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Chapter 2 
Chromatic Number of the Plane: The Probl m 

A great advantage of geometry lies in the fact that in it the senses 
can come to the aid of thought and help find the path to follow. 

– Henry Poincaré [Poi] 

[I] can’t offer money for nice problems of other people 
because then I will really go broke. . .  
It is a very nice problem. If it were mine, I would offer 
$250 for it. 

– Paul Erdős 
Boca Raton, February 6, 1992 

The most widely known problem in Euclidean Ramsey Theory is 
probably that of determining the chromatic number of the plane, 
χ(E2 ). 

– Ronald L. Graham and Eric Tressler [GT] 

The unit distance graph in the plane . . .  is simple enough to 
describe to a nonmathematician, and so enigmatic that finding its 
chromatic number is a new four-color map problem for graph 
theorists. 

– Ronald L. Graham and Eric Tressler (Ibid.) 

If Problem 8 [the chromatic number of the plane] takes that long 
to settle [as the Four-Color problem], we should know the answer 
by the year 2084. 

– Victor Klee and Stan Wagon [KW] 

Our good ole Euclidean plane, don’t we know all about it? What else can there be after 
Pythagoras and Steiner, Euclid, and Hilbert? In this chapter, we will look at an open problem 
that exemplifies what is best in mathematics: Anyone can understand this problem; yet, no 
one has been able to conquer it in 73 years. 

In August 1987, I attended an inspiring talk by Paul Halmos at Chapman College in 
Orange, California. It was entitled “Some problems you can solve, and some you cannot.” 
This problem is an example of a problem that “you cannot solve.” 
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14 2 Chromatic Number of the Plane: The Problem

“A fascinating problem... that combines ideas from set theory, combinatorics, measure 
theory, and distance geometry,” write Hallard T. Croft, Kenneth J. Falconer, and Richard 
K. Guy in their book Unsolved Problems in Geometry [CFG]. 

“If Problem 8 takes that long to settle [as the celebrated Four-Color Conjecture], we should 
know the answer by the year 2084,” write Victor Klee and Stan Wagon in their book New and 
Old Unsolved Problems in Plane Geometry [KW]. 

Are you ready? Here it is: 

What is the smallest number of colors sufficient for coloring the plane in such a way that 
no two points of the same color are at a unit distance apart? 

This number is called the chromatic number of the plane and is denoted by χ(E2 ) o  
simply χ. 

We will use R to denote the set of real numbers and the real line. The line equipped with the 
usual Euclidean distance, we will denote by E1 . Generalizing the line E1 , we get the Euclidean 
plane E2 and the Euclidean space E3 , and we define the n-dimensional space Rn for any 
positive integer n as the set of all n-tuples (x1, x2,..., xn), where x1, x2,..., xn are real numbers. 
When the distance between two points (x1, x2,..., xn) and (y1, y2,..., yn) of  R

n is defined by the 
equality 

d= x1- y1ð Þ2 þ x2 - y2ð Þ2 þ . . .  þ xn - ynð Þ2 �ð  

we get the Euclidean n-dimensional space En . In other words, En is just the set Rn together 
with the distance d defined by (*). 

To color the plane means to assign one color to every point of the plane. Please note that, 
here, we color without any restrictions and are not limited to “nice” tiling-like or map-like 
colorings. Given a positive integer n, we say that the plane is n-colored, if every point of the 
plane is assigned one of the given n colors. 

Here, a segment will stand for just a two-point set (which are end points in a conventional 
treatment of a segment). Similarly, a polygon will stand for a finite set of points. A 
monochromatic set is a set, whose all elements are assigned the same color. In this terminol-
ogy, we can formulate the chromatic number of the plane (CNP) problem as follows: What is 
the smallest number of colors sufficient for coloring the plane in a way that forbids mono-
chromatic unit segments? 

I do not know who first noticed the following result. Perhaps, Adam? Or Eve? To be a bit 
more serious, I do not think that ancient Greek geometers, for example, knew this nice fact, 
for they simply did not ask these kinds of questions! 

Problem 2.1 (Adam and Eve). No matter how the plane is two-colored, it contains a 
monochromatic segment of length 1, i.e., 

χ≥ 3: 

Proof Toss on the two-colored plane an equilateral triangle T of side 1 (Fig. 2.1). We have 
only two colors, while T has three vertices (I trust you have not forgotten the Pigeonhole 
principle). Two of the vertices must be of the same color. They are at a distance 1 apart. ■
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Fig. 2.1 At least 3 colors are necessary 

We can do better than Adam and Eve: 

Problem 2.2 No matter how the plane is three-colored, it contains a monochromatic segment 
of length 1, i.e., 

χ≥ 4: 

Proof by the Canadian Geometers, Brothers Leo and William Moser (1961, [MM]). Toss 
on the three-colored plane what we now call the Mosers Spindle (Fig. 2.2). Every edge in the 
spindle has the length 1. 

Fig. 2.2 The Mosers Spindle 

Assume that the seven vertices of the spindle do not contain a monochromatic unit 
segment. Call the colors used in coloring the plane red, white, and blue. The solution now 
will faithfully follow the children’s alphabet song “A B C D E F G .... ”. 

Let the point A be red, then B and C must be one white and one blue, respectively, and 
therefore, D must be red. Similarly, E and F must be one white and one blue, respectively, and 
therefore, G must be red. We have a monochromatic unit segment DG in contradiction to our 
assumption. ■ 

Observe The Mosers Spindle has worked for us in solving problem 2.2 precisely because any 
three vertices of the spindle contain two vertices that are at a distance 1 apart. This implies that in



a Mosers Spindle that forbids a monochromatic unit segment, at most two points can be of the 
same color. Let us record this observation as a tool, which wewill need later in Chapters 4 and 40. 
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Mosers’ Tool 2.3 Any three vertices of the Mosers Spindle contain a unit segment. Conse-
quently, in a Mosers Spindle that forbids a monochromatic unit segment, at most two vertices 
can be of the same color. 

When I presented the Mosers’ solution to high school mathematicians, everyone agreed 
that it was beautiful and simple. “But how do you come up with a thing like the spindle?”, I  
was asked. As a reply, I presented a less elegant but a more naturally found solution. In fact, I 
would call it a second version of the same solution. Here, we touch on a curious aspect of 
mathematics. In mathematical texts, we often see the terms “second solution” and “third 
solution.” However, which two solutions ought to be called distinct? We do not know. It is 
not defined and is thus a judgment call. Distinct solutions for one person could be viewed as 
versions of the same for another. It is interesting to notice that both versions were published in 
the same year, 1961, one in Canada and the other in Switzerland. 

Fig. 2.3 At least 4 colors are necessary 

Second Version of the Proof (Hugo Hadwiger, 1961, [Had4]). Assume that a three-colored 
red–white–blue plane does not contain a monochromatic unit segment. Then an equilateral 
triangle ABC of side 1 will have one vertex of each color (Fig. 2.3). Let A be red, then B and 
C must be one white and one blue, respectively. The vertex A’ symmetric to A with respect to 
the side BC must be red as well. As we rotate our rhombus ABA’C through any angle about A, 
the vertex A’ will have to remain red due to the above argument. Thus, we get a whole red 
circle of radius AA’. Surely, it contains a cord d of length 1, both end points of which are red, 
in contradiction to our assumption. ■ 

Does an upper bound exist for χ? It is not immediately obvious. Can you find one? Think 
of tiling the plane with square tiles. 

Problem 2.4 There is a 9-coloring of the plane that contains no monochromatic segments of 
length 1, i.e., 

χ≤ 9: 

Proof Tile the plane with unit squares. Now, we color one square in color 1 and its eight 
neighbors in colors 2, 3, ..., 9 (Fig. 2.4). The union of these 9 unit squares is a 3 × 3 square S, 
shown in bold. Translates of S (i.e., images of S under translations) tile the plane and 
determine how we color it in nine colors.

https://doi.org/10.1007/978-1-0716-3597-1_4
https://doi.org/10.1007/978-1-0716-3597-1_40
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You can easily verify (do) that no distance d in the range 2< d < 2 is realized 
monochromatically in the plane. Thus, by shrinking all linear sizes by the factor of, say, 
1.5, we get a 9-coloring that contains no monochromatic segments of length 1. (Observe: due 
to the above inequality, we have enough cushion so that it does not matter in which of the two 
adjacent colors we color the boundaries of the unit squares.) ■ 

Fig. 2.4 9 colors suffice 

Now that a tiling has helped us solve the above problem, it is natural to ask whether another 
tiling can help us improve the upper bound. One can indeed. 

Problem 2.5 There is a 7-coloring of the plane that contains no monochromatic unit 
segments, i.e., 

χ≤ 7: 
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Fig. 2.5 A 7-coloring using a hexagonal tiling
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Proof [Had3]. We can tile the plane by regular hexagons of side 1. Now, we color one 
hexagon in color 1 and its six neighbors in colors 2, 3, ..., 7 (Fig. 2.5). The union of these 
seven hexagons forms a “flower” P, a highly symmetric polygon P of 18 sides. Translates of 
P tile the plane and determine how we color the plane in seven colors. It is easy to compute 
(please do) that each color does not have monochromatic segments of any length d, where 
2< d < 7

p 
. Thus, if we shrink all linear sizes by a factor of, say, 2.1, we will get a 7-coloring 

of the plane that has no monochromatic segments of length 1. (Observe: due to the above 
inequality, we have enough cushion so that it does not matter in which of the two adjacent 
colors we color the boundaries of the hexagons.) ■ 

This is the way the upper bound is proved in every book I know ([CFG] and [KW], for 
example). Yet, in 1982, the Hungarian mathematician László A. Székely found a clever way 
to prove the upper bound 7 without using hexagonal tiling. 

Problem 2.6 (L. A. Székely, [Sze1]). Prove the upper bound χ ≤ 7 by tiling the plane with 
squares again. 

Proof This is László Székely’s proof from [Sze1]. His original picture needs a small 
correction in his Fig. 1, and boundary coloring needs to be addressed, which I am doing 
here. We start with a row of squares of diagonal 1, with cyclically alternating colors of the 
squares 1, 2, . . ., 7 (Fig. 2.6). We then obtain consecutive rows of colored squares by shifting 
the preceding row to the right through 2.5 square sides. 
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Fig. 2.6 A 7-coloring using square tiling 

The upper and right boundaries are included in the color of each square, except the square’s 
upper left and lower right corners. ■ 

In 1995, my former student and now a well-known puzzlist Edward Pegg, Jr. sent me two 
distinct 7-colorings of the plane. In the one I am sharing with you (Fig. 2.7), Ed uses 7-gons 
for six of the colors and tiny squares for the seventh color. In fact, the seventh color occupies 
only about one-third of 1% of the plane. 

In Fig. 2.7, all thick black bars have a unit length. A unit of the tiling uses a heptagon and 
half a square. 

The area of each square is 0.0041222051899307168162... 
The area of each heptagon is 0.62265127164647629646... 
Thus, the area ratio is 302.0962048019455285300783627265828... 
If one-third of 1% of the plane is removed, then the remainder can be six-colored with this 

tiling!
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(0,0) 

(x,x) 

(1,0) 

Fig. 2.7 Ed Pegg’s 7-coloring with a small use of color 7 

The lower bound for the chromatic number of the plane (problem 2.2) also has proofs that 
are fundamentally different from using the Mosers Spindle. In the early 1990s, I received 
from my colleague and friend Klaus Fischer of George Mason University a finite configura-
tion of the chromatic number 4, different from the Mosers Spindle. Klaus had no idea who 
created it, so I commenced backtracking this construction. Klaus got it from our friend and 
colleague Heiko Harborth of Braunschweig Technical University, Germany, who, in turn, 
referred me to his source, Solomon W. Golomb of the University of Southern California, the 
famous inventor of polyomino. Solomon invented this graph as well and described it in the 
September 10, 1991, letter to me [Gol1]: 

The example you sketched of a 4-chromatic unit-distance graph with ten vertices is 
original with me. I originally thought of it as a 3-dimensional structure (the regular 
hexagon below, the equilateral triangle above it in a plane parallel to it), and all 
connected by unit-length toothpicks. The structure is then allowed to collapse down 
into the plane, to form the final Figure (Fig. 2.8). I have shown it to a number of people, 
including the late Leo Moser, Martin Gardner, and Paul Erdős, as well as Heiko 
Harborth. It is possible that Martin Gardner may have used it in one of his columns, 
but I don’t remember. Besides my example and Mosers’ original example (which I’m 
reasonably sure I have seen in Gardner’s column), I have not seen any other “funda-
mental” examples. I believe what I had suggested to Dr. Harborth in Calgary was the 
possibility of finding a 5-chromatic unit-distance graph, having a much larger number of 
edges and vertices. 

“The possibility of finding a 5-chromatic unit-distance graph” was on the minds of most of 
us, who worked on this problem. Does it exist? You will find a definitive answer later in 
this book.
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In the consequent September 25, 1991, letter [Gol2], Sol Golomb informed me that he 
likely found this example, which I will naturally call the Golomb Graph, in the period 
1960–1965. 

Fig. 2.8 The Golomb graph 

Second Solution of Problem 2.2 Just toss the Golomb graph with all edges of unit length on 
a three-colored (red, white, and blue) plane (Fig. 2.8). Assume that in the graph, there are no 
adjacent vertices of the same color. Let the center vertex be colored red, then, since it is 
connected by unit edges to all vertices of the regular hexagon H, the vertices of H must be 
colored white and blue in an alternating manner. All vertices of the central equilateral triangle 
T are connected by unit edges to the three vertices of H of the same color, say, white. 
However, then, white cannot be used in coloring T, and, thus, T is colored red and blue. 
However, this implies that two of the vertices of T are assigned the same color. This 
contradiction proves that 3 colors are not enough to properly color the 10 vertices of the 
Golomb graph, let alone the whole plane. ■ 

It is amazing that the pretty easy solutions of problems 2.2 and 2.4 provided us with the 
best bounds known to mathematics prior to 2018 for the chromatic number of the plane χ in 
the general case. They were published more than 60 years ago (in fact, they are older 
than that: see the next chapter for an intriguing historical account). Still, all we knew at the 
time of the first edition of this book was 

χ= 4, or 5, or 6, or 7: 

A very broad spread! Which do you think is the exact value of χ? The legendary Paul Erdős 
believed that it was χ ≥ 5. 

The renown American geometer Victor Klee of the University of Washington shared with 
me in 1991 a highly intriguing story. In 1980, he lectured in Zürich, Switzerland. The 
celebrated 77-year-old mathematician Bartel L. van der Waerden (whom we will frequently 
meet later in this book) was in attendance. When Vic presented the state of this problem, Van



der Waerden became very interested. Right there and then, during Vic’s lecture, Bartel started 
working on the problem. He tried to prove that χ = 7. 
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For many years, I believed that χ=7 (you will find my thoughts on the matter in Predicting 
the Future, later in this book). Paul Erdős used to say that 

God has a transfinite Book, which contains all theorems and their best proofs, and if He 
is well intentioned toward those, He shows them the Book for a moment. 

If I ever deserved the honor and had a choice, I would have asked to peek at the page with 
the chromatic number of the plane problem. Wouldn’t you?
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