2 in the limit when the core modulus approaches infinity (Ec →
∞) (Frostig, 2010, personal communication).

7.4 Bazant and Cedolin’s Formula

In this formula, the shear correction is defined as follows. Keeping the same
notation, the rotation dw1/dx of the cross-section is defined by the longi-
tudinal displacements of the face centroids, which differs slightly from the
rotation of the core cross-section (Figure 7.4). Denoting by γc the shear strain
in the core and by γ the average shear strain (which is dw2/dx in the previ-
ous section), we can see from Figure 7.4:(

c + f

2

)
γ = cγc. (7.28a)

This is the same as the relation (7.19a) derived in the previous section. There-
fore,
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γc = Q

Gc(2cb)
=

(
1 + f

2c

)
γ. (7.28b)

Solving for γ , which is the difference between the slope dw/dx of the
deflected beam axis and the rotation dw1/dx of the cross-section, gives

dw

dx
− dw1

dx
= γ = Q

GcA1
, A1 = (2c + f )b. (7.29)

The axial strain in the face sheet at the mid-face location is −(c +
f/2)d2w1/dx2 (from bending theory). Therefore the resultant axial forces
at the faces (compressive at the upper face and tensile at the lower) are

Pf = Ef (f b)

(
c + f

2

)
d2w1

dx2
. (7.30a)

The bending moment can now be written as

M = Pf (2c + f ) + 2Mf where Mf = Ef

bf 3

12

d2w

dx2
. (7.30b)

Using (7.30a) gives

M = Ef I1
d2w1

dx2
+ Ef If

d2w

dx2
where I1 = bf

(2c + f )2

2
; If = bf 3

6
.

(7.31)
Now differentiating Equation (7.29), expressing from this d2w1/dx2 and

substituting it into Equation (7.31), gives

d2w

dx2
= M

(EI)eq
+ 1

GcA1(1 + If /I1)

dQ

dx
, (7.32a)

where
(EI)eq = Ef (I1 + If ), (7.32b)

i.e., the equivalent bending rigidity is again due to the face sheets only but
the bending rigidity of the faces about their own separate centroidal axes is
included.

This equation essentially means that the total curvature d2w/dx2 is the
sum of the flexural curvature and the curvature due to shear, i.e. the same
basic approach as Engesser’s, see Equation (7.3a), with

β

AGeq
= 1

GcA1(1 + If /I1)
. (7.33)

Proceeding in the same way as before, the critical load is obtained in the
same form as Equation (7.8) with β/(AGeq) defined in (7.33) and the Euler
load PE based on the bending rigidity (7.32b).
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7.5 Huang and Kardomateas Shear Correction Formulas

A shear correction formula for sandwich columns in terms of the face sheet
and core geometrical and mechanical properties was presented in Huang and
Kardomateas (2002). This formula can be used in either the Engesser (7.8),
or the Haringx (7.13) expression. It essentially provides for proper defini-
tions of (EI)eq, Geq and β for the sandwich section.

In particular, the equivalent bending rigidity includes both the face sheets
and the core and the bending rigidity of the faces about their own separate
centroidal axes is included. Referring again to Figure 7.2, the equivalent flex-
ural rigidity of the sandwich section is

(EI)eq = 2Ef

bf 3

12
+ 2Ef bf

(
f

2
+ c

)2

+ Ec

b(2c)3

12
. (7.34)

Denoting the shear stresses in the face sheet and the core by τf (x, z) and
τc(x, z), respectively, we can write the shear energy in the sandwich beam as

Uγ = b

∫ ∫
τ 2(x, z)

2G(z)
dzdx

= 2b

{∫ L

0

∫ c+f

c

τ 2
f (x, z)

2Gf

dzdx + b

∫ L

0

∫ c

0

τ 2
c (x, z)

2Gc

dzdx

}
. (7.35)

An “effective” or “equivalent” shear modulus for the sandwich section,
Geq, which includes the contribution of the face sheets, can be defined based
on the compliances of the constituent layers, as follows:

2f + 2c

Geq
= 2f

Gf

+ 2c

Gc

, (7.36)

where Gf is the shear modulus of the face sheets and Gc the shear modulus
of the core. Equation (7.36) shows that when the core is of very low modulus,
the second term would dominate and Geq would approach Gc.

Now, assume that the shear stress is distributed in a uniform fashion over
the entire section, A = b(2c + 2f ), then the corresponding equivalent shear
stress and strain are

τeq = V (x)

A
; γeq = βV (x)

GeqA
, (7.37)

where β is the shear correction coefficient, which takes into account the non-
uniform distribution of shear stresses over the entire cross-section.
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Then, the energy due to shear is

Uγ = A

∫
1

2
τeqγeqdx = β

2GeqA

∫ L

0
V 2(x)dx, (7.38)

Now the shear stresses, from simple bending theory, are distributed as
follows:

• Face sheets

τf (z) = V

(EI)eq

Ef

2

[
(f + c)2 − z2] . (7.39a)

• Core:

τc(z) = V

(EI)eq

[
Ef f

(
f

2
+ c

)
+ Ec

2

(
c2 − z2

)]
. (7.39b)

Substituting into Equation (7.35) gives

Uγ = b

(EI)2
eq

(
af

Gf

+ ac

Gc

) ∫ L

0
V 2dx, (7.40)

where

af = E2
f

4

[
(f + c)4f − 7

15
(f + c)5 − c5

5
+ 2

3
(f + c)2c3

]
, (7.41a)

ac = E2
f f 2c

(
f

2
+ c

)2

+ 2

15
E2

c c
5 + 2

3
Ef Ecf

(
f

2
+ c

)
c3. (7.41b)

Comparing (7.38) and (7.40) gives the shear correction as

β

AGeq
= 2b

(EI)2
eq

(
af

Gf

+ ac

Gc

)
. (7.42)

For a homogeneous section (this can be most easily seen by setting c = 0,
A = 2f b), β = 6/5, which is a well-established shear correction factor for
a rectangular homogeneous section.

Notice that this shear correction formula is not exclusively based on the
shear modulus of the core, but includes the shear modulus of the faces and
the extensional modulus of the core. Hence, it can account for sandwich
constructions with stiffer cores and/or more compliant faces.

It should also be noted that a more general formula for the transverse shear
correction coefficient β, which is applicable to a sandwich section with dis-
similar faces can be found in Huang and Kardomateas (2002). This formula
is also given in Chapter 12 in conjuction with the debond buckling problem.
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The shear correction formula (7.42) can now be used by substituting this
expression for β in either the Engesser critical load formula (7.8) or the
Haringx one (7.13), where PE is the Euler load based on the equivalent rigid-
ity (7.34).

7.6 Comparison of the Global Buckling Formulas

Let us consider a sandwich column with unidirectional carbon/epoxy
faces and hexagonal glass/phenolic honeycomb core. The orthotropic car-
bon/epoxy face moduli are (in GPa): E

f

1 = 181, E
f

2 = E
f

3 = 10.3,
G

f

23 = 5.96, G
f

12 = G
f

13 = 7.17; and the face Poisson’s ratios: ν
f

12 = ν
f

13 =
0.277, ν

f

32 = 0.400. The orthotropic honeycomb core moduli are (in GPa):
Ec

1 = Ec
2 = 0.032, Ec

3 = 0.300, Gc
23 = Gc

13 = 0.048, Gc
12 = 0.013; and the

core Poisson ratios are νc
12 = νc

32 = νc
31 = 0.25.

The total thickness is considered constant at h = 2f + 2c = 30 mm,
the length over total thickness, L/h = 30, and we examine a range of face
thicknesses defined by the ratio of face sheet thickness over total thickness,
f/h, between 0.010 and 0.20. Figure 7.5 shows the critical load for a sim-
ply supported sandwich column, normalized with the Euler load (without
transverse shear), PE0. The different formulas from the literature are plotted.
Notice also that we use Gc

13 in place of Gc in these formulas, which were
originally derived for isotropy.

Since it is possible that face wrinkling could dominate the failure of the
column for very thin face sheets (see Chapter 9), Figure 7.5 also shows the
critical wrinkling load calculated from Allen’s wrinkling formula (8.63a). It
is indeed noted that wrinkling would dominate for ratios f/h below 0.02.

From these results we can make the following observations:

(a) Allen’s thin-face formula (7.15) and the Bazant and Cedolin (1991) for-
mulas (7.8) and (7.33) produce similar results. In Figure 7.5, the curves
from these two formulas can hardly be distinguished.

(b) Allen’s thick-face formula (7.27) and the Engesser formula (7.8) with the
Huang and Kardomateas shear correction (7.42) give predictions which
are also practically identical and the corresponding curves can hardly be
distinguished in Figure 7.5.

(c) The transverse shear effect is very large and results in a critical load
being about only one third of the Euler load for face sheet thickness
ratios, f/h, above 0.10.
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Figure 7.5 Critical loads for sandwich columns calculated from different formulas.
The elasticity curve is from Kardomateas (2008b).

An exact three-dimensional elasticity solution to the problem was derived
by Kardomateas (2008b). This solution can serve as a benchmark for assess-
ing the accuracy of all these different formulas. From this solution, it was
concluded that

(a) Allen’s thin and thick-face formulas, the Bazant and Cedolin formula,
and the Engesser formula with the Huang and Kardomateas shear cor-
rection are all conservative.

(b) Allen’s thick-face formula and the Engesser formula with the Huang and
Kardomateas shear correction are the most accurate, giving predictions
almost identical to the elasticity value.

(c) Allen’s thin-face formula and the Bazant and Cedolin formulas are ac-
curate within about 5% of the elasticity value for f/h below 0.05, so
they are very good for relatively thin face sheets; however, both give pre-
dictions that can be very conservative for the thicker face sheets (of the
order of 20% below the elasticity value for f/h = 0.2).

(d) The Haringx formula gives predictions which are non-conservative and
it is the most inaccurate, being of the order of 50% above the elasticity
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value for f/h = 0.2. Its accuracy improves, though, for very thin face
sheets.

One general observation is that the Haringx results stand out as being in
much discrepancy with the elasticity results. This is in line with the dis-
cussion at the end of Section 7.2 and the statement that if a constant shear
modulus Gc is used, then the correct theory is the Engesser-type theory and
that the Haringx-type theory is usable only if the Gc of the core is consid-
ered to be a function of the axial stress in the face sheets (see also Bazant
and Beghini, 2004).

Another general observation is that Allen’s thick-face formula, Equation
(7.27) and the Engesser formula, Equation (7.8) with the Huang and Kardo-
mateas shear correction, Equation (7.42) are the most accurate, giving pre-
dictions almost identical to the elasticity value. The most popular formula,
however, is Allen’s thin-face formula, Equation (7.15), which is found to be
very good for relatively thin face sheets but gives predictions that can be very
conservative for the thicker face sheets.

Note regarding wide sandwich panels: In the foregoing formulas, when
dealing with a wide panel, Ef must be replaced by Ef /(1 − ν2

f ) where νf

is the Poisson ratio of the faces, since in a wide panel, the lateral strains
εyy must be zero, or else the bending could not be cylindrical and curvature
would arise also in the lateral direction y. Therefore, with this modification,
all of the previous formulas are also applicable to the buckling of wide sand-
wich panels.

7.7 First-Order Shear Deformation Analysis of Buckling of a
Simply-Supported Sandwich Panel

Buckling of sandwich panels has been considered by several researchers and
an excellent review of early work is presented in Plantema (1966). Solutions
for plate buckling problems are also presented in the texts by Allen (1969)
and Zenkert (1997). These solutions are derived using the approach of “par-
tial deflections”. In this section we will approach the buckling of a simply-
supported sandwich panel using the classical first-order shear deformation
approach outlined in Chapter 3.

A rectangular panel under biaxial compressive loading is considered, see
Figure 7.6. The edges are loaded by uniform forces of magnitudes Nx and
Ny . The initially flat symmetric sandwich plate is compressed until the flat
shape deviates into a slightly bent mode shape once a critical set of loads
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Figure 7.6 Sandwich panel under in-plane biaxial compressive loading.

(Nx and Ny) is reached. To determine the buckling loads and mode shapes
the equilibrium equation (3.58e), which includes in-plane forces, is utilized
with q = 0, and Nxy = 0,

∂Qx

∂x
+ ∂Qy

∂y
+ Nx

∂2w

∂x2
+ Ny

∂2w

∂y2
= 0. (7.43)

Substitution of the expressions for the shear forces, Equations (3.68), yields

hcGxz

(
∂ψx

∂x
+ ∂2w

∂x2

)
+ hcGyz

(
∂ψy

∂y
+ ∂2w

∂y2

)
+ Nx

∂2w

∂x2
+ Ny

∂2w

∂y2
= 0.

(7.44)
Simply-supported boundary conditions, see Section 3.2.3, are assumed

w(x, y) = Mx(x, y) = My(x, y) = 0. (7.45)

These conditions apply along the edges x = (0, a) and y = (0, b) of the
panel. The above boundary conditions are satisfied by

ψx = Amn cos
mπx

a
sin

nπy

b
, (7.46a)

ψy = Bmn sin
mπx

a
cos

nπy

b
, (7.46b)

w = Cmn sin
mπx

a
cos

nπy

b
, (7.46c)
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where m and n are integers (m = 1, 2, . . . , n = 1, 2, . . . ). Substitution of
Equations (7.46) into (3.69c and d) and (7.44) yields the following matrix
equation: ⎡

⎣F11F12F13

F12F22F23

F13F23F33

⎤
⎦
⎡
⎣Amn

Bmn

Cmn

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ , (7.47)

where

F11 = m2π2D11

a2
+ n2π2D66

b2
+ hcGxz, (7.48a)

F12 = mnπ2(D12 + D66)

ab
, (7.48b)

F13 = mπhcGxz

a
, (7.48c)

F22 = n2π2D22

b2
+ m2π2D66

a2
+ hcGyz, (7.48d)

F23 = nπhcGyz

b
, (7.48e)

F33 = π2

[
m2hcGxz

a2
+ n2hcGyz

b2
+ m2Nx

a2
+ n2Ny

b2

]
, (7.48f)

A non-trivial solution can be obtained by choosing Nx and Ny such that the
determinant of the matrix [F ] in Equation (7.47) vanishes,

det[F ] = F11(F22F33−F 2
23)−F12(F12F33−F23F13)+F13(F11F23−F22F13).

(7.49)
The only element of the matrix containing the in-plane loads Nx and Ny is
F33 (Equation (7.48f)). With det[F ] = 0, Equation (7.49) gives the condition
for a non-trivial solution in terms of F33

F33 = F11F
2
23 + F22F

2
13 − 2F12F13F23

F11F22 − F 2
12

. (7.50)

In a typical problem, Nx and Ny are proportional,

Nx = −No, (7.51a)

Ny = −kNo, (7.51b)

where No is the magnitude of compression load per unit length applied in
the x direction. The critical buckling load is given by the set of m and n that
minimizes the load No. The buckling mode is defined by the integers m and
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Figure 7.7 Illustration of buckling mode corresponding to m = 2, n = 1, where
the panel buckles into a full sine wave in the x direction and a half sine wave in the
y direction.

n defining the number of half sine waves into which the panel buckles in the
x and y directions, respectively, see the expression for the panel deflection
in Equation (7.48c) and the example m = 2, n = 1 shown in Figure 7.7.

We will specifically examine the buckling of a sandwich panel with
isotropic core, Gxz = Gyz = Gc, under uniaxial compressive loading in
the x direction, which in Equations (7.51) corresponds to k = 0. Equa-
tion (7.48f) applied to this loading yields

No = hc

(
Gxz +

( n

m

)2(a

b

)2
Gyz

)
− a2

π2m2
F33, (7.52)

with F33 given by Equation (7.50).
For numerical calculations, a square (a = b = 0.5 m) sandwich panel

consisting of 2 mm thick unidirectional composite face sheets with the fibers
aligned with the x axis (loading direction), and a 16 mm thick H100 PVC
foam core was considered. The face and core mechanical properties are the
same as those considered in Section 3.3. Calculation of the buckling load
No for a set of values m and n was conducted based on Equation (7.52).
Table 7.1 lists the results for m = 1, 2, 3 and n = 1, 2, . . . , 5.

It is observed that the lowest buckling load (critical load) corresponds to
a mode shape with one half sine wave in both the x and y directions m =
n = 1. This is also the case for calculation of the critical load using classical
laminated plate theory (CLPT) where transverse shear is not incorporated.
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Table 7.1 Buckling load, No (in MN/m) for a square 0.5 m × 0.5 m sandwich panel
with unidirectional composite face sheets and an isotropic H100 PVC foam core.

m = 1 m = 2 m = 3 m = 4 m = 5

n = 1 0.7235 0.8856 0.9331 0.9500 0.9569
n = 2 1.6013 1.1439 1.069 1.0393 1.9221
n = 3 4.1431 1.8081 1.3805 1.2255 1.1487

Figure 7.8 Critical buckling load for square sandwich panel vs. size calculated
using shear deformation plate theory (SDPT) and classical laminated plate theory
(CLPT).

For uniaxial compression of a square panel, CLPT yields (Whitney, 1987)

No = π2

a2

(
D11m

2 + 2 (D12 + 2D66) n2 + D22
n4

m2

)
. (7.53)

The smallest buckling load for any panel occurs for n = 1. For the current
panel with D11 much larger than D12, D22and D66, the smallest value of No

occurs for m = 1. This was found to be the case for any size of the square
sandwich panel considered. Figure 7.8 shows the buckling load normalized
with the bending stiffness D11, and panel area a2 plotted vs. the normalized
side length.

It is observed that transverse shear deformation reduces the critical load.
As the panel size increases, the difference between shear deformation plate
theory and classical laminated plate theory decreases, similar to the bend-
ing case discussed in Section 3.3. For small panels, shear deformation has
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a strong influence on the critical load and neglecting this important mode
of deformation of sandwich panels will produce very unconservative esti-
mates of buckling load. See also the results for sandwich columns presented
in Sections 7.1–7.6.

7.8 Panel Compression Testing

It is general design practice of sandwich structures to determine the dimen-
sions and supports of the panels to eliminate the possibility for buckling
under service conditions. The experimental study of the buckling behavior
of thin panels has been motivated by the emphasis of using structurally ef-
ficient materials in engineering applications such as naval ship structures,
wind turbine blades, airplane structures, and packaging containers. In the
analysis of such panels (see Section 3.2.3) idealized boundary conditions
are imposed, typically “simply supported” or “clamped”. These boundary
conditions are introduced in order to obtain a tractable solution to the spe-
cific problem under investigation. In actual structures and experimental test
fixtures, such idealized boundary conditions are often difficult to assess in
a precise manner. Panel compression tests are commonly devised with the
purpose of verifying an analytical or numerical finite element solution and to
determine the actual mechanisms leading to the collapse of the panel such as
localized buckling of the face sheets (face wrinkling) or compression failure
of the face sheets. When performing testing for such purposes, it is impor-
tant to assess the details on how the test fixture introduces load and how it
supports the panel. In compression testing of sandwich panels into the post-
buckling regime of the panel, the actual load-deformation behavior critically
depends on the manner in which the edges of the panel are supported and
how the load is introduced into the panel. Most experimental studies of the
compressive response of thin panels have been focused on the implementa-
tion of simply supported boundary conditions, such as was discussed in the
analysis of edge-loaded panels in Section 3.2.3. Simply-supported edge con-
ditions are in this context commonly defined as being achieved by a fixture
that allows all the edges to freely rotate around axes parallel to the edges
and allows unconstrained movement of the edges in the plane of the panel,
while restricting out-of-plane deflections. Farris and Filippov (1982), Khot
and Bauld (1983), Souza et al. (1983), and Minguez (1986) have discussed
several aspects of testing fixtures that provide support conditions close to the
idealized boundary conditions.
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Figure 7.9 Schematic of uniaxial in-plane compressive loading of a sandwich
panel.

Most experimental studies reported in the literature consider uniaxial
compressive loading of panels. The testing of such panels is typically ac-
complished in a general-purpose vertical testing machine containing a metal
fixture that allows the introduction of distributed load (line load) on the top
horizontal edge while the vertical edges are unloaded, see Figure 7.9.

As the magnitude of the load is increased, the panel will deform in com-
pression, and the upper horizontal edge will displace downwards. The verti-
cal side supports in the test fixture must allow for such deformation. Further-
more, the edge supports should allow moment-free rotation of the edges of
the panel.

Minguez (1986) designed a panel test where out-of-plane deflections of
the vertical edges were constrained by attaching steel wires in regularly
spaced slots machined along the edges, as shown in Figure 7.10. Each steel
wire was attached to the panel using a brass collar with a set screw and a steel
angle section fitting the machined slot. The ends of the wire were attached
with screws to frames mounted on each side of the panel. The 80 cm long
and 40 cm wide panel was supposed to buckle into one full sine wave along
the loading direction and one half sine wave transverse to the loading direc-
tion. Minguez placed the wires 5 cm apart. To allow for sufficient tightening
of the wires, high-strength piano wire was used.

A more common method to constrain out-of-plane deflection of the un-
loaded edges, is to use knife-edge supports (Figure 7.11). As will be dis-
cussed later, both the wire support and the knife-edge supports appear to ap-
proximate simply supported edge conditions, as judged from buckling mode
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Figure 7.10 Edge support using regularly spaced steel wires.

Figure 7.11 Knife-edge supports to constrain lateral deflections of the unloaded
edges.

shapes and the magnitude of the measured buckling load. A disadvantage
with the wire supports, however, is that the cut-outs for the steel wire at-
tachments will weaken the panel. After buckling, the load distribution is no
longer uniform and the compressive load becomes concentrated to the edge
regions. If the panels are loaded to collapse, the cut-outs may reduce the
ultimate load.

Minguez (1986) considered several other options for load introduction,
see Figure 7.12. Each of the configurations shown in Figure 7.12 were em-
ployed for the directly loaded top and bottom edges. The flat plate configura-
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Figure 7.12 Methods for load introduction into sandwich panel.

tion, Figure 7.12a consisted of a flat stiff plate in direct contact with the panel
edge. The triangular slot configuration, Figure 7.12b, used a loading platen
with a triangular slot to maintain a straight edge during loading. For the roller
support (Figure 7.12c) three configurations were used. The first consisted of
two single rollers fitted to each loaded edge of the panel. The second roller
configuration employed seven roller segments, each 5 cm long, fitted to the
loaded edges. The third roller configuration used 13 independent 2.5 cm long
roller segments on each loaded edge. By increasing the number of indepen-
dent rollers, the out-of-plane deflection of the panel associated with buckling
would become less and less constrained. Notice that the maximum edge ro-
tation is expected to occur at the center of the edge, while the rotation near
the corners should be close to zero. Before testing, lubrication was applied
to the roller surface in contact with the circular slots in the loading plates
to reduce friction. Nordstrand (2003) used a similar slotted roller arrange-
ment as Minguez (1986), Figure 7.13, although the segments were shorter,
approximately 1.7 cm, and the rollers were resting on needle bearings. For a
panel size of 40 × 40 (cm) 23 segments were used on each horizontal edge.

The compression test fixture designed by Nordstrand (2003), moreover,
employed an aluminum frame consisting of U-shaped extruded beams to
provide rigid support to the panel. Knife-edge supports (Figure 7.11), were
used to constrain out-of-plane deflections of the unloaded vertical edges. The
upper loading beam was connected to the moving cross-head of the testing
machine using a pin connection so that the panel is loaded uniformly before
buckling and symmetrically after buckling, in the post-buckling regime. To
maintain a load path along the undeformed reference plane of the panel, the
upper loading beam was guided by two pairs of roller bearings in contact
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Figure 7.13 Rollers resting in circular lots supported by needle roller bearings.

Figure 7.14 The upper loading beam is guided by two pairs of roller bearings in
contact with the vertical U-beams of the compression test fixture.

with the outer surfaces of the vertical U-shaped beams, see the top view in
Figure 7.14.

To examine whether a fixture is able to provide the desired loading and
support conditions for a test panel, analytical and numerical predictions of
the critical load and the associated buckling mode shape are compared to
those determined experimentally. Such an approach seems very straightfor-
ward and it is for perfectly flat and defect-free panels. Actual panels, how-
ever, tend to deviate from the ideal flat form due to process-induced asym-
metric residual stresses or other reasons. Hence, the panels tend to be slightly
bent or warped in the unloaded state and when external loads are applied the
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panel deforms further without any obvious indication of a bifurcation behav-
ior.

Experimental studies have shown that the out-of-place deflection is much
more indicative of buckling than the in-plane deformations. Consequently,
several methods to monitor the out-of-plane deflection have been developed.
The most simple methods determine the deflection at a point, such as the
crest of a buckle, or several points, using deflectometers or non-contact laser
interferometry. More sophisticated methods enable measurement of the full
displacement field for the deflected panel. Such methods are the shadow-
moiré method (Sciammarella, 1982), and the more recent digital image cor-
relation technique described by Helm et al. (1996).

Once the load vs. out-of-plane deflection response has been measured,
there are several methods available to determine the buckling load from the
measured data. A commonly applied method is the Southwell graphical pro-
cedure outlined in Appendix C. This method was developed by Southwell
(1932) for the evaluation of the buckling load for slightly bowed simply-
supported columns. This method amounts to plotting the column deflection,
w, vs. deflection divided by the load (w/P ). The slope of the line represents
Pcr, see e.g. the article by Souza et al. (1983). Such a method is adequate
for structural members such as columns that display “neutral” post-buckling
response (see Figure 7.15).

Neutral post-buckling response means that the load remains constant after
buckling as long as the material is loaded within the elastic regime. A per-
fect column would buckle at a load, P = Pcr, which would remain constant
up to very large deflections. Perfect here means that the column is initially
straight and that the load acts along the specimen centroidal axis. Figure 7.15
shows the load, P , vs. additional out-of-plane deflections, w, for the perfect
column. wo represents the amplitude of the initial imperfection. Hence, the
total out-of-plane deflection is wT = w + wo. w is the deflection one would
measure after zeroing the displacement gage before load application. During
compressive loading of an imperfect column, the column would already de-
flect at small applied loads and the load would asymptotically approach the
buckling load at large deflections.

It can be readily observed that there are substantial difficulties in accu-
rate determination of Pcr from experimental data for imperfect columns. The
Southwell method (Appendix C) has proven to be an excellent method to de-
termine the buckling load for columns. Panels loaded past the critical load,
on the other hand, display a stable post-buckling response (see Figure 7.15),
meaning that the panel can support loads substantially greater than the crit-
ical load. A perfect panel (wo = 0) would not display any out-of-plane dis-
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Figure 7.15 Illustration of neutral and stable post-buckling response.

placement until the critical load, Pcr, is reached. After such a panel buckles,
the load will steadily increase until the material yields. Notice that a sand-
wich panel may fail by local buckling (wrinkling or intercell buckling, see
Chapters 1 and 8).

As may be observed in Figure 7.15, extraction of the buckling load (Pcr)
from the experimentally measured load vs. out-of-plane displacement record
for an imperfect panel is not straightforward. Minguez (1986) applied the
Southwell method to extract Pcr from the measured load vs. out-of-plane
displacement (P –w) response of an aluminum panel under the various edge
boundary conditions shown in Figure 7.12. In addition to the determination
of Pcr, Minguez (1986) also examined the buckling mode shapes along and
transverse to the panel. Figure 7.16 shows an example of mode shapes along
and transverse to the loading direction for a panel loaded using the triangu-
lar slotted configurations shown in Figure 7.12b. The results show that all
load introduction configurations produced a mode shape in agreement with



192 7 Global Buckling of Sandwich Columns and Wide Panels

Figure 7.16 Buckling mode shape for a rectangular aluminum panel loaded using
a triangular slot configuration. Data from Minguez (1986).

predictions (full sine wave along loading direction and half sine wave trans-
versely).

Quantitatively, however, Minguez (1986) found that the various methods
of load introduction produced substantially different amplitudes of deflec-
tion. It was found that the method of using 13 segmented rollers on each
loaded edge (Figure 7.12c) produced the largest deflections at any given load
above Pcr. This arrangement allows each section of the load-carrying edges
to accommodate the buckling shape (Figure 7.16) with the maximum slope
(rotation) at the center. Southwell plots were constructed for each load in-
troduction configuration (Figure 7.12), see the example of a Southwell plot
shown in Figure 7.17 for the triangular slotted configuration.

The buckling load, Pcr, determined from the slope of the fitted line in
Figure 7.17, is Pcr = 2.88 kN. Table 7.2 summarizes buckling loads deter-
mined from Southwell plots for the various load introduction configurations.
Table 7.2 also lists the buckling loads normalized by the theoretical critical
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Figure 7.17 Southwell plot for panel with triangular slotted load introduction.

Table 7.2 Buckling loads for various load introduction configurations (Figure 7.7).

Load introduction Pcr (exp), kN Pcr(exp)
Pcr(SS)

Flat N.A. –
Triangular slots 2.88 1.11∗
Rigid rollers 2.80 1.08∗
13 roller segments 2.71 1.05∗
Simply supported∗ 2.59 1.00∗

∗Pcr(SS) calculated from plate theory assuming simply
supported (SS) boundary conditions.

load calculated for the panel assuming simply-supported edges (Minguez,
1986). For all load introduction configurations, the experimental buckling
load exceeds the critical load by 5 to 11%, depending on the actual configu-
ration. This result indicates that simply-supported conditions were not fully
achieved for any of the configurations examined, although the one with 13
roller segments on each horizontal edge, provides boundary conditions close
to simply-supported.

7.8.1 Experimental Determination of the Buckling Load of Panels

The method to extract the buckling load from the test results by Minguez
(1986) was criticized by Chau (1987), because the Southwell method strictly
applies only to columns, not to panels. To enable accurate experimental eval-
uation of the buckling load for panels, Spencer and Walker (1975) used load
and deflection data in the pre- and post-buckling regimes of isotropic homo-
geneous panels in connection with a generalized Donnell (1938) equation,
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Figure 7.18 Element of a corrugated core panel.

P

Pcr
= 1

w + wo

+ w + 2wo

(Ah)2 , (7.54)

where wo and w are the initial out-of-plane imperfection, and w is the addi-
tional deflection. A is constant and h is the panel thickness. Equation (7.54)
was fitted to the experimentally measured load (P ) vs. out-of-plane displace-
ment (w) data with wo, A and Pcr as undetermined parameters to extract Pcr.

Nordstrand (2003) analyzed and tested orthotropic sandwich panels in
uniaxial compression, as shown schematically in Figure 7.9. Geometric non-
linear analysis using classical plate theory without transverse shear defor-
mation was developed by extending the post-buckling analysis of Rhodes
and Harvey (1977) to an orthotropic panels with initial imperfection. This
analysis yields an equation for the load (P ) as a function of the out-of-plane
displacement w, which contains the critical load as a parameter,

P = Pcr

(
1 − wo

w

)
+ ψ(w2 − w2

o), (7.55)

where ψ is a post-buckling parameter. Consequently, this formula can be
employed for experimental evaluation of the buckling load from measured
load and out-of-plane deflection data.

Compression testing was done on 4 mm thick, 0.4 × 0.4 (m) corrugated
core sandwich panels with an areal weight of 556 g/m2. The corrugation
wave length was 7.26 mm. Figure 7.18 shows the structure of corrugated core
sandwich, a very common sandwich for packaging applications. Table 7.3
lists bending and shear stiffnesses of the sandwich panels.

Only reasonably flat panels with an imperfection of less than 2 mm (half
thickness) were tested. The compression testing utilized a fixture described
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Table 7.3 Bending and shear stiffnesses of corrugated core sandwich panels.
hc = core thickness = 3.51 mm.

Stiffness∗ Value

D11, Nm 14.6
D12, Nm 2.71
D22, Nm 5.43
D66, Nm 3.34
hcGyz, kN/m 39.2
hcGxz, kN/m 5.6

∗The in-plane principal directions refer to a
coordinate system with the 1 axis perpen-
dicular and the 2 axis parallel to the corru-
gations.

Figure 7.19 Uniaxial compression loading of corrugated core sandwich panel.

in connection with Figures 7.13 and 7.14. The panels were loaded uniaxially
along the corrugations, i.e., the material direction “2” was along the loading
axis as shown in Figure 7.19.
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Figure 7.20 Experimental load vs. out-of-plane deflection curves for corrugated
core sandwich loaded in uniaxial compression.

The out-of-plane deflection, w, was measured with a displacement gage
at the panel center, where w should attain its maximum for buckling of the
panel in its fundamental mode (Figure 7.19). The panels were loaded in dis-
placement control until total collapse, as indicated by the circle at the end of
each experimental P –w curve in Figure 7.20.

It is noted that the set of panels tested displayed quite a consistent re-
sponse. The bold curve represents a fit of Equation (7.56) to the average
experimental P –w curve using a commercially available software; SAS
(2003). The fitting parameters are: Pcr = 814 N, wo = 0.8 mm and
ψ = 3.55 MN/m2. It should be pointed out that the post-buckling analysis
underlying the derivation of Equation (7.56) is a geometric nonlinear-elastic,
and is not able to accommodate softening behavior due to the plasticity of
the constituent materials. It is therefore essential that buckling occurs within
the elastic regime of the material prior to localized buckling or yield.

It should be pointed out that the loading shown in Figure 7.18 refers to
a panel loaded parallel to the corrugations and that the bending stiffnesses
listed in Table 7.3 refer to a principal coordinate system (1-2) with the 1 axis
perpendicular and the 2 axis parallel to the corrugations. To accommodate
the loading configuration shown in Figure 7.19 the stiffnesses were trans-
formed (Table 7.4). The first-order shear analysis presented in Section 7.7
was used to determine the critical buckling load for the sandwich panel with
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Table 7.4 Transformed bending and shear stiffness for corrugated core sandwich
panel (Figure 7.19).

Stiffness Value

D11, Nm 5.43
D12, Nm 2.71
D22, Nm 14.6
D66, Nm 3.34
hcGyz, kN/m 5.6
hcGxz, kN/m 39.2

the data listed in Table 7.4. Calculations revealed that the panel should buckle
in the fundamental mode (m = n = 1) at a load, Pcr = 820 N, which agrees
very favorable with the critical load determined using the nonlinear regres-
sion analysis above, Pcr = 814 N.

7.8.2 Analysis of Collapse Load

As indicated in Figure 7.15, a distinctive feature of nearly flat slender sand-
wich panels is their ability to support loads significantly larger than the buck-
ling load. Thus, in several situations the load design allowable load of such
panels is governed by the collapse load rather than just the critical load. For
the specific corrugated sandwich panel discussed earlier, the results in Fig-
ure 7.20, indicate that the collapse load exceeds the buckling load (814 N)
by almost 50%.

The analysis of the collapse of sandwich panels is complicated by the fact
that the strain in the middle plane of the panel due to buckling cannot be
neglected once the panel is loaded above the buckling load. When the de-
flection, w, becomes comparable to the panel thickness, second-order terms
in the expression for the components of strain in the middle plane of the plate
must be taken into account, which substantially complicates the analysis of
the buckling response (Timoshenko, 1936). As shown in Figure 7.15, the re-
sponse of the panel is highly nonlinear and it becomes a formidable task to
determine the distribution of load in the post-buckled panel. Such analysis
shows that Nx becomes non-uniform and most of the load is supported by
the regions of the panel near the unloaded edges, see Figure 7.21.

Because of the difficulties in analyzing the distribution of load in post-
buckled panels, semi-empirical and simplified analytical approaches have
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Figure 7.21 Distribution of compressive load in a panel loaded in uniaxial com-
pression beyond the critical buckling load.

been developed. One of the early approaches to determining the post-
buckling strength is attributed to Cox (1933), which was later modified by
Norris (1942) for use with orthotropic materials such as plywood, and fur-
ther modified for corrugated core sandwich panels by McKee et al. (1963).
According to this approach, the compressive strength of the panel is assumed
to follow a power function given by

Pcol

Pcr
= c

(
Xc

Pcr

)b

, (7.56)

where c and b are empirical constants, Xc is the uniaxial compressive
strength of the sandwich in the direction of loading, and Pcr is the critical
buckling load of the panel per unit width. To establish the parameter values
for a given sandwich (Xc = constant), the size of the panel may be varied
which results in variations of Pcol and Pcr. To establish their numerical val-
ues, a logarithmic form of Equation (7.56) is used:

log (Pcol/Pcr) = log c + b log(Xc/Pcr). (7.57)
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Figure 7.22 Determination of parameters c and b in the McKee et al. equation.

The critical buckling load is determined from analytical methods (see Sec-
tion 7.7) or extracted from the experimental load vs. out-of-plane deflection
curve, such as the one shown in Figure 7.20, using the methods described
earlier in this section. The collapse load is also readily obtained from the
experimental P –w curve. Once the data set has been established, a log-log
graph may be constructed (Figure 7.22).

It is observed in Figure 7.22 that the slope of the linear regression line is
b and the intercept with the vertical axis is log c. This method for strength
determination has gained much acceptance within the corrugated board in-
dustry. Properly calibrated, the McKee et al. (1963) method produces reliable
predictions of the collapse load of corrugated core packages. One shortcom-
ing, however, is that the semi-empirical foundation requires experimental
testing of several panels before new predictions can be made, and even if
empirical data exits, there is always uncertainty about the accuracy of the
predictions of sandwich panels that are different from those employed in
calibration.

An approximate closed-form approach to predict the collapse load of pan-
els loaded in uniaxial compression by a rigid frame into the post-buckling
regime has been proposed by Timoshenko (1936). His analysis should also
be applicable to relatively slender sandwich panels able to support loads
greater than the critical buckling load. Since the panels are slender, it is here
assumed that transverse shear deformation can be neglected. The critical
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Figure 7.23 Uniaxial compressive loading of simply supported sandwich panel.

load, No of such a simply-supported panel loaded in uniaxial compression
(Figure 7.23) is given by (Jones, 1999)

Nob
2

π2D11
= m2

(
b

a

)2

+ 2 (D12 + 2D66)

D11
+ D22

D11

(a

b

)2 1

m2
, (7.58)

where m is the number of half sine waves into which the panel buckles in the
direction of loading, i.e. the x direction. Recall that the panel buckles into one
half sine wave transverse to the direction of loading. Analysis of sandwich
panels under a more general loading configuration (see Section 7.7) shows
that the number of buckling half-waves (n) in the y direction must in general
be considered.

The number of half-waves the panel buckles into in the x direction,
m, depends on ratios of the material stiffnesses and the panel aspect ra-
tio (length/width ratio = a/b). Figure 7.24 shows the buckling load, No,
normalized by the bending stiffness, D11, and square of the width plotted
vs. the panel aspect ratio for the following set of bending stiffness ratios
D22/D11 = (D12 + 2D66)/D11 = 0.1.

It is observed that the buckling load corresponding to a particular mode
shape (defined by the parameter m) undergoes a minimum at a certain panel
aspect ratio and that the minimum gets more and more shallow as the aspect
ratio increases. It is further noted that a square panel (a = b) would buckle
into one half-wave (m = 1) while the minimum buckling load for long and
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Figure 7.24 Buckling load of orthotropic panel loaded in uniaxial compression.
D22/D11 = (D12 + 2D66)/D11 = 0.1.

narrow panels (with a high aspect ratio, a/b) corresponds to m > 1, i.e.,
several half-waves.

Moreover, the minimum buckling load for each curve (with fixed value of
m) does not depend on m. Detailed analysis based on Equation (7.58) reveals
that each minimum occurs at an aspect ratio given by

a/b = m
4

√
D11

D22
. (7.59)

The minimum buckling load, independent of the value of m is

(
Nob

2

π2D11

)
min

= 2

[√
D22

D11
+ D12 + 2D66

D11

]
. (7.60)

Timoshenko (1936) presents an analysis of the post-buckling strength for a
panel loaded in uniaxial compression based the distribution of load according
to an approximation by von Kármán et al. (1932). As shown in Figure 7.21,
most of the compressive after buckling is supported by the edge regions of
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Figure 7.25 Timoshenko model of load distribution in post-buckled panel.

the panel. Timoshenko (1936) proposed that the load distribution in the post-
buckling regime may be approximated by assuming a uniform load over each
edge region of the panel, see Figure 7.25. The width of each such region
is denoted by c. The middle region of the panel is completely disregarded,
and the non-uniformly loaded panel of width, b, may be represented by a
uniformly loaded panel of width, 2c, Figure 7.25.

For a long narrow panel, the aspect ratio is much larger than 1, and such
a panel is expected to buckle into several half-waves along the loading di-
rection corresponding to a value of m greater than 1. The critical load for
such a panel should approximately be equal to the minimum value, (No)min,
as provided by Equation (7.60)

No = π2

2c2

[√
D11D22 + D12 + 2D66

]
. (7.61)

Collapse of the panel is assumed to occur when the critical buckling load
reaches the uniaxial compression failure load per unit width of the sandwich,
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Xc. With this assumption (No = Xc) Equation (7.61) yields the width of the
load-bearing region

c = π

[(√
D11D22 + D12 + 2D66

)
2Xc

]1/2

. (7.62)

Hence, the collapse load of the panel is given by

Pc = 2cXc = 2π

[
Xc

2

(√
D11D22 + D12 + 2D66

) ]1/2

. (7.63)

Notice that the buckling factor within the parenthesis remains invariant if the
directions 1 and 2 of the panel are interchanged. The only factor changing if
the material directions 1 and 2 are interchanged is the compression strength,
Xc.

Grangard and Rudstrom (1970) followed the Timoshenko analysis and
derived an equation similar to (7.63) for the prediction of the collapse load
of paperboard packages, but omitted the D12 stiffness which leads to under-
prediction of the collapse load. To the knowledge of the authors, this analysis
has not been applied to sandwich panels.

For the corrugated board panel examined by Nordstrand (2003), the bend-
ing stiffnesses Dij are listed in Table 7.4. The uniaxial compression failure
load per unit width of the sandwich, Xc is (Westerlind and Carlsson, 1992)

Xc = X1 + X2 + αXw, (7.64)

where X1, X2, and Xw are the compressive strengths failure load per unit
width of the two faces (1 and 2), and web (w), and α is the “take-up
factor”, i.e. length of web per unit width of the sandwich. For the core
considered, α = 1.43 (Nordstrand, 2003). With the strengths and thick-
nesses of the faces and web provided by Nordstrand (2003), Equation (7.64)
yields Xc = 4.16 kN/m. Substitution of the strength Xc and the stiffnesses
Dij (Table 7.4) in Equation (7.63) yields a collapse load Pc = 1,226 N.
This value may be compared to the experimental average from Figure 7.20,
Pc = 1,200 N. This good agreement seems to support the simplified analysis,
although more general acceptance would demand a much larger experimen-
tal data base.

An alternative analysis, which does not involve the empirical calibration
of the McKee et al. (1963) approach, or the simplifying assumptions in the
Timoshenko (1936) model, is to perform geometric nonlinear analysis to de-
termine the stress distribution in the most highly stressed face sheet, which
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would be the face on the concave side of the post-buckled panel subject to
stresses due to axial compression and bending. Nordstrand (2003) conducted
geometric nonlinear finite element analysis to determine the state of stress in
the face sheets and used this in combination with a widely used biaxial fail-
ure criterion for orthotropic materials, viz. the “Tsai–Wu criterion” (Tsai and
Wu, 1971). This analysis provided a collapse load of 1,270 N, in good agree-
ment with the measured average collapse load, Figure 7.20, Pcol = 1,200 N.
Based on this favorable agreement Nordstrand (2003) concluded that local
buckling or wrinkling of the face were not failure mechanisms governing the
collapse load. However, once the panel reached the collapse load it was ob-
served to fail in a face wrinkling mode leading to the collapse of the web
core and collapse of the panel.



Chapter 8
Wrinkling and Local Instabilities

Compression loaded faces of sandwich members are sometimes subject to
local instability phenomena, the most prominent being the wrinkling or rip-
pling and the intracell buckling or dimpling. This chapter presents the me-
chanics associated with these phenomena and the classical formulas that pre-
dict the conditions for inducing these forms of local instability.

8.1 Wrinkling

Wrinkling refers to a particular form of local instability of the compression
faces of a sandwich panel in which the wavelength of the buckled form is of
the same order as the thickness of the core. This short-wavelength instability
of the faces can occur at lower load levels than the ordinary global, “Euler”,
buckling of the structure, which is characterized by a half-wavelength of the
order of the compressed length of the sandwich panel.

As shown in Figure 8.1, in the case of the global, Euler, buckling, the core
may exhibit a substantial shearing deformation; in the case of local wrinkling
it acts like an elastic foundation and the buckling deformation is mainly con-
fined to the layers adjacent to the face sheets. Wrinkling of a symmetric
configuration can occur in a symmetric mode or an antisymmetric one (Fig-
ure 8.1).

Wrinkling will be considered for wide sandwich panels or sandwich
columns. Thus, referring to Figure 8.2, the panel is so wide that lines along
the y axis can be taken as uncurved. Therefore, a unit width can be treated
as a Euler column.

The classical wrinkling formulas of Hoff and Mautner (1945), Plantema
(1966), and Allen (1969) will be presented in the following.

L.A. Carlsson and G.A. Kardomateas, Structural and Failure Mechanics of Sandwich 205
Composites, Solid Mechanics and its Applications 121, DOI 10.1007/978-1-4020-3225-7_8, 
© Springer Science+Business Media B.V. 2011 



206 8 Wrinkling and Local Instabilities

Figure 8.1 Buckling modes.

8.1.1 Hoff and Mautner’s Formulas

I. Symmetric Wrinkling
The wrinkled state involves the bending of the faces of thickness hf = f

and the elongation and compression of the core of thickness. hc = 2c. A
short wave on the surface can hardly have any effect upon the material in the
middle of the core when c is large. It is assumed that the displacements occur
only in marginal zones of depth d (Figure 8.3).

Assuming that the face undergoes a sinusoidal displacement and that the
wave damps out linearly (linear decay) through the thickness, the transverse
displacement, w of the top marginal zone is given with respect to the local
coordinate system (x, z) in Figure 8.3, as follows:

w = Bz

d
sin

πx

a
. (8.1)

where the origin of the z coordinate is at the boundary between the affected
and unaffected core regions.

The critical load is now calculated from the requirement that the work
done by the compressive force be equal to the strain energy of bending stored
in the face material plus the strain energy of extension and shear stored in the
core. Because of the symmetry, it is sufficient to calculate the work and the
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Figure 8.2 Definition of the geometry of a sandwich wide panel/beam under axial
compression.

Figure 8.3 Hoff and Mautner’s model for symmetric wrinkling.

strain energy for one-half of the cross-section. The width of the sandwich
perpendicular to the plane of the drawing is taken as unity.

The normal (z directional) strain in the core is
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εzz = ∂w

∂z
= B

d
sin

πx

a
. (8.2)

Thus, the extensional strain energy of the core within one-half wave length
becomes

Ue = Ec

2

∫ a

0

∫ d

0
ε2
zzdxdz = EcB

2a

4d
, (8.3)

where Ec is Young’s modulus of the core.
The axial displacement u is assumed to be negligibly small, thus the shear

strain in the core is given by

γxz = ∂w

∂x
= πBz

ad
cos

πx

a
. (8.4)

Hence, the shear strain energy stored within a half wave length in one half
the core is

Us = Gc

2

∫ a

0

∫ d

0
γ 2

xzdxdz = Gcπ
2B2d

12a
. (8.5)

The strain energy of bending stored in one face sheet is

Uf = Ef If

2

∫ a

0

(
∂2wf

∂x2

)2

dx = π4Ef B2f 3

48a3
, (8.6)

where wf is the transverse displacement from (8.1) at z = d, Ef is Young’s
modulus of the face material, and If = f 3/12 is the moment of inertia of
the face cross-section.

Because of the smallness of f , the displacements at z = d + (f/2) are
taken to be equal to those at z = d. With this same assumption, the shorten-
ing �L of the face sheet can be calculated as

�L = 1

2

∫ a

0

(
∂wf

∂x

)2

dx = π2B2

4a
. (8.7)

The compressive load carried by the core is neglected since Young’s mod-
ulus of the face is typically hundreds to thousands of times that of the core.
Thus, the work done is

W = (σ f
crf )�L = σ f

cr

π2B2f

4a
. (8.8)

The equation
W = Ue + Us + Uf (8.9)

can be solved for σ
f
cr after substitution of the expressions thus developed:
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σ f
cr = Eca

2

π2f d
+ Gcd

3f
+ π2Ef f 2

12a2
. (8.10)

The critical stress in this equation depends upon the parameters d and a.
The actual values of these parameters are those which make the critical stress
a minimum. Consequently, ∂σ

f
cr/∂d and ∂σ

f
cr/∂a must vanish:

∂σ f
cr/∂d = − Eca

2

π2f d2
+ Gc

3f
= 0, (8.11a)

∂σ f
cr/∂a = 2Eca

π2f d
− π2Ef f 2

6a3
= 0, (8.11b)

Simultaneous solution of the two equations gives

d/f = 0.91 3

√
Ef Ec

G2
c

, (8.12a)

a/f = 1.65
6

√
E2

f

EcGc

, (8.12b)

Substitution in the equation for the critical stress yields

σ f
cr = 0.91 3

√
Ef EcGc . (8.13)

This formula is correct only if d is smaller than or equal to c, as may be seen
from Figure 8.3. Thus, from (8.12a), the condition for validity is

0.91f 3

√
Ef Ec

G2
c

≤ c, (8.14a)

that is the core to face thickness ratio,

2c

f
≥ 1.82 3

√
Ef Ec

G2
c

. (8.14b)

When this inequality does not hold, then the marginal zone depth is equal to
half the core thickness, so equation (8.1) is replaced by

w = Bz

c
sin

πx

a
. (8.15)

The expression for the critical stress then becomes
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Figure 8.4 Hoff and Mautner’s assumed shape for anti-symmetric wrinkling.

σ f
cr = Eca

2

π2f c
+ Gcc

3f
+ π2Ef f 2

12a2
. (8.16)

The derivative of σ
f
cr with respect to a must again vanish. This condition

yields

a/f = 1.42 4

√
Ef

Ec

4

√
2c

f
. (8.17)

Substitution in Equation (8.16) gives

σ f
cr = 0.577

√
Ef Ec

√
f

c
+ 0.333Gc

(
c

f

)
. (8.18)

II. Anti-Symmetric Wrinkling
In this case the deflected shape is assumed by Hoff and Mautner as indicated
by the dashed line in Figure 8.4. Again marginal zones of depth d are as-
sumed to which all the extensions are restricted, although shear deformation
occurs throughout the entire core.

For 0 ≤ x ≤ a/2 (i.e. the right segment of the figure), the displacement
of the upper face is assumed to be

wf u = B
(

1 − cos
πx

a

)
, (8.19)
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whereas the displacement of the bottom face is

wfb = 0. (8.20)

Consequently, the displacement wcM of the median line of the core is as-
sumed to be

wcM = B

2

(
1 − cos

πx

a

)
. (8.21)

There are two marginal zones, one for each face sheet. The displacement
of any point in the upper marginal zone is assumed to be

wcu = B

2

(
1 − cos

πx

a

)
+B

2

z1

d

(
1 − cos

πx

a

)
, for 0 ≤ z1 ≤ d. (8.22a)

In the bottom marginal zone

wcb = −B

2

(
1 − cos

πx

a

)
+ B

2

z2

d

(
1 − cos

πx

a

)
, for 0 ≤ z2 ≤ d.

(8.22b)
In the middle portion of the core, the displacement depends on z and is as-
sumed to be as in (8.21), i.e.

wcm = wcM = B

2

(
1 − cos

πx

a

)
, (8.22c)

The extensional strain in the upper marginal zone is

εcu = ∂wcu

∂z1
= B

2d

(
1 − cos

πx

a

)
. (8.23a)

In the lower marginal zone,

εcb = ∂wcb

∂z2
= B

2d

(
1 − cos

πx

a

)
= εcu. (8.23b)

In the middle portion, the extensional strain is zero.
Consequently, the extensional strain energy is

Uε = 2
Ec

2

∫ a/2

0

∫ d

0
ε2
cudxdz1 = Ec

B2a(3π − 8)

16πd
. (8.24)

The shear strain in the upper marginal zone is (axial displacement again
assumed to be negligibly small):

γcu = ∂wcu

∂x
= B

2

(
1 + z1

d

) π

a
sin

πx

a
. (8.25a)
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In the bottom marginal zone

γcb = ∂wcb

∂x
= −B

2

(
1 − z2

d

) π

a
sin

πx

a
. (8.25b)

In the middle portion of the core

γcm = ∂wcm

∂x
= B

2

π

a
sin

πx

a
. (8.25c)

The shear strain energy can be now calculated from

Uγ = Gc

2

∫ a/2

0

[∫ d

0
γ 2

cudz1 +
∫ d

0
γ 2

cbdz2 + γ 2
cm(2c − 2d)

]
dx. (8.26a)

Integration gives

Uγ = π2B2Gc

48a
(3c + d). (8.26b)

In the middle segment of the figure, i.e. for

a

2
≤ x ≤ a, 0 ≤ ξ ≤ a

2
,

the displacements of the faces and the median line of the core, respectively,
are assumed to be

wf u = B

(
1 + sin

πξ

a

)
, (8.27a)

wf b = B

(
1 − cos

πξ

a

)
. (8.27b)

wcM = B

(
1 − 1

2
cos

πξ

a
+ 1

2
sin

πξ

a

)
. (8.27c)

The displacements of points in the upper marginal zone, the middle por-
tion and the bottom marginal zone, respectively, are

wcu = B

(
1 − 1

2
cos

πξ

a
+ 1

2
sin

πξ

a

)
+ Bz1

d

(
1

2
sin

πξ

a
+ 1

2
cos

πξ

a

)
,

(8.28a)

wcm = wcM = B

(
1 − 1

2
cos

πξ

a
+ 1

2
sin

πξ

a

)
, (8.28b)

wcb = B

(
−1 + 1

2
cos

πξ

a
− 1

2
sin

πξ

a

)
+ Bz2

d

(
1

2
sin

πξ

a
+ 1

2
cos

πξ

a

)
.

(8.28c)
The corresponding extensional strains are
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εcu = ∂wcu

∂z1
= B

2d

(
sin

πξ

a
+ cos

πξ

a

)
= εcb = ∂wcb

∂z2
; εcm = 0. (8.29)

The shear strains are

γcu = ∂wcu

∂ξ
= Bπ

2a

(
sin

πξ

a
+ cos

πξ

a

)
+ Bπ

2a

z1

d

(
cos

πξ

a
− sin

πξ

a

)
.

(8.30a)

γcm = ∂wcm

∂ξ
= Bπ

2a

(
sin

πξ

a
+ cos

πξ

a

)
. (8.30b)

γcb = ∂wcb

∂ξ
= −Bπ

2a

(
sin

πξ

a
+ cos

πξ

a

)
+ Bπ

2a

z2

d

(
cos

πξ

a
− sin

πξ

a

)
.

(8.30c)
The strain energy can be calculated as before (Equations (8.24) and

(8.26a) with ξ in place of x). Integration yields

Uε = Ec

B2a(π + 2)

8dπ
, (8.31a)

Uγ = Gc

B2π

8a

[
(π + 2)c + (π − 2)

d

3

]
. (8.31b)

Because of the point symmetry of the distorted shape, the strain energy
in the left half shown in Figure 8.4 is the same as in the right half. The
total strain energy Uc stored in the core is, therefore, the sum of the strain
energies given in Equations (8.31) plus twice those given in Equations (8.24)
and (8.26b), i.e.,

Uc = Ec

B2a(2π − 3)

4πd
+ Gc

B2π

12a
[3c(π + 1) + (π − 1)d] . (8.32)

The strain energy of bending stored in the two faces, Uf , is found by
substituting wf into (Ef If /2)

∫
w′′2

f dx where wf is obtained from (8.27a)
and (8.27b) plus twice the contributions from (8.19) and (8.20), i.e.,

Uf = Ef

B2π4f 3

24a3
. (8.33)

Similarly, the work W done by the external forces is found from
(σ

f
crAf /2)

∫
w′2

f dx where Af is the cross-sectional area of each face sheet,
and wf is given by Equations (8.27a) and (8.27b) plus twice the contribu-
tions from (8.19) and (8.20), i.e.,

W = σ f
cr

B2π2f

2a
. (8.34)
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Substitution in the equation

W = Uf + Uc

and solution for σ
f
cr yields

σ f
cr = β1

(
f

a

)2

+ β2

(
a2

df

)
+ β3

(
c

f

)
+ β4

(
d

f

)
, (8.35a)

where

β1 = π2Ef

12
; β2 = (2π − 3)Ec

2π3
; β3 = (π + 1)Gc

2π
; β4 = (π − 1)Gc

6π
.

(8.35b)
Minimization with respect to a and d, yields

∂σ
f
cr

∂a
= −β1f

2

a4
+ β2

df
= 0; ∂σ

f
cr

∂d
= −β2a

2

d2f
+ β4

f
= 0. (8.36)

Solution of the two equations yields

a/f =
(

β2
1

β2β4

)1/6

= 2.19
6

√
E2

f

EcGc

, (8.37a)

d/f =
(

β1β2

β2
4

)1/3

= 1.50 3

√
Ef Ec

G2
c

. (8.37b)

Substitution into (8.35a) results in the expression

σ f
cr = 3 (β1β2β4)

1/3 + β3(c/f ) = 0.51 3
√

Ef EcGc + 0.66Gc(c/f ). (8.38)

These formulas are valid only if d proves to be smaller than or equal to c,
hence if

c/f ≤ 1.50 3

√
Ef Ec

G2
c

. (8.39)

When this inequality is not satisfied, d must be replaced by c in the ex-
pressions assumed for the deflected shapes. If the calculations are carried out
on the basis of this assumption, the following expression is obtained for the
critical stress (by replacing d with c in (8.35a)):

σ f
cr = β1f

2

a2
+ β2

cf
a2 + (β3 + β4)

c

f
. (8.40a)
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The critical stress is a minimum when

∂σ f
cr/∂a = −β1f

2

a4
+ β2

cf
= 0. (8.40b)

Consequently,

a4 = β1f
3c

β2

and
a/f = 1.98 4

√
Ef /Ec

4
√

c/f . (8.41)

Substitution into Equation (8.40a) gives

σcr = 2
√

β1β2f/c + (β3 + β4)c/f

= 0.417
√

Ef Ec

√
f/c + 0.773Gc(c/f ). (8.42)

Summary: Hoff and Mautner’s wrinkling formulas are (i) for symmetric
wrinkling, the critical stress is from Equation (8.13) provided the inequality
(8.14b) is fulfilled; if not then the critical wrinkling stress is from Equation
(8.18); (ii) for anti-symmetric wrinkling, the critical stress is from Equa-
tion (8.38) provided the inequality (8.39) is fulfilled; if not then the crit-
ical wrinkling stress is obtained from Equation (8.42). Calculations made
by Hoff and Mautner (1945) for a sandwich consisting of papreg faces (a
paper/plastic laminate) and a cellular cellulose acetate core showed that the
anti-symmetric wrinkling would dominate (i.e. the critical stress correspond-
ing to anti-symmetry would be less than that for symmetry) if the core thick-
ness of face thickness ratio, 2c/f , is smaller than 20.6. This is, of course,
only valid for this particular sandwich material system and is not a general
conclusion, but it gives some idea of the level of the parameters influenc-
ing the occurrence of symmetric vs. anti-symmetric wrinkling. Nevertheless,
Equation (8.13) for symmetric wrinkling is the most popular wrinkling for-
mula and the one mostly used, albeit with a factor of 0.5 instead of 0.91 for
safety (e.g. Zenkert, 1997).

8.1.2 Plantema’s Formula

The Plantema (1966) analysis assumes that the points of the core un-
dergo vertical displacements with an exponential decay. With z defined
from the upper face sheet (Figure 8.5) and n denoting the number of half
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Figure 8.5 Plantema’s wrinkling model.

waves over the length L of the panel, the transverse displacement expression
(8.1) becomes

w = Be−kz sin
nπx

L
. (8.43)

Strictly speaking, this equation implies that the core is infinitely thick. It
is also assumed that vertical lines remain vertical during wrinkling (∂u/∂z =
0). Notice that no marginal depth is assumed in this model.

The transverse normal stress σzz and the shear stress τxz in the core are

σzz = Ec

∂w

∂z
and τxz = Gc

∂w

∂x
. (8.44)

The total strain energy per unit width consists of the bending strain energy
in the face and the strain energy in the core associated with the stresses σzz

and τxz computed from

U = Ef If

2

∫ L

0

(
∂2wf

∂x2

)2

dx + 1

2Ec

∫ L

0

∫ ∞

0
σ 2

zzdxdz

+ 1

2Gc

∫ L

0

∫ ∞

0
τ 2
xzdxdz

= B2

(
π4n4

4L3
Ef If + kL

8
Ec + π2n2

8kL
Gc

)
, (8.45)

where If = f 3/12 is the moment of inertia of the face cross-section. For
a plate, the first term in the above equation, Ef If should be replaced by
Ef If /(1 − ν2

f ) where νf is the Poisson ratio of the face.
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In the same manner as for Hoff and Mautner, the stress σxx,c in the core is
neglected in comparison with the stress σxx,f in the faces, and the work done
by the external load, P/2 per unit width, becomes

W = P

4

∫ L

0

(
∂wf

∂x

)2

dx = π2n2B2

8L
P. (8.46)

The total potential is U − W and it contains the parameters B, n and k.
Minimizing this total potential with respect to B, n, and k, and assuming n

to be a continuous variable, we obtain

a = L

n
= 1.26π

[
(Ef If )2

EcGc

]1/6

; k =
[

G2
c

2(Ef If )Ec

]1/3

;

P = 3[2(Ef If )EcGc]1/3. (8.47)

Again, for a plate, Ef If should be replaced by Ef If /(1 − ν2
f ).

Strictly speaking, these equations are valid only for a plate length L = ∞,
but in practice, n will be so large that they may be used for finite values of
L. The ratio a = L/n is the half wavelength of the wrinkles.

For a sandwich plate of unit width, substituting If = f 3/(1 − ν2
f ), with

νf = 0.3, yields

a = 1.78f

(
E2

f

EcGc

)1/6

; k = 1.76

f

(
G2

c

Ef Ec

)1/3

;

P = 1.70f (Ef EcGc)
1/3. (8.48)

It should be noted that the wrinkling stress, P/(2f ), is independent of the
face thickness, f .

8.1.3 Allen’s Formula

Allen’s (1969) formula is based on simplifying the face wrinkling problem
to that of an infinitely long strut (face sheet) attached to an elastic medium
(core), which extends to infinity on one side of the strut. To this extent, the
geometry is the same as that in Plantema’s model (Figure 8.5). The strut
(representing the face sheet of a sandwich with a core of infinite thickness)
is assumed to be of rectangular section, of thickness f and width b in the y

direction.
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The differential equation of the face is

Df

d4wf

dx4
+ (P/2)

d2wf

dx2
= bσ 0

zz, (8.49)

where Df is the flexural rigidity of the face, P is the axial force, wf is the
displacement of the face in the z direction, and bσ 0

zz is the transverse load on
the face (σ 0

zz is the normal stress between face and core).
Suppose that the face buckles into sinusoidal waves with half-wavelength

a, as in Section 8.2, i.e.
wf = B sin

πx

a
. (8.50)

An Airy stress function approach is used to derive the normal stress in the
core, σzz. In particular, the stress function

φ(x, z) = A(1 − dz)e−πz/a sin
πx

a
, (8.51)

satisfies the bi-harmonic

∂4φ

∂x4
+ 2

∂4φ

∂x2∂z2
+ ∂4φ

∂z4
= 0

and results in stresses

σzz = ∂2φ

∂x2
= −A(1 − dz)

π2

a2
e−πz/a sin

πx

a
, (8.52a)

σxx = ∂2φ

∂z2
=

[
(1 − dz)

π

a
+ 2d

]
A

π

a
e−πz/a sin

πx

a
. (8.52b)

At the face/core interface, z = 0

σ 0
zz = ∂2φ

∂x2

∣∣∣
z=0

= −A
π2

a2
sin

πx

a
, (8.53a)

σ 0
xx = ∂2φ

∂z2

∣∣∣
z=0

= A
π

a

(
2d + π

a

)
sin

πx

a
. (8.53b)

It is assumed that the face is attached to the surface of the core and is
permitted to deform in the z direction only; there are no x displacements.
Consequently, the axial strain at the face/core interface, e0

xx , is zero, which
gives

e0
xx = ∂u

∂x

∣∣∣
z=0

= 1

Ec

(σxx − νcσzz) |z=0

= A

Ec

π

a

[
2d + π

a
(1 + νc)

]
sin

πx

a
= 0, (8.54)
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where Ec and νc are the modulus of elasticity and the Poisson ratio of the
core.

Therefore, the constant d must take the value

d = − π

2a
(1 + νc). (8.55)

The displacement w is found by integrating the normal strain equation

∂w

∂z
= ezz = 1

Ec

(σzz − νcσxx) , (8.56a)

resulting in

w =
{[

(1 + νc)
π

a
+ (νc − 1)d

] a

π
− d(1 + νc)z

} A

Ec

π

a
e−πz/a sin

πx

a
.

(8.56b)
Substituting the expression for d, (8.55), and evaluating w at the face/core

interface, z = 0, gives

wf = w|z=0 = π

2a
(1 + νc)(3 − νc)

A

Ec

sin
πx

a
. (8.57a)

Combining with (8.50) gives A in terms of B:

A = BEc

(1 + νc)(3 − νc)

2a

π
, (8.57b)

which can be substituted in the expression for σ 0
zz in (8.53a) which gives

σ 0
zz = −B

a

2πEc

(3 − νc)(1 + νc)
sin

πx

a
. (8.58)

Substituting for wf and σ 0
zz from Equations (8.50) and (8.58) into (8.49)

yields an expression in which (B sin πx/a) cancels, leaving the result

Df

π4

a4
− (P/2)

π2

a2
= − 2πEcb

(3 − νc)(1 + νc)a
. (8.59)

This equation defines the critical value of P for a given a.
It is convenient to write

Df = Ef bf 3

12
; P/2 = σf bf, (8.60)

where Ef is the modulus of elasticity of the face and σf is the compressive
stress in the face. Then from (8.59) (and after cancelling b), we obtain
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σf = π2Ef

12

(
f

a

)2

+ 2Ec

π(3 − νc)(1 + νc)

(
a

f

)
, (8.61)

i.e., a function of a/f .
There is one last step in order to determine the critical wrinkling stress.

We have to minimize σf from (8.61) with respect to a/f :

dσf

d(a/f )
= 0. (8.62)

This gives the following values for the critical stress and the half-wavelength
at which it occurs:

σ cr
f = B1E

1/3
f E2/3

c ; where B1 = 3
[
12(3 − νc)

2(1 + νc)
2
]−1/3

.

(8.63a)(
a

f

)
cr

= C

(
Ef

Ec

)1/3

; where C = π
[
(3 − νc)(1 + νc)/12

]1/3
.

(8.63b)

8.1.4 The Winkler Elastic Foundation Approach

This approach assumes that the core supports the faces as an elastic foun-
dation, i.e. an array of continuously distributed linear springs, as shown in
Figure 8.6. In the anti-symmetrical case, it is seen that the springs remain
unloaded even after wrinkling and, furthermore, the mode of deformation in
the core is shear rather than tension/compression, which the set of springs is
unable to model and, hence, no solution can be derived in this case.

In the symmetrical case, on the other hand, the model becomes more real-
istic since the mode of deformation in the core is both tension/compression
and shear. We can refer again to Figure 8.5 and we suppose that the elastic
foundation modulus is λ, which is the force needed to displace a unit area of
the face through a unit distance in the z direction. Then the corresponding
normal stress at the face/core interface (tension positive) is

σ 0
zz = −λwf . (8.64)

Substituting Equation (8.64) into the differential equation of the face,
Equation (8.49), leads to

d4wf

dx4
+ (P/2)

Df

d2wf

dx2
+ bλ

Df

wf = 0. (8.65)
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Figure 8.6 Winkler elastic foundation model.

The face will assume the same displacement as in Equation (8.50), which,
when substituted into Equation (8.65), yields an expression for P :

P/2 = Df

(π

a

)2 + bλ
( a

π

)2
. (8.66)

To find the critical load we must further minimize P with respect to the
unknown wavelength, a, by setting dP/da = 0, which gives

a4 = π4Df

bλ
(8.67)

and the corresponding critical load from Equation (8.66) is

Pcr/2 = 2
√

Df bλ. (8.68)

An expression for λ in terms of the properties of the core can be found as
follows: since the springs are assumed to be linear, the core stress must be
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independent of z, therefore the core strain is also independent of z and equal
to

εc
zz(x, z) = −σ 0

zz

Ec

= −λwf (x)

Ec

. (8.69)

Integrating with respect to z gives the core displacement as

wc(x, z) = −λwf (x)

Ec

z + e(x). (8.70)

Next we use the fact that wc must be zero for z = c (Figure 8.6), which
gives:

e(x) = λwf (x)

Ec

c. (8.71)

Therefore,

wc(x, z) = −λwf (x)

Ec

(z − c). (8.72)

At z = 0,
wc(x, z)|z=0 = wf , (8.73)

which gives

λ = Ec

c
. (8.74)

This provides the critical load from Equation (8.68), after substituting the
expression for Df from (8.60), as

Pcr/2 = 2bf

√
Ef Ecf

12c
, (8.75)

or the critical stress in the face

σ f
cr = Pcr/2

bf
= 2

√
Ef Ecf

12c
. (8.76)

8.1.5 Example and Comparison of the Wrinkling Formulas

Let us now perform a comparison of the predictions from these different
formulas. We consider a sandwich with isotropic face and core materials
with Ef /Ec = 1,000 and νc = 0 (this case has been historically emphasized
in the early sandwich literature). Also, the plate length to total thickness
ratio, L/h = 5. We will examine a range of face thicknesses defined by the
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Figure 8.7 Wrinkling load calculated from different formulas for a range of thick-
ness ratios, f/h.

ratio of face sheet thickness over total thickness, f/h, between 0.01 and
0.08. Figure 8.7 shows the critical wrinkling load, normalized with the Euler
load for a simply supported configuration (without transverse shear), PE =
π2(EI)eq/L

2. The figure also shows the critical global buckling load, based
on Allen’s formula, which includes transverse shear (see Chapter 7).

We can observe the following: (a) for this configuration, wrinkling defi-
nitely dominates for ratios f/h below about 0.03. Above this level, global
buckling would dominate, although there is a “gray” area between 0.03 and
about 0.04, in which global buckling dominance would depend on the wrin-
kling formula used; (b) the Winkler elastic foundation formula seems to be
outside the “cluster” of the other formulas; (c) for the range of f/h where
wrinkling dominates, all formulas with the exception of the Winkler formula,
are close to each other; among these, the Allen formula is most conservative
and Hoff and Mautner’s the least; (d) based on Hoff and Mautner’s approach,
there is a switch from symmetric to anti-symmetric wrinkling at a ratio f/h

of about 0.044. This is very evident on the curve from the marked disconti-
nuity in the slope of the curve at this point.

An elasticity solution of the wrinkling problem was presented by
Kardomateas (2005) and the same configuration as the above was examined.
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This solution can serve as a benchmark against which all these theories can
be compared. In that work, the elasticity solution was found to be closest to
the Hoff and Mautner prediction, which, however, was above the elasticity
solution. On the contrary, Allen’s formula although not the most accurate,
was always below the elasticity value. The case of orthotropic layers was
also examined and again Allen’s formula was always conservative.

It should be emphasized that the possibility of global buckling should
always be considered as transverse shear drives the critical load for global
buckling to just a fraction of the Euler load (see Figure 8.7).

8.2 Intracell Buckling in Honeycomb Core Sandwich Structures

Intracell buckling is a local buckling phenomenon which can take place in
honeycomb sandwich structures. Intracell buckling, also found in the litera-
ture by the terms “dimpling” or “intercell buckling”, is the buckling of the
face sheet within an individual honeycomb cell. Although the honeycomb
structure will retain part of its load-carrying capacity after intracell buckling
has occurred, the buckled face sheet may have undesirable influences, for
example, it can adversely affect the aerodynamic properties of the structure;
thus, it is important to know the load at which this intracell buckling occurs.

A contrast can be made with the previously treated phenomenon of wrin-
kling, which is local face sheet buckling over a row of several honeycomb
cells (i.e., the buckling wavelength is greater than the honeycomb cell size).
Wrinkling would appear as a sharp trough on the face sheet and would be
accompanied either by the crushing of the honeycomb core or the separa-
tion of the core and face sheet at this sharp trough. When wrinkling occurs,
for all practical purposes, the honeycomb structure has lost its load carrying
capacity.

The oldest intracell buckling formula is the one suggested by Norris and
Krommer (1950), as derived empirically from tests. An early theoretical in-
vestigation was also done by Weikel and Kobayashi (1959).

8.2.1 The Norris Formula

We shall consider two cases of a sandwich panel with square, honeycomb
cells loaded in uniaxial compression: (a) the honeycomb cells are oriented
such that this load is parallel to the diagonal of the cell (Figure 8.8) and
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(b) the honeycomb cells are oriented such that this load is parallel to a cell
wall (Figure 8.9). In both cases, we assume that the honeycomb cell is square
in shape, a being the length of each side. We also assume that, in both cases,
the face sheet is simply supported along its four edges at the cell and that the
thickness of the honeycomb core is large compared to the cell size.

Within these assumptions, let us approximate the face sheet deflection by
a one-term double trigonometric series:

w = A sin
πx

a
sin

πy

a
. (8.77)

In connection with this assumed displacement profile (8.77), we gener-
ally assume a deflection of the form sin(mπx/a) sin(nπy/b), where a and
b are the sides of the rectangle. However, for the simple square geometry
considered here, the minimum load is obtained for m = n = 1.

Denoting by Df the flexural rigidity of the face sheet and by νf Poisson’s
ratio of the face sheet (considered isotropic), the strain energy due to bending
of the face sheet is

UB = Df

2

∫ a

0

∫ a

0

[
w2

,xx + w2
,yy + 2νf w,xxw,yy + 2(1 − νf )w2

,xy

]
dxdy.

(8.78)
The work done by the external force is

W =
∫ a

0

∫ a

0

(
Nxx

w2
,x

2
+ Nyy

w2
,y

2
+ Nxyw,xw,y

)
dxdy. (8.79)

For both loading configurations, the strain energy of bending is

UB = Df π4

2a2
A2. (8.80)

The first loading configuration yields (Figure 8.8): Nxx = Nyy = N/
√

2
and Nxy = −N/

√
2, therefore the work done by the external force is

W = Nπ2
√

2

8
A2. (8.81)

Setting the work done by the external forces equal to the strain energy of
bending, UB = W , and substituting the expression for the bending rigidity
of the face, Df = Ef f 3/[12(1 − ν2

f )], gives the critical load

Ncr = Ef

1 − ν2
f

(
f

a

)2
π2

3
√

2
� 2.3

Ef

1 − ν2
f

(
f

a

)2

. (8.82)
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Figure 8.8 Intracell buckling model with the load parallel to the diagonal of the
honeycomb cell.

Figure 8.9 Intracell buckling model with the load parallel to a cell wall of the
honeycomb core.

The second loading configuration yields (Figure 8.9): Nxx = N , Nyy =
Nxy = 0, therefore

W = Nπ2

8
A2. (8.83)

Again, setting the work done by the external forces equal to the strain
energy of bending, and substituting the expression for the bending rigidity
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of the face, gives the critical load

Ncr = Ef

1 − ν2
f

(
f

a

)2
π2

3
� 3.3

Ef

1 − ν2
f

(
f

a

)2

. (8.84)

Norris provided the formula in terms of an empirical factor Kd , as

Ncr = Kd

Ef

1 − ν2
f

(
f

s

)2

, (8.85)

where s is the diameter of the circle that can be inscribed in the honeycomb
cell and Kd was specified to be about Kd � 2. Obviously, for square cells,
s = a.

From the two derived formulas (8.82) and (8.84), it can be seen that the
orientation of the cells is important, i.e. it makes a difference whether the
uniaxial compression is parallel to the diagonal of the cells (factor of 2.3 in
place of Kd ) or parallel to a side of the cells (factor of 3.3 in place of Kd ).

Weikel and Kobayashi (1959) examined the conditions that would make
intracell buckling dominate over wrinkling and they concluded that intra-
cell buckling would dominate over wrinkling for a value of λa4/Df > 100,
where λ is the apparent core stiffness (when viewed as an elastic foundation,
see Equation (8.74)). In other words, the predominant mode of buckling fail-
ure will be wrinkling for a relatively soft core, but with increased core stiff-
ness, λ, intracell buckling becomes the predominant mode of local buckling
failure.

8.2.2 The Fokker Dimpling Formula

The foregoing formulas can be easily revised for the case of orthotropic
faces. Let us consider the case of the honeycomb cells oriented such that
the applied compressive load is parallel to a cell wall (Figure 8.9). If x ≡ 1,
y ≡ 2, then the strain energy of bending for an orthotropic plate is

UB = 1

2

∫ a

0

∫ a

0

[
D11w

2
,xx + D22w

2
,yy + 2D12w,xxw,yy + 4D66w

2
,xy

]
dxdy,

(8.86a)
where

D11 = E1f
3

12(1 − ν12ν21)
; D22 = E2f

3

12(1 − ν12ν21)
, (8.86b)
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D12 = D11ν21; D66 = G12f
3

12
. (8.86c)

Therefore, by using the displacement profile (8.77), the strain energy of
bending is

UB = (D11 + D22 + 2D12 + 4D66)
π4

8a2
A2. (8.87)

The work done by the external load is the same as in the isotropic face
case and is given by (8.83). Equating the strain energy of bending with the
work done gives the critical load as

Ncr = [D11 + 2(D12 + 2D66) + D22]
π2

a2
. (8.88)

This is known as the “Fokker Dimpling Formula”, as it was first suggested in
a study conducted by the Fokker Aircraft BV for the European Space Agency
(Blaas et al., 1984).

For the case of the honeycomb cells oriented such that the applied com-
pressive load is parallel to the diagonal of the cell (Figure 8.8), we have to
transform the elastic constants to the x and y system oriented at an angle
φ = 45◦ to the principal elastic axes of the face (Lekhnitskii, 1968):

D′
11 = D11 cos4 φ + 2(D12 + 2D66) sin2 φ cos2 φ + D22 sin4 φ

= 1

4
(D11 + D22 + 2D12 + 4D66), (8.89a)

D′
22 = D11 sin4 φ + 2(D12 + 2D66) sin2 φ cos2 φ + D22 cos4 φ = D′

11,

(8.89b)

D′
12 = D12 + [D11 + D22 − 2(D12 + 2D66)] sin2 φ cos2 φ

= 1

2
D12 + 1

4
(D11 + D22 − 4D66) , (8.89c)

D′
66 = D66 + [D11 + D22 − 2(D12 + 2D66)] sin2 φ cos2 φ

= 1

4
(D11 + D22 − 2D12) , (8.89d)

D′
16 = 1

2
[D22 sin2 φ − D11 cos2 φ + (D12 + 2D66) cos 2φ] sin 2φ

= 1

4
(D22 − D11) , (8.89e)
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D′
26 = 1

2
[D22 cos2 φ − D11 sin2 φ − (D12 + 2D66) cos 2φ] sin 2φ = D′

16.

(8.89f)
In this case, the plate behaves as being anisotropic rather than orthotropic.

The strain energy of bending is

UB = 1

2

∫ a

0

∫ a

0
[D′

11w
2
,xx + D′

22w
2
,yy + 2D′

12w,xxw,yy + 4D′
66w

2
,xy

+ 4D′
16w,xxw,xy + 4D′

26w,yyw,xy]dxdy. (8.90)

With the displacement profile (8.77), the strain energy of bending becomes

UB = (D′
11 + D′

22 + 2D′
12 + 4D′

66)
π4

8a2
A2. (8.91)

Equating with the work done by the external load, Equation (8.81), gives the
critical load as

Ncr = (D′
11 + D′

22 + 2D′
12 + 4D′

66)
π2

a2
√

2
. (8.92)

Substituting the expressions of the transformed elastic constants from
(8.89a–d) we obtain

Ncr = 2(D11 + D22)
π2

a2
√

2
. (8.93)

Equation (8.93) is a newly derived formula, given for the first time herein,
that can be used with orthotropic faces when the honeycomb cells are ori-
ented such that the applied compressive load is parallel to the diagonal of the
cell (Figure 8.8).



Chapter 9
Fracture Mechanics Analysis of Face/Core
Debonds

The superior performance of light-weight sandwich structures requires that
the face sheets be successfully bonded to the core. Lack of bonding, or in-
adequate bonding, will compromise the transfer of shear stress between the
face and core, and if debonding occurs over a large area, the debond is likely
to grow further. It is also obvious that the face/core adhesion may vary in
a large panel with composite face sheets due to inadequate wet-out of the
face fabrics resulting in “islands” of poor face/core bonding. Service loads
are also known to be a potential source for face/core debonding, in particu-
lar wave-slamming loads on the bottom of a ship hull or hard object impact
loads transverse to the surface of a sandwich structure.

The face/core interface in a sandwich panel may be toughened by the
addition of a thin low fiber content fabric layer such as a continuous fiber mat
(CFM) or a chopped strand mat (CSM). Such a mat will provide a transition
zone between the high modulus face sheets and the low modulus core and
may improve the face/core adhesion. The preparation of the core bonding
surfaces is also very important, as discussed by Pfund (2005). Ideally, the
critical link for the separation of the face and core should not be the actual
interface between face and core. If the adhesive layer is strong and tough,
debonding tends to occur in the face sheet in the form of delamination or
inside the core, see the scheme in Figure 9.1.

The morphology of the face/core interface is thus an important factor. The
actual morphology depends of the core material and the manner in which the
face sheets are attached to the core. For example, if fiber composite faces are
used, fabric preforms may be injected with resin, forming the face sheets and
the face/core bond simultaneously creating an integral, co-cured sandwich
structure (Advani and Sozer, 2002). Alternatively, preformed composite or
metal faces may be attached to the core using adhesive bonding procedures.
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Figure 9.1 Crack growth scenarios in foam core sandwich.

The face/core debond is commonly represented as a sharp discontinuity,
i.e. a crack, and the condition when this crack will propagate are analyzed
using fracture mechanics principles. This chapter aims to review the frac-
ture mechanics of face/core interface cracks and analysis of the crack path in
sandwich-test specimens. For sandwich specimens that fail after developing
large fiber bridging zones behind the crack tip, linear elastic fracture me-
chanics becomes inadequate and cohesive zone models may better represent
the fracture process.

9.1 Linear Elastic Fracture Mechanics Concepts

Fracture mechanics is a science developed to analyze the tendency for a pre-
existing crack in a structure to grow as a result of applied external loads. The
presence of a crack reduces the strength of the structure and, if the crack is
sufficiently long, the structure will fall below the designed limit load. The
assessment of the defect criticality for the structural performance is a major
objective of fracture mechanics. Another common situation where fracture
mechanics has been found extremely useful is in the prediction of the maxi-
mum crack size that can be allowed in a structure.

The field of fracture mechanics traditionally involves applied mechanics
and materials science. Applied mechanics relates external loads applied to a
flawed, or cracked, structural component to crack-tip stress fields and elas-
tic deformations of the material in the vicinity of the crack tip. Materials
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Figure 9.2 Modes of crack loading and definition of stress components: (a) mode I
(opening), (b) mode II (forward shear), and (c) mode III (tearing).

science, on the other hand, views fracture mechanics as a means of charac-
terizing the fracture resistance of a material and this understanding will aid
in the development of improved processing strategies and materials design.

Most published work on fracture mechanics concerns fracture of isotropic
materials such as metals and polymers (Ewalds and Wanhill, 1989; Kinloch
and Young, 1983) although there are more recent compilations on fracture
mechanics of composites (e.g., Friedrich, 1989; Armanios, 1996). The re-
view article by Hutchinson and Suo (1992) is an excellent source for fracture
mechanics of orthotropic and layered dissimilar materials.

Fracture mechanics analysis is most commonly concerned about the open-
ing mode of fracture, i.e. mode I, associated with opening displacements of
the crack faces and tensile stresses near the crack tip (see Figure 9.2a). In
general, analysis of the forward shear (mode II) and tearing modes (mode
III), illustrated in Figures 9.2b and c, is required. Figure 9.2 also shows a
commonly used xyz coordinate system and the associated stress element
with σ y , τxy and τyz, being the dominant mode I, mode II, and mode III
stresses. As discussed by Hutchinson and Suo (1992), an interface crack be-
tween two dissimilar materials is inherently loaded in mixed mode because
of the mismatch in material properties across the crack interface. This means
that both normal and shear stresses act on the interface in front of the crack
tip.
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We will first consider a true interface crack between a homogeneous,
isotropic or orthotropic face sheet and a homogeneous, isotropic core, i.e.,
the case shown at the far right in Figure 9.1. It is recognized that such a
crack constitutes a “bimaterial interface crack” according to the terminol-
ogy of Suo and Hutchinson (1990). For foam-cored sandwich structures, the
combination of stiff faces and a soft core is associated with a tremendous
stiffness mismatch. Face-to-core modulus ratios in the range from 100 to
1,000 are common. A bimaterial crack displays some peculiar behavior due
to the mismatch in elastic stiffnesses across the crack plane. Mixed mode
loading is inherent at the tip of a bimaterial interface crack even if the global
load is pure mode I. The asymmetries of moduli and Poisson’s ratios across
the interface cause mixed mode loading at the crack tip because tensile and
shear stresses must appear along the interface to maintain continuity in dis-
placements between the two materials. The stresses near the crack tip ex-
perience the typical square root singularity of homogeneous fracture and,
in addition, oscillatory behavior (Williams, 1959; England, 1965; Erdogan,
1965; Rice and Sih, 1965). Hutchinson (1990) proposed the following com-
plex representation of the interfacial normal and shear stresses (σy and τxy),
see Figure 9.3, ahead of the crack tip (θ = 0):

σy + iτxy = (K1 + iK2)x
iε

√
2πx

, (9.1)

where x is the distance from the tip along the interface, i = √−1, and
K = K1+iK2 is called “the complex stress intensity factor” for an interfacial
crack (Hutchinson, 1990). Notice here that K1 and K2 do not represent the
opening and sliding modes as KI and KII do in classical fracture mechanics
and no simple physical interpretation of K1 and K2 exists. The parameter ε

is called the “oscillatory index” (Hutchinson, 1990), defined in terms of one
of Dundurs’ (1969) elastic mismatch parameters, β,

ε = 1

2π
ln

(
1 − β

1 − β

)
, (9.2a)

β = 1

2

G1(1 − 2ν2) − G2(1 − 2ν1)

G1(1 − ν2) + G2(1 − ν1)
, (9.2b)

where subscripts 1 and 2 on the shear modulus G and Poisson’s ratio ν rep-
resent the (isotropic) materials above and below the crack plane. The para-
meter β vanishes if both materials are identical (G1 = G2), and when both
materials are incompressible (ν1 = ν2 = 1/2).
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Figure 9.3 Stress element near a bimaterial crack tip.

With xiε = cos(ε ln x) + i sin(ε ln x), it is noted that xiε in Equation (9.1)
is a function that changes sign infinitely often, thus oscillating in a violent
manner as the distance x tends to zero. Also, the near tip displacements of
the crack face behind the crack tip display oscillatory behavior.

He and Hutchinson (1989) argued that the oscillation is a mathematical
artifact of the elasticity solution and showed that the oscillatory region is
usually exceedingly small. They proposed a consistent, pragmatic approach
to suppress the role of the oscillations by assuming ε = 0 = β both in
the evaluation of fracture toughness and in the subsequent application of the
toughness data for prediction of crack propagation. For this case, the mode I
and mode II stress intensity factors, KI and KII, assume their classical, con-
ventional relation to the opening (σy) and shear stresses (τxy) at the interface
ahead of the crack tip (θ = 0).

Suo (1990) examined a crack between two orthotropic solids (or one or-
thotropic and one isotropic) and determined the near tip stress and displace-
ment fields. For the case where ε = β = 0, the following expressions for the
stresses and crack flank displacements were derived:

(
H22

H11

)1/2

σy + iτxy = KI + iKII√
2πx

, (9.3a)

(
H11

H22

)1/2

δI + iδII = 2H11(KI + iKII)
√

x√
2π

, (9.3b)

where the stress components are defined in the element shown in Figure 9.3.
δI and δII are the opening (y directional) and sliding (x directional) displace-
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Figure 9.4 Opening (δI) and sliding (δII) displacements of the crack surfaces behind
the crack tip.

ments of a point located at a distance, x, behind the crack tip before the
cracked structure is loaded, see Figure 9.4.

The parameters H11 and H22 are defined in terms of the orthotropic com-
pliances (bij ) of the materials above and below the crack plane, Figure 9.3,

H11 =
2∑

i=1

[
2nλ1/4(b11b22)

1/2]
i
, (9.4a)

H22 =
2∑

i=1

[
2nλ−1/4(b11b22)

1/2]
i
, (9.4b)

where i = 1 for the material above the crack, and i = 2 for the material
below the crack, and

ni =
[

1

2
(1 + ρi)

]1/2

. (9.5)

λ and ρ are defined below in terms of bij , where the subscripts i, j refer to
the material description and assume values of 1, 2, and 6,

λ = b11

b22
, (9.6a)

ρ = b12 + b66/2√
b11b22

, (9.6b)

bij =
⎧⎨
⎩

sij (plane stress),

sij − si3 sj3

s33
(plane strain).

(9.6c)

sij (i, j = 1, 2, 6) are the compliance elements defined by, e.g., Hyer (1998),
for a specially orthotropic material with the 1 direction along the x axis, 2
direction along the y axis, and 3 direction along the z axis.
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s11 = 1

E1
, s12 = −υ12

E1
, s13 = −υ13

E1
,

s22 = 1

E2
, s23 = −υ23

E2
, s33 = 1

E3
,

s44 = 1

G23
, s55 = 1

G13
, s66 = 1

G12
. (9.7)

Once the stress intensity factors are determined, the energy release rate is
obtained according to Suo (1990),

G = H11

4
[K2

I + K2
II]. (9.8)

If both materials above and below the crack plane are isotropic, Equation
(9.3a) simplifies to (9.1), and (9.3b) simplifies to

δ1 + iδII = 4

√
x

2π

(
1

Ē1
+ 1

Ē2

)
(KI + iKII), (9.9)

where Ē = E/(1 − ν2) for plane strain, where ν is Poisson’s ratio, and
Ē = E for plane stress. Subscripts 1 and 2 denote the materials above and
below the crack plane. For this case the energy release rate, Equation (9.8),
becomes

G = 1

2

(
1

Ē1
+ 1

Ē2

)
(K2

I + K2
II). (9.10)

If both materials above and below the crack plane are the same, and if they
are isotropic, the crack face displacements become

δ + iδII = 8

√
x

2π

(KI + KII)

Ē
(9.11)

and the energy release rate becomes

G = K2
I + K2

II

Ē
. (9.12)

It should be pointed out that the area of bimaterial fracture mechanics is still
emerging. Several approaches, such as the method of distributed dislocations
to represent a crack-like discontinuity, have emerged since the pioneering
works of Eshelby et al. (1953) and Stroh (1958). Ting (1986) extended this
approach to anisotropic materials and Kardomateas and co-workers applied
it to bimaterial cracks between dissimilar anisotropic materials (see Huang
and Kardomateas, 2001; Liu et al., 2004; Li and Kardomateas, 2006). This
last paper also considers crack branching (crack kinking), which is an im-
portant failure mode of sandwich structures, see Section 9.2.
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9.1.1 Finite Element Crack Closure Method

Several studies of debonding and delamination of composite materials ex-
press the crack loading in terms of the energy release rate, G. Since the frac-
ture toughness, Gc, typically depends on the fracture mode, it is common
to separate G into “components” corresponding to the opening and shearing
modes of fracture, i.e.,

G = GI + GII + GIII. (9.13)

Theoretically, the mode separations is based on Irwin’s contention that if the
crack extends by a small amount, �a, the energy absorbed in the process is
equal to the work required to close the crack to its original length (Irwin,
1958). This equality is expressed in the following crack closure integrals

GI = lim
�a→0

1

2�a

∫ �a

0
σy(�a − r, 0)v̄(r, π)dr, (9.14a)

GII = lim
�a→0

1

2�a

∫ �a

0
τxy(�a − r, 0)ū(r, π)dr, (9.14b)

GIII = lim
�a→0

1

2�a

∫ �a

0
τyz(�a − r, 0)w̄(r, π)dr, (9.14c)

where r is the radial distance from the crack tip, σy , τxy , and τyz are the
normal and shear stresses ahead of the crack tip, and v̄, ū and w̄ are the
relative opening and sliding displacements between points on the crack faces
behind the crack tip.

The mode separation assumes that the crack will extend in a planar fash-
ion, which it may or may not. For mixed mode loading, the crack may tend
to deflect (kink) and propagate in a different plane than the original reference
plane. This will be discussed in the next section. Furthermore, as pointed out
by several authors, if the crack is at a bimaterial interface, the oscillations of
stresses and displacements near the crack tip discussed early in this chapter
will make the separation of G into components (Equations (9.13) and (9.14))
problematic (Raju et al., 1988).

The crack closure integrals in Equations (9.14) have been implemented
into a finite element computation by Rybicki and Kanninen (1977). This
method is called “the finite element crack closure method” and has been
widely applied to fracture problems, see the review by Kruger (2004).
Berggreen (2004) developed a method to extract the stress intensity factors
from a finite element solution of the near crack-tip displacements called the
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Figure 9.5 The crack-closure technique in finite elements. FH and FV are horizon-
tal and vertical forces applied to close the crack. (a) Original configuration, (b) con-
figuration after release of crack-tip nodes, (c) the released nodes are brought back
to their initial position by application of nodal forces.

“crack surface displacement extrapolation method”. This method has been
applied to several bimaterial crack problems.

Figure 9.5 illustrates the crack-closure method applied to a finite-element
mesh of a mixed mode I and mode II two-dimensional problem. A certain
crack extension �a may be introduced in the finite-element mesh by re-
leasing duplicate nodes at the crack tip. The resulting deformations are the
relative opening and sliding crack-tip deformations. By applying forces to
the released nodes in two orthogonal directions, it is possible to close the
crack tip to its original state. The products of crack-tip nodal displacements
and forces enable GI and GII to be evaluated numerically.

For the plane situation illustrated in Figure 9.5, GI and GII become

GI = FV �v

2b�a
, (9.15a)

GII = FH �u

2b�a
(9.15b)

where b is the width, FH and FV are the horizontal and vertical crack-closure
forces, and �u and �v are the horizontal and vertical increments of displace-
ments required to bring the released nodes to their original positions. Notice
that the far-field load applied is held constant in the steps illustrated in Fig-
ure 9.5. For mode III, GIII is similarly obtained as

GIII = FT �w

2b�a
(9.16)

where FT is the magnitude of the crack-closure forces applied parallel to the
crack front and �w is the z directional incremental displacement required to
close the crack.
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Implicit in the calculations outlined above is the requirement that the ele-
ments enclosing the crack-tip are identical in size. Consequently, �a is equal
to the distance between adjacent nodes. This constraint can be relaxed in case
a non-uniform crack tip mesh is used, but the calculations of GI, GII and GIII

must be modified (see Rybicki and Kanninen, 1977).
It should be observed that the released nodes are assumed to displace in

opposite directions with the same magnitude. This is the situation encoun-
tered in symmetric crack geometries and specimens. For asymmetric crack
geometries and cracks between dissimilar materials, the displacements of
the released nodes may no longer be of equal magnitude and the procedure
will have to be modified. The basic principle, as for the homogeneous and
symmetric case discussed above, is the calculation of the work required to
bring the nodes back to their original position, before they were released. For
further details on the crack closure method, see, e.g. Kruger (2004).

9.2 Crack Kinking Analysis

If a sandwich structure that contains a face/core debond is loaded, the debond
may propagate under certain conditions governed by the crack driving force
and the fracture resistance of the material around the tip of the debond. It has
been observed that face/core debonds in foam-cored sandwich specimens
and panels may propagate at the face/core interface or it may deflect, “kink”,
away from the interface and propagate inside the foam core, see Figure 9.6.

Erdogan and Sih (1963) examined crack propagation in a homogeneous,
isotropic, brittle plastic sheet. Specifically, a plate containing a central crack
of length 2a loaded in biaxial tension was analyzed using the Griffith theory
assuming the crack will grow in a direction where the energy release per
unit crack extension is maximum. They found that the crack growth initiates
at the tip and extends in a plane perpendicular to the direction of maximum
tangential stress, σθ as confirmed by experiments. The near tip stress element
in polar coordinates (r, θ) is shown in Figure 9.7.

Following the analysis of Erdogan and Sih (1963), Prasad and Carlsson
(1994a) considered a crack of length 2a in a homogeneous, isotropic material
loaded under plane strain in mixed mode I and mode II. The stresses near the
right crack tip, illustrated in Figure 9.7, can be expressed as

σr = 1√
2πr

cos
θ

2

(
KI

(
1 + sin2 θ

2

)
+ 3

2
KII sin θ − 2KII tan

θ

2

)
,

(9.17a)
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Figure 9.6 Growth scenarios of a face/core debond in foam-cored sandwich.

Figure 9.7 Near tip stresses in a cracked sheet.

σθ = 1√
2πr

cos
θ

2

(
KI cos2 θ

2
− 3

2
KII sin θ

)
, (9.17b)

τrθ = 1

2
√

2πr
cos

θ

2
(KI sin θ + KII (3 cos θ − 1)) . (9.17c)

To determine the kink angle, �, Figure 9.8, for a general mixed mode
loading case, one may determine the direction where the stress σθ is maxi-
mum. This direction coincides with the direction, θ = �, where the shear
stress τrθ vanishes. An explicit expression for � was derived by Prasad and
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Figure 9.8 Definition of kink angle, �, for a crack under mixed mode loading.

Carlsson (1994a) based on Equation (9.17c) with τrθ = 0 for θ = �, which
yields

sin �

3 cos � − 1
= KII

KI
. (9.18)

To solve for the angle � in terms of the mode ratio KII/KI, the following
trigonometric identities are employed:

sin2 �

2
+ cos2 �

2
= 1, (9.19a)

cos � = cos2 �

2
− sin2 �

2
, (9.19b)

sin � = 2 sin
�

2
− cos

�

2
. (9.19c)

Substitution of Equations (9.19) in (9.18) yields

sin �
2 cos �

2

cos2 �
2 − 2 sin2 �

2

= KII

KI
. (9.20)

After factoring out cos2(�/2), this equation simplifies to

tan �
2

1 − 2 tan2 �
2

= KII

KI
. (9.21)
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Substitution of x = tan(�/2) into Equation (9.21) yields

2KIIx
2 + KIx = KII. (9.22)

Solving the quadratic yields

tan
�

2
= −1 ± √

1 + 8(KII/KI)
2

4(KII/KI)
. (9.23)

Hence, the kink angle may be expressed as

� = 2 tan−1

[
−1 ±

√
1 + 8(KII/KI)

2

4KII/KI

]
. (9.24)

Pure mode I, KII = 0, yields a kink angle, � = 0, i.e., self-similar prop-
agation, while pure mode II yields � = ±70.5◦, where the + sign refers
to kinking down as shown in Figure 9.8 (KII > 0) and the − sign refers to
kinking up (KII < 0).

This analysis thus provides the direction of kinking if it were to occur
in a homogeneous and isotropic material. The initiation of the kinked crack
growth occurs under mixed mode conditions and the fracture toughness, Kc,
may depend upon the amount of mode II present, i.e., the mode ratio KII/KI.
Hence, for a given material, it is necessary to experimentally measure the
fracture toughness at various mode mixes. Experimentally it has been found
that the fracture toughness increases with increased shear loading (increasing
mode ratio, KII/KI) (Liechti and Chai, 1992).

For a face/core crack, the various growth scenarios illustrated in Figure 9.1
point to one possibility that the initial debond lies between two widely dis-
similar material, i.e. between a stiff face and a compliant (soft) core. Crack
kinking for such a case has been examined by He and Hutchinson (1989)
who considered a crack at the interface between two dissimilar isotropic ma-
terials, #1 above the interface, and #2 below the interface. A straight crack
segment denoted “kinked crack” in Figure 9.6b, of short length compared
to the “parent”, interface crack (Figure 9.6a) was specifically analyzed. The
stress field prior to kinking is thus the singularity field of an interface crack
which corresponds to a strain energy release rate, G, available for further
propagation along the interface or kinking into the core. The analysis pro-
vides the energy release rate of the kinked crack, Gk, using an extensive
numerical solution of the governing integral equations. The energy release
rate and kink angle results are presented graphically for any given combi-
nations of materials above and below the interface specified in terms of an
elastic mismatch parameter α (Dundurs, 1969),
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α = E1 − E2

E1 + E2
, (9.25)

where E = E for plane stress, and E = E/(1 − υ2) for plane strain. Sub-
scripts 1 and 2 on Young’s modulus represents the materials above and below
the crack plane.

He and Hutchinson (1989) examined the energy release rate ratio Gk/G

and found that this ratio increases with increasing compliance of the mater-
ial into which the crack kinks. They suggested that the crack would remain
at the interface only if the compliant material is tough and the interface is
relatively brittle. Furthermore, as discussed by Hutchinson and Suo (1992),
the kink angle that maximizes, Gk, is also the angle where KII = 0, i.e.,
the kinked crack propagates under pure mode I as for the homogeneous case
discussed earlier. The considerations discussed above were expressed in an
energy inequality governing kinking,

Gk
max

G
>

GIC

GC

, (9.26)

where Gk
max is the maximum energy release rate for the kinked crack with

respect to kink angle, � and G is the energy release rate of the interface
crack. GIC and GC are the mode I fracture toughness of the core, and the
interface fracture toughness, respectively.

Predictions of the crack propagation path in a sandwich panel according
to the above analysis thus requires experimental data on the core fracture
toughness, GIC , and the interface toughness, GC , at the mixed mode loading
(KI, KII) acting on the tip of the interface crack. Measurement of GIC for the
core is quite straightforward, but the measurement of the interface toughness,
GC , is more difficult, unless Gc is low and the crack propagates at the inter-
face. If the interface is much tougher than the core, however, experimental
determination of GC becomes very difficult since the crack would not select
such a high resistance path. Without a value of GC the analysis could still
be used in a semi-quantitative sense providing the direction � of the kinked
crack and the driving force for kinking indicated by the energy release ratio
Gk

max/G.

9.2.1 Crack Path in Foam-Cored DCB Specimens

Understanding of the factors that govern the crack path in foam-cored sand-
wich structures is essential for the design of such structures. Furthermore,
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Figure 9.9 Precrack in a foam core DCB specimen. ξ is a parameter specifying the
location of the precrack below the upper face in the core (0 ≤ ξ ≤ 1).

Figure 9.10 Crack kinking in foam-cored sandwich DCB specimen. Positive kink
angle � is defined as shown (“down”).

measurement of face/core debond toughness requires that the crack remains
at the face/core interface. It has been found that kinking of the crack into
the core is a common occurrence in DCB testing of foam-cored sandwich
specimens (see Prasad and Carlsson, 1994b). Kinking would disqualify the
test data for interface toughness.

When a foam core sandwich DCB specimen is tested, it is common to
slightly extend the precrack beyond the tip of the artificial film insert at the
face/core interface and this may tend to bring the precrack into the core be-
low the face/core interface, as shown in Figure 9.9. If the DCB specimen is
prepared from a sandwich panel without a starter film, the precrack needs to
be cut into the core, near the face/core interface, which also tends to produce
a precrack such as the one illustrated in Figure 9.9.

As discussed in Section 9.2, a crack in a foam-cored DCB specimen may
not propagate in a self-similar manner, but kink up or down in a certain direc-
tion quantified by the kink angle � (Figure 9.10). The direction of kinking
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Figure 9.11 Positive shear stress and kink angle.

is indicated by the sign of the angle � (� > 0 in Figure 9.10). The positive
sign of the kink angle in Figure 9.10 is consistent with a positive shear stress
ahead of the crack tip, see Figure 9.11. Furthermore, a positive shear stress
ahead of the crack tip is consistent with the direction of sliding of the crack
faces behind the crack tip, as shown in Figure 9.4.

Analysis of the kinking angle and critical load required to initiate kink-
ing of a crack (Section 9.2) requires the stress intensity factors and energy
release rate at the front of the parent crack. Such analysis, however, requires
substantial detail since the definition of stress intensity factors is based on
stresses and displacements in a very small region (singular domain) near the
crack tip.

As a simpler alternative to detailed fracture mechanics is the beam the-
ory analysis presented by Carlsson et al. (2006). If the influence of the small
singular field domain near the crack tip is neglected, it is possible to deter-
mine the relative sliding displacement, shown in Figure 9.4, from the bending
strains

δii = r(εL
x − εU

x ), (9.27)

where εx represents the near crack tip bending strains in the crack flanks,
superscripts L and U denote the lower (L) and upper (U ) sub-beams (legs),
and r is the distance from the crack tip. According to this analysis, kinking
would be promoted by a bending strain mismatch between the lower and
upper legs of the DCB sandwich specimen, i.e. δII 	= 0 in Equation (9.26).
δII > 0 would promote kinking downwards and δII < 0 would promote
kinking upwards. Zero difference would promote self-similar growth (if the
initial crack is within the core).
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To quantify the strain mismatch, a DCB specimen with the generic crack
configuration shown in Figure 9.9 is considered. The crack is located at dis-
tance ξhc from the upper face/core (F/C) interface and a distance (1 − ξ)hc

from the lower F/C interface, where hc is the core thickness and the para-
meter ξ is bounded by 0 ≤ ξ ≤ 1. Consequently, ξ = 0 corresponds to a
crack at the upper F/C interface, and ξ = 1 represents a crack at the lower
F/C interface. The face sheets may have different moduli (Ef 1 and Ef 2)
and thicknesses (h1 and h2). We will here assume that each face sheet can be
considered as homogeneous isotropic or orthotropic and the core is isotropic.
The bending of each leg of the DCB is modeled using a laminated beam for-
mulation where the extensional, coupling, and bending stiffness matrices of
classical laminated plate theory, i.e. [A], [B] and [D] as defined in Equations
(3.18) and (3.19), are replaced by three scalar stiffnesses, A, B and D given
by

A =
N∑

k=1

(Ex)k(zk − zk−1), (9.28a)

B = 1

2

N∑
k=1

(Ex)k(z
3
k − z3

k−1), (9.28b)

D = 1

3

N∑
k=1

(Ex)k(z
3
k − z3

k−1), (9.28c)

where the ply coordinates zk are defined for a general laminate in Figure 3.2.
Application of this analysis to the bending of the lower and upper legs of

the DCB specimen shown in Figure 9.9, each subject to a load P , yields the
strains εL

x and εU
x as required for Equation (9.27).

εL
x b

Pa
= hL/2 − BL/AL

DL − B2
L/AL

(lower), (9.29a)

εU
x b

Pa
= hU/2 + BU/AU

DU − B2
U/AU

(upper), (9.29b)

where hL and hU are the thicknesses of the lower and upper legs,

hL = h1 + (1 − ξ)hc, (9.30a)

hU = h2 + ξhc. (9.30b)

The extensional, coupling, and bending stiffness of the lower and upper legs
are obtained from Equations (9.28),
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AL = Ef 1h1 + Ec(1 − ξ)hc, (9.31a)

AU = Ef 2h2 + Ecξhc, (9.31b)

BL = h1hc(1 − ξ)

2
(Ec − Ef 1), (9.31c)

BU = ξh2hc(1 − ξ)

2
(Ef 2 − Ec), (9.31d)

DL = 1

12
[Ef 1(h

3
1 + 3h1h

2
c(1 − ξ)2) + Ec((1 − ξ)3h3

c + 3h2
1hc(1 − ξ))],

(9.31e)

DU = 1

12
[Ec(ξ

3h3
c + 3ξhch

2
c) + Ef 2(h

3
2 + 3ξ 2h2

chc)], (9.31f)

where Ef 1 and Ef 2 are the effective Young’s moduli of the lower and upper
face sheets, respectively, and Ec is the core modulus.

An example (Carlsson et al., 2006) is a symmetric DCB specimen con-
sisting of 2.4 mm thick glass/vinylester faces and a 16 mm thick H100 PVC
foam core. The face and core moduli are Ef 1 = Ef 2 = 27.6 GPa and
Ec = 105 MPa. The crack tip strains in the lower and upper legs of the
DCB specimen were calculated from Equations (9.29) as a function of the
crack position in the core (0 ≤ ξ ≤ 1). Figure 9.12 shows the crack tip
strains in the upper and lower legs vs. ξ . The graph shows that the strains are
equal (δII = 0) at three locations of the crack, i.e., ξ = 0.08, 0.5, and 0.92.
Consequently, a crack located at these locations is expected to propagate in
a self-similar manner. Further, according to this analysis, a crack located at
the top interface (ξ = 0), would kink down (εL

x > εU
x ) until it reaches an

equilibrium location where the strains are equal (ξ = 0.08). This is a sta-
ble location since Figure 9.13 indicates that any small perturbation of the
crack location (up or down) would tend to return the crack to the ξ = 0.08
location. Similarly, a crack at the lower F/C interface (ξ = 1) would kink
up (εL

x > εU
x ) until a stable position is reached at ξ = 0.92. The actual dis-

tance from the upper and lower interface to the stable locations is only about
1.3 mm for this specimen, and a crack propagating at this location would be
considered as “near interface”. A crack positioned in the upper half region of
the core between ξ = 0.08 and 0.5 would kink up and approach the ξ = 0.08
location while a crack located in the lower half would kink down. A center
crack (ξ = 0.5) would potentially remain at the center, but Figure 9.12 in-
dicates that this configuration is not stable since any small disturbance (up
or down) would promote kinking up or down towards the stable ξ = 0.08 or
0.92 locations.

Several other cases were examined by Carlsson et al. (2006).



Structural and Failure Mechanics of Sandwich Composites 249

Figure 9.12 Crack tip strains in lower and upper legs of a symmetric DCB speci-
men.

9.3 Cohesive Zone Models of Face/Core Interface Failure

Producers of sandwich structures sometimes add a mat of continuous fibers
called a “continuous filament mat” (CFM), or a “chopped strand mat”
(CSM), between the face and core. The purpose of such a design is to in-
crease the resin content between face and core to avoid “dry spots” and im-
prove the resistance to face/core debonding by the increased resin content.
The CFM and CSM may also add an additional toughening mechanism pro-
vided by fiber bridging the crack surfaces, see the photograph in Figure 9.13
showing face/core separation in a sandwich beam with a CSM added be-
tween face and core evidencing large-scale fiber bridging.

In cases where bridging zones develop, the actual material separation dis-
placements across the crack faces can be quite substantial and the large-scale
fracture process zone makes linear elastic fracture mechanics concepts dif-
ficult to satisfy. In many cases, the global response of a cracked sandwich
structure, or fracture test specimen, remains linear, while the material sepa-
ration process near the crack tip behaves nonlinear. This situation is conve-
niently represented by a cohesive zone model, where the tensile strength and
the work of fracture become connected using a specific traction/separation
(T/S) law (Argon, 2000). Figure 9.14 shows an idealized T/S law. As shown,
the crack will start to open when the crack tip stress exceeds the cohesive
strength σ0. Once the crack opens up, the cohesion of the material elements
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Figure 9.13 Fiber bridging observed during face/core separation in a sandwich
beam with a 450 g/m2 CSM. (Courtesy of Lundsgaard et al., 2008)

behind the crack tip will not be totally lost, as in linear elastic fracture me-
chanics, until the crack opening exceeds the critical value uc

n.
As discussed by Nairn (2009) and shown in Figure 9.15, a cohesive zone

is associated with two crack tips, viz. the notch root where the traction is
zero and the actual crack tip where the material separation is initiated (see
Figure 9.15). At the beginning of the fracture process, the bridging zone
develops by extension of the crack tip while the notch root remains fixed.
As will be discussed below, this process is associated with a rising resistance
curve (R curve). After further loading, if a steady-state is reached, the crack
tip and notch root propagate at the same rate, corresponding to a constant
length of the bridging zone and self-similar growth.

Figure 9.15 also illustrates the separation of the crack flanks at the notch
root, u∗

n where the traction vanishes. The fracture process in a test specimen
or structure occurs in a “process zone” defining a layer of total thickness, �.
The process zone is comprised of parts of the face and core materials above
and below the interface where fiber pull-out, plastic deformation, and other
complex, nonlinear material separation processes occur, see Figure 9.15. In
modeling of cohesive failure of fracture test specimens, the local response
of the material separation law typically demands a numerical finite element
solution with special cohesive elements where the T/S law is specified and
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Figure 9.14 Schematic representation of a traction/separation law representing the
failure process.

Figure 9.15 Process zone around the crack tip.

assigned along the anticipated crack propagation path, which, for a sandwich
structure, is commonly along the face/core interface (Ostergaard, 2007). The
layer thickness, �, of the process zone is typically neglected.

An important tool in cohesive zone modeling is the J integral proposed
by Rice (1968).

J =
∫
�

(
� dx2 − σijnj

∂ui

∂xi

ds

)
, (9.32)
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Figure 9.16 Path � for calculation of the J integral with normal nj . x1 is a coordi-
nate along the crack propagation path and x2 is perpendicular to the crack plane.

where � is any counter-clockwise path surrounding the crack faces, with nj

being the outwards directed normal vector to the path, �, see Figure 9.16. x1

is a coordinate along the crack plane, and ui is the displacement vector and
ds is an element of �.

� is the strain energy density given by

� =
∫ ε

0
σij dεij , (9.33)

where σij and εij are i, j elements of the stress and strain tensors, re-
spectively, and repetition of an index denotes summation over the range
i, j = 1, 2, 3.

For the pure normal opening loading considered here, a cohesive law (Fig-
ure 9.14) can be expressed as

σn = σn(un). (9.34)

When the stress on the interface reaches its ultimate value, σ0, the fracture
process is initiated. Before that, all deformation of the specimen is accommo-
dated by the continuum. Figure 9.17 schematically illustrates the distribution
of normal stress acting in the cohesive zone.

Evaluation of the J integral around the cohesive zone (Li and Ward, 1987;
Bao and Suo, 1992) provides the relation between the cohesive law and the
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Figure 9.17 Normal stress, σn, in the cohesive zone.

fracture resistance:

Jr =
∫ u∗

n

0
σndun + J0, (9.35)

where u∗
n is the maximum separation distance encountered at any specific

crack length (Figure 9.18). As shown in Figure 9.18, at the beginning of the
fracture test no fibers are bridging the crack and the crack will advance when
JR = J0. Upon further loading and extension of the crack tip (Figure 9.18),
the first term in Equation (9.35) will start to contribute as a result of devel-
opment of the bridging zone.

As the crack propagates further, the bridging zone will become more and
more developed and extend behind the crack tip corresponding to a rising R
curve, i.e., a plot of JR vs. �a, where �a is the extension of the crack tip
from its initial value (a0), see Figure 9.19. Once the maximum end open-
ing, un, reaches its critical value, uc

n, the bridging zone is fully developed,
corresponding to a steady-state fracture toughness, JR = Jss . Nairn (2009)
has argued that the energy stored in the bridging fibers may be recovered
upon unloading the specimen and that a true R curve determination prior to
steady-state should subtract this contribution to the J integral. However, this
should not be an issue for continuous loading considered here.
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Figure 9.18 Extension of crack tip and development of bridging zone.

Figure 9.19 Schematic R curve showing crack growth resistance, JR , vs. crack
extension in a material where fiber bridging develops.

As discussed by Ostlund (1995) and Sorensen and Jacobsen (1998), the
bridging fibers represent distributed discrete forces, here smeared into a con-
tinuum mechanics cohesive stress, σn. Such an approach is assumed appro-
priate if there is a sufficient number of bridging fibers per unit area.
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Figure 9.20 Crack with large scale bridging subject to mixed mode loading. After
Sorensen and Kirkegaard (2006).

The cohesive law, σn = σn(un), may be determined from the measured re-
sistance curve. Differentiation of Equation (9.35) yields (Li and Ward, 1989)

σn(un) = dJR

dun

. (9.36)

Such an approach requires that JR has been determined as a function of the
end opening, u∗

n. Hence, the test must employ special displacement measur-
ing devices that allow recording of u∗

n (Lundsgaard et al., 2008).
So far the description has been limited to mode I fracture. The treatment of

mixed mode fracture using a cohesive law approach requires consideration of
both normal and shear stresses σn and τnt that act in the cohesive zone, and
normal and tangential crack face displacements, un and ut . Sorensen and
Kirkegaard (2006) present a consistent approach to establish mixed mode
cohesive laws for specimens displaying large-scale bridging. The approach
utilizes the J integral applied to the novel test method consisting of a DCB
specimen (Section 11.7) where the legs are loaded with edge couples as op-
posed to shear forces in the traditional, standard DCB test. The normal and
shear traction/separation stresses are extracted from the J integral in com-
bination with measured normal and tangential crack face displacements at
the end of the cohesive zone. Figure 9.20 illustrates the crack region with a
large-scale bridging zone subject to mixed mode loading.

The crack opening and sliding displacements un and ut are defined as the
relative displacements of the upper and lower crack surfaces (Figure 9.20).
The critical values of un and ut are denoted uc

n and uc
t . The normal and shear

stresses acting over the cohesive zone are denoted by σn and τnt . Calculation
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of the J integral for a path, � (Figure 9.16) starting and ending outside the
bridging zone, along the lower crack face, around the crack tip and back
along the upper crack face, yields the result

JR =
∫ u∗

n

0
σn (un, ut ) dun +

∫ u∗
t

0
τnt (un, ut)dut + J0. (9.37)

By partially differentiating Equation (9.37) with respect to un and ut , the
cohesive stresses become

σn = ∂JR

∂un

, (9.38a)

τnt = ∂JR

∂uτ

. (9.38b)

Hence, in this manner the cohesive stresses, i.e. traction/separation (T /S)
law, can be determined directly from the measured resistance curve and mea-
sured values of the opening and sliding displacements. At steady-state crack
propagation, the bridging zone is fully developed and should translate simi-
larly with the growing crack along the interface.

9.4 An Expression for the Energy Release Rate of Face/Core
Debonds in Sandwich Beams

A loading which can be especially detrimental for a sandwich structure is
compression because these debonds are susceptible to buckling and subse-
quent rapid growth during the post-buckling phase. Typically, post-buckling
solutions are derived in terms of forces and moments at the debond sec-
tion (Kardomateas and Huang, 2003). Therefore, expressions for the energy
release rate in terms of these quantities are particularly useful. Such expres-
sions were first derived by Yin and Wang (1984) for delaminated monolithic
composites, and extended by Suo and Hutchinson (1990) to a delaminated
bi-material (thin film on a substrate). The sandwich configuration is, how-
ever, a “tri-material”, i.e. two face sheets, which need not be the same, and
a core. This is the configuration treated in this section. Specifically, we use
the J integral to obtain a closed form algebraic expression for the energy
release rate, G, for a debonded sandwich beam. The most general case of
an “asymmetric” sandwich is considered, i.e. the bottom face sheet is not
necessarily of the same material and thickness as the top face sheet. The ex-
pression derived is in terms of forces and moments (which are typical outputs
of post-buckling solutions) acting on the debonded section.
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Figure 9.21 (a) Sandwich cross-section with the acting forces and moments; (b)
the J integral path.

We consider a sandwich beam consisting of two face sheets of thicknesses
hf 1 and hf 2, and extensional moduli Ef 1 and Ef 2, respectively. The core, of
thickness hc, has an extensional modulus, Ec (Figure 9.21a).

In the region of the debond, the sandwich beam consists of two parts: the
debonded upper face sheet (referred to as the “debonded part”, of thickness
hf 1) and the part below the debond (“substrate part”, of thickness hc + hf 2,
which includes the core and the lower face sheet). A unit width is assumed.
The region outside the debond is referred to as the “base part” and consists
of the entire section of the sandwich beam, i.e., of thickness hf 1 + hc + hf 2.
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We shall denote the base part with “b”, the debonded part with “d”, and the
substrate part with “s”.

A characteristic of sandwich construction is that the neutral axis for the
base and the substrate parts is in general no longer at the center of the cor-
responding sections. With respect to a reference axis x through the middle
of the core, the neutral axis of the base section is defined at a distance eb

(Figure 9.21a), as:

eb

(
Ef 1hf 1 + Echc + Ef 2hf 2

)
= Ef 2hf 2

(
hf 2

2
+ hc

2

)
− Ef 1hf 1

(
hf 1

2
+ hc

2

)
, (9.39a)

and that of the substrate part is at a distance es , given by

es

[
Echc + Ef 2hf 2

] = Ef 2hf 2

(
hf 2

2
+ hc

2

)
. (9.39b)

Moreover, while for the debonded face, which is homogeneous, the bend-
ing rigidity per unit width is

Dd = Ef 1

h3
f 1

12
. (9.40a)

For the base part the equivalent flexural rigidity of the sandwich section per
unit width is (Figure 9.21a)

Db = Ef 1

h3
f 1

12
+ Ef 1hf 1

(
hf 1

2
+ hc

2
+ eb

)2

+ Ef 2

h3
f 2

12

+ Ef 2hf 2

(
hf 2

2
+ hc

2
− eb

)2

+ Ec

h3
c

12
+ Echce

2
b, (9.40b)

and for the substrate (again, per unit width)

Ds = Ec

h3
c

12
+ Echce

2
s + Ef 2

h3
f 2

12
+ Ef 2hf 2

(
hf 2

2
+ hc

2
− es

)2

. (9.40c)

Figure 9.21a shows a segment of the plate containing the debond front (crack
tip). A section of the plate ahead of the crack tip carries the compressive
axial force Pb and bending moment Mb, per unit width of the plate (base part
loads).

Behind the crack tip, the cross-section above the debond (debonded part)
carries the loads Pd and Md and the cross-section below the debond (sub-
strate part) carries the loads Ps and Ms . It is assumed that these forces and
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moments have already been determined from the post-buckling solution of
the plate. It should be noted that in this derivation we consider only the ef-
fects of the axial forces and bending moments; shear forces are neglected. In
addition, force and moment (about the neutral axis of the base part) equilib-
rium conditions hold as follows:

Pb = Pd + Ps, (9.40d)

Mb − Md − Ms − Pd

(
hf 1

2
+ hc

2
+ eb

)
+ Ps(es − eb) = 0. (9.40e)

If we set
(EA)b = Ef 1hf 1 + Echc + Ef 2hf 2, (9.41a)

then the axial stress in the base part is

σ (b)
xx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Pb

(EA)b

Ef 1 − MbEf 1

Db

y if eb + hc

2
≤ y ≤ eb + hc

2
+ hf 1

[debonded face],

− Pb

(EA)b

Ec − MbEc

Db

y if eb − hc

2
≤ y ≤ eb + hc

2
[core],

− Pb

(EA)b

Ef 2 − MbEf 2

Db

y if eb − hc

2
− hf 2 ≤ y ≤ eb − hc

2
[lower face].

(9.41b)
Superimposing −σ (b)

xx on the stresses behind and ahead of the debond front
in the system in Figure 9.21a, would result in the system in Figure 9.21b,
whose energy release rate and stress intensity factors would be the same as
in the original system (Figure 9.21a) since the system of base part stresses
acting alone would produce a non-singular stress field. In this way, we can
express the energy release rate in just two parameters.

The forces acting on the system in Figure 9.21b are

P ∗ =
∫ eb+ hc

2 +hf 1

eb+ hc
2

(−σ (b)
xx )dy − Pd. (9.42a)

Substituting σ (b)
xx from (9.41b) and performing the integration results in P ∗

in the form
P ∗ = C1Pb + C2Mb − Pd, (9.42b)

where

C1 = Ef 1hf 1

(EA)b

; C2 = Ef 1hf 1

2Db

(2eb + hf 1 + hc). (9.42c)
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Likewise,

M∗
d = Md −

∫ eb+ hc
2 +hf 1

eb+ hc
2

(−σ (b)
xx )

[
y −

(
eb + hc

2
+ hf 1

2

)]
dy. (9.43a)

Again substituting σ (b)
xx from (9.41b) and performing the integration results

in M∗
d in the form

M∗
d = Md − C3Mb, (9.43b)

where

C3 = Ef 1

Db

h3
f 1

12
. (9.43c)

The corresponding moment M∗
s in the substrate part is obtained from equi-

librium, Figure 9.21b,

M∗
s = P ∗

(
es + hc

2
+ hf 1

2

)
− M∗

d . (9.43d)

Referring now to Figure 9.21b, the stresses in the cross-section of the
debonded face produced by the tensile load P ∗ and the bending moment M∗

d

are

σxx = P ∗

hf 1
+ Ef 1

M∗
d

Dd

η ; −hf 1

2
≤ η ≤ hf 1

2
, (9.44a)

σyy = τxy � 0, (9.44b)

where η is the normal coordinate measured from the mid-plane of the
debonded face. In Figure 9.21b, the cross-section of the sandwich ahead of
the debond front is subjected to vanishing stress and strain. In the region
behind the debond front we assume εzz = 0 (plane strain). It follows that

σzz = ν(f 1)
xz σxx; εxx = σxx − ν

(f 1)
zx σzz

Ef 1
= 1 − ν

(f 1)
zx ν

(f 1)
xz

Ef 1
σxx, (9.44c)

where ν
(f 1)
xz and ν

(f 1)
zx are the Poisson ratios of the debonded (orthotropic)

face sheet.
With the J integral path shown in Figure 9.21b, the following expression

holds along the vertical path across the debonded face:

dJ = Wdy − T
∂u
∂x

ds; dy = −ds, (9.44d)

where W is the strain energy density, T is the traction vector and u the dis-
placement vector (Budiansky and Rice, 1973).
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Since

W = 1

2
(σxxεxx + σzzεzz) = 1

2
σxxεxx; T

∂u
∂x

= −σxxεxx, (9.44e)

and since ds = dη, and by use of (9.44c):

dJ = −1

2
σxxεxxds + σxxεxxds = 1

2
σxxεxxds = 1 − ν

(f 1)
zx ν

(f 1)
xz

Ef 1
σ 2

xxdη,

(9.44f)
Substituting σxx from (9.44a), we obtain the contribution of the debonded

face to the J integral:

J1 =
∫ hf 1

2

− hf 1
2

(1 − ν
(f 1)
zx ν

(f 1)
xz )

2Ef 1

(
P ∗

hf 1
+ Ef 1

M∗
d

Dd

η

)2

dη

= (1 − ν
(f 1)
zx ν

(f 1)
xz )

2Ef 1

(
P ∗2

hf 1
+ E2

f 1

M∗2
d

D2
d

h3
f 1

12

)
. (9.45)

Similarly, if we set
(EA)s = Echc + Ef 2hf 2, (9.46a)

then the stresses in the cross-section below the debond in Figure 9.21b,
which are produced by the compressive force P ∗ and the bending moment
M∗

s are

σxx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− P ∗

(EA)s

Ec + M∗
s Ec

Ds

ξ if −es − hc

2
≤ ξ ≤ −es + hc

2
[core]

− P ∗

(EA)s

Ef 2 + M∗
s Ef 2

Ds

ξ if −es + hc

2
≤ ξ ≤ −es + hc

2
+ hf 2

[lower face]
(9.46b)

and
σyy = τxy � 0, (9.46c)

where ξ is the normal coordinate measured from the neutral axis of this
cross-section. Again, following the same arguments as before, i.e. that the
cross-section of the sandwich ahead of the debond front is subjected to van-
ishing stress and strain and that in the region behind the debond front we
have εzz = 0 (plane strain), we obtain the the following expression along a
vertical path below the debond:

dJ = 1

2
σxxεxxds − σxxεxxds = 1 − ν(i)

zx ν(i)
xz

Ei

σ (i)2
xx dξ, (9.46d)
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where i refers to the core (c) or the lower face sheet (f2).
Hence the contribution of the vertical path below the debond to the J

integral is

J2 =
∫ −es+ hc

2

−es− hc
2

(1 − ν(c)
zx ν(c)

xz )

2Ec

σ (c)2
xx dξ

+
∫ −es+ hc

2 +hf 2

−es+ hc
2

(1 − ν
(f 2)
zx ν

(f 2)
xz )

2Ef 2
σ (f2)2

xx dξ. (9.46e)

Substituting the corresponding expressions from (9.46b) and performing
the integration leads to

J2 = P ∗2

(EA)2
s

H1 + P ∗M∗
s

(EA)sDs

H2 + M∗2
s

D2
s

H3, (9.47a)

where

H1 = 1 − ν(c)
zx ν(c)

xz

2
Echc + 1 − ν

(f 2)
zx ν

(f 2)
xz

2
Ef 2hf 2, (9.47b)

H2 = 1 − ν(c)
zx ν(c)

xz

2
Echc2es + 1 − ν

(f 2)
zx ν

(f 2)
xz

2
Ef 2hf 2

(
2es − hc − hf 2

)
,

(9.47c)

H3 = 1 − ν(c)
zx ν(c)

xz

2
Echc

(
h2

c

12
+ e2

s

)

+ 1 − ν
(f 2)
zx ν

(f 2)
xz

2
Ef 2hf 2

[
h2

f 2

3
+

(
hc

2
− es

)(
hc

2
+ hf 2 − es

)]
,

(9.47d)

The sum of the two integrals (9.45) and (9.47a) represents the energy release
rate since the remaining portions of the path make no contribution to the J

integral, i.e.
G = J1 + J2 (9.48)

or

G = (1 − ν
(f 1)
zx ν

(f 1)
xz )

2Ef 1

(
P ∗2

hf 1
+ E2

f 1

M∗2
d

D2
d

h3
f 1

12

)

+
(

P ∗2

(EA)2
s

H1 + P ∗M∗
s

(EA)sDs

H2 + M∗2
s

D2
s

H3

)
, (9.49)

where H1, H2 and H3 are given in (9.47b–d).



Chapter 10
Analysis of Debond Fracture Specimens

Several test methods for determining the fracture toughness of the face/core
interface in sandwich specimens have been proposed. All debond specimens
are beam specimens where a debond typically is implanted in the form of a
thin Teflon sheet between face and core during manufacture of the sandwich
panel, or in some cases the debond is machined or cut with a thin blade or
knife. This and several other experimental issues will be discussed in Chap-
ter 11. In this chapter, we will introduce some of the most popular sandwich
debond tests and outline analysis of compliance and energy release rate.

10.1 Introduction

The analysis of the fracture test specimens typically focuses on the global
specimen compliance, C. Once this quantity is determined as a function of
crack length, the energy release rate G is readily obtained by differentiation
of C with respect to crack length a (see Chapter 9), i.e.,

G = P 2

2b

dC

da
, (10.1)

where P is the load applied and b is the width of the specimen. Several of
the fracture specimens in use are quite simple in terms of geometry, loading,
and support conditions, allowing for analytical solution of the compliance
as a function of crack length, i.e., C = C(a). Differentiation according to
Equation (10.1) yields G. Some fracture specimens, however, are more com-
plicated and do not readily allow an analytical solution. For such specimens,
it may be possible to experimentally determine the compliance at several
crack lengths. The data could be graphed vs. crack length and an empirical
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Figure 10.1 Section of cracked bimaterial specimen with an interface crack. Axial
forces and moments are applied along the three edges (after Suo and Hutchinson,
1990). The product h� is the distance between the neutral axis and the bottom
surface. h is the thickness of the upper beam.

equation, C = C(a) may be obtained by curve-fitting. Ideally, the form of
the compliance expression, C = C(a), is known from experience or analy-
sis. Differentiation of C(a) with respect to crack length according to Equa-
tion (10.1) yields G. This approach, however, may not work well for tests
where the compliance changes very little with crack length, or where the
form of C = C(a) is not guided by analysis.

As an alternative to a complete solution for the compliance of a fracture
specimen Yin and Wang (1984) proposed consideration of a cut-out section
from a cracked laminate where axial loads and moments are applied on the
edges of the cut-out sections. They developed an analytical procedure to cal-
culate G for a cracked monolithic composite based on the J integral This
method was modified and later extended to bimaterial specimens with an
interface crack by Suo and Hutchinson (1990) (see Figure 10.1).

However, a sandwich specimen is not homogeneous or bimaterial. A sand-
wich specimen could be considered as a trimaterial with two faces that can
be different and a core. For this case the analysis presented in Section 9.4
should apply (see also Kardomateas et al., 2010).

Most sandwich test specimens are loaded by transverse shear forces. Until
recently such loads have not been considered in crack element formulations.
Li et al. (2004) and Thouless (2009) developed a finite element approach
where transverse shear forces acting on the cracked element are included (see
Figure 10.2). Li et al. (2004) found that shear loading causes “root rotation”
of the crack tip. Through extensive finite element computations, they found
that such rotations affect not only the energy release rate but also the mode
mixity, as quantified by the phase angle ψ
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Figure 10.2 Bending moment, axial loads and transverse shear forces acting on
segments of a cracked beam geometry. (After Thouless, 2009)

ψ = tan−1

(
KII

KI

)
, (10.2)

where KI and KII are the mode I and mode II stress intensity factors (assum-
ing β = 0) defined in Chapter 9. The shear effect is greatest for specimens
with short crack lengths (compared to the thickness). For long crack lengths,
the shear contribution becomes negligible and the previous methods based
on axial forces and edge moments only should be valid.

The cracked element approach has many merits. Provided the basic load-
ing parameters, axial load, moment, and transverse shear force are identified,
general solutions to difficult problems can be obtained, see a recent paper by
Thouless (2009).

10.2 Debond Test Specimens

Several debond sandwich test specimens have emerged. A successful debond
test should promote the desired face/core debond propagation failure before
any competing failure mode, such as core shear, core crush, indentation fail-
ure, face wrinkling, or crack kinking, occurs. Commonly, the test specimens
have to be properly designed in order to promote debond growth, and guide-
lines will be provided in this chapter.

Figure 10.3 shows some of the more widely used debond test specimens
for sandwich constructions, viz., the double cantilever beams (DCB), tilted
sandwich debond (TSD), cracked sandwich beam (CSB), three-point sand-
wich beam (TPSB), mixed mode bending (MMB), and DCB-uneven bend-
ing moment (DCB-UBM) specimens, each of uniform width (b) and loaded
in bending. The specimens shown in Figures 10.3a–d are so-called “fixed
mode ratio specimens”, since the mode ratio is fixed by the material combi-
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Figure 10.3 Debond sandwich test specimens. (a) DCB, (b) TSD, (c) CSB,
(d) SCB, (e) TPSB, (f) MMB, and (g) DCB-UBM.

nation, loading configuration, and specimen geometry, while the specimens
in Figures 10.3e and f allow adjustment of the mode mixing. Each of these
specimens will be described and available expressions for the compliance
and energy release rate will be provided.

10.3 Double Cantilever Beam (DCB) Specimen

The double cantilever beam (DCB) specimen is a very popular test for deter-
mining the mode I delamination resistance of laminated composites, and is
standardized by ASTM (ASTM D5528, 2001). In DCB testing of compos-
ites, the initial delamination is placed symmetrically at the mid-plane. For
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Figure 10.4 Geometry and loading of the sandwich DCB specimen.

the sandwich DCB test, the initial precrack is placed between the upper face
sheet and the core to promote face/core debonding (see Figure 10.4). The
sandwich DCB specimen was first adopted by Prasad and Carlsson (1994)
who conducted testing and finite element analysis of the specimen. They
showed that the sandwich DCB specimen is not a pure mode I test as a result
of the off-centered crack at a bimaterial interface between widely dissimilar
materials. In many cases, experimental testing revealed that crack propaga-
tion did not occur at the face/core interface. The crack kinked into the core,
as will be discussed later in this section. Shivakumar et al. (2004), however,
successfully achieved face/core debond fracture in experimental studies us-
ing the sandwich DCB specimen and this will be further discussed in Chap-
ter 11.

In this section, elastic foundation analysis of the compliance and energy
release rate of the sandwich DCB specimen will be reviewed. The upper leg
of the DCB specimen, i.e. the debonded face sheet (Figure 10.4) is consid-
ered as a cantilever beam of effective flexural modulus Ef 1 and thickness,
hf1 . The lower leg consists of the lower face, of modulusEf 2, and thickness
hf 2, bonded to a core of modulus, Ec, and thickness hc. Under load, the load-
ing point (1) displaces an amount δ1+δ2, where the individual displacements
δ1 and δ2 are defined in Figure 10.4.

Figure 10.5 illustrates the elastic foundation model (EFM) of the DCB
specimen developed by Aviles and Carlsson (2007a). The bonded part of the
upper face sheet is supported by the core represented by an elastic founda-
tion. The total specimen length is L and a is the crack length. The elastic
foundation is characterized by the foundation modulus k.

The analysis is based on the Winkler foundation model, first applied to
isotropic and symmetric DCB specimens by Kaninnen (1973). The Winkler
model assumes that the reaction forces in the elastic foundation are propor-
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Figure 10.5 Schematic of elastic foundation model (EFM) of a sandwich DCB
specimen.

tional to the beam deflection at any point. The foundation modulus, k, is
defined as the force required to displace a unit area of the face through a
unit distance in the thickness direction. k may be related to the extensional
out-of-plane stiffness of the core (Allen, 1969; Kanninen, 1973; see also
Chapter 8),

k = 2Ecb

hc

, (10.3)

where b is the width of the specimen. Quispitupa et al. (2009), however,
argued that this equation in effect assumes that one half of the core is active
as a foundation which is not realistic for thick cores. Quispitupa et al. (2009)
proposed the following modified elastic foundation modulus for a sandwich
DCB specimen

k = 2Ecb

hf 1
. (10.4)

Expressions for compliance and energy release rate of a symmetric DCB
sandwich specimen were derived by Aviles and Carlsson (2007a),

C = a

b

⎡
⎣ 1

hcGxz

+ a2

3
(
D − B2

A

)
⎤
⎦

+ 4

Ef 1h
3
f 1b

[
a3 + 3a2η1/4 + 3aη1/2 + 3

2
η3/4

]
, (10.5)
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G = P 2

2b2

⎡
⎣ 1

hcGxz

+ a2(
D − B2

A

) + 12

Ef 1h
3
f 1

[
a2 + 2aη1/4 + η1/2]

⎤
⎦ ,

(10.6)

η = h3
f 1bEf 1

3k
, (10.7)

where P is the applied load and the A, B and D terms are the extensional,
coupling and bending stiffnesses defined for a general laminated beam in
Equations (9.27). For the lower leg of the DCB specimen (lower face bonded
to the core)

A = Ef 2hf 2 + Echc, (10.8a)

B = hf 2hc

Ec − Ef 2

2
, (10.8b)

D = 1

12

[
Ef 2

(
h3

f 2 + 3hf 2h
2
c

) + Ec

(
h3

c + 3h2
f 2hc

)]
. (10.8c)

To illustrate the foundation effect on the DCB specimen compliance, we
will consider a specific (baseline) sandwich DCB specimen. The speci-
men was obtained from a symmetric sandwich consisting of 2.41 mm thick
glass/vinylester face sheets over a 37.9 mm thick H100 PVC foam core. The
core is assumed to be isotropic with mechanical properties Ec = 105 MPa,
νc = 0.32, and Gxz = 39.8 MPa. The mechanical properties of the face
sheets are Ef = 27.6 GPa and νf = 0.32. The face modulus and Pois-
son ratio refer to loading along the beam axis. In addition, DCB specimens
with a range of core moduli Ec = 10–800 MPa and a range of total lengths
L = 5–50 cm were considered. The core shear modulus, Gxz, was calculated
from Ec using the isotropic relation between the Young’s and shear moduli
assuming a constant Poisson ratio νc = 0.32. The crack length was fixed
(a = 5 cm).

Figure 10.6a shows the specimen compliance as a function of core modu-
lus. The compliance depends quite strongly on the core modulus and reaches
high values for compliant cores (Ec < 20 MPa). Figure 10.6b shows the
compliance vs. specimen length. The compliance becomes independent of
specimen length above a certain length. When the specimen length decreases
and becomes comparable to the crack length, however, the compliance in-
creases sharply due to lack of support of the loaded upper face sheets.

This analysis may be used to determine an upper limit on the crack exten-
sion for a given test specimen. Calculations by Aviles and Carlsson (2007a)
reveal that end-effects are negligible if the crack length is below
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Figure 10.6 DCB specimen compliance. (a) Influence of core modulus, (b) influ-
ence of specimen length (a = 5 cm).

a ≤ L − 4.5

λ
, (10.9)

where λ is given by

λ = 4

√
3k

Ef 1bh3
f 1

. (10.10)

For the specific DCB specimen considered here, Equation (10.8) yields
a/L < 0.63. Hence, to avoid influence of end-effects on the compliance,
fracture testing should stop once the crack length, a, reaches 0.63 L.

The accuracy of the analytical model for the DCB compliance was evalu-
ated by Quispitupa et al. (2009), using detailed two-dimensional finite el-
ement analysis (FEA). DCB specimens of total length 2L ≈ 150 mm,
b = 35 mm, hf 1 = hf 2 = 2 mm and core thicknesses hc of 10, 20, and
30 mm were analyzed over a range of crack lengths from 5 to 65 mm. The
face and core material were E-glass/polyester and H100 PVC foam. The face
and core moduli were Ef 1 = Ef 2 = Ef = 16.4 GPa, and Ec = 135 MPa.
The compliance C and energy release rate G were determined from the elas-
tic foundation model, Equations (10.5) and (10.6), and FEA.

Compliance and energy release rate results are shown vs. crack length
in Figure 10.7. The energy release rate was calculated using a unit load,
P = 1 N/mm. Predictions of C and G using the foundation model are in
excellent agreement with FEA for the range of face and core materials and
geometries considered.
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Figure 10.7 Compliance and energy release rate of sandwich DCB specimens.
Open circles represent FEA, and the continuous line the elastic foundation model
(after Quispitupa et al., 2009). For the calculation of G, a load P = 1 N/mm was
used.

10.3.1 Crack Kinking Analysis

Crack kinking analysis of a DCB sandwich specimen will be discussed
for some specific specimens. Details and assumptions of the crack kinking
analysis are outlined in Section 9.2. Two-dimensional, plane strain finite el-
ement models of foam cored DCB specimens with aluminum face sheets
were constructed to calculate the crack tip stress intensity factors, KI and
KII (Prasad and Carlsson, 1994a). The face sheets were 2.2 mm thick and
had the following mechanical properties: Ef = 70 GPa and νf = 0.3. The
adhesive layer between face and core was assumed to be 0.1 mm thick, with
Ea = 3.5 GPa and νa = 0.35. The core was 20 mm thick and was considered
to have a range of properties from “stiff” to “soft”; Ec = 9.7 − 0.28 GPa,
and νc = 0.35. The crack length was 25.4 mm, and the total specimen length
was 152 mm.
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Figure 10.8 Crack configurations examined. (a) Face/adhesive interface crack,
(b) adhesive/core interface crack.

The crack may propagate at the face/adhesive or adhesive/core interfaces,
or it may kink away from the interface. Hence, the two interface crack con-
figurations illustrated in Figure 10.8 were considered.

It is recognized that both interface configurations involve a crack between
two isotropic materials which allows application of Equation (9.9) for deter-
mination of the stress intensity factors, KI and KII,

δI + iδII = 4

√
x

2π

(
1

E1
+ 1

E2

)
(KI + iKII). (10.11)

Subscripts 1 and 2 denote the material number above and below the crack
plane. For the face/adhesive crack configuration, material #1 is aluminum
while material #2 is epoxy, and for the adhesive/core configuration, material
#1 is epoxy and material #2 is the core. δI and δII are the opening and sliding
crack face displacements illustrated in Figure 9.4, and E = E for plane
stress, and E/(1 − ν2) for plane strain. Each specimen was loaded by a unit
load (P = 1 N/mm).

A complete analysis to determine whether or not the crack tip would con-
tinue to propagate as an interface crack, or if it would kink, would involve
Equation (9.26),

GK
max

G
>

GIC

Gc

, (10.12)

where Gk
max is the maximum energy release rate for the kinked crack, G

is the energy release rate for the interface crack, GIC the mode I fracture
toughness of the core, and Gc the interface fracture toughness.

Hence, characterization of crack kinking requires elaborate analysis and
key material toughnesses. It should be pointed out that the determination of
the interface toughness, Gc, may not be possible if the interface is tough
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and if kinking occurs. In such a case, it is still possible to assess kinking,
but in a more qualitative manner by examining the angle, �, the interface
crack would deflect if it were to kink. A negative kink angle, � ≤ 0, would
indicate interface growth (no kinking) or kinking up into face sheet, which
is not physically impossible if the face sheets are tough. On the other hand, a
positive angle � > 0, indicates the tendency for kinking into the core which
is possible for brittle polymer foams.

The kink angle, �, of the foam core DCB specimens considered is first
calculated from Equation (9.24), derived for a mixed mode crack in a homo-
geneous, isotropic brittle material. The kink angle was also determined from
the rigorous analysis of He and Hutchinson (1989), with kink angles depicted
in graphical form in their paper. The He and Hutchinson kinking analysis
requires specification of Dundurs’ (1969) elastic bimaterial mismatch para-
meter, α,

α = E1 − E2

E1 + E2
, (10.13)

where E is defined under Equation (10.11). The parameter α ranges from −1
to 1, where the limits are approached when one material is much stiffer than
the other. If the materials 1 and 2 above and below the crack plane are the
same, α = 0. For the foam core sandwich DCB specimens considered here,
α is close to the upper limit (α ≈ 1). The analysis of He and Hutchinson
(1989) provides the kink angle � for material combinations with α within
−0.75 < α < 0.75. For some of the extreme cases considered here, α falls
outside this range. For such cases the results for α = 0.75 are used.

Figure 10.9 displays kink angle results for the foam core DCB specimens
with face/adhesive and adhesive/core interface cracks over the range of core
moduli investigated. For DCB specimens with a stiff core (Ef /Ec ≤ 20)

the kink angle is negative and such specimens are not expected to display
kinking down into the core (� < 0). Kinking up into the tough aluminum
face sheets is highly unlikely. For a DCB specimen with a low modulus core,
however, the positive value of � indicates that an interface crack may leave
the interface and enter into the core at an angle which somewhat depends
on the actual crack configuration (Figure 10.8). The kink angle is larger for
the face/adhesive interface crack than for the adhesive/core crack. It is fur-
thermore observed in Figure 10.9 that the crack kinking analysis of He and
Hutchinson (1989), labeled “bimaterial”, consistently predicts a larger kink
angle than Equation (9.24), labeled “homogeneous”, but the difference is less
than 5◦ for all cases investigated.
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Figure 10.9 Kink angle vs. face/core modulus ratio for DCB sandwich specimens
with aluminum face sheets (a = 25.4 mm).

10.4 Tilted Sandwich Debond (TSD) Specimen

The tilted sandwich debond (TSD) specimen, shown in Figure 10.10 was
introduced as a debond test for foam cored sandwich specimens by Li and
Carlsson (1999). The specimen is tilted at an angle, θ , and loaded by a verti-
cal force, P . This force may be resolved into axial and normal components,
PA, and PN ,

PA = P sin θ, (10.14a)

PN = P cos θ. (10.14b)

It was initially thought that the TSD specimen would allow mixed mode
debond testing. By changing the tilt angle, θ , the mode ratio, e.g. KII/KI,
would also change. As will be discussed, however, this idea is not supported
by detailed analysis. Still, testing of foam cored sandwich specimens reveals
that this specimen configuration is less prone to crack kinking than the DCB
specimen discussed in Section 10.4.

Analysis of the TSD specimen based on elastic foundation modeling has
been presented by Li and Carlsson (2000). Figure 10.11 defines several of the
geometry symbols, such as the crack length a and the bonded length l. The
loaded face sheet (Figure 10.11) is considered a beam on an elastic founda-
tion. The applied load P may be resolved into axial and normal components,
Equations (10.14). The analysis is based on superposition of solutions for the



Structural and Failure Mechanics of Sandwich Composites 275

Figure 10.10 TSD specimen. θ is the tilt angle.

Figure 10.11 TSD specimen loading and geometry.

face sheet being subjected to an edge force and edge moment at the left end
of the bonded region (at the crack tip). In addition, the face will deflect due
to the normal force component, PN , and the core will deform in shear due to
the axial component, PA.

Li and Carlsson (2000) used a one-parameter foundation model for the
bonded region, with a foundation modulus, k, given by the classical expres-
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sion, Equation (10.3), here adjusted for the fact that only one face is loaded
in the TSD configuration,

k = Ecb

hc

, (10.15)

where Ec is the core modulus, b the specimen width, and hc the core thick-
ness. An expression for the displacement of the upper face sheet was derived
(Li and Carlsson, 2000). The bending compliance, defined as the deflection
of the loading point perpendicular to the specimen axis, divided by the nor-

C1 = 4β

k

{
1

3
β3a3 + β2a2 + βa + 1

2

}
, (10.16)

where

β =
(

k

4Ef If

)1/4

, (10.17a)

If = h3
f

12
(10.17b)

Equation (10.16) is valid only for crack lengths less than a limit crack length,
where end-effects start to contribute to the compliance

a ≤ L − 3

(
Ef h3

f hc

3Ec

)1/4

. (10.18)

This explicit equation may be used for determining how long cracks may be
used in an experimental test program.

In addition to the normal deflection of the face, the point of load appli-
cation will displace axially due to the action of the axial force component,
PII. This deformation will consist of extension of the face under tension and
shear deformation of the core. This contribution is generally small and may
be neglected. For such a case, the load point compliance, C = δ/P , where δ

is the vertical displacement component, becomes

C = 4β

k

{
1

3
β3a3 + β2a2 + βa + 1

2

}
cos2 θ. (10.19)

Differentiation of Equation (10.19) with respect to crack length, yields the
energy release rate

G = 4βP 2

2bk
(βa + 1)2 cos2 θ. (10.20)

mal force component,PN , is given by
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Figure 10.12 Interface stress intensity factors vs. tilt angle for the TSD specimen.

10.4.1 Mode Mixity Analysis

Several TSD configurations were analyzed by Li and Carlsson (2001). We
will here reproduce results for the “interface configuration” where a 51 mm
long crack is supposed to lie on the interface between a 3.6 mm thick face
sheet and a 50 mm thick core. The glass/epoxy face and H100 core moduli
were: E = 21.2 GPa and Ec = 99 MPa. To examine the influence of tilt
angle, θ on the interface stress intensity factors, KI and KII, finite element
calculations were conducted over a range of tilt angles (–15◦ to 20◦).

Figure 10.12 displays KI and KII vs. tilt angle θ . It is observed that KI

and KII remain essentially independent of the tilt angle. Because KII > 0,
for the tilt angles considered, the face/core crack would have a tendency to
kink down into the core (� > 0) and would do so unless the interface is
weak and the core is tough.

Further analysis of the stress intensity factors was conducted for a TSD
specimen at zero tilt angle over a range of core stiffnesses. In this analy-
sis, the face sheet thickness and modulus were kept as above while the core
modulus was varied. The kink angle, �, was calculated from Equation (9.24)
based on the stress intensity factors KI and KII. Figure 10.13 shows the kink
angle plotted vs. the face-to-core modulus ratio, Ef /Ec. For modulus ratios
greater than about 20, the kink angle changes sign from negative to posi-
tive. Above this modulus ratio, crack kinking into the core is a possibility.
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Figure 10.13 Kink angle for interface TSD specimen vs. face-to-core modulus ra-
tio.

It should be pointed out that, in practice, most foam core sandwich panels
have large face-to-core modulus ratios Ef /Ec > 20, and such panels may
be prone to kinking behavior for such loading.

10.5 Cracked Sandwich Beam (CSB) Specimen

One of the earliest proposed debond tests is the cracked sandwich beam
(CSB). This test was introduced by Carlsson et al. (1991) in an effort to de-
termine the mode II fracture toughness, GIIc, of the face/core interface. The
test is an extension of the mode II end-notched-flexure (ENF) test introduced
by Barrett and Foshi (1977) for testing wooden beams, and later applied to
composite laminates by Russell and Street (1982). Figure 10.14 illustrates
the test principle and the state of stress in an element near the crack tip.

The sign of the interlaminar shear stress, τxz, is negative (KII < 0) and,
hence, crack kinking into the core is not an issue. The core element shown in
Figure 10.14, however, is loaded in compression and may fail in a crushing
mode. Such failure may be avoided by a specific design of the test specimen.
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Figure 10.14 The cracked sandwich beam (CSB) test, and state of stress near the
crack tip.

The CSB specimen was analyzed by Carlsson et al. (1991) using first-
order shear deformation theory, Chapters 3 and 4. The analysis is limited to
a symmetric sandwich, but could be extended to sandwich specimens with
different face sheets on top and bottom. The presence of a debond will make
the specimen more compliant which provides the crack driving force, G. To
determine the energy release rate, G, an expression for the CSB compliance
as a function of crack length, a, was derived:

C = L3

6bDi

+ L

2hcbGxz

+ a3

12b

[
1

Dd

− 1

Di

]
, (10.21)

where L is the half-span length, Di and Dd are the flexural stiffnesses per
unit width of the intact and debonded regions of the specimen, b is the width
of the beam, hc is the core thickness, and Gxz is the core shear modulus. The
flexural stiffness of the intact region is (Chapter 4)

Di = Ef hf

2

(
hc + hf

)2 + Ef h3
f

6
+ Ech

3
c

12
, (10.22)

where Ef and Ec are the core face and core Young’s moduli and hf is the
face thickness. To determine the effective flexural stiffness of the debonded
region, Dd , consider the free-body diagram (Figure 10.15). The two regions,
1 and 2, represent the upper and lower faces bonded to the core. The shear
forces carried by the upper and lower faces are determined from force equi-
librium and compatibility of deformation at the left end.
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Figure 10.15 Free-body diagram of the debonded region of the CSB specimen.

Analysis of the load partitioning in this region leads to the following ex-
pression for the effective flexural stiffness of the debonded region:

Dd = (1 − α1)D2, (10.23)

where α1 is the load partitioning parameter given by

α1 =
1 + 3D2

a2hcGxz

1 + 3D2
a2hcGxz

+ D2
D1

, (10.24)

in which D represents flexural stiffness per unit width and the subscripts 1
and 2 refer to the upper and lower sub-beams of the debonded region (Fig-
ure 10.15)

D1 = Ef h3
f

12
, (10.25a)

D2 = D − B2

A
. (10.25b)

The A, B, and D terms are the extensional, coupling, and bonding stiff-
nesses defined in Chapter 9. The energy release rate of the CSB specimen is
obtained by differentiation of Equation (10.21) with respect to crack length

G = P 2a2

8b2

[
1

Dd

− 1

Di

]
. (10.26)

The accuracy of the compliance and energy release rate predictions for the
CSB specimen have been examined by Quispitupa et al. (2009). The same
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Figure 10.16 Influence of core thickness on the compliance (a) and energy release
rate (b) of the CSB specimen. Open circles represent FEA and continuous lines the
beam model.

materials and geometries as in the analysis of the DCB specimen (Sec-
tion 10.3) were used in a detailed finite element analysis of the CSB spec-
imen. Analytical and finite element results for the compliance and energy
release rate (P = 1 N/mm) are displayed vs. crack length in Figure 10.16.
Compliance values determined analytically and numerically are in close
agreement, except for short crack lengths (Figure 10.16a). Differences could
be attributed to the contact pressure developed between the upper and lower
sub-beams in the debonded region. The analytical formulation models load
transfer between the lower part of the beam to the upper face sheet through a
concentrated force, while the finite element model includes frictionless con-
tact surfaces between the upper and lower sub-beams in order to achieve load
transfer for the debonded region. The two contact definitions are not identical
and small variations between these two models might be expected.

For the energy release rate, Figure 10.16b shows that the beam theory and
finite element results agree closely, lending confidence to the beam theory
modeling.
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Figure 10.17 Single cantilever beam test configuration.

10.6 Single Cantilever Beam (SCB) Specimen

Cantwell and Davies (1994, 1996), introduced a sandwich debond test
method called the “single cantilever beam” (SCB) shown in Figure 10.17.

The bottom surface of the SCB specimen is bonded to a rigid steel plate
mounted on a carriage supported by linear roller bearings. Load is applied
using a long hinged vertical bar. Since the specimen is attached to the roller-
supported base, horizontal forces will not be introduced in the specimen as
the upper loaded face deflects. No fracture mechanics of this test has been
presented, although the analysis presented for the TSD specimen in Sec-
tion 10.4 should also be valid for the SCB specimen by setting the tilt angle,
θ = 0 in the TSD analysis. Cantwell and Davies (1994, 1996) used this
specimen in experimental studies and determined the face/core debond frac-
ture toughness, Gc, from the experimental compliance calibration method.
Discussion of the experimental aspects of the test, data reduction, and test
results will be presented in Chapter 11.

10.7 Three-Point Sandwich Beam (TPSB) Specimen

Cantwell et al. (1999) proposed a debond test called “three-point bend sand-
wich beam (TPSB) test”, with a support placed under the upper face sheet as
shown in Figure 10.18. This arrangement was made possible by removing a
section of the core and lower face at the left end of the specimen. This load-
ing arrangement creates a mixed mode I and mode II loading at the crack
tip.
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Figure 10.18 Three-point bend sandwich beam (TPSB) test.

Figure 10.19 Finite element mesh of crack tip region for TPSB specimen.

To determine the strain energy release rate components, GI and GII, and
the mode mixity, expressed as GI/GII, Cantwell et al. (1999) conducted
plane strain finite element analysis of the TPSB specimen, with a refined
mesh near the crack tip, see Figure 10.19. The crack tip is embedded in a
thin resin layer between face and core so as to circumvent complications due
to the bimaterial crack tip. A range of crack lengths, a, from 30 to 55 mm was
considered. The sandwich beams consisted of 2.5 mm thick glass/polyester
faces over a 15 mm thick end-grain balsa core of 175 kg/m3 density. Cantwell
et al. (1990) did not provide the material properties of the face sheets and
core, but they should be close to those listed for similar materials in Chap-
ter 1.

The opening and sliding components, GI and GII of the energy release
rate, G, were determined by the virtual crack closure technique described in
Section 9.1.1. Figure 10.20 shows the mode mixity results presented as the



284 10 Analysis of Debond Fracture Specimens

Figure 10.20 Mode ratio GI/GII for TPSB specimen with balsa core.

ratio GI/GII, plotted vs. the crack length. It is observed that the mode ratio
depends on crack length, although the specimen may be considered as mode
I-dominated since GI is at least a factor of 10 greater than GII over the range
of crack lengths considered.

It is observed that the mode mixity is quite a strong function of crack
length which is generally a disadvantage, since the fracture resistance typi-
cally depends on the mode ratio.

10.8 Mixed Mode Bending (MMB) Specimen

The mixed mode bending (MMB) test was originally developed by Reeder
and Crews (1990) for mixed mode delamination fracture characterization
of unidirectional composites. This test was recently modified to accommo-
date sandwich specimens by Quispitupa et al. (2009), see Figure 10.21. The
MMB sandwich specimen incorporates a through-width face/core crack at
the left edge of the specimen. A vertical, downward load, P , applied to the
lever arm, provides an upward directed load at the left end of the debonded
face sheet and a downward directed load at the center.

The MMB specimen can be considered as a superposition of the previ-
ously discussed CSB and DCB specimens, see Figure 10.22. Analytic ex-
pressions for the MMB compliance and energy release rate for symmetric
sandwich specimens (hf 1 = hf 2 = hf and Ef 1 = Ef 2 = Ef ) were derived
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Figure 10.21 MMB test principle and sandwich specimen.

Figure 10.22 Mixed mode loading decomposed into CSB and DCB loadings. α1
and β1 are parameters quantifying the load share between the upper and lower parts
of the debonded region (α1 + β1 = 1).

based on the load partitioning shown in Figure 10.22 and previous solutions
for the CSB and DCB specimens.

The MMB specimen compliance, C, is defined according to

C = δMMB

P
, (10.27)
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Figure 10.23 Kinematics of MMB specimen deformation.

where δMMB is the displacement of the load application point calculated from
the kinematics of deformation as illustrated in Figure 10.23.

By similar triangles

δMMB = δc + c

L
(δc + δDCB) . (10.28)

where δDCB refers to the upward displacement of the upper left point of the
loading lever and δc is the downward displacement of the lever at the center
of the beam. The expressions for the MMB compliance and energy release
rate are
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(10.30)
where 2L is the span length, c is the lever arm distance, a is the crack length,
and A, B and D are the extensional, coupling, and bending stiffnesses de-
fined for the DCB specimen in Equations (10.8). η is the elastic founda-
tion modulus parameter defined in Equation (10.7) and Dd and Di are the
flexural stiffness of the debonded and intact region of the beam, defined in
Section 10.5. The parameter α1 is given by Equation (10.24). C1 and C2 rep-
resent the compliances of the upper and lower legs (1 and 2) of the DCB
specimen, Figure 10.4, i.e.

C1 = δ1

P1
, (10.31a)

C2 = δ2

P1
(10.31b)
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given by
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where the symbols are defined earlier in this section.
The loads acting on the DCB and CSB specimens (Figure 10.22) are

PI = c

L
P − α1PR, (10.33a)

PII =
(

1 + c

L

)
P, (10.33b)

PR = c + L

2L
P. (10.33c)

The mode I and II components of the total energy release rate, G (Equa-
tion (10.30)) are obtained by substitution of the loads PI and PII into the
expressions for G for the DCB and CSB specimens, i.e., P = PI in Equa-
tion (10.6) for the DCB specimen and P = PII in Equation (10.26) for the
CSB specimen. The mode ratio GII/GI is

GII
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Notice here that the mode ratio is a global mode ratio. Due to the asymmet-
ric bimaterial character of the sandwich specimen, the local mode mixities
expressed in terms of stress intensity factors, will differ (as shown later).

The methodology presented above is not valid when contact between
crack faces is present. Contact arises at a lever arm distance, c, when the
mode I load (Equation (10.33a)) vanishes. The minimum lever arm distance
c, which is required to avoid contact is given by

c >
α1L

2 − α1
. (10.35)

For a symmetric specimen, α1 = 1/2, and Equation (10.35) gives c > L/3,
which is generally used as a limit for MMB testing of monolithic composites.
However, for the MMB sandwich specimen, α1 is very small and therefore
the minimum c distance is also very small, which is convenient in order to
expand the range crack lengths in the test program.
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Figure 10.24 Compliance (a) and energy release rate (b) vs. crack length for MMB
specimens with core thicknesses of 10, 20 and 30 mm (c = 25 mm).

10.8.1 Analytical and Finite Element Results

Quispitupa et al. (2009) conducted extensive parametric finite element analy-
sis of the influence of various geometry and material parameters on the MMB
compliance and energy release rate. The energy release rate, G, was ex-
tracted from the FEA results using the opening and sliding relative crack
flank displacements (Figure 9.4). The same material properties, specimen
geometries, and FE mesh, used for the DCB and CSB specimens examined
in Sections 10.3 and 10.5, were used for the MMB specimen. The reaction
loads from the loading lever were applied at the left cracked end and the
center of the MMB specimens, as shown in Figure 10.24.

Figure 10.24 shows MMB compliance and energy release rate for three
core thicknesses (hc = 10, 20 and 30 mm) calculated over a range of crack
lengths using FEA and the beam analysis (Equations (10.29) and (10.30)) at
a fixed lever distance (c = 25 mm).

The finite element and beam analysis results are in good agreement. The
discrepancies in the compliance for the thinnest specimen (hc = 10 mm)
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Figure 10.25 Global mode ratio vs. crack length for a set of core materials (2L =
150 mm, b = 35 mm).

may be due to its small core-to-face thickness ratio (hc/hf = 5). This thick-
ness ratio is slightly below the “thin face criterion”, Equation (1.7). The en-
ergy release rate calculated from beam theory and FEA are in very good
agreement.

When testing for debond toughness, it is desirable to maintain a constant
mode ratio when the crack advances. Hence, the mode ratio GII/GI should,
ideally, be independent of the crack length. Figure 10.25 shows the global
mode mixity ratio, GII/GI, defined in Equation (10.34) for a sandwich spec-
imen with 2 mm thick glass/polyester face sheets and 30 mm thick H45,
H100 and H200 cores at a fixed loading lever distance (c = 40 mm) vs.
crack length.

The results show that the global mode mixity for the specimens with H100
and H200 cores is approximately constant for a/L > 0.32. For the speci-
mens with a H45 core, however, the mode ratio increases with crack length.

As discussed in Chapter 9, a more realistic assessment of the crack load-
ing is obtained by considering the relative crack flank displacements (Fig-
ure 9.4). This provides the “local mode mixity” expressed by the phase angle
ψ (Equation (10.2)). Sandwich specimens with 2 mm thick glass/polyester
face sheets (Ef = 16.4 GPa) and a H100 PVC foam core (Ec = 135 MPa)
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Figure 10.26 Phase angle ψ vs. lever arm distance c/L for a sandwich with hf =
2 mm, Ef = 16.4 GPa, and H100 core (Ec = 135 MPa) with hc = 10, 20 and
30 mm. 2L = 150 mm, b = 35 mm, and a = 25 mm (a/L = 1/3).

of 10, 20, and 30 mm were analyzed over a range of lever arm distances
(c/L = 0.1 to 1). The results are shown in Figure 10.26.

The results show, as expected, that the phase angle increases with increas-
ing lever arm distance (c/L). Furthermore, the results show that increasing
core thicknesses (hc/hf ) leads to increased phase angle. For large lever arm
distances, the thickest cores start to display mode I dominance, and crack
kinking (Section 9.2) may occur.

10.9 Double Cantilever Beam-Uneven Bending Moments
(DCB-UBM) Specimen

The DCB-UBM test principle, shown schematically in Figure 10.27, was in-
troduced by Sorensen et al. (2006) in an effort to measure the debond fracture
toughness of composite and sandwich specimens over a large range of mode
mixities. The moments M1, and M2 are introduced using two arms, adhe-
sively bonded to the cracked end of the DCB specimen. The arms are loaded
through a wire/roller arrangement connected to the arms. The assembly is
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Figure 10.27 Schematic of DCB-UBM test principle for a debonded sandwich
specimen.

mounted with the specimen axis oriented vertically in a tall test frame where
a moving cross-head provides the pulling force of the wire.

If the wire is flexible and the rollers turn with negligible resistance, the
force F in the wire is uniform along the wire and the moments become

M1 = F l1, (10.36a)

M2 = F l2, (10.36b)

where the lengths l1 and l2 are defined in Figure 10.27 and the signs of M1

and M2 are defined positive if both M1 and M2 tend to open the crack as
shown. A crack loading dominated by mode I is achieved for M1/M2 ≈ 1,
i.e. equal opening moments. Mode II-dominated loading is achieved for
negative moment ratios M1/M2. The magnitudes of the moments may be
changed by changing the distances l1 and l2. By rearranging the wire as
shown in Figure 10.28, the sign of the moment will change.

The uncracked end of the specimen is supported by a roller system (Fig-
ure 10.27) that provides rotational constraint by a moment M3 = M1 − M2.
Further specific details on the test set-up are provided by Sorensen et al.
(2007).

The implied loading on the specimen thus consists of the pure moments
M1 and M2. Following Section 9.4, for this situation we have

Md = M1; Ms = −M2; Mb = M1 − M2; Pd = Ps = Pb = 0.

(10.37)
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Figure 10.28 Arrangement of the wire to change the sign of the moment a) M1 > 0,
b) M1 < 0.

Moreover, from Equation (9.39), the neutral axes of the base part and the
substrate are defined by

eb = 0; es = Ef hf (hf + hc)

2(Ef hf + Echc)
. (10.38)

The load factors on the reduced system are from (9.42b, c) and (9.43b, c)

P ∗ = Ef hf

2Db

(hf +hc)(M1−M2), M∗
d = M1−Ef

Db

h3
f

12
(M1−M2), (10.39)

and

M∗
s = P ∗

(
es + hf + hc

2

)
− M1, (10.40)

where Db is the rigidity of the base part, given by (9.40b)

Db = Ef h3
f

6
+ Ef hf

(hf + hc)
2

2
+ Ech

3
c

12
. (10.41)

Then the energy release rate of the debond is obtained from (9.49):

G = 1 − ν2
f

2Ef

(
P ∗2

hf

+ 12
M∗2

d

h3
f

)
+ P ∗2

(Ef hf + Echc)
2
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+ P ∗M∗
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H2 + M∗2
s

D2
s

H3, (10.42)

where

H1 = 1 − ν2
f

2
Ef hf + 1 − ν2

c

2
Echc, (10.43)
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H2 = (1 − ν2
c )Echces + (1 − ν2

f )Ef hf

(
es − hc

2
− hf

2

)
, (10.44)
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and Ds is the rigidity of the substrate part, given by (9.40c)

Ds = Ef h3
f

12
+ Ef hf

(
hf + hc

2
− es

)2

+ Ech
3
c

12
+ Echce

2
s . (10.46)



Chapter 11
Debond Fracture Testing

Results from experimental studies using the debond test specimens intro-
duced in Chapter 10, i.e. the double cantilever beam (DCB), tilted sand-
wich debond (TSD), cracked sandwich beam (CSB), single cantilever beam
(SCB), three-point sandwich beam (TPSB), mixed mode bending (MMB),
and double cantilever beam-uneven bending moments (DCB-UMB) spec-
imens are discussed. Results of particular interest are the compliance and
energy release rate, and the manner in which the crack propagates, i.e., inter-
face propagation or crack kinking and the determination of debond fracture
toughness.

11.1 Double Cantilever Beam (DCB) Specimen Testing

Prasad and Carlsson (1994b) conducted experiments on DCB specimens
(Figure 11.1) with 2.2 mm thick aluminum face sheets over 15 and 20 mm
thick PVC and polymethacrylimid (PMI) polymer foam cores. The speci-
mens were 25.4 mm wide and 152 mm long. Steel hinge tabs were adhesively
bonded to the precracked end of the specimen, see Figure 11.1.

In order to define a precrack at the upper face/core interface (Figure 11.1),
a 25 µm thick Teflon film was placed between face and core prior to bonding.
Care was used in order not to introduce the bonding adhesive in this region
during panel manufacture. The Teflon film may stick to the face and core.
Furthermore, at the end of the insert film, there is typically a resin pocket that
may provide excessive local fracture resistance. To achieve a natural crack
before the actual fracture tests, load was slowly applied to the specimen until
the crack opened up over the region covered by the insert film and slightly
extended beyond the end of the Teflon film. After precracking, the location
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Figure 11.1 DCB specimen test configuration.

of the precrack tip was marked on the specimen edge with a thin marker pen.
Keeping the marked point as a reference, subsequent points were marked at
5 mm increments. Each crack length was measured at the edge with a high
resolution ruler.

The DCB test specimens were tested under displacement control at a low
cross-head speed of 2 mm/min to allow monitoring of crack propagation
with a traveling microscope. The load vs. displacement (P −δ) response was
recorded using an x–y recorder. Each specimen was loaded until the crack
propagated beyond the insert film. The majority of the specimens failed by
kinking into the core. If the crack remained interfacial, the cross-head was
stopped after 5 mm of crack extension. After the crack growth was com-
pletely arrested, the new crack length was measured and recorded on the x–
y chart. The DCB specimen was then partially unloaded and loaded again.
This sequence was repeated until the crack extended about 50 mm. This test
method provided a set of critical loads for interfacial crack growth for each
test specimen.

Shivakumar and Smith (2004) conducted testing of DCB specimens with
PVC foam and balsa cores with glass/vinylester and carbon/epoxy face
sheets. The PVC foams were H80, H100, H130, and H200, where the nom-
inal density (in kg/m3) is indicated by the number following the “H”. The
carbon/epoxy face sheets were used only for the H100 PVC foam core. Bal-
tek D-grade end-grain balsa wood cores of nominal densities of 100 and
150 kg/m3 were used in combination with the glass/vinylester face sheets.
The test specimens were 25.4 cm long and 3.81 cm wide. Each specimen
was loaded at a cross-head rate of 1.3 mm/min while monitoring the crack
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Figure 11.2 Load-displacement diagram for sandwich DCB specimen with a 15
mm thick R90.400 core.

tip. The crack was allowed to grow slowly until it extended about 2.5 cm,
unless unstable growth occurred, and the cross-head was reversed to obtain
the load-displacement record during unloading. This procedure was repeated
until the total crack extension was about 10 cm. Figure 11.3 shows typical
load-displacement graphs for specimens where the crack propagated unsta-
bly and stably, respectively.

The specimens with H130 and H200 foam cores and balsa cores displayed
stable growth, while the lower density cores (H80 and H100) displayed un-
stable growth (denoted as “stick slip behavior”). The crack in the foam-cored
specimens grew in the core, at a distance d from the face/core interface that
increased with face-to-core modulus ratio, see Figure 11.4.

For the balsa-cored DCB specimens, the crack grew at the face/core inter-
face in regions with weaker bonding, while the crack grew in the core at some
distance from the actual face/core interface in regions of strong face/core ad-
hesion. The crack sometimes kinked 90◦ between two blocks of balsa and
grew through the entire core.



298 11 Debond Fracture Testing

Figure 11.3 Representative load-displacement records for sandwich DCB speci-
mens: (a) unstable growth, (b) stable growth.

Figure 11.4 Depth of sub-interface crack in foam-cored sandwich DCB specimens.

The debond toughness, Gc, of DCB specimens may be determined from
the experimentally determined load-displacement records such as those
shown in Figures 11.2 and 11.3. Shivakumar et al. (2005) examined a variety
of methods to determine Gc for foam core DCB sandwich specimens. Sev-
eral of these methods are currently used to determine the delamination tough-
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Figure 11.5 Compliance-crack length plot used to determine the exponent n in the
Berry expression.

ness of unidirectional composite DCB specimens (ASTM Standard D5528,
2001). The methods are compliance calibration (CC), modified beam the-
ory (MBT), and the area method. The compliance calibration (CC) method
utilizes the following expression for the compliance (Berry, 1963):

C = c0a
n, (11.1)

where c0 and n are empirical constants. Notice that the exponent in Equation
(11.1), n = 3, if classical beam theory is valid. As recognized by Berry
(1963) and several others, the legs in a DCB specimen are not rigidly built
into the uncracked part of the specimen in front of the crack tip. If the ends
of the beams are elastically built-in, they tend to rotate at the crack tip which
causes deviation from the classical beam theory manifested in values of the
exponent, n < 3.

For experimental determination of the parameters c0 and n in Equa-
tion (11.1) the compliance of the DCB specimen is measured at several crack
lengths (Figures 11.12 and 11.13). Compliance and crack-length data are
graphed in a logarithmic form as shown schematically in Figure 11.5.

Taking the logarithm of both sides of Equation (11.5) yields

log C = log c0 + n log a. (11.2)

Hence plotting compliance vs. crack length in a double logarithmic graph
should provide a linear relationship. The exponent n is the slope of the line
as shown in Figure 11.5. Differentiation of Equation (11.1) with respect to
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crack length and substitution into the expression for the energy release rate,
G, Equation (10.1) yields

G = P 2c0nan−1

2b
. (11.3)

Substitution of δc = PcC into Equation (11.3) yields

Gc = nPcδc

2ab
, (11.4)

where subscript c on δ and P indicates displacement and load values at on-
set of crack propagation. This method produces a set of fracture toughness
values, one for each crack length.

Another common method to evaluate Gc from a set of load-displacement
curves is the modified beam theory (MBT) method. For a rigidly built-in
beam with negligible shear deformation, n = 3 in Equation (11.1). Equation
(11.4) with n = 3 becomes

Gc = 3Pcδc

2ab
. (11.5)

This equation overestimates Gc since n is less than 3. The MBT corrects
this by adding a length, �, to the actual crack length, a, and Equation (11.5)
becomes

Ge = 3Pcδc

2(a + �)b
. (11.6)

The length � is determined by plotting the third root of compliance vs. crack
length as illustrated in Figure 11.6. A linear fit is constructed, and the line is
extrapolated to C1/3 = 0 to yield the parameter �. Once � is determined,
Gc is calculated at each crack length using Equation (11.6).

Shivakumar and Smith (2004) also determined the fracture toughness, Gc,
from the load-displacement records using the “area method”

Gc = �U

b�a
, (11.7)

where �U is the area enclosed within a loading-unloading cycle, see Fig-
ure 11.3, and �a is the amount of crack extension during such a cycle. This
method was originally proposed for evaluation of Gc in delamination testing
of composite laminates by Whitney et al. (1982). This procedure, however,
is generally not accepted because it provides an integrated value of Gc.

Shivakumar et al. (2005) determined Gc from DCB test results using the
various methods described above and presented the results in the form of R
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Figure 11.6 Compliance plot for experimental determination of the parameter � in
the MBT approach.

Figure 11.7 R curves for DCB sandwich specimens with carbon/vinylester face
sheets and H100 core determined using various methods (after Shivakumar et al.,
2005).

curves (Gc vs. �a where �a is the extension of the crack from the initial
artificial precrack), see Figure 11.7.

The MBT method yields quite consistent toughness values, while the CC
results in large scatter. The area method yileds Gc values below those deter-
mined using the other methods. The area method provides an average value
of Gc for each crack increment (�a), and such an average does not have a
very clear interpretation when the crack propagates in a dynamic mode be-
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Table 11.1 Debond toughness of sandwich DCB specimens. The ± range refers to
the standard deviation (Shivakumar and Smith, 2004).

Face Core Core Density (kg/m3) Gc (J/m2)

G/VE PVC 80 367±59
G/VE PVC 100 558±106
C/VE PVC 100 560±110
G/VE PVC 130 878±211
G/VE PVC 200 1350±270
G/VE Balsa 100 693±243
G/VE Balsa 150 1008±262

tween onset and arrest. The area method was eliminated from the ASTM
DCB test standard D5528 (2001), for this and other reasons. Shivakumar et
al. (2005) recommend the MBT method because of its accuracy and simplic-
ity. They further recommend that testing is aborted once the crack length-
to-specimen length ratio (a/L) exceeds 0.53. Beyond this range specimen
end-effects start to introduce nonlinearities.

Average debond toughness values and standard deviations DCB sandwich
specimens are summarized in Table 11.1. The results in Table 11.1 show
that the debond toughness for the PVC foam-cored sandwich specimens in-
creases with foam density, which is expected since the fracture occurred in
the core. Similarly, the debond toughness of the balsa-cored specimens in-
creases with the density of the balsa wood. For a given density of the core,
the balsa core provides higher debond toughness than the PVC cores. This
is probably due to the fibrous structure of the end-grain balsa wood which
provides more resistance to crack propagation than the isotropic and homo-
geneous cross-linked PVC foams. Table 11.1 further reveals that the speci-
mens with different face sheets (glass/vinylester and carbon/epoxy) and same
core (H100) have almost identical debond toughnesses. This shows that the
debond toughness does not depend on face stiffness and the type of resin
used, provided that the actual face/core interface is tough enough to promote
fracture of the core. Figure 11.4 shows that debond growth in the specimens
with glass/vinylester face sheets occurred much closer to the interface than
for those with carbon/epoxy faces, but this difference does not seem to influ-
ence the toughness.
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Figure 11.8 Schematic of TSD specimen test configuration.

11.2 Tilted Sandwich Debond (TSD) Specimen Testing

The TSD specimen (Figure 11.8), discussed in Section 10.4, was used in ex-
perimental studies of face/core debond toughness by Li and Carlsson (1999),
and Viana and Carlsson (2003). This specimen was employed also by Ma-
jumdar et al. (2003) who examined the effects of resin penetration on the
face/core debond toughness.

The bottom face of the sandwich specimen is adhesively bonded to a
2.5 mm thick steel plate bolted to a rotatable vice resting on the horizon-
tal base of the test frame. The vice arrangement allows testing over a range
of tilt angles, −60◦ ≤ θ ≤ 60◦. Vertical loading without the introduction of
moments and horizontal force is accomplished by bonding a hinge load tab
to the end of the specimen, on the partially separated face sheet, connected



304 11 Debond Fracture Testing

Figure 11.9 Load-displacement curves for a glass/polyester/H100 TSD specimen.
Tilt angle θ = 10◦. The specimens were 25.4 cm long and 3.8 cm wide.

to a long rod mounted, moment-free, to a load cell attached to the moving
cross-head of the test frame. The long bar guaranteed proportionality of the
axial and normal components (PA and PN ) of the vertical load as defined in
Figure 10.11, verified in a kinematics analysis of the TSD configuration by
Li and Carlsson (2000).

Testing of TSD specimens consisting of 3.6 mm thick glass/polyester
faces over a 50 mm thick H100 PVC foam core was performed by Li and
Carlsson (1999). The tests were conducted in displacement control at a cross-
head rate of 1.27 mm/min until the crack propagated, typically followed by
rapid (unstable) propagation and subsequent arrest. After arrest, the speci-
men was partially or fully unloaded. This procedure was repeated until the
crack front approached the specimen end to achieve multiple compliance
and critical load values. Six to eight measurements of compliance and criti-
cal load were recorded for the 23–25 cm long specimens. Figure 11.9 shows
a typical load-displacement record for a glass/polyester/H100 specimen with
a 6.4 cm long precrack, where in this case the crack length refers to the edge
of the specimen.

The response is almost linear prior to crack propagation which occurs in
a stick-slip manner at each increment of loading. The amount of unstable
growth increased with increasing crack length and typically ranged from 5–
30 mm. The crack front was observed from one of the specimen edges. It
was observed that the initial face/core crack (cut by a sharp knife) deflected
slightly into the core and reached a depth of about 1 to 5 mm and then re-
turned to a location near the upper face just below the 0.3–0.9 mm thick
face/core interphase region, see the schematic illustration in Figure 11.10.
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Figure 11.10 Schematic of crack propagation paths in foam-cored TSD specimens.
(a) Deep sub-interface crack, (b) shallow sub-interface crack.

Figure 11.11 Compliance vs. crack length for two glass/polyester/H100 TSD spec-
imens (θ = 10◦). The solid triangles and circles represent experimental data while
the curves represent fits to the data.

Debond fracture toughness Gc was determined using the experimental
compliance calibration method by fitting a polynomial to the compliance-
crack length data,

C = m0 + m1a + m2a
2. (11.8)
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Figure 11.12 Fracture resistance curves for face/core separation in TSD specimens
with H100 core.

Figure 11.11 shows compliance vs. crack length data for two replicate TSD
specimens, and polynomial fits (Equation (11.8)), to the data. The two fit-
ted curves reveal consistency between specimens. Determination of Gc is
accomplished by differentiation of Equation (11.8) with respect to the crack
length and substitution into Equation (10.1), which yields

Gc = P 2
c

2b
(m1 + 2m2a). (11.9)

Figure 11.12 shows some representative R curves for the glass/polyester/
H100 specimens tested at tilt angles, θ = −10◦ and 10◦. The data scatter is
large but the results indicate that the debond toughness is quite independent
of crack length. The lack of R curve behavior is consistent with results from
DCB testing of sandwich specimens with H100 core, see Figure 11.7. The
toughness, however, is significantly less than measured with the DCB spec-
imen. This difference is not expected to be due to the different test meth-
ods. Both are mode I-dominated and the fracture process similar. The dif-
ference is most likely due to batch-to-batch variations between core panels.
Figure 11.12 shows that the specimens with θ = 10◦ and θ = −10◦ produce
similar R curves (considering the relatively large specimen-to-specimen scat-
ter). The insensitivity of the toughness to such large difference in tilt angle
is consistent with the insensitivity of the mode mixity to changes of the tilt
angle discussed earlier (see, e.g., Figure 10.13).
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Table 11.2 Debond toughness measured with the TSD specimen. The ± range de-
notes the standard deviation.

Specimen Gc (J/m2)

G/PE/H30 196±48
G/VE/R75 325±12
Al/H100 368±57
Al/H200 1270±57
G/VE/R400 1300±97

Viana and Carlsson (2003) determined the debond toughness of sandwich
TSD specimen with a range of PVC foam cores. Both composite and alu-
minum face sheets were examined. The TSD specimens were tested at a
tilt angle of 10◦ and a cross-head rate of 1 mm/min. Fracture of the sand-
wich specimens with H30, R75, H100, and H200 cores occurred in the core
at a depth of about 1–2 mm below the actual face/core interface. For the
specimens with the highest density core (R400), the crack “meandered”, i.e.,
propagated in the core for some distance and then returned very close to the
actual face/core interface.

Debond toughness Gc was evaluated from the experimental load-
displacement curves using the experimental compliance calibration method
and a polynomial fit (Equation (11.8)) as described earlier. Overall, the re-
sistance curves were flat, within a relatively large scatter band. Table 11.2
summarizes average toughness values.

Comparison with the DCB test data in Table 11.1 shows that the DCB and
TSD tests produce similar results. As discussed above, face/core separation
in TSD testing of sandwich specimens with a PVC foam core tends to occur
in the core, parallel to the actual face/core interface. Shivakumar and Smith
(2004) found this also to be the case for DCB sandwich specimens.

If the crack propagates in the core it is expected that the face/core debond
toughness Gc measured with the mode I-dominated TSD specimen, should
be similar to the fracture toughness of the foam (GIc). Figure 11.13 shows
fracture toughness for face/core separation measured using the DCB speci-
men (Shivakumar and Smith, 2004), the TSD specimen (Viana and Carlsson,
2003), and fracture toughness of the PVC foam measured using the single-
edge notch bend (SENB) specimen (Viana and Carlsson, 2002a), plotted vs.
foam density.

Notice that the DCB and TSD tests produce similar toughness values
which would be expected from the similarity in fracture mechanisms and
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Figure 11.13 Fracture toughness for face/core separation Gc and foam fracture
toughness GIC vs. foam density.

their mode I dominance. The core toughness, however, falls significantly be-
low the debond toughness at any given foam density. The difference may be
due to several reasons, as discussed by Viana and Carlsson (2002b), such as
a gradient of foam density in the core with a higher density (and toughness)
near the surfaces of the foam sheet, i.e., near the face/core interface where the
crack propagates. It is also possible that the core is not completely isotropic.
In the DCB and TSD tests, the crack propagates in-plane, while in the SENB
test, the crack propagates through the core panel thickness, perpendicular to
the plane of the core panel.

11.3 Cracked Sandwich Beam (CSB) Specimen Testing

Experimental studies have been conducted on the CSB specimen shown in
Figure 11.14 by Carlsson et al. (1991) and Shipsha et al. (1999). Carlsson et
al. (1991) examined sandwich specimens consisting of glass/polyester face
sheets over a balsa core. Sandwich panels were wet laid-up at Viking Yachts
in St. Petersburg, Florida, representative of hull constructions presently in
use. A precrack was achieved by placing a folded thin (0.025 mm) vacuum
bagging film between the core and one of the face sheets. A major differ-
ence between the actual boat construction and the present panels is in the
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Figure 11.14 Schematic of CSB specimen.

omission of chopped strand matting (CSM) from the face sheet-core inter-
faces. The CSM was omitted because the CSM layers are difficult to model
precisely in situ and to avoid the possible complexities associated with a rel-
ative thick composite interlayer between face and core. The face laminates
employed zero degree plies next to the core in order to promote co-planar
crack growth. The lay up was a [0/ ± 45/ ± 45/0/core]s where the over-
bar denotes that the plane of symmetry of the sandwich is at the core center.
Mechanical properties of the face sheets were determined by standard test
methods and properties of end-grain balsa wood core material were obtained
from the manufacturer’s data sheet. It should be pointed out here that the
end-grain balsa wood core material is composed of wooden blocks with the
longitudinal (L) axis along the z axis of the CSB specimen, with the radial
(R) and tangential (T ) directions randomly oriented in the plane of the sand-
wich panel. The mechanical properties in the radial and tangential planes
may differ significantly and there are large block-to-block density variations
which lead to scatter in the properties of the core. The beam width was 12.7
cm, the total beam length was 55 cm, and the debond length was 20 cm.

The CSB compliance was determined in a three-point flexure fixture
mounted in a general-purpose test frame. The span length, 2L, in Fig-
ure 10.15, was 30.5 cm. The cylindrical steel rods used for load introduction
and supports were 25.4 mm in diameter. Displacements at the central loading
point were monitored with a linear voltage differential transformer (LVDT).

The long beam allowed positioning of the beam on the three-point flex-
ure fixture so that any desired crack length, a in Figure 11.14, between 0
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Figure 11.15 Compliance vs. crack length (a/L) for a CSB specimen with
glass/polyester faces on balsa core. Solid line: CSB analysis with shear. Dashed
line: CSB analysis without shear. Filled circles: experiment.

and 15.2 cm could be achieved. Hence, any given specimen could be tested
“without crack” and at any crack length. It was possible to load the same
specimen several times by keeping the load small, within the linear elas-
tic region of response. Seven crack lengths per specimen and five replicate
specimens were tested. The specimens were loaded at a constant displace-
ment rate of 1.27 mm/min, and unloaded after a linear response curve was
recorded.

Figure 11.15 shows compliance plotted vs. crack length, normalized by
the half span length L. The scatter (c.o.v) in any compliance value was less
than 12%. Such scatter is largely due to the nature of the core material. Com-
pliance predictions using Equation (10.21) with and without inclusion of
transverse shear deformation are also shown.

It is observed that the experiments are bounded by the analytical predic-
tions and that shear deformation must be included to realistically predict the
compliance, especially at short crack lengths where neglecting the shear de-
formation would lead to substantial percentage error.

Compliance calibration was performed by fitting a third-order polynomial
to experimental compliance vs. crack length data,

C = C0 + ma3, (11.10)

where C0 is the compliance at zero crack length and m is a curve fit para-
meter. Equations (11.10) and (10.1) yield the following expression for the
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Figure 11.16 Load-displacement curve for a CSB sandwich specimen with
glass/polyester face sheets and with a 5.1 cm precrack.

fracture toughness:

Gc = 3ma2P 2
c

2b
. (11.11)

After the completion of the compliance measurements each specimen was
loaded until the crack propagated. A 5.1 cm crack length was found to be
optimum. Shorter crack lengths would not allow crack growth to occur prior
to core shear failure and longer crack lengths resulted in core crushing near
the crack tip. The onset of crack growth was determined by inspection of the
crack front by a microscope. The point where direct observation of the crack
tip revealed that the crack started to propagate was marked on the load vs.
displacement graph, see Figure 11.16. After initiation, the crack propagated
in a stable manner as indicated. The average measured critical load Pc for
the test specimens was used to calculate the fracture toughness, Gc, based
on experimental compliance calibration, Equation (11.11) and direct appli-
cation of the beam analysis (Equation (10.26)). Critical load and the fracture
toughness for face sheet-core debonding are listed in Table 11.3.

The compliance calibration and analytical method to determine GIIc are in
close agreement. This is to be expected for this case because of the consistent
analytical and experimental compliance data (Figure 11.15).
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Table 11.3 Critical load and mode II fracture toughness of glass/polyester on balsa
core sandwich beam specimens. Superscripts “CC” and “A” refer to the compliance
calibration and the analytical equation (10.26), respectively.

Pc, kN GCC
IIc , kJ/m2 GA

IIc, kJ/m2

6.7±0.8 1.06 1.07

Figure 11.17 Modified CSB specimen according to Shipsha et al. (1999). All di-
mensions are in mm.

Shipsha et al. (1999) conducted analysis and testing on CSB specimens
consisting of 3.3 mm thick glass fabric reinforced polyester faces and 25 mm
thick Rohacell WF51 and H100 cores, respectively. The face/core debond
was simulated using a 50 mm long and 125 µm thick Teflon film placed
between face and core prior to wet lay-up so as to prevent bonding. Fig-
ure 11.17 shows the CSB configuration. By removing a thin vertical slice of
the core at the cracked end and inserting an aluminum plate with rounded
edges, compressive load transfer was achieved between the lower and upper
face sheets, without constraining the sliding displacements associated with
mode II crack loading. A 50 mm wide wooden pad was used to distribute
the central load on the upper face sheet and 60 mm diameter steel cylinders
were used as supports.

Static tests were performed at a displacement rate of 2 mm/min. The crack
propagated unstably from the end of the insert to the inner support in one
increment. Crack propagation occurred near the face/core interface one or
two cells down in the core below the resin-impregnated cells. Finite ele-
ment analysis was conducted on the two specimen configurations to deter-
mine stress intensity factors, KI and KII, over a range of crack lengths from
50 to about 80 mm. Eight-node quadratic membrane elements were used in
the two-dimensional linear numerical models. The face and core materials
were treated as isotropic, and linear elastic fracture mechanics (LEFM) was
applied. The crack was assumed to be located two cells down in the core
material. Contact elements were used on the two crack flanges which were
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Figure 11.18 SCB test fixture.

assumed to slide without friction. Stress intensity factors were determined
by using the displacement extrapolation method (Shipsha et al., 1999).

Crack loading was found to be highly dominated by shear (mode II), al-
though there was a small amount of opening present, apparently a conse-
quence of the strong material mismatch and the use of an aluminum plate
at the end. Based on their unit load solutions for the stress intensity factors
and the measured critical load for crack propagation, Shipsha et al. (1999)
determined the mode II fracture toughness expressed as the critical stress in-
tensity factors and obtained KIIC = 0.5 and 0.31 MPa

√
m for the sandwich

specimens with H100 and WF51 cores, respectively. With the following data
for the H100 and WF51 foams, provided by Burman (1998): E = 105 MPa,
ν = 0.31 (H100), and E = 85 MPa, ν = 0.42 (WF51), conversion to energy
release rate, Equation (9.12) yields GIIc = 2.15 kJ/m2 (H100) and 0.93 kJ/m2

(WF51).

11.4 Single Cantilever Beam (SCB) Specimen Testing

The SCB specimen test principle proposed by Cantwell and Davies (1994),
illustrated in Figure 11.18, was used to examine face/core adhesion in sand-
wich specimens consisting of glass/polyester face sheets and balsa and hon-
eycomb cores.

The specimens were 20 cm long and 2 cm wide. A precrack was intro-
duced by advancing a sharp razor blade a couple of mm at the face/core
interface, and then pulling the face away from the core with the aid of a steel
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Figure 11.19 Fracture resistance curve for a SCB specimen with glass/polyester
face sheets and balsa core.

bar inserted between face and core. The total length of the precrack was
about 50 mm. After precracking, the lower face was adhesively bonded to a
10 mm thick steel plate, placed on a movable chariot. An aluminum block or
a hinge tab was bonded to the face at the end of the precracked region. A load
was applied at the end tab until crack propagation occurred. The specimen
was then unloaded and loaded again until a new increment of crack growth
occurred. This procedure was repeated until the crack propagated close to
the specimen end. The crack length was determined by a mm scale attached
to the edge of the specimen. Fracture toughness for separation of the face
was determined using the Berry (1963) experimental compliance calibration
method, see Section 11.1. For end-grain balsa-cored specimens (density =
100 kg/m3) it was found that the crack growth was stable, always occurring
at the face/core interface.

Figure 11.19 shows a R curve for the balsa-cored specimen. The tough-
ness varies between 360 and 500 J/m2 indicating some significant scatter.
Cantwell and Davies (1994) pointed out that the integrity of the face/core
interface of balsa-cored sandwich panels is sensitive to the moisture con-
tent in the balsa present during bonding of the faces. The toughness is quite
small compared to values determined for co-cured balsa-cored DCB sand-
wich specimens by Shivakumar and Smith (2004) (see Figure 11.20).

Shivakumar and Smith (2004) consistently observed crack propaga-
tion in the core (sub-interface crack) as a result of good face/core adhe-
sion. Cantwell and Davies (1994) also examined a sandwich consisting of
glass/polyester face sheets over a carbon/epoxy honeycomb core (unspec-
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Figure 11.20 Debond toughness vs. density of balsa core.

Figure 11.21 Fracture resistance curve determined using the SCB test of a sand-
wich with glass/polyester face sheets over a honeycomb core.

ified grade). Based on the photographs provided, the cell size was about
2 mm. Debond testing revealed stable crack propagation behavior. Fig-
ure 11.21 shows a R curve for this sandwich. Although there is some scatter,
the fracture toughness is substantially higher for the honeycomb-cored sand-
wich than for the balsa-cored sandwich (Figure 11.19). This may not be ex-
pected due to the discontinuous structure of the core in a honeycomb-cored
sandwich. Inspection of the failure surfaces of debonded honeycomb core
revealed that the face separation did not occur at the actual face/core inter-
face, but fractions of a mm away from the interface, inside the core, which
indicates a strong interface bond.
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Figure 11.22 SCB test panels. The numbers indicate the nominal layer thick-
nesses.

Further studies of the debond toughness of sandwich specimens using
SCB specimens were conducted by Cantwell and Davies (1996). The face
sheets utilized two layers of stitched quadriaxial E-glass fabrics. Sandwich
panels were made with balsa wood and PVC foam cores. The density of the
balsa core was 175 kg/m3. Cross-linked and linear PVC foam cores of densi-
ties of 80 and 75 kg/m3, respectively, were used. Figure 11.22 illustrates the
various sandwich panels examined.

Sandwich panel A constitutes a reference in which the face sheets were
laid-up on an untreated (as-received) balsa core. The sandwich panels B, C
and D utilized a core that was “sealed” before wet lay-up by application of
a coating of the polyester resin used as a matrix for the face sheets. The
resin was allowed to gel before the face sheets were added. Sandwich panel
C contained a layer of chopped strand mat (areal weight 450 g/m2) at the
face/core interfaces, while sandwich D utilized a 130 g/m2 thermoplastic
polyester fiber mat at both face/core interfaces. The sandwich panels E and
F utilized thermoset and thermoplastic PVC foam cores, respectively.

Face/core debond testing was conducted using the SCB specimen. Crack
propagation occurred in a stable manner in all specimens, except for the spec-
imens with a cross-linked PVC core, panel E in Figure 11.22, which showed
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Table 11.4 Face separation toughness for sandwich specimens with glass/polyester
(G/PE) and glass/epoxy (G/E) face sheets on balsa and PVC foam cores measured
using the SCB specimen. “S”represents sealed core, “X” cross-linked, and “L” lin-
ear.

Sandwich Face Core Density (kg/m3) Gc (kJ/m2)

A G/PE Balsa 175 1.32
B G/PE Balsa (S) 175 1.13
C G/PE Balsa (S) 175 0.96
D G/PE Balsa (S) 175 1.30
E G/E PVC (X) 80 0.51
F G/E PVC (L) 75 2.77∗

∗Gc determined using area method.

stick-slip behavior. In sandwich A, fibers from the face sheets debonded and
formed a bridging zone behind the propagating crack. In sandwich B, less
fiber bridging was observed although the crack remained at the interface. In
sandwich C, the crack remained within the CSM layer. The face/core adhe-
sion in sandwich D was so high that the crack propagated as a delamina-
tion in the composite face sheet. For the sandwich with a cross-linked PVC
core, sandwich E, the crack meandered between the face/core interface and
within the core, while for sandwich F the crack propagated in the faom core.
Face separation toughness values determined using the compliance calibra-
tion method are summarized in Table 11.4.

Of the four balsa wood sandwich systems, the one an with untreated
core (A) displayed the highest toughness, although fracture occurred at the
face/core interface and not within the core. The high toughness of panel A
seems to be associated with the debonding and pull-out contributions from
bridged fibers between face and core. The lower debond toughness of panel
B was explained by fewer bridged fibers and a weaker face/core bond as the
sealed core layer restricts penetration of the face resin into the core. Panel
C displayed less toughness than the other balsa-cored panels. This was at-
tributed to fracture governed by the relatively weak CSM layer. The high
toughness of panel D, with a layer of thermoplastic polyester fibers in poly-
ester resin between face and core, is attributed to the very tough thermoplas-
tic fiber material and strong adhesion of the layer to the core.

For the cross-linked PVC foamed core sandwich panel (E), the toughness
falls below that of the balsa core specimens, but the core density is much
less. The very high toughness of the sandwich specimens with a thermo-
plastic core (F) is attributed to the high ductility of the thermoplastic foam,
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Figure 11.23 TPSB test configuration used by Cantwell et al. (1999).

although the area method may overestimate the actual toughness due to the
possible influences of large displacements and plasticity during the fracture
testing. The specimens exhibited considerable permanent deformation after
unloading.

11.5 Three-Point Sandwich Beam (TPSB) Specimen Testing

The TPSB specimen (Figure 11.23) provides mixed mode crack loading, see
Section 10.7. This test method was used by Cantwell et al. (1999) to charac-
terize debond fracture of balsa-cored sandwich panels A–D (Figure 11.22).
Beams of 14 cm length and 2 cm width were tested on a three-point flexure
fixture at a span length of 12 cm. The specimens contained a precrack ap-
proximately 30 mm long. Testing was conducted under displacement control
at a cross-head rate of 1 mm/min, except for some tests where the influence
of rate on fracture toughness was investigated.

The debond fracture toughness was determined using the compliance cal-
ibration method by fitting a third-order polynomial to the compliance data

C = C0 + ka3, (11.12)

where C0 and k are constants, and a is the crack length. Figure 11.24 shows
a typical compliance calibration plot for a sandwich specimen from panel A.
The fracture toughness was determined from the critical load, Pc, according
to
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Figure 11.24 Compliance vs. crack length cube graph for a TPSB specimen (panel
A).

Gc = 3kPc
2a2

2b
, (11.13)

where k is the slope of the C vs. a3 graph (Figure 11.24).
Fracture testing revealed that the crack generally propagated in a stable

manner, except for panel B. The failure process at the interface was simi-
lar to that observed for the SCB specimens from panels A–D discussed in
Section 11.4, i.e., debond failure involved a substantial degree of fiber bridg-
ing. Figure 11.25 shows a typical R curve for a specimen from panel D. The
average toughness is about 1.1 kJ/m2.

This value may be compared to the value of 1.3 kJ/m2 determined for
panel D using the SCB specimen (Table 11.4). The values are similar. The
TPSB specimen (Figure 11.23) is expected to be more mode II-dominated
than the SCB specimen (Figure 11.18). Generally, increasing mode II dom-
inance is expected to elevate the toughness of the interface. The fracture
process, however, is greatly influenced by fiber bridging which makes local
concepts such as mode mixity less meaningful.

The face separation toughness values determined for sandwich panels
A–D are summarized in Figure 11.26. The toughness values for panels
A, C and D are similar, while the toughness of panel B is only about
500 J/m2. Cantwell et al. (1999) attributed the low toughness of this
panel to a defective panel. They also examined the effect of loading rate



320 11 Debond Fracture Testing

Figure 11.25 Typical R curve for a sandwich specimen from panel D determined
using the TPSB test.

Figure 11.26 Face separation toughness of balsa-cored sandwich specimens deter-
mined using the TPSB specimen.

on the debond toughness. Increased loading rate reduced the toughness,
see Figure 11.27.
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Figure 11.27 Debond fracture toughness of panel D at various cross-head rates.

11.6 Mixed Mode Bending (MMB) Specimen Testing

Analysis of the MMB specimen (Section 10.8), provides expressions for the
compliance and energy release rate, Equations (10.29) and (10.30). This test
configuration does not allow compliance calibration and testing is conducted
straight from the precrack. Figure 11.28 shows a photograph of the test fix-
ture with a sandwich specimen.

MMB sandwich beams were prepared from a sandwich panel consisting
of a 30 mm thick H100 PVC foam core and 2 mm E-glass/polyester face
sheets. The face and core moduli are: Ef = 16.4 GPa and Ec = 135 MPa.
The specimens were 35 mm wide and the span length was 150 mm. A
face/core debond was created by cutting the core cells at the upper face/core
interface with a very thin razor blade of 0.35 mm thickness. Steel hinges were
bonded to the MMB specimen to allow load introduction. The initial debond
length (a), measured from the loading line to the crack tip was 25 mm. The
mode mixity was varied by changing the lever arm distance, c (c = 30, 40
and 50 mm). The specimens were loaded at a cross-head rate of 1 mm/min.
Typical load vs. displacement curves are shown in Figure 11.29. All speci-
mens failed through debond propagation as marked with an open circle “◦”).
Very good overall agreement between the experimentally measured and pre-
dicted (Equation (10.29)) initial stiffness of the MMB specimen is noted.

In all cases, the crack propagated in the core below the resin-rich foam cell
region. The face/core fracture toughness Gc was determined by substitution
of the debond fracture load into Equation (10.30): Gc = 580 J/m2. This
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Figure 11.28 MMB test fixture and sandwich test specimen.

result agrees reasonably with the fracture toughness (700 J/m2) for a similar
sandwich measured by Shivakamar and Chen (2005) using the DCB test. The
phase angle, ψ , determined from Equation (10.2) ranges from −18 to −21◦
for the lever arm distances used (c = 30, 40, and 50 mm).

11.7 Double Cantilever Beam-Uneven Bending Moments
(DCB-UMB) Specimen Testing

Lundsgaard et al. (2008) utilized the DCB-UBM test described in Section
10.9 to determine cohesive laws for face/core separation in sandwich speci-
mens consisting of quasi-isotropic glass/polyester face sheets and H200 PVC
foam core. The face sheets are assumed to be isotropic in the plane of the
sandwich with Ef = 14.1 GPa and νc = 0.32. The corresponding mechan-
ical properties of the isotropic core are Ec = 250 MPa and νc = 0.32. In
addition to the face and core materials, a thin layer of “chopped strand mat”
(CSM) was added at each face/core interface to promote toughening through
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Figure 11.29 Experimental and analytical load vs. displacement for MMB speci-
mens with glass/polyester face sheets bonded to a H100 PVC foam core (“◦ marks
the onset of crack growth, hc = 30 mm, hf = 2 mm, 2L = 150 mm and
b = 35 mm). After Quispitupa et al. (2009).

bridging of the chopped fibers. Figure 11.30 shows the sandwich test speci-
men and dimensions.

The nominal width of the test specimens was 30 mm. A 70 mm edge
precrack was defined at the lower face/core interface by a 0.2 mm thick non-
stick Teflon film inserted before processing. To avoid excessive bending de-
formation and failure of the DCB-UBM specimen legs, 6 mm thick high
yield strength steel bars were adhesively bonded to the upper and lower face
sheets of the sandwich test specimen, see Figure 11.30. The DCB-UBM test
fixture, discussed in Section 10.9, and shown schematically in Figure 11.31,
was used in the fracture testing.
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Figure 11.30 DCB-UMB test specimen and dimensions (mm).

The moments M and M2 are applied to the legs using a single wire system
connected to a tall test frame fitted with a 5 kN load cell. The moments M1

and M2 are given by
M1 = −P�1, (11.14a)

M2 = P�2, (11.14b)

where P is the tension in the wire and �1 and �2 are the lengths shown in Fig-
ure 11.31. The moments are defined positive if they tend to open the crack.
As discussed in Section 10.9, mode I-dominated crack loading is achieved
by positive moments (M1 > 0,M2 > 0), while mode II-dominated loading
corresponds to opposite signs of the moments.

With this loading and test specimen configuration, it is possible to vary
the ratio between the opening and the sliding crack flank displacement δt/δn

defined in Figure 9.4. The opening and sliding deformations of the ini-
tial crack tip were measured throughout the test. In early experiments on
crack propagation in monolithic composites, reference pins were inserted
into the material and the displacements were measured using extensometers
and LVDTs. For sandwich specimens, displacements were measured with a
commercial digital photogrammetry system ARAMIS. A speckled pattern
is spray-painted to the specimen edges, which allows the system software to
track the displacements. The set-up including the test specimen and 2 Mpixel
cameras is shown in Figure 11.32.
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Figure 11.31 DCB-UBM test principle.

The test was conducted by Lundsgaard et al. (2008) at a moment ratio
M1/M2 = −0.53. It was found that this loading corresponds to almost pure
mode I loading, i.e. the sliding displacement δt ≈ 0. The J integral, defined
in Equation (9.32) is calculated from the applied moments for the five-layer
test specimen shown in Figure 11.30. For calculation of the J integral, the
beam is divided into three sub-beams (Figure 11.33). The cracked region is
represented by sub-beams #1 and 2, while the intact region is represented
by beam #3. Calculation of the J integral requires selection of a path, �,
around the crack tip. In this case, for simplicity, a path around the external
boundaries of the specimen is selected. As shown in Figure 11.33, the path

11.7.1 Double Cantilever Beam-Uneven Bending Moments
(DCB-UBM) Specimen Test Results
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Figure 11.32 The deformation of the sandwich specimen is tracked by digital cam-
eras with a frequency of 1 frame per second. (Courtesy of C. Lundsgaard (2009).

Figure 11.33 J integral path for element of five-layered DCB-UBM specimen.
Only the vertical segments of the path, �, provide non-zero contributions to J .

consists of vertical and horizontal segments. For the vertical segments on
the left edge, dS in Equation (9.32) is dS = −dy, and the outward normal
vector, nj = (−1, 0), whereas for the vertical segments on the right edge
dS = dy and nj = (1, 0). For the horizontal segments on top and bottom
of the beam element, the outward normals are nj = (0, 1) and nj = (0,−1)

for the upper (u) and lower (l) segments. Since the top and bottom surfaces
are traction free and dy = 0, there is no contribution to the J integral from
the horizontal segments of the path. The J integral becomes a sum of the
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Figure 11.34 JR vs. crack opening for a sandwich specimen with glass/polyester
face sheets and H200 foam core.

Figure 11.35 Cohesive law for face/core separation under mode I-dominated load-
ing when fiber bridging is present.

10 contributions, two from each layer in the five-layer beam, which results
in (Lundsgaard et al., 2008)

J =
10∑

p=1

−1

2
Ēp(εxx)

2
pdy, (11.15)

where p is the path segment #, Figure 11.33 (p = 1, 2, . . . , 10), Ēp = Ep

for plane stress, and Ēp = Ep/(1 − ν2
p) for plane strain, where Ep is the
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elastic modulus of the layer associated with the path index (p), and νp is the
corresponding Poisson’s ratio. Assuming a linear variation of strain, εxx , the
expression for J finally becomes

(11.16)
where b indicates the beam #, b = 1, 2 and 3, see Figure 11.33. Ab, Bb and
Db are the extensional, coupling and bending stiffnesses for each sub-beam
(b) calculated from the elastic modulus of each layer and ply coordinates for
each sub-beam according to

Ab =
n∑

u=1

Ēk(yk − yk−1) (11.17a)

Bb = 1

2

n∑
u=1

Ēk(y
2
h − y2

k−1) (11.17b)

Db = 1

3

n∑
u=1

Ēk(y
3
k − y3

k−1) (11.17c)

where k is the ply index for each sub-beam. The number of plies, n = 3 for
sub-beam #1, n = 2 for sub-beam #2, and n = 5 for sub-beam #3. yk are
the “ply coordinates” defined for each sub-beam by a local xy coordinate
system, where the origin of the y axis is placed at the mid-plane of each
sub-beam. Consistent with the analysis of laminated plates (Chapter 3) yk

represents the y coordinate for the ply interface between ply k − 1 and ply
k as measured from the mid-plane of each sub-beam, see Figure 3.2. Notice
that J is independent of the crack length.

Because of the mode I-dominated loading case, only normal tractions and
displacements are considered. JR vs. the opening displacement δn is shown
in Figure 11.34. JR increases rapidly with δn until the crack growth initiates
at about 400 J/m2. From this point, the crack propagates in a stable man-
ner where the increased fracture resistance is due to the development of a
bridging zone behind the crack tip.

The data points are fitted by third-order least-squares splines and the fitted
date are represented by the curve. To determine the normal tractions, σn,
acting over the cohesive zone (Equation (9.38a)) is applied:

σn = ∂Jr

∂δn

. (11.18)

J =
10∑

p=1

ĒpM2
b

6(AbDb − B2
b )

[A2
b(y

3
p−1−y3

p)−3AbBb(y
2
p−1−y2

p)+3B2
b (yp−1−yp)]
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The cohesive law determined from the results in Figure 11.34 is shown in
Figure 11.35. It is noted that the fracture process consists of two major parts.
Initially, the stress increases rapidly to 5.2 MPa when the material ahead of
the crack tip separates. Since fiber bridging is present, the stress decreases
gradually to close to zero as the crack opens from 0.15 to 5.7 mm.



Chapter 12
Face/Core Debond Buckling and Growth

12.1 Introduction

The face/core debond is justifiably considered to be a weak link in the use of
sandwich structures. This is because such debonds tend to grow and eventu-
ally completely delaminate the face sheet. The most common cause of these
defects is poor or missing bonding due to careless manufacturing or a mis-
match in the geometry. Similar defects may also arise during service due
to thermo-mechanical loads, impact events, or structural fatigue. Debonds or
delaminations are susceptible to the phenomenon of “delamination buckling”
which occurs when local compressive loading is introduced at the debond
site. It is not actually necessary for the structure to be compressed, as even
a pure bending loading would introduce axial compression on one of the
face sheets. Therefore, the mechanics of debonds considers both structural
(buckling) and fracture behavior (stress intensity factors, etc.).

This chapter presents solutions for both the debond buckling and the
fracture mechanics problems. The problem is first treated for the one-
dimensional case of a wide plate (or beam) and both the debond buckling
and the debond initial post-buckling behavior are studied through a perturba-
tion procedure that is based on the nonlinear beam equations with transverse
shear included (Kardomateas and Huang, 2003). Subsequently, Section 12.4
presents experimental studies and finite element analysis on the buckling and
growth of face/core debonds.
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12.2 Buckling of a Face/Core Debond in a Wide Plate/Beam

The mechanics of debond buckling differ from the corresponding studies
of delamination buckling in composites due to the fact that the substrate
in a debonded sandwich structure includes a much different kind of mate-
rial, namely a flexible core, typically foam or honeycomb. To this extent,
the contribution of the shear stresses and shear deformations of the core are
noteworthy and therefore should be included in the formulation.

We consider a compression loaded sandwich beam, of length 2L, and unit
width, consisting of face sheets of thicknesses hf 1 and hf 2, extensional mod-
uli Ef 1 and Ef 2, and shear moduli Gf 1 and Gf 2, respectively. The core, of
thickness hc, has an extensional modulus, Ec, and shear modulus Gc (Fig-
ure 12.1). The debond, of length 2a, is symmetrically located at the interface
of the top face sheet and the core. Over the region of the debond, the sand-
wich beam consists of two parts: the debonded layer of the upper face sheet
(referred to as the “debonded part”) of thickness hf 1 and the part below the
debond “substrate part” of thickness hc + hf 2, which includes the core and
the lower face sheet. The region outside the debond is referred to as the
“base part” and consists of the entire section of the sandwich beam, i.e., of
thickness hf 1 + hc + hf 2. We shall also denote the base part with “b”, the
debonded part with “d”, and the substrate part with “s”. Let us also assume
that the beam is clamped-clamped.

A characteristic of sandwich construction is that the neutral axis for the
base and the substrate parts is in general no longer at the middle of the cor-
responding sections. With respect to a reference axis x through the middle
of the core, the neutral axis of the base section is defined at a distance eb

(Figure 12.2), as

eb

(
Ef 1hf 1 + Echc + Ef 2hf 2

)
= Ef 2hf 2

(
hf 2

2
+ hc

2

)
− Ef 1hf 1

(
hf 1

2
+ hc

2

)
, (12.1a)

and that of the substrate part is at a distance es given by

es

[
Echc + Ef 2hf 2

] = Ef 2hf 2

(
hf 2

2
+ hc

2

)
. (12.1b)

Moreover, while for the debonded face layer, assumed homogeneous, the
bending rigidity per unit width is

Dd = Ef 1

h3
f 1

12
. (12.2a)
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Figure 12.1 A sandwich beam/wide plate with a debond at the face sheet/core in-
terface.

The equivalent flexural rigidity of the base part of the sandwich section per
unit width is (Figure 12.2)

Db = Ef 1

h3
f 1

12
+ Ef 1hf 1

(
hf 1

2
+ hc

2
+ eb

)2

+ Ef 2

h3
f 2

12

+ Ef 2hf 2

(
hf 2

2
+ hc

2
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)2

+ Ec

h3
c

12
+ Echce

2
b, (12.2b)

and for the substrate (per unit width)

Ds = Ec

h3
c

12
+ Echce

2
s + Ef 2

h3
f 2

12
+ Ef 2hf 2

(
hf 2

2
+ hc

2
− es

)2

. (12.2c)

The nonlinear differential equations including transverse shear for the
three parts of the sandwich beam (Figure 12.1), namely the base part (b),
debonded part (d), and substrate part (s), are (Huang and Kardomateas, 2002)

Di

d2θi

ds2
+ Pi

(
βiPi

2AiḠi

sin 2θi + sin θi

)
= 0, i = b, d, s, (12.3a)

where θi is the rotation angle of the cross-section due to bending and s is
the distance along the deflected beam. After Taylor series expansion of sin θ ,
(12.3a) becomes
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Figure 12.2 Sandwich cross-section with the acting forces and moments.

Di

d2θi(xi)

dx2
i

+
(

βiP
2
i

AiḠi

+ Pi

)
θi(xi)−

(
2βiP

2
i

3AiḠi

+ Pi

6

)
θ3
i (xi) = 0, (12.3b)

where θi(x) is the rotation of the normal to the cross-section, Di is the bend-
ing rigidity, βi is the shear correction factor, Pi is the axial load per unit
width, Ai is the cross-sectional area, and Ḡi is the “effective” shear modulus
of each part. The latter may be calculated as follows:

hf 1 + hc + hf 2

Ḡb

= hf 1

Gf 1
+ hc

Gc

+ hf 2

Gf 2
, (12.3c)

Ḡd = Gf 1 , (12.3d)

hc + hf 2

Ḡs

= hc

Gc

+ hf 2

Gf 2
. (12.3e)

Formulas for the shear correction factors in sandwich structures were derived
by Huang and Kardomateas (2002) based on shear energy equivalency. For
the base part (b):
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βb

ḠbAb

=
∑
i=1,2

E2
f i

4D2
bGf i

[
a4

i hf i − 2

3
a2

i

(
a3

i − b3
i

) + 1

5

(
a5

i − b5
i

)]

+ E2
f i

D2
bGc

h2
f ic

2
i bi + 2

15

E2
c

D2
bGc

b5
i + 2

3

Ef iEc

D2
bGc

hf icib
3
i , (12.3f)

where

a1 = hf 1 + hc

2
+ eb; b1 = hc

2
+ eb; c1 = hf 1

2
+ hc

2
+ eb, (12.3g)

a2 = hf 2 + hc

2
− eb; b2 = hc

2
− eb; c2 = hf 2

2
+ hc

2
− eb. (12.3h)

Since the debonded part (d) is homogeneous,

βd

ḠdAd

= 6

5

(
1

Gf 1hf 1

)
. (12.3i)

For the substrate part (s), the corresponding formula for the shear correction
is in terms of

a3 = hf 2 + hc

2
−es; b3 = hc

2
−es; c3 = hf 2

2
+ hc

2
−es; d3 = hc

2
+es,

(12.3j)
as follows:

βs

ḠsAs

= E2
f 2

4D2
s Gf 2

[
a4

3hf 2 − 2

3
a2

3(a
3
3 − b3

3) + 1

5
(a5

3 − b5
3)

]

+ 2

15

E2
c

D2
s Gc

(d5
3 + b5

3) + E2
f 2

D2
s Gc

h2
f 2c

2
3b3 + 2

3

Ef 2Ec

D2
s Gc

hf 2c3b
3
3.

(12.3k)

These expressions for the βi/(ḠiAi) are for unit width; for a width other
than unit, these expressions need to be divided by the width of the beam.

The way the geometry is configured gives the following conditions at xi =
0:

θi(0) = 0, i = b, d, s. (12.4)

The above condition is valid for i = b (base part) because of the clamped-
end and for i = d, s (debonded and substrate parts) because of symmetry.

Furthermore, a kinematic condition of common slope, θA, for the parts of
the section where the debond starts and ends reads
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θb(L − a) = θd(−a) = θs(−a) = θA. (12.5)

The force and moment (about the neutral axis of the base part) equilibrium
conditions are (Figure 12.2)

Pb = Pd + Ps, (12.6)

Mb − Md − Ms − Pd

(
hf 1

2
+ hc

2
+ eb

)
+ Ps(es − eb) = 0. (12.7)

Finally, the axial displacement continuity condition at the tip A (Fig-
ure 12.1) is

uA
d = uA

s , (12.8)

where

uA
d = 1

2

∫ 0

−a

θ2
d dxd + Pda

Ef 1hf 1
+ θA

hf 1

2
, (12.9)

uA
s = 1

2

∫ 0

−a

θ2
s dxs + Psa

Echc + Ef 2hf 2
− θA

(
es + hc

2

)
. (12.10)

12.2.1 Asymptotic Expansion

The asymptotic expansion is an efficient way of deriving closed form so-
lutions for the critical load and the initial post-buckling behavior. This ap-
proach has been used previously by Kardomateas (1993) in a study of delam-
inations in monolithic composites in conjunction with the elastica theory.

Now, let us expand Pi and θi as

Pi = Pi0 + ξPi1 + ξ 2Pi2 + ξ 3Pi3 + · · · , (12.11)

θi(xi) = ξθi1(xi) + ξ 2θi2(xi) + ξ 3θi3(xi) + · · · , (12.12)

where the 0 subscript corresponds to the pre-buckling state, 1 to the buck-
ling state and 2, etc., to the post-buckling state. Also, let us set ξ to be the
common slope of the section at the debond tip A, i.e.

ξ = θA. (12.13)

From (12.5) and (12.12), this gives the additional conditions

θb1(L − a) = 1; θb2(L − a) = θb3(L − a) = . . . = 0, (12.14)
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and

θi1(−a) = 1; θi2(−a) = θi3(−a) = . . . = 0, i = d, s. (12.15)

Substituting Equations (12.11) and (12.12) into (12.3) and (12.4)–(12.10)
and rearranging the terms based on the order of ξ , we obtain separately the
equations and boundary conditions for the pre-buckling, buckling, and initial
post-buckling problem.

12.2.2 Pre-Buckling State, O(ξ 0)

A major characteristic of the prebuckling state for a sandwich section under
uniform compressive strain is that there are non-zero bending moments (as
opposed to a monolithic one in which the bending moments are zero) but
zero bending deflections.

Under a uniformly applied compressive strain, ε0, the resultant forces (per
unit width) for the base part (b), delaminated part (d) and substrate part (s),
are (Figure 12.2)

Pb0 = ε0
(
Ef 1hf 1 + Echc + Ef 2hf 2

)
, (12.16a)

Pd0 = ε0Ef 1hf 1; Ps0 = ε0
(
Echc + Ef 2hf 2

)
. (12.16b)

The prebuckling moments (per unit width) are then found as (Figure 12.2):

Mb0 = ε0

[
Ef 1hf 1

(
hf 1

2
+ hc

2
+ eb

)

+ Echceb − Ef 2hf 2

(
hf 2

2
+ hc

2
− eb

)]
, (12.17a)

Md0 = 0; Ms0 = ε0

[
Echces − Ef 2hf 2

(
hf 2

2
+ hc

2
− es

)]
. (12.17b)

These pre-buckling forces and moments satisfy identically the force and mo-
ment equilibrium equation (about the neutral axis of the base part), Equations
(12.6) and (12.7). Furthermore, since a state of pure axial compressive strain
exists without bending deflections, the compatibility of shortening, Equa-
tion (12.8) is also satisfied.
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12.2.3 Buckling (First-Order) Equations, O(ξ 1)

From (12.3), (12.11) and (12.12), the first-order differential equations for the
three parts are

Di

d2θi1(xi)

dx2
i

+
(

βiP
2
i0

AiḠi

+ Pi0

)
θi1(xi) = 0, i = b, d, s. (12.18a)

The corresponding boundary conditions from (12.4) are

θi1(0) = 0, i = b, d, s (12.18b)

and from (12.5)

θb1(L − a) = θd1(−a) = θs1(−a) = θA1 = 1. (12.18c)

The first-order moment equilibrium from (12.7) is

D1
dθb1

dxb

∣∣∣
xb=L−a

− D2
dθd1

dxd

∣∣∣
xd=−a

− D3
dθs1

dxs

∣∣∣
xs=−a

− Pd1

(
hf 1

2
+ hc

2
+ eb

)
+ Ps1(es − eb) = 0, (12.18d)

and the first-order force equilibrium

Pd1 + Ps1 = Pb1. (12.18e)

The first-order compatibility equation from (12.8) with θA1 = 1 becomes

Ps1a

Echc + Ef 2hf 2
−

(
es + hc

2

)
= Pd1a

Ef 1hf 1
+ hf 1

2
. (12.18f)

Let us set

λi =
√(

βiP
2
i0

AiḠi

+ Pi0

)/
Di, i = b, d, s, (12.19)

where Pb0, Pd0 and Ps0 are given in (12.16) in terms of the uniform com-
pressive strain ε0. Solutions for Equation (12.18a) that satisfy the boundary
conditions (12.18b) are

θi1 = Ci1 sin(λixi), i = b, d, s. (12.20)

Now the constants Cb1, Cd1, Cs1 are determined from the common slope
equations (12.18c), as
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Cb1 = 1/ sin λb(L − a); Cd1 = −1/ sin λda; Cs1 = −1/ sin λsa.

(12.21)
The characteristic equation in terms of ε0 is found by eliminating Pb1, Pd1

and Ps1 from the previous equations. This is done as follows. The moment
equilibrium equation (12.18d), becomes

Dbλb cot λb(L − a) + Ddλd cot λda + Dsλs cot λsa

= Pd1

(
hf 1

2
+ hc

2
+ eb

)
− Ps1(es − eb). (12.22a)

By using the neutral axis definitions (12.1a) and (12.1b), we obtain

es − eb =
(

hf 1

2
+ hc

2
+ eb

)
Ef 1hf 1

Echc + Ef 2hf 2
, (12.22b)

therefore (12.22a) becomes

Pd1
a

Ef 1hf 1
− Ps1

a

Echc + Ef 2hf 2

= [Dbλb cot λb(L − a) + Ddλd cot λda + Dsλs cot λsa] a

Ef 1hf 1(
hf 1

2 + hc

2 + eb)
. (12.23)

By comparing (12.18f) and (12.23), we can see that the left-hand side
of (12.23) can be eliminated. Thus, we obtain the following characteristic
equation:

[Dbλb cot λb(L − a) + Ddλd cot λda + Dsλs cot λsa] a

Ef 1hf 1(
hf 1

2 + hc

2 + eb)

+
(

es + hc

2
+ hf 1

2

)
= 0. (12.24)

Equation (12.24) is a nonlinear algebraic equation which can be solved
numerically for the critical strain ε0 (or critical load from (12.16)). In the
numerical procedure, a solution is sought near the Euler buckling strain of
the debonded face, ε0 = π2h2

f 1/(12a2).
Example. To offer insight into the debond buckling behavior, let us con-

sider a symmetric sandwich plate with unidirectional carbon/epoxy faces and
hexagonal glass/phenolic honeycomb core. The material data are given in
Section 5.1.4. The thickness of each face sheet is hf 1 = hf 1 = 2 mm and
the core thickness, hc = 16 mm, thus the total thickness is h = 20 mm. A
total length (2L) of 10 times the total thickness is assumed, thus L = 5h.
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Figure 12.3 Critical strain vs. debond length.

A range of debond lengths (2a) between 15 to 50% of the total length is
considered, i.e. a ranges between 0.15 and 0.50L.

Figure 12.3 shows the critical strain, ε0,cr plotted vs. debond length (a/L).
In the results presented, the case of no transverse shear effect corresponds to
setting βi = 0. It is seen that the critical strain decreases with debond length,
as expected, but also interesting is the effect of transverse shear, which re-
duces the critical strain. This effect is most pronounced for short debonds.
For example, for a = 0.20L, transverse shear reduces the critical strain by
20% but at a = 0.30L the reduction is only 10%.

12.3 Intitial Post-Buckling Behavior of a Face/Core Debond in a
Wide Plate/Beam

12.3.1 Second-Order Equations, O(ξ 2)

From (12.3), (12.11) and (12.12), we obtain the following second-order dif-
ferential equation:
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Di

d2θi2(xi)

dx2
i

+
(

βiP
2
i0

AiḠi

+ Pi0

)
θi2(xi)

= −
(

2βiPi0Pi1

AiḠi

+ Pi1

)
θi1(xi), i = b, d, s (12.25)

and from (12.4), (12.14) and (12.15):

θi2(0) = 0, i = b, d, s, (12.26a)

θb2(L − a) = θd2(−a) = θs2(−a) = 0. (12.26b)

The second-order moment equilibrium from (12.7) is

Db

dθb2

dxb

∣∣∣
xb=L−a

− Dd

dθd2

dxd

∣∣∣
xd=−a

− Ds

dθs2

dxs

∣∣∣
xs=−a

− Pd2(
hf 1

2
+ hc

2
+ eb) + Ps2(es − eb) = 0, (12.27)

and the second-order force equilibrium

Pd2 + Ps2 = Pb2. (12.28)

Finally, the second-order displacement compatibility from (12.8)–(12.12)
is

1

2

∫ 0

−a

θ2
s1(xs)dxs + Ps2a

Echc + Ef 2hf 2

= 1

2

∫ 0

−a

θ2
d1(xd)dxd + Pd2a

Ef 1hf 1
. (12.29)

The general solution for the second-order differential equation (12.25) is

θi2(xi) = Ci2 sin λixi + Bi2 cos λixi + Pi1

2λiDi

(
2βiPi0

AiḠi

+ 1

)
Ci1xi cos λixi .

(12.30)
The constants Bi2 are zero due to the boundary conditions (12.26a)

Bi2 = 0, i = b, d, s. (12.31)

Applying the conditions (12.26b), we can find the constants Ci2 as

Cb2 = − Pb1

2λbDb

Cb1

(
2βbPb0

AbḠb

+ 1

)
(L − a) cot λb(L − a), (12.32a)
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and

Ci2 = − Pi1

2λiDi

Ci1

(
2βiPi0

AiḠi

+ 1

)
a cot λia, i = d, s. (12.32b)

Now the displacement compatibility equation (12.29) becomes

Pd2
a

Ef 1hf 1
− Ps2

a

Echc + Ef 2hf 2

= 1

4

[
C2

s1

(
a − sin 2λsa

2λs

)
− C2

d1

(
a − sin 2λda

2λd

)]
. (12.33)

The moment equilibrium (12.27), obtained by substituting the second-
order deflections (12.30) and the relationship for the neutral axes of the sub-
strate and the base part (12.22b), becomes[

Pd2
a

Ef 1hf 1
− Ps2

a

Echc + Ef 2hf 2

]
Ef 1hf 1(

hf 1

2 + hc

2 + eb)

a

= Db

{
Cb2λb cos λb(L − a) + Cb1Pb1

2λbDb

(
2βbPb0

AbḠb

+ 1

)

× [cos λb(L − a) − (L − a)λb sin λb(L − a)]

}

−
∑
i=d,s

Di

[
Ci2λi cos λia + Ci1Pi1

2λiDi

(
2βiPi0

AiḠi

+ 1

)

× (cos λia − aλi sin λia)

]
, (12.34)

Comparing (12.34) and (12.33), we can eliminate the left-hand side of the
latter equation, which contains the second-order forces, and, by using also
(12.32), an equation for the first-order forces is obtained, i.e.

BdPd1 + BsPs1 = 1

4

[
C2

s1

(
a − sin 2λsa

2λs

)
− C2

d1

(
a − sin 2λda

2λd

)]

× Ef 1hf 1(
hf 1

2 + hc

2 + eb)

a
, (12.35)

where

Bi = Cb1

2λb

(
2βbPb0

AbḠb

+ 1

)[
cos λb(L − a) − (L − a)λb

sin λb(L − a)

]

+ Ci1

2λi

(
2βiPi0

AiḠi

+ 1

)(
aλi

sin λia
− cos λia

)
, i = d, s. (12.36)
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The second equation for the first-order forces is the first-order compatibil-
ity equation (12.18f). The system of the two linear equations (12.35) and
(12.18f) can be solved for the first-order forces, Pd1 and Ps1.

12.3.2 Third-Order Equations, O(ξ 3)

Collecting terms O(ξ 3) from (12.3), (12.11) and (12.12) gives the following
differential equations for the three parts, i = b (base), d (debonded), and s

(substrate):

Di

d2θi3(xi)

dx2
i

+ Diλ
2
i θi3(xi) = −

(
2βiPi0Pi1

AiḠi

+ Pi1

)
θi2(x)

−
(

βiP
2
i1

AiḠi

+ 2βiPi0Pi2

AiḠi

+ Pi2

)
θi1(xi) +

(
2βiP

2
i0

3AiḠi

+ Pi0

6

)
θ3
i1(xi).

(12.37)

Substituting (12.20) and (12.30) for θi1(x) and θi2(x), respectively, gives the
solution

θi3(xi) = Ci3 sin λixi + Bi3 cos λixi +
(

q1i + k0iCi1

2λi

Pi2

)
xi cos λixi

− k2
0i

8λ2
i

P 2
i1Ci1x

2
i sin λixi + q0i

32λ2
i

C3
i1 sin 3λixi, (12.38a)

where

k0i = 1

Di

(
2βiPi0

AiḠi

+ 1

)
; k1i = βiP

2
i1

DiAiḠi

; q0i = 1

Di

(
2βiP

2
i0

3AiḠi

+ Pi0

6

)
,

(12.38b)

q1i = k0iCi2

2λi

Pi1 + k1iCi1

2λi

− 3q0iC
3
i1

8λi

− k2
0iCi1

8λ3
i

P 2
i1, (12.38c)

From (12.4):
θi3(0) = 0, (12.39a)

which gives
Bi3 = 0. (12.39b)

From (12.5):

θi3(−a) = 0; i = d, s (debonded and substrate parts) (12.39c)



344 12 Face/Core Debond Buckling and Growth

and
θb3(L − a) = 0 (base part). (12.39d)

Equations (12.39c, d) give Ci3 as follows:

Ci3 = q2i + k2iPi2, (12.39e)

where for the debonded and substrate parts, i = d, b,

k2i = −k0iCi1

2λi

a cot λia, (12.39f)

q2i = −q1ia cot λia + k2
0iCi1

8λ2
i

P 2
i1a

2 − q0iC
3
i1

32λ2
i

sin 3λia

sin λia
(12.39g)

and for the base part

k2b = −k0bCb1

2λb

(L − a) cot λb(L − a), (12.39h)

q2b = −q1b(L − a) cot λb(L − a) + k2
0bCb1

8λ2
b

P 2
b1(L − a)2

− q0bC
3
b1

32λ2
b

sin 3λb(L − a)

sin λb(L − a)
. (12.39i)

The third-order moment equilibrium from (12.7) is

Db

dθb3

dxb

∣∣∣
xb=L−a

− Dd

dθd3

dxd

∣∣∣
xd=−a

− Ds

dθs3

dxs

∣∣∣
xs=−a

− Pd3

(
hf 1

2
+ hc

2
+ eb

)
+ Ps3(es − eb) = 0, (12.40a)

and the third-order force equilibrium

Pd3 + Ps3 = Pb3. (12.40b)

Using the relations for the neutral axes of the substrate and the base parts
(Equations (12.22b), we can write Equation (12.40a) as

Db

dθb3

dxb

∣∣∣
xb=L−a

− Dd

dθd3

dxd

∣∣∣
xd=−a

− Ds

dθs3

dxs

∣∣∣
xs=−a

=
(

Pd3a

Ef 1hf 1
− Ps3a

Echc + Ef 2hf 2

)
Ef 1hf 1

a

(
hf 1

2
+ hc

2
+ eb

)
.

(12.40c)
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Now, the third-order displacement compatibility from (12.8)–(12.13) is∫ 0

−a

θd1θd2dxd + Pd3a

Ef 1hf 1

=
∫ 0

−a

θs1θs2dxs + Ps3a

Echc + Ef 2hf 2
, (12.41a)

which can be written as∫ 0

−a

θs1θs2dxs −
∫ 0

−a

θd1θd2dxd = Pd3a

Ef 1hf 1
− Ps3a

Echc + Ef 2hf 2
. (12.41b)

Comparing (12.40c) and (12.41b), we can eliminate the right-hand side,
which contains the third-order forces

Db

dθb3

dxb

∣∣∣
xb=L−a

− Dd

dθd3

dxd

∣∣∣
xd=−a

− Ds

dθs3

dxs

∣∣∣
xs=−a

=
[∫ 0

−a

θs1θs2dxs −
∫ 0

−a

θd1θd2dxd

]
Ef 1hf 1

a

(
hf 1

2
+ hc

2
+ eb

)
.

(12.41c)

Substituting the definitions for θi1 and θi2, i = d, s gives∫ 0

−a

θs1θs2dxs −
∫ 0

−a

θd1θd2dxd = Us − Ud, (12.41d)

where

Ui = Ci1Ci2

(
a

2
− sin 2λia

4λi

)

+ C2
i1

k0i

4λi

Pi1

(
sin 2λia

4λ2
i

− a cos 2λia

2λi

)
, i = d, s. (12.41e)

Moreover, substituting the third-order solutions into (12.38a), gives

dθi3

dxi

= Qi(x) + Ri(x)Pi2, (12.42a)

where the functions Qi(x) and Ri(x) are defined as

Qi(x) =
[
q2iλi + q1i − k2

0i

8λi

P 2
i1Ci1x

2 + 3q0i

32λi

C3
i1

]
cos λix

−
[
q1iλi + k2

0i

4λ2
i

P 2
i1Ci1

]
x sin λix, (12.42b)
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Figure 12.4 Debond and substrate axial load at the initial post-buckling phase.

Ri(x) =
(

k2iλi + k0i

2λi

Ci1

)
cos λix − k0i

2
Ci1x sin λix. (12.42c)

Therefore, Equations (12.41c)–(12.42c) and (12.28) give the following equa-
tion for the second-order forces Pd2 and Ps2:

[DbRb(L − a) − DdRd(−a)] Pd2 + [DbRb(L − a) − DsRs(−a)] Ps2

= DdQd(−a) + DsQs(−a) − DbQb(L − a)

+ (Us − Ud)
Ef 1hf 1

a

(
hf 1

2
+ hc

2
+ eb

)
, (12.43)

The second equation for the second-order forces is the second-order com-
patibility equation (12.33). The system of the two linear equations (12.43)
and (12.33) can be solved for the second-order forces Pd2 and Ps2. The first-
order applied load Pb2 is in turn found from the second-order force equilib-
rium (Equation (12.28). The solution for the higher-order terms can proceed
in the same fashion although the math become increasingly more involved.

Notice that from (12.11), since Pb0 = Pcr, the perturbation parameter ξ

can be found from the applied external load, P̄ , by solving the quadratic
equation in terms of ξ :
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ξ = −Pb1 ± √
�

2Pb2
; � = P 2

b1 − 4Pb2 (Pb0 − P) . (12.44)

This, of course, presumes that we account up to the second-order load terms.
Example. The initial post-buckling results that follow are produced for

the sandwich material system and geometry of the previous section and for
a debond length a = L/4. Figure 12.4 shows the debond and substrate
axial loads (normalized with the critical load) in the initial phase of post-
buckling. Both loads increase with applied strain but the substrate load in-
creases at a higher rate, which means that a redistribution of load occurs.
These results are with the first-order loads (second term of the perturbation
series) only. Extending further into the post-buckling phase would require
additional terms to be included, thus additional analysis to be carried out.
More direct results could be obtained with application of the elastica the-
ory, properly modified to include transverse shear. This has been done for
a delaminated monolithic composite (without transverse shear effects) by
Kardomateas (1993) but not yet for the sandwich case with a face sheet/core
debond.

12.3.3 Deflections

The deflections of the debonded substrate and base elements can be found
by integrating the relationship (Huang and Kardomateas, 2002):

dyi

dxi

= sin θi + βiPi

2AiḠi

sin 2θi . (12.45a)

Introducing the asymptotic expansions (12.11) and (12.12) and the first and
second-order expressions (12.20) and (12.30), gives

dyi

dxi

= ξ

(
1 + βiPi0

ḠiAi

)
θi1 + ξ 2

[(
1 + βiPi0

ḠiAi

)
θi2 + βiPi1

ḠiAi

θi1

]

+ ξ 3

[(
1 + βiPi0

ḠiAi

)
θi3 + βiPi1

ḠiAi

θi2 + βiPi2

ḠiAi

θi1 −
(

1 + 4βiPi0

ḠiAi

)
θ3
i1

6

]

+ O(ξ 4), (12.45b)

This can be easily integrated and give the deflections in the form

yi = ξyi1 + ξ 2yi2 + ξ 3yi3 + · · · , (12.46)
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yi1 =
(

1 + βiPi0

ḠiAi

)
Ii1(x), (12.47a)

yi2 =
(

1 + βiPi0

ḠiAi

)
Ii2(x) + βiPi1

ḠiAi

Ii1(x), (12.47b)

and

yi3 =
(

1 + βiPi0

ḠiAi

)
Ii3(x) + βiPi1

ḠiAi

Ii2(x) + βiPi2

ḠiAi

Ii1(x)

−
(

1 + 4βiPi0

ḠiAi

)
C3

i1

18λi

(2 + cos3 λix − 3 cos λix), (12.47c)

where

Ii1(x) =
∫ x

0
θi1(x)dx = Ci1

λi

(1 − cos λix) , (12.48a)

Ii2(x) =
∫ x

0
θi2(x)dx =

[
Ci2

λi

− Pi1Ci1

2λ3
i Di

(
1 + 2βiPi0

ḠiAi

)]
(1 − cos λix)

+ Pi1Ci1

2λ2
i Di

(
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ḠiAi

)
x sin λix, (12.48b)

and

Ii3(x) =
∫ x

0
θi3(x)dx
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8λ3
i

P 2
i1x

2 cos λix + q0i

96λ3
i

C3
i1 (1 − cos 3λix) . (12.48c)

Notice that the deflections calculated from the above equations are referred
to a local coordinate system for each part, as shown in Figure 12.1. Thus, the
mid-point debond deflection would be yb(L − a) − yd(−a).

The initial post-buckling behavior derived in this section is a pre-requisite
to the fracture mechanics analysis since the stress intensity factors and en-
ergy release rate at the post-buckling phase are a function of the displace-
ments, forces, and moments at the debond tip section.
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Table 12.1 Face and core mechanical properties for sandwich specimens with car-
bon/epoxy face sheets and Nomex honeycomb core, E = Young’s modulus, Xc =
compression strength.

Material Density, kg/m3 E, MPa Xc, Pa

Face N/A 53,000 531 × 106

Core 28.8 2.30 18.9 × 103

Core 48 3.86 42.0 × 103

Core 96 7.72 157 × 103

12.4 Experimental Studies on Buckling and Growth of
Face/Core Debonds

Experimental studies of buckling and growth of face/core debonds in sand-
wich columns and panels will be discussed. In addition, finite element analy-
sis results for debond buckling and growth in compression loaded sandwich
panels with face/core debonds will be presented.

12.4.1 Column Testing

Avery and Sankar (2000) and Sankar and Narayan (2001) examined a large
set of sandwich specimens consisting of plain weave carbon/epoxy face
sheets and various Nomex honeycomb cores. The faces consisted of 1, 3,
5, or 7 plies, each ply nominally 0.221 mm thick. The core thicknesses ex-
amined were 6.35, 9.53, and 12.7 mm. The face sheets were bonded to the
core using vacuum bagging and an autoclave cure procedure. To define a
face/core debond, a thin Teflon strip of 12.7, 25.4, 38.1 and 50.8 mm width
was introduced between one of the face sheets and the core before cure. The
specimen were 102 mm long and 50.8 mm wide. Properties of the face sheets
and cores are listed in Table 12.1.

Compression testing of the columns revealed that the specimens failed in
a variety of failure modes, schematically illustrated in Figure 12.5, depend-
ing on the specific combination of face sheet thickness, core thickness and
density, and debond size.

The failure modes (Figure 12.5) were classified as “GS”, GA”, “LS” and
“LA”. These modes are called the “global symmetric” (GS) and “global
asymmetric modes” (GA). Here, symmetry refers to the buckling shape with
respect to a horizontal axis through the center of the specimen. “Local sym-
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Figure 12.5 Failure modes observed in compression testing of debonded sandwich
column specimens.

metric buckling” (LS) means that the debond buckled in its fundamental
load. The “local asymmetric” (LA) failure mode refers to local buckling of
the column in a mode shape that is asymmetric.

The specimen configuration and test program was designed according to
an “experiment design approach” which provides a large range of empiri-
cal data. This approach is quite different from a more traditional verification
program where one parameter at a time is symmetrically varied. Unfortu-
nately, the local buckling loads were not measured. Only the failure modes
and ultimate loads are reported. It should be pointed out that, due to the thin
face sheets used, none of the specimens failed through debond propagation.

Specific details on the specimen configurations and test results are sum-
marized in Table 12.2. Only one specimen (#1) was observed to fail in the
local asymmetric mode. This specimen has very thin face sheets (0.221 mm)
and thin core which would promote such a failure mode. All other speci-
mens with thin face sheets (#2–9) failed in a local symmetric (LS) mode. As
an example, Figure 12.6 details the progression of collapse of specimen #4
that failed in the LS mode. Buckling of the debonded face in this case oc-
curred symmetrically in the “LS” failure mode. The load vs. end shortening
graph is shown in Figure 12.7.

It is noted that the local buckling of the extremely thin face sheet occurred
at quite small loads (point b in Figure 12.7) well before the ultimate load was
reached. Specimens with thicker face sheets, hf = 1.11 and 1.55 mm, failed
by global buckling (GS or GA modes). These columns failed at much higher
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Figure 12.6 Progression of compression failure (LS mode) in sandwich column #4.

Figure 12.7 Load vs. end shortening curve for specimen #4. The letters a–d refer
to Figure 12.6.

loads than columns with thin faces as a result of their greater loading area
and buckling resistance, see the data in Table 12.2.

The buckling load, Pcr, of each column specimen was calculated from lin-
ear finite element analysis. Results are displayed vs. the measured collapse
load in Figure 12.8. It is noted that the calculated local buckling load is a
reasonable predictor of the experimental collapse load for most specimens,
except for those with very thin faces (#1–4), where the measured strength ex-
ceeds the calculated local buckling load and for specimens with thick faces



352 12 Face/Core Debond Buckling and Growth

Table 12.2 Compression test results for debonded sandwich columns, a = debond
length. After Avery and Sankar (2000).

Specimen hc (mm) hf (mm) ρc (kg/m3) a (cm) Pult/b Failure
(kN/m) mode

1 6.35 0.221 29 1.27 17.2 LA
2 9.53 0.221 48 2.54 28.4 LS
3 12.7 0.221 48 3.81 28.7 LS
4 9.53 0.221 96 5.10 34.0 LS
5 9.53 0.663 48 1.27 212 LS
6 6.35 0.663 96 2.54 87.0 LS
7 9.53 0.663 29 3.81 63.2 LS
8 12.7 0.663 48 5.10 76.8 LS
9 9.53 1.11 48 1.27 442 GS

10 12.7 1.11 29 2.54 213 GA
11 9.53 1.11 96 3.81 242 GA
12 6.35 1.11 29 5.10 156 GS
13 12.7 1.55 96 1.27 792 FC∗
14 9.53 1.55 48 2.54 406 GA
15 6.35 1.55 48 3.81 295 GS
16 9.53 1.55 29 5.10 277 GA

∗FC = face sheet compression failure.

and short debonds (#13–15) where the collapse occurred by face compres-
sion before local buckling.

La Saponara and Kardomateas (2001) performed compression testing of
sandwich columns consisting of 0.544 mm thick carbon/epoxy face sheets of
[0]4 and [0/90]s lay-ups bonded to a 12.7 mm thick Nomex honeycomb core.
They implanted a thin Teflon film of length 3.4 cm at one face/core interface
to define an initial debond. The specimens were 139 mm long, 25.4 mm
wide and 13.8 mm thick. The debond was placed at the center of the column
specimen. Compression testing was conducted in displacement control at a
rate of 2.54 mm/min. Figure 12.9 shows compression load vs. axial strain
response for columns with [0]4 and [0/90]s face sheets.

The testing, conducted at a slow rate, allowed detailed visual observation
of the specimens. It was observed that the debond opened up, indicating
local buckling. The local buckling of the debond in the [0/90]s specimen
occurred at a load of about 679 N, well before the maximum load. The [0]4

specimen similarly buckled well before the ultimate load at a load of about
1.18 kN. These observations are consistent with those reported for similar
thin faced column specimens examined by Avery and Sankar (2000), see
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Figure 12.8 Buckling load calculated for the debonded face sheet vs. measured
collapse load.

earlier part of this section. Ultimate failure occurred by through-thickness
crack propagation in the core. The ultimate failure loads per unit width were
about 46 and 67 kN/m for the [0/90]s and [0]4 specimens, respectively. These
load levels compare reasonably well with those determined by Avery and
Sankar (2000) for similar thin-faced sandwich specimens, see Table 12.2.
Observation of the load vs. strain response curves for the column specimens
(Figure 12.9) reveals very little post-failure strength of the columns.

Vadakke and Carlsson (2004) conducted compressive testing of sandwich
columns containing a one-sided face/core debond. The sandwich specimens
consisted of 2 mm thick glass/vinylester face laminates bonded to 50 mm
thick H45, H80 and H100 PVC foam core materials. The face elastic mod-
ulus was Ef = 20.6 GPa and the core moduli were Ec = 42, 80 and 105
MPa, for the H45, H80 and H100 cores, respectively. Debond lengths of 25
and 50 mm were examined. Compression testing of the debonded sandwich
columns utilized a test rig shown in Figure 12.10.
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Figure 12.9 Compression load vs. strain response for sandwich column specimens
with a 3.4 cm face/core debond.

Figure 12.10 Compression end-loading test fixture.

The sandwich specimen is end-loaded, which requires that the fixture
and ends of the column are properly aligned and parallel. Rectangular steel
clamps were used to position the specimen at the center of the fixture and
clamp the sandwich column. The load is applied to the end surfaces of the
sandwich column specimen through steel platens attached to the crosshead
and base of the test machine. Strain gages were glued on both face sheets
at the center of the gage length to monitor the axial strain response during
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Figure 12.11 Load vs. strain response for a sandwich column with H45 core and a
50 mm debond.

loading and detect local or global bucking. Additionally, a deflectometer was
put in contact with the center of the debond to monitor lateral (out-of-plane)
deflections. The total specimen length was 150 mm. The width was 37.5
mm. Each end was clamped over a distance of 25.4 mm, resulting in an un-
supported length of about 100 mm, short enough to suppress wrinkling and
global buckling failures, but long enough to allow local buckling of the 25
and 50 mm long debonds.

Figure 12.11 shows the load vs. axial strain response of a specimen with
H45 core and a 50 mm debond. Near the maximum load (19 kN), a strain
reversal is observed for the debonded face indicating local buckling of the
debonded face. Once the face buckled, the debond rapidly propagated to the
clamped ends of the specimen causing total collapse of the column. Hence,
local buckling of these column specimens caused catastrophic failure.

The out-of-plane deflection vs. load response is displayed in Figure 12.12
for a column with H80 core and a 50 mm debond. The results show that
the out-of-plane deflection of the debonded face sheet remains small un-
til local buckling occurred as indicated by the rapid increase of the deflec-
tion. The load decrease is attributed to failure of the column. Both fronts of
the face/core debond propagated until the crack fronts were arrested by the
clamps in the test fixture.

To illustrate the strength reduction due to a face/core debond, the col-
lapse load of the debonded column was normalized with the measured com-
pression failure load P0 for columns without a debond. Figure 12.13 shows
that the compression strength is substantially reduced by the presence of a
debond and more so for longer debonds as they buckle at lower loads.
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Figure 12.12 Out-of-plane deflection of debonded face sheet vs. load for a sand-
wich column with H80 core and a 50 mm debond.

Figure 12.13 Compression strength of debonded sandwich columns: (a) H45 core,
(b) H80 core, and (c) H100 core.

12.4.2 Panel Testing

An experimental study of local buckling and failure behavior of
compression-loaded sandwich panels containing one-sided, centrally located
circular face/core debonds was conducted by Aviles and Carlsson (2006a).
Such a configuration should be much more representative for a sandwich
structure containing a localized face/core debond than the previously consid-
ered single load-path debonded columns. Sandwich panels with 2 mm thick
glass/epoxy face sheets and 25 mm thick PVC foam cores were prepared.
The panels were 15 cm wide and 20 cm long. The face modulus and Pois-
son ratio were: Ef = 20.6 GPa and νf = 0.42. The foams were assumed
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Figure 12.14 Compression test fixture for sandwich panels with a face/core
debond.

to be isotropic with a Poisson ratio νc = 0.32, and Young’s moduli of 40,
100 and 200 MPa for the H45, H100 and H200 foams. A circular face/core
debond was defined in each panel by implanting a thin (30 µm thick) non-
stick Teflon film between one face sheet and the core, at the center of the
panel. The debonds were 5, 6.3, 7.5, and 10 cm in diameter.

A special test fixture was developed for uniaxial compression loading of
the test panels (see Figure 12.14). The test fixture was designed for a panel
of nominal size of 20×15×3 (cm) (length × width × thickness) with some
flexibility to accommodate other dimensions. Rounded metal edge supports
were used to constrain out-of-plane deflections of the vertical panel edges.
The lower panel edge was resting on a horizontal steel platen that constrains
translation and rotation. A load was introduced as the upper edge using a
steel platen with a central groove (adjustable to the panel thickness) and
hinged at the center to promote uniform loading across the panel width. This
type of load introduction constrains rotation of the upper edge of the panel.
Compressive displacement of the upper steel platen was applied using the
movable crosshead of a universal (displacement controlled) test machine.
Strain gages were bonded on both face sheets at the panel center to enable
monitoring of the strains during loading. Three replicate panel specimens
were tested.

Typical test results are shown in Figure 12.15 for a panel with H45 core
and a 7.5 cm diameter debond. The local buckling load was determined
from the bifurcation point in the load-strain response. At the point of local
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(face) instability, a strain reversal is observed for the debonded face sheets.
The rapid decrease in load after face buckling is indicative of a lack of
post-buckling strength. Hence, this type of damage can be very serious in
compression-loaded panels in a sandwich structure.

Experimentally measured local buckling loads for the panels with H45,
H100, and H200 cores and a range of debond sizes were compared to predic-
tions from finite element analysis (Aviles and Carlsson, 2006a). Figure 12.16
presents experimentally determined (Exp) and predicted (FEA) buckling
loads for sandwich panels with H45, H100 and H200 cores. For the panels
with H45 core, the agreement between FEA and experiments is quite favor-
able. For higher density cores there is agreement for smaller debonds, but for
larger debonds the FEA is conservative. The under-prediction of the critical
load for large debonds is believed to be due to non-perfect definition of the
artificially generated debond in the experimental study. As mentioned earlier,
the face/core debond was defined by implanting a Teflon film in the panels.
It has been observed that such films may adhere to the resin and core after
resin infusion resulting in tractions preventing the opening of the debond.
The tendency for such problems was more pronounced for large debonds.

Experimental observations of compression loaded panels with a face/core
debond revealed that failure was initiated by local buckling of the debond.
After buckling, it was observed that the debond rapidly propagated perpen-
dicular to the loading direction followed by the collapse of the panel. Fig-
ure 12.17 is a schematic illustration of the failure mechanism.

To analyze the face/core debond propagation, a fracture mechanics analy-
sis was conducted by Aviles and Carlsson (2007b). As discussed in Chap-
ter 9, a face/core debond may be considered as a crack-like fault located
between the face and core. The solution for the near tip crack flank dis-
placements derived by Suo (1990), provided in Equation (9.3b), is utilized to
extract the stress intensity factors KI and KII from the relative opening and
sliding displacements of the crack flanks, δI and δII (Figure 9.4)

(KI,KII) =
√

π

2H11H22x
(δI, δII). (12.49)

H11 and H22 are defined in Equations (9.4). Two locations at the debond
front shown in Figure 12.18 were specifically examined: location (L), cor-
responding to debond propagation along the direction of loading (y axis),
and location (T ), corresponding to debond propagation perpendicular to the
direction of loading. The displacements of the (initially coincident) nodes
next to crack tip at the “L” and “T ” locations were recorded for each load
increment in order to determine the stress intensity factors.
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Figure 12.15 Strain vs. applied load for a sandwich panel with a 7.5 cm diameter
debond (H45 core).

Figure 12.16 Local buckling loads determined from FEA and experimental testing
for sandwich panels with circular debonds: (a) H45 core, (b) H100 core, and (c)
H200 core.
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Figure 12.17 Schematic of failure sequence in a compression loaded sandwich
panel with a circular face/core debond.

Table 12.3 Local buckling loads in kN determined by linear FEA. Faces are 2 mm
thick S2-glass/epoxy (plain weave). Core thickness is 25 mm.

Core Buckling load, kN

D = 5 cm D = 7.5 cm D = 10 cm

H45 68.3 46.8 33.5
H100 83.5 49.8 34.5
H200 94.8 56.3 35.7

The ANSYS (2006) element model employed 31,000 solid (“brick”)
three-dimensional elements. The smallest elements at the debonded front
were 0.56×0.56×2 (mm) for the face sheet and 0.56×0.56×8.3 (mm) for
the core. The same panel geometries and material properties, as used in the
experiments, were modeled. As a reference, local buckling loads determined
from a linear eigenvalue analysis (Aviles and Carlsson, 2006b) are listed in
Table 12.3.

Figure 12.19 displays the out-of-plane displacement δc at the center of
the debond and the stress intensity factors at the T and L locations (Fig-
ure 12.18) vs. applied compressive load for a sandwich panel with a 25 mm
thick H45 core and 5 cm debond.

The out-of-plane deflection δc of the debonded face remains small until
the critical load Pcr is approached, Pcr = 68.3 kN (Table 12.3). When Pcr

is approached, δc increases rapidly and peaks at a load of about 68 kN af-
ter which the debond starts to close. The stress intensity factors KI and KII

follow the same trend as the deflection, increasing drastically as Pcr is ap-
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Figure 12.18 Definition of L and T locations in a sandwich panel.

proached. The maximum stress intensity factor at the T location is KI. This
result indicates that crack growth would occur under mode I-dominated con-
ditions. The energy release rate, G, was calculated from the stress intensity
factors KI and KII using Equation (9.8). Figure 12.20 shows G as a func-
tion of the applied load at the L and T locations for sandwich panels with
a 5 cm debond diameter. G is much larger at the T location than at the L

location. Thus, if the condition for crack propagation is met, i.e. G = Gc,
crack propagation should occur perpendicular to the applied load. This is
consistent with experimental observations of the crack propagation, see Fig-
ure 12.17. Results for panels with different debond sizes and foam cores are
qualitatively similar to those for the panel discussed at some detail above.
More details can be found in Aviles and Carlsson (2007b).
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Figure 12.19 Debond deflection and stress intensity factors for a sandwich panel
with H45 core and a 5 cm diameter debond as a function of the applied load. (a) Out-
of-plane displacement of the debonded interface, (b) KI and KII at the L and T

locations, and (c) mode ratio (KII/KI).

To predict the critical load corresponding to debond propagation, G was
compared to the experimentally determined debond fracture toughness Gc.
Such data were obtained from the sandwich debond (TSD) test discussed
in Chapters 10 and 11. For the panels with H45, H100 and H200 PVC foam
cores, Gc = 0.18, 0.36 and 0.51 kJ/m2 (Viana and Carlsson, 2003). As shown
in Figure 12.20, G reaches its critical value Gc well before the peak magni-
tude is reached. Hence, the peak value of G does not govern the fracture
process of the sandwich panels examined herein.

Table 12.4 summarizes predicted and measured critical loads for debond
propagation in sandwich panels with 5, 7.5, and 10 cm debonds. Very good
agreements between measured and predicted loads is observed for pan-
els with the smallest (5 cm) debond. For the panels with H100 core with
debonds larger than 5 cm, the predicted debond propagation loads fall be-
low the experimentally measured values. The difference between measured
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Figure 12.20 Energy release rate at the L and T locations for sandwich panels with
different foam cores and a 5 cm diameter debond. (a) H45, (b) H100, and (c) H200.

Table 12.4 Debond propagation loads, for panels with circular debonds predicted
by nonlinear FEA and measured experimentally, D = debond diameter.

Core Debond propagation load (kN)

D = 5 cm D = 7.5 cm D = 10 cm

NL-FEA Exp. NL-FEA Exp. NL-FEA Exp.

H45 61.9 62.2∗ N/A 47.1 ± 3.6 N/A 34.8 ± 1.1
H100 79.3 75.7∗ 45.7 60.5 ± 5.4 28.1 43.8 ± 5.2
H200 94.1 93.5 ± 4.2 N/A 67.2 ± 4.3 N/A 47.4 ± 7.2

∗Test results are for one panel only.

and predicted loads for large debonds may possibly be due to sticking of
the debonded face sheet to the core, which would restrict the opening of the
debond, reduce the stress intensity factors, and elevate the measured local
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buckling load. This factor was also observed to influence the buckling loads
of larger debonds; see the results in Figure 12.16, and the associated discus-
sion.



Appendix A
Stress-Strain Relations for On-Axis and
Off-Axis Composite Elements

A.1 On-Axis System

Consider an element of a unidirectional on-axis composite, i.e., a composite
where the principal material axes (1, 2, 3) are aligned with the coordinate
system, see Figure A.1.

Figure A.1 also shows the definition of stress components associated with
the material coordinate system, 1, 2, 3, where the stresses are volume av-
erages over the fiber and matrix domains. The normal stresses are σ 1, σ 2,
and σ 3, while the shear stresses are τ 12, τ 13, and τ 23. Corresponding normal
strains are ε1, ε2, and ε3, and the engineering shear strains are γ12, γ13, and
γ23, see Hyer (1998) for additional discussion.

In thin, sheet-like structures such as a ply in a laminate, it is common to
assume a state of plane stress by setting

σ3 = τ13 = τ23 = 0. (A.1)

It may be shown that such a state of stress leads to vanishing of the out-of-
plane shear strains, i.e.

γ13 = γ23 = 0. (A.2)

The out-of-plane extensional strain, ε3, does not vanish but becomes cou-
pled to the in-plane stresses σ 1 and σ 2 and does not remain an independent
quantity. The stress-strain relation for plane stress becomes⎡

⎢⎣
σ1

σ2

τ12

⎤
⎥⎦ =

⎡
⎢⎣

Q11 Q12 0

Q12 Q22 0

0 0 Q66

⎤
⎥⎦
⎡
⎢⎣

ε1

ε2

γ12

⎤
⎥⎦ , (A.3)

where the so-called reduced stiffnesses, Qij , can be expressed in terms of
engineering constants as
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Figure A.1 Element of on-axis composite and definition of normal and shear stress
components.

Q11 = E1

1 − ν12ν21
, (A.4a)

Q12 = ν12E2

1 − ν12ν21
, (A.4b)

Q22 = E2

1 − ν12ν21
, (A.4c)

Q66 = G12, (A.4d)

where E1 and E2 are the principal Young’s moduli, and G12 is the in-plane
shear modulus. ν12 and ν21 are the principal (major and minor) Poisson ra-
tios.

A common approach to achieve a set of more balanced mechanical prop-
erties is to utilize woven fabric composites, where tows of several thousand
fibers are arranged in a specific pattern, such as plain weave fabrics consist-
ing of “one fiber bundle over-one under”, see Figure A.2.

In addition to the plain weave fiber pattern, there are several other weave
patterns. The mechanical response of a plain weave composite layer consist-
ing of fibers in the 0 and 90◦ directions can also be represented by Equa-
tion (A.3).
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Figure A.2 Plain weave fabric structure.

A.2 Off-Axis System

Unidirectional composites, such as shown in Figure A.1, are rarely utilized
in actual structures because of their extremely anisotropic properties and
weak failure planes. Most composite structures are multi-directional lami-
nates, where unidirectional plies are oriented in different directions θ , e.g.,
θ = 0◦, 45◦, −45◦, and 90◦ (see Figure A.3). It is observed that each ply
orientation θ is obtained by a suitable rotation of the ply around the 3 axis.

For an off-axis ply (Figure A.3b) the stresses, strains and stiffness ele-
ments must be transformed⎡

⎢⎣
σx

σy

τxy

⎤
⎥⎦ =

⎡
⎢⎣

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

⎤
⎥⎦
⎡
⎢⎣

εx

εy

γxy

⎤
⎥⎦ , (A.5)

where the overbars denote transformed properties.
The transformed (off-axis) stiffnesses Qij are calculated from the on-axis

stiffnesses, Qij , defined in Equations (A.4) (Hyer, 1998).

Q11 = m4Q11 + 2m2n2 (Q12 + 2Q66) + n4Q22,

Q12 = m2n2 (Q11 + Q22 − 4Q66) + (
m4 + n4)Q12,

Q22 = n4Q11 + 2m2n2 (Q12 + 2Q66) + m4Q22,

Q16 = m3n (Q11 − Q12) + mn3 (Q12 − Q22) − 2mn
(
m2 − n2

)
Q66,
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Figure A.3 (a) A multidirectional laminate is built by a stack of unidirectional com-
posites bonded together. (b) Definition of ply orientation angle θ .

Q26 = mn3 (Q11 − Q12) + m3n (Q12 − Q22) + 2mn
(
m2 − n2

)
Q66,

Q66 = m2n2 (Q11 + Q22 − 2Q12 − 2Q66) + (
m4 − n4

)
Q66, (A.6)

where m = cos θ and n = sin θ .



Appendix B
Calculation of Compliance Matrices for
Sandwich Panels

The stiffness form of the laminate constitutive equations (3.18) and (3.19)
for a sandwich panel may be expressed in compressed form as[

N

M

]
=

[
A B

C D

] [
ε◦
κ

]
. (B.1)

Sometimes it is desirable to express the core mid-plane strains and curvatures
in terms of force and moment resultants and this is achieved by inversion of
the 6 × 6 ABCD matrix in Equation (B.1)[

ε0

κ

]
=

[
a b

c d

] [
N

M

]
, (B.2)

where the 3 × 3 compliance matrices [a], [b], [c] and [d] are given by

[a] = [A∗] − [B∗][D∗]−1[C∗], (B.3a)

[b] = [B∗][D∗]−1, (B.3b)

[c] = −[D∗]−1[C∗], (B.3c)

[d] = [D∗]−1, (B.3d)

where
[A∗] = [A∗]−1, (B.4a)

[B∗] = −[A∗]−1[B], (B.4b)

[C∗] = [C][A]−1, (B.4c)

[D∗] = [D] − [C][A∗]−1[B]. (B.4d)
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For the special case considered in Section 3.2, where the faces are treated as
homogeneous orthotropic materials, it was shown in that Bij = Cij , which
yields

[A∗] = [A]−1, (B.5a)

[B∗] = −[A]−1[B], (B.5b)

[C∗] = [B][A]−1, (B.5c)

[D∗] = [D] − [B][A]−1[B]. (B.5d)

Furthermore, for the special case of a symmetric sandwich (Section 3.2),
i.e., where the face sheets are identical and laid-up with their mid-plane as a
mirror plane,

[B] = [C] = [0]. (B.6)

In Equations (B.3) and (B.4) this results in

[B∗] = [C∗] = [0]. (B.7)

Substitution into Equations (B.3) gives

[a] = [A]−1, (B.8a)

[b] = [c] = [0], (B.8b)

[d] = [D]−1. (B.8c)

For a sandwich with zero D16 and D26 terms, it may furthermore be shown
that

d11 = D22

D11D22 − D2
12

, (B.9a)

d12 = −D12

D11D22 − D2
11

, (B.9b)

d22 = D11

D11D22 − D2
12

, (B.9c)

d66 = 1

D66
. (B.9d)



Appendix C
Southwell Method

The theory of Euler indicates that an initially straight and centrally loaded
column will remain straight under increasing load until the load attains a
value, called the critical load Pcr, where the straight shape ceases to be sta-
ble and the column bends into the form of a single bow. This shape may
be maintained by the end forces alone. If, however, the column is not per-
fectly straight initially, but bowed, the bifurcation from a straight to a bent
shape will not occur; see Figure C.1, which illustrates load vs. out-of-plane
deflection of the center of the column. When the amplitude of the initial im-

Figure C.1 Load vs. out-of-plane deflection for elastic columns. The intersection
of the curves with the δ axis is the initial imperfection amplitude.
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Figure C.2 Compression loading of a column with initial bow.

Figure C.3 Southwell plot for determination of Pcr.

perfection decreases and approaches zero, the curve predicted by the Euler
analysis is approached.

Southwell (1932) presented an analysis of the imperfect column allowing
a simple determination of Pcr using a graphical method. Consider the simply
supported column shown in Figure C.2. The initial slight deflection of the
column y0(x) is expressed by a Fourier series

y0(x) =
∞∑

n=1

w̄n sin
nπx

l
, (C.1)

where w̄n represents the amplitude of each half sine wave representing each
mode (n) of the initial imperfection, and l is the column length. x is a coor-
dinate measured along the line of force action between the two pinned ends
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of the column. Southwell showed tat the total deflection δT at the center of
the column (x = l/2) may be approximated by

δT = w̄1

1 − P/Pcr
, (C.2)

where w̄1 is the amplitude of the fundamental mode (n = 1) of the initial
imperfection (Equation (C.1)), and Pcr is the buckling load corresponding to
the fundamental buckling mode. Equation (C.2) approximates a rectangular
hyperbola in P vs. δT space with Pcr as the horizontal asymptote, and an
intersection of the x axis (P = 0) at δT = w̄1. Southwell recognized that the
load vs. the measured deflection at the center of a column δ (Figure C.2) is
also expected to follow a rectangular hyperbola that is passing through the
origin (P = 0, δ = 0). For P > 0, the load and deflection are connected by

δ − Pcr
δ

P
+ α = 0 , (C.3)

where α is a measure of the initial deflection. Hence, by plotting δ vs. δ/P ,
the data should fall on a straight line with Pcr as the slope of the line, see
Figure C.3.
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