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Preface and Acknowledgments

After the onset of the 2008 financial crisis, many media reports questioned
whether the academic finance community should have been able to predict
this crisis. It is certainly fair to say that prior to 2008 very few contribu-
tions to the empirical finance literature modeled events as extreme as those
which occurred during the crisis. However, following the crisis there is now
more interest in extreme event modeling than at any other time in history. In
addition to increased interest in extreme event modeling, many facets in main-
stream finance have evolved since the crisis. For example, the issue of using
liquidity as an explicit input in mathematical and empirical based modeling
has become prominent.

The contributors to the Handbook comprise experts from a variety of fields,
such as financial history, banking and mathematical finance. The content of the
Handbook provides a blend of theoretical, empirical, policy and practitioner
insights of many of the developments that have taken place since the onset of
the financial crisis in 2008.

What better place to start our journey than with history? History is replete
with dramatic financial events, and while it is debatable that any of those
events have really been as extreme as what happened in 2008, there is still
an array of useful information embedded in prior financial experiences. His-
toriography is the topic covered in the first chapter of this Handbook. The
contribution of Peter L. Rousseau outlines the evolution of the US financial sys-
tem through the colonial period highlighting the major events and economic
challenges posed to the US economy. The chapter shows that an important
lesson can be learned from studying history: namely that the presence of a
strong central bank acting as lender of last resort is of paramount importance
for maintaining economic stability.

Following this historical foundation, the Handbook proceeds on a “techni-
cal” journey, with a group of chapters that revolve around studies on the topic
of banking. Sanja Jakovljević, Hans Degryse and Steven Ongena review the
empirical monetary transmission literature. The authors assert that policy mak-
ing has been well informed by input from recent empirical studies. However,
there are problems in a variety of areas such as overly restrictive credit reporting
requirements and the issue of the level of universality of variable definitions
without which international comparisons of modeling results become very
difficult. The chapters by Rhiannon Sowerbutts/Peter Zimmerman and Ali al-
Nowaihi/Sanjit Dhami examine issues related to government responses toward

xii



Preface and Acknowledgments xiii

banking following the crisis. Sowerbutt and Zimmerman’s chapter explores the
important problem of market discipline in banking. It considers the reasons
why such discipline can break down and examines whether bank opacity or
transparency is socially optimal. In the chapter by al-Nowaihi and Dhami,
a model is proposed which shows that there exists an optimal institutional
response to the well-known liquidity trap (where bonds and money become
substitutes due to zero nominal interest rates). Hulusi Inanoglu, Michael Jacobs,
Jr., Junrong Liu and Robin Sickles explore the “too-big-to-fail” controversy. The
authors make use of an impressive suite of econometric techniques in attempt-
ing to answer the thorny issue of whether “too-big-to-fail” banks are efficient.
The authors argue that bailing out such large banks may come at a huge cost
(with problems such as moral hazard on one side and weakening levels of inter-
national competitiveness on the other). The chapter by Thomas Weyman-Jones
addresses another very interesting problem regarding how a measure of effi-
ciency can be used to assess bank recapitalization costs. This work presents
an extension to the broad literature on modeling bank efficiency and provides
insights into the link between efficiency and bank safety.

A second group of chapters investigates modeling responses to the 2008 crisis
from a variety of angles, other than the banking perspective. The chapter writ-
ten by Mark H. A. Davis explores how one can quantify the level of uncertainty
in option pricing when, using the words of Davis, it is “occasioned by the vari-
ety of models used.” His chapter highlights an important issue most of us face
when we model, namely, the extent to which “minimal assumptions” are used.
A key ingredient which appears by virtue of necessity in many financial mod-
els is the concept of information. The chapter by Jérôme Detemple and Marcel
Rindisbacher defines the concept of Private Information Price of Risk (PIPR) as
representing “the incremental price of risk assessed when private information
becomes available.” Their work investigates how PIPR behaves in both discrete
and continuous time models. The authors show that PIPR really quantifies the
information content of the signal. The authors also mention the difficulties
involved in modeling pricing relationships when some private information
converts into public information. The chapter by Igor Evstigneev, Thorsten
Hens and Klaus Reiner Schenk-Hoppé considers an alternative approach to tra-
ditional equilibrium analysis in finance. One of the central arguments in this
new approach is that market dynamics are a sequence of consecutively related
short-run equilibria. Jukka Isohätälä, Nataliya Klimenko and Alistair Milne
consider a new approach to macroeconomic modeling. Their approach uses
non-linear continuous time specifications of economic dynamics.

Overall, the work contained in the aforementioned four chapters has rele-
vance to the modeling implications which arise as a consequence of the 2008
financial crisis. In effect, all of the four chapters provide excellent frameworks
that can be used to calibrate essential economic and financial variables that are
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used to model crises. This Handbook is rounded off with a last (but surely not
least important) chapter on using a resolutely different approach to modeling
in finance. In the chapter by Fabio Bagarello, a simplified stock market is pro-
posed which allows for the definition of a so-called Hamiltonian on this simple
market. The Hamiltonian is an operator, and so are the operators which trigger
share price changes and market supply changes. This chapter sits within the
wider literature that applies concepts of physics to economics and finance.

This Handbook would not have been possible without the financial support
of the ESRC (Economic and Social Research Council) Seminar Series. The semi-
nar series upon which this Handbook is based was entitled “Financial Modeling
Post-2008: Where Next?” and since the ESRC is the largest funding body in the
United Kingdom which funds research in the social sciences we, as editors,
were quite thrilled to receive funding from this body. The financial assistance
received from this source allowed us to organize four different seminars held
first at Bangor University, then the University of St. Andrews, followed by the
University of Manchester and the University of Leicester. The Handbook con-
tains some of the papers presented at those seminars. None of those seminars
would have been possible without the excellent administrative support of Karen
Williams (Bangor University), Shona Deigman (University of St. Andrews),
Steven Falconer (University of Manchester) and Daksha Patel (University of
Leicester).

Finally, the support provided by staff at the ESRC also needs to be stressed.
Claire Mussen was always available to answer urgent (and important) queries.
The editors also want to thank the contributors to this Handbook and all the
speakers who presented work at the four ESRC seminar series. We also want
to thank Aimee Dibbens and Grace Jackson (both at Palgrave Macmillan Pub-
lishers) for their very able and valuable assistance in making this Handbook a
reality.
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(2014, with Sébastien Lleo).

Hans Degryse is Professor of Finance in the Department of Accountancy,
Finance and Insurance of the KU Leuven. He is a research fellow at the CEPR,
CESIfo, the European Banking Center (EBC), and TILEC, and is a member of
the academic council of EBC. Before joining Leuven in 2012, he was Professor
of Finance at Tilburg University, Netherlands. His research focuses on financial
intermediation, including theoretical and empirical banking as well as market
microstructure. His articles have appeared in many journals including the Amer-
ican Economic Review, Journal of Finance, Journal of Financial Economics, Review of
Financial Studies, Management Science, Journal of Financial Intermediation, and the
Economic Journal, and he has presented in leading international conferences
such as the American Finance Association, the Western Finance Association,
the European Finance Association, and the Financial Intermediation Research
Society. He co-authored, with Moshe Kim and Steven Ongena, the graduate
textbook Microeconometrics of Banking: Methods, Applications and Results (Oxford
University Press). He is currently an associate editor of the International Review
of Finance and the Review of Finance.
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Université de Strasbourg, as well as degrees from ESSEC and Université de Paris-
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1
Financial Development and
Financial Crises: Lessons from
the Early United States
Peter L. Rousseau

Introduction

The financial history of the United States is unique in that it includes multiple
experiments with currency and banking systems that were accompanied by the
rapid emergence of financial markets. This history is also reasonably well doc-
umented, and includes relatively frequent disruptions in the form of financial
crises. More importantly, the U.S. experience from the colonial period through
World War I holds lessons for understanding the interrelated roles of finan-
cial development, globalization, and financial crises in economic growth and
stability, and these lessons are not entirely remote from the global events of
2007–2009. This chapter highlights some of these lessons through a financial
historiography of the period that emphasizes the key role of central banks in
economic stability, the dangers of allowing political expediency to drive eco-
nomic outcomes, and the pitfalls of allowing either to gain excessive influence
over financial and monetary policies.

The colonial period, the time surrounding the War of 1812, and the long
period from 1836 until the founding of the Federal Reserve in 1914, all saw the
United States without a federal bank. Although there were improvements from
one episode the next, all three had more than their share of financial crises.
In contrast, the two periods prior to the Fed when the United States did have a
federal bank (1791–1811 and 1817–1836) saw greater financial stability, though
more in the first period than the second. This chapter focuses on links between
growth, volatility, the vulnerability to crises across pre-Fed U.S. history, and
their implications for gaining a better understanding of the issues surrounding
financial modeling in today’s post-crisis world.

1



2 Peter L. Rousseau

1 The colonial period

The colonial period of pre-U.S. history commenced as British settlers migrated
to North America in the early 17th century and ended with the fledgling
nation’s Declaration of Independence from England on July 4, 1776. Most of
the colonies engaged in some of the world’s earliest experiments with paper
money. Although paper money had circulated at various times in China dur-
ing and after the Tang Dynasty (618–907 A.D.), the British North American
colonies were the first to use it as a permanent financial instrument. The various
colonial legislatures, starting with Massachusetts in 1690, printed this money,
called “bills of credit,” with the consent of the colony’s Governor (i.e., the
representative of the British crown) and then used the bills to purchase goods
and services. These included payments to troops defending the colonies from
threats by French, Spanish, and Native American forces, but some colonies also
loaned the bills out to settlers to fund land purchases. The bills were officially
backed by only the faith and credit of the issuing colony, but provisions accom-
panying their issue usually promised redemption at full value in lieu of taxes at
pre-specified future dates.

When redeemed on schedule, the monetary theories of Sargent and Wallace
(1981) and Sargent and Smith (1987) indicate that agents will increase their
holdings of otherwise un-backed paper money in anticipation of a decrease in
its supply on each redemption date. These promises of redemption (i.e., back-
ing by anticipated taxes) maintain sufficient demand for the paper money so
that new issues lead to a general level of prices that is smaller than the propor-
tional increase specified by the quantity theory of money. The quantity theory
states that prices should be in line with the money stock when velocity (V) and
transactions (Y) are held constant in the “equation of exchange:” that is,

MV= PY. (1.1)

Indeed, issues of paper money in several of the colonies, such as New York,
New Jersey, and Pennsylvania were successful insofar as prices did not advance
in the same proportion as the circulation. Since colonial monies are generally
believed to have traded at floating exchange rates with each other and with the
British pound (McCusker 1978), these arrangements provided the individual
colonies with some independent control of their monetary policies.1 But in
cases where currency issues expanded excessively or the legislature failed to
burn the bills as promised upon receipt as tax payments, doubts would arise
among the public about the eventual redemption of outstanding bills at face
value. When this occurred in New England after 1740 and in the Carolinas, the
first financial crises in what would become the United States ensued.

South Carolina is a case in point, seeing large injections of currency in the
1710s, in 1730, and again from 1755–1760. In the first two instances the
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emissions were likely responses to threats, actual and perceived, from neigh-
boring Spanish and Native American forces, while the final inflation coincided
with the Seven Years War. Although the emissions may well have been put to
good use in defending the colony, all came at the expense of a sharp decline
in the value of the bills and severe losses to those left holding them dur-
ing the fall. In New England, currency issues by Connecticut, Massachusetts,
New Hampshire, and Rhode Island tended to pass at par for purchases across
colonial boundaries, giving the region have the characteristics of an early cur-
rency union. Against this backdrop, the colony of Rhode Island, with one-sixth
the population of Massachusetts, emitted quantities of currency that made its
amount in per capita terms diverge rapidly, reaching more than five times that
of its neighbors by 1840 (Rousseau 2006, 104). When New Hampshire increased
its issues in response during the mid-1840s, the implicit taxes imposed by these
two states on Connecticut and Massachusetts through depreciation of their
own bills caused the system to unravel. By 1751, the British Parliament had
passed the “Currency Act,” which forbade further issues of bills of credit in New
England, in effect placing the region on a specie standard for the remainder of
the colonial period.

The worst case of over-issuance of fiat currency, however, came shortly after
the United States declared its independence from Britain. On the eve of the
Revolutionary War, the national legislature, called the Continental Congress,
agreed to issue bills of credit to finance the conflict. These bills, called “con-
tinentals,” were backed only by vague promises of specie redemption in the
future, and presumably only if independence was achieved. Although the con-
tinentals allowed the nation to finance the early stages of the war, they began
an unmitigated decline in 1879 to reach virtual worthlessness by 1781, and
remained there until ultimately redeemed at a rate of 100 continentals to a
single dollar when the new unit of account was introduced.

It is a little appreciated fact that the United States, buoyed by its new constitu-
tion, began its federal history with a default on obligations to its domestic note
holders. Those in favor of the default argued that it was expected, that redemp-
tion at full value would primarily benefit speculators who had purchased the
bills as option-like instruments that were deeply “out of the money,” and that
as bearer instruments it would be impossible to identify those individuals who
actually lost wealth as the continentals plummeted in the late 1770s. It turned
out, however, that the default was essential to the nation restoring its credibility
and creditworthiness in the international community.

2 The turnaround

Once it seemed clear that the nation would default on the continentals, ques-
tions of whether the federal government should have the right to charter
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corporations and whether individual states should be permitted to issue paper
money came to the forefront late in the process of developing the U.S. Con-
stitution in Philadelphia in 1787. When the final document forbade individual
states from issuing currencies and included a right for the federal government to
“mint coins and regulate their value” through means “reasonable and proper,”
however, it was not fully understood that this would imply a privatization of
the money creation process. Of course, the outright ban on state currencies
and the phrases quoted above created an impression that the federal govern-
ment would be responsible for providing money, yet the coinciding ban on
the federal chartering of corporations rendered the form through which the
government would assume this responsibility unclear.

Indeed, Alexander Hamilton, the nation’s first Secretary of the Treasury,
removed any uncertainty by pressing forward after ratification of the Consti-
tution by the states in 1789 with a proposal to charter a federal corporation
– the (First) Bank of the United States. The entity would have an authorized
capital of $10 million, with only 20 percent held by the government and the
remainder by private investors. The Bank would act as fiscal agent of the fed-
eral government, holding its deposits and arranging for disbursements, and
would issue its own specie-backed notes to circulate among the public. Some
in the early Congress considered the federal charter of any corporation, includ-
ing a “government” bank, as unconstitutional, and these sentiments persisted
through the generation of the founding fathers and into the next. Nevertheless,
Hamilton used the “necessary and proper” clause in the Constitution to justify
the charter and then steered it through the Federalist Congress. The First BUS
started operations in 1791.

Rousseau and Sylla (2005) describe the “Federalist financial revolution” as
the set of innovations that brought the Bank into existence and followed on
its heels. Hamilton had learned from the Bank of England (founded in 1694)
and the Bank of Amsterdam (founded in 1609) how the ability to tender gov-
ernment debt in exchange for shares in a government bank could improve the
state of a nation’s finances. And improvement was certainly needed given that
the federal government and individual states were awash in debt from the War
of Independence, with bonds selling at pennies on the dollar in the mid-1780s.
Hamilton describes the plan in his 1790 Report on the Bank, in which he advo-
cates for a privately managed, limited liability corporation divided into 25,000
transferable equity shares with a par value of $400 each. The Report calls for the
federal government to purchase its 20 percent of the shares using a loan from
the Bank to be repaid in installments over a 10-year period. Private investors
would be offered up to 80 percent of the shares, with one fourth payable in
specie and three-fourths payable in U.S. bonds paying six percent interest. The
“6’s,” as they were called, represented a restructuring of the federal and var-
ious state debts. Even though this innovation had been used successfully a
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Figure 1.1 The number of state banks nationwide and security listings in three cities,
1790–1850

century earlier in England, it was still something of a surprise that the market
value of the new U.S. 6’s sprung rapidly to par. By proceeding to make inter-
est payments to foreign and domestic bondholders in hard money payable in
the major cities, including London, Hamilton restored the credit standing of
the United States and enhanced its ability to draw in capital from abroad. By
defaulting on the continentals, Hamilton had made a difficult decision in favor
of reliably servicing the restructured debt.

What happened next is nothing short of extraordinary. The number of pri-
vate banks chartered by individual states rose rapidly to the point where the
United States became the most banked nation in the world (Rousseau and Sylla
2005, 5–6). Starting with only three banks in 1790 – one each in New York,
Philadelphia, and Boston – the nation attained 31 banks by 1800. Figure 1.1,
which shows number of banks from 1790 to 1850, indicates that by 1811, when
the 20-year charter of the First BUS was due for renewal, there were 117 banks,
and that this expanded to 330 by 1825. Even in England, which had experi-
enced its financial revolution a century earlier, the number of country banks in
1811 stood at only 230. By 1825, Sylla (1998, 93) shows that the United States
had roughly $90 million in banking capital, which was 2.4 times the banking
capital of England and Wales combined.

But this is moving ahead too far in the account. The innovation of the
restructured 6’s and the transferability and popularity of shares in the Bank led
to the emergence of markets for trading these instruments. Indeed, as Figure 1.1
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also shows, the growth in the number of securities traded in the three major
cities (New York, Boston, and Philadelphia) from 1790 to 1850 was extraordi-
nary. Starting with a handful of government securities in 1790, by 1825 the
United States saw 187 different securities trading in these cities compared to a
total of 230 securities trading in the English markets (Rousseau and Sylla 2005,
6–9). The conclusion is inescapable: by 1825 the United States had a financial
system that was gaining on the world’s leaders in terms of both banking and
the spread of securities markets.

Sylla et al. (2009) show how the First BUS acted decisively to rout an incipient
financial crisis in 1792 when speculation in government securities and shares of
the First BUS in New York led to a substantial crash and scramble for liquidity
among early stock brokers. The First BUS, under the direction of Hamilton,
provided the necessary liquidity at this critical moment, thereby arresting the
panic. Although the crisis itself is sometimes viewed as a minor event involving
only a small number of wealthy individuals, the fact remains that the BUS
engaged in the type of liquidity provision that would nowadays be associated
with the operations of a central bank. This suggests that the United States had
at least a quasi-central bank very early in its history.

With the spread of banking came true privatization of the money creation
process. The First Bank’s federal charter granted it the right to issue specie-
backed notes, and individual states granting bank charters also allowed this.
There were no required reserve levels at the time, so these private banks could
expand their issues to meet the needs of entrepreneurship, and also to max-
imize the profits of their owners. Since loans were often granted to bank
“insiders,” the probabilities of large losses tended to be small, but resources
were not generally allocated through a competitive process where funds went
to projects with the highest potential returns. When banks did over-issue cur-
rencies, there was always the possibility that the public might choose to redeem
their notes en masse and take the individual bank down.

Interestingly, bank failures were not a concern during the time of the First
BUS. One reason for this was that the First BUS began to establish branches
to facilitate the collection and disbursement of the government’s funds in the
course of normal business. The first branches were established in Boston, New
York, Baltimore, and Charleston (1792), and then later in Norfolk (1800), Wash-
ington and Savannah (1802), and New Orleans (1805) (Wettereau 1937, 278).
Even President Jefferson, an original opponent of the Bank on constitutional
grounds, came to appreciate the service that the Bank could provide as fiscal
agent. More important for the stability of the system, however, the Bank and
its branches also provided a check on paper money issues by individual state-
chartered banks by collecting their notes through their ordinary operations and
then deciding whether to pay them out at their own counters or to pack the
notes up and return them to the counters of the issuing banks for redemption
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in coins. The decision was typically based on whether the First BUS could deter-
mine whether an individual bank was issuing more notes than it could redeem,
and the amount of notes coming across its own counters provided a reasonable
predictor. The possibility of sudden redemption by the BUS served to deter state
banks from issuing too many notes. The Bank was so successful in conducting
the operations that its shareholders, which included both the government and
private individuals including foreigners, were paid healthy annual dividends of
7–8 percent on their stock in addition to the interest on the bonds that they
had tendered for the shares.

The Bank’s fortunes changed rapidly in 1811, however, when opponents in
Congress stopped the financial revolution in its tracks. At that time, the Repub-
licans, fueled by Jefferson’s legacy and led by President Madison, who was even
more ambivalent toward the Bank than his predecessor, caused a deadlock in
the Senate on a bill to renew its charter for another twenty years just before it
was to expire. The robust annual dividends were viewed by some of the Bank’s
opponents as evidence that a wealthy elite was unduly benefiting from use
of the government’s temporary balances for profit. Other opponents claimed
that the Bank’s federal charter as a corporation was unconstitutional in the first
place. In the end, sitting Vice President George Clinton (a former Governor
of New York), in his role of presiding over the Senate, cast the deciding vote
against the Bank, and it ceased operations as a federal bank in 1811.

3 1812–1828

The end of the Bank could not in retrospect have come at a worse time. As
British troops threatened the new republic along its Atlantic seaboard and on
the Gulf coast during the War of 1812 – hostilities that included the capture
and burning of Washington DC in 1814 – the federal government desperately
needed funding to prosecute the campaign. Without a quasi-central bank to
organize the funding efforts, the government resorted to issuing $60 million in
debt directly to the public, both within the United States and abroad. It also
issued $15 million in treasury notes to make up the remaining shortfall. By
1814 it had become impossible to repay these debts on schedule due to their
sheer volume, and this sounded a death knell for raising the additional debt
required to service existing loans.

Indeed, the United States was bankrupt in late 1814, and many banks formed
in the wake of the First Bank’s demise were having difficulty redeeming their
own notes. It is amazing that in a time of such financial disarray General
Andrew Jackson and his troops turned back the British in New Orleans in Jan-
uary of 1815 in the war’s most decisive victory! Yet never in the history of the
United States had the need for a federal bank become more apparent. Realiz-
ing the error they had made five years earlier, the Democratic-Republicans (the
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successors to the Democrats and now Madison’s party) in Congress approved a
charter in 1816 for a second federal bank, now called the Second Bank of the
United States, with an even larger capital of $35 million. The new Bank began
operations in 1817.

The experience of 1812–1815 reinforced the importance of having a federal
bank in place to assist in financing a war. Yet the Union faced the very same
deficiency again during the Civil War (1861–1865). It was exactly the need for
finance at the start of the Civil War that motivated the National Banking Acts
of 1863 and 1864, which set up the system of unit banks under which most of
the United States operated until the founding of the Federal Reserve in 1914.
But even this system, which established the Office of the Comptroller of the
Currency and regulated bank note issues at the national level, represented only
a partial solution to the problems of monetary control related to the absence of
a central bank.

Unlike the First Bank, the Second BUS did not get the nation immediately
back on track toward the modern growth that the War of 1812 had brought
to a temporary halt. The Bank made many of its loans to insiders who did not
invest in projects with the highest available expected returns, and shareholders
continued to be rewarded with high dividends. When the Bank found its own
notes coming back to its counter for redemption during a financial crisis in
1819, it mitigated these demands by sharply contracting the loan portfolio
on its balance sheet. Critics claimed that the contraction, directed by Bank
President and former acting Treasury Secretary William Jones, had saved the
Bank at the expense of the public, a charge not lost on future U.S. President
Andrew Jackson as he bided time on his Tennessee plantation near Nashville.

The appointment of Nicholas Biddle as President of the Second BUS in 1823,
however, represented a sharp break with the past. Biddle took the Bank’s
responsibility as the nation’s fiscal agent very seriously, just as Hamilton’s First
Bank had three decades before, but provided these services while maintaining
monetary control in an economy that had grown much larger. With twenty
five branch offices in operation by 1832, the Bank performed its monetary
control functions once again by collecting notes of over-issuing state-chartered
banks and returning them to their counters for specie. Many banks resented
this form of control and charged the Bank with constricting the banking sys-
tem by offering its advantages only to the few who could afford to borrow
from it or hold its shares (these two groups were often one and the same).
This opposition was unable, however, to gather momentum during President
Monroe’s second term (1821–1825) or the subsequent administration of John
Quincy Adams (1825–1829). Indeed, the Supreme Court reconfirmed the con-
stitutionality of the Bank in an 1820 ruling and then again in 1824, with the
latter ruling putting the question to rest at least officially.

Yet the seeds of resistance were already being sown, as war hero Andrew Jack-
son won the popular vote in the 1824 presidential election but was unable to
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gain a majority in the Electoral College. When defeated by John Quincy Adams
in a final vote taken in the House of Representatives, Jackson viewed his loss
(sometimes called “The Corrupt Bargain”) as unfair and typical of how the tra-
ditional elite had come to rule American politics. The response of Jackson’s
supporters was to form a new party – the Democrats – to address the issues
of the “common” man. The Democratic party and the “populist” movement
that came with it held deep suspicions of the power wrought by large banks
and especially the Second BUS, and as the party swept their candidate Andrew
Jackson into the White House with a landslide victory in 1828, Bank President
Nicholas Biddle faced serious uncertainties about what Jackson’s victory could
mean for the Bank.

4 The Bank War, 1829–1834

Among the most fascinating episodes in early U.S. history, the “Bank War”
waged between Jackson and Biddle from 1829–1834 is a classic example of how
a political outcome can change the course of financial history. Jackson had not
made public statements about his opposition to the Bank in the years leading
up to his election in 1828, but Biddle suspected that Jackson’s populist follow-
ing might well have fostered an impression that was less than positive. Biddle
tried to avert this potential problem early on by engaging the President with
accounts of the great efficiency with which the Bank carried out the federal gov-
ernment’s business. He also knew of Jackson’s goal to pay down the national
debt, which had accumulated from the days of Hamilton’s restructuring and
was exacerbated by the War of 1812, and pledged his support and cooperation
to the President in seeing it through.

Biddle realized, however, that Jackson would not so easily become a supporter
of the Bank during a meeting with the President at the White House during
his first year in office. It was there that Biddle reports Jackson having said: “I
do not dislike your bank any more than all banks. But ever since I read the
history of the South Sea Bubble I have been afraid of banks.” Jackson informed
Biddle at the same meeting that he did not believe that the federal government
held the constitutional right to charter a bank outside the “ten-mile-square” of
Washington DC. At the same time, he assured Biddle that he would praise the
Bank for its cooperation in paying down the debt during his Annual Address
to Congress. The form of this praise, however, was not as Biddle expected and
served only to raise his anxiety about the future of the Bank:

The charter of the Bank of the United States expires in 1836, and its stock
holders will most probably apply for a renewal of their privileges. In order
to avoid the evils resulting from precipitancy in a measure involving such
important principles and such deep pecuniary interests, I feel that I cannot,
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in justice to the parties interested, too soon present it to the deliberate
consideration of the Legislature and the people. Both the constitutionality
and the expediency of the law creating this bank are well questioned by a
large portion of our fellow citizens, and it must be admitted by all that it
has failed in the great end of establishing a uniform and sound currency.
(First Annual Message to Congress, December 8, 1829)

After a second set of remarks near the conclusion of Jackson’s 1830 address sug-
gesting that the Bank’s charter be modified to obviate constitutional objections,
Biddle realized that the Bank was in trouble. By the time that Jackson’s bid
for re-election was underway, Biddle and his allies in Congress knew that the
Bank’s best hopes for renewing the charter, which was set to expire in 1836, was
to raise it during the campaign. The leader of Jackson’s opposition in Congress,
Speaker of the House of Representatives Henry Clay, an individual with his
own presidential aspirations, then hatched a plan with Biddle to push an act to
renew the Bank’s charter for another 20 years through both Houses of Congress
in the spring of 1832. The plan was aimed at forcing the President to sign the
act into law or appear foolish by using his veto power to halt legislation that
“citizens” had brought forward.

The plan backfired badly on Biddle and Clay as Jackson proceeded to veto the
bill on July 10, 1832 and defeat Clay in the November election with another
landslide victory. The fate of the Bank was sealed at that very moment, some
four years before the charter would eventually expire, and Jackson immediately
embarked on a campaign to dismantle the Bank.

Many consider the “Bank War” as the battle leading up to the veto, but the
events that followed are evidence that the war had only just begun. With the
charter set to expire, Jackson proceeded to spend down the government’s bal-
ances in the Bank and not replenish them, accomplishing what has come to
be known (not quite accurately) as the “Removal of the Deposits.” The new
deposits were directed to the cities of New York, Boston, Philadelphia, and
Baltimore, where most of the federal government’s disbursements would occur.
With the deposits removed, Biddle considered himself relieved from the respon-
sibility of controlling the stock of money by collecting and redeeming notes of
over-issuing banks, and this inaction, combined with inflows of specie from
abroad, and particularly from Mexico, led to a severe inflation. Biddle then
tried to contract the Bank’s credit in response to the drain of its reserves, and
this led to an apparent slow-down in business activity by 1834.

5 The panic of 1837

In the meantime, a land boom was underway. The federal government was
rapidly surveying and making tracts of land available to the public in what
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is now considered the Midwest, as well as in states along the Mississippi and
Gulf coasts. The government sold the land for a fixed price of $1.25 per acre,
but speculators traveling west behind the surveyors typically purchased the
most desirable tracts and resold them to “actual settlers” at significantly higher
prices. Some of the speculation was fueled by the removal of the deposits,
which the receiving institutions began to multiply. Enhanced flows of specie
from Mexico and other points in the 1830s had also contributed to the increase
in the amount of base money (Temin 1968, 268). With the federal debt fully
retired (for the only time in nation’s history) in 1834 and land sales rising to
a fever pitch in 1834–1836, the federal government also saw its balances rising
quickly, and Democrats in Congress began to clamor for something to be done
about the surplus.

To these Democrats, the clear solution was to return the $34 million that had
accumulated in the federal coffers to the individual states in proportion to their
populations. While Jackson did not offer strong support for the plan, he acqui-
esced to it and signed the “Deposit Act” into law on June 23, 1836. The new
law called for a “Distribution of the Surplus” to occur in four quarterly install-
ments starting on January 1, 1837. It was a difficult reallocation to accomplish.
First, it would imply a large movement of coins from the federal government’s
depository banks (i.e., “pet” banks) in the eastern cities to those in the interior,
and this would require a rapid increase in the number of pet banks to lodge
the new deposits in anticipation of their use by the states.2 It also required the
specie movements to begin in the fall of 1836 to ease the adjustment shock that
would surely occur if the transfers were delayed until January 1. The end result
was the assignment of 45 new “pet banks” in the second half of 1836 (Rousseau
2002), bringing the total up to 81 by December, and a movement of deposits
from New York and other cities into these banks throughout the late summer
and fall.

While apparently indifferent to the Deposit Act, Jackson was considerably
more troubled by the land boom, and pointed to the rapid expansion of bank
notes as the culprit. It is interesting that Jackson, who had been convinced by
Senator Thomas Hart Benton and other advisors that hard money (i.e., coins)
was the only true source of wealth and prosperity, was likely more responsi-
ble that anyone for the proliferation of notes due to his destruction of the
Second Bank! Nonetheless, Jackson determined that the availability of notes
was inflating land prices, and that this would end if the nation could return
to a specie currency, at least when it came to land purchases. When Congress
adjourned for the summer in 1836, Jackson proceeded to issue an executive
order on July 11, known as the “Specie Circular,” which called for the purchase
of all public lands from the federal government to be made in specie starting
on August 15, 1836, with exceptions for “actual settlers” continuing through
December 15.
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The Deposit Act and Specie Circular had several unanticipated effects that
struck the U.S. economy and its banks simultaneously. First, the Specie Circular
did not end the land boom as planned, or at least not immediately. Rather,
potential land buyers removed specie from eastern banks and took it to the
Midwest and to Alabama, Louisiana, and Mississippi to fund these purchases.
Evidence from receivers of the public moneys (government representatives who
collected money from those who purchased land and then placed the funds in
a nearby deposit bank) saw an immediate increase in the specie component
of their deposits (Rousseau 2002, 475, table 4), with more than 80 percent of
deposits being made in the form of specie by the time the exception for settlers
expired. This contributed to a drain of the monetary base from eastern cities
and its “dislocation” in other parts of the country where the needs of merchants
for gold and silver coins for international trade was much less. The Deposit Act
ultimately led to $24 million in interstate specie transfers in preparation for the
official Distribution of Surplus, which far exceeded the $5 million conducted
specifically under the Act. The overall impact was to draw specie primarily from
New York to the Southeast.

The effects on deposit banks in New York City were devastating. The Secretary
of the Treasury, Levi Woodbury, frantically attempted to return specie balances
from Michigan and Ohio to the northeast (Rousseau 2002, 470, table 3), but
it could not be brought back quickly enough or in the necessary quantities to
avert the monetary pressure that had been mounting in New York since early
in the fall. By March of 1837 the deposit banks in New York City had seen their
specie reserves fall from $7 million in the previous September to less than $3
million. When the reserve drain and dislocation of the base become clear, along
with news of a decline in the world price of U.S. cotton, the nation’s largest
commercial crop, commercial bills that typically facilitated trade between the
United States and its trade partners (primarily England) began to be returned for
insufficient funds. These international balances needed to be settled in specie,
and this was the commodity that the New York and New Orleans banks, which
were at the heart of international trade, were unable to provide.

Martin Van Buren, who had been elected President the previous fall and
assumed the office on March 4, 1837, chose not to repeal the Specie Cir-
cular despite a general call to do so, and when the public became aware
of the precarious position in which the New York banks had found them-
selves, began to withdraw their deposits on May 8, 1837. What little specie
was left was completely drained by May 10, and New York banks sus-
pended payments of specie in exchange for bank notes on that day. As
news of the suspension moved through the transportation network to other
cities, they also suspended payments, causing a spectacular conclusion to the
second-largest financial crisis in U.S. history and six subsequent years of deep
recession.



Financial Development and Financial Crises 13

The Panic of 1837 is a classic example of a Diamond and Dybvig (1983) style
shift in expectations. The nation as a whole had plenty of specie to meet its
obligations. The system itself was solvent. But the dislocation of the mone-
tary base and the apparent rigidity of the political solutions determined by
the Specie Circular and Deposit Act disrupted the system at its center, sending
shock waves through the country and driving other banks to follow suit. If the
nation had only returned their specie balances to the banks rather than hold it
defensively, the crisis could have ended more quickly. Critics of the Diamond
and Dybvig framework sometimes cite difficulties in pointing to the types of
general shifts in expectations that can generate catastrophic demands for liq-
uidity, but the Panic of 1837 provides a powerful case for consideration. The
problems of asymmetric information that lie at the heart of Diamond and Dyb-
vig (1983), Stiglitz and Weiss (1981), and others, and the continued relevance
of asymmetric information in financial markets today, offer ample reasons for
new modeling approaches to bring the partial equilibrium insights of earlier
work into more sophisticated post-2008 financial modeling.

6 Free banking and the National Banking System

The recession of the 1838–1843 raised awareness of the challenges the United
States would face without a central bank. With the Whig Party back in the
White House in 1841, it seemed that the chartering of a new federal bank was
only a matter of time. But the death of the new President and former war hero,
William Henry Harrison, only a month after his inauguration and the ascen-
sion of former Democrat John Tyler brought these hopes to an end as Tyler
twice vetoed the enabling legislation. The subsequent election of Democrat
James K. Polk essentially brought the discussion to a close. Instead, starting
with the New York Whigs in 1838, and members of both parties in the 1850s,
states began putting laws into place that took the chartering of banking cor-
porations out of the hands of politicians. These “free banking” laws implied a
removal of legislative barriers to entry in favor of standardized capital require-
ments and lists of eligible collateral for backing note issues. Later scholars have
sometimes confounded free banking with “laissez-faire” banking, which would
have implied a lack a regulation, but the “free” in the term refers more directly
to the destruction of entry barriers. Unfortunately, the various states did not
pass uniform laws, with some prescribing lower capital requirements and a
wider range of eligible securities for collateral. In Minnesota, for example, the
free banking law of 1858 permitted railroad bonds to be tendered as collateral,
and the decline of the underlying securities there and in other states with more
lax standards led to periodic banking crises, especially in the late 1850s (see
Jaremski 2010).
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The outbreak of the Civil War in 1861 blunted the sting of the free bank-
ing crises, which Rolnick and Weber (1983) show did not generally end with
large losses to noteholders, as preparing for war once again underscored the
difficulties that the Union would face in raising funds without the assistance
of a central bank and the reputational advantages it could bring to the nation’s
credit standing. After issuing $450,000 in fiat currency (known as the “green-
backs”) that were employed in hindsight with remarkable success, the federal
government passed laws in 1863 and 1864 that established the “National Bank-
ing System.” The System resembled the arrangements used successfully in New
York a quarter century earlier (Sylla 1969, 659), but arose more from the need
to sell government debt than to improve the functioning of banks. The new
laws accomplished this by specifying federal bonds as the only eligible collat-
eral that could be tendered in exchange for bank notes, and by administering
a 10 percent tax on the notes of all banks that did not join the system by
October 1, 1866. Although the System ultimately failed in forcing full con-
version of existing banks to national charters, it did dominate the banking
system until the 1890s when a surge in new banks outside of the system ulti-
mately surpassed national banks in number, and continued a system of unit
(i.e., non-branching) banks that could not achieve the diversification necessary
to consistently avoid solvency concerns (Calomiris and Haber 2014). The Sys-
tem also created a national pyramid of reserves in which country banks could
hold a fraction of their required reserves in designated “reserve cities,” which
in turn held them in the “central reserve city” of New York.3 Individual coun-
try banks could make the pyramid even more top-heavy by depositing reserves
directly in New York.

With so much of the reserve base concentrated in New York and deployed
as broker loans in the market for call money, the System became vulnerable
to financial crises as country bankers demanded their funds at times of sea-
sonal strain in the planting and harvest cycles. When additional unanticipated
demands for liquidity arose at one of these times, reserve city banks, and espe-
cially banks in New York, would need to contract loans with sobering effects on
business activity and the equity market.

The result was a currency system that had what Miron (1986) calls a “perverse
elasticity,” contracting when money was needed the most in the course of busi-
ness and expanding when demand for money was low. This resulted in more
frequent financial crises over the half century following the Civil War, though
the unit nature of the system led to the establishment of clearing houses in
the reserve cities that kept these crises from becoming too severe. Despite these
deficiencies, Cagan (1963, 20) still comes close to the mark when he states
that the United States “could not so easily have achieved its rapid industrial
and commercial expansion during the second half of the nineteenth century
with the fragmented currency system it had during the first half.” The National
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Banking System was an improvement over free banking, but did not have the
capacity to tie banks together as a “system” in the way that the Federal Reserve
was finally able to achieve.

Conclusion

The variegated experiments with money and financial systems that character-
ize the United States from its colonial days through the advent of the Federal
Reserve illustrate that effective finance can be delivered in many possible forms,
but that the choice of each form involves trade-offs which must be consid-
ered and dangers which must be guarded against along the way. The British
North American colonies used tax anticipation notes successfully at times to
provide a medium of exchange that was sorely lacking, but questions about the
solvency of some colonies in the midst of excessive circulations often led to
depreciations and panics. Similar concerns arose with the Continental dollars
issued during the Revolutionary War as even more vague promises of redemp-
tion ended in a complete loss of confidence that turned out to be well founded.
Yet the fact that colonies such as Pennsylvania and New York had successful
experiences issuing such notes cannot be dismissed, and it is not obvious that
it was necessary to forbid their further issuance with the Constitution (Grubb
2003).

At the same time, it is hard to argue against the idea that the “Federalist
financial revolution” and the establishment of the First Bank of the United
States restored the nation’s credit standing and forged a financial “system” that
rendered the economy less susceptible to regional economic shocks. The dis-
solutions of the First BUS in 1811 and Second BUS in 1836, for example, were
immediately followed by periods of severe financial disarray which suggest that
the benefits of central banking cannot be understated as a component of a
“good” financial system (Rousseau and Sylla 2003). In this case, the establish-
ment of a federal bank and the restoration of public credit created a demand
for securities markets from which the nation never looked back.

While the Second Bank may have constricted the spread of banking and
credit by the late 1820s, a situation which was corrected in the 1830s, 1840s,
and 1850s after the Bank’s destruction and the advent of free banking, the new
systems lacked the kind of centralized control over the money creation process
that the federal banks could provide (Rousseau 2015). The perpetuation of the
unit banking system in the National Banking period also left individual banks
and ultimately the financial system more susceptible to bad equilibria, albeit
less severe ones than experienced in 1837.

The diversity of financial systems and outcomes in U.S. history highlights the
challenges that economists now face in building financial models that account
for the frictions that can drive the instabilities that mattered in each case. This
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makes developing a unified framework difficult if not impossible given our cur-
rent state of understanding. But one key lesson from the United States is that
the stability benefits of a strong central bank that stands ready as a lender of
last resort are considerable – and that the trade-off between stability and robust
growth is likely something that good policy can manage. We also know from
history that the choice of regulatory intensity is critical, with excessive regula-
tion impeding further development of the sector and lax regulation pointing
towards crises. These challenges remain salient today, and innovative research
in these areas is essential for improving our understanding of financial sys-
tems in a world with financial instruments and products that are increasingly
complex.

Notes

* Professor of Economics, Vanderbilt University, Nashville, TN, USA.
1. The notion that colonial exchange rates floated freely is not universally held. See

Michener (1987) for a theoretical framework in which the colonies could have
operated under fixed exchange rates with specie.

2. Among the conditions of the Deposit Act was a stipulation that there be at least one
bank assigned as a “deposit bank” in each state that chartered banks. Another limited
the amount of federal deposits lodged in any individual bank to three-fourths of its
authorized capital. These rules made the necessity of moving balances out of New
York ahead of schedule even more apparent since some held deposits in excess of that
allowed under the new law.

3. Chicago and St. Louis joined New York as central reserve cities in 1887.
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2
Monetary Transmission and Regulatory
Impacts: Empirical Evidence from the
Post-Crisis Banking Literature
Sanja Jakovljević, Hans Degryse and Steven Ongena

Introduction

The extent and severity of the recent financial crisis has spurred both theo-
retical and empirical research in the areas of macroeconomics and financial
economics, largely analyzing the challenges faced or imposed by the banking
sector. The focus of this chapter is placed on the empirical work that deter-
mines the relevance of banks in the monetary policy transmission mechanism,
or points to regulatory and macroprudential challenges within the banking
sector. While the lending channel had already been investigated prior to the
crisis, the identification of the risk channel gained the attention of researchers
mostly in the post-crisis literature. Empirical advances have been made on
several fronts: the increased availability and use of detailed micro-data, as
well as (re)development and application of several methodological approaches,
have allowed solving for previously existing identification drawbacks. Further-
more, research on regulatory implications of banks’ operations has proposed
new ways of measuring the risk which institutions pose for the system, and
suggested possible regulatory and macroprudential improvements.

Each of the chapter’s sections starts with an overview of the path set by
the pre-crisis theoretical and empirical research, and further describes how the
post-crisis empirical literature has progressed. Although the majority of the
post-crisis research deals with the causes and consequences of the recent finan-
cial crisis, the chapter also includes papers that have used the aforementioned
empirical improvements to assess previous crisis episodes.

1 The lending channel

According to the traditional (“money”) view of the monetary transmission
mechanism, central bank open market operations that lead to reductions in
banks’ reserves negatively affect their reservable deposit holdings. In absence

18
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of full price adjustment, this leads to an increase in interest rates, and further
to a drop in aggregate demand. The “money” view thus operates through the
liability side of banks’ balance sheets, and the role of banks is passive. How-
ever, monetary policy can affect aggregate demand even beyond the effect of
changing interest rates. This amplifying effect works through the asset side
of banks’ balance sheets, due to the existence of credit frictions, and repre-
sents the “lending” view (Romer and Romer 1990). As Bernanke and Gertler
(1995) explain, credit frictions give rise to the external finance premium, i.e.,
the difference in costs between externally-raised and internally-created funds.
Main credit frictions that are the drivers of this channel are imperfect substi-
tutability between sources of funding, both for banks and their borrowers, and
asymmetric information.

One form of the lending channel – the balance sheet channel – links the
external finance premium to the collateralizable net worth of the borrower:
when aggregate demand is reduced (due to restrictive monetary policy), bor-
rowers’ net worth is deteriorated; hence agency costs due to asymmetric
information will be higher, and so will the premium (Bernanke and Gertler
1989). Increases in the premium have a further negative effect on aggregate
demand, and this amplification mechanism has been summarized by Bernanke
et al. (1996) under the term “financial accelerator.” Another form of this chan-
nel – the bank-lending channel – asserts that tighter monetary policy leads to
loan supply reductions (Bernanke and Blinder 1992). Coupled with the inabil-
ity of certain borrowers to substitute from loans to other sources of funding
(Bernanke and Blinder 1988), loan supply disruptions lead to an increase in the
external finance premium, and hence to a further reduction of real activity.

Early empirical evidence on the lending channel used macro-level data and
relied on correlations of aggregate indicators to establish causality between
money/lending and output (e.g., Bernanke 1983, Bernanke and Blinder 1988, or
Kashyap et al. 1993). Other researchers warned of a post hoc fallacy embedded
in such an approach (Romer and Romer 1990), or pointed to the fact that loan
demand could be driving these correlations, but is unaccounted for (Bernanke
and Gertler 1995, Kashyap and Stein 1995). Additionally, the effects of the
lending channel might not be homogenous across firms or banks. From the
point of the balance sheet channel, Kashyap et al. (1994) differentiate between
bank-dependent and bank-independent borrowers; Gertler and Gilchrist (1994)
and Oliner and Rudebusch (1996) consider the size of firms. For the bank-
lending channel, Kashyap and Stein (1995) analyze the effects of bank size,
complemented in Kashyap and Stein (2000) by liquidity considerations.

The main challenges in the empirical literature have thus been: (1) separating
loan demand and supply, and (2) properly establishing causality from monetary
policy to the real economy. The focus was placed on the bank-lending chan-
nel and identification of exogenous shocks that affect loan supply, but can be
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argued to be uncorrelated with loan demand. Examples refer to within-country
studies of capital crunches (Peek and Rosengren 1995 for the US, Woo 2003 for
Japan), or cross-country transmissions of capital shocks to loan supply and the
real economy (Peek and Rosengren (1997, 2000) on effects of a Japanese real
estate shock on Japanese banks operating in the US). Several event studies have
also examined effects of bank distress, transmitted via lending relationships,
on the performance of their borrowers (Slovin et al. (1993) analyze a case of
bank failure in the US, Bae et al. (2002) assess exogenous shocks to banks in
Korea, while Ongena et al. (2003) look at distress announcements of banks in
Norway).

1.1 Identification challenges and approaches

Even though it appears that the use of bank-firm relationships can help mitigate
issues with identification of supply and demand effects, Gan (2007) points to
endogeneity embedded in these relationships: if there is a self-selection mech-
anism of firms to banks, such that unhealthy firms are paired with unhealthy
banks, then adverse shocks affecting both loan supply and demand might also
be running from impaired firms to impaired banks. Identification of supply
and demand effects can be straightforward if loan-level data is used instead: if
a firm is borrowing from two banks that are differentially affected by an exoge-
nous shock, and receives less funds from the harder-hit bank, then causality
can be argued to run from bank distress to firm performance.

The two data and methodology-related suggestions (i.e., the use of highly
disaggregated data and consideration of multiple bank relationships) have later
shaped much of the post-crisis empirical research. Researchers that pioneered
such an approach are Gan (2007) and Khwaja and Mian (2008). They focus
on exogenous shocks to loan supply in the form of drops in asset prices via
real estate exposure of banks in Japan (Gan 2007), or unexpected nuclear tests
in Pakistan that affected banks’ liquidity due decreases in dollar-denominated
deposits (Khwaja and Mian 2008). The loan-level regressions of lending growth
rates use bank-level exposures to shocks and firm fixed effects to control for
unobserved firm heterogeneity attributable to loan demand. As Khwaja and
Mian (2008) show on the example of their exogenous shock, ignoring firm fixed
effects would lead to an underestimation of the supply effects, due to a negative
correlation between loan supply and demand shocks: those banks hit harder by
the liquidity shock were borrowing to firms facing less difficulty in dealing with
adverse shocks; hence their loan demand was less affected. The level of analysis
is cross-sectional, i.e., the time dimension is handled by first-differencing pre-
and post-shock data points and thus using a difference-in-difference approach.

The proposals set forward by the aforementioned authors were followed in
the post-crisis research in several directions. Many analyzes were set at the
bank-firm level, largely using loan-level data from credit registers; in some
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instances, however, the bank-firm relationships were not direct, but rather
established indirectly based on firm location. Such highly disaggregated data
allowed the use of the difference-in-difference approach, but demand controls
were also occasionally applied in a time-varying setup. A useful feature of credit
register data can be the availability of loan applications, which allow for a
cleaner identification of loan demand. However, as Popov and Udell (2012)
pointed out, loan application data do not account for firms that did not apply
for a loan because they were discouraged; hence the entire pool of potential
borrowers is not considered. For that reason, firm-level surveys containing
indicators on the discouragement to apply for a loan provide a better possi-
bility to identify loan demand factors. Similarly, bank-level surveys on lending
standards of banks contain indicators of loan demand that, as argued by Cic-
carelli et al. (2014), refer to the entire specter of potential borrowers. They have
also been applied in vector autoregressive models (VAR) to point to macroeco-
nomic implications of loan supply and demand shocks. Finally, disequilibrium
models, which rely on the definition of credit-constrained firms and estimate a
system of loan demand and supply functions, have also been used to separate
loan demand and supply factors.

The main focus of the post-crisis empirical literature has been placed on iden-
tification of the bank-lending channel, although some papers also consider the
separation of the bank-lending and the balance-sheet channels, mostly using
country-level data (e.g., Kalemli-Ozcan et al. 2015, Ciccarelli et al. 2014). Part
of the literature focused on one of the underlying assumptions of the bank-
lending channel: substitutability between loans and corporate papers/bonds
for firms. The relevance of this friction, as Carvalho et al. (2013) demonstrate
using data on US syndicated loans, is that bank dependence can aggravate
spillovers of bank distress to the real performance of firms. While Kashyap et al.
(1993) already found evidence of substitutability using aggregate data, similar
results have been documented by Adrian et al. (2013) or Becker and Ivashina
(2014) with US firm-level data. The latter authors additionally argue that this
substitutability is indicative of a contraction in loan supply: firms that substi-
tute from loans have a positive demand for loans (conditional on issuing new
debt); hence, if they switch to bonds, loan supply must have reduced. Iden-
tification of loan supply was also enabled through exploration of exogenous
shocks and “natural experiments,” and the recent crisis offered ample oppor-
tunities to explore shocks that can be argued to be unrelated to loan demand:
the dry-up of the wholesale funding market, issues at the interbank markets,
and the rise of the sovereign debt crisis. Moreover, exogenous shocks to loan
demand have also been identified.
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1.2 Bank-lending channel: effects on lending

In this part of the literature, the empirical strategy was strongly driven by Gan
(2007) and Khwaja and Mian (2008), i.e., controls for (un)observed firm-level
heterogeneity were used largely in a difference-in-difference approach, occa-
sionally in a time-varying manner. The predominant source of data were credit
registers, combined with bank- and firm-level information. What tends to be a
striking difference in these studies is the representativeness of the credit register
data, i.e., the variation in the reporting threshold.

In an analysis of the transmission mechanism strength, Jiménez et al. (2012)
use monthly loan application data from the Spanish credit register (with a low
threshold of reporting of 6,000 EUR), and employ time-varying controls for
(un)observed firm heterogeneity, i.e., firm-month fixed effects. Their results
suggest that fewer loan applications were granted in times of higher short-term
policy rates or low GDP growth, and this effect is stronger for banks with low
capitalization or liquidity levels.

Several papers analyze the transmission of supply-related shocks to lend-
ing. Iyer et al. (2014) exploit quarterly loan-level data from the Portuguese
credit register, with an even lower reporting threshold of only 50 EUR. The
authors find that higher pre-crisis interbank exposure led to larger drops in
growth rates of corporate loans, as well as less creation of new lending rela-
tionships and more terminations of existing ones. The effects appear stronger
for smaller firms, which could not substitute easily for other sources of credit,
and for banks with more non-performing loans. An identical methodologi-
cal approach was used by Bonaccorsi di Patti and Sette (2012), who focus on
monthly credit register data for Italy (with a reporting threshold of 75,000
EUR) to assess how banks’ access to the interbank market and securitization
practices influence the volume and price of loans, as well as the approval
of new loans. These factors mattered for pre-crisis lending, while in 2008
banks’ capitalization levels influenced their sensitivity to funding shocks.
Again on the Italian sample of loan-level data and also using firm-month
fixed effects, Bofondi et al. (2014) study the differential impact of the Ital-
ian sovereign debt crisis on lending practices of domestic and foreign banks,
with the effect presumably weaker for foreign banks. Results confirm that
domestic banks reduced their supply of credit more than foreign banks, both
at the intensive and extensive margin. Contrary to previous analyzes, Berg
and Schrader (2012) identify events that affect loan demand: volcanic erup-
tions in Ecuador. The authors use loan-level data on loan applications and
approvals from a microfinance institution, and match aggregate shocks to firms
based on their location. Their findings suggest that in periods of increased
loan demand (due to a recent eruption episode) the probability of having
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a loan application approved is reduced, which is indicative of loan supply
contractions.

Exogenous shocks to banking can also be transmitted from other countries.
Puri et al. (2011) differentiate between German savings banks based on their
ownership stakes in those German regional banks (Landesbanken) with direct
exposure to the US subprime crisis. Using quarterly data on loan applications
and their granting outcome, they find that affected banks rejected more appli-
cations compared to non-affected ones, although both types of banks faced a
similar decline in loan demand, i.e., less applications filed (see also Ongena,
Tümer-Alkan et al. 2015). Schnabl (2012) exploits an exogenous shock of the
Russian default in 1998 to Peruvian banks, using loan-level data on corpo-
rate loans with a reporting threshold of 5,000 USD. The analysis is performed
for loans at the bank-bank level (with bank-loan-originator and bank-loan-
recipient effects to control for the average changes in loan supply and demand)
and at the bank-firm level (with firm fixed effects to control for loan demand).
The liquidity shock led to a reduction of both international interbank lending,
and lending from Peruvian banks to domestic firms. Cetorelli and Goldberg
(2011) investigate how loan supply of banks in Europe, Asia and Latin America
was affected by liquidity shocks originating in developed countries, which were
transmitted via reduced lending of foreign banks (both directly and via affili-
ates), and of domestic banks due to reduced interbank lending. Using a sample
of country-level bilateral lending data, the authors validate all three predicted
channels of liquidity shock transmission. De Haas and Van Horen (2013) ana-
lyze how cross-border lending was affected by the onset of the financial crisis,
i.e., the Lehman collapse. They use a sample of syndicated loans at the bank-
country and bank-firm level to investigate whether there was a sudden stop
in cross-border lending from a bank to its cross-border borrower, and how the
volume and number of loans from a bank to another country were affected.
Proximity mattered for both the degree of lending and the decision of banks to
withdraw from specific markets.

1.3 Bank-lending channel: effects on real outcomes

In this line of research, the focus was placed on investment outcomes of firms;
other research looks at export or employment effects. The use of bank-firm
level data, augmented with real activity indicators for firms, was the main
advancement of the post-crisis research. The difference-in-difference approach
dominated in the analyzes.

1.3.1 Investment

Amiti and Weinstein (2013) use loan-level data on Japanese listed firms to assess
the impact of bank supply shocks on aggregate loan supply and investment.
They point to an inefficiency of the methodology employed by Khwaja and
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Mian (2008): a regression of loan growth rates on bank-and firm fixed effects
ignores adding-up constraints, i.e., the fact that firms only borrow more if one
of the banks lends more and vice versa. For this reason, the predicted and actual
growth rates of lending are not highly correlated. Therefore, the authors also
include shares of a firm in a bank’s lending portfolio, and vice versa, in the esti-
mation procedure of the aforementioned regression. The estimated bank shocks
are then aggregated at firm-level and used with estimated firm shocks to assess
their effect on the investment/capital ratio of firms. The bank-and firm shocks
are further aggregated and used together with industry and common shocks
to assess their influence on aggregate investment and lending. Results suggest
that bank supply shocks have substantial effects on firm and aggregate-level
investment.

Chava and Purnanandam (2011) exploit the same shock as Schnabl (2012) to
the capital positions of US banks and assess the subsequent effects on their cor-
porate borrowers. Their analyzes at the loan and firm level show that affected
banks reduced loan volumes and increased lending rates after the crisis, while
firms borrowing from more affected banks decreased their capital expenditures
and had more pronounced reductions in profitability. Cingano et al. (2013)
focus on the dry-up of the interbank market liquidity as a shock to the loan
supply in Italy, and use Italian credit register data to assess how investment
choices of firms were affected. The authors use firm fixed effects as controls
for unobserved heterogeneity; however, as Jiménez et al. (2011) pointed out,
within-firm analyzes do not account for the possibility of firms to switch banks
when experiencing credit drops. For that reason, the firm-level regressions
of credit growth on interbank exposure use unbiased estimates of firm fixed
effects from the equivalent loan-level regression. They find that firm invest-
ment has been affected by the exposure of their banks to the interbank market
shock. Balduzzi et al. (2014) show that Italian banks were also hit by the finan-
cial and sovereign crisis through increases in their CDS spreads and lowered
equity valuations, which had an adverse effect on borrowing firms in terms
of their investment, employment and bank debt. A vast majority of firms in
their sample borrow from just one bank; hence, the identification strategy
includes both firms borrowing from multiple banks and a sample of single-bank
firms.

The issue of plentiful single-bank firms was also present in the analysis by
Ongena, Peydró et al. (2015), who investigate the heterogeneity of interna-
tional shock transmission from the financial to the real sector in a cross-country
study. The authors use bank-firm level data from 14 countries in Eastern
Europe and Central Asia. Their analysis at bank and firm level shows that lend-
ing contractions were larger among domestic banks borrowing internationally
and foreign-owned banks, and their borrowers experienced greater contrac-
tions of their real and financial performance. The authors also emphasize that
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combining loan-level data with firm characteristics is an important part of
identification, since solely firm fixed effects, when used as controls for loan
demand shocks, do not contribute much to the variation of lending once firm
characteristics are accounted for.

1.3.2 Export

Zia (2008) uses matched bank-firm data for a sample of Pakistani textile
exporters and investigates how the abolishment of the credit subsidy program
for yarn producers affected export of firms; privately owned firms were affected
more compared to public ones. Del Prete and Federico (2014) use loan-level
data from the Italian credit register on a sample of Italian exporters, which
further contains information on the purpose of the loan: import, export or ordi-
nary loans. The difference-in-difference approach using time-varying demand
controls suggests that loan contractions were larger for banks hit harder by
foreign funding shocks, and more so for ordinary loans. Amiti and Weinstein
(2011) match loan-level with export data for Japanese listed firms based on the
main bank providing trade credit, and find that financial health of banks affects
export performance of firms. Since exporters might be borrowing from healthy
or unhealthy banks that could also have a preference for a specific indus-
try, the use of industry-time fixed effects takes out supply and demand-driven
shocks common to exporters, so within one industry the export performance
of exporters borrowing from an unhealthy bank can be identified. Paravisini
et al. (2015) use loan-level data from the Peruvian credit register to assess the
impact of credit constraints on the volume of export and entry/exit decisions to
export on a firm-product-destination level. The authors estimate how lending
from banks that were differentially affected by the capital flow reversal affects
changes of export of the same firm, accounting also for non-credit shocks from
the exporting markets with product-destination fixed effects. While changes
in credit conditions affected the intensive margin, they didn’t influence the
extensive margin.

1.3.3 Employment

Bentolila et al. (2013) use data from the Spanish credit register and split firms
into groups of those that borrowed relatively more from healthier banks (i.e.,
those that did not require a capital injection during the crisis) and those that
borrowed more from weak banks (i.e., those that were bailed out). These groups
do not overlap due to the condition that firms borrowing from weaker banks
could not switch to healthier banks. Based on a difference-in-difference and
matching approach, they find that employment reductions were additionally
lower in firms linked to weaker banks. Chodorow-Reich (2014) looks at US
firms that obtained syndicated loans and analyzes the effect of lender health,
defined post-crisis, on lending and employment outcomes of firms that had
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pre-crisis relationships with healthy versus unhealthy lenders. As in Bentolila
et al. (2013), links to unhealthy banks have detrimental influence on employ-
ment, but the result also depends on the size of the firm: while this negative
impact is pronounced among SMEs, there appears to be no effect on larger
firms.

1.4 Alternative data sources and modeling strategies

1.4.1 Firm and bank surveys

As previously mentioned, firm-level surveys were used to directly control for
firms that do not apply for loans due to discouragement; hence they would not
be accounted for either in credit register or loan application datasets, although
they are also affected by loan supply shocks. Popov and Udell (2012) use sur-
vey data from the Business Environment and Enterprise Performance Survey
(BEEPS) for 16 countries of Central and Eastern Europe, in order to assess how
credit supply was affected by financial health of banks. The authors separate
demand from supply by considering firms that report being credit-constrained
due to supply-driven factors (i.e., their loan application was rejected, or due to
loan specifics such as the interest rates, collateral requirements etc., which acted
discouraging on the firms). Bank-firm relationships were determined based on
the presence and market share of banks in localities of the respondent firms.
The authors find that riskier firms and firms with fewer tangible assets are more
hardly hit by capital shocks to banks, indicative of “flight to quality” effects. A
similar approach was applied by Presbitero et al. (2014), who use survey data
on loan applications and approvals for Italian manufacturing firms, in order
to identify factors leading to bank withdrawals from local markets. Bank-firm
links were created combining data on bank branch openings and closures with
firm-level data based on firm location; credit-rationed firms are defined as those
which did not obtain the desired amount of credit. The authors find that credit
reductions were larger with more functional distance within a bank. Contrary
to findings by Popov and Udell (2012), adverse effects were stronger for finan-
cially healthier firms, suggesting a “home bias” rather than a “flight to quality”
effect. It is difficult to assess whether these differing results stem from varying
definitions of rationing, or are due to imprecisions in establishing bank-firm
relationships.

Surveys on bank-lending standards have already been used in the pre-crisis
research that found a significant effect of these standards on aggregate lend-
ing and output, using VAR models (see Lown et al. 2000, Lown and Morgan
2002, 2006). These surveys regained attention in post-crisis analyzes, since
changes in lending standards can be attributed to bank-driven factors and are
therefore possible indicators of loan supply changes. Surveys also contain infor-
mation on loan demand estimates by banks, which have been used as loan
demand controls, and on reasons for changes in both lending standards and
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loan demand. In a country-level setting for Euro area countries, Hempell and
Kok Sørensen (2010) use quarterly Bank Lending Survey (BLS) data and show
that supply constraints related to bank liquidity and access to market finance
had an especially pronounced effect on loans supplied during the crisis. Among
within-country studies, van der Veer and Hoeberichts (2013) use BLS data for
eight Dutch banks, and find that tightening of lending standards permanently
reduces lending. Del Giovane et al. (2011) combine loan-level data on lending
of Italian banks to the non-financial firms with responses of banks to the BLS
survey. While both demand and supply factors contributed to the movements
of the growth rates of lending, the effect of supply was mostly pronounced after
the Lehman collapse. When the BLS responses on changes in supply lending
standards are interacted with causes of their changes, it can be seen that the
majority of the changes in growth of lending can be attributed to costs related
to the capital position of banks, and the rest to perceptions of risk. For the case
of United States, Demiroglu et al. (2012) use the quarterly Senior Loan Officer
Opinion Survey (SLOOS) to analyze whether lending standards of banks have
a differential impact on lending to private and public firms. Differentiation
between loan supply and demand is based on the substitutability between bank
loans and trade credit in times of credit tightening, which is argued as indica-
tive of a supply effect. They find that periods of tightened lending standards are
associated with reduced lending to private firms at the extensive margin, but
there appears to be no difference between firm types at the intensive margin.

1.4.2 VAR

Closely related to the use of data on bank-lending standards in post-crisis
research was the application of the VAR methodology, in order to disentangle
demand from supply effects and assess their interactions with macroeconomic
outcomes. Ciccarelli et al. (2014) apply a VAR setup to measure the influence
of the monetary policy rate on real activity via bank-lending and balance-sheet
channels, using country-level data from bank lending surveys in Europe (BLS)
and the US (SLOOS). The advantage of these surveys is that their design allows
separating between changes of loan demand, net worth of borrowers (balance-
sheet channel) and net worth of lenders (bank-lending channel). The authors
find evidence of the lending channel in monetary policy transmission to GDP
and inflation: while the bank-lending channel is not significant in the US con-
text, it is relevant in Europe, along with the demand channel. Using the SLOOS
survey on US banks, Bassett et al. (2014) construct an indicator of loan supply
based on bank-level responses on lending standards, and incorporate it into
a VAR model to assess its broader economic impact. Their results suggest that
negative loan supply shocks lead to reductions in the borrowing capacity of the
non-financial sector, real GDP reductions, widening of credit spreads for the
corporate sector and monetary policy easing.
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Identification of loan supply shocks and their macroeconomic effects can also
be assessed with VAR models using sign restrictions. As Hristov et al. (2012)
demonstrate, sign restrictions are used in the following way: if drops of loan
volumes are observed, they can be attributed to a loan supply shock if there is a
simultaneous increase in the loan rate; conversely, simultaneous drops in loan
rates are indicative of loan demand shocks. Their cross-country results point to
a large influence of loan supply shocks on lending and output growth during
the recent crisis, but also emphasize the substantial heterogeneity of this effect
across countries.

1.4.3 Disequilibrium models

Several papers have also used disequilibrium models to separate loan demand
from loan supply effects on observed loan volumes, and the crucial identifi-
cation point of such models is separating credit-constrained firms from those
that do not face these constraints. Examples of such models can also be found
in the pre-crisis literature (e.g., Ogawa and Suzuki 2000 or Atanasova and Wil-
son 2004), and their resurgence can be attributed to challenges with the lending
channel identification in times of the recent crisis.

Disequilibrium models are specified using a system of a loan demand
equation, loan supply equation and a transaction equation: in the first two
equations, determinants of loan demand and supply include firm characteris-
tics and the interest rate of the loan; exclusion restrictions are also imposed that
allow for identification. The transaction equation imposes that the observed
loan volumes are the result of the minimization of the loan demand and supply
functions. Firms for which loan supply exceeds loan demand are considered as
unconstrained, while the opposite holds for constrained firms. Carbó-Valverde
et al. (2013) apply the model to a sample of Spanish SMEs using firm-level
data. They find that credit-constrained firms depended relatively more on trade
credit than bank loans during the crisis, while less credit-constrained firms were
dependent on bank loans. Results point to the existence of a degree of substi-
tutability between bank debt and other types of external finance for capital
expenditures. From a similar sample of firms, Carbó-Valverde et al. (2012) find
that firms faced less credit constraints prior to the crisis if they had a relation-
ship with a bank involved in securitization activities, while in crisis periods the
type of securitization had a differential effect on credit rationing. Kremp and
Sevestre (2013) apply the model to identify whether reductions in lending to
French SMEs were due to decreases on the side of demand or supply. As opposed
to other papers’ estimation procedure, they also take into account the firms
without loans, i.e., firms for which the interest rate is unobservable and hence
cannot be included in the loan demand and supply equations. The authors find
that demand factors were decisive for observing lower loan amounts to SMEs.

Using responses of Italian banks to the BLS survey, Del Giovane et al. (2013)
extend a standard three-equation disequilibrium model by adding a price
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adjustment equation and two equations that assume the following: (1) banks
are reporting tightening of lending standards in times of excess loan demand in
the market, (2) banks report easing of lending standards in times of excess loan
supply in the market. This system is further reduced to two equations for loan
demand and supply. Differentiating between periods of the global crisis and
the sovereign debt crisis, the authors find that weak loan demand contributed
equally in both periods to movements of loan volumes and bank mark-ups,
but the effects of tightening standards were more pronounced in the sovereign
debt crisis period, largely due to conditions in banks’ balance sheets and
funding.

2 The risk channel

Another channel of monetary policy transmission that is credit-related, but
links more closely to the attitude of banks towards risk is the risk-taking chan-
nel, the term first introduced by Borio and Zhu (2012). In the pre-crisis period it
was analyzed from a theoretical perspective, but received substantial empirical
validation in the post-crisis era of low interest rates.

Rajan (2005) warns of the possibility of a “search for yield” by institutions
with more long-term liabilities (hedge and pension funds) in times of low inter-
est rates, which can also feed into asset price increases and risky investments.
Another channel through which low policy rates feed into risk-taking behav-
ior of banks is through the effect on leverage ratios of banks. Adrian and Shin
(2009) point to the procyclicality of banks’ leverage. In times of low policy
rates, as De Nicolò et al. (2010) explain, increases in asset prices will lead to an
increased demand for assets, which feeds into an additional increase of asset
prices. They also point to a third possible channel: asset substitution that leads
to a reduction of the share of safer assets in banks’ portfolios and an increase in
demand for risky assets. Capitalization levels may influence which of the chan-
nels dominates: overall, banks with lower capital levels will tend to take less risk
than better-capitalized banks. Motivated by increases in asset prices and credit
at the onset of the recent crisis, Acharya and Naqvi (2012) develop a model
where, in abundance of liquidity, loan officers have motivation to originate
more loans, giving rise to increased risk-taking by banks and the creation of
asset bubbles. Modeling the effects of low interest rates on incentives of banks
to take risks, Dell’Ariccia et al. (2014) consider changes in banks’ leverage and
monitoring efforts when their capital structure is either fixed or endogenously
determined.

In empirical assessments of the risk-taking channel, the data largely originate
from bank lending surveys or credit registers. Maddaloni and Peydró (2011)
use quarterly data from the US and 12 European countries’ lending surveys on
changes in lending standards, and find that low short-term and long-term rates
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led to loosening of lending standards. For the US, Buch et al. (2014) use sur-
vey questions on risk assessments of new loans from the Survey of Terms of
Business Lending (STBL). The authors use the factor-augmented vector autore-
gressive model (FAVAR) that allows including rich data on bank characteristics
and can thus account for two-way feedbacks between macroeconomic, mone-
tary and banking variables. The authors find heterogeneous responses of banks
to low policy rates: while for small banks there is evidence of a risk-taking chan-
nel, it is not so for large and foreign banks. However, both small and foreign
banks respond to prolonged low rates by more risk-taking. De Nicolò et al.
(2010) augment their model specification by empirical validations using quar-
terly data from the STBL survey, and Call Reports of US banks. Overall, low
policy rates induce more risk-taking by banks. Dell’Ariccia et al. (2013) use the
STBL survey to find that the ex-ante risk-taking (measured by the internal rating
of banks’ portfolios) is negatively correlated with policy rates, but the effect is
less pronounced for banks with lower capital levels, or during periods of capital
erosion (i.e., in crises).

Another set of country-level studies uses credit register data, augmented with
bank- and firm-level information.1 Gaggl and Valderrama (2010) focus on the
period when ECB refinancing rates were “too-low-for-too-long,” and analyze
how monetary policy changes affected the risk positions of corporate borrowers
from Austrian banks. The lower limit for credit reporting is 350,000 EUR, while
the used sample of firms tends to be skewed towards larger and sounder corpo-
rate borrowers. The authors compare the ECB refinancing rate to the Austrian
Taylor rule, and find that the average expected default rate of the borrowing
portfolio of Austrian banks is higher in periods that are expansionary accord-
ing to the Austrian Taylor rule. Jiménez et al. (2014a) use Spanish credit register
data on loan applications and approvals to address more directly how the com-
position of loan supply is affected by low monetary policy rates. Since these
changes occur at the bank-firm level, for clear identification it is necessary to
separate those changes from changes in volume of supply (i.e., at the bank
level) and from changes in quality and volume of demand (i.e., at the firm
level). This is achieved using bank-time and firm-time fixed effects that control
for (un)observed heterogeneity. The authors find evidence of the risk-taking
channel that also varies according to capital levels of banks. Using credit regis-
ter data for Bolivia, Ioannidou et al. (2014) analyze the additional effect of low
interest rates (exogenously transmitted from the US) on loan pricing decisions
of banks. Their results using newly approved loans suggest that reductions of
overnight rates make it more likely for banks to grant loans to ex-ante riskier
firms, as well as to firms that are likely to default. Also, both the expected
returns and loan price per unit of risk decline as the overnight rate drops, sug-
gesting that this effect is supply-driven, even more so for banks facing moral
hazard issues.
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A few studies have attempted to draw cross-country conclusions. Altunbas et
al. (2014) look at listed banks in 14 EU countries and the US using data from
banks’ balance sheets and an indicator of a bank’s probability of default, and
find evidence of a negative effect of prolonged low interest rates on bank risk
(i.e., the risk increases). Delis and Kouretas (2011) focus on annual data of banks
from 16 Euro area countries and show that long periods of low interest rates led
banks to take more risky positions. However, it appears that banks with higher
levels of capital exhibit a stronger relationship between low policy rates and
risk-taking, as do banks with more off-balance sheet items.

3 Financial innovation: securitization issues

The previous section emphasized how the risk-taking behavior of banks can
adversely affect the broader economic setting. A specific financial innovation
that closely relates to how banks tackle risk is securitization. Although this prac-
tice can have positive effects on banks’ lending capacities, it may also reduce
the ability of monetary authorities to affect banks’ loan policies, as documented
by Loutskina (2011).

A renewed methodological approach that was used to assess whether securiti-
zation could have also posed a threat to the stability of the system is regression
discontinuity design. Keys et al. (2010) apply it in order to assess how higher
availability of securitization by lenders has influenced the default probabilities
of their borrowers’ portfolio, looking at the US subprime mortgage market. The
authors apply a broadly used measure of the credit quality of borrowers in the
US (FICO score) and an ad hoc cut-off level of this measure stemming from
underwriting guidelines: lenders should not lend to borrowers with a FICO
score below 620. Results indicate that the threshold value indeed represented
a discontinuity point, since the number of securitized loans is higher slightly
above the threshold. Further analyzes suggest that, among securitized loans,
those with a score slightly above the threshold also have a higher probability
of default than those loans with scores below the threshold.

However, Bubb and Kaufman (2014) criticize the main assumption of Keys
et al. (2010) that the incentive for lenders to differentially screen borrow-
ers around the FICO threshold is driven purely by securitization reasons. The
authors instead argue that the guidelines for the FICO threshold apply to the
decision to originate a loan, not to securitize it. They extend their dataset to
non-securitized loans as well, and find that the number of originated loans and
their default probabilities indeed vary around the credit score threshold, but
the securitization rates are not affected. For that reason, they warn that policy
implications of previous papers, which criticized securitization practices due to
their potential moral hazard issues, were highly inappropriate.
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4 Regulation, macroprudential policy and their challenges

Beside addressing possible stability concerns related to financial innovations,
some of the main challenges of regulatory and macroprudential policy are to
tackle the issues of procyclicality and risk of the system, while at the same
time assuring coordination of regulatory policies in a cross-country context.
These concerns gained attention in the post-crisis research, and the empirical
literature in this area has also been increasingly using disaggregated data.

4.1 Procyclicality

The issue of procyclicality of capital buffers (i.e., the negative co-movement of
capital buffers and the business cycle) has been identified even prior to the cri-
sis, and further evidence continues to be provided.2 This procyclicality is due
to a negative relationship between capital buffers held at banks and the busi-
ness cycle: since banks could reduce their capital holdings in times of economic
upturn, this could lead to declines of their lending activity and to a reduction
of economic growth. However, researchers have also emphasized the poten-
tial procyclicality of capital-based regulatory measures, which could exacerbate
the inherent procyclicality in the banking sector. Since capital requirements
are positively related to the risk in the economy, and risk is higher in times
of recessions, higher capital holdings by banks can result in further drops of
economic activity. Such effects were already identified for Basel I capital regu-
lations (e.g., Jackson et al. (1999) for developed countries, Chiuri et al. (2002)
for developing countries), and for Basel II risk-sensitive capital requirements
(e.g., Fabi et al. 2005, or Jokipii and Milne 2008, see also VanHoose 2008 for a
survey). Recent papers assessed the impact of the standardized (SA) and inter-
nal ratings-based (IRB) approach for credit risk assessment on lending activity
of banks, using bank-firm level data. Behn et al. (2014) analyze the introduc-
tion of the IRB system in Germany in 2007, and use credit register data (with a
reporting threshold of 1.5 million EUR) to show that banks implementing the
IRB approach, characterized by lower capital charges, increased their lending
more compared to banks using the SA approach. Fraisse et al. (2015) investigate
the impact of the switch from Basel I to Basel II capital requirements on lending
by banks, using loan-level data from the French credit register (with 25,000 EUR
as the reporting threshold), and find evidence of loan size increases resulting
from a decrease in capital requirements. In addition to using loan-level data,
both papers also employ a difference-in-difference approach proposed by Gan
(2007) and Khwaja and Mian (2008).

Regulatory changes suggested within the Basel III framework aim at reducing
the procyclical effect of capital, introducing the countercyclical capital buffer
as a relevant macroprudential tool. Several analyzes assess the potential effi-
ciency of this instrument. While Tabak et al. (2011) and Shim (2013) support
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its introduction, Francis and Osborne (2012) use a simulation exercise to show
that the effectiveness of this policy measure will depend on how successfully
banks can be averted from fulfilling capital requirements via lower-quality cap-
ital. Grosse and Schumann (2014) point out that countercyclical measures will
be effective only if there are no underlying internal reasons that could drive
the negative relationship between capital buffers and the business cycle, such
as risk aversion or rating schemes. Basten and Koch (2015) provide an anal-
ysis of the first case of countercyclical capital buffer implementation, which
took place in Switzerland in 2013. The authors use detailed data from a Swiss
mortgage broker that allows them to separate between mortgage demand and
supply, and therefore assess the capital requirement shock on mortgage sup-
ply and mortgage rates charged. Results suggest that risk-weighting schemes
did not affect the lending activity towards very risky borrowers in light of
the countercyclical capital buffer implementation; hence, the increased capital
requirements did not discourage risky lending. Jiménez et al. (2014b) ana-
lyze dynamic loan loss provisioning, a countercyclical forward-looking policy
instrument that has been in place in Spain even prior to the Basel III policy sug-
gestion, and show its effectiveness in reducing lending cycle fluctuations. The
authors use three changes in the dynamic provisioning design (its introduction
and two instances of adjustments) as shocks to bank capital, and assess its effect
on lending using detailed loan- and loan-application-level data, using again a
difference-in-difference approach.

4.2 Risk

Another relevant point for macroprudential policy is improving identification
of (systemic) risk and prevention of excessive risk-taking by financial institu-
tions. Post-crisis research oriented towards measuring systemic risk has largely
focused on assessing contributions of individual institutions to the overall risk
of the system. Adrian and Brunnermeier (2014) offer an extension of the tradi-
tional measure of individual risk of an institution (value at risk) and relate it to
the entire sector by considering the conditional/contagion/co-movement value
at risk: CoVaR. This measure of risk for an institution, relative to the system,
is the value at risk (VaR) of the system conditional on the institution being
under distress. The difference between this measure and CoVaR conditional on
the normal state of the institution is the individual marginal contribution of
an institution (in a statistical rather than causal way) to the overall systemic
risk, or �CoVaR. Based on another standard measure of firm risk – i.e., on the
expected shortfall – Acharya et al. (2012) define the systemic expected shortfall
(SES) measure of the contribution of a financial institution to systemic risk as
the propensity of an institution to be undercapitalized in circumstances when
the whole banking system is undercapitalized. This measure can then be related
to the marginal expected shortfall (MES) of an institution, i.e., its losses that
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are in the tail of the sector’s loss distribution. Based on the latter measure in its
long run form, as well as bank size and degree of leverage, Brownlees and Engle
(2015) introduce the SRISK index, i.e., the expected undercapitalization of a
bank conditional on a prolonged market decline. Tarashev et al. (2010) use a
game theory concept of the Shapley value to allocate system-wide risks to indi-
vidual institutions, arguing that such a methodology is equivalent to assessing
contributions of individual institutions to systemic risk.

Looking at post-crisis research that simultaneously uses several systemic risk
measures, Brunnermeier et al. (2012) use both the �CoVaR and SES measures
for US publicly traded bank holding companies and show, using the difference-
in-difference methodology, that contributions of individual institutions to
systemic risk following the Lehman collapse were higher for those institutions
where non-interest income mattered more. In a cross-country setting, Laeven
et al. (2014) use the �CoVaR and SRISK measures of systemic risk, as well as
standalone risk of banks as proxied by market returns, to assess how much vari-
ation of those measures can be attributed to specific bank characteristics. Using
data on publicly traded financial institutions from 56 countries, and control-
ling for country-specific factors, they find that large banks and, to some extent,
banks with lower capitalization levels, impose more systemic risk.3 Both papers
point to the finding that correlations between different measures of systemic
risk can be low, since they incorporate various features into the assessment
of systemic risk, but also that common consideration of the measures can be
informative.

4.3 Regulatory spillovers

Another point relevant for efficient regulatory policies is to ensure cross-
country coordination of implemented practices. Examples of regulatory
spillovers in the empirical literature show that differences in regulatory restric-
tions can give rise to risk-shifting incentives of banks operating internationally.
Aiyar et al. (2014a, 2014b) analyze differing responses of regulated domes-
tic banks and non-regulated foreign branches, in terms of loan volume, to
bank-specific capital requirement changes in the UK. The authors control for
demand changes by including measures of both sectoral and bank-specific loan
demand, and find that foreign branches partially offset the effect of increased
capital requirements on reductions in loans supplied, due to credit substi-
tution between regulated and non-regulated business units of foreign banks.
Fidrmuc and Hainz (2013) focus on a specific example of differences in reg-
ulations regarding reporting standards on borrower quality in Germany and
Austria, with stricter reporting standards in the former country. A difference-
in-difference methodology indicates that, during the period when regulatory
differences existed, cross-border lending by Austrian banks increased, and Ger-
man firms close to the Austrian border had a higher overall probability of
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obtaining a loan from banks in either of the two countries. It could also be
the case, however, that increased lending in times of looser regulatory policies
may be related to lower lending standards and more risk-taking by banks. Such
effects were found by Ongena et al. (2013), who analyze the spillover effects
from multinational banks to their host markets, when faced with stricter regu-
lation in their home country relative to the host market. Similarly to Popov and
Udell (2012), firm-survey data on loan applications and approvals was matched
with banks based on locality. The estimation procedure also includes controls
for potential self-selection of foreign banks into specific host countries and local
markets. Results suggest that risk-taking practices abroad by banks facing reg-
ulations that allow more competition or restrict activities in the home market
are even more pronounced when regulation at home is inefficient.

Conclusion

The main challenges in the empirical literature on the monetary transmission
mechanism have been to separate loan demand and supply, and to establish
causality from monetary policy and regulation to the real economy. The post-
crisis literature has been able to employ improved identification methods due
to the availability of new detailed datasets and the occurrence of exogenous
shocks. The conclusions reached also point to various dimensions affected by
the mechanism, from lending outcomes to real effects. The recent financial cri-
sis has led to an emergence of several shocks that affected loan supply by banks,
which made the academic discussion on the bank-lending channel more com-
prehensive compared to the pre-crisis research. As a consequence of the policy
response to the crisis, we now face a long period of extraordinary low interest
rates, which seems as a favorable environment for the risk-taking channel to be
gaining more importance.

Although many of the identification issues that characterized previous
research have undoubtedly been removed in the post-crisis literature, several
caveats that concern data features still remain. For instance, threshold values
for reporting to credit registers in some countries might be overly restrictive.
Lowering these reporting requirements would help to identify impacts for the
smaller firms, especially since they have fewer loan substitution possibilities,
and may only be able to move to informal financing sources. More precise
variable definitions could also be specified, e.g., when measuring loan availabil-
ity or establishing bank-borrower relationships. Without such data alignments,
international comparisons of obtained results are hard to make, and this is
even more true if regulatory practices and their assessments are further con-
sidered. Nevertheless, policy-making has benefited immensely from the recent
empirical contributions, while further progress can still be made in aligning
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the macro- and financial aspects of banking and addressing the heterogeneity
of banking systems.

Notes

* Sanja Jakovljević and Hans Degryse acknowledge financial support from FWO-
Flanders under contract G.0719.13.

1. Also see further references in Ioannidou et al. (2014) and Jiménez et al. (2014a).
2. See Jakovljević et al. (2015) for a review.
3. See also Mutu and Ongena (2015) on the impact of policy interventions on systemic

risk across banks.
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1 Introduction

Inadequate disclosure by commercial banks has been cited as a contributing
factor to the financial crisis. Banks did not report enough information about
the assets they were holding or the risks that they were exposed to, and inad-
equate disclosure meant that investors were less able to judge risks to a bank’s
solvency than bank insiders, such as managers. Investors did not demand suffi-
cient disclosure prior to the crisis. Possible reasons for this include risk illusion,
or expectations that governments would be willing and able to bail out failing
banks.

Increased uncertainty aversion during a time of systemic stress led to
investors withdrawing funding from the most opaque banks. The lack of trans-
parency is likely to have intensified the crisis – for example, by leading to much
higher funding costs, even for relatively healthy banks. Increased disclosure can
help to alleviate the problem of asymmetric information between banks, who
have good information about their own financial resilience, and investors that
provide funding to banks, who have less information.

Better disclosure can be beneficial to financial stability in non-crisis times,
too. With good information, debt investors are able to price risk more accu-
rately and, if the incentives are right, this can act as a disciplining force on
banks. As debt investors become aware of the risks that banks are taking, they
are less likely to provide funding to banks that are not providing an attractive
trade-off between risks and returns. This can affect the risk-taking decisions
of bank managers. This market discipline mechanism empowers investors to
ensure that managers are acting in their interests, and reduces the likelihood
that a bank takes risks that its investors are not aware of. Therefore publishing
better information may reduce the probability of future financial crises, as it
can make sudden changes in investor sentiment less likely.

42
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Public disclosure reduces information asymmetries between insiders (man-
agers of banks) and outsiders (investors), and so means greater certainty for
investors in their ability to forecast the performance of banks’ debt and equity.
In a perfectly functioning market, investors would demand that managers of
banks disclose information about risks in order to allow those investors to
correctly price the banks’ liabilities. In principle, in the absence of social exter-
nalities this market discipline mechanism could make prudential regulation
redundant: investors would ensure that banks do not behave in a socially harm-
ful way by influencing management. The idea that investors may be able to
effectively monitor financial institutions and constrain socially harmful risk-
taking has been a cornerstone of regulatory policy for years. Basel II explicitly
states that the purpose of “market discipline is to complement the minimum
capital requirements (Pillar 1) and the supervisory review process (Pillar 2). The
[Basel] Committee aims to encourage market discipline by developing a set
of disclosure requirements which will allow market participants to assess key
pieces of information on the scope of application, capital, risk exposures, risk
assessment processes, and hence the capital adequacy of the institution” (Basel
Committee on Banking Supervision 2006).

However, frictions exist which prevent this market discipline channel from
functioning correctly. That leads to information asymmetries, a tendency for
banks to become overly leveraged, and a higher probability of banking crises,
all of which reduce social welfare.

Mandatory disclosure policies can – if correctly calibrated – correct for these
market failures and increase social welfare. These can act as a complement to
prudential regulation, allowing both market participants and regulators to take
responsibility for ensuring that bank managers’ incentives are aligned with
those of their stakeholders, and leaving regulators to address any externali-
ties to which stakeholders do not attend. This chapter discusses the evidence
for whether investors monitor the financial institutions in which they invest
and the reasons why this “monitoring channel” may break down. We conclude
with a discussion of whether more information and increased market discipline
is actually optimal for financial stability.

2 Modeling and measuring market discipline: testing the
“monitoring channel”

Empirical studies disagree on whether private sector agents reliably engage in
risk monitoring. Researchers cannot directly observe whether every agent pores
over financial statements, or participates in conference calls with banks. In
practice, testing for whether investors monitor a bank usually means exam-
ining whether the return that private sector agents demand is commensurate
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with the risk that they face.1 Prior to the 1990s, studies generally fail to find
a significant relationship between bank risk and the yields investors demand.
However, subsequent studies find evidence of market discipline: Ellis and Flan-
nery (1992), James (1991), Keeley (1990) and Flannery and Sorescu (1996) all
find that high certificate of deposit rates and subordinated debt spreads reflect
different measurable elements of bank risk, providing evidence for the exis-
tence of market discipline. The change in results can perhaps be attributed to
the FDIC and the Federal Deposit Insurance Corporation Improvement Act,
passed in 1991 following the US savings and loan crisis, which made the safety
net for banks more restrictive. Sironi (2003) finds similar results for Europe: he
examines subordinated debt and debentures issued in Europe from 1991–2000
and finds that the sensitivity of subordinated debt issues to measures of stand-
alone risk (i.e., without incorporating external guarantees) increased during the
1990s.

However, as Gorton and Santomero (1990) point out, a number of the studies
above suffer from a failure to take into account how investors should respond in
theory to the variables that they measure. In particular, many of these studies
assume that the value of subordinated debt is a monotonic function of bank
risk-taking. But, as Black and Cox (1976) show, while junior debt is initially a
convex function of the value of the firm, it becomes a concave function when
the value of the firm is sufficiently high. Unlike senior debt, the default risk
premium on subordinated debt is a decreasing function of the riskiness of a
firm’s assets when the firm is close to bankruptcy and then an increasing function
when the bank is relatively far away.

The intuition for this result is fairly simple: it arises from the fact that the
deadweight cost of bankruptcy for banks is large. James (1991) estimates that
direct expenses associated with bank failures are on average 10 percent of assets,
with an average loss of 30 percent. As subordinated debt and equity tend to
comprise a smaller proportion of banks’ balance sheets than this, subordinated
debt will receive a payoff that is close to zero in the event of bank failure.
This means that, when a bank is close to failure, then subordinated debt has
a risk-reward payoff similar to equity – i.e., it is initially zero, and its value
increases with the risk-taking of the bank. But, when the probability of bank
failure is low, subordinated debt behaves more like senior debt, and its value
should decrease with the risk-taking of the bank. However, the studies men-
tioned above tend to assume that the default risk premium is an increasing
function of riskiness; this means that assuming a linear model at a time when
a bank is close to failure (and so the premium is actually decreasing in risk) will
lead to an underestimate of the extent of market discipline.

All the above studies essentially focus on the change in the rate of return
investors demand for bearing increased risk. The next section discusses how to
measure this.
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2.1 Finding empirical evidence of market discipline

Market discipline may be more evident in the markets for some instruments
than others. For example, premiums on senior debt instruments may not be
sufficiently sensitive to credit risk. A good candidate should be risk-sensitive,
have reliable price data, and have a long residual maturity (so that investors
cannot simply respond to credit risk by allowing the instrument to mature).
Collateralized or government-guaranteed debt is clearly unsuitable for these
purposes. As noted earlier most studies examine subordinated debt or large
certificates of deposit. Several more recent studies use spreads on credit default
swaps, which was not a market that existed in the early 1990s.

Market liquidity is crucial for price data to be reliable. For this reason most
US studies are able to use secondary market data, but for European banks, liq-
uidity in the secondary market for subordinated debt is often poor. Therefore,
any econometric study of secondary market data should employ liquidity con-
trols. This is a difficult area, as the section below discusses, because traditional
measures of liquidity are heavily influenced by information asymmetries.

One solution may be to use data on primary issuance, as it reflects an updated
assessment of risk premiums by investors purchasing the bonds. However, the
decision of whether or not to issue in any given time period may be a form of
market discipline in itself: for a risky bank, the required premium may be high
enough to induce it not to issue subordinated debt, but instead to issue another
less-sensitive instrument, or to delay issuing debt at all. It may be sensible to
run a probit/logit model to test whether the decision to issue subordinated debt
is affected by bank-specific risks. In any case, primary issuance is not usually a
frequent event for any individual bank, so a large time series would be required
to avoid small-sample problems in a fixed effects regression.

Controls specific to the particular instrument are needed. Time to maturity,
the seniority of the issue and liquidity of the bond are all obvious candidates.
But there are controls which are particularly related to information and market
discipline. The most notable of these is probably issue size. When information is
costly to analyze and monitor, major buyers of subordinated debt may prefer to
specialize. If so, they would purchase large amounts of debt of a small number
of firms.

2.2 Measuring bank risk

One of the most important challenges in determining market discipline is
how to measure bank risk. For investors to exert discipline, they must be
able to observe bank risk. Measures of bank risk can be broadly categorized
as accounting-based measures (those based on firms’ published balance sheet
information), ratings-based measures (based on the assessment of credit ratings
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agencies or other delegated monitors) and market-based measures (i.e., those
based on the prices of traded instruments).

2.2.1 Accounting-based measures

The Z-score developed by Boyd and Graham (1988) is an accounting-based mea-
sure of bank’s distance to default – that is, the number of standard deviations
that a bank’s return on assets can fall by before it becomes insolvent. It is cal-
culated as the sum of return on assets and the equity-to-asset (leverage) ratio
divided by the standard deviation of the return on assets, usually measured over
four quarters to allow sufficient variation in the return on assets. This measure
encompasses a number of popular accounting measures such as the standard
deviation of return on equity/assets and leverage. Caution is needed for inter-
pretation. A higher return on assets could reflect higher risk-taking, but it may
also represent greater efficiency, making default less likely.

Other popular accounting measures of credit risk include the proportion of
non-performing loans and concentration of lending in a particular sector. How-
ever, modeling approaches which focus solely on credit risk do not capture
important elements of bank risk-taking, such as liquidity and trading risk. Since
the 1999 repeal of the US Glass-Steagall act – which separated trading and lend-
ing activities – trading and wholesale funding have become an important part
of the activities of commercial banks, making it more important for the recent
literature to focus on these risks. Liquidity risk can be captured in a number of
different ways: past papers have tended to focus on the liability side and used
some kind of ratio of short-term debt to total debt. More recent papers such as
Sironi (2003) consider liquidity on the asset side of the balance sheet too.

2.2.2 Ratings-based measures

Credit ratings can be considered an amalgamation of all the risk factors above
in a summary statistic: the credit rating. These have some advantages over
accounting or market-based measures of risk in that they are more standardized
allowing for better cross-country comparisons. For example, the definition of
non-performing loans varies considerably across countries and this can be dif-
ficult for an individual investor to analyze. Credit ratings aim to rate “through
the cycle” meaning that they should be forward-looking and take into account
macroeconomic conditions. Crucially, credit rating agencies are delegated mon-
itors: the ratings are public information and free to acquire. The downside is
that these are the subjective opinion of a rating agency, and ratings are slow to
be updated in response to events and emerging risks.2

2.2.3 Market-based measures

Market-based measures use observable and timely information from market
prices, rather than relying on accounting information or delegated monitors.
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For example, “distance to default” is a market measure of credit risk analogous
to the Z-score mentioned above. It is based on the seminal work of Merton
(1974), which treats the equity value of the firm as a call option on the firm’s
assets. Distance to default is the difference between the asset value of the firm
and the face value of its debt, scaled by the standard deviation of the firm’s asset
value. In other words, it is a proxy for the likelihood of the bank being unable
to pay its debt in future: a higher distance to default implies a lower probabil-
ity of insolvency. The value and standard deviation of the firm’s assets can be
derived using market prices for equity in the Merton model framework. This
metric is commonly used for non-financial corporates but has also been often
applied to banks, particularly for the analysis of deposit insurance payouts.

2.2.4 Comparing market-based and accounting-based measures

Market-based measures contain information that is absent from accounting
ratios. The data is timelier, less prone to manipulation and less targeted. By
contrast, accounting data is backwards-looking and is released infrequently,
with between reports gaps of at least a quarter being common practice. If
the equity market is at least semi-strong form efficient, then it should con-
tain all of the relevant data from previous publications of accounts, so it may
be argued that market-based measures contain strictly more information than
accounting-based measures.

This can be illustrated by comparing regulatory capital requirements – which
are based on accounting measures and so are backwards-looking – with a
market-based capital ratio equivalent. Figure 3.1a compares Basel II Tier 1 capi-
tal ratios for banks which did and did not fail during the period of most intense
financial market distress in autumn 2008. At the time, this was the prevailing
measure of regulatory capital. As can be seen, there is no discernible differ-
ence between the two groups of banks, suggesting that this measure is a poor
predictor of distress.

Figure 3.1b presents, for the same banks, a market-based equivalent, namely
the ratio of market capitalization (based on the contemporaneous traded share
price) divided by book value of assets. As can be seen, the two sets of banks can
be clearly distinguished under this measure, which is a much better predictor of
bank failure. As Haldane (2011) states, market-based measures offer the advan-
tage of simplicity and transparency: “200 million separate calculations would
condense to a simple sum.”3

This is not to say that accounting-based ratios are useless. The drawbacks
of Basel II even as an accounting-based measure of risk are well-documented:
we find, for example, that regulatory capital ratios under Basel III have a higher
correlation with market-based capital ratios, suggesting that they may do better
at predicting crises. See Table 3.1 below.
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Figure 3.1 a Basel II tier 1 capital ratio as a predictor of bank distress, January 2003–
December 2008; b Market-based capital ratio as a predictor of bank distress, January
2003–December 2008

Notes: (a) “Failures” are a set of major financial institutions, which in autumn 2008 either
failed, required government capital or were taken over in distressed circumstances. These
are RBS, HBOS, Lloyds TSB, Bradford & Bingley, Alliance & Leicester, Citigroup, Wash-
ington Mutual, Wachovia, Merrill Lynch, Freddie Mac, Fannie Mae, Goldman Sachs, ING
Group, Dexia and Commerzbank. The chart shows an unweighted average for those insti-
tutions in the sample for which data are available on the given day.
(b) “Survivors” are HSBC, Barclays, Wells Fargo, JP Morgan, Santander, BNP Paribas,
Deutsche Bank, Crédit Agricole, Société Générale, BBVA, Banco Popular, Banco Sabadell,
Unicredit, Banca Popolare di Milano, Royal Bank of Canada, National Australia Bank,
Commonwealth Bank of Australia and ANZ Banking Group. The chart shows an
unweighted average for those banks in the sample for which data are available on the
given day.
(c) 30-day moving average of market-based capital ratio measure.

Source: Capital IQ and authors’ calculations.
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Table 3.1 Correlations with market-based capital ratio

Basel II tier 1 Basel III core equity Basel III leverage
capital ratio tier 1 capital ratio ratio

0.39 0.81 0.89

Source: Bloomberg, reported data and authors’ calculations. Data
are for five largest UK banks, Dec 2011–Nov 2012. This short
period is selected as one in which banks may reasonably be
thought to be targeting both Basel II and Basel III capital ratios.

Of course, one reason for this may be that in the recent post-crisis period,
equity investors reward banks with healthy capital ratios under the new
regime – we cannot be so sure that this correlation will remain strong in crisis
times. Moreover, as a bank may have to enter resolution if its regulatory capital
ratio falls below a certain level, it will aim to maintain a constant, healthy ratio
above almost all other objectives.

2.3 Equity investors

Measures of market discipline typically relate to the response of debt investors
to changes in risk. This is partly because the literature has focused on the disci-
plining role of debtors and the conflict between debt and equity investors. But
examining the pricing of equity can shed light on the issue too. In particular, if
we observe that equity investors distinguish between banks but debt investors
do not, then we may be able to rule out that the failure of market discipline
for creditors is due to a lack of information or an inability to process it. More
bluntly, it may be that equity investors monitor the bank, while debt investors
fail to do so.

However, caution should be drawn against jumping to this conclusion. An
alternative explanation is that in the econometric analysis carried out in the
literature, too much is asked of debt investors to distinguish between banks on
the basis of the variables used, especially when measures of risk are used that
are based on potentially manipulated or targeted accounting measures (such as
regulatory capital ratios as explored above).

Moreover, the payoffs of equity and debt – and their sensitivity to under-
lying risk – are very different, and vary with the state of the world. For equity
investors, a change in risk in any state of the world in which the bank is solvent
(or close to being so) will affect their payoff. But, by contrast, the sensitivity of
debt to risk is higher in states of the world where the bank is insolvent or close
to being so. This means that debt investors may require different information
to equity investors, and it may be harder to collect, especially as firms’ disclo-
sure policies are more likely to be driven by shareholders’ rather than creditors’
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Figure 3.2 The four requisites for effective market discipline

Source: Sowerbutts et al. (2013).

preferences. The reasons why market discipline may break down is the subject
of the next section of this chapter.

3 Why market discipline can break down

Our discussion so far has focused on the issue of whether or not investors
respond to the risks that banks are taking. The literature finds evidence that
investors do not effectively impose market discipline, neither by monitoring
bank risk nor by influencing management.

This section focuses on the reasons why market discipline can break down.
Crockett (2001) identifies four requisites for effective market discipline, which
are illustrated in Figure 3.2 above. Debt investors need to have: sufficient infor-
mation to understand the risks that banks are taking; the ability to process this
information; powers to discipline banks to rein in risk-taking where necessary;
and incentives to exercise these powers.

3.1 Do investors have the information that they need?

Sowerbutts et al. (2013) introduce a quantitative framework to assess the first of
these channels. Their metric assesses whether investors have sufficient informa-
tion to understand the risks that banks are facing in a number of areas: funding
risk; group structures; asset valuation; intra-annual information and financial
interconnections. These contrast with the measures of risk mentioned in the
previous section, which mainly focus on credit risk.
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However, the financial crisis revealed that disclosure in these other non-credit
areas had been insufficient prior to the crisis, and that investors had failed to
demand that banks disclose more (Bank of England 2009). Therefore measuring
improvements in these areas in the post-crisis period is a useful way of tracking
whether disclosure has improved. For this reason, the index measures disclosure
over and above minimum international regulatory standards.

The index in Sowerbutts et al. scores a bank between zero and one for each
indicator, depending on whether the relevant information was disclosed in a
public annual report. The figures below show that on a global level there has
been a broad improvement in disclosures since the crisis. Figures 3.3a, b and c
show the average disclosure scores for three of these categories over the period
2000–2012. Each line shows the average for the group of banks in that jurisdic-
tion. There is an upward trend in all three categories, though progress varies
between jurisdictions.

This kind of quantitative index cannot capture qualitative or subjective
information such as clarity of exposition in banks’ disclosures or standard-
ization and comparability of reporting. Even so, it is very labor-intensive to
produce. The US Securities and Exchange Commission requires standardized
templates for financial reporting (10-Q and 10-K reports), but in general this is
not the case in most other countries, where lack of standardization between
reporting makes comparability harder. Accounting standards vary between
countries and are often principles-based. This means that management must
use its judgment in providing reliable and relevant information, and this could
lead to substantial variation between banks. To the extent that market disci-
pline is effective, investors may wish to encourage management to standardize
reporting between banks and across time, to make direct comparability easier.

3.2 Shedding light on bank opacity

Opacity can be characterized as three nested cases: some outsiders (i.e.,
investors) are informed; only insiders (managers) are informed; or the business
is fundamentally unknowable, even by managers. Figure 3.4 illustrates.

Each of these cases can be analyzed and measured separately, and each leads
to different predictions for asset prices. This subtlety may explain some of the
apparently conflicting results which exist in the literature.

3.2.1 Measuring asymmetric information between managers and investors

If outsiders are unable to completely observe the firm’s actions, then managers
will have some ability to capture cash flows for their private benefit. However,
if agents are aware of this, they can increase the return they demand with the
expected value of the missing information. This has important implications
for the cost of raising equity. In the “pecking order theory” model introduced
by Myers and Majluf (1984), managers have more information than outside
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Figure 3.3 a Valuation category scores; b Funding risk category scores; c Financial inter-
connections category scores

Notes: (a) Each category assigns a score between 0 and 1 for a bank based on whether or
not detailed quantitative disclosure takes place. The scores are measured for a panel of 50
banks – these scores show the progress made by jurisdiction.
(b) “Valuation” score assesses disclosure of valuation methodology and sensitivity to the
underlying assumptions.
(c) “Funding risk” score assesses disclosure of funding breakdown across five different
metrics: by type, maturity, currency, asset encumbrance, and a stress ratio measure.
(d) “Financial interconnections” assesses disclosure of exposures to other banks and off-
balance sheet entities, as well as implicit support.

Source: Sowerbutts et al. (2013).
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investors, and so investors perceive issuance of equity as a negative signal of
managers’ expectations of future firm value. This makes raising equity more
expensive than issuing debt or using internal funds to finance projects. An
implication of this is that more opaque firms – for example, banks – will be
more leveraged than more transparent firms.

However, there are a number of other factors that contribute to capital struc-
ture decisions, making this theory challenging to test empirically, particularly
for large and complex firms such as banks. Indeed, most tests of Modigliani-
Miller’s capital structure invariance hypothesis – which postulates that a firm’s
total funding costs should be independent of capital structure – exclude banks
and other financial firms: they tend to have more complex capital structures
than other types of firm. Jin and Myers (2006) develop an extension to Myers
(2000) in which investors receive news that is a combination of firm-specific
information and macroeconomic or industry information. The predictions are
fairly clear: firms with more managerial inside information will have equity
returns which are less likely to reflect firm-specific information and instead
equity returns will be more likely to reflect market (and perhaps industry)
information. Several studies examine the relationship between this type of
information symmetry and the goodness of fit (R-squared) from asset pricing
regressions. Haggard and Howe (2012) test this prediction by comparing banks
to non-financial firms with similar equity market characteristics. Their results
suggest that banks are more subject to this form of insider-outsider information
asymmetry than other types of firm.

3.2.2 Measuring asymmetric information between investors

Easley and O’Hara (2004) develop a theoretical model of informed and unin-
formed investors and show that investors demand a higher return for holding
assets with greater private information. This is because private information
increases the risk to uninformed investors of holding the asset, and this risk
cannot be diversified away.

Aspects of market microstructure are frequently used to analyze asymmet-
ric information between investors. If all investors know all the information
about an asset – and agree that they do – then it will trade with a small bid-
ask spread. But, when some investors have private information, bid-ask spreads
will increase as market makers seek to protect themselves against trading with
informed traders. The greater the proportion of informed traders, the less likely
price changes are to be reversed (Kyle 1985). But predictions on volume are
unclear. If no investor knows an asset’s fundamental value then it can be very
liquid (Dang et al. 2013), as market makers have no concerns about informa-
tion asymmetries. But as soon as some trader has some private information
about the asset value, then this market can break down as uninformed investors
are not willing to hold the asset. The market microstructure literature generally
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decomposes the quoted bid-ask spread into three components: order-processing
costs, inventory-holding costs, and adverse-selection costs.

Flannery et al. (2004) is an important paper in this literature, using these
market microstructure measures of bank’s equity to measure opacity. Opacity is
defined to mean that some investors cannot value the asset very accurately but
(perhaps) insiders or informed traders can; by this definition a more opaque
asset would have a bigger bid-ask spread. The authors also examine data on
analyst earnings forecasts, measuring both accuracy and dispersion: they con-
clude that “banking assets are not unusually opaque; they are simply boring.”
They also find that forecast dispersion for banks is virtually indistinguishable
from non-banks, and that the median forecast errors are smaller for non-banks
– although the latter result could be due to banks being better able than other
firms to “manage” their earnings to meet analysts’ expectations. Large bank
holding companies (BHCs) are found to have similar trading properties to their
matched non-financial firms, suggesting that they are as transparent as similar
large non-financial firms.4 But smaller BHCs trade much less frequently than
comparable non-banks, despite having similar bid-ask spreads. They also have
lower return volatilities and are more easily forecastable relative to comparable
non-financial firms, suggesting that banks are not especially opaque.

Flannery et al. (2013) repeat the same exercise but over a longer time period,
which incorporates the global financial crisis and the failure of LTCM in 1998.
They find that, although banks are no more opaque than their non-financial
counterparts pre-crisis, during crisis times both the spreads and price impacts
of BHC stocks are significantly higher than those of non-banks. As the authors
note, “The general pattern of time-varying relative bank opacity is troubling,
since it suggests a reduction in bank stability during crisis periods, even beyond
the obvious deterioration in bank balance sheet values.”

3.2.3 Unknowable business models and information uncertainty

Morgan (2002) uses a very simple model to capture uncertainty, looking at dis-
agreement among credit rating agencies, who are considered to be insiders with
access to private information about the firm. Morgan considers the hypothesis
that, if risk is harder to observe in banks than non-banks, then rating agen-
cies should disagree more over ratings to a greater extent. This means that
opacity can be proxied using statistics such as the average difference between
ratings, their correlation, and the percentage of issues where there is disagree-
ment between agencies. For a sample of bonds issued by firms between 1983
and 1993, Morgan finds that disagreement is greater for bank bonds than non-
bank bonds. Interestingly he shows that rating agencies disagreed more about
banks after 1986, which he attributes to the demise of the “too big to fail” safety
net in the US following the collapse of Continental Illinois and subsequent reg-
ulatory reform. One weakness of this argument is that, until the global financial
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crisis, the rating agencies in the paper – S&P and Moody’s – had not properly
formalized the way that government support was factored into ratings, making
it harder to test these hypothesis. The amount of disagreement is increasing in
the level of loans and trading assets of banks, and in their degree of leverage.
Morgan interprets these results as suggesting that it is the business of banking
that makes it inherently more opaque than other industries.

Iannotta (2006) undertakes a similar analysis for European banks and finds
similar results, although he also identifies construction, energy and utility and
“other” as being more opaque than the banking industry. He also finds that a
higher capital ratio increases the likelihood of a split rating.

3.3 Using stress tests to assess opacity

A number of papers use the recent US and EU bank stress test disclosures as a
way to further unpack the sources of bank opacity. In the wake of the recent
financial crisis, regulators have regularly carried out stress tests on banks and
published the results in order to increase confidence in the banking system.
This has created an ideal environment to study empirical informational issues.
In contrast to their own disclosures, firms are unable to choose what is dis-
closed in the stress test. Information contained in stress test disclosures is often
considered by investors to be as informative as the outcome of the test itself.
In addition, investors may draw inferences from a regulator’s selection of stress
scenario, or the banks chosen to participate in the test.

Stress tests are concerned with a downside scenario, which is of direct interest
to debt investors. This contrasts with information in annual reports, which is
generally designed to be informative to shareholders. Therefore disclosure of
stress test results can complement disclosure that banks voluntarily provide,
giving all market participants information required to assess the risks of the
instruments that they hold.

Morgan et al. (2014) examine whether the 2009 US stress tests were infor-
mative to investors. They measure information using several events around the
tests and calculate cumulative abnormal equity returns. They find a significant
negative relationship between abnormal returns around the release of the stress
test results and the capital gap that banks were found to have; this is consis-
tent with the view that the stress test produced information about the banks
the private sector analysts did not already have. However, a recent paper by
Glasserman and Tangirala (2015) show that there is some predictability in the
stress test outcomes over time, and so diversity of scenario design can ensure
that the tests remain meaningful for investors.

Ellahie (2013) examines the European Banking Authority stress tests in 2010
and 2011 and tests for information asymmetry across investors – using bid-ask
spreads – and information uncertainty, using equity option-implied volatilities
and relative CDS spreads for one- vs. five-year debt. Unfortunately, the author
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is unable to empirically disentangle whether the increased uncertainty is due
to greater underlying volatility from the worsening sovereign credit crisis, or
due to poor quality information contained in the stress test disclosures. This
is something that plagues the earlier literature on stress tests, which were fre-
quently undertaken in crisis conditions. More regular stress testing – and a
more tranquil economic environment – will hopefully overcome this problem;
for example in the UK stress tests will take place on an annual basis (Bank of
England 2013). But this may result in the risk – at least, for research purposes –
that investors will pay less attention to stress test disclosures in non-crisis times.

3.4 The big black box of banking?

The above findings suggest that banking is – to an extent – a business which
is opaque and difficult to assess. Even before the crisis, banking was described
as a “black box” (see, e.g., The Economist 2007). The nature of banking is by
some definitions, opaque. One of the many functions of banks is to overcome
information asymmetries and lend to borrowers who are unable to raise mar-
ket finance or who may wish to use bank finance to avoid disclosing sensitive
information. A bank may have advantages in being able to screen borrowers,
overcome moral hazard, and negotiate in default. This has to suggestions that
banks are inherently opaque. But opacity at the individual loan level does not
mean that the portfolio of a bank must necessarily be opaque, nor that the pay-
offs of its liabilities must be. A classic and simple example of this can be found
in the model of Diamond (1984), in which creditors do not monitor the bank’s
individual loans but do understand the bank’s incentives and so are perfectly
informed about the bank’s portfolio.

3.5 Guarantees in the banking system

The literature on market discipline in banks almost disappears in the early
2000s. This reflects a number of factors. One reason is that policy interest
declined considerably after the 1990s: while a paper by the Board of Gover-
nors of the Federal Reserve System and Secretary of the Treasury (2000) counts
no fewer than 14 proposals for mandatory subordinated debt issuance made in
the 1990s, interest becomes scarcer after this period until just before the global
financial crisis. The importance of market discipline was cemented in Pillar 3 of
Basel II, which encourages greater disclosure of a bank’s risk in order to enhance
market discipline.

Another factor is that interest in the literature turned away from explicit
discussion of market discipline, and focused more on assessment and measure-
ment of the implicit subsidy of banks. However, many of the techniques used
are similar. A recent strand of the literature attempts to examine whether there
is an implicit guarantee for banks which are expected to be bailed out by gov-
ernments in the event of failure – in other words, which are “too big to fail.”
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Typically these papers examine whether there is a relationship between risk-
taking by banks and the spread that investors demand, and then analyze how
this is affected by expectations of implicit guarantees. It is important to bear in
mind that, even though in many cases pricing does appear to be risk-sensitive,
this does not necessarily mean that there is no guarantee. The question is: is
risk priced enough?

Acharya et al. (2014) adapt the usual market discipline equation – i.e., a fixed
effects regression of spread against credit risk – but add a number of control
variables, all of which capture different measurements of risk. The authors use
a number of different measures of “too big to fail” status, such as CoVaR (which
measures a firm’s contribution to systemic risk) and bank size. Their results
suggest that large institutions have lower spreads due to implicit government
support, not because they have lower risk. Siegert and Willison (2015) provide
a literature review of similar papers.

Morgan and Stiroh (1999) investigate market discipline using bond spreads,
ratings and bank data for bonds issued between 1993 and 1998 and find evi-
dence that the spread on bank bonds increases as credit ratings deteriorate.
However, they show that this effect is weaker for bigger and less transparent
banks, pointing to possible slippage in the disciplinary mechanism for banks
either considered too big to fail or too hard to understand by the bond market.

Guarantees and government support of any form can undermine market dis-
cipline as they disrupt the transmission of the risks that a bank is taking into
the risks that investors actually face. This does not always mean that guaran-
tees would increase incentives for banks to increase risk-taking: the effect will
depend on the nature of the guarantee. In a case where a bank is insured against
all losses, then it will certainly seek to maximize risk-taking. But support which
occurs in states of the world that are not strongly correlated with the bank’s
risk choices – for example, lender of last resort activities in the event of sys-
temic liquidity shortages – is less likely to distort the bank’s incentives to take
risks. Moreover, the existence of guarantees can increase the charter value of a
bank, possibly reducing the incentive to take risks as shareholder value is maxi-
mized when the bank continues its operations. Cordella and Levy Yeyati (2003)
illustrate this problem with a lender of last resort who is able to only pay out
in bad states of the world. In practice, it is very difficult to design a “zero moral
hazard” policy of bail out or support which is credible ex ante.

There is a plethora of papers which examine this effect, of which a selection
are summarized in this paragraph. An influential paper by Keeley (1990) sug-
gests that an increase in competition in the 1980s led bank charter values to
decline, which caused banks to take more risk and reduce their capital, increas-
ing their risk of default. But later papers suggest that guarantees can increase
risk-taking. Nier and Baumann (2006) examine a panel of banks between 1993
and 2000. They find that, while government safety nets result in lower capital
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buffers, stronger market discipline resulting from uninsured liabilities and dis-
closure leads to larger capital buffers, all else being equal. Gropp et al. (2014)
exploit a natural experiment to examine the effect of government guarantees
on bank risk-taking. Their results suggest that banks whose government guaran-
tees were removed reduced their credit risk by cutting off the riskiest borrowers
from credit. They also find that yield spreads of savings banks’ bonds increased
significantly after the announcement of the decision to remove guarantees,
while the yield spread of a sample of bonds issued by a control group remained
unchanged. Gropp et al. (2011) use ratings as a proxy for state support and find
evidence in favor of the charter value effect. They find no evidence that pub-
lic guarantees increase the protected banks’ risk-taking, but they do find that
government guarantees strongly increase the risk-taking of competitor banks.

4 Is market discipline optimal? How much is the right amount?

So far our discussion has focused on whether banks are opaque. This section
examines whether transparency or opacity is socially optimal.

In an influential recent paper Dang et al. (2014) examine whether banks
are optimally opaque. If a bank’s assets are highly transparent, then its mar-
ket value will fluctuate more often, making its debt liabilities a poorer store
of value and thus less useful as a transaction medium. This could be argued
as a reason why increasing transparency might not be socially optimal, since
money creation is an important social function of banks. However, Gorton and
Pennacchi (1990) show that trading losses from information asymmetries can
be mitigated by tranching, which should stabilize the value of the most senior
liabilities, making them more suitable to use as a transaction medium. They cite
bank debt as an example of a type of liquid security which protects relatively
uninformed agents, and they provide a rationale for deposit insurance.

The conventional wisdom is that higher transparency via greater disclo-
sure may lead to more market discipline. Goldstein and Sapra (2014) provide
an excellent discussion showing analytically that this may not necessarily be
the case for banks. This is because banks operate in the “second-best” envi-
ronment – in other words, the presence of market distortions means that
introducing another friction may lead to a more efficient outcome. Examples of
such distortions are the interconnected nature of banks, the presence of social
externalities, principal-agent problems, and taxes and bankruptcy costs.

Even if greater disclosure boosts market discipline, it may be the case that
more effective market discipline does not result in higher economic efficiency.
Goldstein and Sapra (2014) show that, although greater disclosure is ex post
efficient, this does not necessarily translate into ex ante inefficiencies. They
argue that disclosure of stress test information may be beneficial ex post in that
it improves market discipline, but if the opacity of the bank’s operations means
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that market participants do not have an adequate understanding of a bank’s
operations, then market discipline may be hampered by inducing the bank to
choose sub-optimal portfolios or inefficient asset sales, thereby reducing eco-
nomic efficiency. Kleymenova (2013) provides empirical evidence of this in the
disclosure of banks’ borrowing from the US Federal Reserve’s Discount Window
during the financial crisis. She finds that these disclosures contained positive
information for the market and that they decrease banks’ cost of capital. But
she also documents how banks change their behavior: banks respond to the
discount window disclosures by increasing their liquidity holdings and decreas-
ing risky assets. Thakor (2015) analytically predicts that mandatory disclosure
for financial institutions might be inefficient and make banks more fragile. This
result comes from banks not wishing to disclose information which may lead to
an increase in disagreement. Overall, these two studies argue that, in response
to increased mandatory disclosure, banks change their behavior to avoid fur-
ther disclosures. On the other hand Bischof and Daske (2013) find a substantial
and relative increase in stress test participants’ voluntary disclosure of sovereign
credit risk exposures subsequent to the mandated release of credit risk-related
disclosures.

Morris and Shin (2002) show that greater disclosure may be harmful because
it induces market participants to put excessive weight on the public informa-
tion. If the public information is not very precise, then such excessive weight
may actually hamper market discipline because market participants rely too
much on the non-fundamental or noise component of the disclosure. Simi-
larly, Goldstein and Leitner (2015) examine the issue of opacity, but from the
perspective of the regulator. In their setup a regulator has information about
banks’ ability to overcome future liquidity shocks. Disclosing information may
prevent a market breakdown but also destroy risk-sharing opportunities. They
show that risk-sharing arrangements work well if the overall state of the finan-
cial industry is perceived to be strong. But in bad times, partial disclosure by
the regulator can be the optimal solution.

Unfortunately this is easier to pose as a policy than to put into practice.
Disclosure standards are slow to change and it is difficult to remove sensitive
information from regular reports once investors have become accustomed to
it, without creating a perceived signal and increasing further panic. This may
explain why strong banks do not necessarily choose to signal their strength by
disclosing more, for fear they may become weak banks in future and be unable
to stop disclosing this information.

5 Concluding remarks

Insufficient disclosure of information by commercial banks can act as an ampli-
fier of financial stress. It can also distort funding choices and prices in non-crisis
times, by contributing to information asymmetry between insiders (such as
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managers) and outsiders (market participants). Theoretical and empirical evi-
dence suggests that investors do not appear to adequately discipline banks or
demand that they disclose the information required to properly assess the risks
that they take. This can be partially explained by the “too big to fail” effect,
which leads to some of these risks being shared with the government. But there
is also evidence to suggest that banks may be too complex for their risks to be
properly understood by outside investors.

Mandatory disclosure by regulators can help address some of these asymme-
try problems, especially if it helps overcome principal-agent problems, which
prevent outside investors from achieving the desired level of disclosure. It is
important, however, to consider the effect it may have on the behavior of banks
and their investors. Simply publishing as much information as possible is not
likely to be helpful to outsiders trying to understand a complex business, and it
may actually exacerbate problems during times of stress. Regulation on disclo-
sure can take several forms – for example, information can be published by the
firm itself (e.g., enhanced reporting standards) or the regulator (e.g., stress test
disclosures) – and these choices may have important consequences for the way
that the material is perceived by outsiders at different points in the financial
cycle. We do not yet have a good understanding of what policies would opti-
mize social welfare on a time-consistent “through the cycle” basis: this may be
an area for further research.

Notes

* Any views expressed are solely those of the authors and so cannot be taken to rep-
resent those of the Bank of England or to state Bank of England policy. This paper
should therefore not be reported as representing the views of the Bank of England or
members of the Monetary Policy Committee or Financial Policy Committee.

1. This may change in future. An exciting new area of research concerns the use of search
terms and news articles. For example Drake et al. (2012) examine investors’ searches
around the days of earning announcements and Drake et al. (2015) examines traffic
on the SEC’s EDGAR servers.

2. Rating agencies received considerable criticism after the financial crisis for having
skewed incentives as the issuer pays the rating agency to rate them, which led them to
assign higher ratings to products. This is a valid criticism but should apply to almost all
ratings of banks almost equally. This ‘uprating’ mainly involved structured products
for which fees were much larger and for which it was possible to “shop” for ratings.
By contrast, for publically traded bank debt, a bank is rated by all rating agencies. See
Bolton et al. (2012) for more on the incentives of ratings agencies.

3. An earlier version of these charts – calculated by the authors – can be found in
Haldane’s speech.

4. One interpretation of this may be that large non-financial firms are also opaque.
Cohen and Lou (2012) find evidence that investors take longer to process information
for multi-industry conglomerates than for simpler single-industry firms.
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Strategic Monetary and Fiscal Policy
Interaction in a Liquidity Trap
Ali al-Nowaihi and Sanjit Dhami

1 Introduction

In its classical form, the liquidity trap, a term coined by Keynes (1936), is a sit-
uation where an increase in money supply fails to reduce the nominal interest
rate. The modern literature has concentrated on the case where the nomi-
nal interest rate has been driven down to zero (the so called ‘zero bound’).
The source of a liquidity trap, in most circumstances, is a sharp fall in aggre-
gate demand; see Keynes (1936), Bernanke (2002). Interest in the liquidity
trap has revived in recent years due, in no small measure, to the experience
of Japan since 1990. Woodford (2005, 29) discusses the near miss of the US
economy from a liquidity trap in the summer of 2003. The era of successful
delegation of monetary policy to independent central banks with low infla-
tion targets1 opens up the possibility that sufficiently large negative demand
shocks might push an economy into a liquidity trap with huge associated
welfare consequences.2 Blanchard et al. (2010) propose an inflation target
of 4 percent in order to provide greater range for the nominal interest rate
instrument. Our paper provides one framework within which to evaluate this
proposal.

In a liquidity trap traditional monetary policy loses its effectiveness because
nominal interest rates can be reduced no further in order to boost the interest
sensitive components of aggregate demand. Hence, reliance must be placed
on other, possibly more expensive, policies. Keynes (1936), in the first policy
prescription for a liquidity trap, suggested the use of fiscal policy, which works
through the multiplier effect to boost output and employment.

However, the recent literature has largely focussed on monetary policy and
the role of expectations. Krugman (1998, 1999) reformulated the liquidity trap
as a situation where an economy requires a negative real interest rate. With
nominal interest rates bound below by zero, the only way in which a negative
real interest rate can be achieved is to have an expectation of positive inflation.3

65
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This, in turn, creates a need for a credible commitment to the future level of
actual inflation because after the economy has escaped from the liquidity trap
it is in the interest of all parties to reduce inflation. A forward-looking private
sector will anticipate this and expect low future inflation. But then the real
interest rate remains positive, keeping the economy in a liquidity trap.

The subsequent literature on the liquidity trap has also considered exchange
rate policies such as currency depreciation, integral stabilization, a carry tax
on currency, open market operations in long term bonds, price level targets,
and money growth rate pegs. The surveys in Svensson (2003) and Blinder
(2000) consider these policies in detail, however, these policies have important
limitations.4,5

Eggertsson (2006a, b) recommends abandonment of an independent central
bank and a return to discretionary policy by a unitary monetary-fiscal authority.
A debt financed fiscal expansion during a liquidity trap results, via the govern-
ment budget constraint, in higher expectations of future inflation. Eggertsson
shows that this solution is superior to either monetary policy alone or uncoordi-
nated monetary and fiscal policy. However, as Eggertsson shows, even optimal
discretion is inferior to the fully optimal rational expectations solution with
commitment. Moreover, abandoning delegation of monetary policy to an inde-
pendent central bank with a narrow mandate, in favor of a return to discretion,
appears to be a retrograde step.6

In this paper, we find that the optimal institutional response to the possibility
of a liquidity trap has two main components. First, an optimal inflation target
given to the operationally independent Central Bank. Second, the Treasury,
who retains control over fiscal policy and acts as leader, is given optimal output
and inflation targets. This keeps inflationary expectations sufficiently high and
achieves the optimal rational expectations pre-commitment solution. Simula-
tions show that this arrangement is (1) optimal even when the Treasury has
no inflation target but follows the optimal output target and (2) ‘near optimal’
even when the Treasury follows its own agenda through a suboptimal output
target but is willing to follow an optimal inflation target. Finally, if monetary
policy is delegated to an independent central bank with an optimal inflation
target, but the Treasury retains discretion over fiscal policy, then the outcome
can be a very poor one.

We also consider a version of our model with a government budget con-
straint. We find that the optimal solution can be achieved by appropriate
inflation and fiscal targets given to the Bank and the Treasury, respectively.

1.1 The Japanese experience: fiscal policy

The Japanese experience with the liquidity trap since the 1990’s is now well
documented; for instance, Posen (1998). Here we emphasize three points.7
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J1 Potency of fiscal policy in a liquidity trap: The large budget deficits in Japan
over the 1990’s, with debt reaching a peak of about 140 percent of GDP,
have sometimes formed the basis for the conclusion that Japanese fiscal pol-
icy was not effective in the liquidity trap. However, this view is at variance
with the empirical evidence; for instance Posen (1998), Kuttner and Posen
(2001), Iwamura et al. (2005) and Ball (2005). Kuttner and Posen show that
tax revenues fell through the deflation of the 1990’s. Worried by the special
demographic problems faced by Japan, the budget deficits largely funded
existing expenditure commitments. It follows that the stabilization com-
ponent of Japanese fiscal policy in the 1990’s was quite weak. Kuttner and
Posen show that when the fiscal stimulus was strong, such as in the fiscal
package of 1995, it worked in stimulating GDP. On the whole, however,
expansionary fiscal policies were largely offset by other contractionary com-
ponents of fiscal policy such as an increase in the national consumption tax
from 3 percent to 5 percent, increase in the contribution rates to social secu-
rity and the repeal of temporary tax cuts. It is useful to cite more fully from
Posen (1998). He writes “The reality of Japanese fiscal policy in the 1990’s
is less mysterious and ultimately, more disappointing. The actual amount
injected into the economy by the Japanese government- through either
public spending or tax reductions- was about a third of the total amount
announced. This limited quantity of total fiscal stimulus was disbursed in
inefficiently sized and inefficiently administered doses with the exception
of the 1995 stimulus package. The package did result in solid growth in
1996, demonstrating that fiscal policy does work when it is tried....On net,
the Japanese fiscal stance in the 1990’s was barely expansionary.” The empir-
ical results of Iwamura et al. (2005) and Ball (2005) lend strong support to
the finding of Kuttner and Posen. Eggertsson (2006b) calculates a deficit
spending multiplier of 3.76, which is much higher than previously thought.

J2 Lack of appropriate institutions and incentives for policy makers: The inability of
the Japanese Treasury to follow through with an appropriate fiscal stimulus
suggests the possibility of inadequate institutional foundations to deal with
the liquidity trap. For instance, the Japanese fiscal and monetary authori-
ties did not have any explicit output/inflation targets prior to the onset of
the liquidity trap that (1) might have created incentives for an appropriate
response, and (2) altered expectations, particularly inflationary expectations,
that could have dampened the liquidity trap.

J3 Lack of coordination between the fiscal and monetary authorities: Competing
policy authorities might disagree on the appropriate response to a liquidity
trap, possibly worsening the situation. For instance, the empirical results of
Iwamura et al. (2005) indicate lack of coordination between the monetary
and fiscal policy authorities. They write “It also suggests that policy coor-
dination between the government and the Bank of Japan did not work well
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during this period, in the sense that the government deviated from the Ricar-
dian rule towards fiscal tightening while the BOJ (Bank of Japan) adopted
a zero interest rate policy and quantitative easing.” Eggertsson (2006b)
calculates a deficit spending multiplier of exactly zero, for this scenario.

1.2 About our chapter

To motivate our paper we ask the following three questions.

Q1 Is there strategic policy interaction between the various policy makers?
Models of strategic monetary and fiscal policy interaction have recently
been given a new impetus by the work of Dixit and Lambertini (2003)
and Lambertini and Rovelli (2003) (which, however, do not consider a liq-
uidity trap). Issues of strategic interaction between policy makers assume
even greater significance during times of extreme recessions as the Japanese
experience (J3 above) indicates. However, issues of strategic policy interac-
tion between monetary and fiscal authorities are completely ignored by the
theoretical work on the liquidity trap. Typically the only policy consid-
ered is monetary policy and so issues of strategic interaction do not arise.8

On the other hand, when multiple policies are considered, their strategic
interaction is not considered.9

Q2 Can liquidity traps occur in equilibrium?
One strand of the literature considers policies that could mitigate the effects
of liquidity traps. The other strand prescribes policies that would prevent
the economy from ever falling into a liquidity trap.10 In general, the opti-
mal policy for our model allows the economy to fall into a liquidity trap
with some probability. Thus our model is in the economics tradition that
stresses limiting economic bads (e.g., externalities) to their ‘optimal level’,
rather than complete elimination.11

Q3 Is the perspective ex-ante or ex-post?
The literature typically asks either one of the following two questions.
(1) What is the optimal institutional design (assignments of targets and
instruments to the various policy makers) when there is the possibility of
a liquidity trap in the future? (2) Given that the economy is in a liquidity
trap, what actions can be taken to eliminate the liquidity trap.12 There is
considerable disagreement on both questions; particularly the latter. An ex-
ante perspective allows one to plan optimally for a problem before it arises,
while an ex-post approach is mainly concerned with damage control. Fur-
thermore, the announcements of policy makers during a liquidity trap (an
ex-post perspective) might carry little credibility for the public. Hence, ide-
ally one would like to look at the appropriate institutional design prior to
the onset of a liquidity trap (an ex-ante perspective).
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Figure 4.1 Relation of our chapter with the existing literature

We describe our chapter as follows. We would answer yes to the first two
questions and ‘ex-ante perspective’ to the third. We consider strategic inter-
action between monetary and fiscal authorities in a simple aggregate supply –
aggregate demand model similar to the one in Dixit and Lambertini (2003) and
Lambertini and Rovelli (2003) but extended to allow for a liquidity trap and
the effect of inflationary expectations in the aggregate supply curve. There is
some possibility that the economy will fall into a liquidity trap in some state of
the world in the future. Our central concern is to identify optimal institutional
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arrangements13 from an ex-ante perspective. Figure 4.1 summarizes our paper
in relation to the existing literature.

1.3 Some results and intuition

As pointed out above, Krugman identified the solution to a liquidity trap as
creating high enough inflationary expectations. However, under discretion,
promises of high inflation will not be believed. This is because outside a liquid-
ity trap the correct value for the real interest rate can be achieved more cheaply
with zero inflation. Therefore, if the economy turns out not to be liquidity
trapped, the Treasury has an incentive to renege on its promise of high infla-
tion. A rational forward looking private sector will anticipate this. The result is
low inflation expectations, keeping the real interest rate too high in a liquidity
trap. Notice that unlike the standard analysis conducted in the absence of a
liquidity trap the discretionary outcome can be suboptimal relative to the pre-
commitment outcome because it creates too little inflation (Eggertsson (2006a,b)
calls this the deflation bias).

We suggest an institutional solution, the optimal delegation regime, that
achieves the optimal rational expectations precommitment solution for all
parameter values in our model. This regime has three components. First, the
Treasury acts as Stackelberg leader and the Central Bank as follower. Second,
an inflation target is given to a Central Bank who has exclusive control over
monetary policy. Outside a liquidity trap, where monetary policy is effective,
the Treasury would rather not use the relatively more costly fiscal stabilization
policy, leaving the Central Bank to perform the stabilization function. Because
the Central Bank is operationally independent and its sole objective is achiev-
ing monetary stability, this type of delegation provides a commitment to the
necessary inflation level when the economy is not in a liquidity trap. Our third
component is to give the Treasury, who retains control of fiscal policy, some-
thing like a Taylor rule, which penalizes deviations of output from an output
target and inflation from the inflation target. This gives the Treasury the correct
incentive to undertake the appropriate (but costly) fiscal stimulus in a liquidity
trap where monetary policy is ineffective. Consequently, inflation expectations
are at the right level to produce the correct value for the real interest rate in
a liquidity trap. For a variety of reasons, e.g., electoral concerns, the output
target of the Treasury may differ from the optimal target. In this case, we find
that even if the Treasury’s output target is substantially different from the opti-
mal output target, this suboptimal delegation regime achieves close to the optimal
solution and is much better than discretion.

While it may appear reasonable to assign an inflation target to the Central
Bank, it may be asked why should the Treasury have an inflation target, as well
as an output target? To answer this question, we define two further regimes: the
output nutter regime, where the Treasury has an output target but not an inflation
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target; and the reckless output nutter regime where the Treasury has an output
target but does not have an inflation target and does not care about the cost of
fiscal policy. It turns out that so long as the Treasury follows the optimal output
target, then delegation achieves the optimal solution even in the regimes of the
output nutter and the reckless output nutter. However, in the latter two cases,
the delegation regime is not robust; in the sense that if the output target of the
Treasury is different from the optimal target, then performance is poor and can
be much worse than under discretion. Hence, giving the Treasury an inflation
target (as well as an output target), while not essential for optimality, adds to
the robustness of the policy. In particular the hybrid regime where monetary
policy is delegated to an independent central bank with an optimal inflation
target, while the Treasury retains discretion over fiscal policy, can perform badly
and much worse than had the Treasury retained discretion over both monetary
and fiscal policy. We summarize these results in Figure 4.2. In each regime the
central bank follows its optimally assigned inflation target.

Furthermore, the optimal delegation regime achieves the optimal mix between
monetary and fiscal policy as we now explain. Theoretically, society could give
a sufficiently high inflation target to the Central Bank which in turn generates
sufficiently high inflation expectations so that the nominal interest rate never
hits its zero floor. While this policy would always avoid the liquidity trap, it is
not optimal because inflation is costly. Analogously it is not optimal to give the
Treasury too high an output target because if a liquidity trap occurs, it would
use the costly fiscal policy excessively. The optimal solution then is to have a
mix of both i.e., some inflation outside a liquidity trap and some dependence
on costly fiscal policy in a liquidity trap.

The first best is achieved if one could remove the distortions that cause the
liquidity trap. The second best obtains with the optimal rational expectations
commitment solution. The third best is achieved with various institutional
design features introduced into policy making. The fourth best obtains under
discretion. It is well known that, in the absence of a liquidity trap, ‘optimal
institution design’, such as Walsh contracts, can achieve the second best. Our
suggested institutional design achieves the second best in the presence of a
liquidity trap.

In section 5 we consider a version of our model with a government budget
constraint. We find that the optimal solution can be achieved by assigning
appropriate inflation targets to the Central Bank and appropriate surplus/deficit
targets to the Treasury.

1.4 Optimal control versus game theory

To simplify the dynamic game-theoretic analysis we follow the tradition, estab-
lished in the time-inconsistency literature,14 of abstracting from structural
dynamic issues, notably, capital formation, the term structure of interest rates,
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exchange rate policy and the financing of the stabilization component of fiscal
policy. Concentrating on the aggregate demand consequences of investment
expenditure, but abstracting from its contribution to growth, is standard in
models of the business cycle, and is a feature of all the models of the liquidity
trap (as far as we know).

Eggertsson and Woodford (2003), in a structurally dynamic model of mon-
etary policy with a financial sector and a zero lower bound on interest rates,
show that the short-run interest rate (which is the instrument of policy) deter-
mines all other interest rates and exchange rates. As they clearly explain, open
market operations only work to the extent that they enhance the credibility of
policy. Thus, and in common with many models, we take the short-run interest
rate as directly affecting aggregate demand and we abstract from open economy
aspects.

Except for section 5, we do not explicitly model the government budget con-
straint. This does not necessarily imply that the government budget constraint
is violated. For the government could run a fiscal surplus outside a liquidity
trap. This could then finance a fiscal deficit in a liquidity trap. Section 5 explic-
itly models the government budget constraint and shows that the qualitative
results of our paper are not changed.

Nevertheless, we incorporate an element of structural dynamics resulting
from persistence in demand shocks (Section 6). We believe that our model
thus reproduces the essentials of the problems associated with a liquidity
trap: persistence, credibility and monetary-fiscal coordination, in a clear and
simple way.

1.5 Relation to Dhami and al-Nowaihi (2011)

Dhami and al-Nowaihi (2011), henceforth DaN, also propose a model of a liq-
uidity trap along the lines that are mentioned above. In this paper we extend
their model along the following lines.

E1. Here, we introduce the full set of parameter values. By contrast, DaN assign
the value one to all parameters. The advantage of that special choice of
parameter values is that all the details of all the proofs can be exhibited.
Unfortunately, this is no more the case when the full set of parameter val-
ues is introduced, as is done here. While we can still explicitly state the
assumptions and the conclusions, the details of the proofs can no longer
be printed. The reason is that many of the algebraic expressions are more
than one page in length each! However, the logic of the proofs here is the
same as in DaN. All proofs require only elementary (though tedious) alge-
braic calculations. All our claims can be independently checked by a reader
wishing to reconstruct the intermediate steps of the calculations or willing
to use the ‘check equality’ command of a scientific word processor.
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E2. Here, we allow for persistence in demand shocks. By contrast, in DaN the
demand shocks are uncorrelated over time.

E3. Here, we allow for general probability distribution over the two states of
the world. By contrast, in DaN the demand shocks in any period take two
possible values, 1 and −1 with equal probability.

E4. Here, we show that if the Treasury follows its own private output target, yT ,
rather than the optimal output target, y∗T , then the resulting ‘suboptimal
delegation regime’ is, nevertheless, close to the ‘optimal delegation regime’
and is much better than discretion. This analysis is absent in DaN.

E5. Here, we show that giving the Treasury an inflation target (as well as an out-
put target), while not essential for optimality, adds to the robustness of the
policy. In particular the hybrid regime where monetary policy is delegated
to an independent central bank with an optimal inflation target, while the
Treasury retains discretion over fiscal policy, can perform badly and much
worse than had the Treasury retained discretion over both monetary and
fiscal policy. This analysis is absent in DaN.

E6. In section 5 we consider a version of our model with a government budget
constraint. This is absent in DaN.

1.6 Schematic outline

The model is formulated in Section 2. Section 3 derives the two benchmark
solutions: the optimal rational expectations precommitment solution and the dis-
cretionary solution. Section 4 derives the optimal delegation solution. Section 5
considers a version of our model with a government budget constraint. Section
6 demonstrates the robustness of the model by allowing for the full set of
parameters, persistence of demand shocks and several alternative formulations
of the Treasury’s objectives. Section 7 discusses the relation of our paper to the
literature. Section 8 concludes with a brief summary. Proofs are relegated to
appendices.

2 Model

In this section we describe the most parsimonious version of the model. In
Section 6 below, we demonstrate the robustness of the results of this model with
respect to the full set of parameters, persistent demand shocks, a general prob-
ability distribution over the two states of nature, and further considerations
about the Treasury’s objectives.

2.1 Aggregate demand and aggregate supply

We use an aggregate demand and supply framework that is similar to Ball
(2005), Dixit and Lambertini (2003) and Lambertini and Rovelli (2003). The
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aggregate demand and supply equations are given by, respectively

AD : y= f − (i−πe)+ ε (4.1)

AS : y= π −πe (4.2)

where y is the deviation of output from the natural rate and f captures fiscal
policy.15 For example, f > 0 could denote a fiscal deficit (either debt financed
or money financed16) while f < 0, a fiscal surplus. But f could also denote a
temporary balanced budget reallocation of taxes and subsidies that has a net
expansionary effect; for instance Dixit and Lambertini (2000). i≥ 0 is the nom-
inal interest rate, π is the rate of inflation, πe is expected inflation17 and ε is
a demand shock.18 The instruments of policy are i and f . The demand shock ε
takes two values, a,−a, with equal probability, where a> 0, hence

E [ε]= 0, Var [ε]= a2. (4.3)

The aggregate demand equation reflects the fact that demand is increasing in
the fiscal impulse, f , and decreasing in the real interest rate; it is also affected
by demand shocks. The aggregate supply equation shows that deviations of
output from the natural rate are caused by unexpected movements in the rate
of inflation. Note the absence of parameters in (4.1), (4.2). This is because our
conclusions do not qualitatively depend on the values of such parameters (see
Section 6). So we have suppressed them to improve readability.

Equating aggregate demand and supply we get from (4.1) and (4.2), our
reduced form equations for output and inflation.

y= f − i+πe+ ε (4.4)

π = f − i+ 2πe+ ε (4.5)

Hence, fiscal policy, monetary policy and inflation expectations (in the
spirit of New Keynesian models) have an affect on output (and so also on
unemployment) and inflation.

2.2 Microfoundations

Our model is inspired by the microfounded dynamic model of monopolistic
competition and staggered price setting in Dixit and Lambertini (2000, 2003).
Our structural model in (4.1), (4.2) (or its variant with the full set of parame-
ters given in (4.17), (4.18) below) is similar to Dixit and Lambertini.19 In the
Dixit and Lambertini framework, unexpected movements in inflation have real
effects because prices are staggered. Alternatively, a range of ‘rational inatten-
tion’ theories currently compete as potential explanations for the presence of
the unexpected inflation term in (4.2). For instance, see Sims (2003).20
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2.3 Notation

We shall write a variable with a subscript (sometimes a superscript) ‘+’, for
example, y+, to denote the realization of that variable in the (good) state of the
world, ε = a. Analogously, to denote the realization of the same variable in the
(bad) state of the world, ε = −a, we use a subscript (sometimes a superscript)
‘−’, for example, y−.

2.4 Social preferences

Society’s preferences over output and inflation are given by the social welfare
function,

US =−1

2
(y− yS)

2− 1

2
π2− f 2. (4.6)

The first term shows that departures of output from its desired level, yS (note
that yS is the difference between desired output and the natural rate), are costly.
We assume that

yS ≥ 0 (4.7)

This captures the fact that the natural level of output is socially suboptimal
(unless yS = 0).21

The second term in (4.6) indicates that inflation reduces social welfare. The
third term captures the fact that the exercise of fiscal policy is more costly than
that of monetary policy.22 We model this as imposing a strictly positive cost of
fiscal policy, f 2, but no cost of using the monetary policy.23 The cost of using
fiscal policy could include deadweight losses, as in Dixit and Lambertini (2003),
costs of servicing debt and a risk premium for default.

From (4.6) we see that the first best obtains when π = 0, f = 0, and y = yS.
However, from (4.1) and (4.2), it follows that this cannot be an outcome of a
rational expectations equilibrium (unless yS = 0).

For expositional clarity we omit parameters in (4.6), but see Section 6. On the
microfoundations of such a social welfare function, see Dixit and Lambertini
(2000, 2003), Rotemberg and Woodford (1999).

2.4.1 Treasury and social preferences

We will assume for now that society can, if it desires, delegate policy to a “Trea-
sury” that fully internalizes its objective function given in (4.6). So we will use
society and Treasury interchangeably here. Other assumptions are considered
in Section 6 below.

2.5 Sequence of moves

At the first stage the economy designs its institutions, which assign powers of
policy-making decisions to one or two independent policy makers. This is fol-
lowed by the formation of inflationary expectations, πe, and the signing of
nominal wage contracts in anticipation of future inflation. Next, the demand
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shock, ε, is realized. In light of the actual realization of the shock, the rele-
vant policy makers then decide on the optimal values of the policy variables,
f and i. We shall also derive the optimal rational expectations solution (pre-
commitment benchmark) in which the last stage is conducted up-front i.e. the
(state contingent) policy variables f and i are announced to the economy prior
to the resolution of demand uncertainty.

3 The precommitment and discretionary solutions

3.1 The precommitment regime (The optimal rational expectations
solution)

In this section we calculate the globally optimal solution in the class of all
rational expectations solutions.24 The global optimality of the precommitment
solution serves as a useful benchmark. The sequence of moves is described
below.

The solution method is to find state contingent rules for the policy variables,
i(ε), f (ε), i.e., (i−, f−), (i+, f+), that maximize the expected value of the social
welfare (4.6) under the constraints (4.4), (4.5) and the rational expectations
condition πe = E [π ], i.e.

πe = 1

2
π− + 1

2
π+ (4.8)

The results are summarized in Proposition 1. Superscript ‘e’ denotes expected
value.

Proposition 1: The optimal state-contingent rational expectations precommitment
solution is given by

ε− =−a < 0 ε+ = a > 0 εe = 0

i− = 0 i+ = 6
5 a ie = 3

5 a

f− = 2
5 a f+ = 0 f e = 1

5 a

y− =− 1
5 a y+ = 1

5 a ye = 0

π− = 1
5 a π+ = 3

5 a πe = 2
5 a

i− −πe =− 2
5 a i+ −πe = 4

5 a ie−πe = 1
5 a

The expected utility in the precommitment regime is given by E
[
UOpt

S

]
=− 1

5 a2− 1
2 y2

S.

Furthermore,
(
∂US
∂i

)
Opt
< 0 when ε =−a and

(
∂US
∂i

)
Opt
= 0 when ε = a. �

From Proposition 1 note that
(
∂US
∂i

)
Opt
< 0 when ε =−a. Hence, the economy

is always liquidity trapped when ε = −a. In this case, monetary policy is not
effective, i− = 0. Hence, the government must commit to using expensive fiscal
policy, f− = 2

5 a, in order to ‘lean against the wind’. By contrast, when ε = a,



78 Ali al-Nowaihi and Sanjit Dhami

monetary policy is effective, i+ = 6
5 a, and the government has no need for the

expensive fiscal instrument, f+ = 0.25

Also note that output is below the natural rate (which is normalized to zero)
in the liquidity trap (ε=−a) but above it otherwise (ε= a). On average, it equals
the natural rate (recall that y measures the deviation of output from the natural
rate). Inflation is positive in both states of the world. The real interest rate is
negative26 in the liquidity trap but positive otherwise and on average.

Recalling that Var [ε]= a2, on average, ceteris paribus, inflation, interest rates
and the fiscal instrument of the government will display greater variability in
economies where demand shocks have a greater variance and precommitment
is possible. Furthermore, the magnitude of policy instruments employed in the
two states of the world, f− = 2

5 a and i+ = 6
5 a, are increasing in the size of the

shock. This is not surprising as each of these policies fulfills a stabilization role
and a larger shock elicits a greater effort in “leaning against the wind”.

The solution is independent of yS, society’s desired output relative to the nat-
ural rate. As in time consistency models in the absence of the liquidity trap, this
occurs because, even if society has a high yS, the precommitment technology
allows it to counter expectations of ex-post surprise inflation (designed to push
output towards the high target).

The magnitude of social welfare in this regime depends negatively on the
variance of shocks hitting the economy, a2, and also on the output target of
society, yS.

Finally, note that the values of i+, i−, f+, f− of the instruments are optimal
ex-ante. However, after the realization of the shock, ε = −a or ε = a, the ex-
post optimal values of i, f will, in general, be different from these. Thus, for
successful implementation, this optimal rational expectations solution needs a
precommitment technology. We discuss this in Section 4 below. Next we turn
to the second regime in the paper: Discretion.

3.2 Discretionary regime

In this case, the monetary instrument, i, and the fiscal instrument, f , are both
assigned to the Treasury. We calculate the time consistent discretionary policy.
The sequence of moves is described below.

To find the discretionary solution, first find state-contingent values of the pol-
icy variables i− (πe) , f− (πe) and i+ (πe) , f+ (πe) that maximize social welfare (4.6)
under the constraints (4.1), (4.2) and conditional on given πe,ε. This allows the
computation of the state-contingent inflation rates π− (πe) and π+ (πe). Then
one needs to find the fixed-point πe by solving πe = E [π ] :

πe = 1

2
π−
(
πe)+ 1

2
π+
(
πe) (4.9)

Finally, substitute the value for πe back into the state-contingent policy
variables i− (πe), f− (πe) and i+ (πe), f+ (πe) to find the solution under discretion.
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Depending on the parameter values, a liquidity trap may or may not arise.
Proposition 2 below summarizes the results when a liquidity trap, which is the
focus of this paper, arises.27

Proposition 2: For 1
2 a≤ yS < a, the economy is liquidity trapped for ε =−a< 0 but

not liquidity trapped for ε = a> 0. The solution under discretion is given by

ε− =−a < 0 ε+ = a > 0 εe = 0

i− = 0 i+ = 4yS− 2a ie = 2yS− a

f− = 2(a− yS) > 0 f+ = 0 f e = (a− yS) > 0

y− = yS− a< 0 y+ = a− yS > 0 ye = 0

π− = 4yS− 3a π+ = 2yS− a πe = 3yS− 2a

i− −πe = 2a− 3yS i+ −πe = yS > 0 ie−πe = a− yS > 0

and the expected social welfare is given by E
[
UDisc

S

]= 12ayS− 8y2
S− 5a2

For stabilization purposes, the costly fiscal policy is used only in a liquidity
trap when the monetary policy looses effectiveness. As in the precommit-
ment solution, deviations of output from the natural rate are zero on average
i.e. ye = 0. The following corollary compares expected social welfare under
Precommitment with that under Discretion.

Corollary 1: For 1
2 a≤ yS < a, E

[
UOpt

S

]
−E

[
UDisc

S

]= 3
10 (5yS− 4a)2 ≥ 0.

As one would expect, the presence of a liquidity trap does not alter the rank-
ing between the Precommitment and the Discretion regimes, from a social
welfare point of view.

3.3 Alice through the looking glass

Krugman (1998) observed that ‘applying conventional modelling to liquidity
trap conditions produces unconventional conclusions and policy recommen-
dations’. To which he added (1999) ‘The whole subject of the liquidity trap
has a sort of Alice-through-the-looking-glass quality’. And indeed, our model
exhibits these features, as we will now see.

3.3.1 Precommitment can have higher inflation than discretionary

In the traditional time inconsistency literature, in the absence of a liquidity
trap, the optimal level of average inflation is zero (given the welfare function
(4.6)) while under discretion it is positive (unless yS = 0, in which case it is also
zero); as is well known. The reason is that under discretion, agents perceive
(correctly) that the government has an ex-post incentive to create surprise infla-
tion, while under precommitment ex-post surprise inflation is institutionally
ruled out.
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When a liquidity trap occurs with a positive probability this changes dramat-
ically. From Proposition 1 we see that the optimal level of average inflation
under precommitment now is positive (πe = 2a

5 ), rather than zero. Under dis-
cretion πe depends on yS. For yS = 1

2 a, Proposition 2 gives a negative average
expected inflation rate (πe = − 1

2 a), rather than a positive one. Eggertsson
(2006a, b) calls this the deflation bias.

The intuitive explanation is as follows. Under precommitment, it is optimal
to have positive inflation on average (πe = 2a

5 ), despite its cost, to be able to
deliver negative real interest rates (i− −πe =− 2a

5 ) in the bad state of the world
(ε =−a). However, this optimal policy is time inconsistent. If ex-post, the econ-
omy is in the good state (ε = a) then the optimal real interest rate is positive
(i+ −πe = 4a

5 ) which can be achieved more cheaply with zero inflation. Hence,
the policy maker has the incentive to renege on its commitment to positive
inflation. The rational private sector will perceive this and expect low future
inflation. This destroys the credibility of the announcement of high inflation,
unless a commitment technology is available.

3.3.2 Higher output targets are a good thing

In the standard textbook model in the absence of a liquidity trap, a higher value
of desired output relative to the natural rate, yS > 0, is bad because it leads to
high inflation and no gain in output (ye= 0). The reverse occurs with a liquidity
trap, yS > 0 is now good! The intuition is that a higher yS increases inflationary
expectations (see Proposition 2) which, by reducing the real interest rate in a
liquidity trap, reduces the need for using the expensive fiscal instrument.

If society has a high enough output target (and the Treasury follows it) then,
in the discretionary regime, ex-post, a liquidity trap will not arise. However, this
outcome might require using the costly fiscal instrument excessively, which
could be suboptimal. In Section 4, below, we show this to be precisely the case.

4 Institutions and delegation

In the delegation regime considered in this section, society gives the Central
Bank the mandate of achieving an inflation target πB. The monetary instru-
ment, which is the nominal interest rate, i, is assigned to the Central Bank
whose objective is to attain the inflation target πB. We formalize this by
assigning the following objective function to the Central Bank:

UB =−1

2
(π −πB)

2 (4.10)

The fiscal instrument, f , is controlled by the Treasury whose objective func-
tion is similar to that of society (4.6) but with, possibly, different inflation and
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output targets:

UT =−1

2
(y− yT )

2− 1

2
(π −πT )

2− f 2 (4.11)

where yT , πT are the output and inflation targets respectively of the Treasury.
It is important to bear in mind the difference between the socially desirable
output level, yS, and the Treasury’s output target, yT . The optimal value, y∗T , of
yT , i.e., the value of yT that maximizes expected social welfare, might be very
different from yS. In fact, our simulations show that y∗T is well below yS. Thus
a fiscal authority should be ‘conservative’ in the sense that it should aim for a
lower output target than that desired by society, as in Rogoff (1985). See, for
example, Table 4.1, below.

4.1 The optimal delegation regime

Under optimal delegation, the game has five stages, shown in Figure 4.3.
The Treasury acts as Stackelberg leader with an output target, yT , and an

inflation target πT . The Central Bank is the follower with an inflation target
πB. In this subsection we consider the case πT = πB (section 6, below, allows
πT �= πB). The Central Bank sets monetary policy taking the fiscal policy, set
by the Treasury, as given. The Treasury sets fiscal policy, taking into account
the anticipated response of the Central Bank. We solve the game backwards.
First we obtain the Central Bank’s reaction function i = i (πB,πe, f ,ε) by maxi-
mizing UB. Second, we find the Treasury’s reaction function f = f

(
yT , πB,π

e, ε
)

by maximizing UT . This allows us to derive output and inflation as functions
of yT , πB, π

e, ε. Third, we determine πe, assuming rational expectations on the
part of the private sector. Fourth, we find the expected social welfare, EUS, as
a function of yT , πB, which we maximize to find the optimal values of yT , πB

which are denoted by y∗T , π∗B. We assume that the Treasury and Central Bank
adopt the optimal inflation target, π∗B, and that the Treasury fully complies with
the optimal output target, y∗T . Section 6, below, explores the possibility that the
Treasury might not care for inflation and/ or be unwilling to follow the optimal
output target, y∗T , because it has its own output target, yT . For ease of reference,
these concepts are summarized in the following definition.

Definition 1: yS is the output level preferred by society (0 is the inflation level
preferred by society, see (4.6)). yT and πT are output and inflation targets for the
Treasury. πB is the inflation target for the Central Bank. y∗T and π∗B are the values of
yT and πB that maximize expected social welfare, EUS, subject to the constraints of
the model, where US is given by (4.6). In section 6, below, we allow the Treasury to
adopt an output target, yT , different from y∗T , consistent with its own agenda.

Proposition 3: Assume that monetary policy is delegated to an independent cen-
tral bank with inflation target π∗B = 3

5 a. Fiscal policy is retained by the Treasury
with output target y∗T = 1

5 a and acts as Stackelberg leader. Then the optimal rational
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expectations (precommitment) solution (see Proposition 1) is achieved. Society’s
expected utility in the optimal delegation regime is given by E

[
UOD

S

] = − 1
5 a2 − 1

2 y2
S.

The economy is liquidity trapped only under adverse demand shocks. Inflation and
output targets are achieved in the good state but not in the bad state.28

So why does the optimal delegation regime perform so well? The inflation
target given to the Central Bank provides a commitment to the necessary infla-
tion level when the economy is not in a liquidity trap. This affects the (ex-ante)
inflation expectations which also apply to the (ex-post) liquidity trap ensur-
ing the correct value for the real interest rate in a liquidity trap. Furthermore,
inflationary expectations are also influenced correctly by the output and infla-
tion targets given to the Treasury that provide it with the incentive to use
the appropriate level of fiscal policy in a liquidity trap. Such an institutional
regime achieves the optimal balance between fiscal and monetary policy by
neither having to rely too much on costly inflation outside the liquidity trap
nor relying too much on costly fiscal policy in a liquidity trap.

5 The government budget constraint

Recall from Propositions 1 and 2 that the optimal solution, and hence optimal
delegation, specify a fiscal deficit in a liquidity trap but a fiscal balance out-
side of a liquidity trap (also recall footnote 15). Here we explicitly model the
government budget constraint. We require the Government run a fiscal surplus
outside the liquidity trap in order to finance the fiscal deficit in a liquidity trap;
so that the government budget constraint holds ex-ante or on average. To facili-
tate this, to Equations (4.4), (4.5) and (4.8) we here add the government budget
constraint:

f− = f , f+ =−f ; hence, f− + f+ = 0. (4.12)

In Proposition 4, below, we derive the optimal state-contingent rational
expectations precommitment solution under the government budget con-
straint (4.12). This is the analog of Proposition 1. The reader may wish to
refer back to Figure 4.1, which gives the sequence of moves for the precommit-
ment regime. Subsection 5.1 then describes the optimal delegation regime that

Treasury sets state
contingent policy
rules, i (ε), f (ε)

Public forms
inflationary
expectations, πe

Realization of
the demand
shock, ε

Figure 4.3 Sequence of moves for the precommitment regime
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implements this precommitment solution. That the optimal delegation indeed
implements the precommitment solution is established by Proposition 5.

Proposition 4: The optimal state-contingent rational expectations precommitment
solution under the government budget constraint (4.12) is given by

ε− =−a < 0 ε+ = a > 0 εe = 0

i− = 0 i+ = a ie = 1
2 a

f− = 1
4 a f+ =− 1

4 a f e = 0

y− =− 1
4 a y+ = 1

4 a ye = 0

π− = 1
4 a π+ = 3

4 a πe = 1
2 a

i− −πe =− 1
2 a i+ −πe = 1

2 a ie−πe = 0

The expected utility in the precommitment regime is given by E
[
UOpt

S

]
=− 1

4 a2− 1
2 y2

S.

Furthermore,
(
∂US
∂i

)
Opt
< 0 when ε =−a and

(
∂US
∂i

)
Opt
= 0 when ε = a. �

From Proposition 4 note that
(
∂US
∂i

)
Opt
< 0 when ε = −a. Hence, the econ-

omy is always liquidity trapped when ε = −a. In this case, monetary policy is
not effective, i− = 0. Hence, the government must commit to using expensive
fiscal policy, f− = 1

4 a, in order to ‘lean against the wind’. By contrast, when
ε = a, monetary policy is effective, i+ = a. However, here, and unlike the case of
Proposition 1, the government still needs to run a budget surplus, f+ =− 1

4 a, to
pay for the budget deficit in a liquidity tap. This is, of course, a consequence of
the government budget constraint (4.12).

Note that here discretion fails to implement the optimal solution of Propo-
sition 4 for two reasons. First, outside the liquidity trap, the government has
an incentive to renege on the inflation target (recall subsection 3.3.1). Sec-
ond, outside a liquidity trap the government has an incentive to renege on
its commitment to run a budget surplus.

5.1 The optimal delegation regime

Society assigns to the Treasury the fiscal targets f+T , f−T to be achieved in the
good state, ε+ = a, and the bad state, ε− = −a, respectively. Thus we give the
Treasury the objective function

U+T =−
1

2

(
f+ − f+T

)2 , if ε = a, (4.13)

U−T =−
1

2

(
f− − f−T

)2 , if ε =−a. (4.14)

Likewise, society assigns to the Bank the inflation targets π+B , π−B to be
achieved in the good state, ε+ = a, and the bad state, ε− = −a, respectively.
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Thus we give the Bank the objective function

U+B =−
1

2

(
π+ −π+B

)2 , if ε = a, (4.15)

U−B =−
1

2

(
π− −π−B

)2 , if ε =−a. (4.16)

Under optimal delegation, the game has five stages, shown in Figure 4.6.
The Treasury acts as Stackelberg leader with a surplus target of f+T to be

achieved in the good state, ε = a, and a deficit target of f−T to be achieved in
the bad state, ε =−a. These targets are chosen partly to guarantee that the gov-
ernment budget constraint holds ex-ante or on average. The Central Bank is the
follower with an inflation target π+B to be achieved in the good state, ε = a, and
an inflation target π−B to be achieved in the bad state, ε=−a. Announcing these
inflation targets helps the public form its rational expectations of the future
level of inflation, πe

(
π+B ,π−B

)
. The shock ε = ±a is then realized. The Central

Bank sets monetary policy (i.e., sets interest rates) taking the fiscal policy (i.e.,
deficits/surpluses), set by the Treasury, as given. The Treasury sets fiscal policy
(deficit or surplus). We solve the game backwards. First we obtain the Central
Bank’s reaction function i = i

(
π+B ,π−B ,πe, f+, f−,ε

)
by maximizing its objective

function, U±B . Second, we find the Treasury’s reaction function f = f
(
f+T , f−T ,ε

)
by maximizing its objective function, U±T . Given these reaction functions, the
behavioral Equations (4.4), (4.5) and (4.8), the government budget constraint
(4.12) and the stochastic process of the shocks, ε, this allows us to find the
expected social welfare, EUS, where US is given by (4.6), as a function of the
targets π+B ,π−B ,πe, f+T , f−T . Finally, we can find the values of these targets that
maximize expected social welfare, EUS.

Proposition 5: Assume that monetary policy is delegated to an independent central
bank with inflation target π+B = 3

4 a, π−B = 1
4 a, which acts as Stackelberg follower.

Fiscal policy is retained by the Treasury with fiscal target f+T = − 1
4 a, f−T = 1

4 a and
acts as Stackelberg leader. Then the optimal rational expectations (precommitment)
solution (see Proposition 4) is achieved:

ε− =−a < 0 ε+ = a > 0 εe = 0

i− = 0 i+ = a ie = 1
2 a

f− = 1
4 a f+ =− 1

4 a f e = 0

y− =− 1
4 a y+ = 1

4 a ye = 0

π− = 1
4 a π+ = 3

4 a πe = 1
2 a

i− −πe =− 1
2 a i+ −πe = 1

2 a ie−πe = 0

Society’s expected utility in the optimal delegation regime is given by E
[
UOD

S

] =
− 1

4 a2− 1
2 y2

S. The economy is liquidity trapped only under the adverse shock ε− =−a.
Inflation and fiscal targets are achieved in the good state and in the bad state.
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So why does the optimal delegation regime perform so well? The inflation tar-
gets given to the Central Bank provide a commitment to the necessary inflation
levels when the economy is in or out of a liquidity trap. This also pins down the
(ex-ante) inflation expectations. Together with the fiscal targets, these ensure
the correct values for outputs and interest rates in and out of a liquidity trap.

6 The general model

How are our results altered when we introduce the full set of parameters in the
model of sections 2–4 and also allow for persistence in the demand shocks with
a general probability distribution? What if the Treasury has its own agenda,
perhaps on account of electoral concerns or other political economy consid-
erations such as lobbying or interest groups? These issues are considered in
this section. We demonstrate that the results of our model are robust to the
following five extensions.

E1. Introduction of the full set of parameters.
E2. Persistent demand shocks.
E3. General probability distribution over the two states of the world.
E4. The Treasury might follow an output target, yT , different from the optimal

output target, y∗T . Recall that y∗T will, in general, be different from the output
level, yS, most desired by society.

E5. The Treasury and the Central Bank can have distinct inflation targets i.e.
πT �= πB.

6.1 A note on output and inflation targets

6.1.1 Inflation targets

There are two main cases. The inflation targets of the Treasury and Central Bank
either coincide (i.e. πT = πB), or differ (i.e. πT �= πB). In Section 4 we restricted
attention to the case πT = πB. However, in Subsection 6.5, both cases i.e. πT =
πB and πT �= πB are considered. We show that the optimal delegation regime
works equally well in each of these two cases and achieves the optimal rational
expectations precommitment solution. Whilst this does not have implications
for the optimality of our suggested delegation regime we find the case πT =
πB more natural and easier to interpret. Furthermore, we show in Subsection
6.8 that the optimal rational expectations solution can also be achieved if the
central bank alone has an inflation target while the Treasury simply follows the
optimal output target given to it by society.

6.1.2 Output targets

The Treasury is an arm of the government. If the natural rate of output is
socially suboptimal, say on account of monopolistic competition, then the
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government may have an incentive to use fiscal instruments to increase output
beyond its natural rate, at least temporarily and a rational private sector will
foresee this. The problem of assigning output targets is compounded by the dif-
ficulty of measuring deviation of output from its natural rate (compared with
the lesser difficulty of measuring deviation of inflation from its target value)
and by the fact that output stability is only one (though important) consider-
ation for government and voters (by contrast, monetary stability can be made
the sole objective of the central bank). Hence, it is important to consider the
case where the Treasury pursues its own agenda and sticks to its preferred value
of the output target, yT , rather than follow the optimal output target, y∗T , that
society assigns to it. Although in section 4 we restricted attention to the case
yT = y∗T , Section 6.5 below considers both cases: i.e. yT = y∗T and yT �= y∗T .

We proceed as follows. First, we derive the optimal rational expectations
precommitment solution in this more general setting (Proposition 6). In gen-
eral, this solution is time-inconsistent and, therefore, requires a commitment
technology. We then consider the optimal delegation regime (first considered
in Section 4.1, above). If the Treasury follows the optimal output target (i.e.
yT = y∗T ), then the optimal delegation regime achieves the precommitment
solution for all values of the parameters (Proposition 7). If, however, the Trea-
sury cannot be given the optimal output target, and has its own agenda (i.e.
yT �= y∗T ), then Section 6.7, below, shows that a ‘near optimal’ solution can still
be achieved. What if the Treasury is not given an inflation target or does not
care about inflation at all, but is willing to adopt the socially optimal output
target? Section 6.8, below, shows that the optimal precommitment solution can
still be achieved.

6.2 Description of the general model

The model is described by the following basic equations:

Aggregate Demand : y= ϕf −λ(i−πe)+ ε (4.17)

Aggregate Supply : y=μ(π −πe) (4.18)

Society’s Objective : US =−1

2
απ2− 1

2
β (y− yS)

2− 1

2
γ f 2 (4.19)

The parameters α, β, γ , ϕ, λ, μ are all strictly positive. ϕ and λ are a measure of
the effectiveness of fiscal and monetary policy respectively in influencing aggre-
gate demand and μ indicates the strength of inflation surprises in influencing
aggregate supply. Finally, α, β, γ are the relative weights given to the various
terms in the objective function. The state contingent values of the demand
shock, ε, are:

Bad State: ε− = ρx− (1− p)s (4.20)

Good State: ε+ = ρx+ ps (4.21)
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the demand
shock, ε

Figure 4.4 Sequence of moves when treasury controls i, f
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Figure 4.5 Sequence of moves in the optimal delegation regime
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Central 
Bank sets 
monetary 
policy,
i (πe, ε)

π+, π−

f+, f−

Figure 4.6 Sequence of moves in the optimal delegation regime with a government
budget constraint

where 0 < p < 1, s > 0 and 0 ≤ ρ < 1. The variable x represents the previous
period’s shock and so ρ is a measure of the persistence in the shock. The second
component in (4.20), (4.21) shows the innovation terms. With probability p the
shock takes the value ε− and with probability 1− p it takes a value ε+. Hence
E [ε|x]= pε−+ (1−p)ε+ = ρx and so in the absence of the persistence term (ρ= 0),
E [ε|x]= 0 as in the model presented in Section 2.29 Thus, if an economy is close
to a liquidity trap, a negative shock can push the economy into it. Because of
persistence, it may take the economy several periods to get out of the liquidity
trap.

6.3 Sequence of moves and informational assumption

The sequence of moves under the regimes of precommitment, discretion and
the optimal delegation are as in Figures 4.3, 4.4, 4.5 respectively, except that
in any period, the realization of ε depends on the value of the of the shock
in the previous period, x. We assume that formation of inflation expectations,
πe, and nominal wage contracts are signed after the observation of x but before
the innovation (ps or −(1− p)s) is observed. However, the Treasury and Central
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Bank have an informational advantage over the private sector in that they can
set their instruments after the realization of the innovation part of the shock.30

The main effect of this is to cause the optimal inflation and output targets
to be state dependent (i.e., dependent on x). This is in line with the results of
Eggertsson and Woodford (2003) who, however, consider only monetary policy.

6.4 Optimal solution

The optimal rational expectations precommitment solution, the analog of
Proposition 1, is described below in Proposition 6. The intuition behind the
results is similar to that behind Proposition 1 except that the magnitude of
demand shocks in the past influence the state of the economy in the current
period and so one needs to distinguish between three cases. Our main focus is
on Case (b) where the economy is liquidity trapped in the bad state. The proof
is derived analogously to that of Proposition 1 and, so, is omitted.

Proposition 6: (a) If x < −ps

(
α+βμ2

)(
αϕ2+γ λ2

)
αρ
(
γμ2+ϕ2

(
α+βμ2

)) then the economy is liquidity

trapped in both states and the commitment solution is given by i− = i+ = 0,

f− = ϕ
( (
α+βμ2

)
s (1− p)

γμ2+ϕ2
(
α+βμ2

) − αρx

αϕ2+ γ λ2

)
> 0

f+ =−ϕ
( (

α+βμ2
)

sp

γμ2+ϕ2
(
α+βμ2

) + αρx

αϕ2+ γ λ2

)
> 0

(b) If −ps

(
α+βμ2

)(
αϕ2+γ λ2

)
αρ
(
γμ2+ϕ2

(
α+βμ2

)) ≤ x < (1− p) s
ρ then the economy is liquidity trapped in

the bad state only and the commitment solution is given by i− = f+ = 0,

f− = αϕ
(
α+μ2β

)
((1− p)s−ρx)(

α+βμ2
)(
αϕ2+ γ λ2p

)+αγμ2 (1− p)
> 0

i+ =
(
γ λ2+αϕ2

)(
α+βμ2

)
sp+ (βϕ2μ2+ γμ2+αϕ2

)
αρx

λ
((
α+βμ2

)(
αϕ2+ γ λ2p

)+αγμ2 (1− p)
) ≥ 0

(c) If x ≥ (1− p) s
ρ then the economy is liquidity trapped in neither state and the

commitment solution is given by f− = f+ = 0,

i− = ρx− (1− p)s

λ
≥ 0

i+ = ρx+ ps

λ
> i− ≥ 0

Proposition 6 illustrates the evolution of the economy over time. Suppose
that the economy is liquidity trapped in period t. How does it get out of a
liquidity trap? Proposition 6 (b), (c) gives the conditions required on how big
the shocks must be in period t so that in period t+1 the economy is not liquidity
trapped in at least in one state of the world.31
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6.5 The optimal delegation regime

In this section we examine the possibility of achieving the optimal precommit-
ment solution through appropriate institutional design. Here we extend the
optimal delegation framework of Section 4.1 (details are suppressed to avoid rep-
etition) to incorporate the five extensions E1 through E5 stated at the beginning
of Section 6. The Treasury’s objective function is given by

UT =−1

2
α (π −πT )

2− 1

2
β (y− yT )

2− 1

2
γ f 2 (4.22)

Note that the parameters α, β, γ are the same as in society’s welfare function
given in (4.19). Denote the optimal inflation target of the Central Bank by
π∗B and the optimal output and inflation targets of the Treasury by y∗T and π∗T
respectively. Proposition 7, below, states the results under optimal delegation.
As in Proposition 6, the magnitude of the demand shock in the previous period
gives rise to three subcases, although we are primarily interested in Case (b).
The proof is similar to that of Proposition 3, so it is omitted.

Proposition 7: (a) Under the condition of Proposition 6(a), give the Central Bank

any inflation target, π∗B, that satisfies π∗B > γ
(

μsp
βϕ2μ2+αϕ2+γμ2 + λρ(−x)

αϕ2+γ λ2

)
and give

the Treasury any output and inflation target pair (yT ,πT ) that satisfy

yT (πT )= k− α

βμ
πT (4.23)

where k = α (λ+μ)γ ρ(−x)
βμ
(
αϕ2+λ2γ

) . Then the solution under optimal delegation is the same as

under precommitment, and given by Proposition 6(a).
(b) Under the conditions of Proposition 6(b), give the Central Bank the inflation
target

π∗B =
γ
(
βμ2λ+α (λ+μ))(s (1− p)−ρx)p(

α+μ2β
)(
αϕ2+ γ λ2p

)+ γμ2α (1− p)
> 0 (4.24)

and give the Treasury any output and inflation target pair (yT ,πT ) that satisfies

yT (πT )= K− α

βμ
πT (4.25)

where K = αγ p
μβ

(λ+μ)
(
α+μ2β

)
(ε(1−p)−ρx)(

α+βμ2
)(
αϕ2+γ λ2p

)+γμ2α(1−p)
. Then the solution under optimal del-

egation is the same as under precommitment and is given by Proposition 6(b).
Furthermore, π+ = π∗B.
(c) Under the condition of Proposition 6(c), give the Central Bank the inflation target
π∗B = 0. Then, for any output and inflation target pair (yT ,πT ) for the Treasury, the
solution under optimal delegation is the same as under commitment and is given by
Proposition 6(c). Furthermore, π+ = π− = π∗B = 0.

The intuition behind the optimality of this delegation regime is as in Section
4.1 above. If the economy is not liquidity trapped in any state of the world
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we are in the standard textbook case where delegation to an independent Cen-
tral Bank achieves the precommitment solution. Proposition 7(c) deals with
this case. Our main case of interest, however, is when the economy is liquid-
ity trapped in the bad state only; this is stated in Proposition 7(b). Here, the
inflation target of the Central Bank is uniquely determined while the Treasury’s
target pair yT ,πT can be chosen from a menu of contracts that satisfy (4.25).

To explain the indeterminacy of yT and πT , note that the Treasury has two
targets, yT and πT , but just one instrument, f . Hence, the best it can hope for is
hit just one of these targets or, more generally, a linear combination of them.
Maximizing society’s expected welfare yields the optimal linear combination of
yT and πT . This is given by (4.23) in the case of Proposition 7(a) and (4.25) in
the case of Proposition 7(b). The negative slope signifies that a high output bias
is needed to compensate a low inflation target for the Treasury.

What if the inflation targets of the Treasury and the Central Bank are identi-
cal? Corollary 2 describes the results when the economy is liquidity trapped in
the bad state.

Corollary 2: Under the conditions of Proposition 6(b), if πT = π∗B, then the optimal
output target for the Treasury is

y∗T = αγ pμ2 s (1− p)−ρx(
α+βμ2

)(
αϕ2+ γ λ2p

)+ γμ2α (1− p)
> 0. (4.26)

and the Treasury attains this target in the good state i.e. y+ = y∗T .

In Figure 4.7, the downward sloping line AA′ is a graph of yT (πT ) defined in
(4.23) or (4.25). The vertical line positioned at π∗B reflects the inflation target

B ′ A′

B

D

E

A

yT (πT)
yT

C

yT
1

yT
*

πT
1 πT

2 πT  = πB
2 *

πB,πT

πB (yT)*

Figure 4.7 Output and inflation targets under the optimal and suboptimal delegation
regimes
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for the central bank given in 4.24. Ignore the downward sloping line BB′ for
the moment.

Proposition 7 then shows how the optimal delegation regime can achieve the
optimal precommitment solution in the following two cases,

1. The Treasury and the Central Bank can be given the same inflation target
Figure 4.7 shows that the optimal delegation solution is given by point C,
where πB = πT = π∗B (given in (4.24)) and yT = y∗T (given in (4.26)).

2. The Treasury and the Central Bank are given distinct inflation targets
Figure 4.7 shows one possible solution. The Central Bank is given the
uniquely determined inflation target i.e. πB = π∗B (see (4.24)). The Trea-
sury is given any output, inflation target along the line AA, for instance,
corresponding to point E i.e. (yT ,πT )= (y1

T ,π1
T

)
.

6.6 Discretion

The results under discretion when we extend the basic model to extensions E1-
E5 are similar to those stated in Proposition 2. The full set of results are given
in Appendix-B; the method of proof is identical to that of Proposition 2, and
is omitted. Denote by EUDisc, the expected welfare level under discretion; we
make use of it in Section 6.7 below.

6.7 Suboptimal delegation: Treasury follows its own agenda (yT �= y∗T )

We now consider the case where the Treasury does not adopt the optimal
output target (see discussion in Subsection 6.1.2 above); we call this regime
‘suboptimal delegation’. The output target yT now represents the Treasury’s own
agenda and it refuses to accept the optimal output target, y∗T . The objective
function of the Treasury is given in (4.22). For pedagogical simplicity, we stick
here to the more natural case where the inflation targets of the Treasury and
the Central Bank are equal i.e. πB = πT .

Let π∗B (yT ) maximize society’s expected welfare, given the output target, yT ,
of the Treasury. For the general case in Section 6 the expression for yT

(
π∗B
)

is
too unwieldy, but for the simple model presented in Section 2 it is given by

yT
(
π∗B
)= 7

4
a− 11

2
π∗B

In Figure 4.7, the line BB′ is a sketch of (the inverse of) π∗B (yT ). Any point on
the line BB′ gives the optimal inflation target for the Central Bank, π∗B (yT ), con-
ditional on the Treasury’s private, but not necessarily optimal, output target,
yT . which is steeper than the schedule yT (πT ) plotted as line AA′.

Suppose that the Treasury’s output target is given by yT = y1
T . Then, at one

possible suboptimal equilibrium πB = πT = π2
T while yT = y1

T i.e. the Treasury’s
equilibrium targets are shown by the point D. Because point D is off the line
AA, which plots the optimal menu of contracts for the Treasury, how well does
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the suboptimal delegation regime fare, relative to the optimal precommitment
solution? Simulations, below, show that the performance of the suboptimal
delegation regime is ‘near optimal’ and much better than discretion.

Denote the expected social welfare level under suboptimal delegation by
EUSD

S . The state contingent values of the policy variables in this case run into
several pages, so we confine ourselves to reporting a representative sample of
simulation results. Towards this end we define the following variables.

q= EUOpt
S /EUSD

S is the expected welfare level under the optimal solution rel-
ative to the expected welfare under suboptimal delegation. Note that 0< q ≤ 1
and q= 1 when yT = y∗T (see Proposition 7).
ω= EUDisc

S /EUSD
S is the ratio of the expected welfare under discretion relative

to that under suboptimal delegation. Note that ω > 0 because the numerator
and denominator are both negative.

Q = EUSD
S −EUDisc

S

EUOpt
S −EUDisc

S

is the ratio of the welfare loss under suboptimal delegation

relative to that under the optimal solution when each is expressed as a differ-
ence from the expected welfare level under discretion. Hence, relative to the
discretionary solution as a benchmark, this is the proportional loss to society
in moving from the optimal solution to the suboptimal delegation solution.
Note that Q= 1 for yT = y∗T (see Proposition 7).

o= yS/y∗T is the output target of society relative to the optimal output target
given to the Treasury.

t = yT/y∗T is the output target of the Treasury relative to the optimal output
target given to it.

The feasible set of parameters belongs to a ten dimensional set. We give below
simulations for a representative sample of parameters in Tables 4.1, 4.2 below.
Tables 4.4 through 4.6 in Appendix-C give further simulation results to support
our assertions. To simplify results, we focus on cases where the output targets
of the Treasury and society coincide i.e. yT = yS (and so o= t) and the inflation
targets of the Treasury and the Central Bank also coincide i.e. πT = πB.

The main results of the simulations can be summarized as follows.

Proposition 8: Even if the private agenda of the Treasury, i.e. yT , is substantially
different from the optimal output target, y∗T , the expected welfare level under the sub-
optimal delegation solution is very close to the optimal precommitment solution i.e.
q is very close to 1. Suppose that we start with the minimal institutional framework
of the discretionary regime. Then moving to the institutional regime of suboptimal
delegation recovers, for all parameter values that we have investigated, a very large
percentage of the benefit that might accrue if one could move to the optimal solution
i.e. Q is typically very close to 1.

In Table 4.1, the economy is liquidity trapped in the bad state only. Even if
the output target of the Treasury is up to 602.2 times higher than the optimal
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Table 4.1 p= 1
2 , yT = yS = s, x= 0

α ϕ λ β γ μ q ω Q o= t π∗B (yT )

10
10

10
10

1
10

1
10

10
10

1
10 0.9999 1. 007 0.9844 404. 4 0.045s

10
10

10
10

1
10

1
10

10
10

10
10 0.9936 1. 039 0.8589 6. 422 0.146s

10
10

10
10

10
10

1
10

10
10

1
10 0.9999 1. 270 0.9995 602. 6 0.178s

10
10

10
10

10
10

1
10

10
10

10
10 0.9921 1. 451 0.9828 8. 6 0.216s

1
10

10
10

1
10

1
10

10
10

1
10 0.9989 1. 067 0.9844 44. 42 0.406s

10
10

1
10

1
10

1
10

10
10

1
10 1. 0000 3. 931 1. 0000 8. 006 2. 497s

1
10

1
10

1
10

1
10

10
10

10
10 0.9999 1. 006 0.9851 2. 048 0.585s

1
10

1
10

1
10

1
10

10
10

10
10 0.9873 1. 039 0.7521 2. 84 0.371s

Table 4.2 p= 1
50 ,yT = yS = ps,x=−(1− p)s,ρ = 9

10

p α ϕ λ β γ μ ω π∗B
1

50
10
10

10
10

1
10

1
10

10
10

1
10 1. 0397 0.17445s

1
50

10
10

10
10

1
10

1
10

10
10

10
10 2. 4680 0.95859s

1
50

10
10

10
10

10
10

1
10

10
10

1
10 2. 4215 0.4849s

1
50

1
10

10
10

1
10

1
10

10
10

1
10 1. 4805 1. 6016s

output target (i.e. o = t = 602.2), q and Q are still very close to 1. Tables 4–6,
in the appendix, confirm these results for other parameter values. In Table 4.2,
below, constructed under the conditions of Proposition 7(a), the economy is
liquidity trapped in both states and there is a very high level of persistence in
the demand shocks.

From Table 4.2, the social loss in the discretionary regime is, in some cases,
twice that under suboptimal delegation.

6.8 What happens if the treasury does not have an inflation target?

Here we consider two alternative regimes. In both of these cases, the Central
Bank is given an inflation target πB, i.e., has the objective function given in
(4.10) but the Treasury is not given an inflation target. We find that these
regimes are able to achieve the precommitment solution.

6.8.1 The Treasury is an “output nutter”

If the Treasury is not given an inflation target, we call it an output nutter. Its
objective function is then given by

UT =−1

2
β (y− yT )

2− 1

2
γ f 2
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Table 4.3 Treasury is an “output nutter”
(p= 1

50 ,yT = yS = s �= y∗T ,x= 0)

p ϕ λ β γ μ q Q

1
50

10
10

1
10

1
10

10
10

1
10 .085849 −33829

1
50

10
10

1
10

1
10

10
10

1
10 0.95778 0.38282

1
50

10
10

10
10

1
10

10
10

1
10 0.20225 −3821. 0

1
50

10
10

10
10

1
10

10
10

10
10 0.95911 0.2807

6.8.2 The Treasury is a “reckless output nutter”

If the Treasury cares neither about inflation nor the costs of fiscal policy we call
it a reckless output nutter. Its objective function is then given by

UT =−1

2
(y− yT )

2

We are interested in evaluating the performance of the alternative institu-
tional regimes in which the Treasury does not care about inflation. Proposition
9, below, shows that the optimal precommitment solution can be achieved; the
proof is identical to that of Proposition 3 and, so, is omitted.

Proposition 9: Unless the economy is liquidity trapped in both states of the world,
if the Treasury can be assigned an optimal output target y∗T and the Central Bank is
assigned an optimal inflation target, π∗B, then the outcome in the “output nutter” and
the “reckless output nutter” cases is identical to the precommitment regime.

However, and unlike the suboptimal delegation regime, if the Treasury does
not adopt the optimal output target, y∗T , then the outcome can be very poor,
and much worse than the outcome under discretion. Table 4.3 gives a sample
of results for the “output nutter” case.

In this case, Q can take extreme negative values i.e. the output nutter regime
turns out to be much worse than discretion; we summarize this result in the
Proposition below.

Proposition 10: If the Treasury is not assigned the optimal output target, y∗T , then
the performance of the “output nutter” and the “reckless output nutter” regimes can be
very adverse and, possibly, much worse than the discretionary regime. In particular, if
monetary policy is delegated to an independent central bank, with an optimal inflation
target, while the Treasury retains discretion over fiscal policy, then the outcome can be
poor and much worse than had the Treasury retained discretion over both monetary
and fiscal policy.

Proposition 10 indicates the serious consequences that can arise if the Trea-
sury/government does not have the appropriate inflation or output targets even
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if it follows society’s most preferred output target (note yT = yS in Table 4.3).
This has relevance for understanding the Japanese experience in which the fis-
cal authorities, as pointed out earlier, were not delegated with the optimally
designed targets.

6.9 Summary

Proposition 7 and Corollary 2 establish that the optimal delegation regime (where
the Bank has an optimal inflation target and the Treasury has optimal output
and inflation targets) achieves the precommitment solution for all parameter
values. Proposition 8 shows that performance of the suboptimal delegation regime
(similar to the optimal delegation regime, except that the Treasury has its own
output target) is near optimal, and much better than discretion, even when the
Treasury deviates considerably from the optimal output target. Proposition 9
establishes that the output nutter and the reckless output nutter (in both cases
the Bank and Treasury are given optimal inflation and output targets, respec-
tively, but the Treasury is not given an inflation target) regimes also achieve the
precommitment solution. However, Proposition 10 shows that the latter two
regimes, unlike the suboptimal delegation regime, perform poorly, and can be
much worse than discretion, if the Treasury deviates from the optimal output
target. Thus, although giving the Treasury an inflation target as well as an out-
put target is not necessary for optimality, it is necessary to achieve robustness.
In particular, a hybrid system, where monetary policy is delegated to an inde-
pendent central bank with an inflation target, but where the Treasury retains
discretion over fiscal policy, can perform poorly and much worse than had the
Treasury retained discretion over both monetary and fiscal policy.

7 Relation to the literature

The role of fiscal policy in theoretical models on the liquidity trap has not been
adequately stressed despite this being Keynes’s (1936) original solution to the
problem. This is puzzling in light of the empirical evidence from Posen (1998),
Kuttner and Posen (2001) which suggests that fiscal policy, when used in Japan,
has been potent. The simulation exercises of Ball (2005) show that fiscal trans-
fers equal to 6.6 percent of GDP could have ended Japan’s output slump. There
have been other suggestions in the literature, without a full theoretical model,
that advocate fiscal policy in a liquidity trap. Bernanke (2002) recommends a
broad based tax cut while Gertler (2003) recommends transitory fiscal policy.
We consider fiscal policy explicitly in a Dixit and Lambertini (2003) framework
when there is the possibility of a liquidity trap.

The theoretical literature has considered aspects of our optimal delegation
regime, that achieves the precommitment solution. For instance, inflation tar-
gets have been suggested in Krugman (1998), Nishiyama (2003), and Iwamura
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et al. (2005). Other variants of monetary policy commitment have also been
considered. Benhabib, Schmitt-Grohe and Uribe (2002) consider a commitment
to switch from an interest rate rule to a money growth rate peg in a liquidity
trap. Eggertsson and Woodford (2003) propose a commitment to adjust nomi-
nal interest rates to achieve a time varying price level target. Bernanke (2002)
suggests a commitment to a buffer zone for the inflation rate. Svensson (2003)
advocates a price level target (as part of a larger set of policies). However, none
of these models allow for the possibility of strategic interaction between mon-
etary and fiscal authorities nor jointly derive the optimal set of targets and
instruments of the two policy making authorities.

Eggertsson (2006a, b) studies the liquidity trap within a new Keynesian
stochastic general equilibrium model with a government budget constraint
and explicit microfoundations. Eggertsson recommends abandonment of an
independent central bank and a return to discretionary policy by a unitary
monetary-fiscal authority. A debt financed fiscal expansion during a liquidity
trap results, via the government budget constraint, in higher expectations of
future inflation. Eggertsson shows that this solution is superior to either mon-
etary policy alone or uncoordinated monetary and fiscal policy. However, as
Eggertsson shows, even optimal discretion is inferior to the fully optimal ratio-
nal expectations solution with commitment. Moreover, abandoning delegation
of monetary policy to an independent central bank with a narrow mandate, in
favor of a return to discretion, appears to be a retrograde step.

Dixit and Lambertini (2003) and Lambertini and Rovelli (2003) consider
strategic interaction between fiscal and monetary authorities, but in the
absence of a liquidity trap. Lambertini and Rovelli (2003) show that the
equilibrium with the fiscal authority acting as leader is superior to the Nash
equilibrium. Dixit and Lambertini (2003) show that this regime can achieve
the optimal precommitment rational expectations solution.

One of the important lessons of our paper (see Figure 1.2 and Section 6)
is that an optimally derived target for one policy maker while ignoring the
incentives and constraints facing the other policy maker can lead to extremely
poor outcomes; witness the last row in Figure 1.2.

Furthermore, the optimal delegation regime achieves the optimal mix between
monetary and fiscal policy as we now explain. Theoretically, society could give
a sufficiently high inflation target to the Central Bank which in turn generates
sufficiently high inflation expectations so that the nominal interest rate never
hits its zero floor. While this policy would always avoid the liquidity trap, it is
not optimal because inflation is costly. Analogously it is not optimal to give the
Treasury too high an output target because if a liquidity trap occurs, it would
use the costly fiscal policy excessively. The optimal solution then is to have a
mix of both i.e. some inflation outside a liquidity trap and some dependence
on costly fiscal policy in a liquidity trap. The intuition is that if there were no
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liquidity trap, and the Treasury had its own agenda,32 then it would undermine
the Central Bank’s monetary commitment. However, appropriate delegation of
policy to the Treasury, far from undermining monetary commitment, gives it
an incentive to engage in an ‘appropriate’ fiscal stimulus in a liquidity trap,
where the independent Central Bank is ineffective.

8 Conclusions

In a liquidity trap, with nominal interest rates bound below by zero, an expecta-
tion of positive inflation is needed. This in turn needs a credible commitment to
a future level of positive actual inflation. The credibility problem comes about
because after the economy has escaped from the liquidity trap it is in the inter-
est of all parties to renegotiate and reduce inflation. A forward looking private
sector will anticipate this and expect low future inflation. With low expected
future inflation, the real interest rate remains positive, keeping the economy in
the liquidity trap; see for instance Krugman (1998).

The first best solution obtains when the rigidities that give rise to the liquidity
trap are removed. But removal of these distortions is usually slow and difficult
(witness the experience of Japan). In this case, macroeconomic policy can have
an important role. Furthermore, the Japanese experience suggests that issues of
strategic monetary fiscal policy interaction assume even greater importance in
a liquidity trap.

In the solution considered here, society delegates monetary policy to an oper-
ationally independent Central Bank with an inflation target. Fiscal policy is
delegated to the Treasury with inflation and output targets. Furthermore, the
Treasury acts as a leader and the Central Bank is the follower. The required
institutional arrangements are quite natural and are able to achieve the second
best solution, namely, the best rational expectations precommitment solution.
This institutional setting provides (1) the appropriate level of inflation and,
hence, inflation expectations and (2) the optimal balance between monetary
and fiscal policy. Even if the Treasury deviates considerably from the optimal
output target, we find that the performance of this solution is still ‘near opti-
mal’ and much better than the regime where the Treasury is given discretion
over monetary and fiscal policy.

On the other hand, we find that the hybrid system where monetary policy
is delegated to an independent central bank with an optimal inflation target,
but where the Treasury retains discretion over fiscal policy, can perform badly
and much worse than had the Treasury retained discretion over both fiscal
and monetary policy. This is in line with the case when there is no liquidity
trap considered by Dixit and Lambertini (2003, 1523, point 4): “Commitment
achieves the second best only if it can be extended to both monetary and fiscal
policy”.
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We have also considered a version of our model with an explicit govern-
ment budget constraint. We found that the optimal solution can be achieved
by giving appropriate inflation targets to the Central Bank and appropriate
surplus/deficit targets to the Treasury,

9 Appendix-A: proofs of the main results

Generic Equilibrium: To save space, we carry out some calculations that are rel-
evant to both Proposition 1 (Precommitment) and Proposition 2 (Discretion).

Substituting (4.4) and (4.5) into (4.6),

US =−1

2

(
f − i+πe+ ε− yS

)2− 1

2

(
f − i+ 2πe+ ε)2− f 2 (4.27)

Since f ≷ 0 and i≥ 0 the first order conditions are as follows.

∂U

∂f
= yS− 2ε− 4f − 3πe+ 2i= 0; f ≷ 0 (4.28)

∂US

∂i
= 2f − 2i+ 3πe+ 2ε− yS ≤ 0; i≥ 0 and i

∂U

∂i
= 0 (4.29)

Since f is unrestricted, the optimal f satisfies ∂U
∂f = 0, hence

f = 1

4
yS− 3

4
πe+ 1

2
i− 1

2
ε (4.30)

Recall that values in the liquidity trap are distinguished by a ‘−’ subscript and
those in the complementary case by the ‘+’ subscript. From (4.29), either i≥ 0
and ∂US

∂i = 0 or i= 0 and ∂UF
∂i < 0, hence

i+ = f+ + 3

2
πe− 1

2
yS+ a and f+ + 3

2
πe− 1

2
yS+ a ≥ 0 (4.31)

i− = 0 and f− + 3

2
πe− 1

2
yS− a< 0 (4.32)

Substituting from (4.30), these two conditions can be restated as

i+ = 3

2
πe− 1

2
yS+ a and 3πe− yS+ 2a ≥ 0 (4.33)

i− = 0 and 3πe− yS− 2a < 0 (4.34)

From (4.5), (4.30) (4.33), (4.34),

f+ = 0 (4.35)

f− = 1

4
yS− 3

4
πe+ 1

2
a (4.36)

π+ = 1

2

(
yS+πe) (4.37)

π− = 1

4
yS+ 5

4
πe− 1

2
a (liquidity trapped) (4.38)
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This completes the description of the generic equilibrium. �

Proof of Proposition 1 (Precommitment)
Since the two possible values of ε = −a and ε = a are equally probable, using
(4.27) the expected social welfare is

E [US]= 1

2

(
−1

2

(
f+ − i+ +πe+ a− yS

)2− 1

2

(
f+ − i+ + 2πe+ a

)2− f 2+
)

+ 1

2

(
−1

2

(
f− − i− +πe− a− yS

)2− 1

2

(
f− − i− + 2πe− a

)2− f 2−
)

(4.39)

From (4.5), πe = f e− ie+ 2πe, hence

πe = 1

2
(i+ + i−)− 1

2
(f+ + f−) (4.40)

Substituting (4.40) in (4.39) the expected social welfare is

E [US]=−1

4

(
1

2
(f+ − f−)− 1

2
(i+ − i−)+ a− yS

)2

− 1

4
(i− − f− + a)2− 1

2
f 2+

− 1

4

(
1

2
(i+ − i−)− 1

2
(f+ − f−)− a− yS

)2

− 1

4
(i+ − f+ − a)2− 1

2
f 2− (4.41)

We maximize E [US] subject to i+ ≥ 0 and i− ≥ 0. Formally

Max{f−,f+,i−,i+}
E [US]

subject to
i+ ≥ 0, i− ≥ 0

Solving the first order conditions simultaneously, using the condition of ratio-
nal expectations (4.40) and the equations for output and inflation in (4.4) and
(4.5), one obtains the solution for the policy variables and the macroeconomic
magnitudes reported in Proposition 1. �

Proof of Proposition 2 (Discretion: Economy is liquidity trapped only under
adverse demand conditions, ε =−a)

Since ε = −a and ε = a, each occur with probability 1
2 , the condition for

rational expectations, using (4.37) and (4.38) gives:

πe = 1

2

(
−1

2
a+ 1

4
yS+ 5

4
πe
)
+ 1

2

(
1

2

(
yS+πe))

Hence the fixed point of πe is readily found as

πe = 3yS− 2a (4.42)

(4.33), (4.34) and (4.42) give
1

2
a≤ yS < a (4.43)
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which is the necessary and sufficient condition for this case to arise.
Substituting (4.42) in (4.33)–(4.36) gives the magnitudes of the policy

instruments:

i− = 0 (4.44)

f− = 2(a− yS) > 0 (4.45)

i+ = 4yS− 2a (4.46)

f+ = 0 (4.47)

The magnitudes of output and inflation can now be found from (4.4), (4.5),
(4.42), and (4.44)–(4.47):

y− = yS− a< 0 (4.48)

π− = 4yS− 3a (4.49)

y+ = a− yS > 0 (4.50)

π+ = 2yS− a (4.51)

The expected values (where expectations are taken over the demand shock ε)
of i, f and y are given by

ie = 2yS− a

f e = a− yS > 0

ye = 0

Hence, on average macroeconomic policy ensures that there are no deviations
of output from the natural level (ye = 0). To find the state-contingent levels
of social welfare, substitute (4.45), (4.47), (4.48)–(4.51) into (4.6) then take
expectations over the demand shock to get the expected social welfare

E
[
UDisc

S

]= 12ayS− 8y2
S− 5a2 (4.52)

This completes the proof of the proposition. �

Proof of Proposition 3 (Solution under the optimal delegation regime)

Monetary authority’s reaction function
The monetary authority’s reaction function can be found by maximizing UB

in (4.10). Since i ≥ 0, the first order conditions for maximizing UB are ∂UB
∂i ≤ 0,

i≥ 0, i ∂UB
∂i = 0. Using (4.5), this gives

i
(
f − i+ 2πe−πB+ ε

)≤ 0 (4.53)

We start with the case where the economy is liquidity trapped in the the bad
state (ε =−a) only. The other cases will be considered at the end.
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The economy is in a liquidity trap (ε =−a)
In this case, at ε=−a the interest rate can go no lower than zero. Using (4.53),

f− + 2πe−πB− a< 0, and so

i− = 0 (4.54)

The economy is not in a liquidity trap (ε = a)
In this case, i≥ 0, hence (4.53) holds with equality. Solving out for i at ε = a,

gives

i+ = f+ + 2πe−πB+ a (4.55)

The state contingent reaction function of the monetary authority is given by
(4.54) and (4.55).

Fiscal authority’s reaction function
The Treasury now chooses its state contingent fiscal policy f to maximize the
objective function (4.11) after observing πe and ε and knowing that the state
contingent reaction function of the monetary authority is given by (4.54) and
(4.55).

Case-I: Liquidity trap (ε =−a)
In this case, the subsequent monetary policy is i− = 0, hence, using (4.4), (4.5),
(4.11) and πT = πB, the government maximizes:

U−T =−
1

2

(
f− +πe− a− yT

)2− 1

2

(
f− + 2πe− a−πB

)2− f 2− (4.56)

Maximizing U−T with respect to f− gives

f− = 1

2
a+ 1

4
yT + 1

4
πB− 3

4
πe (4.57)

Case-II: No liquidity trap (ε = a)
The subsequent monetary policy is given by (4.55), hence, using (4.4), (4.5),
(4.11) and πT = πB, the government maximizes

U+T =−
1

2

(
πB−πe− yT

)2− f 2+ (4.58)

Maximizing U+T with respect to f+ gives

f+ = 0 (4.59)

The state contingent reaction function of the fiscal authority is given by (4.57)
and (4.59) respectively.



102 Ali al-Nowaihi and Sanjit Dhami

Substituting the state contingent monetary and fiscal policy reaction func-
tions in (4.4) and (4.5) one obtains

y− =−1

2
a+ 1

4
yT + 1

4
πB+ 1

4
πe (4.60)

π− =−1

2
a+ 1

4
yT + 1

4
πB+ 5

4
πe (4.61)

y+ = πB−πe (4.62)

π+ = πB (4.63)

Calculation of expected inflation
Since the two states of the world are equally probable, πe is simply a weighted
average of inflation in (4.61) and (4.63) respectively

πe = 1

3
yT − 2

3
a+ 5

3
πB (4.64)

Substituting πe in (4.55), (4.57), (4.60)–(4.62), one obtains

f− = a−πB (4.65)

y− =−2

3
a+ 1

3
yT + 2

3
πB (4.66)

π− =−4

3
a+ 2

3
yT + 7

3
πB (4.67)

i+ = 2

3
yT − 1

3
a+ 7

3
πB (4.68)

y+ = 2

3
a− 1

3
yT − 2

3
πB (4.69)

Calculation of the optimal inflation target
Substituting (4.59), (4.63), (4.65), (4.66) (4.67), (4.69) in (4.11) the expected
social welfare can be simplified and written as:

E
[
USD

S

]
= 3aπB+ 2

3
ayT − 7

3
π2

B−πByT − 7

6
a2− 1

6
y2

T −
1

2
y2

S (4.70)

Maximizing E
[
USD

S

]
in (4.70) with respect to πB and yT gives the following

optimal inflation and output targets

π∗B =
3

5
a (4.71)

y∗T =
1

5
a (4.72)

Substituting (4.71) and (4.72) in (4.11) gives the final expression for expected
social welfare in the Stackelberg delegation case

E
[
USD

S

]
=−1

5
a2− 1

2
y2

S (4.73)
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Comparing with Proposition 1, we see that the inflation and output targets
achieve the optimal solution, with the economy liquidity trapped in the bad
state only. Hence, the two other cases, when the economy is never liquidity
trapped and when the economy is liquidity trapped in both states, need not be
considered; thus the proof is complete. �

Proof of Proposition 4: Substitute from the behavioral equations (4.4) and
(4.5) into society’s social welfare function (4.6) to get US in terms of the policy
instruments f and i and inflation expectation, πe. Rewrite in terms of f± and i±
according to subsection 2.3 and using (4.8) to get EUS. Impose the government
budget constraint (4.12). Maximize with respect to f , i+, i− taking account of
the non-negativity constraints i+ ≥ 0, i− ≥ 0. This yields Proposition 4. �

Proof of Proposition 5: Set the Treasury the fiscal targets f−T = 1
4 a and f+T =− 1

4 a.
Then maximizing the Treasury’s objective functions, (4.14) and (4.13), clearly
gives f− = 1

4 a and f+ =− 1
4 a. Give the Central Bank the inflation targets π−B = 1

4 a

and B+B = 3
4 a. Then, clearly, πe = 1

2 a. Using these, and (4.5), gives π− = 1
4 a− i−

and π+ = 7
4 a− i+. Substituting from these into the Central Banks’s objective

functions, (4.16) and (4.15), gives U−B =− 1
2 (i−)

2 and U+B =− 1
2 (i+ − a)2. These are

clearly maximized at i− = 0 and i+ = a. Finally, use (4.4) and (4.5) to complete
the proof. �

9.1 Appendix B: the discretionary regime in the general case

Proposition 11: (a) Let σ = signum
(
αϕ2− γ λμ). If

σx<− σ
αρ

(
βλμyS+

(
αϕ2−μλγ )(α+βμ2

)
sp

γμ2+ϕ2
(
α+βμ2

) )

then the economy is liquidity trapped in both states and the solution under discretion
is given by i− = i+ = 0

f− = ϕ
( (
α+βμ2

)
s (1− p)

γμ2+ϕ2
(
α+βμ2

) − αρx+βλμyS

αϕ2− γ λμ

)
> 0

f+ = ϕ
(
−

(
α+βμ2

)
sp

γμ2+ϕ2
(
α+βμ2

) − αρx+βλμyS

αϕ2−μλγ

)
> 0

(b) Let σ = signum
((
γ λμp−αϕ2

)(
α+βμ2

)−αγμ2 (1− p)
)
. If

− σ
αρ
(αsp+βλμyS−αs) < σx≤− σ

αρ

(
βλμyS+

(
αϕ2− γ λμ)(α+βμ2

)
sp

γμ2+ϕ2
(
α+βμ2

) )
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Table 4.4 p= 1
50 ,yT = yS = s,x= 0

α ϕ λ β γ μ q ω Q o= t π∗B× 102

10
10

10
10

1
10

1
10

10
10

1
10 1. 0000 1. 000 0.9483 5158. 2 0.037s

10
10

10
10

1
10

1
10

10
10

10
10 0.9992 1. 070 0.9882 106. 13 0.095s

10
10

10
10

10
10

1
10

10
10

1
10 1. 0000 1. 001 0.9842 5259. 3 2. 073s

10
10

10
10

10
10

1
10

10
10

10
10 0.9992 1. 058 0.9858 107. 24 1. 863s

1
10

10
10

1
10

1
10

10
10

1
10 0.9998 1. 003 0.9576 566. 34 3. 369s

10
10

1
10

1
10

1
10

10
10

1
10 1. 0000 1. 034 1.0000 102. 09 1.959s

1
10

1
10

1
10

1
10

10
10

10
10 1. 0000 1. 887 1.0000 50. 122 2. 392s

1
10

1
10

1
10

1
10

10
10

10
10 0.9984 1. 902 0.9983 60. 224 1. 825s

then the economy is liquidity trapped in the bad state only and the solution under
discretion is given by i− = f+ = 0

f− = ϕ
(
α+βμ2

)
βλμyS+

(
α+βμ2

)
αρx−αs

(
α+μ2β

)
(1− p)(

αμ+λ(α+βμ2
))
γμp−α (γμ2+ϕ2

(
α+βμ2

)) > 0

i+ = −(αρx+βλμyS)
(
γμ2+ϕ2

(
α+βμ2

))+ (α+μ2β
)(
γ λμ−αϕ2

)
sp

λ
((
γ λμp−αϕ2

)(
α+βμ2

)− γμ2α (1− p)
) ≥ 0.

(c) If x≥ αs(1−p)−λβμyS
αρ then the economy is liquidity trapped in neither state and the

solution under discretion is given by f− = f+ = 0,

i− = αρx+αsp+βλμyS−αs

αλ
≥ 0

i+ = αρx+αsp+βλμyS

αλ
> i− ≥ 0

9.2 Appendix C: further simulation results

Tables 4.4, 4.5, 4.6 report the most interesting case: the economy is liquidity
trapped in the bad state only.

Table 4.4 below confirms results similar to those in Table 4.1 when the
probability of falling into the liquidity trap is very remote i.e. p= 1

50 .
In Table 4.4, even if the output target of the Treasury, yT , is 5158.2 times

that of the optimal output target, y∗T , results R1 and R2 above still hold. Tables
4.5 and 4.6 below confirm the two main results, R1 and R2, for much smaller
output targets of the Treasury yT = yS = ps when the probability of falling into
the liquidity trap takes a high and a low value respectively.
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Table 4.5 p= 1
2 ,yT = yS = ps,x= 0

α ϕ λ β γ μ q ω Q o= t π∗B
10
10

10
10

1
10

1
10

10
10

1
10 1. 0000 1. 01 0.9969 202. 2 0.01s

10
10

10
10

1
10

1
10

10
10

10
10 0.9982 1. 18 0.9904 3. 211 0.16s

10
10

10
10

10
10

1
10

10
10

1
10 0.9999 1. 48 0.9999 301. 3 0.18s

10
10

10
10

10
10

1
10

10
10

10
10 0.9973 2. 48 0.9982 4. 3 0.23s

1
10

10
10

1
10

1
10

10
10

1
10 0.9996 1. 14 0.9971 22. 21 0.43s

10
10

1
10

1
10

1
10

10
10

1
10 1. 0000 3. 98 1. 0000 4. 003 2. 50s

1
10

10
10

1
10

1
10

10
10

10
10 0.9985 1. 17 0.9913 1. 42 0.41s

Table 4.6 p= 1
50 ,yT = yS = ps,x= 0

α ϕ λ β γ μ q ω Q o= t π∗B× 102

10
10

10
10

1
10

1
10

10
10

1
10 1. 0 1. 001 1. 0010 11. 33 0.3875s

10
10

10
10

1
10

1
10

10
10

10
10 1. 0 1. 009 0.9999 2. 123 1. 045s

10
10

10
10

10
10

1
10

10
10

1
10 1. 0 1. 024 1. 0000 105. 19 2.093s

10
10

10
10

10
10

1
10

10
10

10
10 1. 0 1. 035 1. 0000 2. 145 1. 957s

1
10

10
10

1
10

1
10

10
10

1
10 1. 0 1. 006 0.9999 11. 327 3. 546s

10
10

1
10

1
10

1
10

10
10

1
10 1. 0 1. 041 1. 0000 2. 042 1.960s

1
10

10
10

1
10

1
10

10
10

10
10 1. 0 1. 008 0.9999 1. 205 1. 992s

Notes

1. Average inflation rates in successive decades from the 1950’s on to the current decade
show a declining trend; see table 1 in Svensson (2003).

2. High unemployment is an obvious fallout of a liquidity trap. An increase in the real
value of private debt has further adverse consequences particularly for the financial
sector. An increase in the real public debt creates a difficult problem for the govern-
ment to increase taxes to balance its books on the one hand but risk getting mired
deeper into a recession on the other.

3. The real interest rate is given by r = i− πe where i is the nominal interest rate and
πe is expected inflation. In a liquidity trap, i= 0 and typically πe < 0, hence r > 0. To
expand economic activity, the government needs to lower r; one possible solution is
to generate positive inflationary expectations.

4. Variants of the devaluation approach can be found in McCallum (2000) and Svensson
(2003). There are several potential problems with the devaluation option. First, cali-
brated models show that the magnitude of the devaluation required to get out of the
liquidity trap might be too high. Second, using the uncovered interest rate parity con-
dition when the domestic interest rate is zero, the expected appreciation of the home
currency is fully locked-in by the foreign interest rate. Third, current devaluation will
generate expectations of future appreciation of currency when the economy moves
out of the liquidity trap, generating counter flows that frustrate attempts to devalue.
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Fourth, devaluations may bring about competitive devaluations or retaliations in the
form of other barriers to trade.

5. In a liquidity trap, zero nominal interest rates make bonds and money perfect sub-
stitutes. Hence, it might be difficult to engineer a price level increase. Furthermore,
increases in money supply, suggested, for instance, in Clouse et al. (2003) and in
Orphanides and Wieland (2000), for a long enough period that exceeds the duration
of the liquidity trap, creates problems of credibility. While short term interest rates
might be zero, long term interest rates might be strictly positive (this has been true
of Japan during its deflationary experience). Hence, several authors such as Bernanke
(2002) and Auerbach and Obstfeld (2005) have suggested open market operations in
long term bonds. However, moving the long run yield curve on securities is con-
founded by the presence of the risk premium term whose behavior in a liquidity
trap is not well known. A carry tax on money, suggested by Buiter and Panigirtzoglu
(2003), works in theory but substantial practical problems of implementation are
likely.

6. Central bank independence has other benefits. For example, it shields monetary
policy from political interference and allows the delegation of policy to the most
competent experts etc.

7. There are clearly other relevant issues in the Japanese experience such as the
ineffectiveness of monetary policy that we do not touch on here; see Blinder (2000).

8. Examples are Krugman (1998), Eggerston and Woodford (2003), Nishiyama (2003),
Clouse et al. (2003), Buiter- Panigirtzoglou (2003), and Auerbach and Obstfeld (2005).
Ball (2005) considers fiscal policy alone.

9. Examples include (1) monetary and fiscal policy in Benhabib, Schmitt-Grohe and
Uribe (2002), Iwamura et al. (2005) and (2) monetary and exchange rate policy in
Orphanides and Wieland (2000), McCallum (2000) and Svensson (2003). Bernanke
(2002) considers both monetary and fiscal policy but there is no theoretical analysis.

10. In the first group are Krugman (1998), Eggertsson and Woodford (2003), Orphanides
and Wieland (2000), McCallum (2000), and Svensson (2003). In the second group are
Benhabib, Schmitt-Grohe and Uribe (2002), Nishiyama (2003), Clouse et al. (2003),
Buiter-Panigirtzoglou (2003), and Auerbach and Obstfeld (2005).

11. A dental analogy might be appropriate here. Tooth decay can be prevented by extract-
ing all the child’s teeth. But, normally, the optimal policy is not to extract; tooth
decay then occurs with some probability.

12. In the first group are Krugman (1998), Eggertsson and Woodford (2003), Benhabib,
Schmitt-Grohe and Uribe (2002), Shin-Ichi (2003), Clouse et al. (2003), and Buiter
and Panigirtzoglou (2003). In the second group are papers by Ball (2005), and Auer-
bach and Obstfeld (2005). Finally there are papers that touch on both ex-ante and
ex-post issues, for instance, Orphanides and Wieland (2000), McCallum (2000),
Bernanke (2002), and Svensson (2003).

13. By optimality or near optimality we mean regimes that help us to attain or get very
close to the optimal rational expectations (or pre-commitment) solution.

14. See, for example, Romer (2006, chapter 10) and Walsh (2003, chapter 8).
15. To be more precise, f is the stabilization component of fiscal policy (which varies over

the business cycle). Total fiscal policy is then F= f0+ f , where f0 is fixed and chosen so
that Fe = f0+ f e = 0, so that the government budget constraint holds on average. This
is discussed further in section 5, below.

16. In principal these alternative modes of finance need not be equivalent. However, in
the context of a liquidity trap, Ball (2005) shows that there are no long run differences
arising from these alternative modes of finance.
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17. The following formulation might appear even more plausible

AD : yt = ft−
(
it−πe

t+1

)+ εt

AS : yt = π t−πe
t

where πe
t = Et−1π t and πe

t+1 = Etπ t+1. However, in our model, the private sector
has to make its decision before the realization of the demand shock εt. Hence, in
the aggregate demand curve, it has to forecast πe

t+1 at time t − 1. But Et−1π
e
t+1 =

Et−1
(
Etπ t+1

) = Et−1
(
π t+1

) = Et−1 (π t) = πe
t . While this is true in our model, it is not

true more generally.
18. The modern literature on the liquidity trap stresses demand shocks as major contribu-

tory factors. We could also consider supply shocks. The main difference is as follows.
A sufficiently negative demand shock will push the economy into a liquidity trap. On
the other hand, a sufficiently positive supply shock will also create a liquidity trap.
In either case, the real interest rate fails to drop sufficiently to match demand with
supply. Hence our framework can be easily extended to incorporate supply, as well as
demand, shocks.

19. However, our model has the following differences from Dixit-Lambertini. (1) We nor-
malize the natural rate of output to zero, hence, the additive shock ε (in (4.1) or in
(4.4)) can also be interpreted as a shock to the natural rate of output. (2) Our model
has the New Keynesian feature that expected inflation, πe, also affects actual infla-
tion, π . (3) Our stochastic structure allows persistence (see section 6 below). While
there is no persistence in Dixit-Lambertini, they allow all parameters to be stochastic,
hence, considering the possibility of non-additive shocks. (4) In our model a fiscal
impulse acts on the demand side, creating greater output and inflation. However,
in Dixit-Lambertini fiscal policy works on the supply side and takes the form of a
subsidy to imperfectly competitive firms that increases output but reduces prices.

20. Most dynamic structural models used in the analysis of a liquidity trap are forward
looking New Keynesian models. Gertler (2003), Mankiw (2001) note dissatisfaction
with this model in terms of its inability to explain persistence in the data. Recent
work, for instance, Ruud and Whelan (2006), casts doubt even on the hybrid variant
proposed by Gali and Gertler (1999). Of course, similar criticisms apply to the version
of our model microfounded along the lines of Dixit and Lambertini (2003). Thus, all
current macroeconomic models lack satisfactory microfoundations.

21. The microfoundations for this in Dixit and Lambertini (2000, 2003) rest on the pres-
ence of monopolistic competition. Monopoly power in the product market reduces
output below the efficient level, hence, giving policy makers an incentive to raise
output. There are also a large number of other well known reasons for (4.7) but the
ultimate cause, argue Alesina and Tabellini (1987), is the absence of non-distortionary
taxes. For if they were available then other market failures could be corrected.

22. Fiscal policy is typically more cumbersome to alter, on account of the cost of changing
it (balanced budget requirements, lobby groups etc.). Indeed the ‘monetary policy
committee’ in the UK or the Fed in the USA meet on a regular basis to make decisions
on the interest rate while changes to the tax rates are much less frequent.

23. Strictly speaking, for our qualitative results to hold, we only require that fiscal policy
be relatively more expensive than the (possibly strictly positive) cost of using mone-
tary policy. Normalizing the cost of using monetary policy to zero, however, ensures
greater tractability and transparency of the results.

24. Strictly speaking, this is a second best solution. The first best obtains if the imperfec-
tions responsible for the liquidity trap are removed. It is variously referred to as the
‘precommitment solution’, the ‘optimal rational expectations solution’, the ‘second
best solution’ or simply the ‘optimal solution’.
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25. Recall that f refers only to the stabilization component of fiscal policy, hence, f+ = 0
is consistent with a strictly positive level of government expenditure on other items
such as redistribution etc.

26. We conjecture that the combination of rigid wages-prices and a flexible nominal
interest rate has the effect that the real interest rate, i − πe, overshoots so as to
equilibrate the economy.

27. The full set of results under discretion is given in Appendix-B.
28. As stressed by Eggertsson and Woodford (2003), failure to meet the inflation target

in the liquidity trap does not signify failure of policy. A similar remark can be made
with respect to the output target.

29. In more standard but less convenient notation, xt = ρxt−1 + zt, where zt = −(1− p)s
with probability p and zt = ps with probability 1− p.

30. This is the standard assumption in the time-inconsistency literature.
31. This might not be a bad descriptor of the actual occurrence of a liquidity trap given

the deep reservations expressed about the efficacy of most macroeconomic policies;
see Blinder (2000) for an excellent survey.

32. In Dixit and Lambertini (2003) the Treasury never has its own agenda and fully
internalizes society’s social welfare function.
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Analyzing Bank Efficiency: Are
“Too-Big-to-Fail” Banks Efficient?
Hulusi Inanoglu, Michael Jacobs, Jr., Junrong Liu and Robin Sickles

1 Introduction

The recent financial crisis has given rise to a re-examination by regulators and
academics of the conventional wisdom regarding the implications of the spec-
tacular growth of the financial sector of the economy. In the pre-crisis era,
there was a widespread common wisdom that “bigger is better.” The argu-
ments underpinning this view ranged from potential economies of scale and
scope, to a better competitive stance at the international level. However, in
the post-crisis world the common wisdom has been altered somewhat as large
banks have come to be viewed as problematic for policy makers and regulators,
for various reasons. One reason often given is that economic agents who are
insured have the incentive to take on too much ex ante risk; also known as the
moral hazard problem. Second, there is the “too-big-to-fail” problem: the fear
that large and interconnected financial institutions may become a source of
systemic risk if allowed to go out of business, especially in a “disorderly” fash-
ion (Bernanke (2009)). Support for or against large banking institutions turns
on the central issue of whether or not efficiencies of scale and scope are eco-
nomically and statistically significant and are positively associated with bank
size. If they are positively associated with bank size then the expected benefits
of the cost savings generated by increased efficiencies passed on to consumers
in terms of better services or reduced banking service fees are traded off with
the expected costs implicit in the moral hazard and systemic risk arguments. In
this paper we attempt to shed some light on this question through an empirical
analysis that investigates the relationship between measures of the efficiency of
a bank’s operation on the one hand, and the size of the institution on the
other.

More recently, regulatory features added by the Dodd–Frank Act (DFA)1 intro-
duced a variety of new policy levers, including capital surcharges, resolution
plan requirements, consideration of systemic risk effects in mergers which
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specifically increased the emphasis on understanding of economies of scale and
scope in large financial firms. That is, DFA requires the review of whether a
proposed merger would lead to greater concentrated risks to financial stability.
Regulators have encouraged researchers to better understand the social utility
of the largest, most complex financial firms (Tarullo (2011)).

Some elaboration on what we mean by “too-big-to-fail” (TBTF) banks is also
in order. During times of financial crisis banking supervisors have strong incen-
tives to forestall the failure of large and highly interconnected financial firms
due to the damage that such an event could pose to both the financial sector
as well as the real economy. Unfortunately, as market participants anticipate
that a particular firm may be protected in this way, this has the perverse yet
highly rational effect of undermining market discipline and encouraging exces-
sive risk-taking by the firm. Furthermore, it establishes economically unjustified
incentives for a bank to become larger in order to reap this benefit. This results
in a competitive advantage for such a large bank over its smaller competitors
who may be perceived as lacking this implicit government safety net. Public
sector bailouts are costly and politically unpopular and this issue has emerged
as an enormous problem in the wake of the recent crisis. Therefore, as a tactical
matter the state of the financial system has left supervisors with little choice but
to use government resources to avoid failures of major financial institutions and
accompanying destabilization of the financial sector. However, on a prospec-
tive basis supervisors have been directed to better address this issue through
improved monitoring of systemically critical firms, with a view to preventing
excessive risk-taking, and by strengthening the resilience of the financial system
in order to minimize the consequences of a large firm being unwound.

A series of reforms have been proposed to address these problems. They
include increasing capital requirements and limits upon leverage (e.g., Basel III),
capping the size of banks, limiting the scope of banking activities, subjecting
bank mergers and acquisitions to additional scrutiny, prescribing that banks
draft “living wills” to plan their orderly unwinding, and requiring the federal
government to proactively break up selected banks. These measures are not
without their detractors, however. Feldman (2010), for example, casts doubt
on the reforms focusing on size2 by arguing even if such reforms could address
TBTF, reforms that take aim at bank size directly might be bad policy because
their costs could exceed their benefits. Moreover, the size of a bank may be
positively related to other benefits. Large banks could offer cost advantages
that would ultimately benefit society by taking advantage of scale economies
in their service production processes. Wheelock and Wilson (2012), for exam-
ple, concluded that most U.S. banks faced increasing returns to scale using their
highly parameterized local linear estimator of banking services.

However, there may be problems with this perceived wisdom that large banks
are large because of such scale economies for at least three reasons. First, some
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of the econometric work on economies of scale for banking, as in Hughes and
Mester (1998), Hughes, Mester and Moon (2001), etc. find such benefits at all
sizes of banks. Hughes and Mester (2008) summarize the extensive research
findings in this regard. Second, we may simply not yet know very much about
the presence of scale economies for today’s unprecedentedly large banks. DeY-
oung (2010) emphasizes this point by arguing that the unique nature of today’s
large banks makes it difficult to apply statistical techniques to historical data
to divine the extent of scale economies. It is clear that the financial sector
has grown enormously in recent years. The question is “Why?” Banks indeed
contribute to economic output through intermediation and have performed
this economically useful function in many countries for hundreds of years, but
value-added intermediation does not necessarily justify a large banking sector
or banks whose current size is enormous by any historical standards. There are
reasons to think that this sector may have become too big in the sense that
too many of society’s resources are allocated to it and may continue to con-
tribute to a distortion in rents paid to those employed in the financial sector.
Perceptions by creditors of banks that the government will protect them can
lead the sector to grow inefficiently large as TBTF guarantees attract excessive
funding to banks. These creditors understand that their bank investments are
implicitly subsidized by the assurance of government bailouts should the bank
begin to fail. For example, Tracey and Davies (2012) argues that there exists an
“implicit funding subsidy” for TBTF banks.3 Another point about the limits of
our knowledge concerning the scale economies of large banks is that analysts
face real challenges in measuring the “output” produced by banks. Since the
banking sector provides loans, deposit and liquidity services it is a challenge
to ensure that cross-firm comparisons are made controlling for these various
service provisions, when economies of scale for the multi-output banking ser-
vices technology is analyzed. Still another point is that the debate about TBTF
and scale economies often presents the two in contradiction, when in fact they
may complement one another. Some activities of a bank such may rely heavily
on automation and thus may benefit from scale economies that enhance that
bank’s TBTF status.4 The average cost of the large investments in these auto-
mated systems could be driven down by an increase in the volume of goods
and services produced. Such automation-dependent products and services can
generate a substantial portion portion of banking. Hence, greater scale activity
could come with higher TBTF cost. The presence of economies of scale, from
this perspective, suggests that policymakers sharpen their focus on fixing TBTF,
(see Feldman (2010)).

The question of bank efficiency amongst the leading banking organizations
in the U.S. is important as the banks must too comply with the stress test
and capital plan requirements outlined by the Federal Reserve’s Comprehensive
Capital Analysis and Review (CCAR).5 For estimating the impact of given stress
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testing scenarios, large banks have been relying on statistical models in order
to quantify potential losses. The problem with this paradigm is that although it
captures the social cost element it fails to capture the potential social benefits of
bank scale and scope economies, as banks generally cannot incorporate these
potential gains into their risk models. Our research contributes to a balanced
analysis of this by considering efficiency measures.

Our paper analyzes the provision of banking services – the multi-
output/multi-input technology that is utilized by banks in their role in the
provision of banking services, including both balance-sheet financial interme-
diation businesses and off-balance-sheet activities. We focus on large banks, in
particular the largest 50 financial institutions in the U.S. banking industry. The
combined total assets of the largest 50 U.S. banks is close to 80 percent of the
total assets of the U.S. banking system.6 We examine the extent to which scale
efficiencies exist in this subset of banks in part to address the issue of whether
or not there are economic justifications for the notion that these banks may
be “too-big-to-fail.” Our empirical study is based on a newly developed dataset
based on Call Reports from the FDIC for the period 1994–2013. We contribute
to the post-financial crisis “too-big-to-fail” debate concerning whether or not
governments should bail out large institutions under any circumstances, risk-
ing moral hazard, competitive imbalances and systemic risk. Restrictions on
the size and scope of banks may mitigate these problems, but may do so at
the cost of reducing banks’ scale efficiencies and international competitiveness.
Our study also utilizes a suite of econometric models and assesses the empirical
results by looking at consensus among the findings from our various econo-
metric treatments and models in order to provide a robust set of inferences on
large scale banking performance and the extent to which scale economies have
been exhausted by these large financial institutions. The analyses point to a
number of conclusions. First, despite rapid growth over the last 20 years, the
largest surviving banks in the U.S. have decreased in their level of efficiency.
Second, we find no measurable returns to scale across our host of models and
econometric treatments and in fact find negative correlation between bank size
and the efficiency with which the banks take advantage of their scale of oper-
ations. In addition to the broad policy implications of our analysis, our paper
also provides an array of econometric techniques, findings from which can be
combined to provide a set of robust consensus-based conclusions that can be
a valuable analytical tool for supervisors and others involved in the regulatory
oversight of financial institutions.

The preceding section has provided a short discussion addressing previous
studies related to our work. Section 2 describes the econometric models that will
be estimated. In Section 3 we provide a description of our data set. A discussion
of our empirical findings is presented in Section 4. Section 5 concludes.
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2 Econometric models

In this section, we review our estimating framework. We will estimate second-
order approximations in logs (translog) to a multi-output/multi-input distance
function (see Caves, Christensen and Diewert (1982), Coelli and Perelman
(1996)). The models we consider are linear in parameters. As our banking data
constitute a balanced panel of banks and we are interested in a set of robust
and consistent inferences from a wide variety of modeling approaches, we con-
sider a number of different panel data estimators and assess the comparability
of inferences from them. Our many treatments for various forms of unobserved
heterogeneity can be motivated with the following classical model for a single
output banking technology estimated with panel data assuming unobserved
bank effects:

yit = xitβ+ηi+ uit i= 1, . . . ,N; t= 1, . . . ,T (5.1)

Here yit is the response variable (e.g., some measure of bank output), ηi repre-
sents a bank specific Fixed Effect, xit is a vector of exogenous variables and uit is
the error term.

In the classical Fixed Effects (FE) model for panel data, individual unobserved
effects ηi are assumed to be correlated with the regressors xit, while in the clas-
sical Random Effects (RE) model individual unobserved effects ηi are assumed
to be uncorrelated with the regressors xit. We also consider the Hausman and
Taylor (1981) panel estimator. The H-T estimator distinguishes between regres-
sors that are uncorrelated with the individual effects (x1

it) and regressors that are
correlated with the effects (x2

it). As we have no time-invariant regressors in our
study, the model becomes:

yit = x1
itβ1+ x2

itβ2+ηi+ uit i= 1, . . . ,N; t= 1, . . . ,T (5.2)

We may interpret (5.1) or (5.2) as log-linear regressions, transformed from a
Cobb-Douglas or translog function that is linear in parameters. In what fol-
lows, we do not distinguish between the x’s that are, or are not, allowed to
be correlated with the effects in order to reduce notational complexity. We do,
however, make clear what these variables are in the empirical section. In order
to move from a single to the multi-output technology considered in our empiri-
cal work we specify the multi-output distance function in the following way. Let
the m outputs be Yit = exp(yit) and the n inputs Xis = exp(xis). Then express the
m-output, n-input deterministic distance function DO(Y ,X) as a Young index,
described in Balk (2008):

DO(Y ,X)=

m∏
j=1

Y
γj
it

n∏
k=1

Xδkit

≤ 1 (5.3)
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The output distance function DO(Y ,X) is non-decreasing, homogeneous, and
convex in Y and non-increasing and quasi-convex in X. After taking logs and
rearranging terms we have:

−y1,it = ηi+
m∑

j=2

γjy
∗
jit+

n∑
k=1

δkxkit+ uit, i= 1, . . . ,N; t= 1, . . . ,T (5.4)

where y∗jit,j=2,...,m = ln (Yjit/Y1it). After redefining a few variables, the distance
function can be written as

y= Xβ+Zη+ u (5.5)

Here y ∈ RNT stacks the response variables across banks and time, the matrix
Z = IN ⊗ iT ∈ RNT×N distributes the bank specific fixed effects (or the “incidence
matrix” that identifies N distinct entities in a sample) that are stacked in the
vector η = (η1,η2, . . . ,ηN ) ∈ RN , while X = [xNT×n,y∗NT×(m−1)] contains both exoge-
nous and endogenous variables and U= (uit)T ∈RNT is the stacked vector of error
terms uit.

However, the Cobb-Douglas specification of the distance function (Klein
1953) has been criticized for its assumption of separability of outputs and
inputs and for incorrect curvature as the production possibility frontier is con-
vex instead of concave. On the other hand, as pointed out by Coelli (2000), the
Cobb-Douglas remains a reasonable and parsimonious first-order local approx-
imation to the true function.7 We also consider the translog output distance
function, where the second-order terms allow for greater flexibility, proper
local curvature, and lift the assumed separability of outputs and inputs. If the
translog technology is applied, the distance function takes the form:

−y1it = ηi+
m∑

j=2
γjy∗jit+ 1

2

m∑
j=2

m∑
l=2
γjly∗jity∗lit+

n∑
k=1
δkxkit+ 1

2

n∑
k=1

n∑
p=1
δkpxkitxpit

+
m∑

j=2

n∑
k=1
θjky∗jitxkit+ uit, i= 1, . . . ,N; t= 1, . . . ,T

(5.6)

This can be written in the form of Equation (5.1). Here X contains the cross-
product terms as well as the own n input m-1 normalized output terms.
X= [xNT×n,y∗NT×(m−1),xxNT×(n×(n+1)/2),y∗y∗NT×((m−1)×m/2),xy∗NT×(m−1)×n)], the latter of
which appear in their normalized form owing to the homogeneity of the output
distance function.

In the translog specification, our focus should be on the following key deriva-
tives, which correspond to the input and output elasticities. The derivatives are
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expressed as follows in Equations (5.7) and (5.8).

sp = δp+
n∑

k=1

δkpxk+
m∑

j=2

θpjy
∗
j , p= 1,2, . . . ,n (5.7)

rj = γj+
m∑

l=2

γjly
∗
j +

n∑
k=1

θkjxk, j= 2, . . . ,m (5.8)

2.1 Frontier estimation methodology

In this subsection, we describe our estimation methodology utilizing the
semiparametric efficiency estimators summarized in Sickles (2005). We utilize
Equation (5.2) and consider cases in which u and (η,x1,x2) are independent but
there is a level of dependency among the effects and the regressors. Equation
(5.1) can be reinterpreted as a stochastic panel production frontier model intro-
duced by Pitt and Lee (1981) and Schmidt and Sickles (1984). Although we may
be on somewhat solid footing by invoking a central limit argument to justify
a Gaussian assumption on the disturbance term uit, we may be far less justified
in making specific parametric assumptions concerning the distribution of the
ηi term, which in the stochastic frontier efficiency literature is interpreted as a
normalized radial shortfall in a bank’s performance relative to the best-practice
performance it could feasibly attain. While we can be confident in restricting
the class of distributions of the inefficiency term to those that are one-sided (see
the inequality in Equation (5.3)), the heterogeneity terms are intrinsically latent
and unobservable components and we encounter problems regarding identifi-
ability of these parameters (Ritter and Simar (1997)). The additional model we
use in our analyses is a semiparametric efficient (SPE) estimator and is well-
suited to provide us with robust point estimates and minimum standard errors
when we are unwilling to use parametric assumptions for the distribution of
the heterogeneity terms and their dependency with either all or some of the
regressors. The general approaches to deriving such semiparametric efficient
estimators is discussed at length in Newey (1990) and Pagan and Ullah (1999),
as well as in a series of papers by Park, Sickles and Simar (1998, 2003, 2007).
Interested readers can find the derivations for the SPE panel stochastic fron-
tier estimators we utilize in our empirical work below in the cited papers. The
framework for deriving all of the estimators is somewhat straightforward and
has much in common across the different stochastic assumptions on which the
different SPE estimators are based.

We utilize a particular SPE estimator in our analyses. This estimator is detailed
in Park et al. (1998). We refer to this as the PSS1 estimator and it is an extension
of the estimator introduced in Park and Simar (1994), which assumed the effects
to be independent of all of the regressors. We assume in the specification (5.2)
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that the set of regressors x1,it is conditionally independent of the individual
unobserved random effects ηi given the set of correlated regressors x2,it:

f (η,x1,x2)= h(η,x2)g(x1|x2) (5.9)

Furthermore, it is assumed that ηi depends on x2,it only through its long-run
movement:

h(ηi, x2,it)= hM(ηi, x̄2,it)p(x2,it) (5.10)

Here hM(ηi, x̄2,it) is a nonparametric multivariate density specified using kernel
smoothers. We will discuss our strategy for selection of the variables that are
portioned into x1,it and x2,it.

In addition to the PSS1 SPE estimator, we consider an alternative approach
that allows for time-varying heterogeneity, interpreted in the stochastic frontier
literature as a normalized level of technical efficiency. The approach is para-
metric. Battese and Coelli (1992), henceforth BC, consider a panel stochastic
frontier production function with an exponential specification of time-varying
firm effects:

Yit = f (Xit,β)exp(uit−ηit)
ηit = {exp[−ς (t−T)]}ηi

(5.11)

where uit ∼ NID(0,σ 2
u ) and ηi ∼ NID+(0,σ 2

v ) are normal i.i.d. and non-negative
truncated normal i.i.d., respectively. Maximum likelihood estimators of the
model parameters can be derived and mean technical efficiency can be
constructed.8

2.2 Quantile regression

A final class of estimator we consider in our empirical analyses of banking per-
formance is the panel quantile regression model. The τ th conditional quantile
function of the response yit, the analog to Equation (5.1), can be written as:

Qy(τ |Z,X)= Xβ(τ )+Zη+ u (5.12)

Note that in the model, the effects β(τ ) of the covariates X are allowed to
depend upon the quantile τ . The vector η is intended to capture individual
specific sources of unobserved heterogeneity that are not adequately controlled
for by other covariates. The estimates of the individual specific effects (η’s) are
restricted to be invariant with respect to the quantile but are allowed to be
correlated with the x’s as they are modeled as fixed effects. As pointed out in
Galvao (2011), in settings in which the time series dimension is relatively large
allowing quantile specific fixed effects is not feasible.

Koenker (1984) considered the case in which only the intercept parameter
was permitted to depend upon the quantile and the slope parameters were
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constrained to be identical over selected quantiles. The slope parameters are
estimated as regression L-statistics and the individual effects are estimated as
discretely weighted L-statistics.

The model we apply in this paper is the quantile regression fixed effects
model for panel data developed in Koenker (2004), which solves the following
convex minimization problem:

(β̂, η̂)T = argmin
β,η

{
K∑

k=1

N∑
i=1

T∑
t=1

vkρτ (yit− xitβ(τk)−ηizit)

}
(5.13)

where k indexes the K quantiles {τ1,τ2, . . . ,τk}, ρτ (u) ≡ u(τ − Iu<0) is a piecewise
linear quantile loss function as defined in Koenker and Bassett Jr (1978), and vk

are weights that control the influence of the quantiles on the parameter esti-
mates. The choice of the latter are analogous to discreetly weighed L-statistics
(Mosteller 1946), a common choice of which is Tukey’s trimean (Koenker 1984).

3 Data

The bank sample is from the top 50 U.S. banks by total book value of assets
(TBVA), as of the third quarter of the year 2013, from quarterly Call Reports.
More precisely, we have quarterly data from 1Q1994 to 3Q2013, obtained from
the “Consolidated Reports of Condition and Income for a Bank with Domestic
and Foreign Offices – FFIEC 031” regulatory reports, expressed on a pro-forma
basis that go back in time to account for mergers. In order to illustrate, if a
bank in 2008 is the result of a merger in 2008, pre-2008 data is merged on a
pro-forma basis (i.e., the other non-surviving bank’s data will be represented
as part of the surviving bank going back in time). The rationale behind this
methodology is to create a long historical data set that controls for survival bias,
and also that does not exhibit a distorted measure of banks’ growth. U.S. bank
regulators use this data in order to estimate risk measurement models, such
as the Bank Capital-at-Risk Model (Frye and Peltz 2008), which is the basis of
risk dashboards used for centralized bank supervision. While this sample design
is not a common practice amongst academics, this does reflect methodologies
used by banks in calibrating credit risk models, such as those used for Basel III
and for CCAR.9

Although we intended to analyze the top 50 U.S. commercial banks, due to
missing and questionable data entry, we ended up using 44 of these banks
in our analyses. The five output and six input variables used to estimate
the distance function using both stochastic frontier analysis and quantile
regression are:

Real Estate Loans (REL)
Commercial and Industrial Loans (CIL)
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Consumer Loans (CL)
Securities (SC)
Off-Balance-Sheet Activities (OFF)
Premises & Fixed Assets (PFA)
Number of Employees (NOE)
Purchased Funds (PF)
Savings Accounts (SA)
Certificates of Deposit (CD)
Demand Deposits (DD).

The risk proxies are:

CREDIT RISK: Gross Charge-off Ratio (CR)
LIQUIDITY RISK: Liquidity Ratio (LR)
MARKET RISK: Trading Revenue Deviation to Trading Book Ratio (MR)

Before further providing the descriptive statistics on our variables, we would
like to draw attention to our contribution to the banking efficiency in terms
of a control variable, i.e., Market Risk (MR) proxy, which we have used in
our analyses. Market risk results from holding or taking positions in interest
rates, foreign exchange, equities, commodities, and credit spreads. While the
core function of traditional banking is to accept deposits and make loans, large
banks also take market risk on their trading books and make trading revenues.
Loosely speaking, the banking book comprises lending activities, whereas the
trading book comprises trading securities, over-the-counter (OTC) derivatives10

and market-making activities. Notwithstanding the fact that, the 2007–2008
financial crisis was initiated by a U.S. housing crisis, OTC derivatives which
are mainly reported on banks’ trading books contributed to amplifying vari-
ous problems and provided channels for systemic risk to propagate (Gregory
2014, 3). The key differences between the trading and banking books relate to
holding intent, liquidity and mark-to-market valuation. It has been evidenced
that traditional banking business of accepting deposits and making loans has
declined significantly in the U.S. (Allen and Santomero 2001). The evidence
continues to prevail in the ratio of the size of the trading book to total loans
(i.e., traditional lending business) for top U.S. banks even after the 2007–2008
financial crisis (Figure 5.1).

Regulatory capital requirements for the banking and trading books differ sig-
nificantly. As trading book positions are daily marked-to-market and actively
hedged by the banks, they are not intended to be held for an extended period
of time. Hence, the regulatory capital charges for such positions have been
based on the price volatility. The first market risk regulatory capital require-
ments to recognize this fact were introduced in 1996 (Basel I Amendment).
The 1996 amendment required banks to estimate a risk measure – the so-called
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Value-at-Risk (VaR) – for trading book positions over a ten-day time horizon.
However, during the 2007–2008 financial crisis, losses in many banks’ trading
books have been significantly higher than the minimum capital requirements
under the market risk rules (BCBS 2009a). Across global banks, trading book
losses totaled over $900 billion over 2007–2009 (Haldane 2009). The explana-
tion was straightforward: when markets remained liquid and asset prices rose,
banks gained from mark-to-market trading book valuations, but when asset
prices fell during a financial crisis, market-maker banks incurred billion-dollar
losses on their trading books. This was clearly the case for major U.S. banks.
Before the crisis, the top five U.S. banks rarely reported quarterly trading losses
but incurred multiple billion-dollar losses during the crisis quarters (Figure 5.2).

In response to the financial crisis, the Basel Committee on Banking Supervi-
sion (BCBS) introduced incremental changes to the current VaR based trading
book framework in 2009 (also known as Basel 2.5, BCBS 2009a).11 The short-
term fix was to recognize the credit risk in the trading book with an incremental
risk capital charge (IRC) for unsecuritized credit products, and a comprehensive
risk measure (CRM) for tranched credit products. Additionally, BCBS required
banks to calculate a stressed VaR, taking into account a one-year observation
period relating to significant losses, which must be calculated in addition to
the Value-at-Risk based on the most recent one-year observation period. The
additional stressed value-at-risk requirement was incorporated to help reduce
the procyclicality of the minimum capital requirements for market risk.

While these additional measures were meant to capture the real risk expo-
sures of trading books, BCBS had agreed that the additional measures were not
sufficient and planned to carry out a more fundamental review of the market
risk framework, including the use of VaR estimates as the basis for the min-
imum capital requirement. The initial proposal12 was released in May 2012
(BCBS 2012) and focused on key areas: such as, the trading book/banking book
boundary, expected shortfall (ES) measure as an alternative to VaR, and a com-
prehensive incorporation of the risk of market illiquidity among other things.
The importance of incorporating the risk of market illiquidity is a key consid-
eration in banks’ regulatory capital requirements for trading portfolios. Before
the introduction of the Basel 2.5 changes, the entire market risk framework was
based on an assumption that trading book risk positions were liquid, i.e., that
banks could liquidate these positions over a ten-day horizon. The recent crisis
proved this assumption to be false. That is, during the financial crisis, banks
experienced significant illiquidity in a wide range of credit products held in the
trading book: hence, they were forced to retain exposures for prolonged periods
of time.

Having stated the problems encountered for banks’ trading portfolios during
the crisis and the recent regulatory responses to the trading book related issues,
we included a market risk proxy in our efficiency models in order to recognize
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the risk exposure of banks’ trading books. To the best of our knowledge, this
is the first paper which uses the variability of unexpected trading revenue as the
market risk proxy in the banking efficiency literature. Ideally, one should use
the quarterly Value-at-Risk (VaR),13 which is an average of daily reported VaR’s
in a given quarter to proxy a bank’s market risk exposure; however, as daily
VaRs are not available to us, we follow Jorion (2002), who demonstrated that a
bank’s expected absolute value of “unexpected trading revenue” is proportional
to the dispersion of Value-at-Risk (VaR) if the trading revenue is distributed
symmetrically around zero. Following Jorion, we remove an estimate of the
mean of the trading revenue (i.e., moving average of the last four quarters) in
order to calculate the variability of trading revenue, which is proxied as the
absolute value of unexpected trading revenue. We then divide the absolute
value of unexpected trading revenue by the gross sum of trading assets and
trading liabilities to calculate the market risk proxy. That is,

MR=

∣∣∣∣∣ Deviation from the moving average of last
4 quarters of trading revenue

∣∣∣∣∣(
Trading Assets+Trading Liabilities

)
Returning to descriptive statistics, Table 5.1 summarizes key variables as of
3Q2013, from the Call Reports for the top nationally chartered banks in the
U.S. by total book value of assets (TBVA) at this time. We display details on
the top ten out of 50 by TBVA in descending order (JP Morgan Chase, Bank
of America, Wells Fargo, Citigroup, US Bank, Capital One, Bank of New York
Mellon, PNC, State Street and HSBC) and distributional statistics on the top 50.
The data is extremely skewed in terms of size as measured by TBVA, with the
average of the top four in TBVA each in excess of the 95th percentile of $1.45
trillion, and the top ten comprising $8.14 trillion (or 79.27 percent) out of
the 10.27$ trillion total, as compared to the median TBVA of $81.35 ($233.47)
billion. There is similar extreme skew by the value of Total Loans (TL), with
the average of the top four in TBVA in excess of the $751.44 billion 95th per-
centile of TL, and the top ten comprising $3.81 trillion or (74.08 percent) out
of the $5.14 trillion total, as compared to a median TL of $40.64 ($116.80)
billion. We observe more extreme skew than even TBVA in the value of trad-
ing revenue deviation, with the average of the top four in significant excess of
the $242.05 million 95th percentile of trading revenue deviation, and the top
ten comprising $1.84 billion or (90.12 percent) out of the $2.04 billion total,
as compared to a median trading revenue deviation of $46.33 million ($3.16
million). Similarly, total gross charge-offs are skewed toward the largest banks,
with the average of the top four in TBVA each in excess of the $1.81 billion
95th percentile of gross charge-offs, and the top ten comprising $9.93 billion
(or 83.99 percent) out of the $11.82 billion total, as compared to median gross
charge-offs of $48.74 million ($268.69 million). Finally, for the dollar measures,
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total cash balances are very much concentrated in the largest banks, with the
average of the top four in TBVA in excess of the $244.53 billion 95th percentile
of total cash balances, and the top ten comprising $1.66 trillion (or 87.53 per-
cent) out of the $1.89 trillion total, as compared to median total cash balances
of $5.45 ($42.99) billion. Gross Charge-off ratios (CR) for many of the top ten
are on the high side relative to the center of the distribution, eight of them
above (ranging in 0.11–0.67 percent) the median in the broader sample of 0.12
percent (0.16 percent). There is a similar pattern with respect to liquidity ratios
(LR), with many of the top ten on the high side relative to the center of the
distribution, eight of them above (ranging in 10.19–49.73 percent) the median
in the broader sample of 7.41–13.04 percent. Figures 5.3 through 5.7 represent
several of these measures in time series on from the first quarter of 1994 until
the third quarter of 2013.

Figure 5.1 shows the ratio of the trading book to total loans across the U.S.
top 44 out of 50 banks from 1994Q1 to 2013Q3. This ratio fluctuates from five
percent to eight percent in the 1990s, and sharply surge up to 15 percent in
early 2000s. It reaches the peak of around 25 percent in 2007 and drops to 17
percent in less than two years. The ratio continues decreasing in most recent
years. Figure 5.2 displays the trading revenue trend for the top five banks. These
banks show similar fluctuations in time trend though some banks have greater
variations than others do. These banks rarely experience negative trading rev-
enues but incurred significant amount of dollar losses during the crisis quarters.
Figure 5.3 shows the TBVA across the U.S. 44 out of 50 largest banks over time,
reflecting the growth in the banking industry overall as well as of the largest
banks, with TBVA increasing smoothly from around just under $4 trillion in the
early 1990s, to about $10 trillion during the recent financial crisis and declin-
ing about one trillion until 2010 and then bouncing over $10 trillion recently.
Figure 5.4 shows the quarterly TL from over this period, which shows a similar
trend to TBVA, a secular upward trend of growth (from about $2.5 to nearly $5.5
trillion in 2008), as well the financial crisis, reflected dips of about $1 trillion in
the period 2008 to 2009, and increased slowly since then. In Figure 5.5, the time
series of CRs clearly reflects the credit cycle, with previous peaks of 0.4 percent
around early 2000s, and alarmingly near 1 percent by the end of 2009. On the
other hand, in Figure 5.6, LRs display a markedly different pattern over time as
compared to CRs, a secular decline from around ten percent, at the beginning
of the sample period, to around 6 percent from 1997 to 2001, and reaching
up to about 16 percent after 2007 and fluctuating since then to 17 percent at
the end of the sample period. Finally, in Figure 5.7 we see the ratio of devia-
tion of trading revenue from the moving average of the previous four quarters
to the trading book, displaying yet another different pattern to the other risk
measures: it shows one mode around year 2000 and another peak in the year
2007 and sharp decline since then. In Figures 5.8 through 5.12 we show the
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distribution of the five measures, analyzed in Table 5.1 across the largest banks
as of 3Q2013. The right skewness in all of these variables is evident.

4 Estimation results

Our specifications of the translog output distance functions are based on
the intermediation interpretation of banking services wherein banks utilize
deposits and other input factors to provide loan services as their outputs, (see
Sealey and Lindley (1977)). The alternative production approach views deposits
as outputs as opposed to inputs proposed by Baltensperger (1980).

Anticipating the discussion to follow, the overall conclusion of our empiri-
cal analyses is that the largest surviving banks – in spite of tremendous growth
in the last 20 years – have experienced a diminished capacity to provide loan
services as they took on increasing levels of risk. This is reflected in a decline
in efficiency as implied by the econometric models that allow efficiency levels
to vary temporally. In addition, larger banks have lower scale efficiency lev-
els. There is no evidence of scope economies. Finally, there is no evidence of
economies of scale for the large banks in our sample.

The elasticities of six inputs and three outputs are evaluated at the sample
mean of the data points, in Table 5.2, where the standard errors are reported in
parentheses. We utilize a nonparametric bootstrap following Efron and Tibshi-
rani (1986) , which is implemented through 1,000 iterations where in each run,
44 banks are chosen with replacement and 79 quarters are chosen with replace-
ment, and the model is re-estimated. Since our dataset is mean deflated prior
to estimating the distance function, the first derivatives expressed in Equations
(5.7) and (5.8) will simply be equal to the first-order coefficients when evaluated
at the sample mean.

The elasticity estimates shown in Table 5.2 are consistent with the mono-
tonicity assumption. The six inputs’ elasticities have negative signs, and the
three outputs’ elasticities have positive signs. Alternatively, all of the input
variables (Premises and Fixed Assets, Number of Employees, Purchased Funds,
Savings Accounts, Certificates of Deposit and Demand Deposits) contribute pos-
itively to the output, albeit varying in magnitude. Compared with the other
inputs, SA and DD have the greatest impact. NOE is also an important input
source albeit it has less impact than SA and DD; while the estimates of PFA and
CD are similar in magnitude. PF has the smallest impact in all the inputs.

Across most models, our estimates suggest no evidence of increasing returns
to scale since the numbers vary closely around one.

Turning our attention to the controls for risk, which are displayed in the last
three rows of Tables 5.4 and 5.5 in the appendix, we observe that in all have
generally positive signs on coefficient estimates, which have the interpretation
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Table 5.2 The elasticity estimates evaluated at sample mean

FE RE FEIV REIV H-T PSS1 BC QR(50%)

PFA –0.0486 –0.0519 –0.0903 –0.0875 –0.0500 –0.0437 –0.0253 –0.0640
(0.0501) (0.0506) (0.0490) (0.0809) (0.0485) (0.0433) (0.0562) (0.0405)

NOE –0.1745 –0.2121 –0.0978 –0.1571 –0.1839 –0.1601 –0.2116 –0.1204
(0.0637) (0.0595) (0.0614) (0.0728) (0.0650) (0.0858) (0.0749) (0.0603)

PF –0.0215 –0.0202 –0.0224 –0.0206 –0.0212 –0.0224 –0.0141 –0.0195
(0.0039) (0.0030) (0.0049) (0.0049) (0.0051) (0.0051) (0.0033) (0.0029)

SA –0.5519 –0.5582 –0.5453 –0.5529 –0.5532 –0.5611 –0.5526 –0.5905
(0.0400) (0.0489) (0.0401) (0.0576) (0.0440) (0.0376) (0.0644) (0.0415)

CD –0.0586 –0.0569 –0.0443 –0.0423 –0.0583 –0.0606 –0.0712 –0.0778
(0.0135) (0.0136) (0.0119) (0.0170) (0.0127) (0.0132) (0.0192) (0.0120)

DD –0.0828 –0.0984 –0.0894 –0.1197 –0.0861 –0.0971 –0.1553 –0.1086
(0.0286) (0.0363) (0.0327) (0.0487) (0.0314) (0.0277) (0.0468) (0.0242)

REL 0.4028 0.3793 0.4247 0.3878 0.3982 0.4125 0.3029 0.4823
(0.0495) (0.0480) (0.0548) (0.0348) (0.0595) (0.0635) (0.0606) (0.0348)

CIL 0.2105 0.2172 0.2254 0.2283 0.2117 0.2139 0.2266 0.1810
(0.0400) (0.0366) (0.0471) (0.0333) (0.0360) (0.0446) (0.0228) (0.0287)

CL 0.0817 0.0814 0.0495 0.0581 0.0819 0.0737 0.0707 0.0719
(0.0253) (0.0186) (0.0206) (0.0208) (0.0237) (0.0303) (0.0183) (0.0217)

SC 0.2604 0.2700 0.2704 0.2829 0.2622 0.2678 0.3242 0.2462
(0.0270) (0.0307) (0.0309) (0.0201) (0.0291) (0.0366) (0.0497) (0.0220)

OFF 0.0446 0.0521 0.0299 0.0428 0.0461 0.0320 0.0757 0.0185
(0.0140) (0.0203) (0.0109) (0.0128) (0.0122) (0.0125) (0.0240) (0.0103)

RST 0.9379 0.9978 0.8895 0.9801 0.9527 0.9451 1.0301 0.9809
(0.0661) (0.0281) (0.0826) (0.0400) (0.0545) (0.0690) (0.0247) (0.0457)

that all else equal, risk-taking activities decrease output, as more risk is detri-
mental and reduces the capacity of the banks to make loans. The magnitudes of
the coefficient estimates of Credit Risk (CR) are around ten times smaller than
Liquidity Risk (LR). As LR is proxied by the liquidity ratio (cash balance/total
assets) one might first expect a negative sign on the coefficient since the posi-
tive signs indicated by all of the estimators indicate that increases in LR reduce
the level of intermediation services provided by the bank. It is clear from our
estimates that these banks are not managing their liquidity optimally, control-
ling for market and credit risk. The positive sign for coefficient estimates of
Market Risk (MR) suggest that as banks move from traditional banking (i.e.,
lending business) to trading book activities, banks have become less efficient in
lending.

Coefficient estimates on all of the three risk proxies are generally the same
across models using both stochastic frontier analysis and quantile regression.
The positive signs on the coefficient estimates indicate that greater LR or
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MR inhibits output. The estimates on MR are generally much less substan-
tial across models; the estimates on LR consistently have more substantial
across models than the other two risk proxies. These results regarding LR and
MR support the policy argument that banks should be restricted from engag-
ing in highly risky activities, such as proprietary trading, and encouraged to
maintain an appropriate liquidity ratio. More generally, our results, taken in
totality, lead to the sensible implication that banks which stray from their core
competencies will provide less intermediation services and should shrink over
time.

In Figure 5.13 and Table 5.5, we summarize the estimation results of the
quantile regression Fixed Effects model for panel data. We estimate these mod-
els in the R statistical programming language (R Team 2010) using the quantreg
package by Koenker (2009), which the authors adapt and extend in order
to produce longitudinal data results, as well as to produce more reliable sta-
tistical inference. From Figure 5.13, we can see that the quantile regression
estimates on the elasticities, represented in black lines, are compatible with
those from the Fixed Effects model, which are denoted in the red lines. The
elasticity estimates do not vary significantly across quantiles, but the estimates
on Credit Risks and Liquidity Risks have displayed a distinctive increasing
pattern.14

Economies of scope, displayed in Table 5.3, are constructed following Hajar-
gasht, Coelli and Rao (2008), who derive the expression for economies of
scope in terms of the derivative of the distance functions, utilizing the dual-
ity between the cost and input distance functions. The economies of scope
between outputs i and j can be calculated using the derivatives of the output
distance function as follows:

Cyy/C=DyD′y−Dyy+Dyx[Dxx+DxD′x]−1Dxy (5.14)

Our dataset is centered on the geometric mean of all observations. Results are
essentially the same when we center at the median time period as well. This
enables us to more transparently interpret the translog results. Economies of
scope evaluated at the sample geometric means for the median time period
can be calculated following this formula in Equation (5.15). A positive sign
represents scope diseconomies.

DyD′y−Dyy+Dyx[Dxx+DxD′x]−1Dxy =

⎡⎢⎢⎣
γ1− γ11 · · · −γ1m

...
. . .

...
−γm1 · · · γm− γmm

⎤⎥⎥⎦
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+

⎡⎢⎢⎣
δ1γ1+ θ11 · · · δnγ1+ θn1

...
. . .

...
δ1γm+ θ1m · · · δnγm+ θnm

⎤⎥⎥⎦
⎡⎢⎢⎣

2δ2
1 + δ11− δ1 · · · 2δ1δn+ δ1n

...
. . .

...
2δnδ1+ δn1 · · · 2δ2

n + δnn− δn

⎤⎥⎥⎦
−1

×

⎡⎢⎢⎣
δ1γ1+ θ11 · · · δ1γm+ θ1m

...
. . .

...
δnγ1+ θn1 · · · δnγm+ θnm

⎤⎥⎥⎦ (5.15)

Based on sample measures, it is suggested that there is no evidence of
economies of scope across all models among the three different types of loans
evaluated at the sample mean point. Our results are consistent with the findings
of Hughes and Mester (1993). They base their analysis on the translog cost dual
in contrast to our primal output distance function. We both find no evidence
of scale economies for the largest banks or significant scope economies. It is not
clear that alternative nonparametric approaches such as the local linear approx-
imations utilized by Wheelock and Wilson (2012) are directly comparable
to our results, given their focus on banks of varying sizes and the substan-
tial differences in number of parameters for such models. Constructing tests
for the regularity conditions of the dual cost function from such innovative
nonparametric approaches is a research issue that requires more study.

Figure 5.14 summarizes the results of the stochastic frontier estimation in
terms of average efficiencies across the different estimators in each quarter. Effi-
ciency levels range between about 0.10 and 0.4, using time-invariant estimators
and with a downward trend using the BC model, whose specification requires
that the temporal pattern is linear and monotonic: hence, the decline in aver-
age efficiency over the sample period from 75 percent to 70 percent. This trend
is probably due to the substantial downturns in the recent period of the Great
Recession and the financial meltdown.

The relationship between efficiency levels and bank sizes is also explored.
From Figure 5.15 we can see that the largest banks do not necessarily have
highest technical efficiencies; instead, the efficiency levels fluctuate as bank
sizes change.

We further analyze the relationship between bank sizes and the Out-
put Scale Efficiency (“OSE”). The derivation of this estimator follows Balk
(2001).

OSE(x,y)=
∨

Dt
o (x,y)

Dt
o(x,y)

=
∨

OTEt
o (x,y)

OTEt
o(x,y)

(5.16)

where the
∨

OTEt
o (x,y) is the output efficiency using cone technology (i.e., con-

stant returns to scale – “CRS.”) As we can see in Figure 5.16, which plots this
OSE versus size ranking, the scale efficiencies estimated using time-invariant
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Table 5.3 The scope economies estimates

FE RE FEIV REIV H-T PSS1 BC QR(50%)

REL-CIL 0.0106 0.0108 0.0399 0.0278 0.0107 0.0212 0.0298 0.0160
(0.0613) (0.0267) (0.0376) (0.0430) (0.0299) (0.0751) (0.0303) (0.1134)

REL-CL 0.0266 0.0273 0.0307 0.0456 0.0267 0.0257 0.0237 0.0267
(0.0400) (0.0161) (0.0292) (0.0516) (0.0144) (0.0137) (0.0147) (0.0289)

REL-SC 0.0354 0.0322 0.0178 0.0037 0.0353 0.0360 0.0125 0.0290
(0.0855) (0.0157) (0.0459) (0.0781) (0.0228) (0.0212) (0.0477) (0.0450)

REL-OFF 0.0083 0.0125 0.0431 0.0601 0.0092 0.0131 0.0192 0.0120
(0.0307) (0.0050) (0.0101) (0.0581) (0.0143) (0.0359) (0.0176) (0.0094)

CIL-CL –0.0030 –0.0034 –0.0368 –0.0502 –0.0030 –0.0094 0.0020 –0.0044
(0.0907) (0.0129) (0.0321) (0.0411) (0.0143) (0.0295) (0.0219) (0.0201)

CIL-SC 0.0514 0.0563 0.0677 0.0872 0.0522 0.0544 0.0625 0.0557
(0.0401) (0.0414) (0.0457) (0.0444) (0.0335) (0.0652) (0.0219) (0.0565)

CIL-OFF 0.0013 0.0020 –0.0391 –0.0533 0.0015 –0.0066 0.0043 –0.0098
(0.0150) (0.0097) (0.0189) (0.0266) (0.0123) (0.0210) (0.0087) (0.0226)

CL-SC 0.0273 0.0283 0.0073 0.0329 0.0277 0.0281 0.0002 0.0349
(0.0268) (0.0167) (0.0395) (0.0528) (0.0214) (0.0261) (0.0293) (0.0292)

CL-OFF 0.0055 0.0078 0.0029 –0.0011 0.0059 0.0066 0.0175 0.0053
(0.0093) (0.0069) (0.0200) (0.0171) (0.0062) (0.0110) (0.0066) (0.0129)

SC-OFF –0.0054 –0.0085 0.0066 0.0161 –0.0061 –0.0063 –0.0157 –0.0017
(0.0233) (0.0088) (0.0211) (0.0157) (0.0107) (0.0171) (0.0233) (0.0039)
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Figure 5.14 Estimated efficiencies using all stochastic frontier models



136 Inanoglu, Jacobs, Jr., Liu and Sickles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45

FX
FXIV
RD
RDIV
HT
PSS1
BC
QR

Figure 5.15 Efficiency levels and bank sizes

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45

FX
FXIV
RD
RDIV
HT
PSS1
BC

Figure 5.16 Scale efficiency plots using time-invariant estimators



Analyzing Bank Efficiency 137

estimators are increasing with fluctuations as bank sizes decrease (the ranking
numbers increase). The scale efficiency level using the BC estimator,15 although
it displays a more fluctuating pattern than those using the time-invariant esti-
mator, still suggests that large banks do not necessarily have higher scale
efficiency levels.

5 Conclusion and directions for future research

This study represents a contribution to the recent dialogue that has arisen
in the wake of the recent financial crisis, a re-examination amongst regula-
tors, practitioners and academicians of the conventional wisdom regarding the
implications of the spectacular growth of the financial sector of the economy.
Previously, there was a widespread belief the “bigger is better,” with arguments
underpinning this view ranging from potential economies of scale and scope
to a better competitive stance at the international level. We have seen this logic
reversed in the post-crisis world to some degree, as for several reasons large
banks have come to be viewed as a source of trouble and concern for policy
makers and regulators.

We have addressed this controversy through an empirical analysis of the effi-
ciency of U.S. banks with respect to their size and scope. This study utilized
a new data set of bank history, a panel of financial measures derived from
supervisory Call Reports in the period 1994–2013, from which we construct
the variables used in both the frontier estimation and quantile regression anal-
yses (inputs and outputs, as well as controls for three major risk types – credit,
market and liquidity). In this exercise, we have been able to develop both policy
implications and also evaluate potential analytical tools for supervisors.

The conclusion of the stochastic frontier estimation is that, in spite of grow-
ing, the largest U.S. surviving banks have decreased technical efficiency over
the last 20 years. This has occurred as they took on increasing types of risk, and
is reflected in an overall early decline in efficiency, as implied by the economet-
ric model, which allows temporal variation. The estimation results also revealed
no evidence on increasing returns to scale or scope across models. According
to the time-invariant estimators, there is no positive correlation between bank
size and technical efficiencies, neither does such a relationship exist between
size and scale efficiencies. We found that credit, liquidity and market risks are
deleterious to efficiency, which has implications for the argument that banks
should be restricted to traditional banking activities in their zone of compe-
tence. The panel quantile regression results were generally consistent with the
stochastic frontier estimation, albeit with estimates not varying greatly across
quantiles. Furthermore, the implied efficiencies here are uniformly lower in the
quantile regressions, than for the other time-invariant frontier estimators.
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This paper has both policy implications and also evaluates various economet-
ric techniques as potentially valuable analytical tools for supervisors. First, our
results highlight the importance of the prudential supervisory role in control-
ling the level of risk in the banking sector (also reducing incentive for regulatory
arbitrage between the banking and trading books), as we have documented
that the elevation in risk measures, coupled with the growth of the sector,
has resulted in declining measures of efficiency, a result that is robust to sev-
eral econometric specifications. The policy implication is that we may want
a better capitalized and somewhat smaller banking system, as this is likely to
imply a more efficiently functioning banking industry. Second, the finding that
market and liquidity risk dominate the influence of credit risk implied in the
Volcker Rule debate, that regulators may wish not only to consider restricting
banks from dangerous activities such as speculative proprietary trading, but also
closely monitor the OTC exposures and their use for hedging some market risks
instead of market-making purposes and consequently encourage insured com-
mercial banks to focus on their core competency of making loans. There are
several fruitful avenues of extension for this research program. We may pursue
alternative data sets, such as other financial service types of firms (e.g., insurers,
brokers), or data from other jurisdictions. We may expand our set of explana-
tory variables, with alternative controls (e.g., size, leverage, capitalization), or
an expanded set of inputs (e.g., a measure of technological change.) Finally, we
may expand our suite of alternative models, thereby seeking out further robust
tools for use by supervisors.
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Table 5.6 Summary of econometric models

Model Name Abbreviation Description

Fixed Effects
Model

FE Traditional Fixed Effects model assuming that
regressors are correlated with the effect term.

Random Effects
Model

RE Traditional Random Effects model assuming
that regressors are uncorrelated with effect term.

Fixed Effects
with
Instrumental
Variables

FEIV Fixed Effects model with the right-hand-side
endogenous variables replaced by the lagged
variables as instruments.

Random Effects
with
Instrumental
Variables

REIV Random Effects model with the right-hand-side
endogenous variables replaced by the lagged
variables as instruments.

Hausman-
Taylor
Model

H-T Hausman-Taylor model assuming that some of
the regressors are correlated with the effect term
while some are not.

Park-Sickles-
Simar
Model

PSS1 A semiparametric model assuming that a set of
regressors is conditionally independent of the
effect given the set of correlated regressors.

Battese-Coelli
Model

BC A stochastic frontier model assuming
time-varying effects with the specification of
exponential functional form.

Quantile
Regression
Model

QR A quantile regression approach assuming that
the coefficients of the regressors are dependent
on the quantiles and the effect term is allowed
to correlate with regressors.

Notes

1. Public Law 111–203 Dodd–Frank Wall Street Reform and Consumer Protection Act.
2. Feldman argued that “. . . I am skeptical that reforms focused on size per se will

achieve their stated purpose of addressing TBTF; I have more confidence in reforms
that identify and address features that produce spillovers in the first place . . . .”

3. They conclude that scale economies appear to increase with bank size for large banks
from a standard model of bank production that does not control for any TBTF fund-
ing cost advantage, while using an adjustment for the price of debt using the implicit
funding subsidy they find evidence of constant returns to scale and possible scale
diseconomies for large banks.

4. Note that greater automation could imply greater operational risk, which is an
implicit element of cost, but that is beyond the scope of the current empirical
treatment.

5. Also see BCBS (2009b).
6. As of 3Q2013, the total assets of all U.S. Insured Commercial banks is $13.5 trillion.
7. Therefore, we estimate the distance function under both Cobb-Douglas and translog

specifications. We will discuss only for the translog distance function, as those for the
Cobb-Douglas are qualitatively comparable. These results are available on request.
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8. Alternatives to the BC specification of time-varying heterogeneity, which has the
same pattern but different intercepts for different firms, such as the Cornwell et al.
(1990) estimator, required too much temporal variation in efficiency scores than the
sample contained and we were unable to implement this estimator in our translog
specification.

9. For a further discussion of this issue, showing the use of similar data in models for
risk aggregation see Inanoglu and Jacobs (2009).

10. OTC derivatives are financial contracts, which derive their values from underlying
assets and market conditions. OTC derivatives create counterparty credit risk due to
the risk of insolvency of one party before the settlement of the transactions. It is very
difficult – if not impossible – to incorporate counterparty credit risk measures in an
efficiency framework as counterparty credit risk measures are forward looking and
constructed from “exposure profiles.” See Jacobs (2014) for regulatory requirements
for counterparty credit risk measurement.

11. See Inanoglu, H., Jacobs, Jr., M., and Karagozoglu, A.K. (2014) for an impact analysis
of Basel 2.5 on banks’ regulatory capital for trading portfolios.

12. A second consultative document was published in October 2013. http://www.bis.org/
publ/bcbs265.htm

13. We note the deficiency of VaR measure especially after the crisis, but VaR is still the
industry standard in measuring market risk.

14. The linearity of covariate effects across different quantiles is consistent with the stan-
dard interpretation of technical efficiency in the stochastic frontier paradigm as a
radial measure.

15. For the BC estimator, we use the average-over-time scale efficiency level.
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6
Efficiency, Competition and the
Shadow Price of Capital
Thomas Weyman-Jones

1 Introduction and motivation

The purpose in writing this chapter encompasses several different motivations.
The starting point is the study of recent developments in modeling banking
systems from the point of view of the economics of industrial organization.
This approach has gained attention in recent years due to the work of Freixas
and Rochet (2008) and Degryse et al. (2009). There is a need to understand
how efficiency can be evaluated in the banking system over the last decade.
In addition it is useful to estimate the cost of equity capital, the primary loss-
absorbing capacity of the banking system. This is difficult when some banks
are not listed on the stock market, even though the necessity to raise equity
capital remains important. Therefore a major motivation for the chapter is to
suggest a model for estimating the shadow price of equity capital, or the shadow
return on equity. These two aspects of efficiency and profitability come together
in the measurement of competition in banking systems. This is a venerable
topic in banking economics; but, in particular, the chapter examines recent
developments in the literature, which bring together a measure of efficiency
and a measure of profitability for the purpose of measuring the strength of
competition.

Since a bank may experience a downgrade in the value of its assets, the role
of equity is to provide the primary loss-absorbing capital that is required to
maintain the solvency of the bank. There are costs and benefits to a financial
stability policy that is aimed at increasing the capitalization of the banks in
vulnerable times: while a greater equity capital buffer mitigates the riskiness
of the balance sheet position, it is a costly policy, with the further drawback
of being pro-cyclical in its macroeconomic impact. Usually the debate focuses
on the idea that the market price of equity is higher than the price of debt, in
this case deposits or borrowed funds. However, there have been several studies
in the literature, notably Admati and Hellwig (2013) and Miles et al. (2011),
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which use Modigliani-Miller arguments amongst others to dispute the view that
the case against re-capitalization can be made on the grounds of the higher
weighted average cost of capital associated with equity financing. An alternative
way of looking at the trade-off of costs and benefits of re-capitalization is to
note that deleveraging to meet a policy constraint reduces the bank’s profit-
maximizing activity and therefore is measureable through the impact of the
shadow price of the capital constraint on the bank’s returns.

The chapter begins with an analysis of the problem of modeling the shadow
return on equity capital in banking systems. It goes on to suggest how, in a
formal model of cost-minimizing behavior, the idea of the dual cost function
can be used to measure the decision-making that underpins a bank’s optimiz-
ing behavior, subject to the familiar balance sheet constraint that loans and
investments should be balanced by deposits, borrowed funds and equity cap-
ital. Using the results of a number of recent empirical studies, estimates are
derived of the behavior of the shadow return on equity. The chapter then
considers how efficiency and productivity analysis can be applied to banking
systems to generate a measure of efficiency for both listed and non-listed banks,
in order to measure the costs of the re-capitalization process. On the basis of
this analysis of cost efficiency and the shadow return on equity capital, the
chapter considers recent work on the measurement of competition in banking
systems. This work is based on the idea that the relationship between prof-
itability – as measured, for example, by the shadow return on equity – and
cost efficiency changes systematically as the intensity of market competition
and rivalry changes, so that the profitability–efficiency relationship can offer a
direct measure of the strength of competition.

2 The shadow price of equity in deposit-taking
financial institutions

We begin the analysis with an informal discussion of the essential ideas, as illus-
trated in Figure 6.1 which captures the balance sheet representation of banking
industry technology.

Our basic model of deposit-taking financial institutions is represented by the
balance sheet condition L= B+E, where the asset side is represented by loans,
L, and the liabilities are deposits and borrowed funds, B, and the pure loss-
absorbing capacity, by equity, E. In different states of the world different levels
of equity are required to ensure expected balance sheet solvency, resulting in
an expected banking technology represented by the probability weighted input

requirement set
J∑

j=1
πjIj

(
L0
)
, for which the efficient boundary can be written

as the banking technology transformation function F (B,E;L)= 0, illustrated in
Figure 6.1. This represents the expected solvency relationship between deposits
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Figure 6.1 Representation of the balance sheet technology

and equity needed to support a given level of loans, L0 in different states of the
world j = 1 . . .J with probabilities: πj. As attitudes to risk change, or there are
changes in the risk associated with a given loan portfolio, a bank will aim for
different equity levels to support the target level of loans, L0 from a given level
of deposits and borrowed funds: B0. Three different equity levels are illustrated
in the diagram, with the changes: E∗ → E′ → E′′representing the deleveraging
required as there are increases in the perceived risk levels associated with a given
balance sheet condition: L0 = B+E. The technology is represented by the slope
of the isoquant:

dB
/

dE=−FE

(
B,E;L0

)/
FB

(
B,E;L0

)
(6.1)

When there is a minimal risk of default, the marginal rate of substitution is
negative with positive shadow prices equated at the profit-maximizing position
to the market interest rates on borrowed funds and loans:

−FE

(
B,E;L0

)/
FB

(
B,E;L0

)
=−rE

/
rB (6.2)

As risk levels increase, the bank will require more loss-absorbing capacity to
maintain the expected value of its balance sheet condition, and deleveraging
will take place as the equity assets ratio is increased, either by raising equity
capital or by calling in loans. The figure indicates that, as E

/
Lincreases, moving

rightwards along the horizontal axis, the implied slope of the isoquant becomes
less negative and may become positive if the technology displays weak dis-
posability, representing the existence of an uneconomic region of the banking
technology. Deleveraging leads to reductions in the shadow price of equity cap-
ital so that it may eventually become negative.1 In addition, we note from the
diagram that the allocative efficiency of equilibrium with other inputs may be
disturbed by this phenomenon. It is argued in this chapter that this effect can
be estimated by modeling the cost-minimizing behavior of the banking system,
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and we are able to do this by using the dual cost function to represent the tech-
nology. We capture the risk environment of the system by using risk based and
market-based characteristics of the banks. Therefore we now develop a more
formal model of cost-minimizing behavior.

3 Modeling the cost function and the shadow price of capital

In this section, we develop a cost-minimizing model of banking system activ-
ity that takes account of the equity capital requirements that must be met by
banks and we show how increased capital requirements may impose additional
costs on the efficient allocation of resources. The parametric frontier dual cost
function that we will use is based on K variable inputs: x= (x1, . . . ,xK)with input
prices: w= (w1, . . . ,wK) and R outputs: y= (y1, . . . ,yR), together with an additional
quasi-fixed input, i.e., an input which may be a fixed input in the short run but
is variable in the long run. For clarity, we symbolize this particular quasi-fixed
input as z0, with input price: w0. The interpretation of this quasi-fixed input
will be critical in the analysis of a banking industry sample since it captures the
importance of the level of equity capital. We assume that this production tech-
nology has the properties of convexity, and weak disposability. It is the weak
disposability assumption that is critical to our analysis. If the efficient bound-
ary of the input requirement set at time t is represented by a transformation
function: F (y,x, z0, t) = 0 then weak disposability implies that the first deriva-
tives, Fk ≡ ∂F

/
∂xk, Fr ≡ ∂F

/
∂yr,Fz ≡ ∂F

/
∂z0 are not restricted in sign. This will

permit the model to accommodate both positive and negative shadow prices in
the dual cost function. Adapting the arguments in Braeutigam and Daughety
(1983) and Hughes et al. (2001), we write the dual long-run cost function, with
all inputs including z0 treated as variable, in the form:

c(y,w,w0, t)=min
x,z0

{
w′x+w0z0 : F (y,x,z0, t)= 0

}
(6.3)

The short run cost function, on the other hand, with input z0 treated as fixed,
is the sum of variable and fixed cost:

cs (y,w, z̄0, t)= cv (y,w, z̄0, t)+w0z̄0 =min
x

{
w′x+w0z0 : F (y,x,z0, t)= 0; z0 = z̄0

}
(6.4)

The envelope theorem confirms that long-run total cost defines the envelope
of short run total cost:

c(y,w,w0, t)=min
z0

{
cv (y,w, z̄0, t)+w0z̄0

}
(6.5)

Consequently, the envelope theorem gives:

∂c(y,w,w0, t)
/
∂z0 = 0= [∂cv (y,w, z̄0, t)

/
∂z0
]+w0 (6.6)
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Rearranging this last result gives the critical interpretation of the shadow price
of the quasi-fixed input:

−[∂cv (y,w, z̄0, t)
/
∂z0
]= w0 (6.7)

This form of the envelope theorem is particularly relevant when, in addition
to an input being fixed in the short run, there is no explicit information on its
price. The negative of the derivative of the variable cost function with respect
to this fixed input is the input’s shadow price. This result becomes particu-
larly useful when the input restriction arises because of regulatory intervention.
Therefore, in modeling banking system cost we can think of z0 as the regu-
lated level of an input, equity capital, determined by the regulatory authority
of the banking system. When expressed in logarithmic form the negative of
the elasticity of cost with respect to equity capital: −[∂ lncv (y,w, z̄0, t)

/
∂ lnz0

] =
w0z0

/
c = εz0 is interpreted as the shadow return on equity. It is the share of

total expenditure on inputs that accrues to equity owners when valued at the
shadow price of equity capital. By including in a sample both listed and unlisted
banks researchers are therefore able to calculate a shadow return on equity for
the unlisted banks. This is therefore an important measure of profitability in
banking.

Banks which are over-leveraged, or reliant on debt, and under-use equity cap-
ital can be expected to show a relatively high shadow return on equity (negative
cost-elasticity with a relatively high absolute value), while banks which are less
leveraged are likely to show a cost-elasticity with respect to equity that is lower
in absolute value. Banks which are far from the long-run cost-minimizing equi-
librium – for example, because they are undergoing major re-capitalization,
with current equity capital levels well above the long-run equilibrium – may
be expected to show a very low, possibly severely negative, shadow return on
equity in the recovery phase from financial crisis. In general, negative values of
the shadow input price or return on the fixed input would arise if, for example,
the firm was operating in the uneconomic region of the production function.2

The shadow return on the fixed input in the cost function measures the value
of this possibly negative marginal product.

This approach to measuring profitability has been used in several applica-
tions to international banking systems. The original contribution of Hughes
et al. (2001) used the shadow return on equity to adjust measures of economies
of scale. Boucinha et al. (2013) used the shadow return on equity to analyze
productivity developments and capital cost in the banking system in Portu-
gal during the adoption of the Euro. They found that the shadow return on
equity varied considerably as the effect of Portugal’s membership of the Euro
proceeded, reflecting changes in bank leverage. They used the approach as
part of a wider study of productivity growth decomposition in the banking
system in Portugal. Fethi et al. (2012) used the shadow return on equity to
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analyze productivity developments and capital cost in the banking system in
Turkey, during the period of recovery from the financial crisis in that country
in 2001. These authors discovered that the intense re-capitalization imposed
on the banking system in Turkey, as part of the IMF restructuring and support
program, led to the shadow return on equity turning negative for a period.

4 Measuring efficiency in banking systems

The actual variable cost experienced by the firm is by definition:Cit ≡w′itxit, and
consequently, the cost efficiency of bank i at time t is:

CEit =
{
cs (y,w,z0, t)it

/
Cit
} ∈ (0,1] (6.8)

Despite the immense amount of literature on measuring efficiency by stochas-
tic frontier analysis and other methods, only a limited amount of attention
has been paid to the question of whether an industry equilibrium of firms
displaying different levels of efficiency is feasible. As we shall see below, it is
feasible in a particular game theory framework which allows the measurement
of relative efficiency – when it is combined with a measure of profitability,
such as described in the previous section – to provide a very useful approach to
measuring the strength of competition.

Using exp(−u) ,u ≥ 0 to transform the measure of cost efficiency from the
interval: (0,1] into a non-negative random variable with support on the non-
negative real line: [0,+∞), yields:

lnCit = lncs (y,w,z0, t)it+ uit (6.9)

This can be modeled by a fully flexible functional form, such as the translog
function, with an additive idiosyncratic error term v to capture sampling,
measurement and specification error. Note that the cost function should be
homogeneous of degree +1 in input prices which can be imposed by dividing
through by one of the input prices, wK . Define the variables in vector form as:

lw̃=
(

ln
(
w1
/

wK
)
. . . ln

(
wK−1

/
wK
) )

ly=
(

lny1 . . . lnyR

)
We write the translog approximation to (6.8) with additive error term as
follows,3

ln
(
C
/

wK
)= α0+α′ ly+β ′ lw̃+ 1

2 ly′A ly+ 1
2 lw̃′B lw̃+ ly′� lw̃+ δ1t

+ 1
2 δ2t2+μ′ ly t+η′ lw̃ t+ρ1 lnz0+ 1

2ρ2 (lnz0)
2

+ψ ′ly lnz0+ ξ ′lw̃ lnz0+φ lnz0t+ z′ω+ v+ u

(6.10)

The vectors of elasticity functions (equivalent in the case of the input prices
to the share equations by Shephard’s lemma) are derived by differentiating the
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translog quadratic form:

⎡⎢⎢⎢⎣
εy

εw̃

εt

εz0

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣
α A � μ ψ

β �′ B η ξ

δ1 μ′ η′ δ2 φ

ρ1 ψ ′ ξ ′ ϕ ρ2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1
ly
lw̃
t

lnz0

⎤⎥⎥⎥⎥⎥⎦ (6.11)

The last line in this matrix equation recovers the critical elasticity of the cost
function with respect to the quasi-fixed factor, i.e., the equity capital in the case
of the banking system applications. It is the negative of this elasticity: -εzD that
measures the shadow return on equity capital.

There are several options for estimation of this stochastic frontier analysis
cost function depending on the specification adopted for the panel data com-
posed error term: vit + uit and most of these procedures are well known from
the stochastic frontier analysis literature, e.g., Kumbhakar and Lovell (2003).
Finally, we augment (6.9) by incorporating an additional vector of linear effects:
z′ω representing the risk characteristics of the environment in which the banks
operate. These effects can be incorporated in two ways: directly in the paramet-
ric translog function in (6.9) so that the effects are instrumental in setting the
location of the efficient frontier; or, alternatively, they can be used to control
the parameters of the probability density function for the inefficiency compo-
nent of the composed error term so that the effects determine the distance of
any observation from the frontier.

There are many stochastic frontier analysis studies of efficiency in banking
systems, but two that are particularly relevant to the topic of this chapter
are the papers by Boucinha et al. (2013) and Fethi et al. (2012) already cited.
Boucinha et al. (2013) used the model of stochastic frontier analysis of the cost
function with the equity capital as a quasi-fixed input to develop a produc-
tivity decomposition of the banking system in Portugal during the first years
of that country’s membership of the Euro. Fethi et al. (2012) used a similar
model to measure productivity developments in the banking system in Turkey
in the recovery from the financial crisis of 2001. They discovered that, when
the equity capital constraint is included in the productivity decomposition,
the productivity growth in banking was reduced during periods of deleveraging
because the shadow return on equity capital turned negative in those periods.

This chapter has described so far how the profitability and risks of the bank-
ing system are related to the return on equity capital, and how efficiency may be
measured in banking systems. The next section brings together these two fun-
damental concepts to analyze the measurement of competition, a key aspect of
banking regulation.
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5 Measuring competition in banking systems

There are many models for measuring competition. Recent developments in
this area include papers by Jan Boone et al. (2007) and Boone (2008). These are
based on a Cournot model of competitive rivalry, and since both models have
been applied to competition in banking systems, particularly in Europe, it is
useful to develop them in detail.

The standard Cournot oligopoly game is well known. In the general case,
with different marginal costs or different efficiencies for different entrants to
the market, we have I firms competing as Cournot rivals where each has
marginal cost: ci, i = 1 . . . I. Noting that the market price depends on the out-
puts of all firms together: (qi,q−i) where (qi) is the output of firm i and (q−i) is
the vector of outputs of the other I−1 firms, the level of profit in equilibrium
for firm i is:

πi (ci)=max
q>0

{pqi (ci)− ciqi (ci)} =max
q>0

{p(qi,q−i)qi (ci)− ciqi (ci)} (6.12)

Then by a straight forward application of the envelope theorem: dπi (ci)
/

dci =
−qi (ci)

i.e.,:

dπi (ci)
/

dci =
[(

qi
(
dp(qi,q−i)

/
dqi
))+ p(qi,q−i)− ci

]× (dqi
/

dci
)− qi (ci)=−qi (ci)

(6.13)

The term in square brackets is the firm’s marginal revenue – marginal cost con-
dition taking the output of the other firms as given – and is equated to zero at
the Cournot-Nash equilibrium.

Boone et al. (2007) and Boone (2008) develop this model in order to arrive at
a test of competition. Boone et al. (2007) argue that more intense competition
may have two forms: lower entry costs giving rise to a larger number of entrants
and more aggressive rivalry amongst incumbents arising from anti-trust or reg-
ulatory intervention. In particular, they describe two possible effects of more
competition: the selection effect whereby higher intensity of competition leads
to inefficient firms exiting the market so that measured concentration appears
to rise; and the output reallocation effect (call this ORE), whereby more compe-
tition causes output (or market share or profit) to shift relatively more to the
most efficient or lowest cost firms in the market. If the most efficient firms have
the highest price-cost margin, PCM, then the share-weighted industry average
PCM will rise with increased competition. Consequently, the two traditional
measures of competition – the Herfindhal-Hirschman index of market concen-
tration, based on the sum of squared market shares, and the price-cost margin
– may move in the counter-intuitive direction of increase when competition
intensifies.



Efficiency, Competition and the Shadow Price of Capital 155

Boone et al. (2007) and Boone (2008) use the output reallocation effect (ORE:
more competition causes output to shift relatively more to the most efficient
firms in the market) to develop monotonic tests of the strength of competition
based on the insight that “in a more competitive industry firms are punished
more harshly for being inefficient” (Boone 2008, 1246). They have two different
tests of competition; Boone et al. (2007) introduces the profit elasticity, PE: i.e.,
the percentage rise in the firm’s profit for a one percent fall in its marginal cost,
while Boone (2008) develops the relative profit difference, RPD: i.e., the relative
profits of a more efficient firm compared to those of a less efficient firm when
competition increases and the least efficient firm is the baseline comparator for
both of the other firms.

When the firms are treated as producing differentiated products the demand
curve of each firm reflects its differentiated product status and is written so that
the relationship between the market price and that firm’s own output has a
different slope from the relationship between the market price and the output
of its rivals, i.e., the goods are no longer perfect substitutes:

p(qi,q−i)= a− bqi− d
I−1∑
j�=i

qj, therefore for firm i, : b=−∂p
/
∂qi > 0;

d=−∂p
/
∂qj > 0

The parameter d requires further analysis. In Boone et al. (2007, 8, 10) it is
described as capturing the extent to which consumers see the different products
in a market as close substitutes and he states that this is a common way of
parameterizing competition in the literature.

If product differentiation gives firms some market power, then there is no
direct competition between firms; making goods closer substitutes by raising
the values of d towards b reduces this market power and intensifies competi-
tion. In Boone (2008, 1247) he refers to an analogous parameter as affecting
the aggressiveness of each firm’s conduct in the market, with higher values
signifying more aggressive conduct by other firms, e.g., following a regulatory
intervention such as a change in market structure brought about as a result of
central bank oversight of a national banking system.

For firm i, the profit maximization problem is:

max
q>0

πi =
⎡⎣a− bq− d

I−1∑
j�=i

qj

⎤⎦q− ciq (6.14)
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With first order condition for each of the I firms:

dπi
/

dq= a− 2bqi− d
I−1∑
j�=i

qj−

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩qd×

⎛⎜⎜⎜⎜⎝
d

(
I−1∑
j�=i

qj

)
dq

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭− ci = 0 i= 1 . . . I (6.15)

The fourth term in the expression for the derivative is zero by the Cournot-Nash
assumption that each firm takes the output of the other firms as given. In the
special case where d = b, i.e., homogeneous products, the first order conditions
are:

dπi
/

dq= a− 2b

⎛⎝qi+
I−1∑
j�=i

qj

⎞⎠− ci = 0⇒
⎛⎝qi+

I−1∑
j�=i

qj

⎞⎠= a− ci

2b
≡ s (ci) i= 1 . . . I

(6.16)
The industry Cournot-Nash equilibrium occurs at the simultaneous solution
of all the reaction functions:Rq = s (c) so that: q = R−1s (c). In the standard
non-differentiated products case

R=

⎡⎢⎢⎢⎢⎣
1 1

2 . . . 1
2

1
2 1 . . . 1

2
...

...
. . .

...
1
2 . . . 1

2 1

⎤⎥⎥⎥⎥⎦= 1
2

(
I+ ii′

)⇒R−1 = 2
[
I−
(

1
1+n

)(
ii′
)]

(6.17)

Therefore, the non-differentiated product Cournot-Nash model supports an
industry equilibrium in which different firms have different outputs depending
on their different marginal costs, or efficiency levels.

For differentiated products, the corresponding result is:

⎡⎢⎢⎢⎢⎢⎣
1 d

2b . . . d
2b

d
2b 1 . . . d

2b
...

. . .
. . .

...
d
2b . . . d

2b 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

q1

q2
...

qI

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣
(a− c1)

/
2b

(a− c2)
/

2b
...

(a− cI)
/

2b

⎤⎥⎥⎥⎥⎦ or

⎡⎢⎢⎢⎢⎣
2b d . . . d

d 2b . . . d
...

. . .
. . .

...
d . . . d 2b

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

q1

q2
...

qI

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣

a− c1

a− c2
...

a− cI

⎤⎥⎥⎥⎥⎦ (6.18)

Therefore once again:
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Rq= s⇒ q=R−1s but this time the matrix structure is:

R=

⎡⎢⎢⎢⎢⎢⎣
1 d

2b . . . d
2b

d
2b 1 . . . d

2b
...

...
. . .

...
d
2b . . . d

2b 1

⎤⎥⎥⎥⎥⎥⎦=
((

1−
(

d
2b

))
I+
(

d
2b

)
ii′
)

⇒R−1 =
⎛⎝ 1

1−
(

d
2b

)
⎞⎠⎡⎣I−

⎛⎝
(

d
2b

)
1+ (I− 1)

(
d
2b

)
⎞⎠( ii′

)⎤⎦
=
⎛⎝ 2b

d(
2b
d − 1

)
⎞⎠⎡⎣I−

⎛⎝ 1[
2b
d + (I− 1)

]
⎞⎠( ii′

)⎤⎦ (6.19)

In the general case of I firms:

qi = q(ci)=

(
2b
d − 1

)
a−

(
2b
d + I− 1

)
ci+

I∑
j=1

cj

(2b+ d (I− 1))
(

2b
d − 1

) i= 1 . . . I (6.20)

The derivative of this function is:

dqi

dci
= q′ (ci)=

2−
(

2b
d + I

)
(2b+ d (I− 1))

(
2b
d − 1

) i= 1 . . . I (6.21)

Therefore, for a wide range of plausible parameter values including: b > d we
expect this derivative to be negative in sign. A rise in marginal cost will lower
the firm’s output. The firm’s profits excluding fixed cost are therefore:

πi = π (ci)=
⎡⎣a− bqi (ci)− d

I−1∑
j�=i

qj
(
cj
)⎤⎦qi (ci)− ciqi (c1) i= 1 . . . I (6.22)

The comparative static effect is:

dπi

dci
= π ′ (ci)=

[
∂p

∂qi
qi (ci)+ pi− ci

]
dqi

dci
− qi (ci)=−qi (ci) < 0 (6.23)

As before, the term in square brackets is the firm’s marginal revenue – marginal
cost condition taking the output of the other firms as given, and is equated to
zero at equilibrium, giving the envelope theorem result. Although this deriva-
tive is model and parameter dependent in sign, Boone argues that for a wide
range of parameter values it will be negative and the slope will be steeper the
higher the value of the parameter d, as illustrated in Figures 6.2 and 6.3. Both
of these figures illustrate the output reallocation effect, ORE of competition in
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ln ci

ln πi

Less intensive competition 

More intensive competition 

Figure 6.2 Boone et al. (2007) indicator of competitive pressure

1

1
0

Competition intensifies

π(E ) – π(min E )

π(max E ) – π(min E )

dθ > 0, dε > 0

E  – min E

max E  – min E

Figure 6.3 Boone (2008) RPD test of the intensity of competition

switching output from inefficient to efficient firms. The more intense is the
competition, the greater is the reduction in the firm’s profits for any given
increase in its marginal cost, i.e., the more intense the competition the harsher
the punishment for inefficiency. The Boone et al. (2007) indicator of compe-
tition intensity is the parametric size of this profit elasticity with respect to
marginal cost.

Consequently, in Boone et al. (2007) the authors advocate the following
test for competitive pressure: proceed by fitting, using dynamic panel data
GMM procedures, a regression relating profitability to marginal cost and exoge-
nous variables, with the elasticity of profitability with respect to marginal cost
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varying according to the period or competition regime in place, e.g.,

lnπit = α−βt lncit+ z′itγ + εit (6.24)

The researcher may be able to compare estimates: β̂t for t = 1 . . .T to determine
different periods in which the degree of competitive pressure differed. Anal-
ogously, a similar relationship could be derived for both output and market
share:

lnqit = α−βt lncit+ z′itγ + εit (6.25)

ln

⎛⎝qi

/∑
j

qj

⎞⎠
it

= α−βt lncit+ z′itγ + εit (6.26)

In each case, the parameter (−βt) is expected to be negative and to increase in
absolute value when the intensity of competition increases. Boone et al. (2007)
applies this model in the form of (6.23) to the manufacturing sector in the
Netherlands, while Van Leuvensteijn et al. (2011) apply it in the form of (6.26)
to the loan markets of the Eurozone area banking systems and some other com-
parator countries for the period 1994–2004. Finally, Schaeck and Cihak (2014)
estimate a similar model as part of their study of the relationship of competi-
tion to stability in banking systems. Van Leuvensteijn et al. (2011) find that
there was considerable variation in the strength of competition amongst Euro-
zone banking systems in the period 1994–2004 prior to the financial crisis. They
argue that this divergence was partly attributable to the characteristics of the
different banking systems, since competition was stronger amongst commercial
banks than savings banks due to the different degrees of openness to the global
financial markets. The findings of Schaeck and Cihak (2014) produce broadly
similar results for a panel dataset covering 1995–2005. Their estimates of the
Boone profit elasticity vary across national EU banking systems in an approx-
imate range from −0.25 to −1.5, and they showed some convergence as the
period progressed.

Boone (2008) develops a similar idea, which he calls the relative profit differ-
ence, RPD. In this case, he distinguishes a measure of the firm’s efficiency Ei

so that higher efficiency shifts the total cost curve and the marginal cost curve
down. Cost C (q,E) has the properties: Cq> 0,CE ≤ 0,CqE ≤ 0, Boone (2008, 1247,
assumption 1).

Consider the model used previously and replace the marginal cost term
ci, i= 1 . . . I with the measure of efficiency4: Ei = 1

ci
, i= 1 . . . I. Boone shows that a

similar relation can be derived as before for the firm’s optimum strategy, Boone
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(2008, 1249, definition 1 and Equation (6.4)):

qi = q(Ei)=

(
2b
d − 1

)
a−

(
2b
d + I− 1

)
1
Ei
+

I∑
j=1

1
Ej

(2b+ d (I− 1))
(

2b
d − 1

) i= 1 . . . I (6.27)

Then:

dqi

dEi
= q′ (Ei)=

(
2b
d + I

)(
1
/

E2
i

)
(2b+ d (I− 1))

(
2b
d − 1

) > 0 i= 1 . . . I (6.28)

Write
I∑

j=1

1
Ej
≡ E as a general index of efficiency, and generalize the intensity

of competition parameter reflecting the price sensitivity to competing prod-
ucts to one reflecting the aggressiveness of firms’ conduct in the market; this
parameter, θ , increases the intensity of competition as it rises: it plays the role
of d in the previous model: d ≡ θ . An additional source of competition can
be expressed by an increase in the parameter controlling a downward shift in
entry costs: ε. Therefore more intense competition is represented as (i) lower
entry costs: dε > 0 or (ii) more aggressive inter-firm behavior: dθ > 0.

Equation (6.28) above is related to the output reallocation effect, ORE, which
Boone (2008) states as follows: after an increase in the intensity of competition,
the increase in output of a more efficient firm exceeds the increase of a less
efficient firm’s output. There is a similar effect for dε > 0. Parameter changes:
dθ > 0 (or dε > 0) will increase competition by raising RPD for any three firms with
E∗∗ > E∗ > E. That is,

d (RPD)

dθ
=

d
[
π(E∗∗)−π(E)
π(E∗)−π(E)

]
dθ

> 0 (6.29)

The numerator is the cost reduction achieved by a firm with efficiency level E∗∗
relative to a firm with the base efficiency level, E. The corresponding expres-
sion in the denominator is the cost reduction achieved by a firm with lower
efficiency level E∗ relative to a firm with the base efficiency level, E. Boone
(2008) definition 2 states that stronger competition increases the cost advan-
tage of the more efficient firm, and therefore that, as he puts it: “in a more
competitive industry firms are punished more harshly for being inefficient.”

The key idea is contained in Boone (2008) theorem 1, and its explana-
tion. Boone has established a relationship between the inverse relative profit
difference,5 which we will symbolize as ρ which he calls normalized profits and
the corresponding normalized efficiency, symbolized here as η:

ρ = [π (E′)−π (minE)
]
/ [π (maxE)−π (minE)] (6.30)

η= [E′ −minE
]
/[maxE−minE] (6.31)
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The relationship: ρ (η)must shift down for all values of the normalized effi-
ciency when competition becomes more intense, Boone (2008: theorem 1).
Boone suggests: plot normalized profits against normalized efficiency for the
years t and t + 1. If the area under the curve is smaller in t + 1 than it is in t,
competition has become more intense in year t + 1.

Using a diagram such as Figure 6.3 Boone represents an increase in com-
petition intensity as a lower value for the integral under the curve: ρ (η) i.e.,∫ 1

0 ρ (η)dη.
Boone’s test is a sign criterion; in an analytical model the visual compari-

son of the areas under the relative profit difference graph, or the sign of their
difference, is sufficient to determine the relative intensity of competition.

In deriving the test in this form, Boone has shown that in a sample of data,
the sample points corresponding to the situation after competition has intensi-
fied will occupy a smaller space below the space occupied by the sample points
for the situation before competition has intensified.

Duygun et al. (2015) used this approach to measure the shift in the RPD =
ρ curve directly. They collect data from econometric analyses of banking sys-
tems costs in different emerging economies, including the transition economies
that applied for entry to the European Union, in order to measure stochastic
frontier analysis efficiency, Eit, and measured profitability, πit. They used the
shadow return on equity capital as the measure of profitability. They normal-
ize the efficiency scores and the profitability measures in the form suggested
by Boone. They then identify clusters of the sample points associated with dif-
ferent periods and different competition regimes. To implement the Boone test
that more intense competition leads to a lower integral under the (inverse) RPD
plot, Duygun et al. (2015) needed to estimate upper bounds for the clusters of
the sample points corresponding to different periods or competition regimes.
To avoid distortion by outliers while ensuring that a sufficiently large number
of sample points is captured, they used polynomial quantile regressions to esti-
mate the upper bounds and the areas under the curves for each cluster. Since
the polynomial quantile regressions yield boundary estimates that depend on
the quantile regression parameters, Duygun et al. (2015) are able to estimate
the size of the Boone RPD integrals for different competition regimes and their
standard errors, as well as to use Wald tests of the hypotheses that the intensity
of competition has or has not changed from one period or regime to the next.
Figure 6.4 illustrates the approach used in this test.

In Figure 6.4, an example is shown of two samples: A with points represented
by shaded circles and B with points represented by unshaded circles. Each sam-
ple has outliers, which pull up the average regression line in sample A and pull
down the average regression line in sample B. By fitting quantile regressions, for
example at the third quartile, one can eliminate the impact of these outliers.
The broken lines in the diagram represent these quantiles with 75 percent of
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0

RPDit ≡ ρit = (π (Eit′) – π (min Eit))/(π(max Eit) – π (min Eit))

ηit = (Eit′ – min Eit) / (max Eit – min Eit)
1

Figure 6.4 The sampled relationship between normalized profit (relative profit differ-
ence) and normalized efficiency with two quantile regression lines

Source: Duygun et al. (2015).

the respective sample points lying on or below the fitted quantile regressions.
These quantile regressions also eliminate some of the apparent heteroscedastic-
ity in the full sample. Since 75 percent of the sample points in sample cluster A
occupy a smaller space below 75 percent of the sample points in sample cluster
B, the conclusion is that competition has intensified.

The polynomial quantile regression model fitted at the third quartile is:

Pr

(
ρit ≤

m=M∑
m=1

αmη
m−1
it

)
= q= 0.75 (6.32)

In the quadratic case, with a dummy variable for sample A:

DA
it =

{
0, i, t ∈ B

1, i, t ∈ A
(6.33)

Then the quadratic quantile regression line that splits the sample into clusters is

ρit = α1+α2ηit+α3η
2
it+β1DA

it +β2

(
ηit×DA

it

)
+β3

(
η2

it×DA
it

)
+ εit (6.34)

A Wald test can be used assuming that

εit ∼ N
(

0,σ 2
)

(6.35)

Applied to the coefficients of the dummy variable, this is used to evaluate the
statistical significance of the intensification of competition.

When these Boone tests are applied to panel data on banking systems,
striking results emerge. In Duygun et al. (2015) the relative profit differ-
ence indicator is used to analyze the preparation of banking systems in the
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new members of the Eurozone under the guidelines of the European Cen-
tral Bank in preparation for exposure to wider capital markets. This is shown
to be associated with increased strength of competition. This preparation for
Euro-convergence and convergence of banking systems occurred in the period
2000–2008. Duygun et al. (2015) find that using the Boone RPD test, the
changes in the integral areas shown in Figure 6.4 are consistent with increased
competition amongst these countries’ banking systems, in preparation for the
exposure to more globalized banking.

6 Conclusions and directions for future research

The purpose of this chapter can be stated quite simply. It is, firstly, to analyze
two empirically measurable building blocks in the analysis of banking systems,
i.e., the shadow return on equity capital as a measure of profitability and the
stochastic frontier analysis of the banking system cost functions as a measure
of efficiency; and, secondly, to combine these two empirical quantities, prof-
itability and efficiency, into measures of the relative strength of competition
in banking systems. I began the chapter by outlining a model of the equity
capital and borrowed funds technology for a bank meeting a target loan port-
folio in different states of the world. I formalized these ideas in a dual short run
cost function for a weakly disposable technology that permits the existence of
a non-economic region of the production set, treating the level of equity cap-
ital as the fixed or regulated input. I demonstrated that the negative of the
elasticity of cost with respect to the fixed input equity level can be interpreted
as the shadow return on the equity input by applying the envelope theorem.
Several applications of this idea to banking systems were summarized. I then
showed how to estimate this dual cost function model using a stochastic fron-
tier analysis setting with maximum likelihood estimation applied to a panel
dataset.

I then showed how the two building blocks represented by measured prof-
itability and measured efficiency can be used together to measure the strength
of competition in banking systems in different periods and different places. Fol-
lowing the analyses of Boone, I described both the profit elasticity test and the
relative profit difference test of the relative strength of competition. Each shows
that, because of the output reallocation effect, whereby more efficient banks
are better able to maintain profitability than less efficient banks when there
is an exogenous competition-enhancing shock to the relationship between
measured profitability and measured efficiency, profit elasticity and relative
profit difference can be interpreted as measures of changes in the strength of
competition.

Finally, I reported on studies of European and emerging economy banking
systems that applied these profit elasticity and relative profit difference tests to
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measuring the strength of competition in banking systems. The profit elastic-
ity test studies showed that the strength of competition varied across banking
systems depending on the relative importance of the commercial and savings
banking sectors, while the relative profit difference study showed that compe-
tition in banking systems in potential Eurozone members had been enhanced
by preparation for exposure to the global capital market.

Consider now some possible directions for future research. In this chapter, it
has been argued that three key empirical aspects of the industrial organization
approach to the analysis of banking systems are efficiency, profitability (as mea-
sured by the shadow return on equity capital) and competition, and it has been
shown that these are closely related because it is possible to use the relationship
between measured profitability and measured efficiency to measure the relative
strength of competition.

Each of these areas offers considerable scope for analytical and empirical
development. In the case of efficiency measurement, a fundamental con-
cern is the researcher’s ability to distinguish inefficiency from heterogeneity
in stochastic frontier analysis. In truth, the core of the debate is that statis-
tically there is no such thing as “inefficiency” or “heterogeneity,” there are
only random variables with probability distributions. Therefore, “inefficiency”
or “heterogeneity” are interpretative concepts imposed on particular decom-
positions of regression residuals. If one can decompose the residual into two
random variables, one of which is symmetrically distributed and which can be
treated as idiosyncratic error, and one of which is asymmetrically distributed,
then economic reasoning can be used to interpret the asymmetrically dis-
tributed random variable as “inefficiency” – provided the asymmetry is in the
right direction, i.e., positively skewed for cost data. Greene (2005) however
argues thus: suppose one can decompose the panel data residual into three ran-
dom variables – one of which is symmetrically distributed and time varying
and which can be treated as idiosyncratic error, one of which is symmetri-
cally distributed and time invariant so that economic reasoning can be used to
say it can be treated as heterogeneity, and one of which is asymmetrically dis-
tributed and time varying – then economic reasoning can be used to interpret
the asymmetrically distributed time varying random variable as “inefficiency.”
In fact, part of the stochastic frontier analysis literature that distinguishes inef-
ficiency and idiosyncratic error is simply a recasting of the original one-way
panel data econometrics which distinguished heterogeneity and idiosyncratic
error. Therefore, the development of robust models of cost functions with this
three-way decomposition of the residuals is a key area for ongoing research.
An alternative way in which to handle heterogeneity, idiosyncratic error and
inefficiency has been suggested by the stochastic non-parametric envelopment
of data approach of Kuosmanen et al. (2015). In this form of stochastic fron-
tier analysis, the residual is subjected to the usual two-way decomposition into
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inefficiency and idiosyncratic error using parametric probability density func-
tions, while the potential heterogeneity amongst economic agents is addressed
by using a non-parametric formulation of the kernel behavioral function in the
form of convex non-linear least squares, which permits each agent to have its
own form of the cost function without assuming that cost-elasticity functions
have the same parametric form across all sample observations, as is currently
done in standard stochastic frontier analysis.

Turning to the return on equity capital and the role of equity in banking
regulation, the comment by the former Governor of the Bank of England is
apposite. Prior to the financial crisis, as King describes, rising returns on equity
capital are often observed; but these are likely to have been due to increased
leveraging by banks and reliance on short term funding. King goes on to note
that, in the aftermath of the 2007–2008 financial crisis, the monetary authori-
ties in Switzerland required their major banks to aim for equity–capital ratios far
in excess of the Basel requirements and approaching 19–20 percent, just as the
banking system in Turkey was doing after their financial crisis of 2001–2002.
King’s broad answer to the banking crisis is very simple: “much, much more
equity; much, much less short term debt,” King (2010:18). However, major re-
capitalization of the banking systems around the world must impose resource
costs, both on the wider economy and on the banking system in particular.
Therefore, it is critical to include the role of equity capital as a quasi-fixed input
in the short run cost function model of banks, or to include the price of equity
capital in a long-run cost model since without either of these variables the cost
functions will suffer from omitted variable bias.

The third issue that was covered was measurement of competition, a peren-
nial topic in banking system analysis but one made even more relevant by the
liberalization of the banking sector in both developed and emerging economies.
For example, the Independent Banking Commission in the UK recommended
that both divestment and increased competition through new entry should be
policy priorities in the period following the recovery from the financial crisis of
2008. I argued that the innovative work of Jan Boone is critical in this respect.
While there are many models for measuring competition, Boone showed that
some of the most widely used could be ambiguous. His use of the generalized
output reallocation effect allowed Boone to develop unambiguous and robust
measures of the relative strength of competition. It is important to recognize
that the Boone approaches – profit elasticity and relative profit difference – do
not try to measure whether a particular market at a given date falls into one
of the economic boxes labeled: monopoly, monopolistic competition, compe-
tition and so on. Instead, starting from a well-founded model of game theoretic
behavior, Boone derives reduced-form relationships, which shift over time and
across groups of banks as the competition regime becomes relatively stronger
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or weaker. The shift in these reduced-form relationships can be econometri-
cally tested and robust conclusions drawn about whether a particular market
at a particular time has experienced a shock equivalent to deregulation or new
entry. This is likely to be a fruitful approach but the initial testing procedures
described in this chapter are still relatively unproven, need further study and
many more case study examples.

Finally, the chapter noted the Schaeck and Cihak (2014) paper, which brings
together the topic of competition studied here with research on the financial
stability of banking systems. It is interesting in this regard that the Bank of
England has established a Financial Policy Committee to operate alongside its
Monetary Policy Committee in a two-pronged attack on problems of banking
system oversight and regulation. The link between competition and financial
stability is critical and research on it is still at an early stage. One area of con-
cern is that the conventional measures of stability concentrate on the relative
volatility of market rates of return. The shadow rate of return on equity could
also play an important role here, and dynamic measures of stability have hardly
been explored at all.

Notes

This chapter is partly based on a research carried out with two colleagues, Profes-
sor Franco Fiordelisi (Durham) and Dr Nemanja Radic (Middlesex) and it draws on
some ideas presented in a paper with the same title presented at Financial Modelling
Post-2008: Where Next? Seminar 2 – Distributional Assumptions and Efficiency, School of
Management, University of St Andrews on March 21, 2013.

1. This does not imply that the market cost of equity will ever become negative since the
shadow price of equity is a lower bound for the market price.

2. The translog specification described in this chapter was specifically developed in order
to allow operation in the uneconomic region of the technology; see Kumbhakar and
Lovell (2003, 45).

3. Panel subscripts it are suppressed here for convenience.
4. In line with the standard notation in stochastic frontier analysis the symbol for

efficiency used here is E, replacing Boone’s symbol n.
5. The inverse relative profit difference is used to permit a diagrammatic interpretation

and avoid division by zero.
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7
Model-Free Methods in Valuation and
Hedging of Derivative Securities
Mark H. A. Davis

1 Introduction

Were “the quants” to blame for the financial crisis of 2008? In narrow terms the
answer appears to be “no” on the argument put forward by Alex Lipton, that
the banks that survived were using the same models as those that failed. Be that
as it may, it does seem that a contributory factor in the crisis was over-reliance
on models that, in retrospect, had insufficient credibility.

Modeling financial data is not simple: there is a great deal of it, and the styl-
ized features of financial time series – heavy tails, irregular sample paths and
stochastic volatility – make analysis difficult. In particular, direct prediction
of prices, index values etc. is essentially impossible. The author’s short paper
(Davis 2016) on classifying prediction problems puts finance at the extreme
end of the scale. In contrast to weather forecasting, another area where pre-
diction is hard, we have no physical model for economic data, so prediction
cannot be done using models with a clear scientific basis, and uncertainty can
be reduced only by diversification of portfolios. The fact that the fund man-
agement industry employs quite so many people deploying such a bewildering
variety of techniques is testament to the intractability of the problem.

There is another area of finance, however, where the degree of success has
been much greater, namely the pricing and hedging of derivative securities.
This topic was initiated by Louis Bachelier in his PhD thesis (Bachelier 1900)
but, from the economic point of view, lay dormant for 65 years before being
taken up by Paul Samuelson in the 1960s (see Samuelson 1965). Samuel-
son’s approach, following Bachelier, of modeling prices as exogenously-defined
stochastic processes was regarded as anathema by many economists of the
day, who reasonably thought that the business of economists was explain-
ing why prices are what they are, not just doing statistics. They missed the
fact that the objective, more modest but more achievable, was not to explain
the price of IBM stock but to explain the relationship between this price and
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the prices of options written on the stock. For this, the stochastic approach is
the right way, as was definitively shown by Fischer Black and Myron Scholes
in their great paper on option pricing (Black and Scholes 1973). This paper
led to an explosion of activity, both in mathematics and in trading, over the
next 25 years, leading to a complete theory of arbitrage pricing (Delbaen and
Schachermayer 2008), a whole repertoire of price models and computational
techniques (Glasserman 2003, Hull 2011, Hilber et al. 2013) and a massive
expansion of investment banking making use of this new technology. The
historical developments are traced in Davis and Etheridge (2006).

The classic approach in option pricing consists of the following three steps
when the option in question has exercise value�(S) at time T where S={S(t),0≤
t≤ T} is the underlying price path:

(i) Select a class of price models M whose sample paths and statistical proper-
ties are appropriate to the problem at hand. A model M(θ ) within this class
will be completely specified by a finite-dimensional parameter vector θ .

(ii) Using market interest rate and traded option data, calibrate the model, i.e.,
select a parameter vector θ̂ such that the model M(θ̂) minimizes the mean-
squared error between model and market prices of the traded options.

(iii) Calculate the option value p� =Eθ̂ [e−rT�(S)] as the risk-neutral discounted
expected payoff of the option under the model M(θ̂ ).

The model will also determine hedge parameters but these are less directly use-
ful as options are generally hedged on a book rather than individual basis.
Essentially, this process is a kind of interpolation procedure: we produce a
model θ̂ and a price p� that is consistent with the market in that trading at
that price alongside the existing traded options does not introduce arbitrage
within that model. How successful this process is depends on the problem.
Suppose for example that our traded options are call options maturing at
times T1 < T2 < · · · < TN = T. If �(S) = φ(STi ) for some continuous function φ
then because of the Breeden-Litzenberger formula (Section 3.1 below) all well-
calibrated models will give essentially the same value for �. Now consider the
case where � is a path-dependent option with exercise value �(S) = [XT −K]+
where XT is a weighted average, XT =∑N

1 aiSTi . Then the traded options are
missing essential information: their value only depends on the marginal distri-
butions at the corresponding exercise time whereas to price a path-dependent
option we need to know something about the joint distribution of prices at
different times. We may therefore expect the path-dependent option price to
be significantly model-dependent. The situation is if anything worse when �
is a one-touch option that pays $1 if maxt≤T St ≥ b, where b > S0, and zero
otherwise. The traded options convey very little information about sample
function behavior and we will get completely different answers depending
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on, for example, whether or not we allow for possible jumps in the sample
functions of our model.

In recent times, and particularly since the 2008 crisis, it has been seen as
essential to quantify the degree of uncertainty in option pricing occasioned by
the variety of models used. A natural question to ask is: What can we say about
the value of an option with payoff � given only current market data, i.e., prices of
underlying assets, yield curve data and prices of traded options? This is the subject
of the present chapter.

We start in Section 2 by reviewing the Black-Scholes formula and the under-
lying theory that makes it work. We draw attention in Section 2.3 to the still
under-appreciated fact that the Black-Scholes model has a certain “robustness”
in that the delta-hedging strategy can provide successful hedging even when
the true price process is substantially different from the log-normal diffusion
assumed by the model.

The starting point in extracting information about the true price process from
option data is the volatility surface, a plot (with or without interpolation) of the
Black-Scholes implied volatility as a function of the exercise time T and strike
K of traded call or put options. This is the subject of Section 3. Very early on
it was noted by Breeden and Litzenberger (1978) that the slice of the volatility
surface at fixed T determines the risk-neutral probability distribution of ST , the
underlying asset price at time T. Later, Dupire (1994) showed that, with inter-
polation, the volatility surface actually determines a complete “local volatility
model” whose marginal distributions must of course coincide with those
given by Breeden and Litzenberger. These early contributions, summarized in
Sections 3.1 and 3.2, form the basis for much of the subsequent work in this
area.

Recent contributions divide into two categories, depending on whether we
interpolate and extrapolate the given options data to give a complete volatility
surface defined for all times and strikes (t,k) ∈ [0,T]×R+ (where T is the last
exercise time for which data is available), or whether we deal directly with the
finite set σ̂ij of implied volatilities at exercise times Ti and strikes Kij. In the
former case, discussed in Section 4, we can appeal to Breeden and Litzenberger
(1978) and assume that marginal distributions are known at all exercise times
Ti, whereas in the latter case (Section 5) we have to consider, in principle, all
distributions consistent with the given data. The general objectives are (i) to
determine the range of values for the price of some non-traded option that are
consistent with absence of arbitrage, and (ii) to determine “semi-static” trading
strategies that enable such options to be hedged.

Some concluding comments will be found in Section 6.
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2 The Black-Scholes formula

It is no exaggeration to say that the history of financial economics divides
sharply into two periods, the pre- and post-Black-Scholes eras, divided by the
appearance of the paper Black and Scholes (1973) that initiated the modern
theory of option pricing. The idea is revealed in the opening sentences of the
abstract:

If options are correctly priced in the market, it should not be possible to
make sure profits by creating portfolios of long and short positions in
options and their underlying stocks. Using this principle, a theoretical
valuation formula for options is derived.

This encapsulates the basic idea, which is that – with the asset price model they
employ – insisting on absence of arbitrage is enough to obtain a unique value
for a call option on that asset. The resulting formula, (7.3) below, is certainly
the most famous formula in financial economics.

2.1 The model and formula

Let (�,F , (Ft)t∈R+ ,P) be a probability space with a given filtration (Ft) represent-
ing the flow of information in the market. Traded asset prices are Ft-adapted
stochastic processes on (�,F ,P). We assume that the market is frictionless: assets
may be held in arbitrary amount, positive and negative, the interest rate for
borrowing and lending is the same, and there is no bid–ask spread. While there
may be many traded assets in the market, we fix attention on two of them.
Firstly, there is a “risky” asset whose price process (St, t ∈ R+) is assumed to
satisfy the stochastic differential equation

dSt = μStdt+σStdWt (7.1)

with given drift μ and volatility σ . Here (Wt, t ∈R+) is an (Ft)-Brownian motion.
Equation (7.1) has the unique solution

St = S0 exp

(
(μ− 1

2
σ 2)t+σWt

)
. (7.2)

Asset St is assumed to have a constant dividend yield q, i.e., the holder receives a
dividend payment qSt dt in the time interval [t, t+dt]. Secondly, there is a riskless
asset paying interest at a fixed continuously-compounding rate r, whose value
at t≤ T is

Bt = exp(− r(T− t)).

A European call option on St is a contract, entered at time 0 and specified by
two parameters (K,T), which gives the holder the right, but not the obligation,
to purchase one unit of the risky asset at price K at time T > 0. If ST ≤ K the
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option is worthless and will not be exercised. If ST > K the holder can exercise
his option, buying the asset at price K, and then immediately selling it at the
prevailing market price ST , realizing a profit of ST −K. Thus the exercise value
of the option is [ST − K]+ = max(ST − K,0). Similarly, the exercise value of a
European put option, conferring on the holder the right to sell at a fixed price K,
is [K− ST ]+. In either case the exercise value is non-negative and, in the above
model, is strictly positive with positive probability, so the option buyer should
pay the writer a premium to acquire it. Black and Scholes (1973) showed that
there is a unique arbitrage-free value for this premium.

Theorem 1. (a) In the above model, the unique arbitrage-free value at time t < T

when St = S of the call option maturing at time T with strike K is

C(t,S)= e−q(T−t)SN(d1)− e−r(T−t)KN(d2) (7.3)

where N( · ) denotes the cumulative standard normal distribution function

N(x)= 1√
2π

∫ x

−∞
e−

1
2 y2

dy (7.4)

and

d1 = log(S/K)+ (r− q+σ 2/2)(T− t)

σ
√

T− t
, (7.5)

d2 = d1−σ
√

T− t.

(b) The function C(t,S) may be characterized as the unique C1,2 solution of the Black-
Scholes partial differential equation (PDE)

∂C

∂t
+ (r− q)S

∂C

∂S
+ 1

2
σ 2S2 ∂

2C

∂S2
− rC=0 (7.6)

solved backwards in time with the terminal boundary condition

C(T ,S)= [S−K]+. (7.7)

(c) The value of the put option with exercise time T and strike K is

P(t,S)= e−r(T−t)KN(− d2)− e−q(T−t)SN(− d1). (7.8)

The theorem is proved by showing that the call option value can be replicated
by a dynamic trading strategy investing in the asset St and in the riskless asset.
A trading strategy is specified by an initial capital x and a pair of processes �t,βt

representing the number of units of S,B respectively held at time t; the portfolio
value at time t is then Xt = �tSt + βtBt, and by definition x = �0S0 + β0B0. The
portfolio value is given by

XT = x0+
∫ T

0
�u dSu+

∫ T

0
βu dBu+

∫ T

0
q�uSu du,
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where the first integral is an Itô stochastic integral. The trading strategy is self-
financing if

�tSt+βtBt−�sSs−βsBs =
∫ t

s
�u dSu+

∫ t

s
q�uSu du+

∫ t

s
βu dBu,

implying that the change in value over any interval in portfolio value is entirely
due to gains from trade (the accumulated increments in the value of the assets
in the portfolio plus the total dividend received).

It turns out (see Hull (2011) or Davis (2010) for the complete story) that
replication is achieved, i.e., XT = [ST −K]+ when

x= C(0,S0), �t = ∂C

∂S
(t,St), βt = 1

rBt

(
∂C

∂t
+ 1

2
σ 2S2

t
∂2C

∂S2
− qSt

∂C

∂S

)

where C is given by (7.3). The main hedge parameter is the Black-Scholes delta,
the number of units of the underlying asset in the hedge portfolio Xt, given
explicitly by

�t = e−q(T−t)N(d1).

Key insights into the Black-Scholes formula are obtained by introducing a
change of measure on the underlying probability space (�,FT ,P). Define a
measure Q, the so-called risk-neutral measure by the Radon-Nikodým derivative

dQ

dP
= exp(− θWT − 1

2
θ2T).

Expectation with respect to Q will be denoted EQ. By the Girsanov theorem,
W̌ =Wt + θ t is a Q-Brownian motion, so that from (7.1) the SDE satisfied by St

under Q is
dSt = (r− q)St dt+σSt dW̌t (7.9)

so that for t< T

ST = St exp

(
(r− q− 1

2
σ 2)(T− t)+σ (W̌T − W̌t)

)
. (7.10)

Applying the Itô formula we find that, with X̃t = e−rtXt and S̃t = e−rtSt,

dX̃t =�t S̃tσ dW̌t. (7.11)

Thus (under technical conditions) e−rtXt is a Q-martingale. Let h(S) = [S−K]+
and suppose there exists a replicating strategy, i.e., a strategy (x,�,β) with value
process Xt such that XT = h(ST ) a.s. Then X̃t is a Q-martingale, and hence for t< T

Xt = e−r(T−t)EQ[h(ST )|Ft] (7.12)

and in particular
x= e−rTEQ[h(ST )]. (7.13)
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We see that x only depends on the one-dimensional distribution of ST . From
(7.10), this is a log-normal distribution. Writing (W̌T − W̌t)= Z

√
T− t where Z ∼

N(0,1), the expectation is expressed as an integral with respect to the standard
normal density; calculating it, we get the Black-Scholes formula (7.3).

2.2 Further developments

The discussion above shows that any option payoff h( · ) is priced by the dis-
counted expectation formula (7.13). By the martingale representation theorem
for Brownian motion we always have

e−rT h(ST )= e−rTEQ[h(ST )]+
∫ T

0
ψ(t)dW̌t

for some integrand ψ . Then, from (7.11) the hedge strategy � is given by �t =
ψt/σ S̃t.

Over a 20-year period following the appearance of the Black-Scholes formula
the exact relationships between absence of arbitrage, the existence of risk-
neutral measures and the ability to replicate option payoffs were worked out,
see Davis and Etheridge (2006) for an account of the historical development.
The final product (see Delbaen and Schachermayer (2008), or the compressed
accounts Schachermayer (2010), Biagini (2010)) are the two Fundamental The-
orems of Asset Pricing (FTAP) relating to a semimartingale price process St on a
given probability space (�,F ,P). FTAP-I states that existence of an equivalent
local martingale measure is equivalent to the technical no-arbitrage condition
NFLVR (“no free lunch with vanishing risk”), while FTAP-II states that there is a
martingale representation theorem, i.e., hedging strategies can be constructed
as described above, if and only if the equivalent local martingale measure is
unique.

Note that fixing the measure P is equivalent to specifying a “model” for
the price process St, in that all its finite-dimensional distributions are then
determined.

2.3 Implied volatility and market trading

What happens if we attempt to use Black-Scholes delta hedging in real mar-
ket trading? This question has been considered by several authors, including
El Karoui et al. (1998) and Fouque et al. (2000). The Black-Scholes formula
has a certain “robustness” property and can be meaningfully applied in cases
where the “real” process driving the market is far away from the stylized Black-
Scholes model (7.1). Surprisingly, it took some while for this fact to be noticed;
it is hard to imagine that the derivatives market could exist at all without some
such property, given that the price model (7.1) is known not to be a particularly
accurate representation of real financial price series.

The Black-Scholes formula (7.3) (with t = 0) has five parameters C =
C(T ,K,S0,r,σ ). The first four are “known”: (K,T) are the contract specification
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while (S0,r) are observable market data. So we can regard the formula as a map-
ping σ �→ C(σ ), taking values in the interval [e−rT [F−K]+,e−rT F) where F is the
forward price F = S0e(r−q)T . This map is increasing in σ , so if we are given the
price p of an option (determined by market trading) lying within the allowable
range, there is a unique implied volatility σ̂ satisfying p= C(σ̂ ). If the underlying
price process St actually was geometric Brownian motion (7.1) then σ̂ would be
the same, and equal to the volatility σ , for call options of all strikes and matu-
rities. Of course, this is never the case in practice, but we can examine what
happens if we naı̈vely apply the Black-Scholes delta-hedge when in reality the
underlying process is not geometric Brownian motion. Let us assume that the
“true” price model, under measure P, is

St = S0+
∫ t

0
ηtSt−dt+

∫ t

0
κtSt−dWt, (7.14)

in which ηt,κt are general Ft-measurable processes–we do not assume they are
deterministic or local coefficients of the form η(t,St) for example. Consider the
scenario of selling at time 0 a European call option at implied volatility σ̂ , i.e.,
for the price p= C(T ,S0,K,r, σ̂ ) and then following a Black-Scholes delta-hedging
trading strategy based on constant volatility σ̂ until the option expires at time
T. As usual, we shall denote C(t,s)= C(T− t,K,s,r, σ̂ ), so that the hedge portfolio,
with value process Xt, is constructed by holding�t := ∂SC(t,St−) units of the risky
asset S, and the remainder βt := 1

Bt
(Xt− −�tSt−) units in the riskless asset. This

portfolio, initially funded by the option sale (so X0 = p), defines a self-financing
trading strategy. Hence the portfolio value process X satisfies the SDE

Xt = p+
∫ t

0
∂SC(u,Su−)ηuSu−du+

∫ t

0
∂SC(u,Su−)κuSu−dWu

Now define Yt = C(t,St), so that in particular Y0 = p. Applying the Itô formula
gives

Yt = p+
∫ t

0
∂tC(u,Su−)du+

∫ t

0
∂SC(u,Su−)ηuSu−du

+
∫ t

0
∂SC(u,Su−)κuSu−dWu+ 1

2

∫ t

0
∂2

SSC(u,Su−)κ2
u S2

u−du

Thus the “hedging error” process defined by Zt := Xt−Yt satisfies the SDE

Zt =
∫ t

0
rXudu−

∫ t

0
(rSu−∂SC(u,Su−)+ ∂tC(u,Su−)+ 1

2
κ2

u S2
u−∂2

SSC(u,Su−))du

=
∫ t

0
rZudu+ 1

2

∫ t

0
�(u,Su−)S2

u−(σ̂ 2− κ2
u )du

(7.15)

where �(t,St) = ∂2
SSC(t,St), and the last equality follows from the Black-Scholes

PDE. Therefore the final difference between the hedging strategy and the
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required option payout is given by

ZT = XT − [ST −K]+ = 1

2

∫ T

0
er(T−t)S2

t−�(t,St−)(σ̂ 2− κ2
t )dt (7.16)

Equation (7.16) is a key formula, as it shows that successful hedging is quite
possible even under significant model error. It depends entirely on the relation-
ship between the implied volatility σ̂ and the true “local volatility” κt. For a call
or put option �t > 0. If we, as option writers, are lucky and σ̂ 2 > κ2

t a.s. for all
t then the hedging strategy makes a profit with probability one even though the
true price model is substantially different from the assumed model (7.1). On
the other hand if we underestimate the volatility we will consistently make a
loss. The magnitude of the profit or loss depends on the option convexity �. If
� is small then the hedging error is small even if the volatility has been grossly
mis-estimated.

3 The volatility surface

In a traded option market, prices are of course determined by supply and
demand in the market. Standardized contracts are traded and we will con-
sider a market such as the S&P500 index in which call (and put) contracts
are defined with exercise times T1, . . . ,TN and, for each Ti, a range of strikes
{Kij,1 ≤ j ≤ Mi}. The corresponding market prices and Black-Scholes implied
volatilities are denoted pij and σ̂ij. The latter define the volatility surface, which
would be flat (i.e., σ̂ij ≡ σ for all i, j) if the Black-Scholes model with volatility
σ were correct, but in reality exhibits a “smile” or a “smirk”. The reader can
consult Gatheral (2006) for detailed description. It is of course a matter of pri-
mary importance how to use this information to identify suitable models and
hedging strategies. The first step is to interpolate and extrapolate the given
finite data σ̂ij to give a continuous-parameter surface {σ̂ (t,k), t ∈ [0,TN ),k ≥ 0}
with corresponding prices p(t,k). This surface contains a surprising amount of
information, as detailed next.

NOTE: Throughout the remainder of this chapter we shall assume, purely for
ease of exposition, that interest rates and dividend yield are zero, and hence
that price processes are martingales under a risk-neutral measure. This assump-
tion is harmless since it is equivalent to assuming that we are working with
forward prices rather than spot prices, and in our framework (no interest rate
volatility) there is a one-to-one relationship between forward and spot.

3.1 The Breeden-Litzenberger formula (Breeden and Litzenberger 1978)

As mentioned above, we set interest rates and dividend yields to zero here
(or, equivalently, work in terms of forward prices). Using the risk-neutral
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representation (7.13) of prices we have

p(t,k)=
∫
R+

[s− k]+μt(ds)=
∫

(k,∞)
(s− k)μt(ds), (7.17)

where μt is the distribution function of St. Hence

∂

∂k
p(t,k)=−

∫
(k,∞)

μt(ds)= μt(k+ )− 1, (7.18)

and if μt has a density function φt then

∂2

∂k2
p(t,k)= φt(k). (7.19)

The key message is that the strip of option prices with maturity t determines
the risk-neutral distribution of St.

3.2 The Dupire equation (Dupire 1994)

Suppose the price process St satisfies a local volatility model

dSt = Stσ (t,St)dWt, t ∈ [0,TN ] (7.20)

Assume the solution of this equation has density φt(s). Then φ satisfies the
Kolmogorov forward equation

∂

∂t
φt(s)= 1

2

∂2

∂s2
(s2σ 2(t,s)φt(s)).

From (7.17)

∂p

∂t
=
∫ ∞

k

∂

∂t
φt(s)(s− k)ds

= 1

2

∫ ∞

k

∂2

∂s2
(s2σ 2(t,s)φt(s))(s− k)ds. (7.21)

Integrating by parts in (7.21) gives∫ ∞

k

∂2

∂s2
(s2σ 2(t,s)φt(s))(s− k)ds=

∫ ∞

k
− ∂
∂s

(s2σ 2φ)
∂

∂s
(s− k)ds

=−
∫ ∞

k

∂

∂s
(s2σ 2φ)ds

= k2σ 2(t,k)φt(k), (7.22)

since all the boundary terms are zero. Hence (7.21) and (7.22) give us the Dupire
equation

∂

∂t
p(t,k)= 1

2
k2σ 2(t,k)

∂2

∂k2
p(t,k).
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Rearranging this gives

σ (t,k)=
√

2∂p/∂t

k2∂2p/∂k2
. (7.23)

Remarkably, the volatility surface determines the model (7.20). This is certainly
a striking result, but it has some limitations. Although the model is produced
directly from the data, there is an a priori assumption that the model takes the
form (7.20). There is no simple test that can be applied to the data to check
whether a model in this class is appropriate. The model the formula produces is
heavily dependent on the interpolation/extrapolation algorithm used to gener-
ate the whole surface from discrete data. Finally, there is no time-consistency:
if we compute the volatility function σ (·, ·) from today’s volatility surface and
then recompute tomorrow using new data we will invariably get a different
result. In fact the main use of the Dupire formula is to produce valuations for
other options consistent with the prices of the traded options, and for that
purpose it can be very effective.

3.3 Stochastic volatility models

In view of the limitations of local volatility models of the form (7.20) there
has in recent years been a huge amount of work devoted to stochastic volatility
models in which the function σ depends on additional random factors, not just
on the price process itself. A typical example is the Heston model

dSt = μ(t)Stdt+√υt StdWt,

dυt = λ(θ −υt)dt+η√υt dZt,

where W,Z are correlated Brownian motions. The second equation is an
autonomous “CIR”-type equation generating the local variance υt. One con-
sequence of the extra randomness is that the model is no longer complete if St

and the riskless asset are the only traded assets. We need one more traded asset
to complete the market. Without it, there are multiple risk-neutral measures
and options cannot be perfectly replicated, by the second FTAP.

We do not discuss stochastic volatility models further in this chapter, refer-
ring the reader to Gatheral (2006) for an authoritative account. Rather than
following up properties of specific models, our intention here is to investigate
what more the price data can tell us about pricing without making an a priori
model choice.

4 Known Marginals

Our starting point in this section is the finite set of options data described at the
beginning of Section 3. Suppose we agree to interpolate/extrapolate, for each
exercise time Ti, the implied volatilities {σ̂ij,1≤ j≤Mi} and hence to determine,
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via the Breeden-Litzenberger formula (7.18), the risk-neutral marginal distribu-
tion μi of STi . Any risk-neutral model for the price process {St, t ∈ [0,TN ]}must be
a martingale and must respect these one-dimensional distributions. The con-
ditions under which, for a given set of measures μi, there exists a martingale
measure Q such that STi ∼ μi for each i are a special case of a more general
result of Strassen (1965). They are that the measures μi must have the same
finite mean and be increasing in convex order, i.e., for any convex function ψ the
integrals

∫
R+ ψ(s)μi(ds) must be increasing in i. Let Q be the set of martingale

measures when these conditions are satisfied. If they fail then by the FTAP there
is an arbitrage opportunity since there is no equivalent martingale measure.

Suppose we now have another contract whose exercise value at time TN is
�(St,0 ≤ t ≤ TN ), a possibly “path-dependent” function. Then the range of no-
arbitrage valuations of � is R = {EQ[�(S( · )] : Q ∈ Q}. Since Q is a convex set,
R is an interval. To determine R and give some information about hedging
strategies, a variety of techniques have been introduced.

4.1 Static replication

Consider first a simple European option maturing at time Ti with exercise value
�(S)= f (STi ) where f is a convex function. Then f :R+→R has a right derivative
f ′+(x) which is an increasing function of x∈R+, so the recipe f ′′(a,b]= f ′+(b)− f ′+(a)
defines a positive measure f ′′(dx) on B(R+), equal to f ′′(x)dx if f is C2. We then
have the second order exact Taylor formula

f (x)= f (x0)+ f ′+(x0)(x− x0)+
∫ x0

0
(y− x)+f ′′(dy)+

∫ ∞

x0

(x− y)+f ′′(dy). (7.24)

Evaluating this at x = STi , taking the risk-neutral expectation and using the
Fubini theorem, gives

EQ[f (STi )]= f (S0)+
∫ S0

0
EQ[y− STi ]

+f ′′(dy)+
∫ ∞

S0

EQ[STi − y]+f ′′(dy)

= f (S0)+
∫ S0

0
P(y)f ′′(dy)+

∫ ∞

S0

C(y)f ′′(dy) (7.25)

where C(y),P(y) are the call and put prices at strike y. Since C(y) is the strip of call
option prices obtained from the market volatility surface, and the values P(y)
are determined by put–call parity, we see that (7.25) gives a model-free evalu-
ation of the new option price. We don’t even need the Breeden-Litzenberger
formula for this. Further, by plugging x= STi into (7.24) we obtain

f (STi )= f (S0)+ f ′+(S0)(STi − S0)+
∫ S0

0
[y− STi ]

+f ′′(dy)+
∫ ∞

S0

[STi − y]+f ′′(dy). (7.26)

This is static replication: the option payoff is exactly replicated by a portfolio
consisting of cash, a static holding in the underlying asset and a weighted sum
of put and call options.
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4.2 Skorokhod embedding

We refer the reader to Hobson (2010) and Obłój (2004 2010) for comprehen-
sive expositions of this topic. Skorokhod embedding refers to the following
question: given a probability measure μ on R and a Brownian motion Bt with
B0 = 0, can we find a stopping time τ such that Bτ ∼ μ (i.e., the distribution of
Bτ is μ)? The answer is yes: let F be the distribution function for μ. Then since
B1 ∼ N(0,1), F−1(N(B1))∼ μ where N is given by (7.4). Hence the stopping time
τ = inf{t ≥ 2 : Bt = F−1(N(B1))} satisfies Bτ ∼ μ. However, this is not satisfactory
since among other things E[τ ]=∞. For applications, we need the process Bt∧τ
to be a uniformly integrable martingale (so that in particular E[Bτ ]= 0). Decades
of research on this topic have produced a cornucopia of “good” solutions, for
details of which the reader can consult the references.

The connection with finance is as follows. Suppose we have traded options
maturing at a single time T and we back out the corresponding risk-neutral
distribution μT à la Breeden-Litzenberger. Let τ be a solution of the Skorokhod
problem for μT and define St =Bτ∧(t/(T−t)). Then St is a martingale such that ST ∼
μT . We have to make the obvious modifications to the embedding procedure
so that S0 is equal to the initial asset price. Then we have created a model in a
risk-neutral measure Qτ , that correctly prices all the traded assets in the market.
Different models are created by different solutions of the Skorokhod problem.

Suppose we now have another contract with possibly path dependent payoff
�(S) at time T. We can seek to establish bounds on the value of this contract by
calculating inf{EQτ [�(S)]:τ ∈T} and sup{EQτ [�(S)] : τ ∈T}, where T indexes some
class of solutions to the Skorokhod problem. This generally has to be done on a
case-by-case basis, see for example Hobson (1998), Brown, Hobson, and Rogers
(2001), Cox and Obłój (2011ab), where the associated hedging strategies are
also studied. The technique works best in case where the payoff�(S) is invariant
under time change; for example if we have a one-touch option where �(S) is
equal to 1 if sup0<t≤T St ≥ b for some barrier b> S0 and 0 otherwise. Obviously,
this is the same event as sup0<t≤∞Bt∧τ ≥ b, so we don’t have to consider the
slightly awkward mapping from B to S. Methods based on stochastic control to
handle a wider range of problems are developed by Galichon, Henry-Labordère,
and Touzi (2014).

4.3 Optimal transport

This problem goes back to the 18th century. We first outline the origi-
nal formulation by Monge (1781) in terms of “déblais” and “remblais” in a
one-dimensional version. The physical interpretation is that we are given a pile
of soil or rubble (the déblais), with mass density f1, which we wish to transport
to an embankment (the remblais), with mass density f2 (the total mass must of
course be the same, so we can normalize to total mass = 1). Mass at x is trans-
ported to y= g(x) where g is a smooth 1–1 function; the condition under which
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the resulting mass density will indeed be f2 is

f1(x)= f2(g(x))g′(x). (7.27)

As each particle of soil moves a distance |x− g(x)|, the total work involved is

I(g)=
∫
R

|x− g(x)|f1(x)dx.

The problem is to find a rearrangement function g that requires the least work.
This problem has been the subject of extensive study (cf. Evans and Gangbo

1999, Villani 2009) ever since its introduction and is awkwardly non-linear
because of the constraint (7.27). Centuries later, Kantorovich (1942) formulated
a much simpler version in which, instead of requiring functional dependence
between x and y we specify a joint distribution of (x,y) such that the marginals
are f1 and f2. Generalizing a little from the setting above, our problem is now to
minimize a work function

I(μ)=
∫
R2

c(x,y)μ(dx,dy) (7.28)

over all probability measures μ on R2 with given marginals μ1,μ2, a constraint
we can state as∫

R2
(u(x)+ v(y))μ(dx,dy)=

∫
R

u(x)μ1(dx)+
∫
R

v(x)μ2(dx), u,v ∈ Cb(R). (7.29)

This is now an infinite-dimensional linear programming (LP) problem: mini-
mize the linear function I(g) of (7.28) subject to linear constraints (7.29). As in
the standard finite-dimensional case, there is a dual linear program

Maximize J(u,v)=
∫
R

u(x)μ1(dx)+
∫
R

v(y)μ2(dy)

subject to u(x)+ v(y)≤ c(x,y), (x,y) ∈R2.

(7.30)

Clearly J(u,v) ≤ I(μ) if (u,v) and μ satisfy the constraints, so we have “weak
duality”. In fact strong duality, i.e., supu,v J(u,v) = infμ I(μ), holds under mini-
mal technical conditions. The theory extends without difficulty to multi-period
cases where μ is a measure on Rn and (u,v) are replaced by (u1, . . . ,un).

The connection with finance is easy to see. Suppose we have an options mar-
ket with contracts maturing at times T1, . . . ,Tn. Then given prices (or implied
volatilities) for sufficiently many options we can use Breeden-Litzenberger
to determine the marginal distributions μi of the underlying price STi for
i = 1, . . . ,n. Recall that these are the marginal distributions in any risk-neutral
measure. Thus the class M of consistent risk-neutral measures Q consists of all
martingale measures on Rn having the right marginals at all Ti. The martingale
property is an additional feature not present in general optimal transport, but
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in fact is just another linear constraint. Given an option payoff �(ST1 , . . . ,STn ),
we can define

I�(Q)= EQ[�(ST1 , . . . ,STn )]=
∫
Rn
�(x)Q(dx), Q ∈M,

and one estimate of the option value could be

p� = inf
Q∈M I�(Q). (7.31)

A more direct estimate is based on the idea of sub-replication. Suppose we form
a portfolio of traded assets whose value at time 0 is p. If the portfolio value
at Tn is X(ST1 , . . . ,STn ) and X(x) ≤ �(x) for all x ∈ (R+)n then there is an obvious
arbitrage if the payoff� can be bought for less than p. So our best lower estimate
for the value of � is the value of the most expensive sub-replicating portfolio.
Recall from Section 4.1 that an arbitrary (subject to integrability conditions)
option payoff f (STi ) can be replicated exactly using the representation (7.26),
with value (7.25) completely specified by the volatility surface at exercise time
Ti. We can also, at zero cost, trade in the underlying asset at all intermediate
times. Thus candidates for sub-hedging are “semi-static” portfolios of the form

X(x1, . . . , ,xn)=
n∑

i=1

ui(xi)+
n−1∑
i=0

�i(x1, . . . ,xi)(xi+1− xi). (7.32)

The time-0 value of X is just

p(X)=
n∑

i=1

∫
R+

ui(x)μi(dx)= EQ[X] ∀Q ∈M.

The sub-replication problem is to maximize p(X) over all (u1, . . . ,un,�) such that
X(x) ≤ �(x) for all x ∈ (R+)n. Denote by p

�
the supremum of such p(X); then it

is clear that p
�
≤ p�. In fact, we have strong duality, i.e., p

�
= p�, under quite

general conditions, and there exists a Q that attains the infimum in (7.31);
these results are due to Beiglböck, Henry-Labordère, and Penkner (2013). Their
main condition is that � be a lower semi-continuous function such that

�(x)≥−κ(1+|x1|+ · · ·+ |xn|), x ∈ (R+)n,

a condition satisfied in most potential applications.
If we were to omit the martingale condition, we would get a lower value for

the infimum in (7.31). We could then look at the standard Kantorovich dual
problem (7.30), which is maximizing over X as in (7.32) but without the final
re-hedge term – so the supremum is lower. The results of Beiglböck et al. (2013)
show that the magnitudes of these effects are exactly the same.

In conventional mathematical finance, with a fixed model, it is a well-
established principle (see Föllmer and Schied 2011, Theorem 5.29) that the
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range of arbitrage-free prices of a contingent claim is equal to the set of con-
ditional expectations under all risk-neutral measures and the upper and lower
bounds of this set are given by the costs of the cheapest super-replicating and
most expensive sub-replicating strategies respectively. It is striking that this
principle extends to the model-free setting we have just described.

So far, only a few cases have been examined in detail (Hobson and Neuberger
2012, Hobson and Klimmek 2015) and general computational methods have
not been investigated. This is work in progress.

5 Option data without interpolation

In the previous section we assumed that the entire volatility surface was known
at a finite number of exercise times. This gives elegant solutions since then the
marginal distributions are determined by Breeden and Litzenberger (1978) and
the set of models consistent with this data coincides with the set of martingales
with these marginals. The basic assumption is however only credible in markets
in which a large number of strikes are traded for each exercise time, which in
practice means the big index markets such as the S&P500 or the FTSE100. In
other circumstances we have to deal directly with the finite set of option data
we actually have, i.e., the current market prices pij for European call options
with exercise time Ti and strike Kij, i= 1, . . . ,N, j= 1, . . . ,Mi. As above we assume
“frictionless trading,” i.e., no bid–ask spread, although this could, with some
pain, be included in some of the questions below.

The first question, studied by Davis and Hobson (2007), is whether arbitrage
is somehow built in to the prices pij. It turns out that there are three cases: (i) the
prices are consistent with absence of arbitrage, (ii) there is a model-independent
arbitrage, and (iii) there is a model-dependent arbitrage. Case (i) means that we
can construct a joint distribution μ for S= (S0,ST1 , . . . ,STN ) such that S0 is equal
to today’s price with probability 1, the process S is a martingale, and for each i, j

pij =
∫

(R+)N+1
[si−Kij]

+μ(ds), (7.33)

that is, the prices are expectations in a risk-neutral measure μ. In Case (ii), we
can trade at time 0 in such a way that we make an immediate profit and are left
with a portfolio whose value is always non-negative; this is an arbitrage oppor-
tunity. In Case (iii) we know we are not in Case (i), i.e., that a representation
as in (7.33) is impossible, but without further information we cannot tell what
trading strategy will realize risk-free profit. For a single time Ti the conditions
for being in Case (i) are illustrated in Figure 7.1: the linear interpolant of the
prices pij plotted against strikes Kij, j = 1, . . . ,Mi is a strictly decreasing convex
function with slope ≥−1 at the origin (we include S0 as the price of an option
with strike 0). Case (iii) arises when these conditions are met except that the
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Figure 7.1 Call prices consistent with absence of arbitrage

interpolant is not strictly decreasing; otherwise we are in Case (ii). To explain
Case (iii): this arises when we have two options with different strikes but the
same strictly positive price: pij = pi(j+1). A moment’s thought shows that there
is no possibility of representing these prices in terms of a risk-free measure as
in (7.33), but what strategy realizes the arbitrage? The answer depends on the
range of prices that have positive probability. If there is some chance that the
price will rise above Kij, sell the option with strike Ki(j+1) and buy Kij. This costs
nothing and creates a spread option whose value is always non-negative and
may be positive: an arbitrage opportunity. If, on the other hand, the price will
never exceed Kij then the arbitrage strategy is to sell either option; it will never
be exercised. Without knowing which condition applies we cannot construct a
strategy that is guaranteed to realize arbitrage.

When we consider the options at all times simultaneously, the conditions
for consistency with absence of arbitrage are easily stated when interest rate
and dividend yields are zero (or equivalently, we work in normalized prices),
Mi =M1 for all i and Kij = K1j for all i, j, i.e., we have the same set of strikes at
each exercise time. Then the prices pij are consistent with absence of arbitrage if
(a) the conditions above are met at each Ti, and (b) all “calendar spreads” with
exercise value [STi+1 −K(i+1)j]+ − [STi −Kij]+ have non-negative price. When the
strikes are not all the same at different times the condition is similar in spirit
but is somewhat complicated to state and involves all the strikes jointly (see
Davis and Hobson 2007, Theorem 4.2).

Given a set of options prices satisfying the consistency conditions, we can
determine arbitrage bounds on the prices of other options. Consider first, as in
Davis, Obłój, and Raval (2014), the situation where all options are put options
maturing at a single time T with strikes and prices (ki,pi), i= 1, . . . ,m, and we wish
to determine a lower bound on the value of a convex payoff �(ST ). At time 0 we
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can form a static portfolio of cash, the underlying asset and the traded options.
The value of such a portfolio at time T when ST = s will be

∑n
i=1 yiai(s) where

n=m+ 2 and

a1(s)= 1 (cash)

a2(s)= s (underlying)

ai+2(s)= [ki− s]+, i= 1, . . . ,m (options)

and yi is the number of units of asset i in the portfolio (we normalize to S0 = 1).
A lower bound for the value of � is the value of the most expensive sub-replicating
portfolio, and this is the solution of the semi-infinite linear program (LP)

P : sup
y∈Rn

y′b subject to y′a(s)≤�(s) ∀s ∈R+,

where y is the vector of portfolio weights yi, b is the price vector b1 = b2 =
1,bi = pi−2, i= 3, . . . ,n and a is the vector with components ai as above. For this
problem, we can apply the Karlin-Isii duality theorem of semi-infinite LP (Karlin
and Studden 1966) to conclude that the value of the primal problem P is equal
to the value of the dual LP

D : inf
μ∈M

∫
R+
�(s)μ(ds) subject to

∫
R+

a(s)μ(ds)= b,

where M is the set of positive Borel measures such that each ai is integrable.
As long as the option prices satisfy the Davis-Hobson conditions there is no
duality gap, and we always have existence in P; existence may however fail
for D. When existence holds there is a very clear interpretation of the optimal
dual measure. The optimal sub-replicating portfolio y′a(s) is piecewise linear
and is tangential to � at a finite number of points s1, . . . ,sk; the optimal mea-
sure for D takes the form μ(ds) =∑k

1αiδsi (ds), a sum of Dirac measures on the
points si. The sub-replication constraint in P is “slack” at all s /∈ {s1, . . . ,sk}, so
this characterization is analogous to the “complementary slackness” property
of finite-dimensional LPs.

The same problem but including traded options maturing at T ′ < T in addi-
tion to those maturing at T is more complicated, because then it is natural to
consider re-hedging by trading in the underlying at the intermediate time T ′.
The time-T value of the resulting “semi-static” portfolio will then take the form
(with s′ = ST ′ ,s= ST )

f (s′,s)= y1+ y2s+
∑

y′i[k′i− s′]+ +
∑

yi[ki− s′]+ +�(s′)(s− s′), (7.34)

where � defines our re-hedge strategy at T ′. Since � is a function of the contin-
uous parameter s′ we now have an infinite-dimensional decision variable and
hence a doubly-infinite LP, requiring more functional-analytic technique.
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A recent paper by Acciaio et al. (2015) has established an FTAP in this setting.
They consider an n-stage discrete-time model so that a price path s is identi-
fied with an element x ∈ � = (R+)n. Options with general payoffs {ϕi(x) : i ∈ I}
are available at (without loss of generality) zero cost, and a dynamic trading
strategy in the underlying produces a gain from trade

(� · x)n =
n−1∑
k=0

�k(x1, . . . ,xk)(xk+1− xk),

generalizing the single-period re-hedge in (7.34). There is a model-independent
arbitrage if

∑N
j=1 ajϕij (x)+ (� · x)n > 0 for some choice of indices i1, . . . , iN , trading

strategy � and constants a1, . . . ,aN . (Recall that by assumption the cost of enter-
ing this trade is zero.) Now let M be the set of probability measures Q on �
such that (i) the “process” x is a Q-martingale and (ii)

∫
ϕi dQ≤ 0 for all i ∈ I.

The conditions required for the FTAP are as follows. First, there is a convex
super-linear function g such that ϕi∗ (x) = g(xn) for some i∗ ∈ I. Second, with
m(x)=∑n

j=1 g(xj), we have for all i ∈ I

lim||x||→∞
ϕi(x)+
m(x)

<∞, lim||x||→∞
ϕi(x)−
m(x)

= 0.

This second condition rules out model-dependent arbitrage of the sort encoun-
tered in Davis and Hobson (2007). The FTAP then states that under the above
two conditions the following are equivalent:

(i) There is no model-independent arbitrage.
(ii) M �= ∅.

Some analogous results for models including bid–ask spreads have been
obtained by Dolinsky and Soner (2014). Applications to the valuation of
variance swaps are considered in Davis et al. (2014) where it turns out that
valuations implied by maximal sub-replication are surprisingly close to actual
market prices.

6 Concluding Remarks

It could be argued that the methods and results described in this chapter take
a rather extreme point of view. In order to free ourselves from the tyranny of
a specific model, represented by a probability space (�,F ,P), we have thrown
away all models, retaining only a database of current market prices, and allowed
ourselves only to make statements about price bounds that do not imply arbi-
trage of a very simple kind. How useful these statements will turn out to be
will certainly depend on the problem. Some option payoffs are well approxi-
mated by static portfolios plus some trading in the underlying, in which case
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we expect the bounds to be tight, while in other cases the option payoff is very
different to anything constructed from current puts and calls and the bounds
will be unusably large. So far the repertoire of solved cases in this area is too
small to enable us to go beyond this general comment. However, the endeavor
seems to this author to be worthwhile, in that we discover just how much is
implied by minimal assumptions, and that much turns out to be rather more
than one might expect. It also focuses attention on the deficiencies of another
extreme point of view: that one specific model is correct!

As usual, the ultimate answer may lie in some form of compromise, in which
some extra assumptions of an economic character are brought in to tighten the
bounds. This has been done with some success in the “fixed model” arena in
the literature on “good deal bounds” (Cochrane and Saá-Requejo 2000, Björk
and Slinko 2006). Here putative prices are rejected if investing in assets at
these prices together with other market-traded assets would lead to portfolios
with unrealistically high Sharpe ratios. Perhaps some such method could be
extended to the model-free arena.
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Bachelier, L. (1900). Théorie de la spéculation. Annales Scientifiques de l’Ecole Normale
Supérieure 17, 21–86.
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Föllmer, H. and A. Schied (2011). Stochastic Finance: An Introduction in Discrete Time. De

Gruyter.
Fouque, J.-P., G. Papanicolaou, and K. R. Sircar (2000). Derivatives in Financial Markets

with Stochastic Volatility. Cambridge University Press.
Galichon, A., H. Henry-Labordère, and N. Touzi (2014). A stochastic control approach to

no-arbitrage bounds given marginals, with an application to lookback options. Annals
of Applied Probability 24, 312–336.

Gatheral, J. (2006). The Volatility Surface: A Practitioner’s Guide. New York: Wiley.
Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer.
Hilber, N., O. Reichmann, and C. Schwab (2013). Computational Methods for Quantitative

Finance: Finite Element Methods for Derivative Pricing. Springer.
Hobson, D. (2010). The Skorokhod embedding problem and model-independent bounds

for option prices. In R. Carmona, E. Cinlar, E. Ekeland, E. Jouini, J. Scheinkman, and
N. Touzi (eds), Princeton Lectures on Mathematical Finance 2010, Volume 2003 of Lecture
Notes in Math. Springer.

Hobson, D. and M. Klimmek (2015). Robust price bounds for forward-starting straddles.
Finance and Stochastics 19, 189–214.

Hobson, D. and A. Neuberger (2012). Robust bounds for forward start options.
Mathematical Finance 22, 31–56.

Hobson, D. G. (1998). Robust hedging of the lookback option. Finance and Stochas-
tics 2(4), 329–347.

Hull, J. C. (2011). Options, Futures and Other Derivatives (8th ed.). Pearson Education.
Kantorovich, L. V. (1942). On the transfer of masses. Dokl. Akad. Nauk. SSSR 37, 227–229.
Karlin, S. and W. Studden (1966). Tchebycheff Systems, with Applications in Analysis and

Statistics. Wiley Interscience.
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8
The Private Information Price of Risk
Jérôme Detemple and Marcel Rindisbacher

1 Introduction

The Private Information Price of Risk (PIPR) represents the incremental price
of risk assessed when private information becomes available. The PIPR plays a
prominent role in models with private information. It determines the percep-
tion of risk for the recipient of a private information signal. It lies at the heart
of the optimal consumption-portfolio policies of such an informed agent. It
drives the return performance of an informed fund manager. It is an essential
component of the welfare gains derived by investors in professionally managed
funds.

This chapter seeks to describe the concept and provide perspective on some
of its applications. The approach adopted focuses first on discrete time, then
on continuous time models. While the concepts, results and intuitions are the
same in both types of settings, they are particularly transparent in the discrete
time framework.

In traditional economies with public information, the market price of risk
(MPR), also known as the Sharpe ratio, is the fundamental quantity that iden-
tifies the reward associated with a fundamental source of risk.1 The MPR is the
expected excess return of an asset normalized by the standard deviation of the
return. It represents the risk premium per unit risk, thus captures the reward
associated with the underlying risk, i.e., the return innovation. When private
information becomes available, the perception of risk changes. An innovation
(with zero mean) under public information, may no longer have zero mean in
light of the information collected. The change in the innovation mean is the
PIPR. It represents the incremental risk premium per unit risk in light of the
private signal.

The PIPR modifies the risk-reward trade-off embedded in an asset return.
Under private information, the Sharpe ratio of an asset has two components,
one associated with public information, the MPR, and one related to private
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information, the PIPR. The presence of the second component modifies the
return characteristics of the asset. It therefore affects the opportunity set of the
informed investor, relative an uninformed counterpart, and the eventual pay-
offs that can be achieved. Optimal choices reflect these revisions in the return
properties.

The terminology “PIPR” is introduced in Detemple and Rindisbacher (2013).
They use the notion to analyze the returns generated by an informed portfo-
lio manager and examine the implications for timing regressions. The quantity
also appears in various studies in mathematical finance dealing with insider
trading. It is usually introduced as the compensator, under an enlarged filtra-
tion, for the underlying source of risk in a return model. References include,
among others, Karatzas and Pikovsky (1996), Grorud and Pontier (1998),
Amendinger et al. (1998, 2003), Rindisbacher (1999), Ankirchner and Imkeller
(2005) and Ankirchner et al. (2006).

This compensator plays a fundamental role in the theory of enlargements
of filtrations (see Jeulin (1980), Jacod (1985), and Imkeller (1996) for an intro-
duction). The terminology “(modified) price of risk” is used by Biagini and
Oksendal (2005) to describe the MPR augmented by the PIPR. Ankirchner and
Imkeller (2005) and Ankirchner et al. (2006) introduce the terminology “insider
drift” which corresponds to the PIPR scaled by the volatility.

Section 2 examines the PIPR in discrete time models. It defines the notion
and describes some of its prominent properties, provides illustrative exam-
ples and discusses its impact on the optimal portfolio of an informed investor.
Section 3 focuses on continuous time models driven by Brownian uncertainty.
It revisits the topics examined in the discrete time setting. It also provides some
insights about tests for skill. Conclusions are in Section 4. Proofs of the main
propositions can be found in the appendix.

2 The PIPR in discrete time

2.1 Definition and properties

Consider a setting with discrete dates n ∈ N, a flow of public information F ≡
{Fn : n ∈N}, a risk free asset paying the predictable rate of return rn ∈Fn at n+ 1
and d risky assets paying the (vector of) risky rates of return Rn+1 ∈Fn+1 at n+1.
Assume that returns are square integrable (finite second moments) and that the
covariance matrix �F

n ≡ VAR
[

Rn+1|Fn
]

has full rank. Under these conditions,
excess returns Re

n+1 ≡ Rn+1− rn1d have the Doob-Meyer decomposition,

Re
n+1 = σFn

(
θFn +�WF

n

)
(8.1)

relative to the public flow of information F, where θFn is the market price of risk
(MPR), σFn is the return volatility and �WF

n is the d-dimensional vector of return
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innovations. These quantities are respectively given by,

θFn =
(
σFn

)−1 (
E
[

Rn+1|Fn
]− rn1d

)
(8.2)

σFn

(
σFn

)′ = VAR
[

Rn+1|Fn
]

(8.3)

�WF
n =

(
σFn

)−1 (
Rn+1−E

[
Rn+1|Fn

])
. (8.4)

The processes σF,θF are F-adapted.2 By construction, return innovations �WF
n

are orthogonal F-martingale difference sequences, E
[
�WF

n

∣∣Fn
] = 0, with iden-

tity covariance matrix, VAR
[
�WF

n

∣∣Fn
] = Id. The MPR is the risk premium per

unit risk in the public information flow.
Let us next examine the effects of private information on the structure of

returns. To this end, consider an (informed) investor who receives a finer flow of
information G≡ {Gn : n ∈N}, where Gn ⊃Fn for each n∈N. The flow G represents
private information. The investor with private information G has better infor-
mation than the market as he/she can distinguish more events and therefore
pursue policies that are contingent on a refined set of states. Optimal decisions
of the informed are adapted to G, but not necessarily to F as he/she may act
on events unknown to the public. The informed investor will therefore always
be at least as well off as an otherwise identical agent with public information
flow F.

In order to find the representation of returns in the private information flow
G, note that the F-return innovation can be decomposed as,

�WF
n =�WF

n −E
[
�WF

n

∣∣∣Gn

]
+E

[
�WF

n

∣∣∣Gn

]
≡�WG,F

n +E
[
�WF

n

∣∣∣Gn

]
, (8.5)

where the increment �WG,F
n ≡�WF

n −E
[
�WF

n

∣∣Gn
]

is a G-innovation. The excess
return can then be written as,

Re
n+1 = E

[
Re

n+1

∣∣Gn
]+Re

n+1−E
[

Re
n+1

∣∣Gn
]

= σFn
(
θFn +E

[
�WF

n

∣∣∣Gn

]
+�WG,F

n

)
. (8.6)

By construction, the increment process
{
�WG,F

n : n ∈N

}
is an orthogo-

nal, G-martingale difference sequence, i.e., E
[
�WG,F

n

∣∣∣Gn

]
= E

[
�WF

n

∣∣Gn
] −

E
[
�WF

n

∣∣Gn
] = 0 for all n ∈ N, with covariance matrix VAR

[
�WG,F

n

∣∣∣Gn

]
=(

σFn
)−1
�G

n

((
σFn
)′)−1

where �G
n ≡ σGn

(
σGn
)′ ≡ VAR

[
Rn+1|Gn

]
for n ∈N.

In the private information flow G, the Doob-Meyer decomposition of asset
excess returns is,

Re
n+1 = σGn

(
θGn +�WG

n

)
(8.7)
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for G-adapted processes σG,θG and return innovation �WG. Equation (8.7)
expresses all return components with respect to the information flow G. Thus,

θGn =
(
σGn

)−1 (
E
[

Rn+1|Gn
]− rn1d

)
(8.8)

σGn

(
σGn

)′ = VAR
[

Rn+1|Gn
]

(8.9)

�WG
n =

(
σGn

)−1 (
Rn+1−E

[
Rn+1|Gn

])
. (8.10)

It is of particular interest to note that the G-volatility, σG, differs from the
F-volatility, σF.

Definition 1 (Private Information Price of Risk (PIPR)) Let F,G be ordered flows
of information such that F ⊂ G and let Re

n+1 ≡ Rn+1 − rn1d be the vector of square
integrable excess returns satisfying (8.1)–(8.4). The Private Information Price of Risk
(PIPR) of the information flow G relative to the information flow F, denoted by θG,F≡{
θG,F

n : n ∈N

}
, is the predictable component of the Doob-Meyer decomposition of the

F-innovation �WF in the finer flow G. That is,

θG,F
n ≡ E

[
�WF

n

∣∣∣Gn

]
(8.11)

for n ∈ N. Excess returns have the decomposition Re
n+1 = σFn

(
θFn + θG,F

n +�WG,F
n

)
where �WG,F

n ≡ �WF
n − θG,F

n .

The PIPR θG,F associated with the information flows G,F, such that G ⊇ F,
corresponds to the compensator of the F-return innovation �WF in the private
information G. It represents the conditional mean of the F-return innovation
given G: θG,F

n ≡ E
[
�WF

n

∣∣Gn
]

for all n ∈N.
Given the definition of the PIPR and the decomposition (8.5), it follows that

the F-innovation in G satisfies �WG,F
n =�WF

n − θG,F
n and that excess returns can

be written as,

Re
n+1 = σFn

(
θFn + θG,F

n +�WG,F
n

)
. (8.12)

This expression shows that the PIPR can be interpreted as the incremental price
of risk, relative to θFn , due to the availability of the private information G. This
incremental price of risk is measured for the total risk, σFn , calculated under
information F.

The connection with the return structure (8.7) in the G-information is also
instructive. Simple algebra shows that,

θGn =
(
σGn

)−1
E
[

Re
n+1

∣∣Gn
]= (σGn )−1

σFn

(
θFn + θG,F

n

)
�WG

n =
(
σGn

)−1 (
Re

n+1−E
[

Re
n+1

∣∣Gn
])= (σGn )−1

σFn �WG,F
n .
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Hence, the G-price of risk θG is a normalized version of the total price of risk
θFn +θG,F

n for the informed associated with the risk exposure σF. Likewise, the G-
return innovation �WG

n is a normalized version of the G-innovation �WG,F
n ≡

�WF
n − θG,F

n . If risk exposures coincide, i.e., σGn = σFn , then θGn = θFn + θG,F
n and

�WG
n =�WG,F

n .
The following properties follow from the definition and relations above.

Proposition 2 (Properties of PIPR:) The PIPR has the following properties:

(i) No-arbitrage: E
[
θG,F

n

∣∣∣Fn

]
= 0

(ii) Incremental price of risk: θG,F
n = (σFn )−1

σGn θ
G
n − θFn . For return innovations

that are conditionally homoskedastic σGn =σFn =σ for some constant d×d matrix
σ , θG,F

n = θGn − θFn , i.e., the PIPR corresponds to the difference in prices of risk
relative to the flows of information G and F.

(iii) Covariance with density process: If Gn =Fn
∨
σ (G) for some m-dimensional

random vector G ∈FN ,3

θG,F
n = E

[
�WF

n
P (G ∈ dx|Fn+1)

P (G ∈ dx|Fn)

∣∣∣∣Fn

]
|x=G

≡ θG|F
n (x)|x=G . (8.13)

(iv) Representation of density process of conditional signal: The conditional
density process ZG

n,n+1 (x) ≡ P (G ∈ dx|Fn+1)/P (G ∈ dx|Fn) has the representa-
tion

ZG
n,n+1 (x)= 1+ θG|F

n (x)′�WF
n +�VF

n (x) (8.14)

where �VF (x) is an F-martingale difference sequence orthogonal to �WF for any
x ∈Rm, i.e., E

[
�VF

n (x)
∣∣Fn

]= E
[
�VF

n (x)�WF
n

∣∣Fn
]= 0 for all n ∈N.

The first property is a no-arbitrage condition. The intuition is straight-

forward. By the tower property of conditional expectations E
[
�WG,F

n

∣∣∣Fn

]
=

E
[

E
[
�WG,F

n

∣∣∣Gn

]∣∣∣Fn

]
= 0. Therefore,

E
[

Re
n+1

∣∣Fn
]= E

[
σFn

(
θFn + θG,F

n +�WG,F
n

)∣∣∣Fn

]
= σFn

(
θFn +E

[
θG,F

n

∣∣∣Fn

])
.

To ensure the absence of arbitrage opportunities under F, the F-expectation of

the excess return must be equal to σFn θ
F
n . Thus, E

[
θG,F

n

∣∣∣Fn

]
= 0. In other words,

the uninformed (i.e., publicly informed) investor cannot perceive an expected
excess return that deviates from θFn . A consequence of this property is that the
PIPR is a martingale with null expectation in the public information flow F.
Moreover, the standard measure Q is an equivalent martingale measure and
EQ
[
θFn +�WF

n

∣∣Fn
]= E

[
�WF

n

∣∣Fn
]= 0. The risk neutral formula EQ

[
Rn+1|Fn

]= rn

follows.
The second property is also discussed before the proposition. The volatil-

ity matrix σFn measures the risk exposure of the excess return given public
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information. The expression σFn θ
G,F = σGn θGn − σFn θFn represents the incremen-

tal risk premium due to private information. The PIPR therefore measures the
incremental price of risk, due to private information, for F-risk exposure σFn .

The third property is a consequence of Bayes’ law. By definition θG,F
n =

E
[
�WF

n

∣∣Gn
]
, where the expectation is calculated relative to the conditional

probability given G,Fn, P
(
�WF

n ∈ dw
∣∣G= x,Fn

)
. Bayes’ law shows that,

P
(
�WF

n ∈ dw
∣∣∣G= x,Fn

)
= E

[
P (G ∈ dx|Fn+1)|�WF

n = w,Fn
]

P (G ∈ dx|Fn)
P
(
�WF

n ∈ dw
∣∣∣Fn

)
(see appendix for details) implying,

E
[
�WF

n

∣∣∣Gn

]
= E

[
�WF

n
E
[

P (G ∈ dx|Fn+1)|�WF
n = w,Fn

]
P (G ∈ dx|Fn)

∣∣∣∣∣Fn

]

= E

[
�WF

n
P (G ∈ dx|Fn+1)

P (G ∈ dx|Fn)

∣∣∣∣Fn

]
= COV

[
�WF

n ,
�P (G ∈ dx|Fn)

P (G ∈ dx|Fn)

∣∣∣∣Fn

]
where �P (G ∈ dx|Fn) = P (G ∈ dx|Fn+1) − P (G ∈ dx|Fn). In essence, the G-
expectation is an F-expectation relative to an adjusted probability measure.
More precise information causes the investor to adjust the likelihood of the
various events by the ratio,

ZG
n,n+1 (x)=

P (G ∈ dx|Fn+1)

P (G ∈ dx|Fn)
.

Property (iii) suggests a straightforward procedure to calculate the PIPR. If the

conditional density process of the signal
{

ZG
n,n+1 (x) : n ∈N

}
is known, the PIPR

can be calculated as the conditional covariance between the density process
and the return innovation under the public information F.4 In particular, if the
signal G becomes public information at n+ 1, i.e., G ∈Fn+1, then,

θG|F
n (x)= E

[
�WF

n ZG
n,n+1 (x)

∣∣∣Fn

]
= E

[
�WF

n

∣∣∣Fn

] δx (G)

P (G ∈ dx|Fn)
dx= 0

where δx (G) is the Dirac delta with mass at x. Public knowledge of the signal at
n+ 1 implies that it has no value at n: the PIPR is null.

Property (iv) shows that the PIPR θG,F
n = θG|F

n (G) is the integrand of the mar-
tingale representation of the conditional density process in terms of the return
innovation �WF

n and the orthogonal martingale difference sequence �VF
n . If

markets are complete, the only martingale difference sequence orthogonal to
the return innovation is �VF

n = 0. In this case, the conditional density pro-
cess of the signal has the representation ZG

n,n+1 (x) = 1+ θG|F
n (x)′�WF

n . In discrete
time, the model has complete markets if and only if the information algebra Fn

has at most (d+ 1)n atoms.5 In continuous time, the market is complete if and
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only if σFn has full rank. In this case, as will be shown in Section 3, there exists
a multiplicative martingale representation of the conditional density process
of the form dZG

t,s = ZG
t,sθ

G|F
s (x)dWF

s and the PIPR is the covariation between the
log-density process and the return innovation.

2.2 Examples

Example 1: Binomial model

Assume that rn = r, a constant. Consider a recombining binomial tree over
two periods (3 dates) with state space � = {u,d}2. Public information flow is
F0 = {�,∅}, F1 =

{
�,∅,

{
u2,ud

}
,
{
d2,du

}}
and F2 = 2�, the set of all subsets of

�. The filtration is generated by the stock price, which follows a random walk
driven by return innovations Sn = S0

∏n−1
j=0 Xj+1 where Xj is an i.i.d sequence of

binary variables with probability density P
(

Xj+1 = u
∣∣Fj
) = p, P

(
Xj+1 = d

∣∣Fj
) =

1− p. The stock’s rates of return are Rn+1 = Sn+1/Sn− 1= Xn+1− 1 and therefore
i.i.d.. As E

[
Rn+1|Fn

] = (up+ d (1− p))− 1 and VAR
[

Rn+1|Fn
] = VAR

[
Xn+1|Fn

] =
p(1− p)(u− d)2, excess returns have the representation (8.1) with,

σn = 1

2

√
p(1− p)(u− d) , θFn =

pu+ (1− p)d− (1+ r)√
p(1− p)(u− d)

�WF
n =

Xn+1− (pu+ (1− p)d)√
p(1− p)(u− d))

.

The volatility process is constant, σn = σ . The market price of risk is also
constant, θFn = θF.

Suppose that the private signal is G= S2, thus reveals the stock price at date
2. It follows that,

θG,F
0 = E

[
�WF

0

∣∣∣G0

]
= E [ X1| {X1 = u,X2 = d} ∪ {X1 = d,X2 = u}]√

p(1− p)(u− d)
1S0ud(G)

+ u√
p(1− p)(u− d)

1S0u2 (G)+ d√
p(1− p)(u− d)

1S0d2 (G)− pu+ (1− p)d√
p(1− p)(u− d)

=
1
2 (u+ d)1S0ud(G)+ u1S0u2 (G)+ d1S0d2 (G)− pu− (1− p)d√

p(1− p)(u− d)

and therefore,

θG,F
0 =

(
1
2 − p

)
u+

(
1
2 − (1− p)

)
d

√
p(1− p)(u− d)

1S0ud (G)+
√

1− p

p
1S0u2 (G)−

√
p

1− p
1S0d2 (G).

(8.15)

For interpretation purposes, it is useful to distinguish two cases.
If p= 1/2 then θG,F

0 = 1S0u2 (G)−1S0d2 (G). Hence, the PIPR at time zero is null if
G= S2 = S0ud, one if G= S2 = S0u2 and minus one if G= S2 = S0d2. As the return
innovations are symmetric, the PIPR differs from zero only if the realization of
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the signal is informative about the realization of the initial return innovation.
This is the case if the stock price goes up in both periods and hence the sig-

nal reveals that X1 = u implying the realization �WF
0 =

√
1−p

p = 1 of the return
innovation. If the stock price goes down twice, the signal reveals that X1 = d

implying the realization �WF
0 =−

√
p

1−p =−1 of the return innovation.

In all other cases, i.e., if G = S2 = S0ud, the realization of the signal does
not reveal anything about the realization of X1 and therefore about the return
innovation �WF

0 . It follows that the PIPR is null.
If p �= 1/2, the increments Xn do not have a symmetric distribution. In this

case, the PIPR is positive if G= S0u2 revealing that X1= u and negative if G= S0d2

revealing that X1 = d. If G= S0ud, the PIPR is positive if p> 1/2 and negative if
p < 1/2. If p � 1/2, the state S2 = S0u2 is less likely. Therefore, knowing that
G = S0u2, so that X1 = u, is more valuable and results in a large positive PIPR.
Similarly, if p� 1/2 the likelihood of the down state is low. Knowing that G=
S0d2, hence that X1 = d, is therefore more valuable and induces a large negative
PIPR.

Finally, it is interesting to note that the realization of the PIPR does not
depend on the magnitude of the price change if the signal fully reveals the
realization of X1, i.e., if G= S0u2 or G= S0d2.

The PIPR at time one is,

θG,F
1 = E

[
�WF

1

∣∣∣G1

]
= E

[
�WF

1

∣∣∣S1 = y,y
(

1+ r+σ
(
θF+�WF

1

))
= x
]
|x=G,y=S1

= E

[
�WF

1

∣∣∣S1 = y,�WF
1 =

x
y − (1+ r)

σ
− θF

]
|x=G,y=S1

=
G
S1
− (1+ r)

σ
− θF

= R2−E [ R2|F1]√
VAR [ R2|F1]

=�WF
1 .

The PIPR at time one corresponds to the innovation relative to public informa-
tion.6 The sign of the PIPR is the sign of the innovation. As θG,F

1 = �WF
1 , the

Doob-Meyer decomposition of the return during the last period becomes,

Re
2 = σ

(
θF+�WF

1

)
= σ

(
θF+ θG,F

1

)
and the innovation for private information vanishes, �WG,F

1 =�WF
1 − θG,F

1 = 0.
This follows, because knowledge of the signal G= S2 and of the price S1 renders
the return R2= S2/S1−1 predictable, i.e. R2 ∈G1. There is no surprise in the risky
asset price change.

Example 2: Gaussian innovation

Consider a setting with conditionally independent Gaussian innovations,
P
(
�WF

n ∈ dx
∣∣Fn

) = φ (x)dx where φ (x) = exp
(−x2/2

)
/
√

2π denotes the Gaussian
density. Assume that rn = r constant and that the stock price process is Sn+1 =
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Sn exp (Rn+1) where the continuously compounded return is log (Sn+1/Sn) =
Rn+1 = r + σ (θF+�WF

n

)
with constant volatility σ and MPR θF. First assume

that G= h(SN) for some measurable one-to-one mapping h : R→R. In this case,

P (G≤ x|Fn)= P

⎛⎝σ N−1∑
j=n

WF
j+1 ≤ log

(
h−1(x)/Sn

)
−
(

r+σθF
)

(N− n)

∣∣∣∣∣∣Fn

⎞⎠
=
∫ d

(
h−1(x)

Sn
,N−n

)
−∞

φ (u)du=�
(

d

(
h−1 (x)

Sn
,N− n

))

where,

d

(
h−1 (x)

Sn
,N− n

)
= log

(
h−1(x)/Sn

)− (r+σθF) (N− n)

σ
√

N− n
≡ α (x,Sn,N− n)

σ
√

N− n

and �(·) is the standard normal cumulative distribution function. The density
function is,

P (G ∈ dx|Fn)= φ
(

d

(
h−1 (x)

Sn
,N− n

))
1

σ
√

N− n

∣∣∣∣∣∂xh−1 (x)

h−1 (x)

∣∣∣∣∣ .
Applying (iii) of Proposition 2 and using,

α (x,Sn+1,N− (n+ 1))= logh−1 (x)− logSn+1−
(

r+σθF
)
(N− (n+ 1))

= logh−1 (x)− logSn−
(

r+σθF
)
(N− n)−σ�WF

n

= α (x,Sn,N− n)−σ�WF
n

P (G ∈ dx|Fn+1)

P (G ∈ dx|Fn)
=

√
N− n√

N− (n+ 1)

φ
(
α(x,Sn+1,N−(n+1))
σ
√

N−(n+1)

)
φ
(
α(x,Sn,N−n)
σ
√

N−n

)

=
√

N− n√
N− (n+ 1)

φ

(
α(x,Sn,N−n)−σ�WF

n
σ
√

N−(n+1)

)
φ
(
α(x,Sn,N−n)
σ
√

N−n

)
(

w−α (x,Sn,N− n)/σ√
N− (n+ 1)

)2

+w2 = N− n

N− (n+ 1)

(
w− α (x,Sn,N− n)

σ (N− n)

)2

+
(
α (x,Sn,N− n)

σ
√

N− n

)2
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gives,

θG|F
n (x)=

√
N− n√

N− (n+ 1)
E

⎡⎢⎢⎣�WF
n

φ

(
α(x,Sn,N−n)−σ�WF

n
σ
√

N−(n+1)

)
φ
(
α(x,Sn,N−n)
σ
√

N−n

)
∣∣∣∣∣∣∣∣Fn

⎤⎥⎥⎦
=

√
N− n√

N− (n+ 1)

1

φ
(
α(x,Sn,N−n)
σ
√

N−n

)E

[
�WF

n φ

(
α (x,Sn,N− n)−σ�WF

n

σ
√

N− (n+ 1)

)∣∣∣∣∣Fn

]

=
√

N− n√
N− (n+ 1)

1

2πφ
(
α(x,Sn,N−n)
σ
√

N−n

) ∫ ∞

−∞
we
− 1

2

(
w−α(x,Sn ,N−n)/σ√

N−(n+1)

)2− 1
2 w2

dw

=
√

N− n√
N− (n+ 1)

1

2πφ
(
α(x,Sn,N−n)
σ
√

N−n

) ∫ ∞

−∞

we
− 1

2
N−n

N−(n+1)

(
w− α(x,Sn ,N−n)

σ (N−n)

)2− 1
2

(
α(x,Sn ,N−n)
σ
√

N−n

)2

dw

=
√

N− n√
N− (n+ 1)

1√
2π

∫ ∞

−∞
we
− 1

2
N−n

N−(n+1)

(
w− α(x,Sn ,N−n)

σ (N−n)

)2

dw= α (x,Sn,N− n)

σ (N− n)
.

The PIPR, for G= h(SN), is,

θG,F
n = α (SN ,Sn,N− n)

σ (N− n)
= log(SN/Sn)−

(
r+σθF) (N− n)

σ (N− n)
.

It is positive (negative) if the realization of the compounded rate of return is
above (below) its expected value.

For n= N− 1, the PIPR becomes,

θG,F
n = α (SN ,SN−1,1)

σ
= log(SN/SN−1)−

(
r+σθF)

σ
=�WF

1

and the innovation for private information vanishes, �WG,F
1 = �WF

1 − θG,F
1 =

0. The private signal G = SN and public information SN−1 reveal the return
RN = log(SN/SN−1), i.e., RN−1 ∈ GN−1. There is perfect foresight about the next
return realization. Using Bayes’ rule, the conditional probability of the return
innovation given the realization of the signal becomes,

P
(
�WF

N−1 ∈ dw
∣∣∣G= x

)
= P

(
G ∈ dx|�WF

N−1 = w
)

P (G ∈ dx)
P
(
�WF

N−1 ∈ dw
)

= δ
(
logx− SN−1−

(
r+σθF+w

))
φ
(
α(x,S0)

σ
√

N

) |∂xα(x,S0)|
σ
√

N

φ (w)dw

where δ (·) is the Dirac-delta function at zero. This conditional probability
measure is singular. Given the local singularity and the absence of risk, an
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equivalent martingale measure cannot exist on the enlarged flow of infor-
mation G. From the fundamental theorem of asset pricing, establishing the
equivalence between the absence of arbitrage opportunities and the existence
of an equivalent martingale, it then follows that an informed investor can find
arbitrage opportunities. The optimal portfolio choice problem is ill-posed and
does not have a solution.7

Singularities and arbitrage opportunities can be avoided by adding noise to
the signal. If G= h (SN)+ζ for some independent random variable ζ with density
fζ (·),

P
(
�WF

N−1 ∈ dw
∣∣∣G= x

)
= fζ

(
logx− SN−1−

(
r+σθF+w

))
φ
(
α(x,S0)

σ
√

N

) |∂xα(x,S0)|
σ
√

N

φ (w)dw.

In this case, the conditional probability of the return innovation given the
signal remains equivalent to the unconditional probability. An equivalent mar-
tingale measure exists and the portfolio choice problem of the informed is
well defined. Information remains sufficiently imprecise to preclude arbitrage
opportunities even in the last period.

2.3 Optimal informed portfolio and PIPR

In order to illustrate the relation between the optimal portfolio of an informed
investor and the PIPR, we focus on an extension of the standard setting in
informational economics (e.g., Grossman and Stiglitz (1980)) to arbitrary dis-
tributions. The model has one period (two dates) and d+ 1 assets, d risky stock
and a riskless asset. The rate of return on the riskless asset is r. The vector of
excess returns on the stocks is Re

1= σF0
(
θF0 +�WF

0

)
where�WF

0 is a d-dimensional
random variable with arbitrary distribution and θF0 is the d-dimensional market
price of risk. The coefficient σF0 is a d × d matrix of risk exposures, which is
assumed to be invertible. There are no restrictions on asset positions. Public
information is the trivial algebra.

The informed investor has information set G = G0 and von Neumann-
Morgenstern preferences with constant absolute risk averse utility function.
Thus, UG

0 = −E
[

exp(−AX1)|G0
]

where A > 0 is the absolute risk aversion coef-
ficient and X1 is terminal wealth. Initial wealth is X0. The informed invests π0

in the risky stocks and the remainder X0−π ′01 in the riskless asset. Thus, termi-

nal wealth is X1 = X0 (1+ r)+π ′0σF0
(
θF0 + θG,F

0 +�WG,F
0

)
, where excess returns are

expressed relative to the private information.
Substituting final wealth in the utility function gives,

UG
0 =−exp

(
−A
(

X0 (1+ r)+π ′0σF0
(
θF0 + θG,F

0

))
+ κ0

(
−A
(
σF0

)′
π0

))
where κ0 (τ ) ≡ logE

[
exp
(
τ ′�WG,F

0

)∣∣∣G0

]
denotes the cumulant generating func-

tion of the return innovation for the enlarged information set G. Maximizing
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expected utility is therefore equivalent to solving,

max
π0∈G0

{
A
(
π ′0σF0

(
θF0 + θG,F

0

))
− κ0

(
−A
(
σF0

)′
π0

)}
.

The cumulant generating function is a strictly convex function. The optimal
portfolio of the informed is therefore,

πG
0 =

1

A

((
σF0

)′)−1

J0

(
−
(
θF0 + θG,F

0

))
(8.16)

where J0 (x)=− [∂κ0]−1 (x) denotes the inverse of the derivative of the cumulant
generating function.8

Suppose that the conditional distribution of the innovation �WG,F
0 is given

by an exponential family with natural parameterization ϑ . In this case, the
gradient of the cumulant generating function is connected to the mean
of the sufficient statistic for the parameters of the distribution, ∂κ0 (τ ) =
Eτ+ϑ

[
T
(
�WG,F

0

)∣∣∣G0

]
, where the right hand side is the expected value of the

sufficient statistic T (·) for the parameter ϑ , under the local parameter shift ϑ+τ .
It follows that the optimal portfolio is obtained by evaluating the negative of

the inverse of the parameter map τ �→ Eϑ+τ
[

T
(
�WG,F

0

)∣∣∣G0

]
at −

(
θF0 + θG,F

0

)
. It

is therefore fully determined by the parameters of the mean of the sufficient
statistic for the parameter of the innovation.

For conditionally Gaussian innovation, as in the standard informational eco-
nomics model, the cumulant generating function is quadratic, κ0 (x) = 1

2‖x‖2,

and J0

(
−
(
θF0 + θG,F

0

))
= θF0 +θG,F

0 is linear. Alternatively, a sufficient statistic for

the mean ϑ = 0 is T
(
�WG,F

0

)
=�WG,F

0 and Eϑ+τ
[
T
(
�WG,F

0

)]
= τ . Evaluating the

negative of the inverse map at the point −
(
θF0 + θG,F

0

)
also gives θF0 + θG,F

0 . The
resulting optimal portfolio of the informed is,

πG
0 =

1

A

((
σF0

)′)−1 (
θF0 + θG,F

0

)
≡ πF

0 +πG,F
0 . (8.17)

It has a mean-variance structure, with two components. The component πF
0

represents the asset allocation based on public information. The component
πG,F

0 is the incremental allocation due to private information. The latter is fully
determined by the PIPR. It vanishes when private information has no value
(θG,F

0 = 0).

3 The PIPR in continuous time

3.1 Definition and properties

Consider a typical continuous time setting where uncertainty is described
by a standard Brownian motion WF defined on a complete probability space
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(�,F ,P). The public filtration F is the filtration generated by WF. Consider a
risky asset with price evolving according to,

dSt

St
= rtdt+σt

(
θFt dt+ dWF

t

)
, S0 given (8.18)

where rt is the risk free rate, σt ≡ σFt is the asset return volatility, θFt is the market
price of WF-risk and

(
r,σ ,θF

)
are progressively measurable processes. The excess

return process is dRe
t = σt

(
θFt dt+ dWF

t

)
.

Private information consists of a signal G which is FT ⊗ σ (ε)-measurable,
where ε is an independent random variable representing noise. The informed
filtration G is the enlargement of F by this private signal, G= F

∨
σ (G), where

σ (G) is the sigma-algebra generated by G.9 The filtrations F and G are ordered:
G⊇ F. Excess returns have the representation dRe

t = σGt
(
θGt dt+ dWG

t

)
in G.

In this setting, the PIPR is defined as follows,

Definition 3 In the continuous time setting described above, where public informa-
tion is carried by the filtration F= {Ft : t ∈ [0,T]} generated by the Brownian motion
WF, the PIPR associated with the augmented filtration G= σ (G)∨F is,

θG,F
t = lim

h→0

1

h
E
[

WF
t+h−WF

t

∣∣∣Gt

]
= lim

h→0

1

h
E
[
�WF

t,t+h

∣∣∣Gt

]
(8.19)

for all t ∈ [0,T]. The excess return process is dRe
t = σFt

((
θFt + θG,F

n

)
dt+ dWG,F

t

)
where

dWG,F
t = dWF

t − θG,F
n dt is a G-Brownian motion. Moreover, σG = σF = σ and WG,F =

WG so that dRe
t = σt

((
θFt + θG,F

n

)
dt+ dWG

t

)
.

The continuous time PIPR is the limit of the discrete time PIPR E
[
�WF

t,t+h

∣∣∣Gt

]
normalized by the length of the time interval h. It corresponds to the intensity
of the compensator of the F-return innovation dWF in the private information
G: θG,F

t dt≡ E
[

dWF
t

∣∣Gt
]

for all t ∈ [0,T].
There are two notable differences between the continuous time and discrete

time models. In the continuous time Brownian setting, the quadratic variation
and the volatility coefficient are defined independently of the filtration used
for the Doob-Meyer decomposition. This follows because quadratic variation
is a function of observations, d

[
Re
]

t = d
(
Re

t

)2 − 2Re
t dRe

t . Expressing the excess

return under each of the two filtrations gives d
[
Re
]

t =
(
σGt
)2

dt= (σFt )2 dt, so that∣∣σGt ∣∣ = ∣∣σFt ∣∣. This holds for all t ∈ [0,T], implying
∣∣σG∣∣ = ∣∣σF∣∣. If σG = σF = σ ,

then dWG,F
t − dWG

t =
(
θFt + θG,F

t − θGt
)

dt for t ∈ [0,T], and, because WG,F,WG are

G-Brownian motions, E
[

dWG,F
t − dWG

t

∣∣∣Gt

]
=
(
θFt + θG,F

t − θGt
)

dt = 0 for t ∈ [0,T].

Thus, θGt = θFt + θG,F
t and dWG,F

t = dWG
t for t ∈ [0,T] (i.e., WG,F = WG). If σG

=−σF =−σ , then dWG,F
t + dWG

t =
(
θFt + θG,F

t + θGt
)

dt and E
[

dWG,F
t + dWG

t

∣∣∣Gt

]
=(

θFt + θG,F
t + θGt

)
dt = 0 for t ∈ [0,T]. Thus, θGt =−

(
θFt + θG,F

t

)
and dWG,F

t =−dWG
t
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for t ∈ [0,T]. Redefining dWG
t =−dWG

t and θGt =−θGt leads to the same result as
in the first case.

The relations in the continuous time Brownian model, between the volatil-
ities and the Brownian motions under the filtrations G and F, are the same
as in a discrete time model with homoskedastic conditional variance (Proposi-
tion 2, (ii)). This property is intuitive. As the quadratic variation is an intrinsic
property of a Brownian martingale, it does not change with the filtration.

The next proposition summarizes the properties of the PIPR in a continuous
time model.

Proposition 4 (Properties of PIPR) The PIPR has the following properties:

(i) No-arbitrage: E
[
θG,F

t

∣∣∣Ft

]
= 0

(ii) Incremental price of risk: θG,F
t = θGt − θFt .

(iii) Covariation with log-density process: If Gt = Ft
∨
σ (G) for some m-

dimensional random vector G ∈FN ,

θG,F
t =

d
[
log P(G∈dx|Ft)

P(G∈dx) ,WF
]

t

dt |x=G
≡ θG|F

t (x)|x=G (8.20)

(iv) Representation of density process of conditional signal: The conditional
probability density process has the representation,

P (G ∈ dx|Ft)= P (G ∈ dx)E
(∫ ·

0
θG|F

v (x)dWv

)
t

(8.21)

where E (M·)t ≡ exp
(

Mt− 1
2 [M]t

)
denotes the stochastic exponential. It follows

that

θ
G|F
t (x)=Dtlog

P (G ∈ dx|Ft)

P (G ∈ dx)
(8.22)

where Dt denotes the Malliavin derivative operator.

The interpretation of the no-arbitrage property E
[
θG,F

t

∣∣∣Ft

]
= 0 and of the

PIPR as a compensation for incremental risk is the same as in the discrete
time model. The representation property in (iv) follows from the F-martingale
property of the conditional measure P (G ∈ dx|Ft) and the Clark-Ocone formula
(see the proof in the appendix for details). The covariation representation in
property (iii) is an immediate consequence of (iv).

It is also interesting to note that the PIPR is related to the conditional proba-
bility of the fundamental source of uncertainty WF· . To see this, use Bayes’ rule
to write,

P
(

WF· ∈ dω
∣∣G= x

)
P
(
WF· ∈ dω

) = P (G ∈ dx|Ft)

P (G ∈ dx)
= E

(∫ ·

0
θG|F

v (x)dWF
v

)
(8.23)
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where the second equality follows from the representation property (iv). The

conditional density process E
(∫ ·

0 θ
G|F
v (x)dWF

v

)
, therefore defines a conditional

Wiener measure. That is, it defines the distribution of WF conditional on the
realization G = x, the numerator on the left hand side of (8.23). Viewed from
this perspective, the change of information from F to G, is closely related to a
change in beliefs. The Brownian motion WG,F· is a Brownian motion under the
conditional Wiener measure evaluated at the true realization of the signal x=G.
The PIPR is therefore determined by the disagreement between the conditional
and the unconditional Wiener measures. When the two agree, information has
no value and θG|F (x)= 0.

The notion that the PIPR quantifies the information content of the signal can
be strengthened by looking at entropy. Define the conditional Wiener measure
Px (dω)≡P (dω|G= x), i.e., the measure on Brownian paths conditional on G= x.
The relative entropy, or Kullback-Leibler (KL) divergence, of the unconditional
Wiener measure with respect to the conditional Wiener measure is,

DKL
(
P||Px)≡ E

[
log

dP

dPx

]
= 1

2
E

[∫ T

0
‖θG|F

v (G)‖2dv

]
.

The divergence measure DKL (P||Px), also called the information gain, quantifies
the discrepancy between the unconditional and conditional measures.10 It is
fully determined by the PIPR. Moreover, given a signal realization, divergence
is large if and only if the absolute value of the PIPR is large. This property is
natural given the interpretation of the PIPR as the incremental price of risk
associated with the private information signal.

3.2 Examples

3.2.1 Example 1: Noisy level signal

Consider the price model (8.18) with constant coefficients
(
r,σ ,θF

)
. Sup-

pose that the private signal G = ST−h,Tζ with ST−h,T = ST/ST−h and with ζ =
exp
(
σζWζ

1 − 1
2σ

2
ζ

)
an independent random variable such that E [ζ ] = 1, E

[
logζ

]
= − 1

2σ
2
ζ and VAR

[
logζ

] = σ 2
ζ . The signal G provides noisy information about

the growth rate of the price between T − h and T. Equivalently, it provides
noisy information about the level of the terminal price. To simplify notation,
let E [ ·|Fv]≡ Ev [·]. The conditional density of the signal, for v ∈ [T− h,T), given
Yτi =Gi is,

pG
v (x)≡ ∂xPv (G≤ x)= ∂xPv

(
log
(
ST−h,T

)+σζWζ
1 ≤ log(x)+ 1

2

(
σ 2
ζ

))
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= ∂xPv

⎛⎝ log
(
Sv,T

)−Ev
[
log
(
Sv,T

)]+σζWζ
1√

VARv
[
logG

] ≤ d (x,v)

⎞⎠

= ∂x�

⎛⎝ logx−Ev
[
logG

]√
VARv

[
logG

]
⎞⎠= 1

x
√

VARv
[
logG

]φ (d (x,v))

where d (x,v)≡ (logx−Ev
[
logG

])
/
√

VARv
[
logG

]
and use was made of,

Ev
[
log
(
ST−h,T

)]= logST−h,v+
(

r+σθF− 1

2
σ 2
)
(T− v)

log
(
ST−h,T

)−Ev
[
log
(
ST−h,T

)]= log
(
Sv,T

)−Ev
[
log
(
Sv,T

)]
Ev
[
logG

]= Ev
[
log
(
ST−h,T

)]− 1

2
σ 2
ζ , VARv

[
logG

]= σ 2 (T− v)+σ 2
ζ .

As θG|F
v (x)= d

[
logp·(x),WF·

]
v /dv (Proposition 4 (iii)) it follows that,

θG|F
v (x)= d

[
pG· (x),WF·

]
v

pG
v (x)dv

= −φ′ (d (x,v))

φ (d (x,v))
√

VARv
[
logG

] d
[
logST−h,·,WF·

]
v

dv

= σ
(

logx−Ev
[
logG

]
VARv

[
logG

] )
(because φ′(x)=−xφ (x) and d

[
logST−h,·,WF·

]
v = σdv) and

θG,F
v ≡ θG|F

v (G)= σ
(

logG−Ev
[
logG

]
VARv

[
logG

] )
. (8.24)

Formula (8.24) is the continuous time, noisy version of the PIPR in the discrete
time model with Gaussian innovations. The sign of the PIPR depends on the
scaled innovation logG−Ev[logG]

STDv[logG] . It is large when the scaled return innovation

and/or the ratio σ/STDv
[
logG

]
is large. As VARv

[
logG

] = σ 2 (T− v)+σ 2
ζ , the PIPR

explodes in the absence of noise (σ 2
ζ = 0) as time T approaches and uncertainty

about the signal is resolved. Without noise, information becomes so valuable
that the PIPR goes to ±∞. This behavior reflects the emergence of an arbitrage
opportunity in the limit.11

This property is also reflected by the KL divergence measure of the signal. The
relative entropy (see Detemple and Rindisbacher (2013) for a proof) is,

DKL

(
P||PG

)
=
√√√√1+

(
σ
√

h

σζ

)2

(8.25)

Relative entropy is deterministic and large if the signal-to-noise ratio σ/σζ is
large, i.e., if the volatility of the stock price is high and/or if the standard
deviation of the signal noise is small.
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3.2.2 Example 2: Noisy directional signal

Consider a setting where the price process is the same as in Example 1, but the
noisy signal is a directional signal given by,

G= g(ST ,ζi)= sign
(
logST−h,T

)
sign

(
ζ −F−1

ζ (p)
)

(8.26)

where sign(x) = 1{x>0} − 1{x≤0} is the sign of x and ζ is an independent noise
component with survival function Fζ (x)= P (ζ > x). The signal G indicates the
correct direction of the stock price with probability p. A skilled investor is an
investor with p> 1/2. Perfect directional forecasting ability corresponds to the
case p= 1.

Let Pv (E)≡ P (E|Fv) and ST−h,T = ST/ST−h. The conditional distribution of the
signal for v ∈ [T− h,T) is,

pG
v (y)≡ Pv (G= y)= (Pv

(
logST−h,T > 0

)
p+Pv

(
logST−h,T ≤ 0

)
(1− p)

)
1y=1

+ (Pv
(
logST−h,T > 0

)
(1− p)+Pv

(
logST−h,T ≤ 0

)
p
)

1y=−1

= (p+ (1− 2p)Pv
(
logST−h,Ti ≤ 0

))
1y=1

+ (1− p+ (2p− 1)Pv
(
logST−h,T ≤ 0

))
1y=−1

= (p1y=1+ (1− p)1y=−1
)+ ((1− 2p)1y=1+ (2p− 1)1y=−1

)
�
(
d
(
ST−h,v,v

))
= (p1y=1+ (1− p)1y=−1

)+ (1− 2p)
(
1y=1− 1y=−1

)
�
(
d
(
ST−h,v,v

))
= (p1y=1+ (1− p)1y=−1

)+ (1− 2p)y�
(
d
(
ST−h,v,v

))
for y ∈ {−1,1}

where

d
(
ST−h,v,v

)≡ −Ev
[
logST−h,T−h

]√
VARv

[
logST−h,T

] = − logST−h,v−Ev
[
logSv,T

]√
VARv

[
logSv,T

] .

Using d
[
�
(
d
(
ST−h,·,v

))
,WF·

]
v /dv=−φ (d (ST−h,v,v

))
/
√

T− v≡−g
(
ST−h,v,v

)
and

d
[
logX·,W·

]
v = d

[
X·,WF·

]
v /Xv, gives,

θG,F
v = θG

v (G)=
d
[
logpG· (x) ,W·

]
v

dv |x=G
= 2sg

(
ST−h,v,v

)
Hv (G)

where s≡ p− 1/2 measures skill and where

Hv (y)≡ ypG
v (y)

−1 = y

[
1

2
+ s
(
2y
(
1−�(d (STi−1,v,v

)))+ 1y=−1− 1y=1
)]−1

.

For the directional signal, the KL divergence measure becomes (see Detemple
and Rindisbacher (2013) for a proof),

DKL

(
P||PG

)
= exp

⎛⎝p logp+ (1− p) log(1− p)−
∑

z∈{−1,1}
logpG

T−h (z)p
G
T−h (z)

⎞⎠
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where the conditional density of the signal is,

pG
T−h (z)≡ 2(1−�(d (1,T− h)))s (1z=1− 1z=−1)+ (1− p)1z=1+ p1z=−1

for z ∈ {−1,1}. The value of information is seen to be high if the probability of
making a correct forecast p and therefore the skill level s= p− 1/2 is high.

3.3 Optimal informed portfolio and PIPR

Consider an investor with information G and logarithmic utility U0 =
E
[

logXT |G0
]
. Letting bT ≡ exp

(∫ T
0 rsds

)
, it is easy to verify that discounted

terminal wealth satisfies,

XT

bT
= X0+

∫ T

0

Xs

bs
π ′sσs

(
θGs ds+ dWG,F

s

)
and that,

logXT = logX0+ logbT +
∫ T

0
π ′sσs

(
θGs ds+ dWG,F

s

)
− 1

2

∫ T

0
‖π ′sσs‖2ds.

It follows that,

UG
0 = logX0+ logbT + 1

2
E

[∫ T

0
‖θGs ‖2ds

∣∣∣∣G0

]
− 1

2
E

[∫ T

0
‖σ ′sπs− θGs ‖2ds

∣∣∣∣G0

]
.

The optimal portfolio of the logarithmic investor is the one that minimizes the
last term of UG

0 , that is,

π∗t =
(
σ ′t
)−1
θGt =

(
σ ′t
)−1
θFt +

(
σ ′t
)−1
θG,F

t .

The optimal portfolio has a mean-variance structure with two components. The
first component, πF,∗

t ≡ (σ ′t )−1
θFt , exploits all diversification benefits given pub-

lic information. Optimal private information trading is captured by the second

component, πG,∗
t ≡ (σ ′t )−1

θG,F
t . Given the no-arbitrage property, E

[
θG,F

t

∣∣∣Ft

]
= 0,

information trading perceived by the public vanishes on average, E
[
πG

t

∣∣Ft
]= 0.

The optimal utility of the informed investor with private information G can
be expressed in terms of the utility of an uninformed investor with same pref-
erences and initial wealth, but using public information F for decision making.
Specifically,

UG,∗
0 = E

[
logX0+ logbT

]+ 1

2
E

[∫ T

0
‖θGs ‖2ds

]
=UF,∗

0 +DKL

(
P||PG

)
.

where UF,∗
0 =E

[
logX0+ logbT

]+ 1
2 E
[∫ T

0 ‖θFs ‖2ds
]

is the optimal uniformed utility

and UG,∗
0 the optimal informed utility. The welfare difference between the two

agents is the KL divergence measure. This welfare decomposition result depends
crucially on the no-arbitrage property of the PIPR. It shows that the utility gain
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of an informed log-investor is large if and only if the relative entropy of the sig-
nal is large. An informed investor who has a mutually exclusive choice between
J different signals

{
Gj : j= 1, . . . ,J

}
, will optimally choose the signal with the

largest information gain as measured by the relative entropy measure. The

optimal signal is given by, Gj∗ = argsup{Gj:j=1,...,J}DKL

(
P||PGj

)
.12

3.4 Testing for skill

Given the additive structure of the optimal portfolio π∗t = πF,∗
t + πG,∗

t where
πF,∗

t = (σ ′t )−1
θFt and πG,∗

t = (σ ′t )−1
θG,F

t , the expected excess return of an informed
trader, conditional on public information, is given by,

E

[
dXt

Xt
− rtdt

∣∣∣∣Ft

]
= E

[
‖θGt ‖2

∣∣∣Ft

]
dt= ‖θFt ‖2dt+E

[
‖θG,F

t ‖2
∣∣∣Ft

]
dt

where we used the fact that ‖θFt ‖2 is Ft-measurable and where the first com-
ponent ‖θFt ‖2dt represents the expected excess return achieved on the basis
of public information. It follows, from this expression, that an informed
investor is perceived by the public to be skilled if and only if θG,F

t �= 0. If
θG,F

t �= 0, the incremental expected excess return generated by informed trading

is E
[
‖θG,F

t ‖2
∣∣∣Ft

]
dt> 0.

The presence of skill associated with private information introduces the tim-

ing factor E
[
‖θG,F

t ‖2
∣∣∣Ft

]
dt in the regression representation of the portfolio

excess return. Tests for the presence of skill can therefore be implemented as
tests of significance of this timing factor. The structural market timing model
developed in Detemple and Rindisbacher (2013) derives the timing factor from
the optimal trading strategy of the informed investor. Their analysis extends
the timing regression models for skill found in the earlier literature, such as
the level forecast model pioneered by Treynor and Mazuy (1966) and the direc-
tional model introduced by Merton (1981) and Henriksson and Merton (1981).
In these classical studies, time is discrete and trading occurs at the observa-
tion (reporting) frequency. Goetzmann, Ivkovic and Ingersoll (2002) identify
non-structural timing factors for situations where trading occurs at a higher fre-
quency than the reporting frequency of fund returns. Their analysis permits the
correction of biases resulting from the frequency mismatch. Both the Treynor-
Mazuy level forecast model and the Henriksson-Merton directional model are
fully parametric, therefore potentially misspecified. To address the misspecifica-
tion of parametric timing models, Glosten and Jagannathan (1984) formulate a
semi-parametric model for timing factors. Breen, Jagannathan and Ofer (1986)
emphasize the fact that timing regressions typically have a heteroskedastic error
structure. Factor structures for the market component ‖θFt ‖, in models of hedge
fund returns, are discussed by Brown and Goetzmann (2003), Fung and Hsieh
(2001) and Chan et al. (2005). Empirical timing regressions are applied to
mutual funds and hedge funds by Henriksson (1984), Ferson and Schadt (1996),
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Ferson and Khang (2002), Ferson et al. (2006), Chen (2007) and Chen and Liang
(2007). Admati et al. (1986) and Detemple and Rindisbacher (2013) propose
approaches to distinguish between timing skill and selection skill. Performance
measurement, based on the CAPM, in the presence of asymmetric information
is examined by Dybvig and Ross (2005). Detemple and Rindisbacher (2013)
show that the PIPR is the key quantity required to analyze the measurement of
skill and the performance of skilled fund managers.

4 Conclusion

The PIPR quantifies the incremental price of risk derived from the use of pri-
vate information relative to public information. Knowledge of the PIPR helps
to identify the risk-reward trade-off faced by an informed investor. It lies at the
heart of the optimal portfolio of the informed and ultimately determines the
welfare gains associated with the collection of private information. It is a criti-
cal factor underlying the performance of portfolio managers and the object of
interest for performance measurement and tests of skill.

The identification of the PIPR in consumption-portfolio models with private
information is relatively straightforward. As explained, the PIPR can be cal-
culated from the distributional properties of the asset return and the private
signal collected. Its determination in equilibrium settings is more challenging.
In these models, private information can leak in the market and be reflected,
to some extent, in prices and residual demands. Some initially private infor-
mation effectively becomes public. In these cases, the PIPR must be calculated
relative to an endogenous public filtration. As the PIPR determines demand
functions and ultimately prices, this a priori unknown filtration itself depends
on the PIPR. The resolution of this fixed point problem is non trivial. Detem-
ple, Rindisbacher and Truong (2014) solve the problem in a dynamic model
with private information about the terminal dividend payment of a stock. They
show that the PIPR becomes a function of a noisy statistic, revealed by the equi-
librium price, for the private signal of the informed. They study the local value
of the private signal, the trading behavior and welfare of the agents and the
equilibrium price properties.

Notes

Questrom School of Business, Boston University, 595 Commonwealth Ave Boston, MA
02215. Jerome Detemple: detemple@bu.edu, Marcel Rindisbacher: rindisbm@bu.edu

1. A fundamental source of risk is understood to be a return innovation. Such a ran-
dom variable has zero mean and unit variance. The stochastic process formed by
cumulating return innovations is a martingale.

2. A process x is adapted with respect to F if and only if xn = x (n,ω) is Fn-measurable for
each n ∈N.

3. Fn
∨
σ (G) is the enlargement of Fn by the information conveyed by the signal G.
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4. In the continuous time limit, the density process is a stochastic exponential. It is easy
to see this when the market is complete. A Taylor expansion then gives, ZG

n,n+1 =
exp
(

log
(

1+ θG|F
n (x)�WF

n

))
= exp

(
θ

G|F
n (x)�WF

n − 1
2 θ

G|F
n (x)2

(
�WF

n

)2+ oP

((
�WF

n

)2
))

.

Under appropriate scaling, by Donsker’s invariance principle (see Karatzas and Shreve
(1988)), �WF

n → dWF
t in probability when the length of each time interval goes to 0,

where WF is a (P,F)-Browian motion. Hence,
(
�WF

n

)2 → dt in probability and the

limit density is ZG
t,s = exp

(∫ s
t θ

G|F
v (x)dWF

v − 1
2

∫ s
t θ

G|F
v (x)2 dv

)
. This expression implies

that θG|F
s (x)ds is the covariation at time s between the density process and the return

innovation under public information.
5. An atom of a σ -algebra F is an event A ∈ F such that, for any E ∈ F , E ⊂ A implies

E= A or E= ∅.
6. Suppose that the length of each period is h, instead of 1. If the PIPR is redefined as

a rate per unit time, then θG,F
1 h = �WF

1 . Assuming that �WF
1 = wF

1

√
h, it follows that

θG,F
1 → ±∞ as h → 0. This previews some of the properties in the continuous time

setting.
7. Exact conditions for the absence of arbitrage opportunities and free lunches with van-

ishing risk in continuous time are discussed in Rindisbacher (1999), Imkeller et al.
(2001) and Imkeller (2003).

8. Suppose d = 1. If the private signal is fully revealing, κ0 (τ ) = 0 and the portfo-

lio problem becomes degenerate, maxπ0∈G0

{
Aπ0σ

F
0

(
θF0 + θG,F

0

)}
. The solution is ±∞

depending on the sign of σF0
(
θF0 + θG,F

0

)
.

9. F
∨
σ (G) = {Ft

∨
σ (G) : t ∈ [0,T]

}
where Ft

∨
σ (G) is the sigma-algebra generated by

σ (G) and Ft.
10. Consider a random variable Z with distribution P(Z ∈ dz) = p(z)dz. The Shannon

entropy of Z, defined as H (Z) ≡ −E
[
logp(Z)

]
, measures the amount of uncertainty

(or disorder) associated with Z (Shannon (1948)).
11. See Rindisbacher (1999), Imkeller et al. (2001) and Imkeller (2003) for the relation

between explosions of the PIPR, singularities, free lunches with vanishing risk and
arbitrage opportunities.

12. Ankirchner et al. (2005) relate the additional utility of the informed to the Shannon
information of the filtration.
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5 Appendix: Proofs

Proof of Proposition 2.

(i) By definition of the PIPR, the tower property of conditional expectation,
and the fact that �WF

n is an F-martingale difference sequence, E
[
θGn
∣∣Fn

]=
E
[

E
[
�WF

n

∣∣Gn
]∣∣Fn

]= E
[
�WF

n

∣∣Fn
] = 0.

(ii) As σGn
(
θGn +�WG

n

) = σFn (θFn + θG,F
n +�WG,F

n

)
, taking conditional expecta-

tions and using the fact that E
[
�WG

n

∣∣Gn
]= E

[
�WG,F

n

∣∣∣Gn

]
= 0 gives σGn θ

G
n =

σFn

(
θFn + θG,F

n

)
. Solving for the PIPR establishes the result.

(iii) Given the structure of the signal,

E
[
�WF

n

∣∣∣Gn

]
=
∫
R

wP
(
�WF

n ∈ dw
∣∣∣G= x,Fn

)
|x=G

=
∫
R

w

(
P
(
�WF

n ∈ dw,G ∈ dx
∣∣Fn

)
P (G ∈ dx|Fn)

)
|x=G

=
∫
R

w
P
(

G ∈ dx|�WF
n = w,Fn

)
P (G ∈ dx|Fn)

P
(
�WF

n ∈ dw
∣∣∣Fn

)
|x=G

=
∫
R

w
E
[

P (G ∈ dx|Fn+1)|�WF
n = w,Fn

]
P (G ∈ dx|Fn)

P
(
�WF

n ∈ dw
∣∣∣Fn

)
|x=G

= E

[
�WF

n
P (G ∈ dx|Fn+1)

P (G ∈ dx|Fn)

∣∣∣∣Fn

]
|x=G

,
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and, as by definition θG,F
n = E

[
�WF

n

∣∣Gn
]
, the result follows.

(iv) Let �VF
n (x)= ZG

n,n+1 (x)− 1− θG|F
n (x)′�WF

n . Straightforward calculations give

E
[
�VF

n (x)
∣∣Fn

] = E
[

ZG
n,n+1 (x)

∣∣∣Fn

]
−1 −θG|F

n (x)′E
[
�WF

n

∣∣Fn
] = 1− 1+ 0 = 0

and E
[
�VF

n (x)
(
�WF

n

)′∣∣∣Fn

]
= E

[
ZG

n,n+1 (x)
(
�WF

n

)′∣∣∣Fn

]
− θG|F

n (x)′ = 0′. This
establishes the representation of the conditional density process of the
signal.

Proof of Proposition 4.

(iv) The process P (G ∈ dx|Ft) is a martingale. By the Clark-Ocone formula,

P (G ∈ dx|Ft)= E [P (G ∈ dx|Ft)]+
∫ t

0
E [DvP (G ∈ dx|Ft)|Fv]dWF

v

= P (G ∈ dx)+
∫ t

0
P (G ∈ dx|Fv)Dv logE [ P (G ∈ dx|Ft)|Fv]dWF

v

= P (G ∈ dx)+
∫ t

0
P (G ∈ dx|Fv)θ

G|F
v (x)dWF

v .

Solving this linear stochastic differential equation gives the result.
(iii) Given that,

d log
P (G ∈ dx|Ft)

P (G ∈ dx)
= θG|F

t (x)dWF
t −

1

2
‖θG|F

t (x)‖2dt

it follows that Dt log P(G∈dx|Ft)
P(G∈dx) = d

[
log P(G∈dx|Ft)

P(G∈dx) ,WF
]

t
/dt= θG|F

t (x).

(ii) Note that dSt/St = rtdt + σt

((
θFt + θG,F

t

)
dt+ dWG,F

t

)
where dWG,F

t = dWF
t −

θG,F
t dt. As E

[
dWG,F

t

∣∣∣Gt

]
= E

[
dWF

t

∣∣Gt
] −θG,F

t dt = θG,F
t dt − θG,F

t dt = 0 and

d[WG,F]t = d
[
WF
]

t = dt, it follows from Lévy’s theorem that W
G,F· is a G-

Brownian motion. As the Doob-Meyer decomposition of the stock return
under G is unique, it follows that θGt = θFt +θG,F

t . Hence, the PIPR represents
the incremental price of risk.

(i) Using θG|F
t (x)=Dt log P(G∈dx|Ft)

P(G∈dx) gives,∫
R

θ
G|F
t (x)P (G ∈ dx)=

∫
R

DtP (G ∈ dx|Ft)=Dt

∫
R

P (G ∈ dx|Ft)=Dt1= 0.
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1 The main goals and methodology

1.1 Economics and finance: global challenges

The creation and protection of financial wealth is one of the most important
roles of modern societies. People will commit to working hard and saving for
future generations only if they can be sure that the efforts they exert every
day will be rewarded by a better standard of living. This, however, can only be
achieved with a well-functioning financial market. Unfortunately, a breakdown
of the financial system as in the great financial crisis of 2007 and 2008 destroys
the trust in this important social arrangement. To avoid such crises we need
to improve our understanding of financial markets that, so far, has been built
on totally unrealistic assumptions about the behavior of people acting in them.
The most fundamental and at the same time the most questionable in modern
economic theory is the hypothesis of full rationality of economic agents who
are assumed to maximize their utility functions subject to their individual con-
straints, or in mathematical language, solve well-defined and precisely stated
constrained optimization problems.

This paper grew out of lecture notes prepared for presentations at the UK Mathematical
Finance Workshop, King’s College, London, June 2013, Trimester Program ”Stochastic
Dynamics in Economics and Finance” at the Hausdorff Research Institute for Mathe-
matics, University of Bonn, June 2013, ESRC Seminar ”Financial Modelling Post 2008,”
University of Manchester, October 2013, Technion – Israel Institute of Technology, Haifa,
November 2013, and London School of Economics, December 2013. The authors are
grateful to the organizers of the conferences and seminars for the invitations and to
the participants for helpful discussions. Financial support from the Swiss National Sci-
ence Foundation grant 149856 ”Behavioral Financial Markets” (2014–2016) is gratefully
acknowledged.
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1.2 Evolutionary behavioral finance

The general objective of this direction of research is the development of a new
interdisciplinary field, Evolutionary Behavioral Finance (EBF), which combines
behavioral and evolutionary approaches to the modeling of financial markets.
The focus of study is on fundamental questions and problems pertaining to
Finance and Financial Economics, especially those related to equilibrium asset
pricing and portfolio selection. Models of market dynamics and equilibrium
that are developed in the framework of EBF provide a plausible alternative
to the conventional approach to asset pricing based on the hypothesis of full
rationality and are aimed at practical quantitative applications.

The question of price formation in asset markets is central to Financial
Economics. Among the variety of approaches addressing this question, one
can observe two general and well-established theories: one deals with basic
assets and the other focuses on derivative securities. Models for the pricing of
derivative securities were developed in the last three or four decades, follow-
ing the “Black–Scholes revolution.” They were based on new ideas, led to the
creation of a profound mathematical theory and became indispensable in prac-
tice. At the same time, the only general theory explaining the formation of
the prices of basic assets, whether stock or equity, appears to be the Arrow-
Debreu General Equilibrium (GE) analysis in a financial context (Radner [53]).
It relies upon the Walrasian paradigm of fully rational utility maximization,
going back to Leon Walras, one of the key figures in the economic thought
of the 19th century. Although equilibrium models of this kind currently serve
as the main framework for teaching and research on asset pricing, they do
not provide tools for practical quantitative recommendations; moreover, they
do not reflect a number of fundamental aspects of modern financial markets.
Their crucial drawback is that they do not take into account the enormous
variety of patterns of real market behavior irreducible to individual utility max-
imization, especially those of an evolutionary nature: growth, domination
and survival.

1.3 GE theory for the 21st century

EBF develops an alternative equilibrium paradigm, which can be called Behav-
ioral Equilibrium, which abandons the hypothesis of full rationality and admits
that market participants may have a whole range of patterns of behavior
depending on their individual psychology. Investors’ strategies may involve, for
example, mimicking, satisficing, and rules of thumb based on experience. They
might be interactive – depending on the behavior of the others, and relative –
taking into account the comparative performance of the others. Objectives of
the market participants might be of an evolutionary nature: survival (especially in
crisis environments), domination in a market segment, or fastest capital growth.
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The evolutionary aspect is in the main focus of the models developed in the
EBF. A synthesis of behavioral and evolutionary approaches makes it possible
to obtain rigorous mathematical results, identifying strategies that guarantee
survival or domination in a competitive market environment.

In the EBF models, the notion of a short-run price equilibrium is defined
directly in terms of a strategy profile of the agents, and the process of market
dynamics is viewed as a sequence of consecutively related short-run equilib-
ria. Uncertainty on asset payoffs at each period is modeled via an exogenous
discrete-time stochastic process governing the evolution of the states of the
world. The states of the world are meant to capture various macroeconomic
and business cycle variables that may affect investors’ behavior. The traders use
general, adaptive strategies (portfolio rules), distributing their current wealth
between assets at every period, depending on the observed history of the game
and the exogenous random factors. One of the central goals is to identify
investment strategies that guarantee the long-run survival of any investor using
them, in the sense of keeping a strictly positive, bounded away from zero, share
of market wealth over the infinite time horizon, irrespective of the investment
strategies employed by the other agents in the market. Remarkably, it turns out
to be possible to provide a full characterization of such strategies, give explicit
formulas for them and show that they are essentially, within a certain class,
asymptotically unique.

This approach eliminates a number of drawbacks of the conventional theory.
In particular, it does not require the assumption of perfect foresight (see Magill
and Quinzii [44], p. 36) to establish an equilibrium, and most importantly, the
knowledge of unobservable individual agents’ utilities and beliefs to compute
it. It is free of such “curses” of GE as indeterminacy of temporary equilibrium and
the necessity of coordination of plans of market participants, which contradicts
the very idea of equilibrium decentralization. It opens up new possibilities for
the modeling of modern financial markets, in particular on the global level,
where objectives of an evolutionary nature play a major role.

The roots of ideas underlying the EBF models lie in Evolutionary Economics
(Alchian [1], Nelson and Winter from the 1970s to 1990s), Behavioral Eco-
nomics (Tversky, Kahneman and Smith1), and Behavioral Finance (Shiller2, e.g.
[58]). The first mathematical models for EBF were developed during the last
decade by the authors of this paper and their collaborators [4–6, 9, 23–30,
35, 36]. This research has already led to a substantial impact in the financial
industry [23].

1.4 Levels of behavioral modeling

It is important to distinguish between two different methodological levels of
behavioral modeling:



Evolutionary Behavioral Finance 217

• Individual level – analyzing individual’s behavior in situations involving risk.
• Interactive level – taking into account the dependence of an individual’s

actions on the actions of others and their influence on market dynamics
and equilibrium.

Modern behavioral economics and finance originated from models analyzing
an individual’s behavior in situations involving risk. Inspired by the seminal
work of Kahneman and Tversky [38], these ideas were developed in finance by
Barberis and Thaler [12], Barberis et al. [10], Barberis et al. [11], Barberis and
Xiong [13] and others. According to the classical approach, a decision-maker
facing uncertainty maximizes expected utility. This hypothesis leads to a num-
ber of paradoxes and inconsistencies with reality (Friedman and Savage [31],
Allais [3], Ellsberg [22], and Mehra and Prescott [49]). To resolve the paradoxes,
the individual-level behavioral approach suggests replacing expected utilities
with more general functionals of random variables, based, in particular, on
the Kahneman and Tversky [38] prospect theory and involving distorted probabil-
ities or capacities (non-additive measures) e.g. Denneberg [21]. In quantitative
finance, studies along these lines have been pursued by Hens, Levy, Zhou, De
Giorgi, Legg, Rieger, and others [18, 19, 20, 42, 61].

1.5 A synthesis of evolutionary and dynamic games

The analysis of market behavior from the angle of interaction, especially strate-
gic interaction, of economic agents is a deeper and more advanced aspect
of behavioral modeling. This is the primary emphasis of the research area
discussed in this chapter. To build models of strategic behavior in financial mar-
kets we propose new mathematical frameworks combining elements of stochastic
dynamic games and evolutionary game theory.

The main strategic framework of our behavioral equilibrium models is that of
stochastic dynamic games (Shapley [57]). However, the emphasis on questions
of survival and extinction of investment strategies in a market selection pro-
cess links our work to evolutionary game theory (Weibull [60], Hofbauer and
Sigmund [37]). The latter was designed initially for the modeling of biological
systems and then received fruitful applications in economics. The notion of
a survival portfolio rule, which is stable with respect to the market selection
process, is akin to the notions of evolutionary stable strategies (ESS) introduced
by Maynard Smith and Price [46] and Schaffer [55]. However, the mechanism
of market selection in our models is radically distinct from the typical schemes
of evolutionary game theory, in which repeated random matchings of species
or agents in large populations result in their survival or extinction in the long
run. Standard frameworks considered in that field deal with models based on
a given static game, in terms of which the process of evolutionary dynamics is
defined. Players in such models follow relatively simple predefined algorithms,
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which completely describe their behavior. Our model is quite different in its
essence. Although the game solution concept we deal with – a survival strategy
– is of an evolutionary nature, the notion of strategy we use is the one which is
characteristic for the conventional setting of dynamic stochastic games. A strat-
egy, in this setting, is a general rule prescribing what action to take based on
the observation of all the previous play and the history of random states of the
world. Players are allowed to use any rule of this kind, possess all information
needed for this purpose and have a clear goal: guaranteed survival. Thus, the
model at hand connects two basic paradigms of game theory: evolutionary and
dynamic games [5, 6].

1.6 Unbeatable strategies

The present game-theoretic framework has the following remarkable feature.
One can equivalently reformulate the solution concept of a survival strategy in
terms of the wealth process of a player, rather than in terms of his market share
process. A strategy guarantees survival if and only if it guarantees the fastest
asymptotic growth of wealth (almost surely) of the investor using it. This can
be expressed by saying that the strategy is unbeatable in terms of the growth
rate of wealth.

Nowadays, the Nash equilibrium is the most common game solution con-
cept. However, in the early days of game theory, the idea of an unbeatable (or
winning) strategy was central to the field. At those times, solving a game meant
primarily finding a winning strategy. This question was considered in the paper
by Bouton [16], apparently the earliest mathematical paper in the field. Borel
[15] wrote: One may propose to investigate whether it is possible to determine a
method of play better than all others; i.e., one that gives the player who adopts
it a superiority over every player who does not adopt it. It is commonly viewed
that finding an unbeatable strategy is a problem of extreme complexity that can
be solved only in some exceptional cases for some artificially designed games,
such as Bouton’s game “Nim.” However, in our practice-motivated context, this
problem does have a solution, and this is apparently one of the first, if not the
first, result of this kind possessing quantitative real-world application.

The remainder of this paper is organized as follows. In Sections 2 and 3 we
present the basic EBF model and the main results related to it. Section 4 focuses
on a simplified version of the basic model. In the last section we discuss some
open problems and directions of further research.

2 The basic model

2.1 The data of the model

In this section we present (in a somewhat simplified form) the main EBF model
and key results related to it. Let st ∈ S (t = 1,2, . . . ) be a stochastic process with
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values in a measurable space S. Elements in S are interpreted as states of the
world, st being the state at date t. In the market under consideration, K assets
k = 1, . . . ,K, are traded. At date t one unit of asset k pays dividend Dt,k(st) ≥ 0
depending on the history st = (s1, . . . ,st) of states of the world by date t. It is
assumed that

K∑
k=1

Dt,k(st)> 0 for all t,st,

EDt,k(st)> 0, k= 1, . . . ,K,

where E is the expectation with respect to the underlying probability P. Thus,
at least one asset pays a strictly positive dividend at each state of the world and
the expected dividends for all the assets are strictly positive.

Asset supply is exogenous: the total mass (the number of “physical units”) of
asset k available at date t is Vt,k = Vt,k(st).

2.2 Investors and their portfolios

There are N investors (traders) i ∈ {1, . . . ,N}. Every investor i at each time t =
0,1,2, . . . selects a portfolio

xi
t = (xi

t,1, . . . ,xi
t,K) ∈RK+,

where xi
t,k is the number of units of asset k in the portfolio xi

t. The portfolio xi
t

for t≥ 1 depends, generally, on the current and previous states of the world:

xi
t = xi

t(s
t), st = (s1, . . . ,st).

2.3 Asset prices

We denote by pt ∈ RK+ the vector of market prices of the assets. For each
k = 1, . . . ,K, the coordinate pt,k of pt = (pt,1, . . . ,pt,K) stands for the price of one
unit of asset k at date t. The scalar product

〈pt,x
i
t〉 :=

K∑
k=1

pt,kxi
t,k

expresses in terms of the prices pt,k the value of the investor i’s portfolio xi
t at

date t.

2.4 The state of the market

The state of the market at each date t is characterized by a set of vectors

(pt,x
1
t , . . . ,xN

t ),

where pt is the vector of asset prices and x1
t , . . . ,xN

t are the portfolios of the
investors.
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2.5 Investors’ budgets

At date t = 0 investors have initial endowments: amounts of cash wi
0 > 0

(i = 1,2, . . . ,N). These initial endowments form the traders’ budgets at date 0.
Trader i’s budget at date t≥ 1 is

Bi
t(pt,x

i
t−1) := 〈Dt(s

t)+ pt,x
i
t−1〉,

where

Dt(s
t) := (Dt,1(st), . . . ,Dt,K(st)).

It consists of two components: the dividends 〈Dt(st),xi
t−1〉 paid by yesterday’s

portfolio xi
t−1 and the market value 〈pt,xi

t−1〉 of the portfolio xi
t−1 expressed in

terms of today’s prices pt.

2.6 Investment rate

A fraction α of the budget is invested into assets. We will assume that the invest-
ment rate α ∈ (0,1) is a fixed number, the same for all the traders. The number
1− α can represent, e.g., the tax rate or the consumption rate. The assumption
that 1− α is the same for all the investors is quite natural in the former case.
In the latter case, it might seem restrictive, but in the present context it is
indispensable, since we focus in this work on the analysis of the comparative
performance of trading strategies (portfolio rules) in the long run. Without this
assumption, an analysis of this kind does not make sense: a seemingly worse
performance of a portfolio rule might be simply due to a higher consumption
rate of the investor.

2.7 Investment proportions

For each t ≥ 0, each trader i= 1,2, . . . ,N selects a vector of investment proportions
λi

t = (λi
t,1, . . . ,λi

t,K) according to which he/she plans to distribute the available
budget between assets. Vectors λi

t belong to the unit simplex

�K := {(a1, . . . ,aK)≥ 0 : a1+·· ·+ aK = 1}.

The vectors λi
t represent the players’ (investors’) actions or decisions.

2.8 Investment strategies (portfolio rules)

How do investors select their investment proportions? To describe this we use
a game-theoretic approach: decisions of players are specified by their strategies.
The notion of a (pure) strategy we use is standard for stochastic dynamic games.
A strategy in a stochastic dynamic game is a rule prescribing how to act based on
information about all the previous actions of the player and his rivals, as well as
information about the observed random states of the world.
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A formal definition is as follows. A strategy (portfolio rule) �i of investor i is a
sequence of measurable mappings

�i
t(s

t,Ht−1), t= 0,1, . . . ,

assigning to each history st = (s1, . . . ,st) of states of the world and each history of
the game

Ht−1 := {λi
m : i= 1, . . . ,N,m= 0, . . . , t− 1}

the vector of investment proportions λi
t =�i

t(s
t,Ht−1).

Since the sets of investors’ portfolios

x0,x1, . . . ,xt−1, xl = (x1
l , . . . ,xN

l ),

and the equilibrium prices p0, . . . ,pt−1 are determined by the vectors of invest-
ment proportions λi

m, i= 1, . . . ,N, m= 0, . . . , t−1, the history of the game contains
information about the whole market history (p0,x0),. . . ,(pt−1,xt−1).

2.9 Basic strategies

Among general portfolio rules, we will distinguish those for which �i
t depends

only on st and does not depend on the market history (pt−1,xt−1,λt−1). Clearly,
they require substantially less information than general strategies! We will call
such portfolio rules basic. They play an important role in the present work: the
survival strategy we construct belongs to this class.

2.10 Investor i’s demand function

Given a vector of investment proportions λi
t = (λi

t,1, . . . ,λi
t,K) of investor i, his

demand function is

Xi
t,k(pt,x

i
t−1)= αλ

i
t,kBi

t(pt,xi
t−1)

pt,k
.

where α is the investment rate.

2.11 Equilibrium and dynamics

We examine the equilibrium market dynamics, assuming that, in each time
period, aggregate demand for each asset is equal to its supply:

N∑
i=1

Xi
t,k(pt,x

i
t−1)= Vt,k, k= 1, . . . ,K.

(Recall that asset supply is exogenous and equal to Vt,k.)



222 Igor Evstigneev, Thorsten Hens and Klaus Reiner Schenk-Hoppé

Asset market dynamics can be described in terms of portfolios and prices by
the equations:

pt,kVt,k =
N∑

i=1

αλi
t,k〈Dt(s

t)+ pt,x
i
t−1〉, k= 1, . . . ,K; (9.1)

xi
t,k =

αλi
t,k〈Dt(st)+ pt,xi

t−1〉
pt,k

, k= 1, . . . ,K, i= 1,2, . . . ,N. (9.2)

(All the variables with subscript t depend on st.) The vectors λi
t = (λi

t,k) are
determined recursively by the given strategy profile (�1, . . . ,�N ):

λi
t(s

t) :=�i
t(s

t,pt−1,xt−1,λt−1).

The pricing equation (9.1) has a unique solution pt,k ≥ 0 if Vt,k ≥ Vt−1,k (growth),
or under a weaker assumption: αVt−1,k/Vt,k < 1. At date t = 0, the budgets
involved in the above formulas are the given initial endowments wi

0 > 0.

2.12 Admissible strategy profiles

We will consider only admissible strategy profiles: those for which aggregate
demand for each asset is always strictly positive. This guarantees that pt,k > 0
(only in this case the above formula for xi

t,k makes sense). The focus on such
strategy profiles will not lead to a loss in generality in the context of this work:
at least one of the strategies we deal with always has strictly positive investment
proportions, which guarantees admissibility.

2.13 Market shares of the investors

We are mainly interested in comparing the long-run performance of investment
strategies described in terms of market shares of the investors. Investor i’s wealth
at time t is

wi
t = 〈Dt(s

t)+ pt,x
i
t−1〉

(dividends + portfolio value). Investor i’s relative wealth, or i’s market share, is

ri
t =

wi
t

w1
t +·· ·+wN

t
.

The dynamics of the vectors rt = (r1
t , . . . ,rN

t ) are described by the random
dynamical system

ri
t+1 =

K∑
k=1

[
α〈λt+1,k,rt+1〉+ (1−α)Rt+1,k

] λi
t,kri

t

〈λt,k,rt〉 , (9.3)
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i= 1, . . . ,N, t≥ 0, where

Rt,k = Rt,k(st) := Dt,kVt−1,k∑K
m=1 Vt−1,m

(9.4)

(relative dividends). Equations (9.3), following from (9.1) and (9.2), make it pos-
sible to determine rt+1 = (r1

t+1, . . . ,rN
t+1) based on rt = (r1

t , . . . ,rN
t ) and thus generate

a random sequence r0,r1,r2, . . . of the vectors of market shares of the investors.

2.14 Survival strategies

Given an admissible strategy profile (�1, . . . ,�N ), we say that the portfolio rule
�1 (or the investor 1 using it) survives with probability 1 if

inf
t≥0

r1
t > 0

almost surely (a.s.). This means that for almost all realizations of the process of
states of the world (st), the market share of the first investor is bounded away
from zero by a strictly positive random variable.

A portfolio rule �1 is called a survival strategy if investor 1 using it sur-
vives with probability one irrespective of what portfolio rules are used by the other
investors (as long as the strategy profile is admissible).

A central goal is to identify survival strategies. The main results obtained in
this direction are outlined in the next section.

2.15 Marshallian temporary equilibrium

Some comments regarding the model are in order. The present model revives in
a new context the Marshallian concept of temporary equilibrium. Our descrip-
tion of the dynamics of the asset market follows the ideas outlined (in the
context of commodity markets) in the classical treatise by Alfred Marshall
[45] “Principles of Economics”, book V, chapter II “Temporary Equilibrium of
Demand and Supply.” This notion of temporary equilibrium is different from
the one going back to Hicks and Lindahl (1930s–1940s), which prevailed in the
GE literature during the 1970s–1990s (e.g., Grandmont and Hildenbrand [34]
and Grandmont [33]). The former may be regarded as “equilibrium in actions,”
while the latter as “equilibrium in beliefs;” for a comparative discussion of these
approaches see Schlicht [56].

In the model we deal with, the dynamics of the asset market is modeled
in terms of a sequence of temporary equilibria. At each date t the investors’
strategies λi

t,k, the asset dividends Dk(st) and the portfolios xi
t−1 determine the

asset prices pt = (p1
t , . . . ,pK

t ), equilibrating asset demand and supply. The asset
holdings xi

t−1 = (xi
t−1,1, . . . ,xi

t−1,K ) play the role of initial endowments available at
the beginning of date t. The portfolios xi

t selected by the agents in accordance
with their demand functions are transferred to date t+1 and then in turn serve
as initial endowments for the investors.
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The dynamics of the asset market described above are similar to the dynam-
ics of the commodity market outlined in the classical treatise by Alfred
Marshall [45]. Marshall’s ideas were introduced into formal economics by
Samuelson [54].

2.16 Samuelson’s hierarchy of equilibrium processes

As was noted by Samuelson [54], in order to study the process of market
dynamics by using the Marshallian “moving equilibrium method,” one needs
to distinguish between at least two sets of economic variables changing with
different speeds. Then the set of variables changing slower (in our case, the
set of vectors of the traders’ investment proportions) can be temporarily fixed,
while the other (in our case, the asset prices pt) can be assumed to rapidly reach
the unique state of partial equilibrium. Samuelson [54, p. 33] writes about this
approach:

I, myself, find it convenient to visualize equilibrium processes of quite
different speed, some very slow compared to others. Within each long run
there is a shorter run, and within each shorter run there is a still shorter
run, and so forth in an infinite regression. For analytic purposes it is often
convenient to treat slow processes as data and concentrate upon the
processes of interest. For example, in a short-run study of the level of
investment, income, and employment, it is often convenient to assume
that the stock of capital is perfectly or sensibly fixed.

As it follows from the above citation, Samuelson thinks about a hierarchy of
various equilibrium processes with different speeds. In our model, it is sufficient
to deal with only two levels of such a hierarchy.

2.17 Continuous vs discrete time

The above approach to the modeling of equilibrium and dynamics of financial
markets requires discretization of the time parameter. The time interval under
consideration has to be divided into subintervals during which the “slow”
variables must be kept frozen, while the “fast” ones rapidly reach a unique
state of equilibrium. In this connection, discrete-time settings in our field are
most natural for modeling purposes, and attempts to realize similar ideas in
continuous-time frameworks face serious conceptual and technical difficulties
[51, 52].

3 The main results

Assumption 1. Assume that the total mass of each asset grows (or decreases) at
the same constant rate γ > α:

Vt,k = γ tVk,
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where Vk (k = 1,2, . . . ,K) are the initial amounts of the assets. In the case of
real assets – involving long-term investments with dividends (e.g., real estate,
transport, communications, media, etc.) – the above assumption means that
the economy under consideration is on a balanced growth path.

3.1 Relative dividends

Under the above assumption, the relative dividends of the assets k = 1, . . . ,K (see
(9.4)) can be written as

Rt,k = Rt,k(st) := Dt,k(st)Vk∑K
m=1 (st)Vm

, k= 1, . . . ,K, t≥ 1.

We denote by Rt(st)= (Rt,1(st), . . . ,Rt,K(st)) the vector of the relative dividends of
the assets k= 1,2, . . . ,K.

3.2 Definition the survival strategy �∗

Put

ρ := α/γ , ρt := ρt−1(1−ρ)

and consider the portfolio rule �∗ with the vectors of investment proportions

λ∗t (st)= (λ∗t,1(st), . . . ,λ∗t,K(st)),

λ∗t,k = Et

∞∑
l=1

ρlRt+l,k, (9.5)

where Et( · ) = E( · |st) is the conditional expectation given st; E0( · ) is the
unconditional expectation E( · ).
Assumption 2. There exists a constant δ > 0 such that for all k and t we have

EtRt+1,k(st+1)> δ (a.s.).

This assumption implies that the conditional expectation in the definition of
λ∗t,k, which is not less than (1− ρ)E(Rt+1,k|st), is strictly positive a.s., and so we
can select a version of this conditional expectation that is strictly positive for all
st. This version will be used in the definition of the strategy �∗. It follows from
the strict positivity of λ∗t,k that any strategy profile containing �∗ is admissible.

A central result is as follows [5, Theorem 1]:

Theorem 1. The portfolio rule �∗ is a survival strategy.

3.3 The meaning of �∗

The portfolio rule �∗ defined by (9.5) combines three general principles in
Financial Economics.
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(a) �∗ prescribes the allocation of wealth among assets in the proportions of
their fundamental values: the expectations of the flows of the discounted
future dividends.

(b) The strategy �∗, defined in terms of the relative (weighted) dividends,
is analogous to the CAPM strategy involving investment in the market
portfolio.3

(c) The portfolio rule �∗ is related (and in some special cases reduces, see
Section 4) to the Kelly portfolio rule prescribing to maximize the expected
logarithm of the portfolio return.

Note that the main strength of the result obtained lies in the fact that the basic
strategy �∗, requiring information only about the exogenous process of states
of the world, survives in competition against any, not necessarily basic, strategies
of the rivals, that might use all possible information about the market history
and the previous actions of all the players.

3.4 Asymptotic uniqueness

As we noted, the portfolio rule �∗ belongs to the class of basic portfolio rules:
the investment proportions λ∗t (st) depend only on the history st of the process
of states of the world, and do not depend on the market history. The follow-
ing theorem [5, Theorem 2] shows that in this class the survival strategy �∗ =
(λ∗t ) is essentially unique: any other basic survival strategy is asymptotically
similar to �∗.

Theorem 2. If �= (λt) is a basic survival strategy, then
∞∑

t=0

||λ∗t −λt||2 <∞ (a.s. ).

Here, we denote by || · || the Euclidean norm in a finite-dimensional space.
Theorem 2 is akin to various turnpike results in the theory of economic dynam-
ics, expressing the idea that all optimal or asymptotically optimal paths of an
economic system follow in the long run essentially the same route: the turnpike
(Nikaido [50], McKenzie [48]). Theorem 2 is a direct analogue of Gale’s turnpike
theorem for “good paths” (Gale [32]); for a stochastic version of this result see
Arkin and Evstigneev [7]).

3.5 The i.i.d. case

If st ∈ S are independent and identically distributed (i.i.d.), then the investment
proportions

λ∗t,k = λ∗k = ERk(st),

do not depend on t, and so �∗ is a fixed-mix (constant proportions) strategy.
Furthermore, λ∗ is independent of the investment rate α. The most impor-
tant feature of this result is that it indicates a constant proportions strategy,
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which survives in competition against any strategies with variable investment
proportions depending on all information about the history of the game.

3.6 Global evolutionary stability of �∗

Consider the i.i.d. case in more detail. This case is important for quantitative
applications and admits a deeper analysis of the model. Let us concentrate on
fixed-mix (constant proportions) strategies. In the class of such strategies, �∗ is
globally evolutionarily stable [26, Theorem 1]:

Theorem 3. If among the N investors, there is a group using �∗, then those who
use �∗ survive, while all the others are driven out of the market (their market shares
tend to zero a.s.).

3.7 In order to survive you have to win!

One might think that the focus on survival substantially restricts the scope of
the analysis: “one should care of survival only if things go wrong.” It turns
out, however, that the class of survival strategies coincides with the class of
unbeatable strategies performing in terms of wealth accumulation in the long run
not worse than any other strategies competing in the market. Thus, in order to
survive you have to win!

To be more precise let us call a strategy � unbeatable if it has the following
property. Suppose investor i uses the strategy �, while all the others j �= i use
any strategies. Then the wealth process wj

t of every investor j �= i cannot grow
asymptotically faster than the wealth process wi

t of investor i: wj
t ≤Hwi

t (a.s.) for
some random constant H.

It is an easy exercise to show that a strategy is a survival strategy if and only if it
is unbeatable.

3.8 Unbeatable strategies: a general definition [6]

Consider an abstract game of N players i= 1, . . . ,N selecting strategies �i in some
sets Li. Let wi = wi(�1, . . . ,�N ) ∈W be the outcome of the game for player i given
the strategy profile (�1, . . . ,�N ). Suppose a preference relation

(wj)≤ (wi) (wi,wj ∈W)

is given, comparing relative performance of players i and j. A strategy � of
player i is termed unbeatable if for any admissible strategy profile (�1,�2, . . . ,�N )
in which �i =�, we have

wj(�1,�2, . . . ,�N )≤ wi(�1,�2, . . . ,�N ) for all j �= i.

Thus, if player i uses �, he cannot be outperformed by any of the rivals j �= i,
irrespective of what strategies they employ.
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3.9 Unbeatable strategies of capital accumulation

In our model, an outcome of the game for player i is the random wealth process
wi = (wi

t). The preference relation ≤ is introduced as follows. For two sequences
of positive random numbers (wi

t) and (wj
t), we define

(wj
t)≤ (wi

t) iff wj
t ≤Hwi

t (a.s.)

for some random H > 0. The relation (wj
t)≤ (wi

t) means that (wj
t) does not grow

asymptotically faster than (wi
t) (a.s.).

3.10 Unbeatable strategies and evolutionary game theory

The basic solution concepts in evolutionary game theory – evolutionary stable
strategies (Maynard Smith and Price [46], Maynard Smith [47], Schaffer [55] –
may be regarded as conditionally unbeatable strategies (the number of mutants
is small enough, or they are identical). Unconditional versions of the standard
ESS were considered by Kojima [40].

4 A version of the basic model: short-lived assets

4.1 Short-lived assets

We present a simplified version of the basic model in which assets “live” for
only one period. This model is more amenable to mathematical analysis and
makes it possible to develop a more complete and transparent theory. It has
often served as a “proving ground” for testing new conjectures regarding the
basic model. Finally, it clearly demonstrates links of the present line of studies
to some adjacent fields of research, such as the classical capital growth theory
with exogenous asset prices (Kelly [39], Latané [41], Thorp [59], Algoet and
Cover [2], MacLean et al. [43]).

There are K assets/securities k= 1,2, . . . ,K. They are issued at the beginning of
each time interval t− 1, t, yield payoffs At,k(st) at the end of it and then expire.
They are identically “re-born” at the next date t, and the cycle repeats. Asset
supply at date t is Vt,k(st)> 0. It is assumed that

K∑
k=1

At,k(st)> 0 for all t and s.

4.2 Investors, portfolios and prices

Investors/players i= 1, . . . ,N construct portfolios xi
t = (xi

t,1, . . . ,xi
t,K) by selecting vec-

tors of investment proportions λi
t = (λi

t,1, . . . ,λi
t,K) ∈ �K . The number λi

t,1 indicates
the fraction of the budget

〈At,x
i
t−1〉, At(s

t) := (At,1(st), . . . ,At,K(st)),
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of investor i allocated to asset k. Note that, in contrast with the basic model,
all the budget is used for investment. The budget at date t = 0 is the initial
endowment wi

0 > 0.
Investors’ portfolios xi

t = (xi
t,1, . . . ,xi

t,K) are expressed as

xi
t,k =

λi
t,k〈At,xi

t−1〉
pt,k

,

and equilibrium asset prices pt = (pt,1, . . . ,pt,K) are obtained from the market
clearing condition (supply = demand):

N∑
i=1

λi
t,k〈At,xi

t−1〉
pt,k

= Vk, k= 1,2, . . . ,K.

Thus

pt,k =
N∑

i=1

λi
t,k〈At,xi

t−1〉
Vk

.

4.3 Strategies and market dynamics

Vectors of investment proportions λi
t are selected by investors i = 1, . . . ,N

according to strategies

�i
t(s

t,λt−1), t= 1,2, . . .

depending on the history of states of the world st = (s1, . . . ,st) and the history of
the game

λt−1 := (λi
l), i= 1, . . . ,N, l= 0, . . . , t− 1.

Basic strategies depend only on st, and do not depend on λt−1. A strategy profile
of investors generates, as in the basic model, wealth processes of the investors

wi
t = wi

t(s
t) := 〈At(s

t),xi
t−1(st−1)〉, i= 1,2, . . . ,N,

which in turn determine the dynamics of their market shares

ri
t := wi

t/wt, wt :=
N∑

i=1

wi
t.

In the present model, the dynamics of the vectors of investors’ market shares
rt = (ri

t , . . . ,r
N
t ) is governed by the random dynamical system

ri
t+1 =

K∑
k=1

Rt+1,k
λi

t,kri
t

〈λt,k,rt〉 , i= 1, . . . ,N, (9.6)

which is substantially simpler than (9.3), in particular, because rt+1 is obtained
from rt through an explicit formula (in contrast with the implicit relation (9.3)).
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It should be noted that (9.3) reduces to (9.6) when α= 0. The intuitive meaning
of this fact is clear: in the short-lived asset case one cannot reinvest. Assets live
only one period and tomorrow’s assets are not the same as today’s.

4.4 Results

Define the relative payoffs by

Rt,k(st) := At,k(st)Vt−1,k(st−1)∑K
m=1 (st)Vt−1,m(st−1)

,

and put Rt(st) = (Rt,1(st), . . . ,Rt,K(st)). Consider the basic strategy �∗ = (λ∗t )
defined by

λ∗t (st) := EtRt+1(st+1),

where Et( · )= E( · |st) is the conditional expectation given st. Assume

E lnEtRt+1,k(st+1)>−∞.

Theorems 1–3, reformulated literally for the present model, are valid
(see [6, 24]).

Theorem 4. The portfolio rule �∗ is a survival strategy. It is asymptotically unique
in the class of basic strategies. In the i.i.d. case, it is globally asymptotically stable.

4.5 Betting your beliefs

The strategy �∗ prescribes to invest in accordance with the proportions of the
(conditionally) expected relative payoffs. This investment principle is some-
times referred to as “betting your beliefs.” The same principle is in a sense valid
in the basic model (see the definition of �∗ in the previous section).

4.6 Horse race model

Consider the following toy model of an asset market (cf. Kelly [39], Blume and
Easley [14]). The state space S consists of K elements: S= {1,2, . . . ,K}, Ak(s)= 0 if
s �= k and Ak(s)= 1 if s= k, and Vt,1 = Vt,2 = . . .= Vt,K = 1. Thus, there are as many
states of the world as there are assets, and one and only one asset yields unit
payoff in each state of the world. Assets with this payoff structure are called
Arrow securities.

One can think of this model as describing a sequence of horse races with
independent outcomes. Only one horse k wins in each race yielding unit payoff.
This event occurs with probability πk = P{st = k}. In this example, the relative
payoffs Rk(s) coincide with Ak(s), and the strategy �∗ = (λ∗) of “betting your
beliefs” takes on the form:

λ∗ = (λ∗1, . . . ,λ∗K), where λ∗k = ERk(st)= pk.
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4.7 The strategy �∗ and the Kelly portfolio rule

It is well known and easy to prove that the function

�(λ)= E ln
∑

k

Rk(st)λk =
∑

k

pk lnλk

attains its maximum over λ ∈ �K at λ∗ = (p1, . . . ,pK). The investment strategy
maximizing the expected logarithm of the portfolio return is called the Kelly
portfolio rule (Kelly [39], Latané [41], Thorp [59], Algoet and Cover [2], MacLean
et al. [43]). Thus, in the example under consideration, the strategy �∗ coincides
with the Kelly rule. It is important to emphasize that this is a specific feature of
the particular case under consideration. In the general case, �∗ is a solution to
a certain game, rather than a single-player optimization problem, and a direct
counterpart of the Kelly rule does not exist.

5 Problems and prospects

We list several major topics for further research.

• Developing EBF models with endogenous asset supply, short selling and
leverage.

• Constructing “hybrid” models in which assets with endogenous equilibrium
prices, as well as assets with exogenous prices, are traded. The role of an asset
of the latter type can be played, e.g., by cash with an exogenous (random or
non-random) interest rate. Some progress in the analysis of such models was
made in [28].

• Developing “overlapping generations” models with a countable number of
assets k = 1,2, . . ., each of which has its own life cycle starting from some
moment of time σk and terminating at some later moment of time τk.

• Introducing the dependence of the dividends paid off at the end of the time
period on the equilibrium prices, and consequently on the total investment
in the asset expressed in terms of these prices.

• Obtaining quantitative results on the rates of survival and extinction of
portfolio rules in the spirit of those in [9].

• Using the dynamic frameworks which are considered in EBF in more tra-
ditional settings: in models with finite time horizons and conventional
solution concepts (utility maximization, Nash equilibrium).

• Introducing transaction costs and portfolio constraints into EBF models.
• Creating a universal version of EBF, that does not assume the knowledge of

underlying probability distributions, similar to the theory of Cover’s [17]
universal portfolios.

• Conducting a systematic analysis of the notion of an unbeatable strategy in
a modern game-theoretic perspective.
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The above problems constitute a vast research program requiring substantial
effort over a considerable time period. This program might need for its real-
ization the development of new conceptual ideas, modeling approaches and
mathematical techniques. We do not expect in the nearest perspective sig-
nificant progress in all of the above directions of research, but we do expect
substantial achievements in several of them, where some preliminary results
have already been obtained.

Notes

1 Kahneman and Smith: the 2002 Nobel Laureates in Economics.
2 The 2013 Nobel Prize in Economics.
3 However, it should be emphasized that instead of weighing assets according

to their prices, in �∗ the weights are based on fundamentals. In practice, �∗
is an example of fundamental indexing (Arnott, Hsu and West [8]).
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Stochastic Evolutionary Financial Market Model with a Risk-Free Asset. Mathematics
and Financial Economics 5 (Special Issue on Stochastic Financial Economics), 185–202.

[29] Evstigneev, I.V., Hens, T., and K.R. Schenk-Hoppé (2011) Survival and Evolutionary
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10
Post-Crisis Macrofinancial Modeling:
Continuous Time Approaches
Jukka Isohätälä, Nataliya Klimenko and Alistair Milne

1 Introduction

Prior to the crisis the dominant paradigm in macroeconomic modeling was the
micro-founded “New-Keynesian” DSGE model (described in many textbooks
including the influential exposition of Woodford (2003)). In its most basic
form this combines price-stickiness with forward looking decision making by
both households and firms. This provides a tractable framework for captur-
ing the response of output and inflation to both demand and supply shocks
and explaining intuitively the transmission of monetary policy (with mone-
tary policy characterized as a choice over rules for current and future interest
rates).

DSGE models have proved to be remarkably adaptable, being easily extended
in many ways, most commonly by incorporating the so-called “financial accel-
erator,” a premium on the cost of external investment finance decreasing
in firm net worth (Bernanke et al. (1999)) and hence creating an extended
dynamic response to shocks. DSGE models could also be fitted closely
to macroeconomic data, successfully capturing macroeconomic fluctuations
observed over several past decades (as demonstrated by Smets and Wouters
(2005)).

Despite these successes the crisis revealed fundamental weaknesses in this
DSGE paradigm. DSGE models proved incapable of explaining the protracted
decline in output and investment in the industrial countries following the cri-
sis of 2008 (or similarly persistent declines following other previous financial
crises as documented by Reinhart and Rogoff (2009)). Contrary to widespread
perception, DSGE models can be relatively easily extended to incorporate banks
and bank balance sheets.1 However, even with banking and other financial
frictions, DSGE models, in their usual linearized form, fail to reproduce the sud-
den, substantial and long-lasting changes in asset prices, output or investment
inherent in the periods of financial crises including that of 2008.

235
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The objective of this chapter is to introduce an emerging literature, pursued
since the financial crisis, employing non-linear continuous time specifications
of economic dynamics to capture the possibility of marked and sometimes long
lasting changes in financial asset prices and asset price volatility or in real econ-
omy aggregates such as output or investment.2 Prominent contributions to
this new literature include He and Krishnamurthy (2013) and Brunnermeier
and Sannikov (2014a). We aim to explain the methods used in this new lit-
erature and demonstrate how they can be applied to a range of different
modeling problems. This is however not a complete review of the literature on
macroeconomics with financial frictions (Brunnermeier et al. (2012) provide
a more extended review than we do, discussing a wider range of macroeco-
nomic consequences of market incompleteness with extensive references to
prior literature). Our aim is more limited, providing a fairly full discussion
of what we perceive as some of the key contributions and describing both
the economic intuition and technical solution methods that underpin their
results.

This new approach to macroeconomic modeling is still very much in its
infancy and the specifications employed in this generation of models are highly
stylized. One way of describing this new literature is to say that it applies the
tool of continuous-time modeling widely used for derivative and other asset
pricing problem to a new class of macroeconomic general equilibrium prob-
lems. This though is a bit of an oversimplification – the standard financial
applications of continuous-time modeling beginning with Merton (1969, 1971)
and Black and Scholes (1973) all assume complete markets. By contrast, the key
underlying assumption of this new literature is market incompleteness – not
all risks can be costlessly traded. The reasons for this market incompleteness
are, however, not typically modeled. Instead, the focus is on the implications
of market incompleteness for aggregate macrodynamics and in particular the
macrodynamic role of balance sheet structure (the net worth and leverage of
households, companies and financial intermediaries).

Market incompleteness can also be modeled in a discrete time setting, so why
employ continuous time? The reason is that specifying the dynamics of the
economy in continuous time, using diffusion processes governed by stochas-
tic differential equations or sometimes jump processes, allows for a convenient
description of the fully non-linear macrodynamics. The possible realizations of
the economy are characterized by a set of differential equations3 and the solu-
tion of these equations, subject to appropriate boundary conditions, yielding
both the macroeconomic outcomes (as a function of state) and the probabilities
of these outcomes occurring (that is, the “ergodic” density or the probability
density function of the state variable). Knowledge of the probability distribu-
tion of states then allows the analysis of the full macroeconomic dynamics. In
the models reviewed in this chapter this approach is used to characterize both
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the impact and persistence of fundamental shocks and how this can reproduce
some characteristic crisis features.

A key determining feature of the properties of this new generation of macroe-
conomic models is the magnitude of shocks relative to the balance sheet
constraints that arise because of market incompleteness. If these shocks are
relatively small, the model dynamics are dominated by the deterministic com-
ponents of equations of state motion (e.g., the planned or expected saving
and investment) and the diffusion of state towards these net worth or lever-
age constraints occurs only rarely so that model predictions are not so very
different from those of conventional macroeconomic models. In this case lin-
earized models of the kind employed in the DSGE tradition can adequately
approximate the fully non-linear solution.

However, if shocks are sufficiently large so that stochastic disturbance can on
occasion become much more important than the deterministic components of
state motion and net worth or leverage are pushed towards constrained levels
relatively frequently, then qualitative changes in model predictions are possi-
ble. Agents (households, firms, governments) substantially alter their behavior,
not just when the constraints are actually binding but when they are close to
binding and sometimes even quite far away from these constraints. They do
so in order to self-insure, offsetting the absence of markets that they would
like to use to protect themselves against risk. This collective attempt to avoid
risk can then in turn create feedbacks at the macroeconomic level follow-
ing a large disturbance. The latter induce additional volatility of asset prices
encouraging even greater self-insurance and inefficient employment of real eco-
nomic resources (amplification) that potentially trigger long lasting declines of
real macroeconomic aggregates (persistence) such as output, employment and
investment.

In these circumstances DSGE-based linearization can no longer provide an
adequate description of aggregate dynamics, as this requires explicit model-
ing of induced volatility rather than the trend. Note though that there is no
necessary and direct relationship between the magnitude of shocks and the fre-
quency of such crisis episodes. In many of these specifications a relatively small
exogenous noise may cause agents to operate with relatively small buffers of net
worth, in which case even comparatively small disturbances can result in sub-
stantial departures from the predictions of linearized macroeconomic models
(this is a key finding of Isohätälä et al. (2014) and seems to be what under-
lies the “paradox of volatility” described, for example, by Brunnermeier and
Sannikov (2014a)).

This chapter contains three main sections and provides detailed discussion
of six contributions to the literature. Section 2 provides a general overview of
this new literature, discussing how a combination of specific economic assump-
tions and modeling strategy generates results which differ sharply from more
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established traditions of macrodynamic modeling. Section 3 reviews a number
of recent applications, some journal published, others work of our own still
at working paper stage. This section is itself divided into a number of subsec-
tions: 3.1 focuses on the continuous-time modeling of the dynamics of asset
prices, following the approach taken by He and Krishnamurthy (2012) and also
a related problem of optimal savings and consumption in general equilibrium
addressed by Isohatälä et al.; 3.2 then discusses the dynamic modeling of the
interaction of sectoral balance sheets with production and investment, focusing
on the work of Brunnermeier and Sannikov (2014a) and the closely related par-
tial equilibrium model of Isohätälä et al. (2014); 3.3 then discusses the further
extension of these models to an explicit treatment of financial intermediation,
describing current work by Klimenko et al. (2015) and Brunnermeier and San-
nikov (2014d). Section 4 offers an illustrative example of the required solution
methods in the context of a simple model, a simplification of Brunnermeier and
Sannikov (2014a). This section is supported by a technical appendix providing
a heuristic outline of solution methods. Section 5 then discusses the substan-
tial agenda for future research opened up by this new “post-crisis” approach to
macrofinancial modeling. Section 6 concludes.

2 Strengths and weaknesses of the new literature

This section provides a general overview of the new literature on continuous-
time macrofinancial dynamics. Neither the economics nor the solution meth-
ods employed in this literature are in themselves especially novel. The contribu-
tion comes from combining balance sheet restrictions, in appropriately chosen
contexts, with the tools of continuous-time stochastic dynamic optimization.
This section therefore proceeds by outlining the economics of this new litera-
ture comparing it with an earlier substantial body of research, dating back to the
late 1980s, that addresses the aggregate implications of market incompleteness.
It also offers a short discussion of the technical strengths and shortcomings of
this new approach.

Most of this earlier work focused on the absence of markets for insuring
idiosyncratic household labor income risks, a market incompleteness that
can reduce the equilibrium real interest rate (Huggett (1993); Aiyagari (1994))
and provides one potential explanation of the incompatibility of the equity
market risk premium with complete market models of household consumption-
savings decisions (Mankiw (1986)).4 The particular strand of this work closest
to the new macrofinancial dynamics (initiated by Krusell and Smith (1997,
1998)) considers the dynamics of capital accumulation in economies combin-
ing uninsurable idiosyncratic shocks to employment with aggregate shocks
to the productivity of capital. As with the new continuous-time macrofinan-
cial literature there are no analytical solutions, so numerical methods must
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be applied. A comparison of these two sections of the literature offers useful
insight into their respective strengths and weaknesses.

Macrodynamic analysis with incomplete markets is only ever tractable with
strong simplifying assumptions. In the presence of market incompleteness,
such as limits on individual household borrowing or frictions in access of firms
to capital markets, standard aggregation results no longer hold.5 This calls
into question the appropriateness of widely employed “representative agent”
models. The full solution, based on the standard assumptions of complete
information and model consistent expectations, requires every decision maker
to track the current state and laws of motion of the entire distribution of assets
and liabilities across all individual agents. There are therefore at least as many
state variables as there are agents in the economy.

The new continuous-time macrofinancial literature sidesteps this challenge
of aggregation, reintroducing the representative agent by assuming either that
all agents of a particular type are exactly the same, with the same tastes or
technology and affected simultaneously by the same shocks (within sector
homogeneity); or, by assuming that all agents of a particular type can costlessly
trade all financial and real assets with each other (within sector market com-
pleteness) with often at least some assets also traded between sectors.6 These
strong assumptions have allowed these models to capture qualitative changes
in aggregate behavior that arise when there is a substantial probability of bal-
ance sheet constraints binding or coming close to binding, and the possibility
of feedbacks that then amplifies shocks and generates persistent fluctuations
in economic aggregates and asset prices. They do though illustrate one of the
main points we draw from our review: this new literature is still immature with
much work yet to be done to examine how well its predictions hold in more
realistic settings.

The older literature on aggregate productivity shocks and uninsurable labor
income deals with this aggregation problem in a quite different way, restricting
attention to particular model specifications in which the solution can be rea-
sonably accurately approximated by individual agent decision rules based on
a small number of summary statistics for the entire distribution of household
wealth.

The influential contribution of Krusell and Smith (1997, 1998) was to solve
such a model, with two idiosyncratic employment states (employed, unem-
ployed) and two aggregate productivity states (high in boom, low in recession),
using a numerical schema which enforced model consistent capital dynamics
and demonstrating that the resulting outcome exhibited “approximate aggre-
gation” in the sense that increasing the number of summary statistics for the
wealth distribution used by households in their consumption/saving decisions
beyond a small manageable number did not affect model outcomes.7 An entire
branch of literature has emerged focused on the numerical accuracy of this
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and other alternative algorithms for solving models of this kind (for further
discussion see Algan et al. (2010); Den Haan (2010)).

A weakness of the Krusell-Smith algorithm is its model dependence.8 While it
appears to work reasonably well for particular calibrations of the specific model
for which it was developed, it is far from clear that it can provide a reliable
approximation to the dynamics of the kind that emerge in the new continu-
ous time macrofinancial models we review. One limitation is that it makes no
allowance for the resulting dynamic changes in interest rates or other financial
asset prices consequent on changes to individual agent balance sheets. Another
limitation is that there is no guarantee against the algorithm converging on a
“wrong” outcome, in which the particular model simulations generated at con-
vergence contain insufficient examples of the balance sheet constraints, leading
to qualitative shifts in the decisions of households or other agents that in turn
substantially influence macroeconomic dynamics.9

Another obvious difference is that the earlier literature on macroeconomic
dynamics in the presence of market incompleteness follows the dominant prac-
tice in macroeconomic modeling of assuming that time is discrete rather than
continuous. The choice between discrete and continuous time is, however,
less important than might at first appear. It can admittedly be a barrier to
understanding.10 But a numerical solution using a computer always eventu-
ally requires discretization. Our view is that these two assumptions (discrete
vs continuous) are complementary, each with their own strengths and weak-
nesses. It should be possible to state any of these models using either approach,
and the choice then comes down to which is more convenient for solution and
communication of results.

Continuous time diffusion has some advantages. Provided that the model
can be specified with a small number of heterogeneous agents, a tractable solu-
tion can be computed using ordinary or partial different equations sidestepping
concerns about the existence of a “Markovian” equilibrium. Another conve-
nience is that all paths are continuous so there is no need to be concerned about
the possibility of assets or liabilities jumping beyond constrained values.11 Solu-
tion via ordinary or partial differential equations provides an efficient way of
capturing the impact across the state space of constraints on behavior at or
close to boundaries. As discussed in the next section, specification in continu-
ous time also allows the application of the convenient method of asymptotic
expansion in order to capture the singularities that can emerge when financial
constraints are hit. Finally, specification in continuous time with diffusion also
means that decision rules can be expressed in relatively simple terms, namely,
as functions of derivatives or partial derivatives of the value function (i.e.,
marginal values), thereby, providing useful economic intuition that is not so
easily obtainable in discrete time.
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Discrete time has the advantage that the solution can be computed using
the well developed and widely used tools of backward recursion. The literature
offers a well developed discussion of both the existence and computation of
equilibria in discrete time, including for macroeconomic models with incom-
plete markets.12 There are larger amounts of available software developed for
solution of discrete time models. Solution methods are now well understood
both when disturbances are relatively small compared to the potential con-
straints, so linearization can be employed, and for many non-linear models
including several state variables (dynamic stochastic macroeconomic mod-
els can now be routinely solved with four or more states). Some forms of
lagged response – e.g., the policy response lags resulting from delays in the
release of statistical information – are more naturally specified in discrete
time.

So far our comparison of these two literatures has focused on the technical
challenges of aggregation and numerical solution. Comparison of these two
literatures also highlights some differences in economic assumptions. One is
that in older literature, for example Krusell and Smith (1998), it is individ-
ual households who are financially constrained, whereas in Brunnermeier and
Sannikov (2014a) it is the representative firm that is financially constrained
(as we describe below in Section 3, they are unable to borrow more than the
market value of their capital). Krusell and Smith (1998) find that these underly-
ing financial constraints make relatively little difference to aggregate dynamics,
whereas Brunnermeier and Sannikov (2014a) find that the constraints substan-
tially reduce output and investment when firm net worth (as a proportion of
the market value of the economy’s capital stock) falls close to zero.

But perhaps the most important advantage of the radical simplifying assump-
tions made in the continuous-time macrofinancial literature is the wide range
of issues that can then be addressed. This will become clearer from our review
of individual models in the next section that explore the impact of constraints
on households, firms and intermediaries for the dynamics of asset prices, out-
put and investment. As we discuss in Section 5, there is scope for considerable
further work of this kind on the dynamic consequences of market incomplete-
ness for a range of other aggregate economic variables, including employment,
price setting, government finances and macroeconomic policy. The price paid
for these advances is not insubstantial, a clear data discrepancy at the microe-
conomic level since not all firms or all households are able to trade amongst
each other to achieve common ratios of debt to assets (i.e., the assumption
that each sector can be replaced by a single representative agent is not a real-
istic assumption in the context of incomplete markets). This though purchases
valuable new understanding of a range of macroeconomic phenomena that are
attracting attention in the wake of the global financial crisis.
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3 A review of some recent continuous-time
macrofinancial models

In this section we review some recent continuous-time macrofinancial models.
Our discussion covers three prominent papers that have attracted widespread
attention together with three papers of our own. It is organized as follows.
Section 3.1 discusses how continuous time models have been used to model
the dynamics of assets prices, including the return on risk-free assets and the
premium on risky assets. Section 3.2 reviews implications of the dynamic
allocation of productive capital for financial stability. Section 3.3 discusses
extensions of these models to the explicit treatment of the banking sector.

3.1 Capital constraints and asset pricing

The series of papers developed by He and Krishnamurthy (2012, 2013) (here-
after, HK(2012) and HK(2013)) explore how market incompleteness affects the
risk premium on risky assets in a Lucas Jr. (1978)-type endowment economy
in which cash flow yields (dividends) on risky assets follow a random walk.
The key distinguishing assumption of these models is that risky assets are held
only by specialist financial intermediaries subject to agency frictions similar to
those modeled in Holmstrom and Tirole (1997). Incentive compatibility (i.e.,
avoiding the mismanagement of assets or “shirking”) requires that these inter-
mediaries must finance their investments with a minimum proportion of their
own equity. When intermediary capital is scarce, this equity capital constraint
binds and works as a channel of amplification of fundamental shocks to inter-
mediary assets and net worth, increasing the volatility of returns and the risk
premium earned from investment in the risky asset.

Here we focus on the model developed in HK(2012) (the other model is simi-
lar). HK(2012) model an economy in which there is a single risky, non-tradable
asset of a fixed size and the market price Pt that reflects the expected discounted
value of dividend streams.13 The asset generates a stochastic flow of dividends
Dt per unit of time, that evolves as a Geometric Brownian motion with a con-
stant drift and volatility σ . There is also a risk-free asset (bonds) in zero net
supply and interest rate rt, i.e., there is the possibility of lending between the
households and specialists. The risky asset’s risk premium is then given by

πR,t = E
[Dt dt+ dPt

Pt

]
/dt− rt.

There are two classes of investor: specialists managing financial intermedi-
aries that play the role of investment vehicles and households who delegate
investment decisions to specialists, as they have no direct access to investment
technologies (i.e., there is market segmentation). In this and all following mod-
els we review in this section, all agents belonging to a particular group are
identical. Such a simplification is key for obtaining tractable solutions, as it
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allows working with a representative agent making the optimal decisions based
on observations of her own level of wealth and (typically) a unique aggregate
state.

Both specialists’ and households’ wealth is invested in intermediaries. The
optimal contract between households and specialists determines βt ∈ [0,1] – the
specialist’s share of investment in the risky asset and hence, after allowing for
a fee Kt dt that may be paid to specialists for managing entrusted funds, their
claim on dividend income. Specialists choose the total volume of investment
in the risky asset, Et, and make a working/shirking decision unobservable to
households. As in Holmstrom and Tirole (1997), shirking reduces the cash-flow
from risky assets by Xt dt but enables specialists to collect private benefits Bt dt

which are assumed to be proportional to the reduction in the asset cash-flow,
caused by shirking:

Bt dt= 1

1+m
Xt dt,

where the inverse of m captures the magnitude of agency frictions.14

The incentive contract preventing shirking places restrictions on outside
equity financing. Namely, the households’ equity stake must be limited to a
fraction of the total risky investment that depends on the magnitude of agency
frictions, which leads to the following equity capital constraint:

Eh
t ≤mEt. (10.1)

Put differently, to abstain from shirking, specialists must maintain some “skin
in the game,” whose proportion is increasing with the magnitude of agency
frictions. In terms of the sharing rule, the above constrain implies that

β∗t ≥
1

1+m
, for Kt ≥ 0,

with equality when Kt > 0.
To obtain a closed form solution He and Krishnamurthy (2012) assume that

both specialists and households have log-preferences over instantaneous con-
sumption. With this assumption, the value function of any representative agent
is additively separable and can be written in the following form:

1

ρi log(Wi
t )+Yi

t ,

where ρi is the discount rate of the agent i = {s,h} (specialist and household,
respectively), Wi

t is the wealth of the agent i and Yi
t is the function of the

aggregate wealth and dividends, which are two state variables in this setting.
Due to the above property of the value function, the portfolio and consump-

tion choices of agents are almost trivial. In particular, agents continuously
consume an amount proportional to their net worth, where the consumption
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rates are given by their respective discount factors, i.e., ci
t=ρiWi

t and the optimal
exposure to the risky asset is given by the mean-variance portfolio choice, yet,
with a slight twist for households for whom the effective asset risk premium is
reduced by the scaled intermediation fees kt = Kt/Eh

t .
Finding the unique equilibrium of this model requires solving for three pro-

cesses – risky asset price Pt, riskless interest rate rt and scaled intermediation fees
kt – compatible with the individual maximization and market clearing condi-
tions. Pt, rt and kt are the functions of the unique state variable – the aggregate
specialists’ wealth scaled by aggregate dividends, wt ≡Ws

t /Dt.
Depending on the level of the scaled specialists’ net worth, at each moment

of time the economy can find itself in one of two regimes: if scaled specialist
net worth wt exceeds a critical threshold wc≡ 1/(ρhm+ρs) then the solution is in
an unconstrained regime in which the incentive constraint (10.1) is slack; oth-
erwise the solution is in a constrained regime in which the incentive constraint
(10.1) is binding.

In the unconstrained regime where the wealth of the specialist financial
intermediaries is relatively high, the risk premium is constant and households
pay zero fees for intermediation. There is no borrowing or lending (with the
implicit “risk-free” rate of interest rt, a wealth dependent weighted average of
the discount rates of households and specialists, that declines as wt increases).
Holdings in the risky asset (βt) are proportional to agent wealth. The price
volatility of the risky asset is constant and is equal to the volatility of the
dividend cash-flow, i.e., σR,t = σ .15

In the constrained region, in which the wealth share of the specialist finan-
cial intermediary are relatively low (below wc), the equity constraint binds.
Their relatively low level of wealth means that the specialists must borrow from
households in order to maintain their required share of holdings of the risky
asset. The volatility of the risky asset (endogenous volatility),

σR,t = σ
[

(1+m)ρh

(ρhm+ρs)(1+ (ρh−ρs)wt)

]
> σ ,

then drives the level of both the risk premium and of intermediation fees in the
constrained regime. These are both always higher than in the unconstrained
regime, but decreasing with the scaled specialists’ wealth until the threshold
between the two regimes is reached. The risk-free interest rate (at least for the
chosen parameterizations) also exhibits a different pattern than in the uncon-
strained region: namely, it becomes an increasing function of specialist wealth;
i.e., in the constrained regime, the lower the specialist wealth, the higher the
valuation placed on risk-free assets.

The HK(2012) model predicts that intermediaries only borrow in the con-
strained regime, otherwise intermediaries are unleveraged. In order to generate
leverage in the unconstrained regime and so better match the data, HK(2013)



Post-Crisis Macrofinancial Modeling 245

amend their earlier model by introducing household labor income uncertainty
and an exogenous demand by households for holding a minimum proportion
of wealth in the form of risk-free lending to specialists.16 The solution is now
numerical, not closed-form. Parameters are chosen so that, absent of any con-
straints, the risk-tolerant households hold all their wealth in the form of risky
assets and as a result the equity constraint on specialists binds approximately
50% of the time. With this set-up the model does a fairly good job of reproduc-
ing the dynamics of risk-premia during financial crises, with a “half-life” (an
expected decline of the risk-premia relative to unconstrained levels of 50%) of
about eight months.

Further insight into the impact of leverage constraints on the pricing of
risk-free assets is provided by Isohätälä et al. (2015) (hereafter, IKMR(2015)).
They consider the interaction of two household sectors receiving an endow-
ment income subject to offsetting shocks: a positive shock to income and
an equal and opposite negative shock in the other. There is a single con-
sumption good. Cumulative income is a diffusion process with infinite local
variation (the standard deviation of income over a period t to t+�t is propor-
tional to

√
�t while expected income is proportional to �t). While there is no

insurance contract that protects against this income uncertainty (the assumed
market incompleteness), households can still smooth consumption by borrow-
ing and lending from each other, subject to a constraint of some maximum
level of borrowing. Both households seek to maximize a standard objective, the
discounted expected utility with instantaneous “CRRA” utility, i.e., constant
relative risk aversion and intertemporal elasticity of substitution. One house-
hold is relatively impatient discounting consumption more than the other. The
underlying microeconomics are not further developed although the constraint
on borrowing might represent the possibility of repudiating debt and instead
obtaining some alternative subsistence income.

These strong modeling assumptions yield a simple and intuitive outcome
with buffer stock saving very similar to that predicted by standard microeco-
nomic models of household precautionary saving. Both household consump-
tion (c) and expected saving, i.e., expected endowment and financial income
net of consumption (a+ r(w)w− c(w)), are monotonic functions of wealth w,
with consumption increasing and savings decreasing with w. Here wealth w

is simply the net claims of impatient households on households in the other
patient sector, so −w is a measure of impatient household leverage (w is almost
always negative). Expected saving by the impatient household sector is posi-
tive whenever leverage is above a target level (buffer stock saving). The novel
macrofinancial feature of the model is that the real interest rate r= r(w) adjusts
to ensure goods market clearing: i.e., total consumption by the two sectors
equals their total endowment, with potentially large but relatively short lived
declines of real interest rates whenever income shocks increase the leverage of
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impatient households close to their maximum levels of borrowing. This is thus
a setting in which a financial problem (overleverage) is corrected in large part
through adjustment of market prices (a temporary period of low real interest
rates supporting deleveraging towards a long term desired level of borrowing)
rather than through reduction of consumption.

There are sharp contrasts between the investigations of IKMR(2015) and
those of HK(2012) and HK(2013), but also striking similarities. Differences
include: the specification of uncertainty (in HK(2012) this is a diffusion process
for the risky asset’s productivity, while in IKMR(2015) this is a diffusion process
for cumulative endowment); the distinction between sectors (in HK(2012) this
distinction is between specialist asset managers and outside investors, while
in IKMR(2015) this distinction is between impatient borrowing households
and patient lending households); the focus of the analysis (in HK(2012) this
is the pricing of the risky asset while in IKMR(2015) it is the pricing of risk-
free instantaneous borrowing); and in the treatment of household optimization
(in HK(2013) the OLG setting abstracts from all issues intertemporal cash
management while in IKMR(2015) both agents address a fully intertemporal
optimization).

The key similarity is that in both settings asset prices adjust so as to restore
balance sheets fairly quickly towards long run expected values. Periods of dis-
tress are relatively short lived. Following initial disturbances, after a few months
wealth shares gravitate back towards the steady state distribution (the “ergodic
density” across wealth). In particular, in all these settings risk-free interest rates
decline dramatically during periods of extreme financial stress and this assists
the process of deleveraging (see HK(2013) figure 3 and IKMR(2015) figure 6).

3.2 Models of output and investment without an explicit banking sector

In this section we describe the model of Brunnermeier and Sannikov (2014a)
(hereafter, BS(2014-1)) that focuses on the role of net worth in the allocation
of productive capital in the economy and its implications for the dynamics
of output and investment. In BS(2014-1), capital is traded between more pro-
ductive, risk-neutral, impatient experts and less productive, risk-averse, more
patient households.17 The productivity of capital follows a diffusion process, as
in the complete market setting of Lucas Jr. (1978) and employed by HK(2012)
and HK(2013). Also as in HK(2012) and HK(2013), the state of the economy is
described by the single state variable, the ratio of expert net worth to household
net worth.

As well as sharing in the risky investment opportunity, households may
invest in risk-free debt issued by experts. Debt contracts are short term, and
experts continuously adjust their level of debt in order to balance a desire to
consume early (impatience) against the potential costs of incomplete insurance
against productivity shocks.18 While the BS(2014-1) model features no explicit
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leverage or capital constraint, a constraint emerges implicitly because reduc-
tions in the market value of capital limit the ability of firms to borrow. The
absence of a market for insuring against fluctuations in the productivity of cap-
ital and hence net worth mean that, in effect, debt is subject to a collateral
constraint, not unlike that featured in Kiyotaki and Moore (1997).

This implicit need for collateralization is consistent with a standard paradigm
of financial intermediation literature considering financial intermediaries (par-
ticularly, banks) as the providers of safe and liquid investment opportunity
(demand deposits), given that some economic agents may have strong pref-
erences for this kind of investment (see, e.g., Diamond and Dybvig (1983),
DeAngelo and Stulz (2013) for the arguments along this line). In the environ-
ment in which financial intermediaries act as the liquidity providers, while
facing financial frictions, this feature creates a role for intermediaries’ net worth
as a loss-absorbing buffer that is needed to guarantee the safety of debt issued
to households.

The productivity of capital in the BS(2014-1) economy fluctuates over time
according to a diffusion process with standard deviation σ . This in turn alters
both expert net worth and the share of expert net worth (a positive shock to
productivity of capital increases the net worth of both experts and households;
as long as experts are leveraged then this also increases the share of expert
net worth). They assume in addition that new physical capital can be built
via an investment technology with adjustment costs.19 The main friction in
this economy refers to the fact that experts do not have “deep pockets” and
cannot raise outside equity (this, in fact, can be interpreted as the extreme
form of the agency problem present in HK(2012)). As a result, a decline in
net worth caused by negative productivity shocks increases the effective risk
aversion of experts. This induces them to “self-insure” by shrinking the scale of
operation (simultaneously, reducing the volume of debt) and selling capital to
less productive households, which ultimately leads to the reductions in output.
Moreover, sales of capital by experts depress the asset price, which, in turn,
feeds back into the dynamics of net worth, thereby amplifying the impact of
the adverse productivity shock.20 We illustrate the detailed modeling of this
mechanism in Section 4 by using a simplified version of BS(2014-1)’s model.

In equilibrium, the dynamics of capital prices, capital and experts’ net worth,
as well as the optimal consumption and investment decisions of agents (and
their respective holdings of capital), can be characterized as the functions of a
single state variable – the experts’ share in the total net worth. Expression in terms
of a single state variable is possible due to the linearity of the agents’ value
functions in individual agent’s net worth (scale-invariance property). The opti-
mal consumption decisions of experts (who face the non-negative consumption
constraint) are determined by the marginal value of their net worth, which is a
decreasing function of the state.
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In the baseline model explored by BS(2014-1) the optimal consumption
pattern is similar to the optimal payout policies emerging in many (partial equi-
librium) corporate finance models: as long as the value of the state is relatively
low and thus an expert’s net worth is highly valuable, it is optimal to retain
earnings; however, once the marginal value of the state falls to one, experts
consume all positive profits so as to maintain the state at the level associated
to the unit marginal value.21 Such a “barrier-type” consumption strategy deter-
mines the upper bound of the state. The fluctuations of the state between zero
and the consumption boundary drive the effective risk aversion of experts and
thus the equilibrium allocation of capital in the economy: as long as the share
of experts’ net worth is relatively high, all capital is concentrated in the experts’
hands; however, below a certain critical level, the fraction of capital held by
experts is always lower than one and is an increasing function of the state.

An important effect captured by BS(2014-1)’s model is extended persistence
of the aggregate shocks, a consequence of the response of experts to the incom-
plete opportunities for insurance against productivity risks. As the share of
expert net worth declines and an increasing proportion of capital is sold to and
managed by households, it becomes relatively difficult for experts to rebuild
net worth via retained earnings. This means that for at least some parameter
combinations the economy may spend quite a lot of time in recession states
with low asset prices and a large fraction of capital concentrated in the hands
of less productive agents. This property manifests itself via the ergodic density
of the state being spiked in the neighborhood of its lower boundary.22

A point that is not entirely clear in BS(2014-1) is the respective importance
of the “self-insurance” effect and amplification effect generated by the endoge-
nous volatility of the price of capital in generating these protracted dynamics.
Certainly it is possible to get similarly protracted dynamics without endogenous
price volatility. This point is illustrated by the closely related partial equilib-
rium model of Isohätälä et al. (2014) (hereafter, IMR(2014)). In this paper
identical impatient firms manage a risky asset and the diffusion process affects
aggregate accumulated cash flow rather than the productivity of capital. More-
over, in order to reduce risk exposure, capital is rented by experts to patient
households rather than sold. Preferences are the same as in the baseline model
of BS(2014-1), i.e., both experts and households have linear preferences but
experts are subject to a “non-negativity” constraint on consumption, i.e., in
effect a prohibition on issue of new equity capital. Unlike BS(2014-1), this
model also parameterizes the deadweight costs of equity issuance. The merit
of this model specification is its relative simplicity and tractability, as there is
no need to take any account of the complications of asset pricing or optimal
portfolio allocation.

The optimal risk exposure chosen by a representative firm in IMR(2014)
depends on its leverage and is implemented via the optimal rental decisions:
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at each moment of time, firms may unload some risk by leasing a fraction of
capital to less productive households in return for a fee (assumed equal to the
productivity of capital in the hands of households).

The IMR(2014) economy exhibits a very similar behavior to the one that
emerges in the BS(2014-1) setting, albeit without price volatility: under the
combination of relatively high uncertainty and large financing frictions (i.e.,
high recapitalization costs) the economy spends a lot of time in the recession
states characterized by low experts’ net worth and a large fraction of capital
concentrated in the hands of less productive households.

3.3 Models of output and investment with an explicit banking sector

In this section we consider two continuous time macrofinancial models with a
more explicit treatment of the banking sector. The first is that of Klimenko et al.
(2015) (hereafter, KPR(2015)) which distinguishes the banking sector from the
productive sector in order to address the role of bank capital in the fluctuations
of credit and output. This model captures a complementary channel for output
distortions that works via the adjustments of credit volumes in the economy.23

The second is the more ambitious modeling of Brunnermeier and Sannikov
(2014d) (hereafter, BS(2014-2)) who develop a monetary analysis in which net
worth limits the ability of banks to create “inside-money” and thus affects both
the real economy and the nominal price level. While the dynamics of risk-
premia and of output and investment generated by these models are similar to
those reviewed earlier in this section, the explicit treatment of banking allows a
much fuller discussion of policy instruments, including bank capital regulation,
as well as monetary and fiscal policy. We should emphasize that work on both
these models is ongoing – when eventually published in peer-review journals
they could have evolved substantially from the versions we discuss here. Still
we think these two models are worth highlighting as examples of where the
continuous-time macrofinancial literature may be heading in the future.

KPR(2015) study the impact of bank capital on the cost of credit in the econ-
omy where the firms’ projects are financed exclusively via bank loans. The
model shares some similarities with HK(2012) and BS(2014-1). Again there
are two classes of agents, in this case relatively impatient banks and relatively
patient households. Banks are risk-neutral and by implication (since they are
maximizing expected utility) have an infinite intertemporal elasticity of substi-
tution. Households also have a infinite intertemporal elastisticy of substitution,
with a time discount rate of r, and are willing to provide unlimited deposits at
an interest rate r but only as long as there is no risk of any loss on deposits.

The economy is subject to aggregate shocks, which affect the firms’ default
probability (and cannot be diversified) and ultimately the banks’ profits. Cumu-
lative profits (retained earnings) are described by a diffusion process with drift
and diffusion proportional to the volume of bank lending. The firms’ demand



250 Jukka Isohätälä, Nataliya Klimenko and Alistair Milne

for credit is an exogenous decreasing function of the nominal loan rate Rt,
where the latter is determined at equilibrium as a function of aggregate bank
capitalization Et. Banks continuously adjust the volume of lending, as well as
the volume of deposits they collect.24 However, their capacity to adjust book
equity (net worth) is limited, because banks face a proportional deadweight cost
γ , when raising new capital (this parameterization is similar to that employed
by IMF(2015)).

A convenient property of the model is a linearity of the value function of an
individual bank in the level of its book equity. Banks in KPR(2015) economy
behave competitively in both loan and deposit markets and make the same
decisions. As a result, all banks’ decisions (lending, recapitalization and divi-
dend payouts) are driven by the market-to-book value of their equity, which is
the same for all banks and a function of aggregate bank capitalization.25

Aggregate lending, recapitalization and dividends are then functions of the
level of aggregate bank capital that follows a Markov diffusion process reflected
at two boundaries: banks are paying dividends at the upper boundary and
recapitalize as soon as the book equity is depleted. In other words, to reduce
the frequency of costly recapitalizations, banks maintain equity buffers, whose
target size is optimally chosen so as to maximize shareholder value. As a con-
sequence of the risk-neutrality of banks, dividend behavior is of the same
“barrier control” form as in the baseline model of BS(2014-1) and in IMR(2014)
with payments only when bank equity climbs to an upper level Emax. There is
also recapitalization at a lower barrier Emin, which turns out to be zero in the
competitive equilibrium.

The value function represents the expected value of the bank shareholders’
claim and can be expressed as the product of the book equity of the individual
bank times the market-to-book value of the banking sector. This decomposi-
tion of the value function helps understand the source of a positive lending
premium (the margin between loan and deposit rates Rt − r > 0 with equality
at the upper dividend paying boundary) emerging from this model: any neg-
ative shock to bank earnings not only depletes book equity (directly reducing
lending capacity) but is further amplified via a decline in the market-to-book
value. As bank equity declines, bank shareholders become effectively more and
more risk-averse (even though their preferences are risk-neutral) and demand a
strictly positive premium in order to lend to the real sector. This lending pre-
mium (as well as the loan rate itself) is a decreasing function of aggregate bank
capitalization. It is also a non-linear function (similar non-linearity emerges
also in BS(2014a) and IMR(2014)). When aggregate bank capitalization is rela-
tively high, close to the upper dividend paying boundary, then changes in bank
capital have a relatively small impact on the lending premium. When aggregate
bank capital is relatively low, close to the lower recapitalization boundary, then
changes in bank capital have a relatively large impact on the lending premium.
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Via this lending premium channel, the reductions in aggregate bank capitaliza-
tion ultimately translate into a higher cost of credit, a reduction of the firms’
demand for bank loans, and thus a decline of output.

The explicit dynamics of the loan rate that emerges in KPR(2015) model (with
the further assumption that the deposit rate r= 0, the drift and volatility of the
loan rate can be obtained in closed form) allows for a tractable analysis of the
long run behavior of the economy using the loan rate as the state variable.
As in the BS(2014-1) or IMR(2014) models discussed above, the dynamics can
be described by the ergodic density function of the state. The analysis of the
ergodic density patterns shows that the economy spends a lot of time in states
with lower endogenous volatility and, under strong financing frictions can get
trapped in states with low bank capitalization, a high loan rate (low lending)
and thus low output.

One of the natural applications of KPR(2015) is the analysis of the impact of
capital regulation on financial stability and lending. The analysis shows that
increasing the minimum capital ratio drives up the loan rate and induces a
substantial decline in lending in the short run. However, in the long run, this
negative effect is mitigated due to enhanced financial stability, as banks spend
more time in the states with higher capitalization and thus relatively low loan
rates.

BS(2014-2) also develop a model in which the experts are financial intermedi-
aries or banks. The basic assumptions are that banks have a superior monitoring
technology than households (in this respect their setup is similar to that of
Diamond (1984) and KPR(2015)).

Their goal is however much more ambitious than that of KPR(2015). The
bank share in aggregate net worth (the usual state variable) determines the
extent to which they can issue short term liabilities (inside or “i” money) and
hence drive aggregate macroeconomic dynamics, both real economy output
and investment and nominal pricing.

Like BS(2014-1), BS(2014-2)’s model considers two classes of agent (house-
holds and experts) but now with the same rate of time preference. The experts
are now financial intermediaries, distinguished because the monitoring tech-
nology of intermediaries allows them to achieve superior performance from
investment in a subset set of available technologies. Banks also benefit from
diversification because they can invest in many technologies. Households in
contrast can invest only in a single technology (at any point in time). The
inability of households to diversify idiosyncratic risk again creates a demand
for holding monetary deposits. In this model, such deposits are risky – because
of the risk of changes in the nominal price level – but still carry a lower risk
than any other technology in the economy.

As in BS(2014-1), experts’ net worth serves as a loss-absorbing buffer. Again
this because markets are incomplete and experts cannot fully insure against
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fluctuations in the productivity of capital. Their net worth then affects the
level of “inside money” (i.e., bank deposits). This value is determined by a
simple equilibrium mechanism: when negative shocks deplete the experts’ net
worth, in order to reduce exposure to further shocks, they shrink their balance
sheet by selling capital (loans to end-borrowers) to households. Due to the bal-
ance sheet adjustment, this automatically leads to the reduction of their deposit
taking capacity, i.e., the supply of inside money shrinks. However, the house-
holds’ demand for deposits (money) remains almost unchanged, and hence
the “price” of money in terms of goods (p) must rise at the same time. Thus
a contraction of intermediary net worth both reduces the price of capital in
terms of goods (q) and increases the price of money. A rise in the nominal price
of money is a fall in the price of goods, so this becomes a model of disinfla-
tion (assuming that monetary policy i.e., the supply of outside money, remains
fixed).

The BS(2014-2) model is a promising framework for a tractable analysis
of macroprudential policies and both orthodox and unorthodox monetary
policy. It is though difficult to relate their model to the widely accepted “new-
Keynesian” treatment of monetary policy widely employed in DSGE modeling.
In the “new-Keynesian” world money stocks, indeed all balance sheets, are
essentially irrelevant, the main market friction is sluggishness of price adjust-
ment usually determined in the optimization setting of Calvo (Calvo (1998))
by assuming a fraction of price-setters in imperfectly competitive final goods
markets can readjust prices at any point in time (without this feature DSGE
models would exhibit price-neutrality, nominal pricing and monetary policy
would then be entirely irrelevant to the real economy). In conventional DSGE
stocks of money (as opposed to monetary policy) play no role at all.

There are of course many macroeconomic models in which the stock of
money does play an essential role. These include many models in which money
is required as a means of payment, either using the relatively ad-hoc mech-
anism of a “cash-in-advance” constraint (Lucas and Stokey (1987)) and also
search models in which money provides a solution to the problem of exchange
between anonymous parties who have no mechanism to commit to contractual
agreements (for example, the relatively tractable model of Lagos and Wright
(2005)).

The role played by money in BS(2014-2) is not a means of payment but a store
of value. In this respect its role is comparable to that in the many overlapping
generation models of money originating with Samuelson (1958). The simplest
example is the two period overlapping generations endowment economy with
a single non-storable good. Without money younger generations are unable
to lend to or borrow from the current older generation at period t in order to
consume less or more than their period t endowment, the problem being that
the older generation are no longer around to receive or make repayment in the
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following period t+1. The equilibrium is autarky, with each generation consum-
ing its own current endowments. With standard assumptions about preferences
there is though an alternative welfare improving equilibrium (at least one) with
“money”. For example young generations at t anticipating a large decline in
their future endowment may save for old age by acquiring money. In the sub-
sequent time period t+1 (when they themselves are old) they spend this money,
acquiring goods from the new younger generation. Money serves as a store of
value and allows exchange to take place because of the belief that it will have
an exchange value for goods in each subsequent period. Such an equilibrium
exists provided that there is no terminal time at which a new generation is no
longer born and money has no value.

The demand for money as a store of value in BS(2014-2) is different from that
in these overlapping generation models, arising because of the risk diversifica-
tion available to households from holding money. Still, as in the substantial
literature on overlapping generations models with money, this basic model in
which money serves as a store of value can be extended to investigate several
issues in monetary policy. Government can alter the equilibrium outcome by
issuing “outside money” as an alternative store of value, entirely equivalent
from the perspective of households to inside money issued by intermediaries.
Government can also offer interest on this outside money and issue long term
bonds. Overlapping generations models of money have been used to explore
many monetary issues, including the distributional and efficiency impact of
different monetary policy rules (for example providing support to the Fried-
man rule that dynamic efficiency requires that the supply of outside money
should contract, and its value increase, at a rate equal to the equilibrium rate
of interest).

The major difference and the key contribution of BS(2014-2) is that their
setting incorporates business cycle fluctuations; therefore, they are able to con-
sider the role of these various monetary policies not just in steady state, but
also as a tool for countering macroeconomic fluctuations through the redistri-
butional effect of altering the distribution of net worth between creditors (in
their case households) and debtors (in their case financial intermediaries). Poli-
cies which redistribute wealth from debtors to creditors following large shocks
can help limit the occurrence and duration of extended downturns (deflation)
in which output decreases, the price of money p is high and the price of capital
q and hence investment is low.

It is clear that there is considerable scope for further research, investigating
the robustness of these BS(2014-2) findings in a range of other settings. It is
possible that similar results could be obtained using other models of “inside
money.”26 The question of how to integrate market incompleteness and bal-
ance sheet constraints with conventional models of monetary policy remains a
central issue for future research and continuous time macrofinancial models,



254 Jukka Isohätälä, Nataliya Klimenko and Alistair Milne

building further on the work of BS(2014-2), may yet provide considerable
further insight.

4 An illustrative example: output in general equilibrium

The purpose of this section is to present a simple and tractable example of a
continuous-time macrofinancial model, in order to illustrate both methods of
solution and some of the insight that can be obtained from this kind of model.
The model we present here is essentially that of BS(2014-1), but slightly sim-
plified in that there is no investment. The solution method we apply to solve
this model differs from the one employed in the original BS(2014-1) model, but
leads to the same results.

We develop this example with three objectives in mind: first, it shows how
financing constraints mathematically appear in continuous time general equi-
librium models; second, it gives a quick recipe for numerically solving such
models; finally, it provides a concrete illustration of how such a model can, at
least under some parametrization, explain persistence of fundamental shocks
reflected by a protracted reduction of output. The appendix to this chapter pro-
vides a short heuristic summary of the mathematical solution methods used
in this literature, and further technical references containing a more rigorous
presentation of these methods.

4.1 Model

In this illustrative example we consider a hypothetical economy that consists of
two types of agents: experts and households (we will use an overbar to denote
state variables and parameters corresponding to households). A representative
expert (household) is characterized by two state variables: cash c (c̄) and capital
k (k̄). Cash holdings earn interest at a constant exogenous rate r, while capital
gives production yields at rates a and ā. Negative cash holdings are interpreted
as debt. Agents consume their wealth at rates κ and κ̄ that are to be determined
by maximizing appropriate objective functions. Experts and households are
identical, except for the following three differences: (i) households are less pro-
ductive, ā< a, (ii) households are more patient than experts, which is captured
by the difference in their respective discount rates ρ̄ ≡ r<ρ, and (iii) household
consumption is not constrained, whereas an expert must have a non-negative
consumption, i.e., κ ≥ 0.

Capital can be freely traded between experts and households at a stochasti-
cally varying price qt. Capital does not depreciate, but is subject to productivity
shocks with an amplitude σ per unit capital and square root unit time. At
equilibrium, the market for capital and debt must clear.

Under the above assumptions, the expert cash and capital follow the stochas-
tic differential equations (here for experts only, analogous equations hold for
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households)

dct = (akt+ rct− qtτtkt− κt)dt, (10.2a)

dkt = τtkt dt+σkt dzt, (10.2b)

where τt is the rate at which the agent trades capital (positive τ buys, negative
sells) and dzt captures the aggregate productivity shocks. The capital price is
supposed to be stochastic and follows the equation

dqt = μq
t qt dt+σ q

t qt dzt, (10.3)

with initial data q0 and where the drift and diffusion functions μq
t and σ q

t are
some functions of time to be determined in equilibrium.

Since the capital trade is unconstrained, the agents are free to allocate what-
ever proportion of their net worth, nt = ct+ qtkt, between the risk-free asset and
capital. Let ϕt = qtkt/nt denote the proportion of an agent’s net worth invested
in capital (note that ct = (1− ϕt)kt). Applying the Itô’s Lemma to nt [Technical
Appendix A.1, Eq. (A.35)], we get

dnt =
[

r+
(

a

qt
+μq

t +σσ q
t − r

)
ϕt−λt

]
nt dt+ (σ +σ q

t
)
ϕtnt dzt. (10.4)

Note that, for convenience, we have also re-written consumption as κt = λtnt.
The structure of the above equation is essentially the same as in classical
Merton’s portfolio problem (Merton, 1969): The agent makes the allocation
choice ϕ between the risky (capital) and risk-free (cash) assets with the goal
of maximizing the value of pay-off from a (self-financing) portfolio. The main
difference pertains to the fact that the price of capital, q, does not follow a geo-
metric Brownian motion, as coefficients μq and σ q (that will be endogenously
determined below) are not constant.

Following Brunnermeier and Sannikov (2014a), we hypothesize that the
aggregate state of the economy is given by a one-dimensional diffusion process
which we here call x, and posit the equation of motion

dxt = μx
t xt dt+σ x

t xt dzt. (10.5)

At this point, we do not say what x actually corresponds to. After formally
writing down the agents’ optimization problems and aggregating, we will see
that the system can indeed be described by a single variable x – the experts’
share of the total net worth.27

Assuming then, that the aggregate state is fully specified by x, it follows that
its drift and diffusion coefficients are functions of x, μx

t =μx(xt), σ x
t = σ x(xt), and

importantly, so is the the price process q:

qt = q(xt), μ
q
t = μq(xt), σ

q
t = σ q(xt).
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The Itô’s Lemma allows us now to create a mapping from the aggregate state x

to price q. Applying it to q(xt) yields

dqt =
[
μx(xt)xtq

′(xt)+ 1

2
σ x(xt)

2x2
t q′′(xt)

]
dt+σ x(xt)xtq

′(xt)dzt. (10.6)

Matching the drift and volatility terms in Eq. (10.6) with those from the original
stochastic differential equation for the q process Eq. (10.3) yields the system of
two equations:

μq(x)= μx(x)
xq′(x)

q(x)
+ 1

2
σ x(x)2 x2q′′(x)

q(x)
, (10.7a)

σ q(x)= σ x(x)
xq′(x)

q(x)
. (10.7b)

Returning now to the agents’ optimization problem, the controls consump-
tion λ and asset allocation ϕ are to be chosen so as to maximize the objective
function that now depends on the present agent net worth n (n̄) and macro state
x. In our example, we assume that agents have linear consumption preferences,
so that an expert’s value function is

V(n,x)=max
ϕ,λ

E

[ˆ ∞

0
e−ρtλtnt dt

]
. (10.8)

The value function must satisfy the Hamilton-Jacobi-Bellman (HJB) equation
[Technical Appendix A.2, Eq. (A.40)] which here reads

ρV(n,x)=max
λ,ϕ

{
λ(n,x)n

+
[

r+
(

a

q(x)
+μq(x)+σσ q(x)− r

)
ϕ(n,x)−λ(n,x)

]
n
∂V(n,x)

∂n

+μx(x)x
∂V(n,x)

∂x
+ 1

2
σ x(x)2x2 ∂

2V(n,x)

∂x2

+σ x(x)x
[
σ +σ q(x)

]
ϕ(n,x)n

∂2V(n,x)

∂n∂x

+ 1

2

[
σ +σ q(x)

]2
ϕ(n,x)2n2 ∂

2V(n,x)

∂n2

}
. (10.9)

We cannot fix all boundary conditions for V at this stage, as we do not know
what x is. Nonetheless, it is clear from Eq. (10.4) that if an agent has zero
net worth, then n will always remain zero, as dn = 0. Consumption will then
also be zero, and so V(0,x) = 0 for all x. The objective function is linear in
n, cf. Eq. (10.8), as are the n equations of motion, provided the controls are
independent of n, and thus

V(n,x)= nW(x), (10.10)
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where W(x) can be interpreted as the marginal value of net worth.
Substituting the factored V into Eq. (10.9), we reduce it to an ordinary

differential equation that depends only on a single state variable x:

(ρ− r)W(x)=max
λ,ϕ

{
λ(x)(1−W(x))

+ϕ(x)

[
a

q(x)
+μq(x)+σσ q(x)− r+σ x(x)(σ +σ q(x))

xW ′(x)

W(x)

]
W(x)

}
+μx(x)xW ′(x)+ 1

2
[σ x(x)x]2W ′′(x). (10.11)

It is easy to see that the right-hand side of (10.11) is linear in controls ϕ and λ.
Thus, maximization in consumption λ implies

λ(x)=
{

0, if W(x)− 1< 0,
unbounded, if otherwise.

(10.12)

For households, the consumption λ̄ choice is simpler: As they are not facing
the non-negative consumption constraint, they choose their λ̄ so that W̄ = 1.

If the coefficient of ϕ in Eq. (10.11) were positive, all experts would allocate
an unbounded amount of their net worth to k (using infinite leverage to do
so). As total k is constrained, the capital allocations must all be finite, which is
consistent with the agents’ optimization only if

a

q(x)
+μq(x)+σσ q(x)− r+σ x(x)[σ +σ q(x)]

xW ′(x)

W(x)
= 0. (10.13)

An equivalent formula holds for households and their capital allocation ϕ̄, with
the difference that they might prefer not to hold any capital at all:

ā

q(x)
+μq(x)+σσ q(x)− r ≤ 0, with equality if ϕ̄ > 0. (10.14)

Under (10.12) and (10.13), the expert HJB equation reduces to

(ρ− r)W(x)= μx(x)xW ′(x)+ 1

2
[σ x(x)x]2W ′′(x), (10.15)

for any value of ϕ and for all values of x such that W(x) > 1 holds. To fully
close the model, one needs to pin down the equations of motion for the aggre-
gate state – in other words, find and solve conditions determining diffusion
coefficients μx(x) and σ x(x).

Noting that the drift and diffusion of expert (households) net worth is linear
in n (n̄), cf. Eq. (10.4), the total expert net worth, denoted N, follows

dNt =
[

r+
(

a

q(xt)
+μq(xt)+σσ q(xt)− r

)
ϕ(xt)+λ(xt)

]
Nt dt

+ (σ +σ q(xt)
)
ϕ(xt)Nt dzt. (10.16)
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Similar dynamics would emerge for total household net worth, N̄. Now the
aggregate state is determined by two state variables, N and N̄ (x is of course still
there, but here we are trying to identify what it should be). This reduces to one
when one notes that debt and capital market clearing imply

Nt+ N̄t = qtK
tot
t , (10.17)

where Ktot
t is the total capital in the economy. Aggregating the k equations

motion the same way as was done above for n, we have that dKtot
t = σKtot

t dzt.
We can now define the aggregate state variable to be the experts’ share of the
total net worth,

xt ≡ Nt

qtKtot
t

. (10.18)

Itô differentiating the definition of x, we then have

dxt =
{ a

q(xt)
ψ(xt)+

[
μq(xt)−σ 2−σσ q(xt)−σ q(xt)

2− r
]

[ψ(xt)− xt]

−λ(xt)xt

}
dt+ [σ +σ q(xt)][ψ(xt)− xt]dzt, (10.19)

where ψ is the fraction of total capital held by the experts, ψ(x)≡ xϕ(x). Equating
the drift and diffusion terms of x as given by Eq. (10.19) with those coming
from our earlier definition, Eq. (10.5), gives us what we will refer to as the
closure conditions:

xμx(x)= a

q(x)
ψ(x)+

[
μq(x)−σ 2−σσ q(x)−σ q(x)2− r

]
[ψ(x)− x] (10.20a)

xσ x(x)= [σ +σ q(x)][ψ(x)− x]. (10.20b)

Finally, we can state the remaining boundary conditions for q and W. Experts
will have unbounded consumption at the point where W reaches one, cf.
Eq. (10.12). This introduces a reflecting upper boundary x∗, as whenever expert
net worth share is over this point, they consume until x returns to the level
x∗. By the properties of a reflecting boundary [Technical Appendix A.4.2], the
derivatives at x∗ must vanish, and we then have in total

q′(x∗)= 0, W ′(x∗)= 0, W(x∗)= 1. (10.21)

At the lower boundary, share of experts’ net worth is stuck at zero, and so the
price of capital there must be such that households are willing to hold it forever.
As excess returns from holding capital for households are ā/q(0)− r when price
remains at q(0), the least possible q must be ā/r. Finally, the marginal value of
wealth W(x) for experts must tend to infinity as x→ 0:28 From Eq. (10.20b) we
have that limx→0 ϕ(x)= 1+σ x(0)/σ . Assuming that experts are always leveraged,
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ϕ(x) > 1, we must have that σ x(0) > 0. Subtracting Eq. (10.14) from Eq. (10.13)
we get that

lim
x→0

xW ′(x)

W(x)
=− a− ā

q(0)σ x(0)
< 0. (10.22)

This implies that W(x)→∞ as x→ 0. Thus, at the lower boundary we have:

q(0)= ā

r
, lim

x→0
W(x)=∞. (10.23)

In total, from Eqs. (10.21) and (10.23), we have five conditions, which is the
correct number for two second-order ordinary differential equations, plus the
yet unknown consumption boundary x∗.

We now have a sufficient number of equations to find the aggregate state
drift and diffusion coefficients μx and σ x, and the expert capital share ψ . In
addition we should also state the differential equations determining W and q

– we will obtain these when we solve our equations for W ′′ and q′′. For these
five unknowns, the five equations we need are the optimal capital allocation
conditions, Eq. (10.13) and (10.14), the pair of closure conditions, Eqs. (10.20),
and finally the expert HJB, Eq. (10.15). The solution is straight-forward, albeit
the result is not particularly pretty:

σ x(x)= a− ā

q(x)

[
− W(x)

xW ′(x)

][σ
2
+
√(σ

2

)2− a− ā

q(x)

xq′(x)

q(x)

W(x)

xW ′(x)

]−1
, (10.24a)

μx(x)= a

q(x)
−σ x(x)

{
σ +σ x(x)

[
xW ′(x)

W(x)
+ xq′(x)

q(x)

]}
, (10.24b)

ψ(x)= x
[
1+ σ x(x)

σ +σ x(x) xq′(x)
q(x)

]
, (10.24c)

q′′(x)= 2q(x)

x2σ x(x)2

{
r− a

q(x)

(
1+ xq′(x)

q(x)

)

+σ x(x)
[
σ x(x)

(
xq′(x)

q(x)

)2

−σ xW ′(x)

W(x)

]}
, (10.24d)

W ′′(x)= 2W(x)

x2σ x(x)2

[
ρ− r−μx(x)

xW ′(x)

W(x)

]
. (10.24e)

The sign in front of the square root in Eq. (10.24a) is here chosen so that
σ x(0)> 0.

In the region where households do not hold capital, we have only four
equations, as Eq. (10.14) used above becomes an inequality. On the other hand,
we have only four unknowns as ψ = 1. Solving the remaining Eqs. (10.13, 10.20,
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10.15), one now finds

σ x(x)= σ 1− x

x− (1− x) xq′(x)
q(x)

, (10.25a)

μx(x)= a

q(x)
− 1− x

x

[
σ +σ x(x)

xq′(x)

q(x)

][
σ +σ x(x)

(
xq′(x)

q(x)
+ xW ′(x)

W(x)

)]
, (10.25b)

q′′(x)= 2q(x)

x2σ x(x)2

{
r− a

q(x)
− (σσ x(x)+μx(x))

xq′(x)

q(x)

−
[
σ +σ x(x)

xq′(x)

q(x)

][
σ x(x)

xW ′(x)

W(x)

]}
, (10.25c)

W ′′(x)= 2W(x)

x2σ x(x)2

[
ρ− r−μx(x)

xW ′(x)

W(x)

]
. (10.25d)

The model solution is complete once we numerically solve the q and W

differential equations.

4.2 Numerical solution

4.2.1 Marginal value W and aggregate state x

The numerical solution of Eqs. (10.24) and (10.25) poses some challenges. Stan-
dard, local iterative ordinary differential equation solvers such as Runge-Kutta
or predictor-corrector methods (see e.g., Hairer et al. (1993)) work by propagat-
ing the solution from a given point x forward or backward by evaluating the
derivatives at and around x. In the case of Eqs. (10.24) and (10.25), such meth-
ods run into the problem of division by zero: At the left-hand side boundary,
the derivatives of q and W evaluate to plus or minus infinity.

One solution to this problem is to ignore it: The solution of the equations can
be attempted with the derivatives apparently evaluating to 1/0 or 0/0. Infinite
initial values are replaced by very large, but finite numbers, and the derivatives
are evaluated with the hope that numerical round-off error sends zeros to small
but finite values, so that the undefined division by zero condition does not
occur.

A more satisfactory approach is to remove the singularities altogether by
some change of variables, or to use an approximate analytic solution near the
critical point. In this example, we do the latter by constructing the asymptotic
expansion of q and W near the boundary [Technical Appendix section A.5]. We
begin by assuming a power law form for the solution near the lower boundary
that is consistent with the boundary conditions of Eq. (10.23):

q(x)= ā

r
+ q1xα + o(xα), W(x)=W1x−β + o(x−β ), α,β > 0. (10.26)

The exponents are determined by first substituting the trial functions into
Eqs. (10.24d) and (10.24e), expanding the equations for small x, and then solv-
ing α and β so that the leading order term vanishes. Albeit the algebra is tedious,
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a solution eventually emerges:

α = 1

2
−β

(
1+ aāβσ 2

(a− ā)2r

)
+
√[

1

2
−β

(
1+ aāβσ 2

(a− ā)2r

)]2

+ 2(āβσ )2

(a− ā)2r
, (10.27a)

β = 1

2
− āρ

2ar
− (a− ā)2r

4aāσ 2
+
√[

1

2
− āρ

2ar
− (a− ā)2r

4aāσ 2

]2

+ (a− ā)2r

2aāσ 2
. (10.27b)

Four different combinations for the signs in front of the square roots are
possible. Clearly, however, only the above choice yields solutions that are
both positive. The coefficients q1 and W1 will be determined by the boundary
conditions.

For small x, we can now use the trial solutions of Eq. (10.26), truncated to
the displayed terms, with α and β from Eqs. (10.27). Then, for x greater than
some small cross-over value ε, we use a standard iterative local ordinary differ-
ential equation solver, with initial conditions at ε coming from the asymptotic
expansion. The value of ε should be large enough to ensure that evaluating the
derivatives is not significantly affected by round-off error, but small enough so
that the asymptotic expansion is accurate. As a first guess, the square root of
the maximum relative error of the used floating point arithmetic, ε ∼ 10−8 for
double precision, can be used.

Using the above approach, we can now solve the q and W differential
equations given q1 and W1, the coefficients of the leading non-constant terms
in the asymptotic expansion of q and W (Eq. (10.26)). We can arbitrarily fix W1

as the equations are invariant in linear scaling of W, and scale the solution ex-
post in order to satisfy the condition W(x∗) = 1 at the consumption boundary.
We still have q1 and the position of the upper boundary x∗ to be set so that the
remaining boundary conditions W ′(x∗)= q′(x∗)= 0 are satisfied.

A simple numerical scheme that finds q1 and x∗ can be set up as follows:
Define  (q1) as q′ evaluated at first x such that W ′(x) = 0 where q and W are
solutions to the model equations for the given q1. This point can be found by
solving the differential equations forward from the initial point, until the W ′(x)
boundary is crossed; the exact crossing point is then polished using standard
root finding methods. The correct q1 can then be determined by finding (q1)=
0, where again, any standard root finding method can be employed.

In Figure 10.1 we have plotted the numerical solution following the method
described above. The parameter values used are a = 0.11, ā = 0.07, σ = 0.1, r =
0.05, and ρ = 0.06.

4.2.2 Equilibrium probability distribution

The statistics of the possible realizations of the economy are given by the prob-
ability density function of x, f (x) which itself is obtained from the Kolmogorov
Forward equation [Technical Appendix section A.3, Eq. (A.45)]. In equilibrium,
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Figure 10.1 Numerical solution of Eqs. (10.24) and (10.25)

for the process x of Eq. (10.19), this reads

0= μx(x)xf (x)− ∂

∂x

[
1

2
σ x(x)2x2f (x)

]
, (10.28)

where the coefficients μx and σ x come from Eqs. (10.24) or (10.25) depending
whether households are holding capital or not, and where the q and W func-
tions are presumed to have already been solved. Here, we have also used the
fact that x∗ is a reflecting boundary, and set the left-hand side of Eq. (10.28) to
zero [Technical Appendix section A.4.2, Eq. (A.50)].

Rather than solving Eq. (10.28) directly, it is easier to define

f (x)= 2g(x)/(xσ x(x))2,

and solve for the function g instead. This change of variables avoids us having
to differentiate σ x, a straight-forward but laborious task. For g, the equation
reads

0= 2μx(x)

xσ x(x)2
g(x)− g′(x). (10.29)

The solution needs to be normalized to unit integral over the x range; to do
this, we can solve the differential equation F′(x) = f (x) in parallel to the one
above. F will then be the cumulative probability distribution, if we further ask
that F(0) = 0. Numerically, the equations can be solved with arbitrary initial
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conditions: If f and F are such un-normalized solutions, one simply replaces
them according to f (x) �→ f (x)/[F(x∗)−F(0)] and F(x) �→ [F(x)−F(0)]/[F(x∗)−F(0)].
This is valid since the f and F differential equations are invariant in scaling, the
F equation also in the addition of constants.

As was the case with q and W equations, we have a singularity at x= 0, since
2μx(x)/(xσ x(x)) tends to infinity at zero. An asymptotic expansion could be used
here as well, and for completeness, we shall do it. But for the numerical solu-
tion, a simpler approach is possible: we can choose some interior point, and
solve from there left towards the x = 0 boundary, and right up to x = x∗ edge.
Due to the singularity, the left-hand side solution is likely to fail before reach-
ing x= 0, but this is fine as long as we got near enough to 0, and the integral of
density tends to a finite value (if not, in equilibrium all probability mass is at
x= 0).

The x → 0 asymptotic form of f can be found using the methods we have
already used above. Alternatively, it would suffice to note that in the x → 0
limits of the relative drift and diffusion of x are

lim
x→0

σ x(x)= r

āβ

a− ā

σ
, (10.30a)

lim
x→0

μx(x)= r

āβ

[ r

ā

(
a− ā

σ

)2

+ ā+ (β− 1)a
]
, (10.30b)

and we can replace μx and σ x by these limits in Eq. (10.28) and solve f

analytically. The result is

f (x)∝ xγ + o(xγ ), where γ = 2

[
β− 1+β ā(ā+ (β− 1)a)σ 2

(a− ā)2r

]
. (10.31)

One immediately sees that if γ <−1, the integral of f is infinite over arbitrarily
small interval [0,δ], δ > 0. If this is the case, for those parameters, all probability
condenses to x= 0.

The numerically solved probability distribution function f and the cumula-
tive probability function F are plotted in Figure 10.2. Comparing to BS(2014-1),
even in this simplified model, the two peaked structure of the density f is still
visible. This is relatively unsurprising since the models differ mainly by the
inclusion of investment dynamics. We refrain from analyzing the economic
implications of the result, as the main goal was to present an easy example to
understand derivation of the model and the solution methods.

5 Some paths for future research

We complete this chapter with a short discussion of the range of further issues
that models of this kind might usefully address, emphasizing once again that
this is still an immature literature, that many technical challenges remain and
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Figure 10.2 Equilibrium probability distribution functions

therefore we can make no firm predictions about where contributions and
breakthroughs will come.

There are many paths of future investigation that could be followed. A
number of contributions to the new continuous-time macrofinancial literature
assume an “AK” production function i.e., output is a linear function of the
stock of capital. This assumption, which can be traced back to the contribu-
tion of Frankel (1962), was widely employed in the earlier contributions to
the literature on endogenous growth (see Aghion and Howitt (2009) for review
of this literature). Both Isohätälä et al. (2014) and Brunnermeier and Sannikov
(2014a) can be interpreted as models of endogenous growth yielding the predic-
tion that capital accumulation and hence the rate of economic growth, will fall
when corporate net worth falls and that the economy may then remain for an
extended period in a phase of low investment and low growth (the “net worth”
trap). These models may thus already provide some insight into the major puz-
zle of the slowdown of aggregate productivity growth in many countries since
the global financial crisis.

This is though a rather simplistic account of growth. The theoretical growth
literature has moved on to focus on other mechanisms such as investment in
product variety (as in Romer (1987, 1990)) and in the discovery of new more
efficient methods of production (innovation) that replace older inferior meth-
ods (e.g., the model of Schumpterian “creative destruction” of Aghion and
Howitt (1992)). A natural further development will therefore be to employ sim-
ilar continuous time models to examine the impact of balance sheet constraints
and financial distress on investment in new products and processes and hence
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on productivity growth. Doing this though may be difficult within the current
assumption of only a single state variable.

A related issue is that of structural adjustment following financial crises.
Many countries need to adjust the structure of their economies, for example
switching labor and capital resources from non-traded to traded output. Rising
risk-premia in periods of financial distress can act as a barrier to such invest-
ments, providing another form of trap in a low-output low-income state. Other
similar issues arise in understanding the low elasticities of traded sector output
to changes in exchange rates following financial crises or in the response of
small open economies to “sudden stops” of capital flows (on this issue Brun-
nermeier and Sannikov (2015) have made a promising start using continuous
time methods).

Further understanding will surely also need to take account of the interaction
of balance sheet constraints with household, corporate and bank expectations
about future productivity and incomes. To date the continuous-time macrofi-
nancial literature has imposed the conventional but rather strong assumption
of model-consistent expectations. Every agent is assumed to know both the
current state of the economy and stochastic processes that drives both the state
of the economy and market prices. Different, possibly even more extended,
dynamics can be expected when agents update their expectations about unob-
served states and processes in response to their current observations. Thus, for
example, a fully adequate model of endogenously created bank inside-money
would seem to need to take account of the possibility that optimistic expec-
tations about future income result in a period of rapid and self-reinforcing
expansion of both bank credit and bank money. Introducing learning of this
kind into these models will be a further technical challenge.

A further potential line of inquiry is to make the treatment of financial mar-
kets more realistic, for example by allowing for alternative (financial markets)
source of financing for the productive sector, on top of bank loans, since the
empirical evidence suggests that firms tend to partly substitute bank financ-
ing by market financing when credit conditions tighten (see e.g., Becker and
Ivashina (2014)). This would help to get a better understanding of how the
substitutability of funding sources can add to/mitigate the propagation of fun-
damental shocks, with implications for growth and financial stability. Another
similar departure would be to allow for the internal source of financing for
the productive sector (i.e., capital accumulation within firms). Introducing this
feature, most likely, would require introducing an additional state variable
in play – the net worth of the productive sector, which might be technically
challenging.29

Similarly there is need for better understanding of the role of both commer-
cial and central bank balance sheets in macroeconomic transmission and the
supply of credit. The DSGE assumption that all that matters in monetary policy
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is interest rates is now accepted as an oversimplification, but we are not yet in
the position of having tractable incomplete market models, in either continu-
ous or discrete time, in which the role of commercial and central bank balance
sheets is clearly articulated. While the work of Brunnermeier and Sannikov
(2014d) that we have reviewed offers a particularly promising start, it is still
not yet possible to say that the present “state of the art” is sufficiently devel-
oped to provide a full understanding of the impact of unorthodox monetary
policy (central bank balance sheet expansion) or macroprudential tools (such
as cyclically varying capital requirements or limits on loan-to value ratios).

These paths for future research are far from exhausting the list of possi-
ble applications of new continuous-time macrofinancial modeling. There are
also opportunities to apply this framework in a number of other settings more
routinely explored using standard linearized DSGE models. Examples include
modeling the labor market, real wages and employment and product markets
and price setting. If balance sheet constraints affect investment and asset mar-
kets then they should also affect labor and goods markets. Writing down such
models in continuous time with balance sheet and net worth constraints does
not seem so difficult. Solution though could be challenging because of the need
to include additional state variables.

The challenges of numerical solutions should give pause for thinking care-
fully about the choice of modeling strategy. There are well developed tools
for the numerical solution of macroeconomic models with several state vari-
ables in discrete time. Replicating all this technical work on solutions with
many state variables in continuous time may not be an efficient way to pro-
ceed. It may instead be more useful to find ways to incorporate the insights
of continuous-time macrofinancial modeling into more widely known and
understood discrete time settings. This is one reason why, as we have already
suggested, we believe that over time the “gap” between continuous time and
discrete time specifications can and should be closed. There is no reason why
the impact of balance sheet constraints and net worth cannot be incorporated
into otherwise standard discrete-time specifications (although this may come
at some cost, for example the need to introduce more explicit modeling of
what happens when disturbances result in constraints binding, something that
can often be conveniently put to one side when uncertainty is modeled as a
continuous time diffusion).

Finally, of course, it will be essential to take these models closer to data.
Some initial steps in this direction are already made by He and Krishnamurthy
(2013, 2014) who seek to replicate the asset market’s behavior during the 2007–
2009 financial crisis. Improving predictive and simulation properties of these
models, however, carries a risk of losing tractability and transparency. An illus-
tration is the challenge of explaining the counterfactual prediction of He and
Krishnamurthy (2012) and He and Krishnamurthy (2013), that the leverage



Post-Crisis Macrofinancial Modeling 267

of financial intermediaries increases substantially during financial crises (the
underlying mechanism is that the emergence of crisis results from low specialist
equity requiring them to leverage in order to maintain “skin in the game”).

As an example of the challenges of bringing these models to the data, we can
briefly describe how the model by Adrian and Boyarchenko (2013) employs
continuous-time macrofinancial modeling tools to develop an explanation of
observed pro-cyclical intermediary leverage. There are several distinctive fea-
tures of this work. Three of these seem to be particularly important. First that
financial intermediaries do not maximize an objective function (such as present
discounted future dividends); instead, they behave mechanically, first using
earnings to pay floating rate coupons on long term bonds issued to households
(the coupon rate is determined by equilibrium of the supply and demand for
these bonds) and retaining all remaining earnings to build up equity and invest
in productive capital. Second that if intermediary equity falls below a lower
boundary, then financial intermediaries are restructured, with debt-holders
wiped out and re-established under new equity holders. Since all intermedi-
aries are identical and hit by the same shocks this is a systemic crisis. Third
that financial intermediary leverage, and hence their investment in productive
capital, is continuously determined by a regulatory driven, value-at-risk-type
constraint that depends on the short term volatility of the price of productive
capital.

Similar to the other macrofinancial models that we have described, all vari-
ables of interest (intermediary equity, the price of productive capital, the
expected excess returns on holding intermediaries’ debt and productive capi-
tal) can be described as the functions of a single state variable. Just as in He
and Krishnamurthy (2012) and Brunnermeier and Sannikov (2014a) this state
variable is the share of financial intermediaries’ net worth in total wealth. The
novel contribution is two closely related empirical predictions not captured by
other models. First, as a direct consequence of the assumed leverage constraint,
this model it generates the empirically-observed pro-cyclical pattern of inter-
mediary leverage. Second it also explains what Adrian and Boyarchenko (2013)
describe as the volatility paradox, i.e., the well known observation that systemic
risks tend to increase during periods of perceived low volatility: e.g., for exam-
ple, during the “great moderation” that preceded the global financial crisis. In
their model this appears as a negative relationship between the instantaneous
endogenous volatility of the returns to holding capital with the probability of a
systemic default. As endogenous volatility declines, leverage rises and thus also
does the risk of a systemic default on a six-months-ahead horizon (see their
figure 5.)

While Adrian and Boyarchenko (2013) make a valuable further contribution,
their work can also be read as an illustration of the very substantial challenges
of bringing models of this kind to the data. Departures from forward looking
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behavior or intertemporal optimization are not necessarily wrong, but these
departures open up such a large menu of possible modeling choices that is
difficult to know what is the best way forward. There is an almost unlimited
range of possible underlying assumptions of this kind that can generate macro-
financial interactions.

In order to impose the required intellectual discipline, it may prove necessary
to focus on developing models of incomplete markets that are consistent, not
just with observed aggregate outcomes such as asset prices or national account-
ing measures of output and investment (there are simply too many potential
modeling choices for doing this), but also with micro level data at the level
of individual firms, households and financial institutions. In this context it
will be difficult to ignore the simplifying aggregation assumptions employed in
the continuous-time macrofinancial literature. Instead it may eventually prove
necessary to work with large scale agent-based models, in which distribution
of net worth and leverage within sectors is tracked as well as the aggregate net
worth (see Haldane (2015) for further discussion of why macrofinancial mod-
eling should use agent-based approaches). Work of this kind will however need
a different approach to research than has been conventionally used in macroe-
conomics, requiring relatively large teams of researchers in order to collect and
match the underlying microlevel data.

6 Conclusion

This chapter has reviewed several contributions to a new and promising current
literature, employing continuous time models to capture some of the macrofi-
nancial interactions that have been highlighted by the global financial crisis.
Though using highly stylized specifications, these models demonstrate how the
interaction of market incompleteness with the balance sheet constraints of eco-
nomic agents can generate dynamics of macroeconomic variables much more
consistent with the empirically observed patterns at times of crisis than those
generated by conventional DSGE models. These dynamics include substantial
variations in risk-premia and asset prices, as well as subsequent substantial and
highly persistent declines of macroeconomic aggregates such as output and
investment. In the models reviewed in this chapter these dynamics are largely
driven by what are in effect changes in attitudes to risk, and by externalities
stemming from the fact that individual agents do not internalize the impact of
their individual risk taking or other decisions on the wider economy.

As we highlight in Section 5 of this chapter, the modeling approach intro-
duced by this new literature has the potential to address a large spectrum of
macroeconomic problems. The pursuit of these avenues of future research is
an exciting challenges, from both technical and economic perspectives. Where
then will future research ultimately take us? We have no crystal ball but our
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judgment is that the eventual destination of this literature will be a relatively
small number of comparatively simple but influential continuous-time models
of the kind we have reviewed here, providing widely accepted economic intu-
ition and policy insight into macrofinancial interactions rather than predicting
accurately macroeconomic and financial market developments.

An important impact of these modeling efforts may be persuading researchers
working in more conventional discrete-time frameworks of the necessity of
taking incomplete markets and balance sheet and net worth constraints seri-
ously. Matching with data is then in turn likely to require more “agent-based”
approaches in order to meet the fundamental challenge of aggregation.

Such research will need a very careful process of matching against both
microlevel and aggregate data in order to develop useful models. The final out-
come could be a shift in modeling paradigms, from the typical small-team work
found in much current macro economics to more resource intensive inves-
tigations involving many investigators and massive efforts at data-collection
and calibration, with the overall direction of research guided to an important
degree by the insights of the new continuous time approach to macrofinancial
modeling.

This does not avoid the need for considerable efforts in order to find a
reasonable balance between, on the one hand transparency and clear eco-
nomic intuition, and on the other the realism and accuracy of underlying
economic assumptions. We believe that the new macrofinancal models, despite
the use of techniques of continuous-time stochastic modeling with which most
economists are not very familiar, are especially useful because of the relatively
clear and simple intuitions they provide about the macroeconomic conse-
quences of incomplete markets, and hence the resulting impact of balance sheet
and net worth on macroeconomic outcomes. We therefore hope this chapter
can be helpful in acquainting our readers with the conceptual and technical
features of this new generation of models and stimulating interest in this field
of research.

A Appendix: Basics of continuous time models

In this appendix, we review some technical issues that arise when trying to
understand, construct, or solve models that incorporate binding financing
constraints in continuous time models. We begin with a brief summary of
key concepts, eschewing formal proofs and favoring heuristic derivations that
nonetheless can in principle be used as a basis for a more rigorous approach.

A.1 Stochastic differential equations

The primary modeling tool for describing the state of an agent is the stochastic
differential equation (SDE), a generalization of the ordinary differential equation
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that incorporates some form of external stochastic forcing. Gardiner (2009)
gives an excellent and approachable review of many of the topics covered here
and subsequent sections; other solid reference texts on stochastic differential
equations include Øksendal (2003) and Feller (1971).

Let xt stand for an agent’s state, e.g., wealth or net worth, at time t, with the
initial, t = 0 state x0 given. We say x is a diffusion process and formally write its
equation of motion as the SDE

dxt = μ(xt)dt+σ (xt)dzt, (A.32)

where zt is a Wiener process, a continuous stochastic process having indepen-
dent and normally distributed increments, zt+h − zt =

√
hη, where η is a unit

normal distributed random variable. The differentials, dxt,dzt, . . ., can be viewed
as the zero time step limits of corresponding finite differences, so that Eq. (A.32)
becomes the limit of the discrete time model

x(k+1)T = xkT +Tμ(xkT )+√Tσ (xkT )ηkT , (A.33)

where T, T → 0, is the length of the period and ηkT , k= 0,1, . . ., are independent
unit normal distributed random variables.30 More rigorously, the stochastic
differential equation, Eq. (A.32) should be understood as a short-hand way of
writing the stochastic integral

xt = x0+
ˆ t

0
μ(xs)ds+

ˆ t

0
σ (xs)dzs, (A.34)

where the integral against the Wiener process, or any diffusion process in gen-
eral, is defined analogously to the Riemann-Stieltjes integral. Stochastic calculus
is the theory of stochastic differential equations; for a more focused reference
on the topic, we refer the reader to e.g., Klebaner (2005).

An important analytical tool is Itô’s Lemma which allows one to differentiate
functions of diffusion processes such as x as given by Eq. (A.32). If f is any
twice differentiable function defined in the domain of x, then f evaluated at xt,
denoted ft = f (xt), is also a diffusion process with the increments

dft =
[
∂f (xt)

∂t
+μ(xt)

∂f (xt)

∂x
+ 1

2
σ (xt)

2 ∂
2f (xt)

∂x2

]
dt+ ∂f (xt)

∂x
σ (xt)dzt. (A.35)

Although we focus on single state variable problems, equivalent equations
for multivariate case are still useful. For instance, in the construction of our
example model, we needed multivariable formulas as we reduced an initially
two variable problem to a single variable. Suppose Xt is an N-dimensional dif-
fusion process taking values on some subset of RN , Xt = (x1

t ,x2
t , . . . ,xN

t )T (here T

stands for matrix transposition). We write the X equation of motion as

dXt = μ(Xt)dt+σ (Xt)dZt, (A.36)
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where now Z is a vector of Wiener processes, Zt = (z1
t , . . . ,zK

t )T, K is the num-
ber of independent shock sources, μ(Xt)= (μ1(Xt), . . . ,μN (Xt))T is the drift vector
and σ (Xt)= [σ ij(Xt)]ij is the N×K covariance matrix. The elements of Zt can be
without loss of generality taken to be independent: any and all instantaneous
correlations between shocks are encoded in the matrix σ .

The multivariate version of Itô’s Lemma, Eq. (A.35), for a function f = f (X),
f : RN �→R, reads

dft =
{
μ(Xt)

T∇Xf (Xt)+ 1

2
tr
[
σ (Xt)

THXf (Xt)σ (Xt)
]}

dt

+∇Xf (Xt)
Tσ (Xt)dZt, (A.37)

where tr stands for matrix trace, and ∇Xf and HXf give the gradient vector and
the N × N Hessian matrix of the function f , [∇Xf (X)]i = ∂f (X)/∂xi, [HXf (X)]ij =
∂2f (X)/∂xi∂xj.

These equations assume that the SDEs do not depend explicitly on time t;
that is, they are time-homogeneous. An easy way of extending all of these
definitions to account for explicit time dependence is to consider t additional
state variable in X, with the trivial SDE dt= dt.

A.2 Hamilton-Jacobi-Bellman equation

The standard tool in stochastic dynamical programing is the Hamilton-Jacobi-
Bellman equation (Fleming and Soner, 2006). Suppose that equations of motion,
Eqs. (A.32) and (A.36) in the multivariate case depend on some controls y,
which we now wish to choose so that our discounted future utility is maximal.
For an infinite time-horizon problem, with standard exponential discounting
and time-preference rate ρ, the objective function to maximize is

�(x0; {yt}∞t=0)= E

ˆ ∞

0
e−ρtu(yt)dt, (A.38)

where u is the utility function. Let V then be the maximal �, and henceforth
assume that y refers to the maximizer:

V(x)= max
{yt}∞t=0

�(x0; {yt}∞t=0). (A.39)

Assuming that V is twice differentiable, it can be found as a solution to the
Hamilton-Jacobi-Bellman (HJB) equation:

ρV(x)=max
y

{
u(y)+μ(x,y)V ′(x)+ 1

2
σ (x,y)2V ′′(x)

}
. (A.40)

An easy heuristic derivation goes as follows: (i) Start with the definition of V

and divide the integral into two parts: from 0 to some small h, and from h to
infinity; (ii) Use Bellman’s principle on the second integral to make it V a time
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h later, appropriately discounted, e−ρhV(xh); (iii) Use Itô’s Lemma to approxi-
mate V(xh), Taylor expand in h, and then let h → 0. This basic derivation of
the Hamilton-Jacobi-Bellman equation requires that V be twice differentiable.
It is well known that solutions do not always have this property. The theory
of viscosity solutions addresses this problem, however, this topic is beyond the
scope of this introduction (See e.g., Fleming and Soner (2006), or Crandall et al.
(1992) for a rigorous but self-contained guide to the subject).

Generalizing to the multivariate case, the Hamilton-Jacobi-Bellman equation
for the process of Eq. (A.36) with controls y reads:

ρV(X)=max
y

{
u(y)+μ(X)T∇XV(X)+ 1

2
tr
[
σ (X)THXV(X)σ (X)

]}
. (A.41)

A.3 Equilibrium characterization

In the conventional view, persistent e.g., in much of DSGE modeling today,
what constitutes an equilibrium is a point in state space, plus random fluctua-
tions induced by shocks. Such equilibria are a feature of, say, models linearized
around a deterministic steady state, and which treat shocks as relatively small
perturbations. When the modeling paradigm allows for large deviations, as is
the case in the models we are highlighting here, this point-plus-perturbations
picture of the equilibrium breaks down. Shocks, possibly amplified by feedback
effects, can now drive the system far from what would have traditionally been
seen as a relatively tranquil equilibrium point. Rather then, the equilibrium is
characterized by a probability distribution over the whole state space.

In continuous time, the probability distribution of a diffusion process x

is given by the Kolmogorov forward equation, also known as the Fokker-Planck
equation (See e.g., Gardiner (2009); Risken (1996) is solely dedicated this
equation): If f (t,x|x0) is the probability density function of process x following
Eq. (A.32) with initial data x0, then f satisfies the partial differential equation
(omitting the explicit conditioning on the initial x):

∂f

∂t
(t,x)=− ∂

∂x

{
μ(x)f (t,x)− ∂

∂x

[
1

2
σ (x)2f (t,x)

]}
. (A.42)

Probability densities are integrated to get actual probabilities: Given a large
number of independent realizations of x, the probability of finding x in the
interval [x0,x1] at time t is

Pt(xt ∈ [x,x+�x])=
ˆ x1

x0

f (t,x′)dx′. (A.43)

The “large number of independent realizations” can be understood either as
many simultaneously running independent processes (and so with indepen-
dent shocks), or as a large number of samples of a single process, taken over
an infinitely long time period. In the former view, f (x) represents the cross-
sectional density of the state variables following the same dynamic stochastic
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equations of motion. Which view is correct depends of course on what one
aims to model.

For additional intuition, the forward equation can be written in the form of
a continuity equation relating the temporal change of f to spatial variation of
a probability flux:

∂f

∂t
(t,x)=− ∂j

∂x
(t,x), (A.44a)

j(t,x)= μ(x)f (t,x)− ∂

∂x

[
1

2
σ (x)2f (t,x)

]
, (A.44b)

where j(t,x) is the probability current; that is, the rate of flow of probability
through the point x to the positive x direction. In equilibrium ∂f (t,x)/∂t = 0,
and therefore the Fokker-Planck equation reduces to a first order ordinary
differential equation

μ(x)f (t,x)− ∂

∂x

[
1

2
σ (x)2f (t,x)

]
= j0, (A.45)

where j0 is a constant to be determined by the boundary conditions.
The multivariate Fokker-Planck equation corresponding to the process X,

again taking values on RN and following the SDE (A.36), is in turn

∂f

∂t
(t,X)=−∇X · J(t,X) (A.46a)

J(t,X)= μ(X)f (t,X)−∇X ·
[

1

2
σ (x)Tσ (x)f (t,X)

]
, (A.46b)

where J = (j1, . . . , jN )T is now an N-dimensional probability current, and
∇X · is the divergence operator, ∇X · J(X) = ∑N

i=1 ∂ji(X)/∂xi, [∇X · σ (x)Tσ (X)]i =∑N
j=1 ∂[σ (x)Tσ (x)]ij/∂xj.

A.4 Boundary conditions

Solutions to the HJB and the Fokker-Planck equations, Eqs. (A.40) and (A.44),
or Eqs. (A.41) and (A.46) in the multivariate case, are not uniquely fixed until
appropriate boundary conditions are given. Nonlinearity, capital constraints,
and the need for proper treatment boundary conditions go hand in hand: If
one is to construct a model that can account for large fluctuations, one must
account for the possibility of a state variable hitting a hard bound, e.g., a cap-
ital or leverage constraint. Here, we consider the two most common boundary
conditions: the absorbing and the (instantaneously) reflecting boundary.

A.4.1 Absorbing boundary

An absorbing boundary, say placed at position x†, is such that upon reaching
it, the process is stopped and removed from the distribution. A stopped process
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(an agent who goes out of business, or a firm that has been liquidated) can
no longer generate utility, and so it is natural to require that at an absorbing
boundary the value is zero,

V(x†)= 0, (A.47)

whenever of course the utility function is non-negative for all controls. For the
probability density, an absorbing boundary at x† means that

f (x†)= 0, (A.48)

which has the natural interpretation of asking that point x† is always com-
pletely free of the process x.

Multivariate generalizations are obvious: The absorbing boundary is not a
point anymore, but some surface in the embedding space, and the same zero
value or zero density requirement holds.

A.4.2 Reflecting boundary

Although the word “reflection” invokes a picture of a very certain type of
motion, such as the elastic bouncing of a ball off of a rigid wall, or specular
reflection of a beam of light, a reflecting boundary is here understood some-
what more generally. We will say that a boundary is reflecting whenever it
conserves probabilities in the sense that it does not leak probability in or out,
or allow the process to accumulate or to stop there for a finite time period.

In general, a reflecting boundary is set up by some forcing term that is strong
enough to overcome the drift and diffusion terms in Eq. (A.32), preventing
the process from ever crossing the boundary. Such forcing can be due to e.g.,
a singular control term (a control that has unbounded magnitude and which
optimally is always either fully on or off). A rigorous mathematical treatment of
SDEs with reflection does not use infinitely strong drift terms,31 but as a model
to guide intuition, the idea that the boundary is enforced by infinitely strong
and infinitely short kicks is reasonable enough.

For functions of process x, a reflecting boundary implies a Neumann condi-
tion: it imposes a specific value on the derivative of the function. Say there is a
reflecting boundary at x∗. For the value function, we then must have that

V ′(x∗)= 0. (A.49)

This can be justified as follows: imagine the x range inside the boundary
reflected into the range outside the boundary. One can now view a process
hitting the boundary as instead passing into the “mirror” space. In order for
V to be smooth across the boundary, demanded by the smoothness of optimal
V, then the derivative V ′ is zero. Similarly, for any continuously differentiable
function of the process, the derivative should vanish at x∗.
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For the density f , a reflecting boundary naturally corresponds to a point
where the probability current j, Eq. (A.44), vanishes

j(x∗)= μ(x)f (x)− ∂

∂x

1

2
σ (x)2f (x)

∣∣∣∣
x=x∗

= j0 = 0. (A.50)

Note that in the one-dimensional case, in steady state, this condition fixes the
probability flow to zero over the whole of the x range. If there is also a reachable
absorbing state, the probability density must be over the x range, for then both
the value and derivative of f vanish at the same time. The word reachable is
key: An absorbing boundary may be such that it cannot be arrived at in finite
time. In this case, both an absorbing and reflecting boundary can co-exist, with
the probability density not collapsing to zero.

Extensions to N-dimensional processes X are somewhat more complicated
than for the absorbing boundary. Suppose that the reflecting boundary is a
surface in RN , x∗ is a point on that surface, and that �(x∗) is the direction of
the boundary forcing term (assumed never perpendicular to the normal of the
boundary). Then the boundary condition for V reads

�(x∗) · ∇XV(x∗)= 0, (A.51)

that is, the �-directed derivative of V is zero when on a reflecting boundary.
For the Fokker-Planck equation, the N-variable extension Eq. (A.50) is

ν(x∗) · J(x∗)= 0, (A.52)

where ν(x∗) is the inwards unit normal vector of the boundary surface at x∗, and
J is the probability current as given by Eq. (A.46b). The natural interpretation
is that the probability flow perpendicular to the surface is zero (no outflow of
probability, or accumulation on the surface).

A.5 Asymptotic analysis

A useful tool in studying the behavior of continuous time models is the asymp-
totic expansion. These are simply approximate analytical solutions of the
model equations that are valid only near the boundaries. Their utility lies in
the fact that they can yield analytic insight into the qualitative and quanti-
tative behavior of the model near the boundaries, which in turn can aid the
model analysis or help with the numerical solution of the equations.

The exact way of constructing the expansion varies from problem to problem,
but the general idea is to use the smallness of the distance to the boundary, or
the greatness of the variable if very far from it, as a simplifying assumption. A
fairly generally applicable recipe goes as follows:

1. Guess the limiting form of the solution, oftentimes a power law of the
independent variable.
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2. Substitute this trial function into the equation to be solved.
3. Expand the equation to leading order by neglecting terms that are guaran-

teed to be smaller than other terms in the equation.
4. Choose the parameters of the trial function so that a solution matching the

boundary constraints are satisfied.

Notes

1. An example of such a DSGE extension is Meh and Moran (2010) who generalize the
financial accelerator to include a bank-moral hazard based on Holmstrom and Tirole
(1997).

2. Our paper complements Brunnermeier and Sannikov (2016) who provide a detailed
discussion of the solution methods employed in these continuous-time models of
this kind.

3. Generally, these are partial differential equations, but when the model in question
has just a single state variable, as is the case in the models we review here, the
equations become ordinary differential equations.

4. See Guvenen (2011) for a detailed review of this literature.
5. The standard results are those of Gorman (1959), who considers restrictions on utility

under which consumption of goods can be expressed as a linear function of wealth
allowing the choices of a large number of households to be restated as that of a
representative consumer; and of Rubinstein (1974) and Constantinides (1982) who
examine aggregation in the context of portfolio allocation-consumption decisions.
Constantinides (1982) shows that under relatively weak conditions with complete
financial markets the decisions of individual consumers can be replaced by that of a
composite representative agent. See Guvenen (2011) for more discussion.

6. Similarly strong representative agent assumptions are also imposed in earlier litera-
ture on the macroeconomics of financial frictions, including in the influential work
of Kiyotaki and Moore (1997) and Bernanke et al. (1999).

7. The Krusell-Smith algorithm for obtaining model consistent capital dynamics is
based on updating a linear rule for the period by period investment in the stock
of capital through a regression on the simulated model output from the previous
iteration. Iteration continues until the investment rule is model consistent and the
accuracy of the numerical solution is judged by the fit of the regression.

8. For further discussion see Den Haan (2010).
9. Another way of thinking about these challenges of numerical convergence is that an

algorithm of this kind in effect substitutes moments of the distribution of networth,
both across individual agents and across time, for the full distribution. If insufficient
moments are included then the algorithm may yield a poor approximation to the
correct solution.

10. In Section 4 of this chapter we discuss the technicalities of solution of a simple
illustrative example of continuous time macrofinancial modeling, hoping in this
way to make this literature accessible to readers who are much more familiar with
discrete time modeling. We also recommend as good practice further steps to help
readers become acquainted with these methods. One helpful presentational device,
used for example by Klimenko et al. (2015), is to first state a model in discrete
time with time steps of length �t and then derive the limit as �t → 0. Another
helpful step is to develop standalone numerical solvers which allow readers to use
“sliders” to vary parameters and observe the consequent changes in solutions. The
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website www.leveragecycles.lboro.ac.uk contains examples of such standalone solu-
tion software for two of the papers reviewed here, Isohätälä et al. (2014) and Isohätälä
et al..

11. This, however, does not apply to jump-diffusion processes.
12. See Krueger and Kubler (2008) for a short overview, including discussion of the chal-

lenge of computing solution in a small number of state variables when it is no
longer possible to obtain solution using contraction mapping theorems (theorems
closely related to the aggregation results of Constantinides (1982) and the implied
correspondence between market equilibrium and an equivalent central planning
problem). The algorithm of Krusell and Smith (1998) is the most widely cited exam-
ple of such methods applied in the context of incomplete markets. Ljungqvist and
Sargent (2000) chapter 17 offer a number of other examples of solutions for incom-
plete market economies and Feng et al. (2014) and Guerrieri and Iacoviello (2015) for
two recent proposed methods for recursive numerical solution of incomplete market
models in discrete time. Tractable solutions of these models are described as “Marko-
vian” because the stochastic dynamics can be expressed in terms of the equations of
motion of a limited number of state variables.

13. By contrast, the models by Brunnermeier and Sannikov (2014b) and Brunnermeier
and Sannikov (2014d) that we review below enable the asset to be traded among two
classes of agents, which allows capturing the impact of “fire sales” on asset prices and
track their feedback into the dynamics of agents’ wealth.

14. A further assumption, introduced in order to avoid the challenges of solving for
punishment and reward strategies as a dynamic game, is that the contract between
households and specialists lasts only from t to t +�t after which the relationship
between household and specialist is broken and each household is paired with a new
specialist. This means that the equity constraint emerges as the solution to a static
bargaining problem.

15. This property emerges essentially due to the absence of leverage in the unconstrained
region. In the models we review next, the endogenous volatility is affected by the
changes in leverage/feedbacks from asset prices and does not remain constant even
when the capital/leverage constraints are far from binding.

16. Note that households are no longer infinitely lived. Instead, HK(2013) consider the
continuous time limit of an “overlapping generations” setting in which households,
born and then die almost instantaneously. Specifically, households are born at t with
a labor income proportional to the dividend on risky assets, and allocated in propor-
tion λ : 1−λ to one of two classes of “risk-averse households” whose wealth must all
be held in the form of loans to specialists, and “risk-tolerant” households who are
free to choose the proportion of their wealth invested in risky assets, managed by
specialists, and in loans to specialists. Households consume at t in order to maximize
a utility function log linear in current consumption and an end-period bequest at
t+�t randomly allocated across the next generation (labor income is of infinitesimal
size relative to inherited wealth and utility is logarithmic, implying that household
consumption is a fixed proportion of their inherited wealth, the random alloca-
tion avoids the necessity of tracking the distributional impact of the allocation to
risk-averse and risk-tolerant classes).

17. The title of their paper “A macroeconomic model with a financial sector” needs some
explanation. Their productive experts who engage in investment and production
could be real economy firms but on this interpretation their model does not have a
financial sector at all; the title reflects their assumption that the assets held by these
firms can be freely bought and sold between experts and households suggesting that
they actually have in mind a very similar setting to that of HK(2012) and HK(2013)
and that their experts are financial intermediaries who manage tradeable assets (see
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Brunnermeier and Sannikov (2014b), the online appendix to Brunnermeier and San-
nikov (2014a), where an equivalent version of their model distinguishing financial
intermediaries and productive firms is discussed).

18. In BS(2014-1) setting experts do not need to maintain any liquid reserves, as arises
in structural corporate finance models in which there are costs of adjusting liabilities
(see e.g., Bolton et al. (2011)).

19. As shown in our illustration in Section 4, this feature is not crucial. Aside from the
investment impact, the principal model results hold when this channel is switched
off.

20. By contrast, if experts could costlessly issue new equity, there would be no capital
traded and all capital would instead be held by experts. The price of capital then
would be constant and would reflect the expected discounted value of the perpetual
output stream under the more productive technology.

21. BS(2014-1) also present an alternative version of their model in which both house-
holds and experts have logarithmic preferences (once again this choice of preferences
simplifies solution because the value function is then additively separable and opti-
mal consumption is a fixed proportion of the market value of agent net worth).
As long as experts are more impatient than households this generates very similar
dynamics to the baseline model, but now with positive expert consumption (i.e.,
some payment of dividends) for all values of the state variable.

22. See our Section 4.2.2 and Appendix A.3 for discussion of the calculation of this
ergodic density.

23. Phelan (2015) also introduces the banking sector in a continuous-time macrofinan-
cial model, however, without explicitly modeling this lending channel.

24. Both loans and deposits are assumed to be short term, and the full depreciation of
productive capital is allowed.

25. The distribution of equity capital across individual banks then has no impact on
economy wide outcomes.

26. It is noteworthy that many of the BS(2014-2) results were originally obtained using
a quite different underlying model of risks to bank asset returns, based on Poisson
shocks, see Brunnermeier and Sannikov (2014c).

27. Of course, any invertible function of x could be considered the macrostate as well.
In this particular example, one could alternatively use the capital price q as a state
variable, since the mapping between q and x is invertible.

28. Brunnermeier and Sannikov (2014a) obtain the same boundary condition as follows:
At x = 0 experts get excess returns of a/q(0)− r > 0. Choosing ϕ high enough, their
rate of returns exceeds their discount rate ρ, and value function becomes infinite.
However, since x can never escape from 0, and experts only consume at x = x∗, it
is not totally clear that V can indeed grow unboundedly. The condition is therefore
plausible but may require more careful analysis to be rigorously justified.

29. In a discrete time set-up an attempt to accommodate this feature is made by Rampini
and Viswanathan (2012).

30. The above uses the Itô interpretation of the SDE (A.32) which amounts to assuming
that the noise amplitude σ is evaluated at the start of each period. In general one can
set x(k+1)T = xkT +Tμ(xkT )+√Tσ (xkT+α)ηkT where 0≤ α≤ 1. Choice of α does influence
the form of later formulas. The Itô interpretation, α = 0 is the default choice in
economics applications, as equations of motion are supposed not to pre-empt the
shocks. In natural sciences, the Stratonovich convention α = 1/2 is commonly used.

31. A standard approach is recasting the SDE with reflection into a so called Skorokhod
problem, whereby the process x is seen as driven by an additional process k, dxt =
μ(xt)dt + σ (xt)dzt + dkt, and where dkt is non-zero only on the boundary. See e.g.,
Lions and Sznitman (1984).
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Recent Results on Operator Techniques
in the Description of Macroscopic
Systems
Fabio Bagarello

1 Introduction

In many classical systems the relevant quantities we are interested in change
discontinuously. For instance, if you consider a certain population P, and its
time evolution, the number of people forming P cannot change arbitrarily: if,
at t0 = 0, P consists of N0 elements, at some later time t1 > t0, P may only
consist of N1 elements, with N1 differing from N0 for an integer quantity. The
same happens if our system consists of two (or more) different populations,
P1 and P2 (e.g., preys and predators or two migrating species): again, the total
number of their elements can only take, for obvious reasons, integer values.

Something similar happens for a simplified stock market (SSM), which, for us, is
a group of people (the traders) with some money and a certain number of shares
of different kinds, which are exchanged between the traders. Of course, they
pay some cash for that. Also in this case it is clear that natural numbers play a
crucial role: in the SSM a trader may have only a natural number of shares (30,
5000 or 106, but not .75 shares), and a natural number of units of cash (there
is nothing less than one cent of euro, for instance). Hence, if two traders buy
or sell a share, the number of shares in their portfolios increases or decreases
by one unit, and the amount of their money changes for an integer multiple
of the unit of cash. This might appear (but is not!) just a simple discretization
of a continuous problem, for which several approaches have been proposed
along the years. In fact, we adopt here a rather different philosophy, which
can be summarized as follows: the discrete quantities used in the description
of the system S under analysis are closely related to the eigenvalues of some
(mainly) self-adjoint operator. Of course, a crucial and natural question is how
the dynamical behavior of S can be deduced. Along all our work we have cho-
sen to use an Heisenberg-like dynamics, or its Schrödinger counterpart, which
we believe is the good choice because of the following reasons:
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1. It is the choice for quantum mechanical systems, where operators are
essential.

2. It is usually quite easy to write down an energy-like operator, Hamiltonian
H of the system S, which determines the dynamics of the system. This is, in
fact, the content of Section 2.1. Among the other criteria, the explicit defi-
nition of H is suggested by the existence of some conserved quantities of S:
if X is an operator which is expected to be preserved during the time evolu-
tion of S, like for instance the total amount of cash in a closed SSM, then,
because of the definition of the Heisenberg dynamics, H must commute
with X: [H,X] = 0. This gives some extra hints on how to define H explic-
itly. Another criterion is the following: H must contains in itself the main
phenomena we have to describe. This is what is usually done in many body
theory or in elementary particle physics, where, e.g., the possibility of two
particles to interact is reflected in the presence in H of a term which describe
this interaction [1]. Once H has been determined, it can be used to find
the time evolution of any observable A of S using the standard Heisenberg
prescription: A(t)= eiHtA(0)e−iHt, A(0) being the value of A at t= 0.

3. It produces results which, at least for some easy systems, look quite
reasonable, since they are observed in real life, see Section 3.

It is worth stressing that, since all the observables we are usually interested
in in our applications form a commuting subset of a larger non-abelian alge-
bra, they can be diagonalized simultaneously. Therefore, for our purposes, the
eigenstates of these commuting observables form an orthonormal basis of the
Hilbert space H used in the description of S. This commutativity implies that,
in the complete description of S, all the results which are deduced using our
approach are not affected by any uncertainty, as one could possibly expect.
In other words, while not commuting observables imply some Heisenberg-like
uncertainty relation, this is not the case for us, due to the fact that all our
observables do commute.

Remark:– In some specific applications, the impossibility of observing simul-
taneously two (apparently) classical quantities has been taken as a strong
indication of the relevance of a quantum-like structure in the description of
that process, showing, in particular, the importance of non-commuting opera-
tors. This is what was proposed, for instance, in [2], where the authors assume
that a trader in a realistic market cannot be able to know, at the same time, the
price of a certain share and its forward time derivative. The reason is clear: if
the trader has access to both these information with absolute precision, then
he is surely able to earn as much as he wants! For this reason, W. Segal and
I. E. Segal proposed to use two non-commuting operators to describe the price
and its time derivative.
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It is surely interesting to observe that, in the last few years, a growing inter-
est in classical applications of quantum ideas appeared in the literature. Some
recent monographs along this line are [3, 4, 5, 6, 7].

This chapter is organized as follows: in the next section we introduce those
quantum tools which are useful in our framework, focusing in particular on
the canonical commutation rules and on the quantum dynamics. Moreover, we
will also discuss in many details how the Hamiltonian of a given system should
be constructed, considering both the case of closed and open systems. Our
framework is then applied to two completely different situations, i.e., to the
description of a love story, which is a first simple (and not-so-simple) dynamical
model, and to the analysis of a SSM, which is, not surprisingly, much harder to
treat. Section 6 contains our conclusions.

2 Our quantum tools

This section is dedicated to introducing the tools and the rules we are going
to use in the rest of this paper: Let S be our physical system and let A the
set of all the operators useful for a complete description of S, which includes
the observables of S, i.e., those quantities which are measured in a concrete
experiment. Let H be the Hilbert space of the system. It might happen, and
often happens, that if X is an observable of S, X is unbounded.

As already said, a particularly relevant role in our strategy is played by a
suitable self-adjoint operator H = H† attached to S, called the Hamiltonian of S.
In standard quantum mechanics, H represents the energy of S. In most cases,
H is unbounded. In the so-called Heisenberg representation, the time evolution of
an observable X ∈A is given by

X(t)= eiHtXe−iHt (11.1)

or, equivalently, by the solution of the differential equation

dX(t)

dt
= ieiHt[H,X]e−iHt = i[H,X(t)], (11.2)

where [A,B] := AB− BA is the commutator between A and B. Notice that e±iHt

are unitary operators, hence they are bounded. The time evolution defined in
this way is usually a one parameter group of automorphisms of A: for each
X,Y ∈ A, and for all t, t1, t2 ∈ R, (X Y)(t) = X(t)Y(t) and X(t1 + t2) = (X(t1))(t2). An
operator Z ∈ A is a constant of motion if it commutes with H. Indeed, in this
case, Equation (11.2) implies that Ż(t)= 0, so that Z(t)= Z(0) for all t. It is worth
stressing that, in formulas (11.1) and (11.2), we are assuming that H does not
depend explicitly on time, which is not always true.

A very special role in our framework is played by the so-called canonical com-
mutation relations (CCRs): we say that a set of operators {al, a†

l , l = 1,2, . . . ,L},
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acting on the Hilbert space H, satisfy the CCRs, if the following hold:

[al,a
†
n]= δln11, [al,an]= [a†

l ,a†
n]= 0, (11.3)

for all l,n = 1,2, . . . ,L, 11 being the identity operator on H. These operators are
those which are used to describe L different modes of bosons. From these oper-
ators we can construct n̂l = a†

l al and N̂ =∑L
l=1 n̂l which are both self-adjoint. In

particular n̂l is the number operator for the l-th mode, while N̂ is the number
operator for S. The reason for this terminology will appear clear later on.

An orthonormal (o.n.) basis of H can be constructed as follows: we introduce
the vacuum of the theory, that is a vector ϕ0 which is annihilated by all the
operators al: alϕ0 = 0 for all l = 1,2, . . . ,L. Then we act on ϕ0 with the operators
a†

l and with their powers,

ϕn1,n2,...,nL := 1√
n1!n2! . . .nL! (a

†
1)n1 (a†

2)n2 · · · (a†
L)nLϕ0, (11.4)

nl= 0,1,2, . . ., for all l, and we normalize the vectors obtained in this way. The set
of the ϕn1,n2,...,nL ’s forms a complete and o.n. set in H, and they are eigenstates
of both n̂l and N̂:

n̂lϕn1,n2,...,nL = nlϕn1,n2,...,nL

and

N̂ϕn1,n2,...,nL = Nϕn1,n2,...,nL ,

where N =∑L
l=1 nl. Hence, nl and N are eigenvalues of n̂l and N̂ respectively.

Moreover, using the CCRs we deduce that

n̂l
(
alϕn1,n2,...,nL

)= (nl− 1)(alϕn1,n2,...,nL ),

for nl ≥ 1 while, if nl = 0, al annihilates the vector, and

n̂l

(
a†

l ϕn1,n2,...,nL

)
= (nl+ 1)(a†

l ϕn1,n2,...,nL ),

for all l and for all nl. For these reasons the following interpretation is given in
the literature: if the L different modes of bosons of S are described by the vector
ϕn1,n2,...,nL , this means that n1 bosons are in the first mode, n2 in the second
mode, and so on. The operator n̂l acts on ϕn1,n2,...,nL and returns nl, which is
exactly the number of bosons in the l-th mode. The operator N̂ counts the total
number of bosons. Moreover, the operator al destroys a boson in the l-th mode,
while a†

l creates a boson in the same mode: al and a†
l are called the annihilation

and the creation operators.
The vector ϕn1,n2,...,nL in (11.4) defines a vector (or number) state over the set

A as

ωn1,n2,...,nL (X)= 〈ϕn1,n2,...,nL ,Xϕn1,n2,...,nL 〉, (11.5)
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where 〈 , 〉 is the scalar product in the Hilbert space H. These states will be used
to project from quantum to classical dynamics and to fix the initial conditions
of the system under consideration, in a way which will be clarified later on.

Notice that al, a†
l , n̂l and N̂, are all unbounded, and therefore, they have severe

domain problems, since they cannot be defined in all of H. However, each vec-
tor ϕn1,n2,...,nL belongs to the domains of all the operators which are relevant for
us. Moreover, in some applications H can be replaced by an effective Hilbert
space, Heff , which becomes dynamically finite-dimensional because of the exis-
tence of some conserved quantities and because of the initial conditions, which
imposes some constraints on the accessible (energy) levels [8].

Remark:– In some applications, rather than CCRs, it is convenient to use the
so-called canonical anti-commutation relations (CARs), which are defined by a set
of operators {bl, b†

l ,"= 1,2, . . . ,L}, acting on a certain finite-dimensional Hilbert
space HF and satisfying the following rules:

{bl,b
†
n} = δl,n11, {bl,bn} = {b†

l ,b†
n} = 0,

for all l,n = 1,2, . . . ,L. Here, {x,y} := xy+ yx is the anticommutator of x and y and
11 is now the identity operator on HF. However, in the applications considered
in this chapter we will not need to use CARs, so we refer to [6] for more details
and applications.

2.1 Writing the Hamiltonian

Apart from the general functional settings of our framework, the main ingre-
dient for the dynamical description of the system S is surely its Hamiltonian
H. Now, following [6], we describe in some details the scheme we use to write
down H in different contexts, starting from closed and moving to open systems.

2.1.1 The Hamiltonian for closed systems

Our closed system S is made of elements τj, j= 1,2, . . . ,NS , which are only inter-
acting among themselves. Each element τj is defined by a certain set of variables
(the self-adjoint observable operators for τj): (v(j)

1 ,v(j)
2 , . . . ,v(j)

Kj
). In other words, the

Kj-dimensional operator-valued vector v(j) := (v(j)
1 ,v(j)

2 , . . . ,v(j)
Kj

) defines completely
the dynamical status of τj.

Example 1:– In Section 3 we are interested in a love triangle in which Bob
interacts with Alice and with Carla. In this case τ1 is Bob, τ2 is Alice and τ3
is Carla. Then v(1)

1 is Bob’s level of attraction (LoA) for Alice, v(1)
1 = n̂12 = a†

12 a12,
while v(1)

2 is his LoA for Carla, v(1)
2 = n̂13 = a†

13 a13. We will be more precise about
their meaning later on. Here we just want to say that a1j, j = 1,2, are bosonic
operators as described before. Then Bob’s status is completely described by a
two-dimensional vector (here K1 = 2), whose components are the two LoA’s
which Bob experiences for Alice and Carla: nothing more is required to describe
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Bob, and for this reason his dynamical behavior is entirely known when the
time evolution of the vector v(1) := (v(1)

1 ,v(1)
2 )= (n̂12, n̂13) is obtained. As for Alice,

her status is described by a one dimensional vector, v(2) := (v(2)
1 ) = (n̂2), whose

single component is simply Alice’s LoA for Bob. Then K2= 1. Similarly, for Carla,
K3= 1, and her status is again another one dimensional vector, v(3) := (v(3)

1 )= (n̂3),
whose unique component is Carla’s LoA for Bob.

Example 2:– In Section 4 we describe a SSM, made by NS traders τj, j =
1,2, . . . ,NS , and the status of each one of these traders is defined by the number
of shares and by the amount of money in their portfolios, see below. If, for sim-
plicity, we assume that just a single type of shares goes around the SSM, then
the vector v(j) defining the status of τj is the following

v(j) =
(

n̂j, k̂j

)
,

where n̂j and k̂j are the shares and the cash operators for the portfolio of τj.
Their mean values will be used to compute the explicit value of this portfolio.
As in the previous example, see Section 4, n̂j and k̂j can be written in terms of
bosonic operators.

The time evolution of S follows from the time evolution of (each) vector v(j),
which can be deduced by a suitable Hamiltonian, whose analytical expression
is fixed by considering some guiding rules, which we discuss below.

The first natural requirement is our rule

R1:– in absence of interactions between the different τj’s, all the vectors v(j) stay
constant in time.

Stated in different words, Rule R1 means that, if there is no interaction
Hamiltonian, then the free Hamiltonian H0 must commute with each compo-
nent of the various v(j), v(j)

i , j= 1,2, . . . ,NS , i= 1,2, . . . ,Kj. For instance, considering
the love triangle in Example 1, we should have

[H0, n̂12]= [H0, n̂13]= [H0, n̂2]= [H0, n̂3]= 0.

This is reasonable since, if there is no interaction between Alice, Bob and Carla,
there is no reason for their LoA’s to change with time. This is a very general and
natural rule for us: only the interactions cause a significant change in the status
of the system.

Let us now consider S globally, i.e., looking at the set of all the τj’s. Depending
on the system we are considering, it might happen that, for some reason, some
global function of the v(j)’s is expected to stay constant in time. For instance,
when dealing with a closed SSM, two such functions surely exist: the total num-
ber of shares and the total amount of cash. In fact, if the market is closed, both
the cash and the shares can only be exchanged between the traders, while they
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cannot be created or destroyed. Considering the Alice-Bob’s (closed) love affair,
the idea we will adopt in the construction of the model is that the sum of Bob’s
and Alice’s LoA’s stay constant in time. This is a simple way to state our law of
attraction, introduced in Section 3. These considerations are behind our second
rule:

R2:– if a certain global function f (v(1),v(2), . . . ,v(NS )) is expected to stay constant in
time, then H must commute with f :

[
H, f (v(1), . . . ,v(NS ))

]= 0.

Notice that here, unlike to what we have done in R1, here H is the full
Hamiltonian and not just is free part H0: in fact, the interactions are the inter-
esting part of the problem. For instance, in the simple love affair described in
Section 3, the Hamiltonian of the interacting system, H, should commute with
a†

1a1 + a†
2a2, which represents the global LoA. Analogously, if cj and aj are the

annihilation operators associated to the cash and to the shares in the portfolio
of the trader τj, see Section 4, then, calling K̂ =∑NS

j=1 c†
j cj and N̂ =∑NS

j=1 a†
j aj the

global cash and shares operators, H must commute with both: [H, K̂]= [H, N̂]= 0.
Suppose now that τ1 and τ2 interact and that, because of this interaction,

they change their status. For instance, the initial vector < v(1)(b. i. )>, after the
interaction is replaced by < v(1)(a. i. )>. Here b.i. and a.i. stand respectively for
before and after interaction, and < v> means that we are considering the mean
value of the operator-valued vector v on a suitable state, see (11.5) for instance.
Analogously, < v(2)(b. i. )> changes to < v(2)(a. i. )>. To be concrete, we suppose
here that the vectors < v(1)(a. i. ) > and < v(1)(b. i. ) > differ only for the values
of their first two components, those related to τ1 and τ2, < v(1)

1 > and < v(1)
2 >.

We call δv(1)
j =< v(1)

j (a. i. )>−< v(1)
j (b. i)>, j= 1,2, the differences between these

values. We introduce now a(1)
1 and a(1)

2 , two (bosonic or fermionic) annihilation
operators associated to these components. Analogously, let us suppose that <
v(2)(a. i. ) > and < v(2)(b. i. ) > also differ only for the values of their first two
components, < v(2)

1 > and< v(2)
2 >, and let a(2)

1 and a(2)
2 be the related annihilation

operators, and let δv(2)
j =< v(2)

j (a. i. ) > − < v(2)
j (b. i) >, j = 1,2. To build up the

interaction Hamiltonian Hint which is responsible for such a change, we first
need to consider the signs of the various δv(k)

j . To fix the ideas, we suppose here

that δv(1)
1 and δv(2)

2 are positive, while δv(1)
2 and δv(2)

1 are negative. Then our third
rule can be stated as follows:

R3:– the interaction Hamiltonian Hint responsible for the above changes must contain
the contribution

(
a(1)

1
†
)δv(1)

1 (
a(1)

2

)δv(1)
2
(

a(2)
1

)δv(2)
1
(

a(2)
2

†
)δv(2)

2
, (11.6)

together with its Hermitian conjugate.
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Introducing the Hermitian conjugate in our Hamiltonians is the easiest way
to get an unitary evolution, and this is crucial if we want to use the Heisenberg
equation of motion (11.2). Looking at (11.6) we observe that creation opera-
tors appears for positive values of δv(k)

j ’s, while annihilation operators are used

for negative δv(k)
j ’s. The reason is clear: since, for instance, δv(1)

1 is positive, dur-

ing the interaction between τ1 and τ2 the value of < v(1)
1 > increases, and this

increment can only be produced (in our settings) by creation operators. On
the other hand, since δv(2)

1 is negative, the value of < v(2)
1 > decreases, and this

is well described by considering an annihilation operator in Hint. Of course,
it is not particularly difficult to extend (11.6) to slightly different situations,
for instance when more components of the status vectors are involved in the
interaction between τ1 and τ2. It is also very simple to go from this, in general,
non-linear interaction Hamiltonian to its linear version: this is what happens
when all the variation parameters δv(k)

j are equal to one. From an analytical
point of view, this is often a particularly simple situation since, most of the
times, the computations can be carried out analytically without the need of
any approximation and/or numerical techniques.

The Hamiltonian in (11.8) below is a first example of how Rule R3 is imple-
mented in a simple situation, where the non linearity is related to a single
variable and to a single actor, Bob. More complicated examples, see (11.10) or
(11.14), will also be introduced later. Of course, the difficulties of the dynamics
deduced by these Hamiltonians will be directly proportional to the complexity
of the system under consideration.

As we have already discussed several times so far, looking at a certain classical
system S as if it was a closed system, it might not necessarily be the best point
of view. In fact, quite often, the role of the environment turns out to be crucial
in producing a reasonable dynamical behavior for S. For instance, open systems
may reach some equilibrium, while (finite-dimensional) closed systems always
oscillate.

As in the standard literature, an open system for us is simply a system S inter-
acting with a reservoir R. From a dynamical point of view, the Hamiltonian HS̃
of this larger system, S̃ := S ∪R, appears to be the Hamiltonian of an interact-
ing system. This means that the general expression of HS̃ is the sum of three
contributions:

HS̃ =HS +H0,R+HS,R. (11.7)

Here HS is the Hamiltonian for S, whose explicit expression should be deduced
adopting rules R1, R2 and R3, working as if S was a closed system by itself.
This implies, among other things, that HS contains a free contribution plus a
second term describing the interactions among the various elements of S. H0,R
is the free Hamiltonian of the reservoir, while HS,R contains the interactions
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between the system and the reservoir. To fix the explicit expression of H0,R we
adopt the following rule, which extends to the reservoir our previous rule R1:

R4:– in the absence of any interaction, H0,R must not change the status of the
observables of the reservoir.

In the models discussed in this chapter, the only relevant observables of the
reservoir are the number operators associated to it. For instance, in Section 3,
we could introduce two such operators,

∫
R

A†(k)A(k)dk and
∫
R

B†(k)B(k)dk, both
commuting with the Hamiltonian H in (11.12) in absence of interactions, i.e.,
if we fix γA = γB = λ= 0.

The final ingredient in (11.7) is now HS,R. Its analytic expression is fixed by
the simplest possible requirement, which is a simple extension of rule R3, and
which is given by the following rule:

R5:– in the interaction Hamiltonian HS,R each annihilation operator of the system is
linearly coupled to a corresponding creation operator of the reservoir as in (11.6), and
viceversa.

This is exactly what happens, for instance, in the damped love affair,
described in (11.12) of Section 3, where Alice’s and Bob’s annihilation and cre-
ation operators are linearly coupled to the creation and annihilation operators
of Alice’s and Bob’s reservoirs.

One might wonder why this particularly simple (i.e., linear) form of the inter-
action is assumed. The reason is very simple: because it works! What we need
here is to produce damping, and this simple choice of HS,R produces indeed
damping, with not many additional analytical complications.

It is not hard to imagine that the five rules given in this chapter do not
cover all possible situations. However, they already give some useful leading
rules which can be adapted to several, quite different situations. Some of these
applications will be reviewed in the rest of this chapter.

3 An easy dynamical system: love affairs

In [8] we have used the general framework introduced in Section 2 to describe
a love relation between two (Alice and Bob)) or three (Alice, Bob and Carla)
actors. In particular, the simplest hamiltonian we have adopted to describe the
interaction between Alice and Bob is the following:

H = λ
(

aM
1 a†

2+h.c.
)

, (11.8)

where λ is the interaction parameter. Here aj and a†
j are two-modes annihila-

tion and creation operators, [aj,a
†
k] = δj,k11. In agreement with what we have

discussed in Section 2.1, the physical meaning of H can be deduced consider-
ing the action of, say, aM

1 a†
2 on the vector describing the system at time t = 0,
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ϕn1,n2 = 1√
n1!n2!

(a†
1)n1 (a†

2)n2ϕ0,0. This means that, at t = 0, Bob is in the state n1,

i.e., n1 is Bob’s LoA, while Alice is in the state n2. Now, because of the definition
of ϕn1,n2 , aM

1 a†
2 ϕn1,n2 , which is different from zero only if M < n1, is proportional

to ϕn1−M,n2+1. Hence, Bob’s interest for Alice decreases of M units while Alice’s
interest for Bob increases of 1 unit. Of course, the Hamiltonian (11.8) also con-

tains the opposite effect. Indeed, because of the presence of a2 a†
1

M
in H, if n2 ≥ 1

we see that a2 a†
1

M
ϕn1,n2 is proportional to ϕn1+M,n2−1: hence, Bob’s interest is

increasing (of M units) while Alice looses interest in Bob. This is exactly in line
with what Rule R3 prescribes. It is clear that H has no free Hamiltonian H0. This
was, historically, the way in which the model was introduced originally, before
the set of rules outlined above, and the importance of a free Hamiltonian, were
fully understood. We decided to leave here the model as it was first defined also
because H0 will be considered in its open system version, see (3.5).

It is not hard to check that I(t) := N1(t) +M N2(t) is a constant of motion:
I(t)= I(0)= N1(0)+M N2(0), for all t ∈R. This is a consequence of the following
commutation result: [H, I] = 0. Therefore, during the time evolution, a certain
global attraction between Alice and Bob is preserved and can only be exchanged
between the two.

From the point of view of the differential equations of motion, they can be
deduced using the Heisenberg rule Ẋ(t) = i[H,X(t)]. In [8] it is shown that, if
M = 1 (linear model), these equations can be solved analytically: calling nj(t) :=
ωn1,n2 (Nj(t))=

〈
ϕn1,n2 ,Nj(t)ϕn1,n2

〉
, j= 1,2, we find that

n1(t)= n1 cos2 (λt)+ n2 sin2 (λt), n2(t)= n2 cos2 (λt)+ n1 sin2 (λt), (11.9)

so that, in particular, ωn1,n2 (I(t))= n1+n2 which is, as expected, constant in time.
When M > 1 the equations are no longer linear, but still we can easily deduce
numerical solutions, showing again an oscillating behavior. For instance, in
Figure 11.1 we plot the LoA’s of Alice and Bob taking M = 2, assuming that at
t= 0 the two lovers are both in the second level (n1 = n2 = 2).

It is important to stress that, even if in principle the Hilbert space is infinite-
dimensional, the existence of an integral of motion makes it effectively finite-
dimensional. This is because N1(t)+M N2(t) must be constant in time, so that the
eigenvectors ϕn1,n2 involved in the description of S cannot have arbitrarily large
n1 and n2: in fact, their maximum values are necessarily restricted by the value
of N1(0)+M N2(0). Hence, not all the energy levels of the system can be occupied.

In [8] we have also discussed a generalization of the model based on the
existence of a third actor, Carla, who is Bob’s lover. The situation can be
summarized as follows:

1. Bob can interact with both Alice and Carla, but Alice (respectively, Carla)
does not suspect of Carla’s (respectively, Alice’s) role in Bob’s life;
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Figure 11.1 Alice’s and Bob’s LoA’s vs. time with initial conditions (2,2) and M = 2

2. if Bob’s LoA for Alice increases then Alice’s LoA for Bob decreases and
viceversa;

3. if Bob’s LoA for Carla increases then Carla’s LoA for Bob decreases and
viceversa;

4. if Bob’s LoA for Alice increases then his LoA for Carla decreases (not
necessarily by the same amount) and viceversa.

The Hamiltonian of the system is assumed to be

H = λ12

(
(a†

12)M12 a2+ aM12
12 a†

2

)
+λ13

(
(a†

13)M13 a3+ aM12
13 a†

3

)
+λ1

(
a†

12 a13+ a12 a†
13

)
,

(11.10)
where again [aα ,a†

β ]= δα,β11, α,β = 12,13,2,3, the other commutators being zero.
Again, H0 = 0 here. This Hamiltonian is particularly easy to handle if M12 =
M13 = 1, since in this case the differential equations of motion become linear,
but we will not make this assumption here. Also in this case an integral of
motion does exist, and looks like

J := N12+N13+M12N2+M13N3,
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Figure 11.2 M12 = 1, M13 = 2: LoA vs. time of: Bob vs. Alice (continuous line), Bob vs.
Carla (dashed line), Alice (dashed–dotted line), Carla (dotted line) with initial condition
(2,1,0,2). Periodic behaviors are observed

where, as usual, Nα = a†
αaα . The equations of motion are,⎧⎪⎪⎪⎨⎪⎪⎪⎩

i ȧ12(t)= λ12 M12 (a†
12(t))M12−1a2(t)+λ1 a13(t),

i ȧ13(t)= λ13 M13 (a†
13(t))M13−1 a3(t)+λ1 a12(t),

i ȧ2(t)= λ12 a12(t),
i ȧ3(t)= λ13 a13(t),

(11.11)

which, as expected, are nonlinear and cannot be solved analytically unless if
M12 = M13 = 1. However, numerical techniques can be used. For instance, if
M12= 1, M13= 2, and if the initial conditions for N12, N13, N2 and N3 are (2,1,0,2),
we get Figure 11.2, which shows a rather regular behavior in spite of the (small)
nonlinearity of the differential equations.

We see from our analytical and numerical results that oscillations appear to be
inevitable in these models, and in fact, this is probably so. Then, the lovers can-
not reach any equilibrium whatsoever. This is a rather unpleasant feature in any
realistic love story. However, this can be avoided and, in fact, we have proposed
a possible way out in [9], which will be important also for other applications,
as we will discuss later on: an equilibrium can be reached if Alice and Bob are
forced to live in a large world, i.e., using different words, if they can interact
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also with other people other than among themselves. In this case, clearly, the
Hamiltonian must be more complicated. Following our previous Rules R1-R5
we define⎧⎪⎪⎪⎨⎪⎪⎪⎩

H =HA+HB+λHI ,
HA = ωaa†a+ ∫

R
�A(k)A†(k)A(k)dk+ γA

∫
R

(
a†A(k)+ aA†(k)

)
dk,

HB = ωbb†b+ ∫
R
�B(k)B†(k)B(k)dk+ γB

∫
R

(
b†B(k)+ bB†(k)

)
dk,

HI = a†b+ ab†.

(11.12)

All the constant in (11.12) are real quantities, and the following bosonic
commutation rules are assumed:

[a,a†]= [b,b†]= 11, [A(k),A†(q)]= [B(k),B†(q)]= 11δ(k− q), (11.13)

while all the other commutators are zero. HA and HB respectively describe
the interaction of Alice and Bob with their own reservoirs, which consist of
several (infinite) ingredients. In this particular case, for two-actors quadratic
Hamiltonian, the dynamical behavior can be deduced analytically and it looks
like

na(t)= e−2πγ 2
A t/�A

(
na cos2 (λt)+ nb sin2 (λt)

)
,

nb(t)= e−2πγ 2
A t/�A

(
nb cos2 (λt)+ na sin2 (λt)

)
,

which produce damped oscillations for both Alice and Bob. The speed of decay
of their LoA is related to γ 2

A/�A which, in our working conditions, see [9],
coincides with γ 2

B/�B. In particular, the stronger the interaction between, say,
Alice and her reservoir, the faster the decay to zero of her love for Bob. In order
to somehow stabilize the two lovers, we need this ratio to be very small, so that,
even if the LoA’s go both to zero, these process is very slow, allowing a sort of
decent love story between Alice and Bob. On the other hand, if this ratio is very
high, convergence to zero of na(t) and nb(t) is very fast: Alice and Bob are going
to split soon!

4 A difficult application: stock markets

The analysis carried out in the previous section is important to discuss, in a
reasonably simple situation, how our general settings work like. The next step
consists in applying the same ideas to an extremely more complicated problem,
the description of some realistic, but still oversimplified stock market.

The basic assumptions used here to construct our first version of a SSM are
the following:

1. the market consists of L traders exchanging a single kind of share;
2. the total number of shares, N, and the total amount of cash, K, are fixed in

time;
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3. a trader can only interact with a single other trader: i.e., each trader feels
only a two-body interaction;

4. the traders can only buy or sell one share (or one block of shares) in any
single transaction;

5. the price of the share (or of the block of shares) changes discontinuously,
with discrete steps, multiples of a given monetary unit. We make no
difference between the bid and the ask prices;

6. when the overall tendency of the market to sell a share, i.e., what we call the
market supply, increases, then the price of the share decreases, and viceversa;

7. the market supply is expressed in term of natural numbers;
8. to simplify the notation, we fix the monetary unit to be equal to one.

Some of these assumptions will be relaxed later. However, for the moment,
we will assume them to have a reasonably simple dynamical system. Of course
Assumption 4. does not prevent at all the possibility of two traders to buy or
sell more than one share (or block of shares). The only point is that the two
traders must interact more than once. This is technically useful to avoid having
a strongly non-linear model, with all the extra numerical and analytical difficul-
ties that this would imply. Assumption 2. is a first consequence of the fact that
the market is closed (the cash and the shares are neither created nor destroyed).
The existence of these two conserved quantities will be used, together with
Rules R1-R3, as a guideline to build up the Hamiltonian of the SSM. In fact,
the two related operators, see K̂ and N̂ in formula (11.19) below must com-
mute with this Hamiltonian. Assumption 3 means that it is more likely having
two rather than three traders interacting simultaneously. Assumption 5. simply
confirms the discrete nature of the model. Assumption 8 is used just to simplify
the notation. Assumptions 6 and 7 provide a very simple mechanism to fix
the value of the shares in terms of a global quantity, the market supply, which
is a measure of the will of the various traders of the market to buy or sell the
shares.1 Of course, there is no problem in assuming that the supply is measured
in terms of natural numbers, even because this is a very natural choice in our
settings, much more than requiring that it changes continuously.

Looking at the above assumptions we immediately notice that some standard
peculiarities of what in the literature is usually called a stock market, [3], are
missing. For instance, we have not considered here any financial derivative,
which, on the other hand, are the main interest in the monograph [3], which
shares with this book the use of a typical quantum tool, the path integral, in
the economical context. Also, as already mentioned, we will make no difference
between the bid and ask prices. Ours is just a first step toward real systems, but,
in our opinion, it gives already interesting and non trivial results.
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The formal Hamiltonian of the model is the following operator:⎧⎪⎪⎨⎪⎪⎩
H̃ =H0+ H̃I , where
H0 =∑L

l=1αla
†
l al+∑L

l=1βlc
†
l cl+ o† o+ p† p

H̃I =∑L
i,j=1 pij

[(
a†

i cP̂
i

)(
aj c†

j
P̂
)
+
(

a†
j cP̂

j

)(
ai c†

i
P̂
)]
+ (o† p+ p† o),

(11.14)

where P̂= p†p and the following CCR are assumed:

[al,a
†
n]= [cl,c

†
n]= δln11, [p,p†]= [o,o†]= 11. (11.15)

All the other commutators are zero. The quantities αl, βl, pij and so on are
real numbers. In particular, pij can only be one or zero, depending on the fact
that τi interacts or not with τj. Of course, pii = 0. The operators (al,a

†
l ) and

(cl,c
†
l ) modify (by acting on a suitable vector) respectively the number of shares

and the units of cash in the portfolio of the trader τl. The operators (p,p†) change
the price of the shares, while (o,o†) change the value of the market supply. Of
course, these changes are positive or negative, depending on whether creation
or annihilation operators are used. The vector states of the market are defined
in the usual way:

ω{n};{k};O;M(X )=< ϕ{n};{k};O;M , Xϕ{n};{k};O;M >, (11.16)

where {n} = n1,n2, . . . ,nL and {k} = k1,k2, . . . ,kL describe the number of shares and
the units of cash of each trader at t = 0, while O and M fix the initial values
of the market supply and of the value of the shares. X is a generic observable of
the SSM. More explicitly

ϕ{n};{k};O;M := (a†
1)n1 · · · (a†

L)nL (c†
1)k1 · · · (c†

L)kL (o†)O(p†)M

√
n1! . . .nL!k1! . . .kL!O!M! ϕ0. (11.17)

Here ϕ0 is the vacuum of the model: ajϕ0 = cjϕ0 = pϕ0 = oϕ0 = 0, for j= 1,2, . . . ,L,
and nj, kj, O and M are natural numbers.

The interpretation of the Hamiltonian is the key element in our approach,
and follows from the general ideas discussed before: first of all, see Rule R1, H0

is the free Hamiltonian of the system, which contains no interaction between
the various ingredients of the market. It is clear that H0 commutes with all
the observables of the market, i.e., with all the number operators relevant for the
description of our SSM. Concerning H̃I , this has been written using an extended
version of Rule R3: the term o† p is responsible for the supply to go up and for
a simultaneous lowering of the price of the shares. This is not very different
from what happened, for instance, in Section 3, in our (linear) description of
love affairs, but with a completely different interpretation. Moreover, because

of
(

a†
i cP̂

i

)(
aj c†

j
P̂
)

, trader τi increases of one unit the number of shares in his

portfolio but, at the same time, his cash decreases, because of cP̂
i , of as many
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Figure 11.3 A schematic view of a two-trader market

units of cash as the price operator P̂ demands. Clearly, trader τj behaves in the
opposite way: he loses one share because of aj but his cash increases because

of (c†
j )P̂. Hence the meaning of H̃ in (11.14), and of H̃I in particular, is clear: it

describes a SSM where two traders may buy or sell one share in each transaction,
earning or paying money in this operation, and in which the price of the shares
is related to the value of the supply operator as prescribed by Assumption 6. A
schematic view of this market is given in Figure 11.3, where we consider (just)
two traders, exchanging shares and money on the top while, at the bottom, the
mechanism which fixes the price is shown, with the upwards arrows carrying
the information of the value of the shares to the traders. The two downwards
arrows represent the feelings of the various traders which, together, construct the
market supply.

In the Hamiltonian in (11.14) a mathematical problem in its definition is
somehow hidden: since cj and c†

j are not self-adjoint operators, it is not obvious

at a first sight how to define the operators cP̂
j and (c†

j )P̂: they look like non self-

adjoint, unbounded, operators raised to some power, P̂, which, by itself, is
a different unbounded operator. However, from an economical point of view,
H̃ is perfectly reasonable. One possible way out from this problem consists in
replacing H̃ with an effective Hamiltonian, H, defined as⎧⎪⎨⎪⎩

H =H0+HI , where
H0 =∑L

l=1αla
†
l al+∑L

l=1βlc
†
l cl+ o† o+ p† p

HI =∑L
i,j=1 pij

[(
a†

i cM
i

)(
aj c†

j
M)+(a†

j cM
j

)(
ai c†

i
M)]+ (o† p+ p† o),

(11.18)

where M could be taken to be some average value of the price operator, < P̂>. In
this section, we will take M as the initial value of the share, and we will motivate
this choice later on. This technique is quite diffused in quantum mechanics,
where one replaces the original Hamiltonian, physically motivated but produc-
ing very difficult Heisenberg equations of motion, with an effective Hamiltonian
which, in principle, still describes most of the original features of the system
and whose related equations are easier to be solved and mathematically less
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problematic. Replacing P̂ with M, however, means that we are essentially freezing
the price of our share, removing one of the (essential) degrees of freedom of
the system out of our market. Moreover, since P̂ is also related to Ô = o†o by
an integral of motion, see (11.19) below, this also means that we are effectively
removing also a second degree of freedom from the market, keeping as the only
relevant variables of the SSM the shares and the cash. However, this is only par-
tially true, since the term o† p+ p† o in HI is still there and produces, as we will
see in a moment, a simple but not entirely trivial dynamics for P̂(t) and Ô(t).

Three integrals of motion for our model trivially exist:

N̂ =
L∑

i=1

a†
i ai, K̂ =

L∑
i=1

c†
i ci and �̂ = o†o+ p†p. (11.19)

This can be easily checked since the CCR in (11.15) imply that

[H, N̂]= [H, �̂]= [H, K̂]= 0.

The fact that N̂ is conserved clearly means that no new shares are introduced
in the market and that no share is removed from the market. Of course, also the
total amount of money must be a constant of motion since the cash is assumed
to be used only to buy shares. Moreover, since also �̂ commutes with H, then, if
the mean value of o†o increases with time, the mean value of the price operator
P̂ = p†p must decrease and viceversa. Of course, since going from H̃ to H P̂(t)
is replaced by M, Ô(t) will be constant as well. Moreover, also the following
operators commute with H and, as a consequence, are independent of time:

Q̂j = a†
j aj+ 1

M
c†

j cj, (11.20)

for j= 1,2, . . . ,L. It is important to stress that the Qj’s are no longer integrals of
motion for the original Hamiltonian, where P̂ is not yet replaced by M.

4.1 The thermodynamical limit

Here we concentrate on what we call the semiclassical thermodynamical limit of
the model, i.e., a non-trivial suitable limit which can be deduced for a very
large number of traders, that is when L→∞.

In this case our model is defined by the Hamiltonian in (11.18), but with
M = 1. From an economical point of view, this is not a major requirement, since
it simply corresponds to fixing the price of the share to one: if you buy a share,
then your liquidity decreases of one unit while it increases, again of one unit, if
you are selling that share. Needless to say, this is strongly related to the fact that
the original time-dependent price operator P̂(t) has been replaced by its mean
value, M.

Of course, having M = 1 does not modify the integrals of motion found
before: N̂, K̂ and Qj = n̂j+ k̂j, j= 1,2, . . . ,L, as well as �̂= Ô+ P̂. They all commute
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with H, which we now write as⎧⎪⎨⎪⎩
H = h+ hpo, where

h=∑L
l=1αln̂l+∑L

l=1βlk̂l+∑L
i,j=1 pij

[(
a†

i ci

)(
aj c†

j

)
+
(

a†
j cj

)(
ai c†

i

)]
hpo = o† o+ p† p+ (o† p+ p† o).

(11.21)

Incidentally, also �̂ := Ô− P̂ commutes with H. In our situation, the term hpo is
unessential: it would cause changes in the price of the share and in the market
supply, but these are frozen by our approximations. For this reason, from now
on, we will identify H only with h in (11.21) and we will work only with this
Hamiltonian. Let us introduce the operators

Xi = ai c†
i , (11.22)

i = 1,2, . . . ,L. This is (a first version of) what we call the selling operator: it acts
on a state of the market destroying a share and creating one unit of cash in the
portfolio of the trader τi. Its adjoint X†

i = a†
i ci, for obvious reasons, is called the

buying operator. The Hamiltonian h can be rewritten as

h=
L∑

l=1

(
αln̂l+βlk̂l

)
+

L∑
i,j=1

pij

(
X†

i Xj+X†
j Xi

)
. (11.23)

The following commutation relations can be deduced by the CCR in (11.15):

[Xi,X
†
j ]= δij(k̂i− n̂i), [Xi, n̂j]= δij Xi [Xi, k̂j]=−δij Xi, (11.24)

which show how the operators {{Xi, X†
i , n̂i, k̂i}, i = 1,2, . . . ,L} are closed under

commutation relations. This is quite important, since, introducing the oper-
ators X(L)

l =∑L
i=1 pliXi, l = 1,2, . . . ,L, we get the following system of differential

equations: ⎧⎨⎩ Ẋl = i(βl−αl)Xl+ 2iX(L)
l (2n̂l−Ql),

˙̂nl = 2i

(
Xl X(L)

l

†−X(L)
l X†

l

)
.

(11.25)

This system, as l takes all the values 1,2, . . . ,L, is a closed system of differen-
tial equations for which an unique solution surely exists. Unfortunately, this
is simply an existence result, not very useful in practice. More concretely, sys-
tem (11.25) can be solved by introducing the so-called mean-field approximation,
which essentially consists in replacing pij with p̃

L , for some p̃≥ 0. This is a stan-
dard approximation in quantum many body, widely used in solid state and in
statistical mechanics. After this replacement we have that

X(L)
l =

L∑
i=1

pliXi −→ p̃

L

L∑
i=1

Xi,
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whose limit, for L diverging, exists only in suitable topologies, [10, 11], like, for
instance, the strong one restricted to a set of relevant states2. Let τ be such a
topology. We define

X∞ = τ − lim
L→∞

p̃

L

L∑
i=1

Xi, (11.26)

where, as it is clear, the dependence on the index l is lost because of the replace-
ment pli → p̃

L . The operator X∞ commutes (in some weak sense, see [10]) with
all the observables of our stock market: [X∞,A] = 0 for all oservable A. In this
limit, the system in (11.25) can be rewritten as{

Ẋl = i(βl−αl)Xl+ 2iX∞(2n̂l−Ql),
˙̂nl = 2i

(
Xl X∞†−X∞X†

l

)
,

(11.27)

which can be analytically solved easily, at least under the additional useful
hypothesis, concerning the parameters of the free Hamiltonian:

βl−αl =:� �= ν, (11.28)

for all l = 1,2, . . . ,L (but also in other and more general situations). Here ν =
�+ 4η− 2Q, where

η := τ − lim
L→∞

1

L

L∑
i=1

n̂i, Q := τ − lim
L→∞

1

L

L∑
i=1

Q̂i.

We refer to [12] for the details of this derivation and for further general-
izations. Here we just write the final result, which, calling as usual nl(t) =
ω{n};{k};O;M(n̂l(t)), is

nl(t)= 1

ω2

{
nl(�− ν)2− 8|X∞0 |2 (kl(cos(ωt)− 1)− nl(cos(ωt)+ 1))

}
, (11.29)

where ω=
√

(�− ν)2+ 16|X∞0 |2. This, and the existence of the various integral of
motion, allows also to find the time evolution for the portfolio of each trader,
which we define as πl(t)= kl(t)+Mnl(t). Hence, at least in our assumptions, these
portfolios are under control. Of course, the periodic behavior of nl(t) is trans-
ferred to πl(t), and this gives a measure of the limits of the model presented here,
since it is hard to believe that the portfolios of the traders in a real market may
simply change periodically! However, in several recent applications of quan-
tum mechanics to markets, periodic behaviors of some kind are often deduced.
For instance, in [13], a periodic behavior is deduced in connection with the
Chinese market. Also, in [14], Schaden suggests that a periodic behavior is, in
a sense, unavoidable anytime we deal with a closed market with few traders,
while a non periodic behavior (some decay, for instance) can be obtained only
in presence of many traders.
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4.2 A time dependent point of view

In this section we will extend our model by introducing first several kind of
shares and we will adopt a slightly different point of view. In particular, our
Hamiltonian will have no Hprice contribution at all, since the price operators
P̂α, α= 1, . . . ,L, will here be replaced from the very beginning by external classi-
cal fields Pα(t), whose time dependence describes, as an input of the model fixed
by empirical data, the variation of the prices of the shares. This implies that any
change of the prices is automatically included in the model through the ana-
lytic expressions of the functions Pα(t). Hence the interaction Hamiltonian HI

turns out to be a time-dependent operator, HI(t). In more detail, the Hamilto-
nian is H(t)= H0+λHI(t), which we can write, introducing the time-depending
selling and buying operators which extend those introduced before,

xj,α(t) := aj,α c†
j

Pα (t)
, x†

j,α(t) := a†
j,α cj

Pα (t), (11.30)

as
H(t)=

∑
j,α

ωj,α n̂j,α +
∑

j

ωj k̂j+ 2λ
∑
i,j,α

p(α)
i,j x†

i,α(t)xj,α(t), (11.31)

where HI(t) = 2
∑

i,j,α p(α)
i,j x†

i,α(t)xj,α(t) and H0 =∑j,α ωj,α n̂j,α +∑j ωj k̂j. This is not
very different from the Hamiltonian in (11.23), as one can see.

Concerning the notation, while the latin indexes are related to the traders,
the greek ones appear here because we are now considering different type of
shares in our SSM. The related L price functions Pα(t) will be taken piecewise
constant, since it is quite natural to assume that the price of a share changes
discontinuously: it has a certain value before the transaction and (in general)
a different value after the transaction. Furthermore, this new value does not
change until the next transaction takes place. To be specific, we introduce a
time step h which we might call the time of transaction, and we divide the inter-
val [0, t[ in subintervals which, for simplicity, we consider having the same
duration h: [0, t[ = [t0, t1[ ∪ [t0, t1[ ∪ [t1, t2[ · · · [tM−1, tM[, where t0 = 0, t1 = h, . . .,
tM−1 = (M− 1)h= t− h, tM =Mh= t. Hence h= t/M. As for the prices, we put

Pα(t)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pα,0, t ∈ [t0, t1[,
Pα,1, t ∈ [t1, t2[,
. . . . . . ,
Pα,M−1, t ∈ [tM−1, tM[,

(11.32)

for α = 1, . . .L. An o.n. basis in the Hilbert space H of the model is now the set
of vectors defined as

ϕ{nj,α};{kj} := a†
1,1

n1,1 · · ·a†
N,L

nN,L
c†

1
k1 · · ·c†

N
kN√

n11! · · ·nN,L!k1! · · ·kL!
ϕ0, (11.33)

where ϕ0 is the vacuum of all the annihilation operators involved here. To
simplify the notation we introduce a set F = {{nj,α}; {kj}}, so that the vectors of
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the basis will be simply written as ϕF . The difference between these and the
vectors in (11.17) stands clearly in the absence of the quantum numbers O and
M. This is clearly due to the fact that P(t) is no longer a degree of freedom of the
system, and that the market supply does not even exist anymore, here.

Suppose now that at t= 0 the market is described by a vector ϕF0 . This means
that, since F0 = {{no

j,α}, {ko
j }}, at t= 0 the trader τ1 has no

1,1 shares of the first type,
no

1,2 shares of the second type, . . ., and ko
1 units of cash. Analogously, the trader

τ2 has no
2,1 shares of the first type, no

2,2 shares of the second type, . . ., and ko
2

units of cash. And so on. We want to compute the probability that at time t

the market has moved to the configuration Ff = {{nf
j,α}, {kf

j }}. This means that,

for example, τ1 has now nf
11 shares of the first type, nf

12 shares of the second

type, . . ., and kf
1 units of cash.

Similar problems arise quite often in ordinary quantum mechanics: we need
to compute a probability transition from the original state ϕF0 to a final state
ϕFf , and this is the reason why we will use here a somehow standard time-
dependent perturbation scheme for which we refer to [15]. The main difference
with respect to what we have done so far in this chapter is that we adopt
now the Schrödinger rather than the Heisenberg picture since it is more con-
venient in this kind of computations. Hence the market is described by a
time-dependent wave function #(t) which, for t= 0, reduces to ϕF0 : #(0)= ϕF0 .
The transition probability we are looking for is

PF0→Ff (t) :=
∣∣∣< ϕFf ,#(t)>

∣∣∣2 . (11.34)

The computation of PF0→Ff (t) goes like this: since the set of the vectors ϕF is
an o.n basis in H, the wave function #(t) can be written as

#(t)=
∑
F

cF (t)e−iEF tϕF , (11.35)

where EF is the eigenvalue of H0 defined as

H0ϕF = EFϕF , where EF =
∑
j,α

ωj,αnj,α +
∑

j

ωjkj. (11.36)

This is a consequence of the fact that ϕF in (11.33) is an eigenstate of H0, with
eigenvalue. EF , which we call the free energy of ϕF . Putting (11.35) in (11.34),
and recalling that, if the eigenstates are not-degenerate,3 the corresponding
eigenvectors are orthogonal, < ϕF ,ϕG >= δF ,G , we have

PF0→Ff (t) :=
∣∣∣cFf (t)

∣∣∣2 (11.37)

The answer to our original question is therefore given if we are able to compute
cFf (t) in the expansion (11.35). Due to the analytic form of our Hamiltonian,
this cannot be done exactly. We adopt here a simple perturbation expansion in
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the interaction parameter λ appearing in the Hamiltonian H in (11.31), which
we are assuming sufficiently small. In other words, we look for the coefficients
in (11.35) having the form

cF (t)= c(0)
F (t)+λc(1)

F (t)+λ2c(2)
F (t)+·· · (11.38)

Each c(j)
F (t) of this expansion satisfies a differential equation, see [6, 15]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ċ(0)
F ′ (t)= 0,

ċ(1)
F ′ (t)=−i

∑
F c(0)

F (t)ei(EF ′−EF )t < ϕF ′ ,HI(t)ϕF >,

ċ(2)
F ′ (t)=−i

∑
F c(1)

F (t)ei(EF ′−EF )t < ϕF ′ ,HI(t)ϕF >,
. . . . . . . . . ,

(11.39)

The first equation, together with the initial condition #(0)= ϕF0 , gives c(0)
F ′ (t)=

c(0)
F ′ (0) = δF ′,F0

. When we replace this solution in the differential equation for

c(1)
F ′ (t) we get, recalling again that #(0)= ϕF0 ,

c(1)
F ′ (t)=−i

∫ t

0
ei(EF ′−EF0

)t1 < ϕF ′ ,HI(t1)ϕF0 > dt1, (11.40)

at least if F0 �=F ′. Using this in (11.39) we further get

c(2)
F ′ (t)= (− i)2

∑
F

∫ t

0

(∫ t2

0
ei(EF−EF0

)t1 hF ,F0 (t1)dt1

)
ei(EF ′−EF )t2 hF ′,F (t2)dt2,

(11.41)
where we have introduced the shorthand notation

hF ,G (t) :=< ϕF ,HI(t)ϕG >. (11.42)

Of course, higher order corrections could also be deduced simply by iterating
this procedure. This might be relevant, for instance for not so small values of λ,
but we will not consider it here.

4.2.1 First order corrections

We apply now this general procedure to the analysis of our stock market, by
computing PF0→Ff (t) in (11.37) up to the first order corrections in powers of λ
and assuming that Ff is different from F0. Hence we have

PF0→Ff (t)=
∣∣∣c(1)
Ff

(t)
∣∣∣2 = λ2

∣∣∣∣∫ t

0
e

i(EFf
−EF0

)t1 hFf ,F0 (t1)dt1

∣∣∣∣2 . (11.43)

Using (11.32) and introducing δE= EFf −EF0 , after some simple computations
we get

PF0→Ff (t)= λ2
(
δE h/2

δE/2

)2
∣∣∣∣∣
M−1∑
k=0

hFf ,F0 (tk)eitkδE

∣∣∣∣∣
2

. (11.44)
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The matrix elements hFf ,F0 (tk) can be easily computed. Indeed, because of some
standard properties of the bosonic operators, we find that

a†
i,αaj,α c

Pα,k
i c†

j Pα,k ϕF0 = �(k)
i,j;αϕF (i,j,α)

0,k
,

where

�
(k)
i,j;α :=

√
(ko

j +Pα,k)!
ko

j !
ko

i !
(ko

i −Pα,k)! no
j,α (1+ no

i,α), (11.45)

and F (i,j,α)
0,k differs from F0 only for the following replacements: no

j,α → no
j,α − 1,

no
i,α→ no

i,α+1, ko
j → ko

j +Pα,k, ko
i → ko

i −Pα,k. Notice that, in our computations, we
are implicitly assuming that ko

i ≥ Pα,k, for all i, k and α. This has to be so, since
otherwise the trader τi would have not enough money to buy a share �α .

We find that
hFf ,F0 (tk)= 2

∑
i,j,α

p(α)
i,j �

(k)
i,j;α < ϕFf ,ϕF (i,j,α)

0,k
>. (11.46)

Of course, due to the orthogonality of the vectors ϕF ’s, the scalar product <
ϕFf ,ϕF (i,j,α)

0,k
> is different from zero (and equal to one) if and only if nf

j,α = no
j,α−1,

nf
i,α = no

i,α + 1, kf
i = ko

i −Pα,k and kf
j = ko

j +Pα,k, and, moreover, if all the other new
and old quantum numbers coincide.

For concreteness sake we now consider two simple situations: in the first
example below we just assume that the prices of the various shares do not
change with t. In the second example we consider the case in which only few
(i.e., 3) changes occur.

Example 1:– constant prices

Let us assume that, for all k and for all α, Pα,k=Pα(tk)=Pα . This means that �(k)
i,j;α ,

F (i,j,α)
0,k and the related vectors ϕF (i,j,α)

0,k
do not depend on k. Therefore, hFf ,F0 (tk)

is also independent of k. After few computations we get

PF0→Ff (t)= λ2
(

sin(δEt/2)

δE/2

)2 ∣∣∣hFf ,F0 (0)
∣∣∣2 , (11.47)

from which we deduce the following transition probability per unit of time:

pF0→Ff = lim
t,∞

1

t
PF0→Ff (t)= 2π λ2 δ(EFf −EF0 )

∣∣∣hFf ,F0 (0)
∣∣∣2 . (11.48)

This formula shows that, in this limit, and in our approximations, a transition
between the states ϕF0 and ϕFf is possible only if these two states have the same
free energy. Moreover, the presence of hFf ,F0 (0) in Formulas (11.47) and (11.48)
shows that, at the order we are working here, a transition is possible only if
ϕF0 does not differ from ϕFf for more than one share in two of the nj,α ’s and
for more than Pα units of cash in two of the kj’s4. All the other transitions, for
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instance those in which the numbers of shares differ for more than one unit,
are forbidden at this order in perturbation theory.

Example 2:– few changes in the price

Let us now fix M = 3. Formula (11.44) can be rewritten as

PF0→Ff (t)= 4λ2
(

sin(δEh/2)

δE/2

)2

|
∑
i,j,α

p(α)
i,j (�(0)

i,j;α < ϕFf ,ϕF (i,j,α)
0,0

>

+�(1)
i,j;α < ϕFf ,ϕF (i,j,α)

0,1
> eihδE+�(2)

i,j;α < ϕFf ,ϕF (i,j,α)
0,2

> e2ihδE)|2 (11.49)

The meaning of this formula is not very different from the one deduced in the
previous example: it is not surprising that, in order to get something different,
we need to go to higher orders in powers of λ.

Let us now see what can be said about the portfolio of the trader τl. Assuming
that we know the initial state of the system, then we clearly know, in particular,
the value of τ ′l s portfolio at time zero (actually, we know the values of the
portfolios of all the traders!): π̂l(0) =∑L

α=1 Pα(0) n̂l,α(0)+ k̂l(0). Formula (11.44)
gives the transition probability from ϕF0 to ϕFf . This probability is just a single
contribution in the computation of the transition probability from a given π̂l(0)
to a certain π̂l(t), since the same value of the portfolio of the l− th trader could
be recovered in general, at time t, for very many different states ϕFf : all the sets

G with the same values of nf
l,α and kf

l , and with any other possible choice of nf
l′,α

and kf
l′ , l′ �= l, give rise to the same value of the portfolio for τl. Hence, if we

call F̃ the set of all these sets, we just have to sum up over all these different
contributions:

P
π̂o

l →π̂
f
l
(t)=

∑
G∈F̃

PF0→G (t). (11.50)

In this way the transition probability could be, at least formally, computed at
the desired order in powers of λ.

We refer to [6] for some remark concerning the validity of the approximations
discussed here.

4.2.2 Second order corrections

We now want to show what happens going to the next order in the perturbation
expansion. For that, we begin by considering the easiest situation, i.e., the case
of a time independent perturbation HI : the prices are constant in time. Hence
the integrals in Formula (11.41) can be easily computed and the result is the
following:

c(2)
Ff

(t)=
∑
F

hFf ,F (0)hF ,F0 (0)EF ,F0,Ff (t), (11.51)
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where

EF ,F0,Ff (t)= 1

EF −EF0

(
e

i(EFf
−EF0

)t− 1

EFf −EF0

− e
i(EFf

−EF )t− 1

EFf −EF

)
.

Recalling definition (11.42), we rewrite equation (11.51) as

c(2)
Ff

(t)=
∑
F
< ϕFf ,HIϕF >< ϕF ,HIϕF0 > EF ,F0,Ff (t),

which explicitly shows that, up to the second order in λ, transitions between
states which differ, for example, for 2 shares are allowed: it is enough that some
intermediate state ϕF differs for (e.g., plus) one share from ϕF0 and for (e.g.,
minus) one share from ϕFf .

If the Pα(t)’s depend on time the situation is a bit more complicated but not
essentially different. We refer the interested reader to [6], where these and many
other aspects are discussed.

4.2.3 Feynman graphs

Following [15] we now try to connect the analytic expression of a given approx-
imation of cFf (t) with some kind of Feynman graph in such a way that the higher
orders could be easily deduced considering a certain set of rules which we will
obviously call Feynman rules.

The starting point is given by the expressions (11.40) and (11.41) for c(1)
Ff

(t)

and c(2)
Ff

(t), which is convenient to rewrite in the following form:

c(1)
Ff

(t)=−i
∫ t

0
e

iEFf
t1 < ϕFf ,HI(t1)ϕF0 > e−iEF0

t1 dt1, (11.52)

and

c(2)
Ff

(t)= (− i)2
∑
F

∫ t

0
dt2

∫ t2

0
dt1 e

iEFf
t2 < ϕFf ,HI(t2)ϕF > e−iEF t2×

×eiEF t1 < ϕF ,HI(t1)ϕF0 > e−iEF0
t1 . (11.53)

The reason why this is so useful is that, as we will now sketch, the different
ingredients needed to find the Feynman rules are now explicitly separated and,
therefore, easily identified. A graphical way to describe c(1)

Ff
(t) is given in the

figure below: at t = t0 the state of the system is ϕF0 , which evolves freely (and
therefore e−iEF0

t1ϕF0 appears) until the interaction occurs, at t = t1. After the
interaction the system is moved to the state ϕFf , which evolves again freely

(and therefore e
−iEFf

t1ϕFf appears, and the different sign in (11.52) is due to
the anti-linearity of the scalar product in the first variable). The free evolutions
are represented by the upward inclined arrows, while the interaction between
the initial and the final states, < ϕFf ,HI(t1)ϕF0 >, is described by the horizontal
wavy line in Figure 11.4. Obviously, since the interaction may occur at any time
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t ϕFƒ

ϕF0

< ϕFƒ , H1(t1)ϕF0 >
t1

t0

Figure 11.4 Graphical expression for c(1)
Ff

(t)

t

ϕFƒ

ϕF0

ϕF

< ϕF , HI(t1)ϕF0 >

< ϕFƒ , HI(t2)ϕF >

t1

t2

t0

Figure 11.5 graphical expression for c(2)
Ff

(t)

between 0 and t, we have to integrate on all these possible t1’s and multiply the
result for −i, which is a sort of normalization constant.

In a similar way we can construct the Feynman graph for c(2)
Ff

(t), c(3)
Ff

(t) and so

on. For example, c(2)
Ff

(t) can be deduced by a graph like the one in Figure 11.5,
where two interactions occur, the first at t= t1 and the second at t= t2:

Because of the double interaction, we have now to integrate twice the result,
recalling that t1 ∈ (0, t2) and t2 ∈ (0, t). For the same reason we have to sum over
all the possible intermediate states, ϕF . The free time evolution for the various
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free fields also appear in Formula (11.53), as well as the normalization factor
(− i)2. Following these same rules we could also give a formal expression for
the other coefficients, c(3)

Ff
(t), c(4)

Ff
(t) and so on: the third order correction c(3)

Ff
(t)

contains, for instance, a double sum on the intermediate states, allowing in this
way a transition from a state with, say, no

i,α shares to a state with nf
i,α = no

i,α + 3
shares, a triple time integral and a factor (− i)3.

Summarizing we conclude that, at each order in perturbation theory, the
contribution to the transition probability in (11.37) can be computed by con-
sidering first the relevant Feynman graph, computing the associated integral,
and then using expansion (11.38).

5 The role of information

So far, in the analysis of our SSM, we have not considered any reservoir interact-
ing with the traders. In fact, ours was a closed market, where cash and number
of shares were preserved. We will now briefly discuss the effect of the outer
world, focusing on what happens during the preparation of the system, i.e., while
fixing the initial status of the various traders after they have been reached by
some external information, but before they start to trade. For this reason, we
consider two different time intervals: in the first one, [0, t1], the two traders,
which are indistinguishable at t = 0, receive a different amount of informa-
tion. This allows them to react in different ways, so that, at time t1, they are
expected to be different. In this interval, our complete Hamiltonian, Hfull, con-
sists in a single preparing term, H. For t> t1 to H is added a new interaction term:
Hfull =H+ (t− t1)Hex, where  (t)= 1 if t> 0, while  (t)= 0 otherwise. Since, in
this paper, we will only be interested in the first time interval, [0, t1], the role
of Hex will not be very relevant in our analysis. However, we should mention
that Hex has been also considered, see [16], while what we are going to review
here was originally discussed, together with other simpler models, in [17]. To
simplify the treatment the price of the shares (just a single kind of shares!) will
be fixed to be one.

The system we want to describe is made by just two traders,5 τ1 and τ2, inter-
acting with a source of information, Sinf , described by the bosonic operators ij,
i†j and Îj = i†j ij. Sinf interacts with the external world, mimicked by a reservoir

described by the operators rj(k), r†
j (k) and R̂j(k) = r†

j (k)rj(k), j = 1,2, k ∈ R. These
operators are again, see below, bosonic. The reservoir is used to model the set
of all the rumors, news, and external facts which, all together, create the final
information. In fact, see below, the term γj

∫
R

(i†j rj(k)+ ijr
†
j (k))dk is exactly what

relates these reservoirs to what we can call bad quality information or, as we did
in [17], lack of information (LoI).
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The Hamiltonian is:⎧⎪⎪⎨⎪⎪⎩
H =H0+Hint,

H0 =∑2
j=1 (ωs

j Ŝj+ωc
j K̂j+�jÎj+

∫
R
�

(r)
j (k)R̂j(k)dk),

Hint =∑2
j=1

[
λinf

(
ij(s

†
j + c†

j )+ i†j (sj+ cj)
)
+ γj

∫
R

(i†j rj(k)+ ijr
†
j (k))dk

]
,

(11.54)

where Ŝj = s†
j sj and K̂j = c†

j cj, and where the following CCRs are assumed,

[sj,s
†
k]= [cj,c

†
k]= [ij, i

†
k]= 11δj,k, [rj(k),r†

l (q)]= 11δj,lδ(k− q),

all the other commutators being zero. This Hamiltonian is constructed follow-
ing the Rules R1-R5 discussed in Section 2.1. H contains a free canonical part
H0, which satisfies Rules R1 and R4, while the two contributions in Hint, con-
structed according to Rules R3 and R5, respectively describe: (i) the fact that
when the LoI increases, the value of the portfolio decreases and vice versa;
(ii) the fact that the LoI increases when the “value” of the reservoir decreases,
and viceversa: for instance, the contribution ijr

†
j (k) in Hint shows that the LoI

decreases (so that the trader is better informed) when a larger amount of news,
rumors, etc. reaches the trader. Notice also that, as anticipated, no interaction
between τ1 and τ2 is considered in (11.54).

As in the previous models, some self-adjoint operators are preserved during
the time evolution. These operators are M̂j = Ŝj+ K̂j+ Îj+ R̂j = π̂j+ Îj+ R̂j, j= 1,2,
where R̂j=

∫
R

r†
j (k)rj(k)dk. Then we can check that [H,M̂j]= 0, j= 1,2. This implies

that what is constant in time is the sum of the portfolio, the LoI and of the
overall reservoir input of each trader. Notice that there is no general need, and
in fact it is not required, for the cash or the number of shares to be constant in
time. This is a measure of the fact that our SSM is not closed. This is completely
different from what we assumed in Section 4.

The Heisenberg differential equations of motion can now be easily deduced:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d
dt sj(t)=−iωs

j sj(t)− iλinf ij(t),
d
dt cj(t)=−iωc

j cj(t)− iλinf ij(t),
d
dt ij(t)=−i�jij(t)− iλinf (sj(t)+ cj(t))− iγj

∫
R

rj(k, t)dk
d
dt rj(k, t)=−i�(r)

j (k)rj(k, t)− iγj ij(t).

(11.55)

First of all, we rewrite the last equation in its integral form:

rj(k, t)= rj(k)e−i�(r)
j (k)t− iγj

∫ t

0
ij(t1)e−i�(r)

j (k)(t−t1) dt1,

and then we replace this in the differential equation for ij(t). Assuming that
�

(r)
j (k)=�(r)

j k, and following a somehow standard procedure, see [6], we deduce
that

d

dt
ij(t)=−

⎛⎝i�j+
πγ 2

j

�
(r)
j

⎞⎠ ij(t)− iγj

∫
R

rj(k)e−i�(r)
j kt dk− iλinf (sj(t)+ cj(t)). (11.56)
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In the rest of this section we will work under the assumption that the last
contribution in this equation can be neglected, when compared to the other
ones. In other words, we are taking λinf to be very small. This procedure is
slightly better than simply considering λinf = 0 already in H, since we will keep
the effects of this term in the first two equations in (11.55). Solving now (11.56)
in its simplified expression, and replacing the solution ij(t) in the first equation
in (11.55), we find:

sj(t)= e−iωs
j t
(

sj(0)− iλinfαj(t) ij(0)−λinf γj

∫
R

rj(k)η2,j(k, t)dk

)
, (11.57)

where we have defined

αj(t)= e(iωs
j−�j)t− 1

iωs
j −�j

, η2,j(k, t)=
∫ t

0
η1,j(k, t1)e(iωs

j−�j)t1 dt1,

with

�j = i�j+
πγ 2

j

�
(r)
j

, η1,j(k, t)= e(�j−i�(r)
j k)t− 1

�j− i�(r)
j k

.

It is clear from (11.55) that a completely analogous solution can be deduced for
cj(t). The only difference is that ωs

j should be replaced everywhere by ωc
j .

The states of the system extend those of the previous section: for each opera-
tor of the form Xsm⊗Yres, where Xsm is an operator of the stock market and Yres

an operator of the reservoir, we have

〈Xsm⊗Yres〉 =
〈
ϕG ,XsmϕG

〉
ωres(Yres).

Here ϕG is of the form ϕG = ϕS1,K1,I1,S2,K2,I2 , in complete analogy with the other
vectors considered all along this chapter, while ωres(. ) is a state satisfying again

ωres(11res)= 1, ωres(rj(k))= ωres(r
†
j (k))= 0, ωres(r

†
j (k)rl(q))= N(r)

j (k)δj,lδ(k− q),

for a suitable function N(r)
j (k). Also, ωres(rj(k)rl(q))= 0, for all j and l. Then NSj (t)=〈

s†
j (t)sj(t)

〉
assumes the following expression:

NSj (t)= NSj (0)+λ2
inf NIj (0)|αj(t)|2+λ2

inf γ
2
j

∫
R

N(r)
j (k)|η2,j(k, t)|2 dk, (11.58)

where NIj (0)=
〈
i†j (0)ij(0)

〉
= Ij and NSj (0) = Sj are fixed by the quantum numbers

of ϕG . The expression for NKj (t)=
〈
c†

j (t)cj(t)
〉

is completely analogous to the one
above, with ωs

j replaced by ωc
j , and the portfolio of τj, πj(t), is simply the sum

of NSj (t) and NKj (t). What we are interested in, is the variation of πj(t) over long
time scales:

δπj := lim
t,∞πj(t)−πj(0).
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Formula (11.58) shows that, if γj is small enough, the integral contribution is
expected not to contribute much to δπj, as this is proportional to γ 2

j . For this
reason, we will not consider it in the rest of the section. We now find

δπj = λ2
inf Ij(�

(r)
j )2

⎛⎝ 1

π2γ 4
j + (ωs

j −�j)2(�(r)
j )2

+ 1

π2γ 4
j + (ωc

j −�j)2(�(r)
j )2

⎞⎠ . (11.59)

Let us now recall that, at t = 0, the two traders are equivalent: ωc
1 = ωc

2 =: ωc,
ωs

1 = ωs
2 =: ωs, �(r)

1 = �(r)
2 and the initial conditions are S1 = S2, K1 = K2 and

I1 = I2. The main difference between τ1 and τ2 is in �1 which is taken larger
than �2: �1 > �2

6. With this in mind, we will consider three different cases:
(a) γ1 = γ2; (b) γ1 > γ2; (c) γ1 < γ2. In other words, we are allowing a different
interaction strength between the reservoir and the information term in H.

Let us consider the first situation (a): γ1 = γ2 and �1 > �2. In this case it
is possible to check that δπ1 < δπ2, at least if |ωc −�2| < |ωc −�1| and |ωs −
�2|< |ωs−�1|. Notice that these inequalities are surely satisfied in our present
assumptions if �1 and �2 are sufficiently larger than ωc and ωs. In this case the
conclusion is, therefore, that the larger the LoI, the smaller the increment in the
value of the portfolio. Needless to say, this is exactly what we expected to find
in our model. Exactly the same conclusion is deduced in case (b): γ1 > γ2 and
�1 > �2. In this case the two inequalities produce the same consequences: we
are doubling the sources of the LoI (one from H0 and one from the interaction),
and this implies a smaller increment of π1. Case (c): γ1 < γ2 and �1 > �2, is
different. In this case, while H0 implies that τ1 is less informed (or that the quality
of his information is not good enough), the inequality γ1 < γ2 would imply
exactly the opposite. The conclusion is that, for fixed �1 and �2, there exists
a critical value of (γ1,γ2) such that, instead of having δπ1 < δπ2, we will have
exactly the opposite inequality, δπ1 > δπ2.

We should remind that these conclusions have been deduced under two
simplifying assumptions which consist in neglecting the last contributions in
(11.56) and in (11.58). Of course, to be more rigorous, we should also have
some control on these approximations. However, we will not do this here.

As we see, this model looks completely reasonable and in fact was taken, in
[16], as the starting point for a more complete situation, where an interaction
between traders is also considered.

6 Conclusions

We have shown how operators can be used in the description of some macro-
scopic systems, giving rise to dynamical systems whose behavior is defined by
a suitable operator, the Hamiltonian. We have discussed in some details how
this Hamiltonian should be constructed and we have produced a set of rules
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which have been further used in two extremely different situations, i.e., in the
description of a love affair and in the analysis of a SSM.

This line of research is going on following several different directions: from
one side we are trying to construct other models for a SSM, in the attempt
to approach some realistic version of stock market. From another side, we are
using operators also in connection with decision making, and we have suc-
cessfully applied our strategy to political alliances, just to cite the most recent
application, [18]. Other macroscopic systems have also been considered in con-
nection with population dynamics, [19, 20]. This short list of applications,
which is not complete, shows how large is the range of applicability of our
procedure.

What we believe would be important in this line of research is some simpli-
fied numerical approach: the unknown in our differential equations are in fact
operators, and this increases significantly the difficulty of the procedure which
gives some solution. This is a hard topic and is now work in progress.

Notes

1. This could be related also to psychological effects.
2. The existence of this limit has a long story which goes back, for instance, to [10]

but which has been discussed by several authors along the years, see also [11] and
references therein. We are not very interested in these mathematical aspects here. We
just want to mention that this limit creates problems, but that these problems can be
solved.

3. This will be assumed here: it is just a matter of choice of the parameters of the free
Hamiltonian.

4. Of course, these differences must involve just two traders. Therefore, they must be
related to just two values of j.

5. This number is not crucial, at least as far as Hex is not considered. However, we make
this choice to simplify the notation and our final deductions.

6. The case �1 <�2 can be easily deduced, by exchanging the role of �1 and �2.

Acknowledgments

The author acknowledges support from Università di Palermo and from GNFM.
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Klimenko, 235

lending channel, 18, 19, 21, 22, 23, 27,
28, 35, 278

liquidity, 6, 13, 14, 19, 20, 22–24, 27, 29,
45–46, 58, 60, 65–71, 73, 77–79, 80,
82–85, 87, 88–90, 92, 93, 94, 95–101,
103–108, 112, 119, 120, 122, 131,
132, 137, 138, 247, 299

Liu, 110

315



316 Index

macrodynamics, 236
Markets ((in)complete), 195, 236, 239,

241, 268, 269, 277
Market discipline, 42, 43, 44, 45, 49, 50,

51, 57, 58, 59, 60, 111
Market risk, 119, 120, 121, 131, 137, 138,

144, 238
martingale, 173–174, 176, 179–180,

181–183, 186, 192, 194–196, 200,
203, 209, 212, 213

merger, 110, 111, 118
Milne, 235
monetary policy, 18, 19, 27, 29, 30, 35, 61,

65, 66, 68, 70, 71, 73, 74–79, 81–83,
84, 86, 88, 94–97, 101, 106, 107, 166,
235, 252–254, 265

monetary transmission mechanism, 18, 35

al-Nowaihi, 65

objective function, 76, 80, 83, 84, 86, 89,
91, 93, 94, 101, 103, 254, 256, 257,
267, 271

Ongena, 18
open market operation(s), 18, 66, 73, 106
operator, 203, 273, 283–284, 285,

286–291, 296–302, 305, 309–313

parametric (non), 164–165
portfolio rules, 216, 220, 221, 223, 226,

231
private information, 54, 55, 190–193, 195,

197, 199, 200, 201, 202, 204, 207,
208, 209

procyclicality, 29, 32, 120
prospect theory, 217
public information, 46, 60, 190–192,

194–195, 196–197, 199, 200–202,
207–210

quantum, 284–285, 287, 296, 298,
300–301, 303, 305, 311

rational expectations, 66, 70–71, 74, 76,
77, 78, 81–86, 88, 96, 97, 99, 106–107

Rindisbacher, 190
risk-neutral, 169, 170, 173, 176–181, 183,

246, 249, 250
Rousseau, 1

Schenk-Hoppé, 214
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