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Chapter 7 
Continuum of 6-Colorings of the Plane 

In 1993, another 6-coloring was found by Ilya Hoffman and me ([HS1], [HS2]). Its type was 
1, 1, 1, 1, 1, 2

p
- 1 :The story of this discovery is noteworthy. In the summer of 1993, I was 

visiting my cousin in Moscow, a well-known New Vienna School composer, Leonid Hoff-
man. His 15-year-old son Ilya was studying violin at the Gnessin Music High School. Ilya set 
out to learn what I was doing in mathematics and did not accept any general answers. He 
wanted particulars. I showed him my 6-coloring of the plane (Problem 6.4), and the teenage 
musician got busy. The very next day he showed me . . .  the Stechkin coloring (Fig. 6.2) that 
he discovered on his own! “Great,” I replied, “but you are 23 years late.” A few days later, he 
came up with a new idea of using a two-square tiling. Ilya had an intuition of a virtuoso fiddler 
and no mathematical culture – and so I calculated the sizes the squares had to have for the 
6-coloring to do the job we needed. I wanted Ilya to be the sole author, but he insisted on our 
joint credit. And the joint work of the unusual mathematician–musician team was born. Ilya 
went on to graduate from the graduate school of Moscow Conservatory in the class of the 
celebrated violist and conductor Yuri Bashmet and is now one of Russia’s hottest violinists 
and violists and the winner of several international competitions. 

Problem 7.1 (I. Hoffman and A. Soifer [HS1], [HS2]). There is a 6-coloring of the plane of 
type 1, 1, 1, 1, 1, 2

p
- 1 : 

Solution Tile the plane with squares of diagonals 1 and 2- 1 (Fig. 7.1). We use colors 
1, ..., 5 for larger squares and color 6 for all smaller squares. With each square, we include half 
of its boundary, its left and lower sides, without the end points of this half (Fig. 7.2). 

To easily verify that this coloring does the job, observe the unit of the construction that is 
bounded by the bold line in Fig. 7.1. Its translates tile the plane and thus define its coloring. ■ 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597
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Fig. 7.1 The Hoffman–Soifer 6-coloring of the plane 

Fig. 7.2 Coloring of the boundaries 

The two examples, found in the solutions of problems 6.4 and 7.1, prompted me in 1993 to 
introduce a new terminology for this problem and to translate the results and problems into 
this new language. 

Open Problem 7.2 (A. Soifer [Soi7], [Soi8]). Find the 6-realizable set Χ6 of all positive 
numbers α such that there exists a 6-coloring of the plane of type (1, 1, 1, 1, 1, α). 

In this new language, the results of problems 6.4 and 7.1 can be written as follows: 

1 

5
p , 2 

p
- 1 2 Χ6:

https://doi.org/10.1007/978-1-0716-3597-1_6#FPar4
https://doi.org/10.1007/978-1-0716-3597-1_6#FPar4


i.e., for every α 2 2- 1,
5

p , there is a 6-coloring of type (1, 1, 1, 1, 1, α).
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We now have two examples of “working” 6-colorings. But what do they have in common? 
It is not obvious, is it? One uses octagons, while the other does not. After a while, I realized 
that they were two extreme examples of a general case and, in fact, a much better result was 
possible, describing a whole continuum of working 6-colorings! 

Theorem 7.3 (A. Soifer [Soi7], [Soi8]). 

2 
p

- 1, 
1 

5
p ⊆Χ6, 

p
1 1 

Proof Let a unit square be partly covered by a smaller square, which cuts off the unit square 
into vertical and horizontal segments of lengths x and y, respectively, and forms with it an 
angle ω (Fig. 7.3). These squares induce the tiling of the plane that consists of nonregular 
octagons and “small” squares that are congruent to each other (Fig. 7.4). 

Fig. 7.3 The foundation squares 

1 Symbol [a,b], a < b, as usual, stands for the line segment, including its end points a and b.
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Fig. 7.4 The Soifer continuum of 6-colorings of the plane 

Fig. 7.5 Coloring boundaries 

Now we are ready to color this tiling in 6 colors. Denote by F the unit of our construction, 
bounded by a bold line (Fig. 7.4) and consisting of five octagons and four small squares. Use 
colors 1 through 5 for the octagons inside F and color 6 for all small squares. Include in the



colors of octagons and small squares the parts of their boundaries that are shown in bold in 
Fig. 7.5. Translates of F tile the plane and thus define the 6-coloring of the plane. We now 
wish to select the parameters to guarantee that each color forbids a distance. 
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At first, the complexity of computations appeared unassailable to me. However, a true 
Math Olympiad approach (i.e., good choices of variables, clever substitutions, and nice 
optimal properties of the chosen tiling) allowed for a successful sailing. 

Let x ≤ y (Fig. 7.3). It is easy to see (Figs. 7.6 and 7.7) that we can split each small square 
into four congruent right triangles with sides x and y and a square of side y - x. 

Fig. 7.6 A closer look at the tiling’s foundation 

Fig. 7.7 A foundation close-up
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The requirement for each color to forbid a distance produces the following system of two 
inequalities (see Fig. 7.6): 

d1 ≥ d2 
d3 ≥ d4 

Figures 7.6 and 7.7 allow for an easy representation of all di (i = 1, 2, 3, 4) in terms of x and 
y. As a result, we get the following system of inequalities: 

1þ y- xð Þ2 þ 2xð Þ2 ≥ 1þ 1- 2xð Þ2 
1- x- y≥ 2 x2 þ y2ð Þ  

ð7:2Þ 

Solving for x in each of the two inequalities in (7.2) separately, we unexpectedly get the 
following system: 

x2 þ 2 1- yð Þxþ y2 þ 2y- 1 ≥ 0 

x2 2 1- y x y2 2y- 1 ≤ 0: 

Therefore, we get the equation (!) in x and y: 

x2 þ 2 1- yð Þxþ y2 þ 2y- 1 = 0: 

Treating this as the equation in variable x, we obtain a unique (!) solution for x as a function 
of y that satisfies the system (7.2) of inequalities: 

x= 2- 4yþ y- 1,where 0≤ y≤ 0:5: ð7:3Þ 

Since 0 ≤ x ≤ y, we get even narrower bounds for y: 0:25≤ y≤ 2- 1. For any value of 
y within these bounds, x is uniquely determined by (7.3) and is accompanied by the equalities 
(!) d1 = d2 and d3 = d4. 

Thus, we showed that for every y 2 0:25, 2- 1 , there is a 6-coloring of type 
(1, 1, 1, 1, 1, α). But what values can α take on? Surely, 

α= 
d4 
d2 

: ð7:4Þ 

Let us introduce a new variable Y = 2- 4y, where Y 2 2- 2, 1  and figure out x and 
y from (7.3) as functions of Y: 

4y= - Y2 þ 2 
4x= - Y2 4Y - 2 7:5



2 p

5
p

2
2

7 Continuum of 6-Colorings of the Plane 63

Now substituting from (7.1) and (7.2) the expressions for d4 and d2 into (7.4), and using the 
two equalities (7.5) to get rid of x and y everywhere, we get a “nice” expression for α2 as a 
function of Y (do verify my algebraic manipulations on your own): 

α2 = 
Y4- 4Y3 þ 8Y2- 8Y þ 4 

Y4 - 8Y3 þ 24Y2 - 32Y þ 20 : 

By substituting Z = Y - 2, where Z - 2, - 1 , we get a simpler function α2 of Z: 

α2 = 1þ 4Z Z2 þ 2Z þ 2 
Z4 þ 4 : 

To observe the behavior of the function α2 , we compute its derivative: 

α2 
0 
= -

4 

Z4 þ 4 2 
Z6 þ 4Z5 þ 6Z4 - 12Z2 - 16Z- 8 : 

Normally, there is nothing promising about finding the exact roots of an algebraic 
polynomial of a degree greater than 4. But we are positively lucky here, for this sixth-
degree polynomial can be nicely decomposed into factors: 

α2 
0 
= -

4 

Z4 þ 4 2 
Z2 - 2 Z þ 1ð Þ2 þ 1 

2 
: 

Hence, the derivative has only two zeros. In fact, in the segment of our 
interest, Z 2 - 2

p 
, - 1 , the only extremum of α2 occurs when Z = - 2

p 
. Going back 

from Z to Y to y, we see that on the segment y 2 0:25, 2
p

- 1 , the function α = α(y) 
decreases from α= 1 

5
p ≈ 0.44721360 (i.e., a 6-coloring of problem 6.4) to  α= 2

p
- 1≈ 

0.41421356 (i.e., a 6-coloring of problem 7.1). Since the function α = α(y) is continuous and 
increasing on 0:25, 2

p
- 1 , it takes on each intermediate value from the segment 

2
p

- 1, 1 and only once. 

We have proved the required result and much more: 

For every angle ω between the small and the large squares (see Fig. 7.3), there are unique 
sizes of the two squares (and unique square intersection of parameters x and y) such that the 
constructed 6-coloring has type (1, 1, 1, 1, 1, α) for a uniquely determined α. 

This is a remarkable fact: the working solutions barely exist – they form something of a 
curve in a three-dimensional space formed by the angle ω and two linear variables x and y! We  
thus found a continuum of permissible values for α and a continuum of working 6-colorings 
of the plane. ■ 

Remark The problem of finding the 6-realizable set Χ6 has a close relationship with the 
problem of finding the chromatic number χ of the plane. Its solution would shed light – if not 
solve – the chromatic number of the plane problem: 

If 1 = Χ6, then χ = 7; 
If 1 Χ6, then χ ≤ 6.

https://doi.org/10.1007/978-1-0716-3597-1_6#FPar4
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Open Problem 7.4 (A. Soifer [Soi5]). Find Χ6. 

I am sure you understand that this problem, formulated in just two words, is extremely 
difficult. 

In 1999, the Russian authorities accused my young coauthor and fine young violinist Ilya 
Hoffman of computer hacking (even though he did not pocket any money) and imprisoned 
him before the trial as a “danger to the society.” I flew to Moscow, met with the presiding 
judge, a middle-aged pretty lady, in a black gown, of course. We were alone in her office. I 
asked, “What danger to the society does my nephew-violinist present?” The judge replied that 
she was not at liberty to do what she thought was right. I understood: she could have lost her 
job for that – or worse. 

I met with Valery Vasilyevich Borshchev, a member of the Russian Parliament “Duma” 
and a human rights supporter. I also met with the vice president of the Russian Academy of 
Sciences and the head of the Judicial Division of the Academy, Vladimir Nikolaevich 
Kudryavtsev, who listened to me and generously volunteered to write a “Friend of the 
Court” opinion if the case were to reach the level of the City of Moscow Court or higher. 
Permit me to tell you a few words about the celebrated Jurist Kudryavtsev (10 April 
1923–5 October 2007). 

In 1951, Stalin’s prosecutor general, Vyshinsky, announced a new legal doctrine: “One is 
guilty whom the court finds guilty.” He called the presumption of innocence “bourgeois 
superstition.” A young senior lieutenant rose to speak against the new Stalin’s doctrine 
announced by Vyshinsky. This extraordinary hero was Vladimir N. Kudryavtsev. It was 
unforgettable to meet this brave man and get his full understanding and support. 

When the trial finally took place, Ilya was released home from the courtroom. While in 
prison, he was not allowed to play his viola and violin, so Ilya wrote music and mathematics. 
The following page he sent to me from his prison cell:



2 2
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Ilya discovered a new 6-coloring of the plane. Four colors consist of regular hexagons of 
diameter 1 and two colors occupy rhombuses. By carefully assigning colors to the boundaries, 

we get a 6-coloring of type (1, 1, 1, 1, 3
p 
, 3
p 
). 

When my writings require an English translation of brilliant Russian poetry, I connect with 
Ilya for a joint translation work. “Always invite me to play linguistic combinatorics – I’m very 
pleased,” wrote Ilya to me on New Year’s Day, January 1, 2023.
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