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Chapter 5 
De Bruijn–Erdős Reduction to Finite Sets a nd Res ults
Near the Lower Bound 

We can expand the notion of the chromatic number to any subset S of the plane. The 
chromatic number χ(S) of  S is the smallest number of colors sufficient for coloring the points 
of S in such a way that forbids monochromatic unit segments. 

In 1951, Nicolaas Govert de Bruijn and Paul Erdős published a highly powerful tool [BE2] 
that will help us with this and other problems. We will formulate and prove it in Part V. In our 
setting here, it implies the following. 

Compactness Theorem 5.11 (N.G. de Bruijn, P. Erdős). The chromatic number of the plane 
is equal to the maximum chromatic number of its finite subsets. 

Thus, as Paul Erdős used to say, the problem of finding the chromatic number of the plane 
is a problem about finite sets in the plane.2 

There are easy questions about finite sets in the plane. Solve the following two problems on 
your own. 

Problem 5.2 Find the smallest number δ3 of points in a plane set whose chromatic number is 
equal to 3. 

Problem 5.3 (L. Moser and W. Moser, [MM]). Find the smallest number δ4 of points in a 
plane set whose chromatic number is 4. (Answer: δ4 = 7). 

Victor Klee and Stan Wagon posed the following open problem in [KW]: 

Open Problem 5.4 When k is 5, 6, or 7, what is the smallest number δk of points in a plane 
set whose chromatic number is equal to k? 

Of course, problem 5.4 makes sense only if χ > 4. In the latter case, this problem suggests a 
way to attack the chromatic number of the plane problem by constructing new “spindles.” 

When you worked on problems 5.2 and 5.3, you probably remembered our problems 2.1 
and 2.2. Indeed, those problems provide optimal configurations (Figs. 2.1 and 2.2) for

1 The axiom of choice is assumed in this result. 
2 Or so we all thought. Because of that, I choose to leave this chapter as it was written in the early 
1990s. See Part XII of this book for axiomatic developments. 
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problems 5.2 and 5.3. Both optimal configurations were built of equilateral triangles of side 
1. Can we manage without them?
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Problem 5.5 Find the smallest number σ3 of points in a plane set without equilateral triangles 
of side 1 whose chromatic number is equal to 3. 

Fig. 5.1 An equilateral pentagon of side 1 

Solution σ3 = 5. The regular pentagon of side 1 (Fig. 5.1) delivers a minimal configuration 
of chromatic number 3. 

It is easy to 2-color any four-point set A, B, C, D without equilateral triangles of side 1. Just 
color A red. All points at a distance 1 from A, color blue; these are second-generation points. 
All uncolored points at a distance 1 from any point of the second generation, we color red, and 
these are third-generation points. All uncolored points at a distance 1 from the points of the 
third generation, we color blue. If we did not color all four points, then we start this process all 
over again by coloring any uncolored point red. If this algorithm were not to define the color 
of any point uniquely, we would have an odd-sided n-gon with all sides 1, i.e., an equilateral 
triangle (since n ≤ 4), which cannot be present, and thus would provide the desired contra-
diction. ■ 

For four colors, this question for a while was an open problem first posed by Paul Erdős in  
July 1975 (and published in 1976), who, as was usual for him, offered to “buy” the first 
solution – for $25. 

Paul Erdős’ $25 Problem 5.6 [E76.49]. Let S be a subset of the plane, which contains no 
equilateral triangles of size 1. Join two points of S if their distance is 1. Does this graph have 
chromatic number 3? 

If the answer is no, assume that the graph defined by S contains no Cl (cycles of length l) 
for 3 ≤ l ≤ t and ask the same question. 

It appears that Paul Erdős was not sure of the outcome, which was rare for him. Moreover, 
from the next publication of this problem in 1979 [E79.04], it is clear that Paul expected that 
triangle-free unit distance graphs had chromatic number at most 3 or else chromatic number 
3 can be forced by prohibiting all small cycles up to Ck for a sufficiently large k: 

Paul Erdős’ $25 Problem 5.6’ [E79.04]. “Let our n points [in the plane] be such that they do 
not contain an equilateral triangle of side 1. Then their chromatic number is probably at most 
3, but I do not see how to prove this. If the conjecture would unexpectedly [sic] turn out to be 
false, the situation can perhaps be saved by the following new conjecture:
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There is a k so that if the girth of G(x1,. . .,xn) is greater than k, then its chromatic number 
is at most three – in fact, it will probably suffice to assume that G(x1,. . .,xn) has no odd 
circuit of length ≤ k.”3 

Erdős’ first surprise arrived in 1979 from down under: Nicholas Wormald, then of the 
University of Newcastle, Australia, disproved the first, easier, triangle-free conjecture. Erdős 
paid $25 reward for the surprise and promptly reported it in his next 1978 talk (published 
3 years later [E81.23]): 

Wormald in a recent paper (which is not yet published) disproved my original 
conjecture – he found a [set] S for which [the unit distance graph] G1(S) has girth 
5 and chromatic number 4. Wormald’s construction uses elaborate computations and is 
fairly complicated. 

In his paper [Wor], Wormald proved the existence of a set S of 6448 (!) points without 
triangles and quadrilaterals with all sides 1, whose chromatic number was 4. He was aided by 
a computer. I would like to give you a taste of the initial Wormald construction or, more 
precisely, the Blanche Descartes construction that Wormald was able to embed in the plane, 
but it is a better fit in Chapter 12 – so, see it there. 

The size of Wormald’s example, of course, did not appear to be anywhere near optimal. 
Surely, it must have been possible to do the job with less than 6448 points! In my March– 
1992 talk at the Southeastern International Conference on Combinatorics, Graph Theory, and 
Computing at Florida Atlantic University, I shared Paul Erdős’ old question, but I put it in a 
form of competition: 

A graph is called unit-distance if its two vertices are connected by an edge if and only if 
they are at distance 1 apart. 

Open Problem 5.7 Find the smallest (in the number of vertices) unit-distance graph in the 
plane without equilateral triangles, whose chromatic number is 4. Construct such a graph. 

The result exceeded my wildest dreams. A number of young mathematicians, including 
graduate students, were inspired by this talk and entered the race I proposed. Coincidentally, 
during that academic year, with the participation of the celebrated geometer Branko 
Grünbaum, and of Paul Erdős, whose problem papers set the style, I started a new and unique 
quarterly Geombinatorics, dedicated to problem-posing essays on discrete and combinatorial 
geometry and related areas. Geombinatorics is still alive and well now, 32 years later. The 
aspirations of the journal were clear from my 1991 Editor’s Page in Issue 3 of Volume I: 

In a regular journal, a paper appears 1 to 2 (or more) years after the research is 
completed. By then even the author may not be excited any more about his results. In 
Geombinatorics we can exchange open problems, conjectures, aspirations, work-in-
progress that is still exciting to the author, and therefore inspiring to the reader. 

A true World Series played out on the pages of Geombinatorics around problem 5.7. The 
graphs obtained by the record setters were as mathematically significant as they were 
beautiful. I have to show them to you – see them discussed in detail in Chapters 14 and 15. 

3 The symbol G(x1,. . .,xn) denotes the graph on the listed inside parentheses n vertices, with two 
vertices adjacent if and only if they are a unit distance apart.
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Many attempts to increase the lower bound of the chromatic number of the plane had not 
achieved their goal. Rutgers University’s PhD student Rob Hochberg believed that the 
chromatic number of the plane was 4, while his roommate and fellow PhD student Paul 
O’Donnell was of the opposite opinion. They managed to get along despite this disagreement 
of the mathematical kind. On January 7, 1994, Rob sent me an e-mail to that effect: 

Alex, hello. Rob Hochberg here. (The one who’s gonna prove χ(E2 ) = 4.) . . .  It seems 
that Paul O’Donnell is determined to do his Ph. D. thesis by constructing a 5-chromatic 
unit-distance graph in the plane. He’s got several interesting 4-chromatic graphs and 
great plans. We still get along. 

Two months later, Paul O’Donnell’s abstract in the Abstracts book of the Southeastern 
International Conference on Combinatorics, Graph Theory, and Computing in Boca Raton, 
Florida, included the following announcement: 

The chromatic number of the plane is between four and seven. A five-chromatic 
subgraph would raise the lower bound. If I discover such a subgraph, I will present it. 

We all came to his talk of course (it was easy for me, as I spoke immediately before Paul in 
the same room). At the start of his talk, however, Paul simply said, “not yet,” and went on to 
show his impressive 4-chromatic graph of girth 4. Five years later, on May 25, 1999, Paul 
O’Donnell defended his doctorate at Rutgers University. 

Much was learned about 4-chromatic unit distance graphs. The best of these results, in my 
opinion, was contained in O’Donnell’s dissertation. He completely solved Paul Erdős’ 
problem 5.6 and delivered to Paul Erdős an ultimate surprise by negatively answering 
Erdős’ general conjecture: 

O’Donnell’s Theorem 5.8 [Odo3, Odo4, Odo5]. There exist 4-chromatic unit distance 
graphs of arbitrary finite girth. 

I choose to divide the proof of this result between Parts III and IX. See you there!
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