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This coloring book is for my late father Yuri Soifer, 
a great painter, who introduced colors into my life.
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To Paint the Portrait of a Bird 

by Jacques Prévert1 

First paint a cage 
With wide open door, 
Then paint something 
Beautiful and simple, 
Something very pleasant 
And much needed 
For the bird; 
Then lean the canvas on a tree 
In a garden or an orchard or a forest – 
And hide behind the tree, 
Do not talk 
Do not move. . .  
Sometimes the bird comes quickly 
But sometimes she needs years to decide 
Do not give up, 
Wait, 
Wait, if need be, for years, 
The length of waiting – 
Be it short or long – 
Does not carry any significance 
For the success of your painting 
When the bird comes – 
If only she ever comes – 
Keep deep silence, 
Wait, 
So that the bird flies in the cage,

1 [Pre]. Prévert dedicated this poem to Elsa Henriquez. Translation by Alexander Soifer and 
Maurice Stark.



And when she is in the cage, 
Quietly lock the door with the brush, 
And without touching a single feather 
Carefully wipe out the cage. 
Then paint a tree, 
And choose the best branch for the bird 
Paint green leaves 
Freshness of the wind and dust of the sun, 
Paint the sounds of animals of the grass 
In the heat of summer 
And wait for the bird to sing 
If the bird does not sing – 
This is a bad omen 
It means that your picture is of no use, 
But if she sings – 
This is a good sign, 
Sign that you can be 
Proud and sign, 
So you very gently 
Pull out one of the feathers of the bird 
And you write your name 
In a corner of the picture.

viii To Paint the Portrait of a Bird



ix

Foreword to the Second Edition 

On reading my preface to the first Mathematical Coloring Book, I was pleasantly surprised by 
what my younger self had written, and very much in agreement with it. A new thing in the 
world at the time, TMCB I is now joined by a colossal sibling containing more than twice as 
much of what only Alexander Soifer can deliver: an interweaving of mathematics with history 
and biography, well-seasoned with controversy and opinion. 

Let me expand somewhat on a feature of A. Soifer’s methods of investigation that I see 
mentioned briefly in my earlier preface, and in the preface of Branko Grünbaum, but which 
evidently has played a much larger role in the construction of TMCB II than in the earlier 
work. To a great extent, Soifer bases his accounts of mathematical and human events post-
1920 on conversations and correspondence with the mathematicians involved and, quite 
often, with their family, friends, and other contemporaries. He is ferociously meticulous, 
and entertainingly concerned with whom should get credit for what. This feature of his 
method, direct communication with those who were there, or who know somebody that 
was there, is made explicit in the sections of TMCB II on B. L. van der Waerden and various 
other mathematicians active in the 30-year interval around World War II, for he reports 
conversations and exhibits copies of actual letters. He also traces his path to the discovery of 
the true origin of the chromatic-number-of-the-plane problem, which surely would never have 
been found had he not undertaken the search. I mention this trait of journalistic investigation 
in Soifer’s character in hopes that future writers of mathematics-plus-history might be 
encouraged to emulate him. 

But this brings me to a slight disagreement with what I wrote in my preface to TMCB I. 
There it is intimated that the singularity of the book might be entirely attributed to the special 
mix of talents and purposes of its author, and that once the singularity had exploded, the 
writing of mathematical history would be greatly affected. The insinuation was that Alexan-
der Soifer might be to the writing of mathematical history as Julius Erving (Dr. J!) or Pete 
Maravich were to professional basketball; those two changed how the game was played by 
introducing tricks and moves never before seen, that then were ever after added to the 
repertoires of promising young players.



x Foreword to the Second Edition

I still believe that TMCB I would not and could not have been written by anyone on earth 
but A. Soifer, but now I see something else to which the book owes its character: the 
peculiarity of its subject. 

My view is that progress in mathematics is an evolutionary process that sorts itself into 
“strands”. There are moments of creation with no antecedents, and from these little “big 
bangs” come the strands. This process is not very evident to us moderns because the moments 
of creation from which descend the strands comprising what we regard as the main 
“branches” of mathematics occurred either in prehistory (counting) or in ancient historical 
times—for instance, the invention of arithmetic, perhaps a byproduct of the invention of 
money. 

Of course, creation does occur within existing strands (think of topology, or modern logic), 
but in these instances we can see antecedents; the new developments do not come out of 
nowhere. 

The subject of TMCB I and II is one of two strands descending from a small big bang, a 
moment of creation, that did come out of nowhere: The Four-Colour Conjecture, due to 
Francis Guthrie, in London, in 1852, formulated in conversation with his brother Frederick. 
(Apparently Francis did not express the conjecture as a conjecture—not at first, anyway.) Two 
major mathematical strands descended from this eruption: (1) graph theory, and (2) the idea of 
coloring objects in a mathematical structure so that certain requirements are satisfied. Of 
course, there are strong bonds between the two strands. The objects being colored are often 
the vertices, or the edges, or both, of a graph or hypergraph. But this is not always the case, so 
the chromatic strand is not contained in graph theory. 

I conjecture that it is the novelty of the chromatic strand and our proximity in time to that 
moment of creation, in 1852, that made TMCB I and II possible (although not inevitable; 
thanks again, Professor Soifer!), and that we are not likely to soon see another such event. 

Still, there are plenty of mathematical strands coming from little big bangs that do have 
recognizable antecedents; perhaps TMCB will inspire someone in the future to attempt to give 
one of these strands the Soifer treatment. For example, let’s take representation of functions 
by infinite series. Here’s my outline: I don’t think such representations existed before the 16th 
century—I could be wrong, but they certainly didn’t exist in the 13th century. Then, 
suddenly, we had power series—probably familiarity with polynomials gave somebody the 
idea. Then, around 1816, J.-B. Joseph Fourier presented his idea for trigonometric series to 
the French Academy, leading to an explosion of activity across the 19th century and into the 
20th. After Schauder bases in Banach spaces and series of wavelets in the mid-to-late 20th 
century, interest in research on series representations seems to have died out—the great 
developments of the 19th and 20th centuries have been carved in stone and consigned to 
the repository of the Known, like calculus, or trigonometry. 

But let’s have some details! When and where did power series first appear? Who had 
the idea? What was their story? Tell us about Fourier! After that, who did what? Won’t 
somebody please give the subject the Soifer treatment? 

Because we have made no progress in communicating directly with the dead, giving this 
particular subject a full Soifer treatment is impossible. But because The Mathematical 
Coloring Books exist, we have a model for trying. How would the Soifer treatment differ 
from the usual work of historians of mathematics? It’s a matter of sticking to a strand of



mathematics, reporting the disputes and scuffles of the mathematicians involved, and ventur-
ing judgments on the relative importance of various developments within the strand. This will 
involve modest changes in the kind of knowledge the historians aim to collect, and in the 
narrative structure they will aim to impose on what they find. It may take a while. 

Foreword to the Second Edition xi

Auburn University, Auburn, AL, USA 
June 26, 2023 

Peter D. Johnson Jr.
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Foreword to the Second Edition 

I first became aware of the first Mathematical Coloring Book (TMCB I) in March 2009 during 
the 40th Southeastern International Conference on Combinatorics, Graph Theory and Com-
puting in Boca Raton. The publisher of the book Springer brought a couple of boxes of its 
new book to the conference and set up a display on a table in one of the meeting areas. 
Attendees were crowded around the table, clamoring for copies. I’d never seen a group of 
Mathematicians quite this excited about a book. I really wasn’t sure what to make of it, and 
the copies were gone by the time I got to front of the melee. Six years passed before I had a 
chance to learn what all the excitement was about. I am privileged to be one of the first to read 
The Second Mathematical Coloring Book (TMCB II). 

Like TMCB I, TMCB II is a unique combination of Mathematics, History, and Biography 
written by a skilled journalist who has been intimately involved with the story for the last half-
century. As Mathematics, TMCB II deals with Ramsey Theory and Combinatorial Geometry, 
with a few other topics sprinkled about. The author does not cut corners when presenting the 
Mathematics. The nature of the subject makes much of the material accessible to students, but 
also of interest to working Mathematicians. Many old and new proofs of fundamental 
theorems have been rewritten and clarified by the author. In addition to learning some 
wonderful Mathematics, students will learn to appreciate the influences of Paul Erdős, Ron 
Graham, and others. 

As History, TMCB II traces the development of the subject from the earliest results of 
Hilbert, Van der Waerden, Schur and Ramsey, through the tragedies of the Second World 
War, and thence through the career of Paul Erdős. It is a meticulously researched history 
which reads like a good novel. The adventure of the chase, both for Mathematical results and 
historical accuracy, has been captured. Professor Soifer was personally involved in much of 
the development of the subject over the past half century. During this time, he was in 
communication, one way or another, with most of the main characters in the story. 

The TMCB II is twice as long as TMCB I, reflecting the mathematical progress of the past 
20 years and the extensive scholarship on the early history of Ramsey Theory undertaken by 
Professor Soifer, particularly in relation to the life of B. L. van der Waerden. Professor Soifer 
has included new research on the origin of Van der Waerden’s Theorem and on the Van der 
Waerden controversy. As always, Professor Soifer is unrelenting in his efforts to give 
Mathematical credit where it is due.



xiv Foreword to the Second Edition

There has been considerable progress on the many of the important unsolved problems 
discussed in TMCB I. The central problem in both books is that of determining the chromatic 
number of the Euclidean plane, which involves finding the minimum numbers of colors 
needed so that each point in the plane can be assigned a color with no two points at distance 
one getting the same color. It had been known that this minimum number of colors is at least 
4 and at most 7, bounds that stood for more than 60 years. Then in 2018 Aubrey de Grey 
showed that at least five colors are required. De Grey’s result stimulated a flurry of activity on 
the problem, including the Polymath 16 project, which resulted in the construction of smaller 
examples along with a number of other results. 

Professor Soifer presents de Grey’s construction, a graph of order 1585, in detail and with 
wonderful clarity. An important and related problem, determining the chromatic number of 
the odd distance graph has been settled by James Davies within the past year. In addition to 
new results on old questions, some new topics have also been added. There is now a section 
on Schur numbers, including details on Marijn Heule’s computation of the fifth Schur 
number. New historical research on the origin of Van der Waerden’s Conjecture and Theorem 
are especially fascinating. 

Finally, I would like to add a warning for the reader. Using the book to look up simple facts 
or references can be dangerous. I have often picked up TMCB I to check a reference or some 
simple fact, and found myself, hours later, lost in some aspect of the story. And to those who 
have never read either book and will be reading it for the first time, I envy you. 

Indiana State University, Terre Haute, IN, USA 
Monday, July 10, 2023 

Geoffrey Exoo
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Foreword to the First Edition 

This is a unique type of book; at least, I have never encountered a book of this kind. The best 
description of it I can give is that it is a mystery novel, developing on three levels, and imbued 
with both educational and philosophical/moral issues. If this summary description does not 
help understanding the particular character and allure of the book, possibly a more detailed 
explanation will be found useful. 

One of the primary goals of the author is to interest readers – in particular, young 
mathematicians or possibly pre-mathematicians – in the fascinating world of elegant and 
easily understandable problems, for which no particular mathematical knowledge is neces-
sary, but which are very far from being easily solved. In fact, the prototype of such problems 
is the following: If each point of the plane is to be given a color, how many colors do we need 
if every two points at unit distance are to receive distinct colors? More than half a century ago 
it was established that the least number of colors needed for such a coloring is either 4, or 5, or 
6 or 7. Well, which is it? Despite efforts by a legion of very bright people – many of whom 
developed whole branches of mathematics and solved problems that seemed much harder – 
not a single advance towards the answer has been made. This mystery, and scores of other 
similarly simple questions, form one level of mysteries explored. In doing this, the author 
presents a whole lot of attractive results in an engaging way, and with increasing level of 
depth. 

The quest for precision in the statement of the problems and the results and their proofs 
leads the author to challenge much of the prevailing historical “knowledge.” Going to the 
original publications and drawing in many cases on witnesses and on archival and otherwise 
unpublished sources, Soifer uncovers many mysteries. In most cases, dogged perseverance 
enables him to discover the truth. All this is presented as following in a natural development 
from the mathematics to the history of the problem or result, and from there to the interest in 
the people who produced the mathematics. For many of the persons involved this results in 
information not available from any other source; in lots of the cases, the available publications 
present an inaccurate (or at least incomplete) data. The author is very careful in documenting 
his claims by specific references, by citing correspondence between the principals involved, 
and by accounts by witnesses. 

One of these developments leads Soifer to examine in great detail the life and actions of 
one of the great mathematicians of the twentieth century, Bartel Leendert van der Waerden. 
Although Dutch, van der Waerden spent the years from 1931 to 1945 in the Nazi Germany.



This, and some of van der Waerden’s activities during that time, became very controversial 
after World War II, and led Soifer to examine the moral and ethical questions relevant to the 
life of a scientist in a criminal dictatorship. 

xvi Foreword to the First Edition

The diligence with which Soifer pursued his quests for information is way beyond 
exemplary. He reports exchanges with I am sure hundreds of people, via mail, phone, 
email, visits – all dated and documented. The educational aspects that begin with matters 
any middle-school student can understand, develop gradually into areas of most recent 
research, involving not only combinatorics but also algebra, topology, questions of founda-
tions of mathematics, and more. 

I found it hard to stop reading before I finished (in two days) the whole text. Soifer engages 
the reader’s attention not only mathematically, but emotionally and esthetically. May you 
enjoy the book as much as I did! 

University of Washington, Seattle, WA, USA 
February 28, 2008 

Branko Grünbaum
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Foreword to the First Edition 

Alexander Soifer’s latest book is a fully-fledged adult specimen of a new species, a work of 
literature in which fascinating elementary problems and developments concerning colorings 
in arithmetic or geometric settings are fluently presented and interwoven with a detailed and 
scholarly history of these problems and developments. 

This history, mostly from the 20th century, is part memoir, for Professor Soifer was 
personally acquainted with some of the principals of the story (the great Paul Erdős, for 
instance), became acquainted with others over the 18-year interval during which the book was 
written (Dima Raiskii, for instance, whose story is particularly poignant), and created himself 
some of the mathematics of which he writes. 

Anecdotes, personal communications, and biography make for a good read, and the 
readability in The Mathematical Coloring Book is not confined to the accounts of events 
that transpired during the author’s lifetime. The most important and fascinating parts of the 
book, in my humble opinion, are Parts IV, VI, and VII, in which is illuminated the progress 
along the intellectual strand that originated with the Four-Color Conjecture and runs through 
Ramsey’s Theorem via Schur, Baudet, and Van der Waerden right to the present day, via 
Erdős and numbers of others, including Soifer. Not only is this account fascinating, it is 
indispensable: it can be found nowhere else. 

The reportage is skillful, and the scholarship is impressive – this is what Seymour Hersh 
might have written, had he been a very good mathematician curious to the point of obsession 
with the history of these coloring problems. 

The unusual combination of abilities and interests of the author make the species of which 
this book is the sole member automatically endangered. But in the worlds of literature and 
mathematics and literature about mathematics, unicorns can have offspring, even if the 
offspring are not exactly unicorns. I think of earlier books of the same family as The 
Mathematical Coloring Book – G. H. Hardy’s A  Mathematician’s Apology, James 
R. Newman’s The World of Mathematics, Courant and Robbins’ What Is Mathematics?, 
Paul Halmos’ I Want to Be a Mathematician: An Automathography, or the books on Erdős 
that appeared soon after his death – all of them related at least distantly to Mathematical 
Coloring Book by virtue of the attempt to blend (whether successfully or not is open to 
debate) mathematics with history or personal memoir, and it seems to me that, whatever the 
merits of those works, they have all affected how mathematics is viewed and written about. 
And this will be a large part of the legacy of The Mathematical Coloring Book – besides



providing inspiration and plenty of mathematics to work on to young mathematicians, and a 
priceless source to historians, and entertainment to those who are curious about the activities 
of mathematicians, The Mathematical Coloring Book will (we can hope) have a great and 
salutary influence on all writing on mathematics in the future. 

xviii Foreword to the First Edition

Auburn University, Auburn, AL, USA 
March 28, 2008 

Peter D. Johnson Jr.
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Foreword to the First Edition 

What is the minimum number of colors required to color the points of the Euclidean plane in 
such a way that no two points that are one unit apart receive the same color? Mathematical 
Coloring Book describes the odyssey of Alexander Soifer and fellow mathematicians as they 
have attempted to answer this question and others involving the idea of partitioning 
(coloring) sets. 

Among other things, the book provides an up-to-date summary of our knowledge of the 
most significant of these problems. But it does much more than that. It gives a compelling and 
often highly personal account of discoveries that have shaped that knowledge. 

Soifer’s writing brings the mathematical players into full view, and he paints their lives and 
achievements vividly and in detail, often against the backdrop of world events at the time. His 
treatment of the intellectual history of coloring problems is captivating. 

Memphis State University, Memphis, TN, USA 
March 2008 

Cecil Rousseau
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Greetings to the Reader 2023 

The Universe is made of stories, not of atoms. 
– Muriel Rukeyser2 

In order to create new, one has to come with his human 
biography and with his new experience, while using collec-
tive experience and enriching it. 

– Viktor Shklovsky3 

To create today means to create dangerously. Every publica-
tion is a deliberate act, and that act makes us vulnerable to 
the passions of a century that forgives nothing. 

– Albert Camus4 

Does the evolution of ideas of mathematical kind makes for an exciting story? Of course, 
for it is full of heroism and cowardice, comedy and drama, success and failure, loyalty 
and betrayal, high moral grounds and service to evil. It is as vast as the universe, yet it 
could also be seen as a chamber affair. My task is to assemble the past, create a braid of 
mathematics and history, share aspirations of many and achievements of some, come to the 
frontier, and look into the future by presenting exciting open problems and conjectures. As a 
writer, I share the view expressed on December 10, 1957, at the Nobel Banquet by Albert 
Camus: 

The writer’s role is not free from difficult duties. By definition he cannot put himself 
today in the service of those who make history; he is at the service of those who suffer it. 

On the Election Day, November 4, 2008, I bid farewell to my Mathematical Coloring 
Book, as she reached her adulthood, 18 years from its conception. On that very day, we 
Americans elected Barack Obama, one of the brightest presidents of my Land, who returned 
integrity to politics, alas, not for long. 

2 Quoted from the book “A Speed of Darkness,” 1968. 
3 
“Repeating lessons of “Battleship Potemkin,” in the book Over 40 Years, Iskusstvo Publisher, 
Moscow, 1965 (Russian). 
4 [Cam2], Lecture at Uppsala University, Sweden, December 14, 1957.
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We, authors of scholarly monographs, ought to put everything we got in our books, for we 
seldom get a second chance. This book is an exception. Its central place in the field and 
brilliant recent breakthroughs inspired Springer to enable me to have this second shot. The 
first version was universally well received. In August 2009, Springer funded my travel to 
Portland for book signing of The Mathematical Coloring Book during MathFest. Our fantastic 
Ramsey Theory leader Ron Graham asked me to inscribe his copy. “To our captain, Ron 
Graham,” I wrote on his copy. In fact, Ron told me that he bought three copies, and to my 
question “why” replied that he had three offices and wanted to have this book handy wherever 
he was. Our conversation was so special that I recorded the time: 4:29 p.m., August 6, 2009, 
and our dialog. 

– Can you write another book like this? asked Ron. 
– No, readily replied I, for I thought about this question myself for a while. 
– Heart and soul, and blood, and sweat, and tears, and none left for the next one, 

remarked Ron. 

Harold W. Kuhn, the Princeton double professor of mathematics and economics, wrote 
specially for the first Coloring Book an essay about the economics of John F. Nash, Jr., 
hom he nominated for the 1994 Nobel Prize. On January 9, 2009, at 8:40 a.m. MST, Harold 
ent me an email that made my eyes wet: 

Dear Sasha: 
Just now a postman came to the door with a copy of the masterpiece of the century. I 

thank you and the mathematics community should thank you for years to come. You 
have set a standard for writing about mathematics and mathematicians that will be hard 
to match. 
With very warm regards, 
Harold 

The reception of the first Coloring Book was satisfying. It was called by many a standard 
xt and quoted by nearly every publication in this field. The book inspired mathematicians 
nd non-mathematicians to take on some of its problems, first of all the chromatic number of 
e plane, and this new wave of enthusiasm resulted in brilliant new results. There was, 
owever, one person from mathematics who tried to silence me. I will address it on 
ppropriate pages. Camus’s warning in the epigraph about “the passions of a century that 
rgive nothing” proved prophetic. However, my detractors were naïve to imagine that 
omeone who gave up everything earned in his Russian life to become a refugee in the 
and of the Free could be silenced. 
I view any written matter, be it history or mathematics, to be a genre of literary art. 

Archivally researching the past, finding eyewitnesses are essential components of my 
approach to writing. As Viktor Shklovsky wrote,5 
 
 

Art cannot reject the past, rethinking it and achieving deeper understanding, just as the 
language cannot reject its history. 

e 
w 
s 

te 
a 
th 
h 
a 
fo 
s 
L 

5 
“Why cannot one convert a novel into a drama,” in Over 40 Years, Iskusstvo, Moscow, 1965.
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I am including in this book newly created history, my interactions with the authors of ideas, 
more rare photographs, and reminiscences of senior sages, biographies, and of course, more 
striking results. This new book is even more personable and more personal for me. I hope you 
will treat it softly on your hard drives, regularly dust hard copies on your shelves, and send me 
your ideas for the future editions and books. I really enjoy the opportunity to have guest 
writers in my books. Harold W. Kuhn, Harry Furstenberg, Kenneth Falconer, Steven 
Townsend, Marta Svéd, George Szekeres, Bartel L. van der Waerden, Hans van der Waerden, 
Dirk van Dalen, and others penned essays for this book or allowed me to reproduce their 
relevant writings. Paul Joseph Cohen, Robert Solovay, and Saharon Shelah responded to my 
questionnaire on the foundations of mathematics; their profound opinions are a treasure 
preserved between the covers of this book. And of course, I generously quote deep, often 
humorous, ideas of Einstein, Picasso, Camus, Wiesel, Murrow, Freud, Dreyer, Antonioni, 
Pasolini, Matisse, Kandinsky, Dalai Lama, Epple, Alonzo Church, Herbert Read, and other 
creators of high culture of our world. Following Buch der Freunde by Hugo von Hofmanns-
thal, I call all of them my friends, friends of intellectual and spiritual kind. 

Nobel Laureate Joseph Brodsky’s favorite American Poet Wystan Hugh Auden observes, 

In our age, the mere making of a work of art is itself a political act. 

Another Nobel Laureate, the great Albert Camus warns us in the epigraph, and I repeat: 

To create today means to create dangerously. Every publication is a deliberate act, and 
that act makes us vulnerable to the passions of a century that forgive nothing. 

Of course, I agree with them. However, deep in my heart I know that no one else can write 
this book, it is my duty, whatever the consequences. And I respond to the call of the Pulitzer 
Prize Laureate David Maraniss: 

History writes people out of the story, and it’s our job to write them back in. 

As the Russian veteran of filmmaking and writer Viktor Shklovsky observes:6 

Trees live longer than people. 
Word lives longer than trees. 

Recent years were not the easiest time in history. Epidemic of rare proportions, rise of 
populism with totalitarian flavor, reawakened hatred toward those who in any way differ from 
all-powerful majority, the unprovoked Russian war on Ukraine. Empires do not dissolve 
peacefully; they try to destroy what they cannot control. I am involved with the world and 
hope more of my colleagues will vacate Ivory Tower for the streets of our small, endangered 
planet. As Albert Camus put it in his December 14, 1957, lecture at Uppsala University 
[Cam2], 

The age of irresponsible artists [and scholars] is over. 

I am tracing in this book the evolution of a colorful 100-year-old field, thoughts of wisdom 
I acquired during my life (if any), and moral issues of the past and the present. I firmly believe 
that moral principles of a profession must lie in its foundation, not outside of it. Case in point: 
Grigory Perelman. This young genius mathematician achieved what no one else could: he 

6 Repeating lessons of “Battleship Potemkin,” in Over 40 Years, Iskusstvo, Moscow, 1965.
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settled the Poincaré and Geometrization Conjectures. This earned Grigory the Fields Medal 
and the Millennium Prize of $1,000,000. His refusal to accept these high awards (he did not 
wish to be “a poster boy” for the field where the majority tolerates immorality of its members) 
was “explained” as Perelman’s insanity. IMHO, Perelman was the sane one, and the insane 
comprised the majority. 

And so, the most important unsolved problem in mathematics is establishing high moral 
principles of the profession and observing them. I address this unsolved problem in this 
volume in three essays “Today I,” “Today II,” and “Today III.” 

A majority of publications in the field cite mathematics of the first edition [Soi44], with 
credit. Yet, they often lift my historical discoveries without credit. I comfort myself by 
recalling Picasso’s statement, “Plagiarism is the best compliment.” 

The present book was originally (2018) envisioned as the expanded second edition of the 
original Mathematical Coloring Book. Now, looking at it, I believe that “second expanded 
edition” does not do justice to the magnitude of the new specimen, ca. twice as long, with lots 
of new material, and even Van der Waerden’s chapters are all different from the first edition. 
So, I decided for this new book to use the new title: 

The New 
Mathematical Coloring Book. 

I hope this book will inspire you, my contemporary, and those who will come in our stead, 
to think, to feel, and to create. 

Alexander SoiferColorado Springs, USA 
July 4, 2023 
The 247th Anniversary of American Independence
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I bring here all: what have I lived thru, 
And that what keeps my soul alive, 
My rectitude and aspirations, 
And what have seen my own eyes. 

– Boris Pasternak, The Waves, 19317 

When the form is realized, it is here to live its own life. 
– Pablo Picasso 

Pasternak’s epigraph precisely describes my work on this book – I gave it all of myself, 
without reservation. August Renoir believed that just as many people read one book all their 
lives (the Bible, the Koran, etc.), so can the artist paint all his life one painting. Likewise, I 
could write one book all my life – in fact, I almost have, for I have been working on this book 
for 18 years. 

It is unfair, however, to keep the book all to myself – many colleagues have been waiting 
for the birth of this book. In fact, it has been cited, and even reviewed many years ago. The 
first mention of it appears already in 1991 on page 336 of the book by Victor Klee and Stan 
Wagon [KW], where the authors recommend the book for “survey of later developments” of 
the chromatic number of the plane problem. On page 150 of their 1995 book [JT], Tommy 
R. Jensen and Bjarne Toft announced that “a comprehensive survey [of the chromatic number 
of the plane problem] . . .  will be given by Soifer [to appear].” Once in the 1990s my son Mark 
S. Soifer told me that he saw my Mathematical Coloring Book available for $30 for a special 

7 [Pas], Russian History buffs would appreciate that in its first 1934 publication this 1931 poem 
was dedicated by Pasternak “To N.I. Bukharin,” a prominent Soviet leader who fell victim to 
Stalin’s terror of 1936–1938. Translated especially for this book by Ilya Hoffman. The original 
Russian text is: 

Здесь будет все: пережитое, 
И то, чем я еще живу, 
Мои стремленья и устои, 
И виденное наяву.
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order at Borders Bookstore. I offered to buy a copy – to buy is easier and faster than to write a 
book! 

I started writing this book when copies of my How Does One Cut a Triangle? [Soi1] 
arrived from the printer, in early 1990. I told my father Yuri Soifer then that this book will be 
dedicated to him, and so it is . . .  This coloring book is for my late father, a fine artist and man. 
Yuri lived with his sketchpad and drawing utensils in his pocket, constantly and intensely 
looking at people and making sharp momentary sketches. He was a great painter and my 
lifelong example of searching for and discovering life around him, creating art that challenged 
“real” life herself. Yuri never taught me his trade, but during our numerous joint tours of art in 
museums and exhibitions, he pointed out beauties that only true artists could notice: a dream 
of harvest in Van Gogh’s “Sower,” Rodin’s distortions in a search of greater expressiveness in 
“The Thinker.” These timeless lessons allowed me to become a student of beauty, and 
discover subtleties in paintings, sculptures, and films throughout my life. 

The book includes not just mathematics but the process of investigation, trains of math-
ematical thought, and psychology of mathematical invention. The book does not just include 
history and prehistory of Ramsey Theory and other related fields, but also conveys the process 
of historical investigation – the kitchen of historical research, if you will. It has captivated me, 
made me feel like a Sherlock Holmes – I hope you, my reader, my Doctor Watson, will enjoy 
the sense of suspense and the celebration of discovery as much as I have. 

The epigraph for my book is an English translation of Jacques Prevert’s genius and concise 
portrayal of a creative process – I know of no better. I translated it with the help of my friend 
Maurice Starck from Nouvelle Calédonie, the island in the Pacific Ocean to which no planes 
fly from America, but to paraphrase Rudyard Kipling, I’d like to roll to Nouvelle Calédonie 
some day before I’m old! 

This book is dedicated to problems involving colored objects, and results about the 
existence of certain exciting and unexpected properties that occur regardless of how these 
objects (points in the plane, space, integers, real numbers, subsets, etc.) are colored. In 
mathematics, these results comprise Ramsey Theory, a  flourishing area of mathematics, 
whose motto can be formulated as follows: any coloring of a large enough system contains 
a monochromatic subsystem of given in advance structure, or simply put, absolute chaos is 
absolutely impossible. Ramsey Theory thus includes parts of many fields of mathematics, 
such as combinatorics, geometry, number theory, topology, etc., and addresses new problems, 
often on the frontier of two or more traditional mathematical fields. The book also includes 
some problems that can be solved by inventing coloring, and results that prove the existence 
of certain colorings, most famous of the latter being, of course, The Four-Color Theorem. 

Most books in the field present mathematics as a flower, dried out between the pages of an 
old dusty foliant, so dry that colors are faded and only the relentless theorem-proof-theorem-
proof narrative survives. Along with my previous books, The Mathematical Coloring Book 
strives to become a live account of a live mathematics. I hope the book will present 
mathematics as a human endeavor: you should expect to find in it not only results, but also 
historical portraits of their creators; not only mathematical facts, but also open problems; not 
only new mathematical research, but also new historical investigations; not only mathemat-
ical aspirations, but also moral dilemmas of the times between and during the two tragic 
World Wars of the twentieth century. In my opinion, mathematics is done by human beings, 
and knowing their lives and cultures enriches our understanding of mathematics as a product 
of human activity, rather than an abstraction that exists outside and separately from us and
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comes to us exclusively as a catalog of theorems and formulas. Indeed, new facts and artifacts 
will be presented that are related to the history of the Chromatic Number of the Plane 
problem, the early history of Ramsey Theory, the lives of Issai Schur, Pierre Joseph Henry 
Baudet, Bartel Leendert van der Waerden, and other colorful personages. 

I hope you will join me on a journey you would not forget, a journey full of passion, where 
mathematics and history are researched in the process of solving mysteries more exciting than 
fiction, precisely because those are mysteries of real affairs of human history. Can mathe-
matics be received by all senses, like a vibrant flower, indeed, like life itself? One way to find 
out is to experience this book. 

While much of the book is dedicated to results of Ramsey Theory, I did not wish to call my 
book “Introduction to Ramsey Theory,” for such a title would immediately lose young 
talented readers. Somehow, the playfulness of The Mathematical Coloring Book appealed 
to me from the start, even though I was asked on occasion whether 5-year-olds would be able 
to enjoy my book and color in it between lines. To be a bit more serious, and on advice of 
Vickie Kern of the Princeton University Press, I created a subtitle Mathematics of Coloring 
and the Colorful Life of Its Creators. This is a faithful subtitle, for this book explores the birth 
of ideas and search for its creators. I discovered very quickly that in conveying “colorful lives 
of creators” I cannot always rely on encyclopedias and biographical articles but must conduct 
historical investigations on my own. It was a hard work to research some of the lives, 
especially that of B. L. van der Waerden, which alone took over 12 years of archival research 
and thinking over the assembled evidence. Fortunately, this produced a satisfying result: we 
have in this book some definitive biographies, of Bartel L. van der Waerden, Pierre Joseph 
Henry Baudet, Issai Schur, autobiographies of Hillel Furstenberg, Kenneth J. Falconer, and 
others. 

I always aspire to understand who, when, and how made a discovery. Accordingly, this 
book tries to explore biographies of the discoverers and psychologies of their creative process. 
Every stone has been turned: numerous archives in Germany, the Netherlands, Switzerland, 
Ireland, England, United States helped with rarely if ever seen documents; invaluable and 
irreplaceable interviews were conducted with eyewitnesses; dialogues held with creators. I 
have read thousands of items in the process of writing this book. Cited bibliography alone 
includes over 800 titles. I was inspired by people I have known personally, such as Paul 
Erdős, James W. Fernandez, Harold W. Kuhn, and many others, and by people I have not 
personally met, such as Boris Pasternak, Pablo Picasso, Herbert Read—to name a few of the 
many influences. I agree with D. A. Smith, who in the discussion after Alfred Brauer’s talk 
[Bra2, p. 36], writes: 

Mathematical history is a sadly neglected subject. Most of this history belongs to the 
twentieth century, and a good deal of it in the memories of mathematicians still living. 
The younger generation of mathematicians has been trained to consider the product, 
mathematics, as the most important thing, and to think of the people who produced it 
only as names attached to theorems. This frequently makes for a rather dry subject 
matter. 

Milan Kundera, in his The Curtain: An Essay in Seven Parts [Kun], said about a novel 
what is true about mathematics as well:
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A novelist talking about the art of the novel is not a professor giving a discourse from his 
podium. Imagine him rather as a painter welcoming you into his studio, where you are 
surrounded by his canvases staring at you from where they lean against the walls. He 
will talk about himself, but even more about other people, about novels of theirs that he 
loves and that have a secret presence in his own work. According to his criteria of 
values, he will again trace out for you the whole past of the novel’s history, and in so 
doing will give you some sense of his own poetics of the novel. 

I was also inspired by the early readers of the book, and their feedback. Stanisław 
P. Radziszowski, after reviewing Chapter 27, e-mailed me on May 2, 2007: 

I am very anxious to read the whole book! You are doing great service to the community 
by taking care of the past, so the things are better understood in the future. 

In his unpublished until recently letter, Ernest Hemingway in a sense defends my writing of 
this book for so very long:8 

When I make country, or a city, or a river in a novel it is slow work because you have to 
always make it, then it is alive. But nobody makes anything quickly nor easily if it is 
any good. 

Branko Grünbaum, upon reading the entire manuscript, wrote in the February 28, 2008 
e-mail: 

Somehow it seems that 18 years would be too short a time to dig up all this information! 

This book will not treat you to completeness or most general results. Instead, it would give 
young active high school and college mathematicians an accessible introduction to the 
beautiful ideas of mathematics of coloring. Mathematics professionals, who may believe 
they know everything, would be pleasantly surprised by some unpublished or unnoticed 
mathematical gems. I hope young and not so young mathematicians alike would welcome an 
opportunity to try their hand – or mind? – on numerous open problems, all easily understood 
and not at all easily solved. 

If the interest of my colleagues and friends at Princeton-Math is any indication, every 
intelligent reader would welcome an engagement in solving historical mysteries, especially 
those from the times of the Third Reich, World War II, and de-Nazification of Europe. 
Historians of mathematics would find much of new information and old errors corrected for 
the first time. And everyone will experience seeing, for the first time, faces one has not seen 
before in print, on rare photographs of the creators of mathematics presented herein, from 
Francis Guthrie to Issai Schur as a young man, from the teenager Edward Nelson to Paul 
O’Donnell, from Pierre Joseph Henry Baudet to Bartel Leendert van der Waerden and his 
family, and documents, such as the one where Adolph Hitler commits a “micromanagement” 
of firing a Jew, Issai Schur from his job of Professor at the University of Berlin. 

This is a unique book, free from a strait jacket of a typical textbook, yet useable as a text for 
a host of various courses, two of which I have personally given to university seniors and 
graduate students at the University of Colorado: What is Mathematics?, and Mathematical 
Coloring Course, both presenting a “laboratory of a mathematician,” a place where students 

8 From the unpublished 1937 letter. Quoted from New York Times, February 10, 2008, p. AR 8.
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learn mathematics and its history by doing them, and realizing in the process what mathe-
matics is and what mathematicians do. 

Mathematics is an art. It is a poor man’s art: Nothing is needed to conceive it, and only 
paper and pencil to convey. 

This long work gave me so very much, in Aleksandr Pushkin’s words, 

The heavenly, and inspiration, 
And life, and tears, and tender love.9 

I have been raising this book for 18 years. Over the past few years, I felt as if the book 
herself had been dictating her content, as I obeyed her calling as a scribe. At 18, my book is 
now an adult, and deserves to separate from me to live her own life. As Picasso put it, “When 
the form is realized, it is here to live its own life.” Farewell, my child, let the world love you, 
as I have and always will. 

9 In the original Russian, it sounds much better: 

И божество, и вдохновенье, 
И жизнь, и слезы, и любовь.
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Chapter 1 
A Story of Colored Polygons and Arithmeti 
Progressions 

“Have you guessed the riddle yet?” the Hatter said, turning to 
Alice again. 
“No, I give it up,” Alice replied. “What’s the answer?” 
“I haven’t the slightest idea,” said the Hatter. 
“Nor I,” said the March Hare. 

– Lewis Carroll, A Mad Tea-Party 
Alice’s Adventures in Wonderland, 1866 

1.1 The Story of Creation 

I recall April of 1970. The 30 jury members of the Fourth Soviet Union National Mathe-
matical Olympiad, of which I was one, stayed at a fabulous white castle with a white watch 
tower, halfway between the cities of Simferopol and Alushta, nestled in the sunny hills 
of Crimea, surrounded by the Black Sea. This castle should be familiar to movie buffs: in 
1934, the Russian classic film Vesyolye Rebyata (Jolly Fellows) was filmed here by Sergei 
Eisenstein’s long-term assistant, director Grigori Aleksandrov. The problems had been 
selected and sent to printers. The Olympiad was to take place a day later when something 
shocking occurred. 

A mistake was found in the only solution the jurors had for the problem created by Nikolai 
(Kolya) B. Vasiliev, the vice-chair of the Soviet Union Mathematical Olympiad, a fine 
problem creator, and the head of the Problems Section of the journal Kvant from its inception 
in 1970 to the day of his untimely passing. What should we do? This question virtually 
monopolized our lives at the time. 

We could have just crossed out this problem on each of the 600 printed problem sheets. In 
addition, we could have selected a replacement problem, but we would have had to write it in 
chalk by hand in every examination room, as there would not have been time to print it. Both 
options were pretty embarrassing, desperate solutions for the jury of the National Olympiad, 
chaired by the great mathematician Andrej Nikolaevich Kolmogorov, who arrived the day 
before and was to take part in approving the problems. The best resolution, surely, would have 
been to solve the problem, especially because its statement was quite beautiful and also since 
we had no counter example to it. 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_1&domain=pdf
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Even today, over half a century later, I can close my eyes and see how each of us, 
30 judges, all fine problem solvers, worked on the problem. A few sat at the table as if 
posing for Rodin’s Thinker. Some walked around as if measuring the room’s dimensions. 
Andrei Suslin, who would later prove the famous Serre’s conjecture1 , went out for a thinking 
hike. Someone was lying on a sofa with his eyes closed. You could hear a fly. The intense 
thinking seemed to stop the time inside the room. We were unable, however, to stop the time 
outside. Night fell, and with it fell our hopes for solving the problem in time. 

Suddenly, the silence was interrupted as a victorious outcry “I got it!” echoed through the 
halls and the watch tower of the castle. It came from Aleksandr “Sasha” Livshits, an 
undergraduate student at Leningrad (St. Petersburg) State University and a former winner 
of the Soviet Union National Mathematical Olympiad and the International Mathematical 
Olympiad (IMO) (a perfect score of 42 at the 1967 IMO in Yugoslavia).2 His number 
theoretic solution used the method of trigonometric sums. This, however, was, the least of 
our troubles: we immediately translated the solution into the elementary language of colored 
polygons. 

Now, we had options. A consensus was reached to leave the problem in. The problem and 
its solution were too beautiful to be thrown away. We knew, though, that the chances of 
receiving a single solution from 600 bright high school Olympians were extremely slim. 
Indeed, nobody solved it. 

1 Daniel Quillen proved it independently and received the Fields Medal primarily for it. 
2 Andrei Suslin informs me that as of 1991, Sasha worked as a computer programmer in 
Leningrad. On June 26, 2019, I found Professor Grigory Rozenblioum, who like Sasha Livshits, 
Andrey Suslin, and I, was an undergraduate member of the 1970 Soviet Math. Olympiad’s jury. 
He shared with me the tragic life story of Sasha Livshits. Even though Sasha graduated from the 
Leningrad State University with high honors and, in 1975, defended a most impressive PhD 
dissertation, he was unable to find a research job due to being labeled “Jewish” in the land of anti-
Semitism. Following several years of working in provincial Syktyvkar, Sasha’s thesis advisor 
Professor Anatoly Vershik helped the 40-year-old Sasha to get a university position. Soon, Sasha 
defended a Russian doctoral degree (which is qualitatively higher than a PhD). Yet, in 2000, a 
mental illness caught up with Sasha, and, in 2008, aged 58, he succumbed to cancer. His collected 
works were published posthumously in 2014: http://www.mathsoc.spb.ru/pers/livshits/ 
ANLivshits_book.pdf.

http://www.mathsoc.spb.ru/pers/livshits/ANLivshits_book.pdf
http://www.mathsoc.spb.ru/pers/livshits/ANLivshits_book.pdf
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Aleksandr Nakhimovich “Sasha” Livshits with a typical USSR Mathematical Olympiad first 
prize: a giant pile of mathematical books. (The photograph was first published in Livshits, A. 
N., Dynamic systems, ergodic theory, formal languages, 2014, edited by Dr. Andrei Lodkin, 
the copyright holder, whom I thank for giving me the kind permission to use this photograph 
in my book.)



6 1 A Story of Colored Polygons and Arithmetic Progressions

1.2 The Problem of Colored Polygons 

Here is the problem. 

Problem 1.1 (N.B. Vasiliev; IV Soviet Union National Mathematical Olympiad, 1970). The 
vertices of a regular n-gon are colored in finitely many colors (each vertex in one color) in 
such a way that for each color all vertices of that color form themselves a regular polygon, 
which we will call a monochromatic polygon. Prove that among the monochromatic poly-
gons, there are two polygons that are congruent. Moreover, the two congruent monochro-
matic polygons can always be found among the monochromatic polygons with the least 
number of vertices. 

I first told this story and the problem in my 1994 Colorado Mathematical Olympiad book 
[Soi9]. It appeared in the chapter “Further Explorations,” and as such, I left the pleasure of 
discovering a solution to my readers. It is time for me to share proof with you. 

Solution of Problem 1.1 by Aleksandr Livshits (in “polygonal translation”): Let me divide 
the problem into three parts: preliminaries, tool, and proof. 

Preliminaries Given a system S of vectors v→ 
1, v

→ 
2, . . . , v

→ 
n in the plane with a Cartesian 

coordinate system, all emanating from the origin O. We would call this system S symmetric if 
there is an integer k, 1  ≤ k < n, such that the rotation of every vector of S about O through the 
angle 2πk n transforms S into itself. 

Of course, the sum vi
! of all vectors of a symmetric system is 0 

→ 
because vi

! does not 
change under rotation through the angle 0< 2πk n < 2π. 

Place a regular n-gon Pn in the plane so that its center coincides with the origin O. Then, the 
n vectors drawn from O to all the vertices of Pn form a symmetric system (Fig. 1.1). 

Fig. 1.1 The n vectors forming a symmetric system 

Let v→ be a vector emanating from the origin O and making the angle α with the ray OX 
(Fig. 1.1). The symbol Tm will denote a transformation that maps v→ into the vector Tm v

→ of 
the same length as v→ but making the angle mα with OX (Fig. 1.2). 

Fig. 1.2 Transformation Tm
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To check your understanding of these concepts, please prove the following tool on your own. 

Tool 1.2 Let v→ 
1, v

→ 
2, . . . , v

→ 
n be a symmetric system S of vectors that transforms into itself 

under the rotation through the angle 0< 2πk n < 2π, 1 ≤ k < n, (you can think of 2πk n as the angle 
between the two neighboring vectors of S). A transformation Tm applied to S produces the 
system Tm S of vectors Tmv1

!,Tmv2
!, . . . , Tmvn

! that is symmetric if n does not divide km. If  
n divides km, then Tmv1 = Tmv2 = . . .  = Tmvn . 

Solution of Problem 1.1 We will argue by contradiction. Assume that the vertices of a 
regular n-gon Pn are colored in r colors and we have, subsequently, r monochromatic poly-
gons: n1‐gon Pn1 , n2‐gon Pn2 , . . ., nr‐gon Pnr such that no pair of congruent monochromatic 
polygons is created, i.e., 

n1 < n2 < . . .  < nr: 

We create a symmetric system S of n vectors going from the origin to all vertices of the 
given n-gon Pn. In view of tool 1.2, the transformation Tn1 applied to S produces a symmetric 
system Tn1S. The sum of vectors in a symmetric system Tn1S is zero, of course. 

On the other hand, we can first partition S in accordance with its coloring into r symmetric 
subsystems S1, S2, ..., Sr, obtain Tn1S by applying the transformation Tn1 to each system Si 
separately, and then combine all Tn1Si. By tool 1.2, Tn1Si is a symmetric system for i = 2, . . ., 
r, but Tn1S1 consists of n1 identical nonzero vectors. Therefore, the sum of all vectors of Tn1S 
is not zero. This contradiction proves that the monochromatic polygons cannot be all 
noncongruent. ■ 

Prove the last sentence of problem 1.1 on your own: 

Problem 1.3 Prove that in the setting of problem 1.1, the two congruent monochromatic 
polynomials must exist among the monochromatic polynomials with the least number of 
vertices. 

Readers familiar with complex numbers may have noticed that in the proof of problem 1.1, 
we can choose the given n-gon Pn to be inscribed in a unit circle and position Pn with respect 
to the axes so that the symmetric system S of vectors could be represented by complex 
numbers, which are precisely all nth degree roots of 1. Then, the transformation Tm would 
simply constitute raising these roots to the mth power. 

1.3 Translation into the Language of Arithmetic Progressions 

You might be wondering what this striking problem of colored polygons has in common with 
arithmetic progressions (APs), which are part of the section’s title. Actually, everything! 
Problem 1.1 can be nicely translated into the language of infinite arithmetic progressions, or 
APs for short.3 

3 An infinite sequence a1, a2,  .  .  .,  an, . . . is called an arithmetic progression, or AP, if for any 
integer m > 1, we have the equality am = am–1 + k for a fixed k, where k is a real number called the 
constant difference of the arithmetic progression.
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Problem 1.4 In any coloring (partition) of a set of integers into finitely many infinite 
monochromatic APs, there are two APs with the same constant difference. Moreover, the 
largest constant difference necessarily repeats. 

Equivalently, 

Problem 1.5 Any partition of a set of integers into finitely many APs can be obtained only in 
the following way: N is partitioned into k APs, each with the same constant difference 
k (where k is a positive integer greater than 1); then, one of these APs is partitioned into 
finitely many APs with the same constant difference, and, then, one of these APs (at this stage, 
we have APs of two different constant differences) is partitioned into finitely many APs with 
the same constant difference, etc. 

It was as delightful as it was valuable that our striking problem allowed two beautiful 
distinct formulations,: only because of that was I able to discover the prehistory of our 
problem. 

1.4 Prehistory 

Indeed, a year after I first published the story of this problem in 1994 [Soi9], I discovered that 
this unforgettable story actually had a prehistory! I became aware of it while watching a video 
recording of Ronald L. Graham’s most elegant lecture “Arithmetic Progressions: From 
Hilbert to Shelah.” To my surprise, Ron mentioned our problem in the language of partitions 
of integers into APs. Let me present the prehistory through the original e-mails so that you 
would discover the story the same way I did. 

April 5, 1995; Soifer to Graham: 

In the beginning of your video “Arithmetic Progressions,” you present a problem of 
partitioning integers into AP’s. You refer to Mirsky–Newman. Can you give me a more 
specific reference to their paper? You also mention that their paper may not contain the 
result, but that it is credited to them. How come? When did they allegedly prove it? 

April 5, 1995; Graham to Soifer: 

Regarding the Mirsky–Newman theorem, you should probably check with Erdős. I 
don’t know that there ever was a paper by them on this result. Paul is in Israel at Tel 
Aviv University. 

April 6, 1995; Soifer to Erdős: 

In the beginning of his video “Arithmetic Progressions,” Ron Graham presents a 
problem of partitioning natural numbers into arithmetic progressions (with the conclu-
sion that two progressions have the same constant difference). Ron refers to Mirsky– 
Newman. He gives no specific reference to their paper. He also mentions that their paper 
may not contain the result, but that it is credited to them . . .  Ron suggested that I ask 
you, which is what I am doing.
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I have good reasons to find this out, as in my previous book and in the one I am 
writing now, I credit Vasiliev (from Russia) with creating this problem before early 
1970. He certainly did, which does not exclude others from discovering it indepen-
dently, before or after Vasiliev. 

April 8, 1995; Erdős to Soifer: 

In 1950 I conjectured that there is no exact covering system in which all differences are 
distinct, and this was proved by Donald Newman and [Leon] Mirsky a few months later. 
They never published anything, but this is mentioned in some papers of mine in the 50s 
(maybe in the Summa Brasil. Math. 11(1950), 113–123 [E50.07], but I am not sure). 

April 8, 1995; Erdős to Soifer: 

Regarding that Newman’s proof, look at P. Erdős, On a problem concerning covering 
systems, Mat. Lapok 3(1952), 122–128 [E52.03]. 

I am looking at these early Erdős’ articles. In his 1950 paper, he introduces covering 
systems of (linear) congruences. Since each linear congruence x� a(modn) defines an AP, we 
can talk about a covering system of APs and define it as a set of finitely many infinite APs, all 
with distinct constant differences, such that every integer belongs to at least one of the APs of 
the system. In his 1952 paper [E52.03], Paul introduces the problem for the first time in print 
(in Hungarian!)4 : 

I conjectured that if system [of k AP’s with constant differences ni respectively] is 
covering, then 

k 

i= 1 

1 
ni 

> 1, 8ð Þ  

that is the system does not uniquely cover every integer. This, however, I could not 
prove. For (8) Mirsky and Newmann [Newman] gave the following witty proof (the 
same proof was found later by Davenport and Rado as well). 

Wow, Leon Mirsky, Donald Newman, Harold Davenport, and Richard Rado – quite a 
company of distinguished mathematicians, who worked on this bagatelle! Erdős then pro-
ceeds [E52.03] with presenting this company’s proof of his conjecture, which uses infinite 
series and limits. 

When viewing old video recordings of Paul Erdős’ lectures at my University of Colorado 
at Colorado Springs, I found a curious historical detail that Paul mentioned in his March 
16, 1989, lecture: he created this conjecture in 1950 while traveling by car from Los Angeles 
to New York! 

4 In English, this result was briefly mentioned, without proof, much later, in 1973 [E73.21] and 
1980 [EG].
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1.5 Completing the Go-Round 

In 1959, Paul Erdős and János Surányi published a book on the theory of numbers. In the 
2003 English translation [ESu2] of its 1996 second Hungarian edition, Erdős and Surányi 
present the result from Erdős’ 1952 paper: 

In a covering system of congruences [of all distinct moduli], the sum of the reciprocals 
of the moduli is larger than 1. 

Erdős and Surányi then repeat Mirsky–Newman–Davenport–Rado proof from Erdős’ 
Hungarian 1952 paper [52.03] and call it Theorem 3. Then, comes a surprise: 

A. Lifsic [sic] gave an elementary solution to a contest problem that turned out to be 
equivalent to Theorem 3. 

Based again on exercises 9 and 10, it is sufficient to prove that it is not possible to 
cover the integers by finitely many arithmetic progressions having distinct differences in 
such a way that no two of them share a common element. 

Erdős and Surányi then repeat the trick first discovered by us, the judges of the Soviet 
Union National Mathematical Olympiad, in May 1970, of converting the calculus problem 
into an elementary Olympiad problem about colored polygons! Here is how it goes: 

Wind the number line around a circle of circumference d. On this circle, the integers 
represent the vertices of a regular d-sided polygon . . .  The arithmetic progressions form 
the vertices of disjoint regular polygons that together cover all vertices of the d-sided 
polygon. 

Erdős and Surányi continue by repeating, with credit, Sasha Livshits’ solution of Kolya 
Vasiliev’s problem of colored polygons that we have seen at the start of this chapter.5 We 
have thus come a full circle, a merry-go-round from the Soviet Union Mathematical Olym-
piad to Paul Erdős and back to the same Olympiad. I hope you enjoyed the ride! 

5 Erdős and Surányi obtained the translation of the problem into the language of polygons and the 
polygonal proof from the 1988 Russian book [VE] by Nikolai Vasiliev and Andrei Egorov, which 
they credit for it. In this book, Vasiliev gives credit for the solution to Sasha Livshits – and, in a 
sign of extreme modesty, does not credit himself with creating this remarkable colored polygon 
problem independently from Erdős and in a different form. 
Now, looking at the original 1996 Hungarian 2nd edition [ESu1] of the Erdős–Surányi book, I 

realize, with sadness, that Paul Erdős did not see the beauties of Sasha Livshits’s proof – it did not 
appear in the Hungarian edition of 1996, the year Paul passed away. Clearly, Surányi alone added 
Livshits’s proof to the 2003 English translation [ESu2] of the book.
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Colored Plane
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Chapter 2 
Chromatic Number of the Plane: The Probl m 

A great advantage of geometry lies in the fact that in it the senses 
can come to the aid of thought and help find the path to follow. 

– Henry Poincaré [Poi] 

[I] can’t offer money for nice problems of other people 
because then I will really go broke. . .  
It is a very nice problem. If it were mine, I would offer 
$250 for it. 

– Paul Erdős 
Boca Raton, February 6, 1992 

The most widely known problem in Euclidean Ramsey Theory is 
probably that of determining the chromatic number of the plane, 
χ(E2 ). 

– Ronald L. Graham and Eric Tressler [GT] 

The unit distance graph in the plane . . .  is simple enough to 
describe to a nonmathematician, and so enigmatic that finding its 
chromatic number is a new four-color map problem for graph 
theorists. 

– Ronald L. Graham and Eric Tressler (Ibid.) 

If Problem 8 [the chromatic number of the plane] takes that long 
to settle [as the Four-Color problem], we should know the answer 
by the year 2084. 

– Victor Klee and Stan Wagon [KW] 

Our good ole Euclidean plane, don’t we know all about it? What else can there be after 
Pythagoras and Steiner, Euclid, and Hilbert? In this chapter, we will look at an open problem 
that exemplifies what is best in mathematics: Anyone can understand this problem; yet, no 
one has been able to conquer it in 73 years. 

In August 1987, I attended an inspiring talk by Paul Halmos at Chapman College in 
Orange, California. It was entitled “Some problems you can solve, and some you cannot.” 
This problem is an example of a problem that “you cannot solve.” 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_2&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_2#DOI
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“A fascinating problem... that combines ideas from set theory, combinatorics, measure 
theory, and distance geometry,” write Hallard T. Croft, Kenneth J. Falconer, and Richard 
K. Guy in their book Unsolved Problems in Geometry [CFG]. 

“If Problem 8 takes that long to settle [as the celebrated Four-Color Conjecture], we should 
know the answer by the year 2084,” write Victor Klee and Stan Wagon in their book New and 
Old Unsolved Problems in Plane Geometry [KW]. 

Are you ready? Here it is: 

What is the smallest number of colors sufficient for coloring the plane in such a way that 
no two points of the same color are at a unit distance apart? 

This number is called the chromatic number of the plane and is denoted by χ(E2 ) o  
simply χ. 

We will use R to denote the set of real numbers and the real line. The line equipped with the 
usual Euclidean distance, we will denote by E1 . Generalizing the line E1 , we get the Euclidean 
plane E2 and the Euclidean space E3 , and we define the n-dimensional space Rn for any 
positive integer n as the set of all n-tuples (x1, x2,..., xn), where x1, x2,..., xn are real numbers. 
When the distance between two points (x1, x2,..., xn) and (y1, y2,..., yn) of  R

n is defined by the 
equality 

d= x1- y1ð Þ2 þ x2 - y2ð Þ2 þ . . .  þ xn - ynð Þ2 �ð  

we get the Euclidean n-dimensional space En . In other words, En is just the set Rn together 
with the distance d defined by (*). 

To color the plane means to assign one color to every point of the plane. Please note that, 
here, we color without any restrictions and are not limited to “nice” tiling-like or map-like 
colorings. Given a positive integer n, we say that the plane is n-colored, if every point of the 
plane is assigned one of the given n colors. 

Here, a segment will stand for just a two-point set (which are end points in a conventional 
treatment of a segment). Similarly, a polygon will stand for a finite set of points. A 
monochromatic set is a set, whose all elements are assigned the same color. In this terminol-
ogy, we can formulate the chromatic number of the plane (CNP) problem as follows: What is 
the smallest number of colors sufficient for coloring the plane in a way that forbids mono-
chromatic unit segments? 

I do not know who first noticed the following result. Perhaps, Adam? Or Eve? To be a bit 
more serious, I do not think that ancient Greek geometers, for example, knew this nice fact, 
for they simply did not ask these kinds of questions! 

Problem 2.1 (Adam and Eve). No matter how the plane is two-colored, it contains a 
monochromatic segment of length 1, i.e., 

χ≥ 3: 

Proof Toss on the two-colored plane an equilateral triangle T of side 1 (Fig. 2.1). We have 
only two colors, while T has three vertices (I trust you have not forgotten the Pigeonhole 
principle). Two of the vertices must be of the same color. They are at a distance 1 apart. ■
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Fig. 2.1 At least 3 colors are necessary 

We can do better than Adam and Eve: 

Problem 2.2 No matter how the plane is three-colored, it contains a monochromatic segment 
of length 1, i.e., 

χ≥ 4: 

Proof by the Canadian Geometers, Brothers Leo and William Moser (1961, [MM]). Toss 
on the three-colored plane what we now call the Mosers Spindle (Fig. 2.2). Every edge in the 
spindle has the length 1. 

Fig. 2.2 The Mosers Spindle 

Assume that the seven vertices of the spindle do not contain a monochromatic unit 
segment. Call the colors used in coloring the plane red, white, and blue. The solution now 
will faithfully follow the children’s alphabet song “A B C D E F G .... ”. 

Let the point A be red, then B and C must be one white and one blue, respectively, and 
therefore, D must be red. Similarly, E and F must be one white and one blue, respectively, and 
therefore, G must be red. We have a monochromatic unit segment DG in contradiction to our 
assumption. ■ 

Observe The Mosers Spindle has worked for us in solving problem 2.2 precisely because any 
three vertices of the spindle contain two vertices that are at a distance 1 apart. This implies that in



a Mosers Spindle that forbids a monochromatic unit segment, at most two points can be of the 
same color. Let us record this observation as a tool, which wewill need later in Chapters 4 and 40. 
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Mosers’ Tool 2.3 Any three vertices of the Mosers Spindle contain a unit segment. Conse-
quently, in a Mosers Spindle that forbids a monochromatic unit segment, at most two vertices 
can be of the same color. 

When I presented the Mosers’ solution to high school mathematicians, everyone agreed 
that it was beautiful and simple. “But how do you come up with a thing like the spindle?”, I  
was asked. As a reply, I presented a less elegant but a more naturally found solution. In fact, I 
would call it a second version of the same solution. Here, we touch on a curious aspect of 
mathematics. In mathematical texts, we often see the terms “second solution” and “third 
solution.” However, which two solutions ought to be called distinct? We do not know. It is 
not defined and is thus a judgment call. Distinct solutions for one person could be viewed as 
versions of the same for another. It is interesting to notice that both versions were published in 
the same year, 1961, one in Canada and the other in Switzerland. 

Fig. 2.3 At least 4 colors are necessary 

Second Version of the Proof (Hugo Hadwiger, 1961, [Had4]). Assume that a three-colored 
red–white–blue plane does not contain a monochromatic unit segment. Then an equilateral 
triangle ABC of side 1 will have one vertex of each color (Fig. 2.3). Let A be red, then B and 
C must be one white and one blue, respectively. The vertex A’ symmetric to A with respect to 
the side BC must be red as well. As we rotate our rhombus ABA’C through any angle about A, 
the vertex A’ will have to remain red due to the above argument. Thus, we get a whole red 
circle of radius AA’. Surely, it contains a cord d of length 1, both end points of which are red, 
in contradiction to our assumption. ■ 

Does an upper bound exist for χ? It is not immediately obvious. Can you find one? Think 
of tiling the plane with square tiles. 

Problem 2.4 There is a 9-coloring of the plane that contains no monochromatic segments of 
length 1, i.e., 

χ≤ 9: 

Proof Tile the plane with unit squares. Now, we color one square in color 1 and its eight 
neighbors in colors 2, 3, ..., 9 (Fig. 2.4). The union of these 9 unit squares is a 3 × 3 square S, 
shown in bold. Translates of S (i.e., images of S under translations) tile the plane and 
determine how we color it in nine colors.
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You can easily verify (do) that no distance d in the range 2< d < 2 is realized 
monochromatically in the plane. Thus, by shrinking all linear sizes by the factor of, say, 
1.5, we get a 9-coloring that contains no monochromatic segments of length 1. (Observe: due 
to the above inequality, we have enough cushion so that it does not matter in which of the two 
adjacent colors we color the boundaries of the unit squares.) ■ 

Fig. 2.4 9 colors suffice 

Now that a tiling has helped us solve the above problem, it is natural to ask whether another 
tiling can help us improve the upper bound. One can indeed. 

Problem 2.5 There is a 7-coloring of the plane that contains no monochromatic unit 
segments, i.e., 

χ≤ 7: 

3 

1 

6 

2 

7 

4 

5 

3 

1 

6 

2 

7 

4 

5 

Fig. 2.5 A 7-coloring using a hexagonal tiling
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Proof [Had3]. We can tile the plane by regular hexagons of side 1. Now, we color one 
hexagon in color 1 and its six neighbors in colors 2, 3, ..., 7 (Fig. 2.5). The union of these 
seven hexagons forms a “flower” P, a highly symmetric polygon P of 18 sides. Translates of 
P tile the plane and determine how we color the plane in seven colors. It is easy to compute 
(please do) that each color does not have monochromatic segments of any length d, where 
2< d < 7

p 
. Thus, if we shrink all linear sizes by a factor of, say, 2.1, we will get a 7-coloring 

of the plane that has no monochromatic segments of length 1. (Observe: due to the above 
inequality, we have enough cushion so that it does not matter in which of the two adjacent 
colors we color the boundaries of the hexagons.) ■ 

This is the way the upper bound is proved in every book I know ([CFG] and [KW], for 
example). Yet, in 1982, the Hungarian mathematician László A. Székely found a clever way 
to prove the upper bound 7 without using hexagonal tiling. 

Problem 2.6 (L. A. Székely, [Sze1]). Prove the upper bound χ ≤ 7 by tiling the plane with 
squares again. 

Proof This is László Székely’s proof from [Sze1]. His original picture needs a small 
correction in his Fig. 1, and boundary coloring needs to be addressed, which I am doing 
here. We start with a row of squares of diagonal 1, with cyclically alternating colors of the 
squares 1, 2, . . ., 7 (Fig. 2.6). We then obtain consecutive rows of colored squares by shifting 
the preceding row to the right through 2.5 square sides. 

3 

6 

4 5 

7 4321 

2176 3 

5 6 

1 

5 

4 5 6 7 12 3 

Fig. 2.6 A 7-coloring using square tiling 

The upper and right boundaries are included in the color of each square, except the square’s 
upper left and lower right corners. ■ 

In 1995, my former student and now a well-known puzzlist Edward Pegg, Jr. sent me two 
distinct 7-colorings of the plane. In the one I am sharing with you (Fig. 2.7), Ed uses 7-gons 
for six of the colors and tiny squares for the seventh color. In fact, the seventh color occupies 
only about one-third of 1% of the plane. 

In Fig. 2.7, all thick black bars have a unit length. A unit of the tiling uses a heptagon and 
half a square. 

The area of each square is 0.0041222051899307168162... 
The area of each heptagon is 0.62265127164647629646... 
Thus, the area ratio is 302.0962048019455285300783627265828... 
If one-third of 1% of the plane is removed, then the remainder can be six-colored with this 

tiling!
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(0,0) 

(x,x) 

(1,0) 

Fig. 2.7 Ed Pegg’s 7-coloring with a small use of color 7 

The lower bound for the chromatic number of the plane (problem 2.2) also has proofs that 
are fundamentally different from using the Mosers Spindle. In the early 1990s, I received 
from my colleague and friend Klaus Fischer of George Mason University a finite configura-
tion of the chromatic number 4, different from the Mosers Spindle. Klaus had no idea who 
created it, so I commenced backtracking this construction. Klaus got it from our friend and 
colleague Heiko Harborth of Braunschweig Technical University, Germany, who, in turn, 
referred me to his source, Solomon W. Golomb of the University of Southern California, the 
famous inventor of polyomino. Solomon invented this graph as well and described it in the 
September 10, 1991, letter to me [Gol1]: 

The example you sketched of a 4-chromatic unit-distance graph with ten vertices is 
original with me. I originally thought of it as a 3-dimensional structure (the regular 
hexagon below, the equilateral triangle above it in a plane parallel to it), and all 
connected by unit-length toothpicks. The structure is then allowed to collapse down 
into the plane, to form the final Figure (Fig. 2.8). I have shown it to a number of people, 
including the late Leo Moser, Martin Gardner, and Paul Erdős, as well as Heiko 
Harborth. It is possible that Martin Gardner may have used it in one of his columns, 
but I don’t remember. Besides my example and Mosers’ original example (which I’m 
reasonably sure I have seen in Gardner’s column), I have not seen any other “funda-
mental” examples. I believe what I had suggested to Dr. Harborth in Calgary was the 
possibility of finding a 5-chromatic unit-distance graph, having a much larger number of 
edges and vertices. 

“The possibility of finding a 5-chromatic unit-distance graph” was on the minds of most of 
us, who worked on this problem. Does it exist? You will find a definitive answer later in 
this book.
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In the consequent September 25, 1991, letter [Gol2], Sol Golomb informed me that he 
likely found this example, which I will naturally call the Golomb Graph, in the period 
1960–1965. 

Fig. 2.8 The Golomb graph 

Second Solution of Problem 2.2 Just toss the Golomb graph with all edges of unit length on 
a three-colored (red, white, and blue) plane (Fig. 2.8). Assume that in the graph, there are no 
adjacent vertices of the same color. Let the center vertex be colored red, then, since it is 
connected by unit edges to all vertices of the regular hexagon H, the vertices of H must be 
colored white and blue in an alternating manner. All vertices of the central equilateral triangle 
T are connected by unit edges to the three vertices of H of the same color, say, white. 
However, then, white cannot be used in coloring T, and, thus, T is colored red and blue. 
However, this implies that two of the vertices of T are assigned the same color. This 
contradiction proves that 3 colors are not enough to properly color the 10 vertices of the 
Golomb graph, let alone the whole plane. ■ 

It is amazing that the pretty easy solutions of problems 2.2 and 2.4 provided us with the 
best bounds known to mathematics prior to 2018 for the chromatic number of the plane χ in 
the general case. They were published more than 60 years ago (in fact, they are older 
than that: see the next chapter for an intriguing historical account). Still, all we knew at the 
time of the first edition of this book was 

χ= 4, or 5, or 6, or 7: 

A very broad spread! Which do you think is the exact value of χ? The legendary Paul Erdős 
believed that it was χ ≥ 5. 

The renown American geometer Victor Klee of the University of Washington shared with 
me in 1991 a highly intriguing story. In 1980, he lectured in Zürich, Switzerland. The 
celebrated 77-year-old mathematician Bartel L. van der Waerden (whom we will frequently 
meet later in this book) was in attendance. When Vic presented the state of this problem, Van



der Waerden became very interested. Right there and then, during Vic’s lecture, Bartel started 
working on the problem. He tried to prove that χ = 7. 
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For many years, I believed that χ=7 (you will find my thoughts on the matter in Predicting 
the Future, later in this book). Paul Erdős used to say that 

God has a transfinite Book, which contains all theorems and their best proofs, and if He 
is well intentioned toward those, He shows them the Book for a moment. 

If I ever deserved the honor and had a choice, I would have asked to peek at the page with 
the chromatic number of the plane problem. Wouldn’t you?



-1_3
23

Chapter 3 
Chromatic Number of the Plane: A Historical Ess ay

[I] cannot trace the origin of this problem. 
– Paul Erdős, 1961 

[This is] a long-standing open problem of Erdős. 
– Hallard T. Croft, 1967 

It is often easier to be precise about Ancient Egyptian history 
than about what happened among our contemporaries. 

– Nicolaas Govert de Bruijn 
Eindhoven, July 5, 1995 

e-mail to A. Soifer 

It happened a long time ago and is not true. 
– An old Russian joke 

It is natural for one to inquire into the authorship of one’s favorite problem. So, in 1991, I 
turned to countless articles and books. Some of the information that I found appears here in 
Table 3.1 and Diagram 3.1 – take a look. Are you confused? I was too! 

As you can see, Douglas R. Woodall credits Martin Gardner, who, in turn, refers to Leo 
Moser. Hallard T. Croft calls it “a long-standing open problem of Erdős”, Gustavus 
J. Simmons credits “Erdős, [Frank] Harary, and [William Thomas] Tutte,” while Paul 
Erdős himself “cannot trace the origin of this problem”! Later Erdős credits “Hadwiger and 
Nelson,” while Victor Klee and Stan Wagon state that the problem was “posed in 1960–61 by 
M. Gardner and Hadwiger.” Croft comes again, this time with Kenneth J. Falconer and 
Richard K. Guy, to cautiously suggest that the problem is “apparently due to E. Nelson” 
[CFG]. Yet, Richard Guy did not know who “E. Nelson” was and why Guy and his coauthors 
“apparently” attributed the problem to him (my conversation with Richard Guy on the back 
seat of a taxi in Keszthely, Hungary, when we both attended Paul Erdős’ 80th birthday 
conference in August of 1993). 

Thus, at least seven (!) mathematicians were credited with creating this problem: Paul 
Erdős, Martin Gardner, Hugo Hadwiger, Frank Harary, Leo Moser, Edward Nelson, and 
William T. Tutte – a great group of mathematicians to be sure. But it was hard for me to 
believe that they all created the problem, be it independently or all seven together. 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597
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Table 3.1 Who created the chromatic number of the plane problem? 

Publication Year Author(s) Problem creator(s) or source named 

[Gar2] 1960 Gardner “Leo Moser ...writes...” 
[Had4] 1961 Hadwiger 

(after Klee) 
Nelson 

[E61.22] 1961 Erdős “I cannot trace the origin of this problem” 

[Cro] 1967 Croft “A long18-standing open problem of Erdős” 
[Woo1] 1973 Woodall Gardner 
[Sim] 1976 Simmons Erdős, Harary, and Tutte 
[E80.38] 
[E81.23] 
[E81.26] 

1980– 
1981 

Erdős Hadwiger and Nelson 

[CFG] 1991 Croft, Falconer, and 
Guy 

“Apparently due to E. Nelson” 

[KW] 1991 Klee and Wagon “Posed in 1960–61 by M. Gardner and 
Hadwiger” 

Ed Nelson 

Hallard T. Croft Paul Erdös Hugo Hadwiger 

Frank Harary Gustavus J. Simmons William T. Tutte 

Victor Klee Martin Gardner 

Leo Moser 

Douglas R. Woodall 

Diagram 3.1 Who created the chromatic number of the plane problem?
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I felt an urge, akin to that of a private investigator, a Sherlock Holmes, to untangle the web 
of conflicting accounts. It took 6 months to solve this historical puzzle. A good number of 
mathematicians, through conversations and e-mails, contributed their insights: Branko 
Grünbaum, Peter D. Johnson, Tony Hilton, Ron Graham, and Klaus Fischer first come to 
mind. I am especially grateful to Paul Erdős, Victor Klee, Martin Gardner, Edward Nelson, 
and John Isbell for contributing critically important pieces of the puzzle. Only their accounts, 
recollections, and congeniality made these findings possible. 

What follows is my 1991 investigation into the history of the problem. Today, I still stand 
by this research. It gives me great sadness to see that the players and informants of this Story 
of Creation are no longer with us. As my homage to them, I would like to list them here, 
alphabetically: 

Paul Erdős, 26 March 1913–20 September 1996 
Martin Gardner, 21 October 1914–22 May 2010 
Ronald L. Graham, 31 October 1935–6 July 2020 
Branko Grünbaum, 2 October 1929–14 September 2018 
Hugo Hadwiger, 23 December 1908–29 October 1981 
John R. Isbell, 27 October 1930–6 August 2005 
Victor L. Klee, Jr., 18 September 1925–17 August 2007 
Leo Moser, 11 April 1921–9 February 1970 
William “Willy” O.J. Moser, 5 September 1927–28 January 2009 
Edward Nelson, 4 May 1932–10 September 2014 

I commenced my investigation on July 6, 1991, by mailing a page-long handwritten letter 
to Paul Erdős [Soi91/7/6ltr]. I open it by sharing my plans and then ask several questions. The 
first question is of our interest here: 

Dear Paul, 
I am writing a book, “Mathematical Coloring Book.” 
It will have two parts: one about properties of colored objects (n-colored plane and 

chromatic number of the plane, colored numbers and Schur Theorem, colored polygons, 
etc.); the other part about coloring (coloring as a mean of solving tiling problems, 
coloring a map, etc.) 

I welcome your advice, problems for inclusion, including open problems (with their 
history if possible). 

In particular, I have a few questions for you. 
I am trying to reconstruct the history of the problem asking for the chromatic number 

of the plane χ(E2 ) (minimal number of colors that color the plane without monochro-
matic segments of length 1. 

Folklore has it that this is your problem. Gustavus Simmons says that in an article. 
Martin Gardner mentions it in 1960 and says that he heard it from Leo Moser. Victor 
Klee and Stan Wagon, in their almost-published book, say that this problem was born in 
1960. Woodall starts the story of the problem from Gardner’s October 1960 mention of 
Leo Moser. 

I think the problem is older than 1960, and it is your problem. Please, let me know the 
true history, as I wish to give credit where credit is due, especially since this is my
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favorite problem in all of mathematics. Did you originally conjecture that χ(E ) = 4? 
What do you think now: 4, 5, 6, or 7? 

This seems to be my first mention of an aspiration to write a book and the first time I 
gave this book her title, Mathematical Coloring Book. I never thought it would become an 
18-year-long obsession that resulted, as you know, in the first edition of this book. 

In the July 12, 1991, letter, Paul writes [E91/7/12ltr]: 

I first heard of the chromatic number of the plane problem from Leo Moser in 
1958–1962. 

On August 10, 1991, Paul shares his appreciation of the problem, for which he could not 
claim the authorship [E91/8/10ltr]: 

The problem about the chromatic number of the plane is unfortunately not mine. 

In a series of letters of July 12, 1991; July 16, 1991; August 10, 1991; and August 
14, 1991, Paul formulates for me a good number of problems related to the chromatic number 
of the plane that he did create. We will look at some of Erdős’ problems in the following 
chapters. 

Having established that the author was not Paul Erdős, I moved down the list of the 
“candidates,” and, on August 8, 1991, and again on August 30, 1991, I wrote to Victor Klee, 
Edward Nelson, and John Isbell. I shared with them my Table 3.1 and asked them to tell me 
what they knew about the birth of the problem. I also interviewed Princeton Professor Nelson 
over the phone on September 18, 1991. 

Edward Nelson created what he named “a second four-color problem” (the first being the 
famous four-color problem of map coloring), which we will discuss in Part 4). In his October 
5, 1991, letter [Nel2], he conveys the Story of Creation: 

Dear Professor Soifer: 
In the autumn of 1950, I was a student at the University of Chicago and among other 

things was interested in the Four-Color problem, the problem of coloring graphs 
topologically embedded in the plane. These graphs are visualizable as nodes connected 
by wires. I asked myself whether a sufficiently rich class of such graphs might possibly 
be subgraphs of one big graph whose coloring could be established once and for all, for 
example, the graph of all points in the plane with the relation of being unit distance apart 
(so that the wires become rigid, straight, of the same length, but may cross). The idea did 
not hold up, but the other problem was interesting in its own right and I mentioned it to 
several people. 

I asked Professor Nelson for his photograph from the time when he created this problem. 
He referred me to his photograph published in Time Magazine from December 1949. I found 
the article about Eddie Nelson’s successes with his photograph and called Time Magazine. 
They informed me that if they find that photograph in their archive, which was not given, they 
will charge me $300 for a one-time right to reproduce it in my book. Nelson was clearly 
unhappy with the Time’s reply. He found a photograph of himself ca. 1950 and generously 
sent it to me as a gift, which I share with you here.

https://doi.org/10.1007/978-1-0716-3597-1
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Eddie Nelson, c. 1950. (Courtesy of Edward Nelson)
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One of the people Eddie Nelson mentioned the problem to was John Isbell. Almost half a 
century later, Isbell still remembers the story very vividly when on August 26, 1991, he shares 
it with me [Isb1]: 

Dear Professor Soifer, 
I should certainly like to receive any future Geombinatorici, and I might contribute. 

There is an annoying problem I talked with Erdős and Pach about a few (5–6) years 
back; I sort of promised Pach a preprint, but didn’t get enough results to publish. Maybe 
I could write it up as a problem or two and put in the bits of result I did get as a 
background. 

Authorship of plane chromatic no. problem: Of course I can’t comment on Croft’s 
attribution to Erdős “long ago” except that it is a vague reference (but you cite Croft 
et al. 1991 against early Croft, maybe because he learned [from Klee?] about the 
following. 

Ed Nelson told me the problem and χ ≥ 4 in November 1950, unless it was October – 
we met in October. I said what upper bound have you, he said none, and I worked out 
7. I was a senior at the time (B.S., 1951). I think Ed had just entered U. Chicago as a 
nominal sophomore and taken placement exams which placed him a bit ahead of me, 
say a beginning graduate student with a gap or two in his background. I certainly 
mentioned the problem to other people between 1950 and 1957; Hugh Spencer Everett 
III, the author of the many-worlds interpretation of quantum mechanics, would certainly 
be one, and Elmer Julian Brody who did a doctorate under Fox and has long been at the 
Chinese University of Hong Kong and is said to be into classical Chinese literature 
would be another. I mentioned it to Vic Klee in 1958 ± 1 ... 

I don’t see that Woodall’s attribution to Gardner, who attributes it elsewhere, is worth 
a plugged nickel. If you said Erdős, Moser, and Nelson independently, you would 
probably be accurate in the eyes of the Recording Angel. 

In September 1991, I had a most enjoyable phone conversation with the distinguished 
geometer Victor Klee. He too remembered hearing the problem from John Isbell in 
1957–1958. In fact, it took place before September 1958 when Professor Klee left for Europe. 
There, Klee passed this problem to Hugo Hadwiger, who was collecting problems for the 
book Open Problems in Intuitive Geometry, to be written jointly by Erdős, Fejes Toth, 
Hadwiger, and Klee. To my great regret, this great book-to-be has never materialized. 

Gustavus J. Simmons [Sim], in giving credit for the problem to “Erdős, Harary, and Tutte,” 
no doubt had in mind their joint 1965 paper in which the three famous authors defined the 
dimension of a graph (see Chapter 13 on this). The year of 1965 was way too late for our 
problem’s creation, and, besides, the three authors have never made any claims to such a 
discovery. 

What were the roles of Paul Erdős, Martin Gardner, and Leo Moser in the Story of 
Creation? I am prepared to answer these questions, all except one: I am leaving to others to 
research Leo Moser’s archive (it used to be maintained by his brother Willy Moser at McGill 
University in Montreal) and find out when and from whom Leo Moser came by the problem. 
What is important to me is that he did not create it independently from Edward Nelson, as 
Paul Erdős informed me in his July 16, 1991, letter [E91/7/16]:



3 Chromatic Number of the Plane: A Historical Essay 29

I do not remember whether Moser in 1958 [possibly on June 16, 1958, the date from 
which we are lucky to have a photo record] told me how he heard the problem on the 
chromatic number of the plane, I only remember that it was not his problem. 

Paul Erdős (left) and Leo Moser, June 16, 1958. (Courtesy of Paul Erdős) 

Yet, Leo Moser made a valuable contribution to the survival of the problem. He gave it to 
both Paul Erdős and the wonderful mathematics expositor Martin Gardner. Gardner, due to 
his fine taste, recognized the value of this problem and included it in his October 1960 
Mathematical Games column in Scientific American ([Gar2]), with the acknowledgment that 
he received it from Leo Moser of the University of Alberta. Thus, the credit for the first 
publication of the problem goes to Martin Gardner. It is beyond me why so many authors of 
articles and books, as late as 1973 ([Woo1], for example), gave credit for the creation of the 
problem to Martin Gardner, something he himself had never claimed. In my 1991 telephone 
conversation with him, Martin told me for a fact that the problem was not his, and he promptly 
listed Leo Moser as his source, both in print and in his archive, which he checked as I was 
waiting on the line. 

Moreover, some authors ([KW], for example) who knew Edward Nelson’s authorship, still 
credited Martin Gardner and Hugo Hadwiger as late as in 1991 because, it seems, only



written, preferably published, word was acceptable to them. Following this logic, the creation 
of the celebrated four-color map coloring problem (4CP) must be attributed to Augustus De 
Morgan, who first wrote about it in his October 23, 1852, letter to William Rowan Hamilton, 
or better yet to Arthur Cayley, whose 1878 abstract included the first non-anonymous 
publication of the problem.1 Yet, we all seem to agree that the 20-year-old Francis Guthrie 
created 4CP, even though he did not publish or even write a word about it! (See Part IV for 
more on this.) 
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Of course, a lone self-serving statement would be too weak a foundation for a historical 
claim. On the other hand, independent disinterested testimonies corroborating each other 
comprise as solid a foundation for the attribution of the credit as any publication. This is 
precisely what my inquiry has produced. Here is just one example of Nelson and Isbell’s 
selflessness. Edward Nelson writes to me on August 23, 1991 [Nel1]: 

I proved nothing at all about the problem. 

John Isbell corrects Nelson in his September 3, 1991, letter [Isb2]: 

Ed Nelson’s statement which you quote, “I proved nothing at all about the problem,” 
can come only from a failure of memory. He proved to me that the number we are 
talking about is ≥ 4, by precisely the argument in Hadwiger 1961. Hadwiger’s attribu-
tion (on Klee’s authority) of that inequality to me can only be Hadwiger’s or Klee’s 
mistake. 

This brings us to the issue of the authorship of the bounds for χ: 

4≤ χ≤ 7: 

Once again, the entire literature is off the mark by giving credit for the first proofs to 
Hadwiger and the Mosers. Yes, in 1961, the famous Swiss geometer Hugo Hadwiger 
published [Had4] the chromatic number of the plane problem together with proofs of both 
bounds. But he writes there (and nobody reads!!): 

We thank Mr. V. L. Klee (Seattle, USA) for the following information. The problem is 
due to E. Nelson; the inequalities are due to J. Isbell. 

Hadwiger does go on to say: 

Some years ago the author [i.e., Hadwiger] discussed with P. Erdős questions of 
this kind. 

Did Hadwiger insinuate that he created the problem independently from Nelson? We will 
never know for sure, but I have my doubts about Hadwiger’s (co)authorship. Hadwiger 
jointly with Hans Debrunner published an excellent, long problem paper in 1955 [HD1] that 
was extended to their wonderful, famous book in 1959 [HD2]; see also its 1964 English 
translation [HDK] with Victor Klee and the 1965 Russian translation [HD3] edited by the 
famous Russian geometer and expositor Isaac Moiseevich Yaglom. All these books (and 
Hadwiger’s other papers) included a number of “questions of this kind,” but did not once

1 First publication could be attributed to De Morgan, who mentioned the problem in his 1860 book 
review in Athenaeum [DeM4], albeit anonymously – see more on this in Section 18.



include the chromatic number of the plane problem. Moreover, it seems to me that the 
problem in question is somewhat out of Hadwiger’s “character”: in all problems “of this 
kind,” he preferred to consider closed sets rather than arbitrary sets, in order to take advantage 
of topological tools.
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I shared with Paul Erdős these twofold doubts about Hadwiger independently creating the 
problem. It was especially important because Hadwiger in the above-quoted text mentioned 
Erdős as his witness or coauthor of sorts. Paul replied to me in his July 16, 1991, letter [E91/7/ 
16] as follows: 

I met Hadwiger only after 1950, thus I think Nelson has priority (Hadwiger died a few 
years ago, thus I cannot ask him, but I think the evidence is convincing). 

During his talk at the 25th Southeastern International Conference on Combinatorics, Graph 
Theory, and Computing at Florida Atlantic University, Boca Raton, Florida, at 9:30–10: 
30 a.m. on Thursday, March 10, 1994, Paul Erdős summarized the results of my historical 
research in the characteristically Erdősian style ([E94.60])2 : 

There is a mathematician called Nelson who in 1950 when he was an epsilon, that is he 
was 18, discovered the following question. Suppose you join two points in the plane 
whose distance is 1. It is an infinite graph. What is [the] chromatic number of this graph? 

Now, de Bruijn and I showed that if an infinite graph, which is chromatic number k, it  
always has a finite subgraph, which is chromatic number k. So, this problem is really 
[a] finite problem and not an infinite problem. And it was not difficult to prove that the 
chromatic number of the plane is between 4 and 7. I would bet it is bigger than 4, but I 
am not sure. And the problem is still open. 

If it would be my problem, I would certainly offer money for it. You know, I can’t 
offer money for every nice problem because I would go broke immediately. I was asked 
once what would happen if all your problems would be solved, could you pay? Perhaps 
not, but it doesn’t matter. What would happen to the strongest bank if all the people who 
have money there would ask for money back? Or what would happen to the strongest 
country if they suddenly ask for money? Even Japan or Switzerland would go broke. 
You see, Hungary would collapse instantly. Even the United States would go broke 
immediately . . .  

Actually, it was often attributed to me, this problem. It is certain that I had nothing to 
do with the problem. I first learned the problem, the chromatic number of the plane, in 
1958, in the winter, when I was visiting [Leo] Moser. He did not tell me from where this 
nor the other problems came from. It was also attributed to Hadwiger, but Soifer’s 
careful research showed that the problem is really due to Nelson. 

The leader of Ramsey Theory, Ronald L. Graham, also endorses the results of my historical 
investigation in his important 2004 problem paper [Gra6] in Geombinatorics: 

It is certainly not necessary to point out to readers of this journal any facts concerning 
the history and current status of this problem (which [is] due to Nelson in 1950) since 

2 Thanks to Professor Fred Hoffman, the tireless organizer of this annual conference, I have a 
videotape of this memorable Paul Erdős’ talk and thus have transcribed Paul’s words exactly.
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the Editor Alexander Soifer has written a scholarly treatment of this subject in this 
journal [Soi18], [Soi19], [SS2]. 

Ron confirmed the validity of my historical research in his January 26, 2007, email: 

Hi Sasha, 
. . .  I think it is clear by your historical research that Nelson gets credit for the 

chromatic number of the plane problem. 
Best regards, 
Ron 

The results of my historical research are summarized in Diagram 3.2, where arrows show 
passing of the problem from one mathematician to another. In the end, Paul Erdős shares the 
problem with the world in numerous talks and articles. 

Diagram 3.2 Passing the baton of the chromatic number of the plane problem 

Paul Erdős’ and Ron Graham’s acceptance of my research on the history of this fascinating 
problem has had a significant effect: most researchers and expositors now give credit to 
Edward Nelson for the chromatic number of the plane problem. There are, however, excep-
tions. László Lovász and K. Vesztergombi, for example, state in 2002 [LV] that 

in 1944 Hadwiger and Nelson raised the question of finding the chromatic number of the 
plane. 

Of course, the problem did not exist in 1944, in Hadwiger’s cited paper or anywhere else. 
Moreover, Eddie Nelson was just an 11–12-year-old boy in 1944! In the same book, 
dedicated to the memory of Paul Erdős, one of the leading researchers of the problem László



Székely (who had in 1992 already attended my talk on the history of the problem in Boca 
Raton, where I presented the proof of Nelson’s authorship), goes even further than Lovász 
and Vesztergombi in creating a myth [Sze3]: 

3 Chromatic Number of the Plane: A Historical Essay 33

E. Nelson and J. R. Isbell, and independently Erdős and H. Hadwiger, posed the 
following problem . . .  

The fine Russian researcher of this and related problems Andrei M. Raigorodskii copies 
Székely in his 2003 book [Raig6, p. 3], despite citing (and thus presumably knowing) my 
historical investigation in his survey [Raig3]: 

There were several authors. First of all, already in the early 1940s the problem was 
posed by remarkable mathematicians Hugo Hadwiger and Paul Erdős; secondly, 
E. Nelson and J. P. Isbell worked on the problem independently from Erdős and 
Hadwiger.3 

Raigorodskii then “discovers” a nonexistent connection between World War II (!) and the 
popularity of the chromatic number of the plane problem4 : 

In the 1940s there was W.W.II, and this circumstance is responsible for the fact that at 
first chromatic numbers [sic] did not raise too thunderous an interest. 

In 2019, [BRa] L.I. Bogolyubsky and A.M. Raigorodskii drop John Isbell and call it “the 
Nelson–Erdős–Hadwiger problem.” 

I have won many battles in my life, for example, the change of the “Rolf Nevanlinna Prize” 
to “IMU Abacus Medal.” However, I am giving up trying to do justice here and get the only 
correct name, The Edward Nelson Problem in this case. Even though Hugo Hadwiger 
admitted in print that he was not the author of the problem, the name “Hadwiger–Nelson” got 
stuck to the problem, just as Cardano did not author the Cardano formula and the Pythagoras 
theorem was known a millennium before the great Greek was born. Such is life with credits in 
mathematics. Most mathematicians view history as Cinderella that does not merit the respect 
they hold toward mathematics. History requires and deserves rigor and respect, gentlemen. 

Not only Hadwiger but also the two famous Canadian problem people, the brothers Leo 
and William Moser, published in 1961 [MM] the proof of the lower bound 4 ≤ χ while 
solving a different problem. Although, in my opinion, their proof is not distinct from those by 
Nelson and by Hadwiger, the Mosers’ emphasis on a finite set and their invention of the 
seven-point configuration, now called The Mosers Spindle (plural, “Mosers,” for we have 
here two brothers) proved to be highly productive. 

Now, we can finally give due credit to Edward Nelson for being the first in 1950 to prove 
the lower bound 4 ≤ χ. Because of the bound 4, John Isbell recalls in his letter [Isb1] that 
Nelson “liked calling it a second four-color problem!” Nelson shared with me that he thought 
the chromatic number of the plane to be 4. 

In phone interviews with Edward Nelson on September 18 and 30, 1991, I learned some 
information about the problem creator. 

3 My translation from Russian. 
4 Ibid.
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Joseph Edward Nelson was born on May 4, 1932 (an easy number to remember: 5/4/32), 
in Decatur, Georgia, near Atlanta. The son of the secretary of the Italian YMCA,5 Ed Nelson 
had studied at a liceo (Italian prep school) in Rome. In 1949, Eddie returned to the United 
States and entered the University of Chicago. The visionary president of the university, 
Robert Hutchins,6 allowed students to avoid “doing time” at the university by passing lengthy 
placement exams instead. Ed Nelson had done so well on so many exams that he was allowed 
to go right on to graduate school without working on his bachelor’s degree. 

Time Magazine reported young Nelson’s fine achievements in 14 exams on December 
26, 1949 [Time], next to the report on the completion of the last war crime trials of World War 
II (Field Marshal Fritz Erich von Manstein was sentenced to 18 years in prison), assurances by 
General Dwight D. Eisenhower that he would not be a candidate in the 1952 presidential 
election (he certainly was – and won it), and promise to announce Time’s “A Man of the Half-
Century” in the next issue (subsequently, the Time’s choice was Winston Churchill). 

Upon obtaining his doctorate from the University of Chicago in 1955, Edward Nelson 
became the National Science Foundation’s postdoctoral fellow at Princeton’s Institute for 
Advanced Study in 1956. Three years later, he became a professor of mathematics at 
Princeton University. His main areas of interest were analysis and logic. In 1975, Edward 
Nelson was elected to the American Academy of Arts and Sciences and in 1997 to the 
National Academy of Sciences. Ed shared with me, with excitement, that he gave an invited 
mathematical talk in Vatican. During my 2002–2004 and 2006–2007 work at Princeton, I had 
the pleasure of interacting with Professor Nelson almost daily. We became friends and shared 
lunches in the established company of senior Princetonians. Ed had a wonderful contagious 
smile. He enjoyed smoking his pipe and sipping wine. Ed attended my talk on the chromatic 
number of the plane problem at Princeton’s Discrete Mathematics Seminar that I dedicated 
“To Edward Nelson, who created this celebrated problem for us all.” He passed away on 
September 10, 2014, in Princeton. 

John Rolfe Isbell (October 27, 1930–August 6, 2005) was the first in 1950 to prove the upper 
bound χ ≤ 7. He used the same hexagonal 7-coloring of the plane that Hadwiger published in 
1961 [Had4]. Please note that Hadwiger first used this coloring of the plane in 1945 [Had3] 
but for a different problem: His goal was to show that there are seven congruent closed sets 
that cover the plane (he also proved there that no five congruent closed sets cover the plane). 
Professor Isbell, PhD Princeton University 1954 under Albert Tucker, had been for decades 
on the faculty of mathematics at the State University of New York at Buffalo, where he later 
became professor emeritus. John Isbell passed away on 6 August 2005. 

Presently, in expanding the book for this new edition, I simply ought to pose a 
Hadwigerian open problem: 

Plane Covering Problem 3.0 Is there a closed set S such that there is a distance not 
realizable between any pair of points of S and the plane can be covered by six sets congruent 
to S? 

5 The Young Men’s Christian Association (YMCA) is one of the oldest and largest not-for-profit 
community service organizations in the world. 
6 Robert Maynard Hutchins (1899–1977) was president (1929–1945) and chancellor (1945–1951) 
of the University of Chicago.
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Paul Erdős’ contribution to the survival and popularity of this problem is twofold. First of all, 
Paul kept the flaming torch of the problem brightly lit. He made the chromatic number of the 
plane problem well-known by posing it in his countless problem talks and many publications, 
for example, we see it in [E61.22], [E63.21], [E75.24], [E75.25], [E76.49], [E78.50], 
[E79.04], [ESi], [E80.38], [E80.41], [E81.23], [E81.26], [E85.01], [E91.60], [E92.19], 
[E92.60], and [E94.60]. 

Second, Paul Erdős created a good number of fabulous, related problems. We will discuss 
one of them in the next chapter. 

In February 1992 at the 23rd Southeastern International Conference on Combinatorics, 
Graph Theory, and Computing in Boca Raton, during his traditional Thursday morning talk, I 
asked Paul Erdős how much he would offer for the first solution of the chromatic number of 
the plane problem. Paul replied (while I was jotting down on paper his words): 

I can’t offer money for nice problems of other people because then I will really go broke. 

I then transformed my question into the realm of mathematics and asked Paul “Assume this 
is your problem, Paul; how much would you initially offer for its first solution?” Paul 
answered: 

It is a very nice problem. If it were mine, I would offer $250 for it. 

Later, the price went up for the first solution of just the lower bound part of the chromatic 
number of the plane problem. On Saturday, May 4, 2002, which by the way was precisely 
Edward Nelson’s 70th birthday, Ronald L. Graham gave a talk on Ramsey theory at the 
Massachusetts Institute of Technology to about 200 high school participants in the USA 
Mathematical Olympiad. During the talk, he offered $1000 for the first proof or disproof of 
what he called, after Nelson, “Another Four-Color Conjecture.” The talk commenced at 10: 
30 a.m. (as a member of the USA Mathematical Olympiad Subcommittee, I was in attendance 
and took notes). 

Another Four-Color $1000 Problem 3.1 (R.L. Graham, May 4, 2002). Is it possible to 
four-color the plane to forbid a monochromatic distance 1? 

In August 2003, in his talk “What is Ramsey Theory?” at Berkeley [Gra4], Graham asked 
for much more work for $1000: 

$1000 Open Problem 3.2 (R.L. Graham, August 2003). Determine the value of the chro-
matic number χ of the plane. 

It seems that Graham believed that the chromatic number of the plane takes on an 
intermediate value, between of its known boundaries, for in his two surveys [Gra7], [Gra8], 
he offered the following open problems: 

$100 Open Problem 3.3 (R.L. Graham [Gra7], [Gra8]). Show that χ ≥ 5.7 

$250 Open Problem 3.4 (R.L. Graham [Gra7], [Gra8]). Show that χ ≤ 6. 

This prompted me to look at all published Erdős’ predictions of the chromatic number of 
the plane. Let me summarize them here for you. First Erdős believed – and communicated it

7 Ron Graham cites the O’Donnell theorem 50.4 (see it later in this book) as “perhaps, the evidence 
that χ is at least 5.”



in 1961 [E61.22] and in 1975 [E75.24] – that the problem creator Nelson conjectured that the 
chromatic number was 4; Paul enters no prediction of his own. In 1976 [E76.49], Erdős asks:
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Is this graph 4-chromatic? 

In 1979 [E79.04], Erdős becomes more assertive: 

It seems likely that the chromatic number is greater than four. By a theorem of de Bruijn 
and myself this would imply that there are n points x1, . . ., xn in the plane so that if we 
join any two of them whose distance is 1, then the resulting graph G(x1,. . .,xn) has 
chromatic number > 4. I believe such an n exists but its value may be very large. 

A certainty comes in 1980 [E80.38] and [E80.41]: 

I am sure that [the chromatic number of the plane] α2 > 4 but cannot prove it. 

In 1981 [E81.23] and [E81.26], we read Erdős, respectively: 

It has been conjectured [by E. Nelson] that α2= 4, but now it is generally believed that 
α2 > 4. 

It seems likely that χ(E2 ) > 4. 

In 1985 [E85.01], Paul Erdős writes: 

I am almost sure that h(2) > 4. 

Once – just once – Erdős expresses mid-value expectations. It happened on Thursday, 
March 10, 1994 at the 25th Southeastern International Conference on Combinatorics, Graph 
Theory, and Computing in Boca Raton. Following Erdős’ plenary talk (9:30–10:30 a.m.), I 
was giving my talk at 10:50 a.m., when suddenly Paul Erdős said (and I jotted it down): 

Excuse me for interrupting, I am almost sure that the chromatic number of the plane is 
greater than 4. It is not a proof, but any measurable set without distance 1 in a very large 
circle has measure less than ¼. I also do not think that it is 7. 

It is time for me to speak on the record and predict the chromatic number of the plane. In 
2002, I was leaning toward predicting 7 or else 4 – somewhat disjointly from Graham and 
Erdős’ apparent expectations. Limiting myself to just one value, still in 2002, I conjectured: 

Chromatic Number of the Plane Conjecture 3.5 (A. Soifer, 2002)8 . χ = 7. 

On January 26, 2007, in a personal e-mail to me, Ron Graham clarified the terms of 
awarding his prizes: 

I always assume that we are working in ZFC (for the chromatic number of the plane!). 
My monetary awards can vary depending on which audience I am talking to. I always 
give the maximum of whatever I have announced (and not the sum!). 

8 See more on the predictions in Chapter 62.



-1_4
37

Chapter 4 
Polychromatic Number of the Plane and Re sults Near
the Lower Bound 

When a great problem withstands all assaults, mathematicians create many related problems. 
It gives them something to solve, plus sometimes there is an extra gain in this process, when 
an insight into a related problem brings new ways to see and conquer the original one. 
Numerous problems have been posed around the chromatic number of the plane. I would like 
to share with you my favorite among them. 

It is convenient to say that a colored set S realizes distance d if S contains a monochromatic 
segment of length d; otherwise, we say that S forbids distance d. 

Our knowledge about this problem starts with the celebrated 1959 book by Hugo Hadwiger 
and Hans Debrunner ([HD2] and, subsequently, its enhanced translations into Russian by 
Isaak M. Yaglom [HD3] and into English by Victor Klee [HDK]). Hadwiger reports in the 
book the contents of the September 9, 1958, letter he received from the young (at the time) 
Hungarian mathematician Aladár Heppes: 

Following an initiative by P. Erdős he [i.e., Heppes] considers decompositions of the 
space into disjoint sets rather than closed sets. For example, we can ask whether 
proposition 59 remains true in the case where the plane is decomposed into three 
disjoint subsets. As we know, this is still unresolved. 

In other words, Paul Erdős asked whether it was true that if the plane is partitioned 
(colored) into three disjoint subsets, then one of the subsets must realize all distances. 
Soon, the problem took on its current “appearance.” Here it is: 

Erdős’ Open Problem 4.1 What is the smallest number of colors needed for coloring the 
plane in such a way that no color realizes all distances?1 

This number had to have a name, and, so, in 1992 [Soi5], I named it the polychromatic 
number of the plane and denoted it by χp. The name and the notation seemed so natural that, 
by now, it has become the standard and has (without credit) appeared in such encyclopedic 
books as [JT] and [GO]. 

1 The authors of the fine problem book [BMP] incorrectly credit Hadwiger as the “first” to study 
this problem (p. 235). Hadwiger, quite typically for him, limited his study to partitions into 
closed sets. 
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Since I considered this to be a very important open problem, I asked Paul Erdős to verify 
his authorship, alleged in passing by Hadwiger. As always, Paul was very modest in his July 
16, 1991, letter to me [E91/7/16ltr]: 

I am not even quite sure that I created the problem: Find the smallest number of colors 
for the plane, so that no color realizes all distances, but if there is no evidence 
contradicting it we can assume it for the moment. 

My notes show that during his unusually long 2-week visit of me in December 1991– 
January 1992 (we were working together on the book of Paul’s open problems, entitled 
Problems of pgom Erdős), Paul confirmed his authorship of this problem. In the chromatic 
number problem, we were looking for colorings of the plane such that each color forbids 
distance 1. In the polychromatic number problem, we are coloring the plane in such a way that 
each color i forbids a distance di. For distinct colors i and j, the corresponding forbidden 
distances di and dj may (but do not have to) be distinct. Of course, χp ≤ χ; therefore, 

χp ≤ 7: 

Nothing else had been discovered during the first 12 years of this problem’s life. Then, in 
1970, Dmitry E. Raiskii, a student of the Moscow High School for Working Youth2 105, 
published [Rai] the lower and upper bounds for χp. Here, we will look at the lower bound, 
leaving the upper bound to Chapter 6. 

Raiskii’s Theorem 4.2 (D. E. Raiskii [Rai], 1970): 4 ≤ χp. 
Three years after Raiskii’s publication, in 1973, the British mathematician Douglas 

R. Woodall from the University of Robin Hood (I mean Nottingham), published a paper 
[Woo1] on problems related to the chromatic number of the plane. Among other things, he 
provided his own proof of the lower bound. As I showed in [Soi17], Woodall’s proof 
stemmed from a triple application of two simple ideas of Hugo Hadwiger ([HDK], Problems 
54 and 59). 

In 2003, the Russian-turned-Israeli mathematician Alexei Kanel-Belov communicated to 
me an incredibly beautiful short proof of this lower bound by the new generation of young 
Russian mathematicians, all his students. The proof was found in 1997 by Alexei Merkov, a 
10th grader from the Moscow High School 91, and communicated by Alexei Roginsky and 
Daniil Dimenstein at the Moscow Pioneer Palace [Poisk]. Following is Merkov’s proof with 
my gentle modifications. It is truly “proof from the book,” if you are familiar with Paul Erdős’ 
famous metaphor. 

Proof of D.E. Raiskii’s Lower Bound Theorem by A. Merkov, 1997: Assume that the plane 
is colored in three colors, red, green, and blue, and that each color forbids a distance r, g, and 
b, respectively. Equip the three-colored plane with the Cartesian coordinates with the origin 
O, and, construct in the plane, three seven-point sets Sr, Sg, and Sb, with each being the Mosers 
Spindle (Fig. 4.1), such that all three spindles share O as one of their seven vertices and have 
edges all equal to r, g, and b, respectively. 

2 Students in such high schools hold regular jobs during the day and attend classes at night.
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Fig. 4.1 The Cartesian plane with three Mosers Spindles 

This construction defines 6 “red” vectors v1, . . ., v6 from the origin O to each vertex of Sr; 
6 “green” vectors v7, . . ., v12 from O to the vertices of Sg; and 6 “blue” vectors v13, . . ., v18 
from O to the vertices of Sb , i.e., 18 vectors in all. 

Now, introduce the 18-dimensional Euclidean space E18 and a function M from E18 to the 
plane E2 naturally defined as follows: 

M: a1, a2, . . . , a18ð Þ� a1v1 þ a2v2 þ . . .þ a18v18: 

This function induces a 3-coloring of E18 by assigning a point of E18 the color of the 
corresponding point of the plane. We will call the first six axes of E18 

“red,” the next six axes 
“green,” and the last sic axes “blue.” 

Define by W the subset in E18 of all points whose coordinates include at most 1 coordinate 
equal to 1 for each of the three colors of the axes and the rest (15 or more) coordinates 0. It is 
easy to verify that W consists of 73 points. Let us fix an array of allowable W coordinates on 
the green and blue axes and vary allowable coordinates on the red axes. We get the seven-
element set A of points in W. The image M(A) of the set A under the map M forms in the plane, 
a translate of the original seven-point set Sr.  If  we  fix another array of green and blue 
coordinates, we get another seven-element set in E18 , whose image under M forms in the



2plane that is another translate of Sr. Thus, the set W gets partitioned into 7 subsets, each of 
which maps by M into a translate of Sr. 
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Now, recall Mosers’ Tool 2.3. It implies here that any translate of the Mosers Spindle Sr 
contains at most two red points out of its seven points. Since the set W has been partitioned 
into the translates of Sr, at most 2/7 of the points of W are red. 

We can start all over again and, in a similar way, show that at most 2/7 of the points of W are 
white and that at most 2/7 of the points of W are blue. But 2/7 + 2/7 + 2/7 does not add up to 1! 
This contradiction implies that at least one of the colors realizes all distances, as required. ■ 

At the International Congress on Mathematical Education in 1992 in Quebec City, I spent 
much time with Nikolai Nikolaevich “Kolya” Konstantinov, whose mathematical circle at the 
Old Building of Moscow State University I attended on Saturday afternoons during the 
1962–63 academic year, when I was an eighth grader. To my amazement, I learned that the 
hero of this chapter, Dmitrii “Dima” Raiskii, was Konstantinov’s student as well, just 2 years 
my junior! It took me many years to get “the full story” out of Kolya Konstantinov, but it was 
worth waiting for his February 23, 2007, e-mail, which I am translating here for you from the 
Russian original: 

Dima Raiskii entered school Nr. 7 in 1965.3 He was a part of a very strong group of 
students, from which several professional mathematicians came out, including Lena 
Nekhludova, who won gold medal of the International Mathematical Olympiad, Andrej 
Grjuntal, now chair of a department in the Institute of System Research, Vasilii Kozlov, 
now professor in the department of statistics of the Mechanics-Mathematical Faculty of 
the Moscow State University, and several well-known applied mathematicians. 

Teachers of main mathematical courses were also very strong, including Joseph 
Bernstein, Viktor Zhurkin, formerly a graduate of this school and now a well-known 
biochemist, working in the USA. 

The teaching method was based on students proving theorems of a course on their 
own, and on solving a large number of meaningful problems, which required creative 
abilities ... 

Dima performed well in mathematics, but was missing classes, and he had difficulties 
in other disciplines, in which teachers did not want to pass him because of small amount 
of earned credits. However, the main problem was at home. Dima’s father thought his 
son was inept and insisted that Dima master a profession of a shoemaker, so that he 
could somehow feed himself. When I got to know Dima’s family, I did not see his 
father, probably because by then he had already left the family, but I did not feel I had 
the right to ask about it. 

Without any help, on his own Dima had read Hadwiger and Debrunner’s book on 
combinatorial geometry.4 He told me that he solved a problem from that book and 
wanted to show it to me. His presentation of the proof was in a “hall style” – very 
careless and informal, and l did not understand it right away – I felt, nevertheless, that 
the proof seemed plausible. 

3 This was one of the Soviet Union’s greatest high schools with emphasis on mathematics, where 
special courses were offered by some of the top Moscow State University professors. 
4 [HD3].
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Dima then wrote down his solution. Here I made sure that everything was correct. 
However, Dima did not have an experience of writing articles, and so I undertook the 
“combing” of the text and gave it the usual for a publication look – I introduced several 
notations and terms. My work was purely technical; the published text did not contain 
my single idea. There was, however, an example, inserted by the Editor of 
Математические Заметки [Mathematical Notes]5 Stechkin.6 Then a funny episode 
happened. The inserted paragraph Stechkin ended with the phraise “the author thanks 
Stechkin for this example.” Dima, however, thought that the word “author” refers to 
Stechkin in this case, and could not understand how Stechkin could thank himself. 

Meanwhile clouds were thickening over Dima’s head. The school wanted to expel 
him for absences, and he got into a children section of a psychiatric hospital. I visited 
him there. I saw lads of a school age behaving themselves quite freely. The counselors 
looked upon it nonchalantly – what can one ask of the sick ones? One boy, for example, 
asked, what would happen if to throw Brezhnev7 into a toilette bowl and flush the 
toilette? And other silliness of the same kind. 

After the release from the hospital, Dima [was expelled from the mathematical school 
number 7 and] transferred to the school [number 105] for working youth. There his 
affairs got even worse. He was finishing his senior 11th year, and the teachers’ council 
had to decide whether to graduate the student, who missed countless classes and had 
almost no grades. At that time, the school received a letter from England. The thing is, at 
the end of Dima’s published article there was the school’s number, where he studied at 
the time of the article’s publication. The letter was written by the professor [could it be 
Douglas Woodall?] who worked on the same problem but did not succeed. He informed 
Raiskii that he was sending him all the materials because he would no longer work on 
this problem but hoped that Raiskii would be interested in acquainting himself with this 
unfinished work. This was not just a letter, but a thick packet, and the letter opened with 
“Dear Professor Raiskii.” The lady principal looked very gloomily during the teachers’ 
council meeting dedicated to the question of Raiskii’s graduation. She opened the 
meeting by acquainting the teachers with the content of this letter. She then said, “Let 
us graduate him.” 

In conclusion, let me add that Raiskii’s family difficulties continued. Of course, 
Dima’s psyche was not fully normal, but I think that his mother’s psyche played a more 
negative role in his life than his own psyche. Here is one of her tricks. After Dima was 
released from the hospital, she wrote a letter to the Minister of Education complaining 
about me and P. S. Alexandrov.8 The school [number 7] principal Volkov showed me 
this letter (which the Ministry forwarded to the school). Dima’s mother claimed in this 
letter that Alexandrov and Konstantinov politically corrupt the child and inoculate the 
child with the anti-Soviet views. The letter went on further to claim that Konstantinov 

5 The journal in which this article appeared. 
6 Sergei Borisovich Stechkin, a noted Russian mathematician – see his example and more about 
this story in Chapter 6. 
7 Head of the Soviet Union at the time. 
8 Pavel Sergeevich Alexandrov, a topologist and a member of the Soviet Academy of Sciences, 
one of Russia’s great mathematicians.
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established the power over all Moscow psychiatrists and they all dance to his tune. The 
principal read this letter to me seriously, without any smile, until the last phraise when 
he finally allowed himself to laugh. I do not think it would be interesting to describe 
other tricks of Dima’s mother. 

While a high school student, Dima tried to solve mathematical problems many times. 
In particular, while participating in the Moscow Mathematical Olympiad, he worked not 
at all on the problems of the Olympiad, but on his own problems. He then got involved 
in the Eastern games of the mind – but I am not an expert in them, and do not remember 
their names. After that, I think, you know more about Dima than I do. 

I wish you success [with the book]. 
Kolya 

On Christmas Day, December 25, 2003, the hero of this section, Dima Raiskii, told me 
how he came across the polychromatic number of the plane problem: 

I learned about our coloring problem while reading the book Combinatorial Geometry 
of the Plane by Hadwiger and Debrunner [HD3]. This book was a part of the 3rd prize 
that I received at the Moscow Mathematical Olympiad of the 8th graders. 

In my phone conversation with Dima Raiskii, I expressed my regret that he left mathe-
matics after such a brilliant first paper. “Mathematicians appeared boring to me,” Dima 
replied and added: “They were constantly suffering from a feeling of guilt toward each 
other or tried to make others repent. I felt much more at ease with Go players.” So, Dima 
worked as a computer programmer and spent his free time playing Go. Then he gave up the 
city life, as he informed me on February 6, 2003: 

I now settled in a remote village, where there is neither post nor computer. However, 
when I come to the city, I visit an internet-salon. What is new with your studies of 
African cultures? Are there meditative practices in Africa? 

In his e-mails sent on the go from Internet cafés, Dima described his involvement in Go, 
meditation, and writing books to aid others with meditation and spirituality. On March 
17, 2003, I read: 

In the latter years I played Go. This is the only game richer than chess; it is popular in 
China, Japan, Korea, etc. One of my students later became the Russian Champion for 
players up to the age of 10. According to the tradition, many Go players do meditative 
exercises in the style of Zen because this game equally uses both sides of the brain. In a 
close circle, I taught Zen meditation. In the East, however, many Buddhist authorities 
use Christian texts for teaching meditation. I am now preparing a small book of 
exercises for people raised in the Christian culture . . .  

P.S.: Go (brought to Europe by [the legendary world chess champion Emanuel] 
Lasker) is a most interesting object for computer modeling – in this regard, Go is richer 
than chess. One of my acquaintances is the European Champion in Go programming. 
Are people at Princeton involved in it?9 

9 At that time, I worked at Princeton University.
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Dima asked me several times to publish his results as a joint work of his and Nikolai 
Nikolaevich “Kolya” Konstantinov, his and my mathematics teacher, who – for better or for 
worse – influenced my choice of mathematics as a profession. Dima insisted on sharing credit 
with Kolya, and Kolya categorically refused his share, as in his opinion, all the ideas belonged 
to Dima. 

Dima does not communicate with many people. He even sends his regards to his Moscow 
teacher, Nikolai Konstantinov, via me in the United States. His e-mails to me are always 
inquisitive and warm. In his November 23, 2006, e-mail he expressed an appreciation for our 
correspondence: 

News from you always improve my mood. Give my regards to Nikolai Nikolaevich 
[Konstantinov]. 

In his December 19, 2007, e-mail, Dima wrote: 

I was always interested in the Eastern culture and studies of the Eastern religions. In the 
old times, however, I could not have publications [on these subjects], and instead had a 
lot of troubles. It seems likely that something will be published in the nearest time. This 
will start my public “biography.” Will you be interested in my article? ... Yours 
always, Dima. 

Dear Dima Raiskii, through the years of our correspondence, we became not only pen pals 
but also friends. The societal pressure altered his life not unlike the change in the life of 
Grigory Perelman, who abandoned mathematics at the peak of his creative powers, after 
conquering the celebrated Poincare and geometrization conjectures. Their unprotected moral 
purity and extreme sensitivity made it difficult for them to deal with the ills of society in 
general and the mathematical community in particular. Our friendship has provided Dima 
with an outlet for his thoughts and communication. I hope someone offered the same to 
Grisha Perelman. 

PS: After the first edition of this book went into production, I informed Dima that his 
theorem and biography will appear in it, as will Van der Waerden’s theorem and biography. 
On May 3, 2008, Dima replied: 

Sasha, thank you very much! My biography and biography of Van der Waerden – not a 
bad combination. I will be telling my fellow villagers: “Once upon a time I am sitting 
with Vanya, this Vanya, you know, which is der Waerden, who ... Will definitely read 
your book. Happy [W.W.II] Victory Day!” 

■ 

Paul Erdős proposed yet another related problem (e.g., see [E85.01]). For a given finite set 
S of r positive numbers, a set of forbidden distances if you will, we define the graph GS(E

2 ), 
whose vertices are points in the plane, and a pair of points is adjacent if and only if the 
distance between them belongs to S. Denote 

χr = max 
S 

χ GS E
2 : 

“It is easy to see that lim χr r = ,” Erdős writes, and poses a question:
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Erdős’ Problem 4.3 Does χr grow polynomially? 

It is natural to call the chromatic number χS(E
2 ) of the graph GS(E

2 ) the S-chromatic 
number of the plane. One can pose a more general and hard problem, and in fact, it is an old 
problem of Paul Erdős (“I asked long ago,” Paul says in [E94.60]): 

Erdős’ Open Problem 4.4 Given S, find the S-chromatic number χS(E
2 ) of the plane. 

How difficult this problem is judge for yourselves: For an one-element set S, this is the 
chromatic number of the plane problem!
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Chapter 5 
De Bruijn–Erdős Reduction to Finite Sets a nd Res ults
Near the Lower Bound 

We can expand the notion of the chromatic number to any subset S of the plane. The 
chromatic number χ(S) of  S is the smallest number of colors sufficient for coloring the points 
of S in such a way that forbids monochromatic unit segments. 

In 1951, Nicolaas Govert de Bruijn and Paul Erdős published a highly powerful tool [BE2] 
that will help us with this and other problems. We will formulate and prove it in Part V. In our 
setting here, it implies the following. 

Compactness Theorem 5.11 (N.G. de Bruijn, P. Erdős). The chromatic number of the plane 
is equal to the maximum chromatic number of its finite subsets. 

Thus, as Paul Erdős used to say, the problem of finding the chromatic number of the plane 
is a problem about finite sets in the plane.2 

There are easy questions about finite sets in the plane. Solve the following two problems on 
your own. 

Problem 5.2 Find the smallest number δ3 of points in a plane set whose chromatic number is 
equal to 3. 

Problem 5.3 (L. Moser and W. Moser, [MM]). Find the smallest number δ4 of points in a 
plane set whose chromatic number is 4. (Answer: δ4 = 7). 

Victor Klee and Stan Wagon posed the following open problem in [KW]: 

Open Problem 5.4 When k is 5, 6, or 7, what is the smallest number δk of points in a plane 
set whose chromatic number is equal to k? 

Of course, problem 5.4 makes sense only if χ > 4. In the latter case, this problem suggests a 
way to attack the chromatic number of the plane problem by constructing new “spindles.” 

When you worked on problems 5.2 and 5.3, you probably remembered our problems 2.1 
and 2.2. Indeed, those problems provide optimal configurations (Figs. 2.1 and 2.2) for

1 The axiom of choice is assumed in this result. 
2 Or so we all thought. Because of that, I choose to leave this chapter as it was written in the early 
1990s. See Part XII of this book for axiomatic developments. 
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problems 5.2 and 5.3. Both optimal configurations were built of equilateral triangles of side 
1. Can we manage without them?
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Problem 5.5 Find the smallest number σ3 of points in a plane set without equilateral triangles 
of side 1 whose chromatic number is equal to 3. 

Fig. 5.1 An equilateral pentagon of side 1 

Solution σ3 = 5. The regular pentagon of side 1 (Fig. 5.1) delivers a minimal configuration 
of chromatic number 3. 

It is easy to 2-color any four-point set A, B, C, D without equilateral triangles of side 1. Just 
color A red. All points at a distance 1 from A, color blue; these are second-generation points. 
All uncolored points at a distance 1 from any point of the second generation, we color red, and 
these are third-generation points. All uncolored points at a distance 1 from the points of the 
third generation, we color blue. If we did not color all four points, then we start this process all 
over again by coloring any uncolored point red. If this algorithm were not to define the color 
of any point uniquely, we would have an odd-sided n-gon with all sides 1, i.e., an equilateral 
triangle (since n ≤ 4), which cannot be present, and thus would provide the desired contra-
diction. ■ 

For four colors, this question for a while was an open problem first posed by Paul Erdős in  
July 1975 (and published in 1976), who, as was usual for him, offered to “buy” the first 
solution – for $25. 

Paul Erdős’ $25 Problem 5.6 [E76.49]. Let S be a subset of the plane, which contains no 
equilateral triangles of size 1. Join two points of S if their distance is 1. Does this graph have 
chromatic number 3? 

If the answer is no, assume that the graph defined by S contains no Cl (cycles of length l) 
for 3 ≤ l ≤ t and ask the same question. 

It appears that Paul Erdős was not sure of the outcome, which was rare for him. Moreover, 
from the next publication of this problem in 1979 [E79.04], it is clear that Paul expected that 
triangle-free unit distance graphs had chromatic number at most 3 or else chromatic number 
3 can be forced by prohibiting all small cycles up to Ck for a sufficiently large k: 

Paul Erdős’ $25 Problem 5.6’ [E79.04]. “Let our n points [in the plane] be such that they do 
not contain an equilateral triangle of side 1. Then their chromatic number is probably at most 
3, but I do not see how to prove this. If the conjecture would unexpectedly [sic] turn out to be 
false, the situation can perhaps be saved by the following new conjecture:
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There is a k so that if the girth of G(x1,. . .,xn) is greater than k, then its chromatic number 
is at most three – in fact, it will probably suffice to assume that G(x1,. . .,xn) has no odd 
circuit of length ≤ k.”3 

Erdős’ first surprise arrived in 1979 from down under: Nicholas Wormald, then of the 
University of Newcastle, Australia, disproved the first, easier, triangle-free conjecture. Erdős 
paid $25 reward for the surprise and promptly reported it in his next 1978 talk (published 
3 years later [E81.23]): 

Wormald in a recent paper (which is not yet published) disproved my original 
conjecture – he found a [set] S for which [the unit distance graph] G1(S) has girth 
5 and chromatic number 4. Wormald’s construction uses elaborate computations and is 
fairly complicated. 

In his paper [Wor], Wormald proved the existence of a set S of 6448 (!) points without 
triangles and quadrilaterals with all sides 1, whose chromatic number was 4. He was aided by 
a computer. I would like to give you a taste of the initial Wormald construction or, more 
precisely, the Blanche Descartes construction that Wormald was able to embed in the plane, 
but it is a better fit in Chapter 12 – so, see it there. 

The size of Wormald’s example, of course, did not appear to be anywhere near optimal. 
Surely, it must have been possible to do the job with less than 6448 points! In my March– 
1992 talk at the Southeastern International Conference on Combinatorics, Graph Theory, and 
Computing at Florida Atlantic University, I shared Paul Erdős’ old question, but I put it in a 
form of competition: 

A graph is called unit-distance if its two vertices are connected by an edge if and only if 
they are at distance 1 apart. 

Open Problem 5.7 Find the smallest (in the number of vertices) unit-distance graph in the 
plane without equilateral triangles, whose chromatic number is 4. Construct such a graph. 

The result exceeded my wildest dreams. A number of young mathematicians, including 
graduate students, were inspired by this talk and entered the race I proposed. Coincidentally, 
during that academic year, with the participation of the celebrated geometer Branko 
Grünbaum, and of Paul Erdős, whose problem papers set the style, I started a new and unique 
quarterly Geombinatorics, dedicated to problem-posing essays on discrete and combinatorial 
geometry and related areas. Geombinatorics is still alive and well now, 32 years later. The 
aspirations of the journal were clear from my 1991 Editor’s Page in Issue 3 of Volume I: 

In a regular journal, a paper appears 1 to 2 (or more) years after the research is 
completed. By then even the author may not be excited any more about his results. In 
Geombinatorics we can exchange open problems, conjectures, aspirations, work-in-
progress that is still exciting to the author, and therefore inspiring to the reader. 

A true World Series played out on the pages of Geombinatorics around problem 5.7. The 
graphs obtained by the record setters were as mathematically significant as they were 
beautiful. I have to show them to you – see them discussed in detail in Chapters 14 and 15. 

3 The symbol G(x1,. . .,xn) denotes the graph on the listed inside parentheses n vertices, with two 
vertices adjacent if and only if they are a unit distance apart.
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Many attempts to increase the lower bound of the chromatic number of the plane had not 
achieved their goal. Rutgers University’s PhD student Rob Hochberg believed that the 
chromatic number of the plane was 4, while his roommate and fellow PhD student Paul 
O’Donnell was of the opposite opinion. They managed to get along despite this disagreement 
of the mathematical kind. On January 7, 1994, Rob sent me an e-mail to that effect: 

Alex, hello. Rob Hochberg here. (The one who’s gonna prove χ(E2 ) = 4.) . . .  It seems 
that Paul O’Donnell is determined to do his Ph. D. thesis by constructing a 5-chromatic 
unit-distance graph in the plane. He’s got several interesting 4-chromatic graphs and 
great plans. We still get along. 

Two months later, Paul O’Donnell’s abstract in the Abstracts book of the Southeastern 
International Conference on Combinatorics, Graph Theory, and Computing in Boca Raton, 
Florida, included the following announcement: 

The chromatic number of the plane is between four and seven. A five-chromatic 
subgraph would raise the lower bound. If I discover such a subgraph, I will present it. 

We all came to his talk of course (it was easy for me, as I spoke immediately before Paul in 
the same room). At the start of his talk, however, Paul simply said, “not yet,” and went on to 
show his impressive 4-chromatic graph of girth 4. Five years later, on May 25, 1999, Paul 
O’Donnell defended his doctorate at Rutgers University. 

Much was learned about 4-chromatic unit distance graphs. The best of these results, in my 
opinion, was contained in O’Donnell’s dissertation. He completely solved Paul Erdős’ 
problem 5.6 and delivered to Paul Erdős an ultimate surprise by negatively answering 
Erdős’ general conjecture: 

O’Donnell’s Theorem 5.8 [Odo3, Odo4, Odo5]. There exist 4-chromatic unit distance 
graphs of arbitrary finite girth. 

I choose to divide the proof of this result between Parts III and IX. See you there!
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Chapter 6 
Polychromatic Number of the Plane and Re sults 
Near the Upper Bound 

6.1 Stechkin’s 6-Coloring 

In Chapter 4, we discussed the polychromatic number χp of the plane and looked at the 1970 
paper [Rai] by Dmitry E. Raiskii, in which he was the first to prove that 4 is the lower bound 
of χp. The paper also contained the upper bound: 

χp ≤ 6: 

The example proving this upper bound was found by Sergei B. Stechkin and published 
with his permission by D.E. Raiskii in [Rai]. Stechkin has never gotten credit in the West for 
his example. Numerous articles and books credited Raiskii (except for Raiskii himself!). How 
did this happen? As everyone else, I read the English translation of Raiskii’s paper [Rai]. It 
says (the words in italics are mine): 

S.B. Stechkin noted that the plane can be decomposed into six sets such that all distances 
are not realized in any one of them. A corresponding example is presented here with the 
author’s solution. 

The author of what? – I was wondering. The author of the paper (as everyone decided)? 
But there is very little need for a “solution” once the example is found. I put Sherlock 
Holmes’s cloak on and ordered a copy of the original Russian text. I read it in disbelief: 

A corresponding example is presented here with the author’s permission. 

Stechkin permitted Raiskii to publish Stechkin’s example! The translator mixed up two 
somewhat similar-looking Russian words and “innocently” created a myth (see Table 6.1): 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597
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Table 6.1 Translator’s folly 

Russian word English translation 

Решение Solution 
Pазрешение Permission 

This is a great example in support of the expression “lost in translation.” In reality, Sergei 
B. Stechkin was the editor of Matematicheskie Zametki (Mathematical Notes); he received 
Raiskii’s manuscript, came up with the example, and inserted it in the manuscript with, I am 
sure, the agreement of Raiskii. Let us roll back to the mathematics of this example. 

Problem 6.1 (S.B. Stechkin, [Rai]). χp ≤ 6, i.e., there is a 6-coloring of the plane such that no 
color realizes all distances. 

Solution by S.B. Stechkin [Rai]. The “unit of the construction” is a parallelogram that 
consists of four regular hexagons and eight equilateral triangles, all of side lengths 
1 (Fig. 6.1). We color the hexagons in colors 1, 2, 3, and 4. We partition the triangles of 
the titling into two types: We assign color 5 to the triangles with a vertex below their 
horizontal base and color 6 to the triangles with a vertex above their horizontal base. While 
coloring, we include with every hexagon its entire boundary, except its one rightmost and two 
lowest vertices; and every triangle does not include any of its boundary points. 

We can now tile the entire plane with translates of the unit of the construction. ■ 

Fig. 6.1 The Stechkin 6-coloring of the plane 

An easy construction solved problem 6.1 – easy to see after someone showed it to you. The 
trick was to find it, and Sergej Borisovich Stechkin found it first. Christopher Columbus too 
“just ran into” America! I got hooked.
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6.2 The Best 6-Coloring of the Plane 

I felt that if our ultimate goal was to find the chromatic number χ of the plane or to at least 
improve its known bounds (4 ≤ χ ≤ 7), it may be worthwhile to somehow measure how close 
a given coloring of the plane is to achieving this goal. In 1992, I introduced such a 
measurement and named it coloring type. 

Definition 6.2 (A. Soifer [Soi5], [Soi6], 1992). Given an n-coloring of the plane such that the 
color i does not realize the distance di (1 ≤ i ≤ n). Then we would say that this coloring is of 
type (d1, d2, ..., dn). 

This new notion of type was so natural and helpful that it received the ultimate compliment 
of becoming a part of the mathematical folklore: it appeared everywhere without a credit to its 
inventor (look, for example, p. 14 of the fundamental 991-page-long monograph [GO]). 

It would have been a great improvement in our search for the chromatic number of the 
plane if we were to find a 6-coloring of type (1, 1, 1, 1, 1, 1) or to show that one does not exist. 
With the appropriate choice of a unit, we can make the 1970 Stechkin coloring to have type 
(1, 1, 1, 1, 1 2, 

1 
2). Three years later, in 1973, Douglas R. Woodall [Woo1] found the second 

6-coloring of the plane with all distances not realized in any color. Woodall’s coloring had a 
special property that the author desired for his purposes: each of the six monochromatic sets 
was closed. His example, however, had three distinct “missing distances”: It had type (1, 1, 
1, 1 

3
p , 1 

3
p , 1 

2 3
p ). Woodall unsuccessfully tried to reduce the number of distinct distances, for he 

wrote “I have not managed to make two of the three ‘missing distances’ equal in this way” 
([Woo1], p. 193). 

In 1991, in search of a “good” coloring, I looked at the tiling with regular octagons and 
squares that tiled floors in many Russian public places (Fig. 6.2). 

1 

1 

Fig. 6.2 Tiling used in many public places 

But the “Russian public tiling” did not work! See it for yourself: 

Problem 6.3 Prove that the set of all squares in the tiling of Fig. 6.2 (even without their 
boundaries) realizes all distances. 

I then decided to shrink the squares until their diagonal became equal to the distance 
between the two closest squares. Simultaneously (!), the diagonal of the now nonregular 
octagon became equal to the distance between the two octagons marked with 1 in Fig. 6.2.  I  
was in business!
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Problem 6.4 (A. Soifer [Soi3], 1991). There is a 6-coloring of the plane of type (1, 1, 1, 1, 
1, 1 ). 

Solution We start with two squares, one of side 2 and the other of diagonal 1 (Fig. 6.3). We 
can use them to create the tiling of the plane with squares and (nonregular) octagons 
(Fig. 6.5). Colors 1, ..., 5 will consist of octagons; we will color all squares in color 6. With 
each octagon and each square, we include half of its boundary (bold lines in Fig. 6.4) without 
the end points of that half. It is easy to verify (please do) that the distance 5

p 
is not realized in 

any of the colors 1, ..., 5 and the distance 1 is not realized in the color 6. By shrinking all linear 
sizes by a factor of 5

p 
, we get the 6-coloring of type (1,1,1,1,1, 1 ). 

To simplify a verification, observe that the unit of my construction is bounded by the bold 
line in Fig. 6.5; its translates tile the plane. ■ 

Fig. 6.3 Foundation squares 

Fig. 6.4 Coloring of the boundaries 

I had mixed feelings when I obtained the result of problem 6.4 in early August 1991. On 
the one hand, I knew the result was “close but no cigar”: after all, a 6-coloring of type (1, 1, 
1, 1, 1, 1) was not found. On the other hand, I thought that the latter 6-coloring may not exist, 
and, if so, my 6-coloring would be the best possible. There was another consideration as well. 
While in a PhD program in Moscow, I hoped to produce the longest paper that would still be 
refereed in by a major journal (and I got one published in 1973 that in manuscript was 
56 pages long). This time, I was interested in a “dual record”: how short can a paper be and 
still contain enough “stuff” to be refereed in and published? The paper [Soi6] solving problem 
6.4 was two pages long, including three pictures. It was received on August 8, 1991, and



accepted the next day by the Journal of Combinatorial Theory, Series A by the managing 
editor Bruce Rothschild of UCLA (University of California, Los Angeles). As nearly all 
journal editors have nearly always, Professor Rothschild insisted on objectivity. Referring to 
the chromatic number of the plane problem (CNP), I wrote that it was “my favorite open 
problem.” Rothschild changed it in pencil to “an old problem.” I accepted the edit as it was a 
condition for publication. In my book, I can finally declare that CNP is still my favorite open 
problem in all of mathematics. 
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Fig. 6.5 The Soifer 6-coloring of the plane 

This short paper also gave birth to a new definition and an open problem. 

Definition 6.5 [HS1]. An almost chromatic number χa of the plane is the minimum number 
of colors that are required for coloring the plane so that almost all (i.e., all but one) colors 
forbid a unit distance and the remaining color forbids a distance. 

We have the following inequalities for χa: 

4≤ χa ≤ 6: 

The lower bound follows from Dmitry Raiskii’s [Rai]. I proved the upper bound in 6.4 
above [Soi6]. This naturally gave birth to a new problem, which is still open: 

Open Problem 6.6 [HS1]. Find χa. 

6.3 The Age of Tiling 

Hadwiger’s, Stechkin’s, and my ornaments (Figs. 2.4, 6.2, and 6.6, respectively) delivered 
new mathematical results. They were also aesthetically pleasing. Have we contributed 
something, however little, to the arts? Not really. Nothing is new in the world of arts. We 
can find Henry Moore’s aesthetics in pre-Columbian art and Picasso’s cubistic geometrization



of form in the art of sub-Saharan Africa. Our ornaments too were known for over 1000 years 
to the artists of China, India, Persia, Turkey, and Europe. Figures 6.6, 6.7, and 6.8, reproduced 
with kind permission from the Harvard-Yenching Institute from the wonderful 1937 book A
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Fig. 6.6 Chinese lattice 1 

Fig. 6.7 Chinese lattice 2



Grammar of Chinese Lattice by Daniel Sheets Dye [Dye], show how those ornaments were 
implemented in old Chinese lattices.
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Fig. 6.8 Chinese lattice 3 

If it is any consolation, I can point out that the Chinese ancestors did not invent the beauty 
and strength of honeycombs either: Bees were here first!
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Chapter 7 
Continuum of 6-Colorings of the Plane 

In 1993, another 6-coloring was found by Ilya Hoffman and me ([HS1], [HS2]). Its type was 
1, 1, 1, 1, 1, 2

p
- 1 :The story of this discovery is noteworthy. In the summer of 1993, I was 

visiting my cousin in Moscow, a well-known New Vienna School composer, Leonid Hoff-
man. His 15-year-old son Ilya was studying violin at the Gnessin Music High School. Ilya set 
out to learn what I was doing in mathematics and did not accept any general answers. He 
wanted particulars. I showed him my 6-coloring of the plane (Problem 6.4), and the teenage 
musician got busy. The very next day he showed me . . .  the Stechkin coloring (Fig. 6.2) that 
he discovered on his own! “Great,” I replied, “but you are 23 years late.” A few days later, he 
came up with a new idea of using a two-square tiling. Ilya had an intuition of a virtuoso fiddler 
and no mathematical culture – and so I calculated the sizes the squares had to have for the 
6-coloring to do the job we needed. I wanted Ilya to be the sole author, but he insisted on our 
joint credit. And the joint work of the unusual mathematician–musician team was born. Ilya 
went on to graduate from the graduate school of Moscow Conservatory in the class of the 
celebrated violist and conductor Yuri Bashmet and is now one of Russia’s hottest violinists 
and violists and the winner of several international competitions. 

Problem 7.1 (I. Hoffman and A. Soifer [HS1], [HS2]). There is a 6-coloring of the plane of 
type 1, 1, 1, 1, 1, 2

p
- 1 : 

Solution Tile the plane with squares of diagonals 1 and 2- 1 (Fig. 7.1). We use colors 
1, ..., 5 for larger squares and color 6 for all smaller squares. With each square, we include half 
of its boundary, its left and lower sides, without the end points of this half (Fig. 7.2). 

To easily verify that this coloring does the job, observe the unit of the construction that is 
bounded by the bold line in Fig. 7.1. Its translates tile the plane and thus define its coloring. ■ 

© Alexander Soifer 2024 
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Fig. 7.1 The Hoffman–Soifer 6-coloring of the plane 

Fig. 7.2 Coloring of the boundaries 

The two examples, found in the solutions of problems 6.4 and 7.1, prompted me in 1993 to 
introduce a new terminology for this problem and to translate the results and problems into 
this new language. 

Open Problem 7.2 (A. Soifer [Soi7], [Soi8]). Find the 6-realizable set Χ6 of all positive 
numbers α such that there exists a 6-coloring of the plane of type (1, 1, 1, 1, 1, α). 

In this new language, the results of problems 6.4 and 7.1 can be written as follows: 

1 

5
p , 2 

p
- 1 2 Χ6:

https://doi.org/10.1007/978-1-0716-3597-1_6#FPar4
https://doi.org/10.1007/978-1-0716-3597-1_6#FPar4


i.e., for every α 2 2- 1,
5

p , there is a 6-coloring of type (1, 1, 1, 1, 1, α).
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We now have two examples of “working” 6-colorings. But what do they have in common? 
It is not obvious, is it? One uses octagons, while the other does not. After a while, I realized 
that they were two extreme examples of a general case and, in fact, a much better result was 
possible, describing a whole continuum of working 6-colorings! 

Theorem 7.3 (A. Soifer [Soi7], [Soi8]). 

2 
p

- 1, 
1 

5
p ⊆Χ6, 

p
1 1 

Proof Let a unit square be partly covered by a smaller square, which cuts off the unit square 
into vertical and horizontal segments of lengths x and y, respectively, and forms with it an 
angle ω (Fig. 7.3). These squares induce the tiling of the plane that consists of nonregular 
octagons and “small” squares that are congruent to each other (Fig. 7.4). 

Fig. 7.3 The foundation squares 

1 Symbol [a,b], a < b, as usual, stands for the line segment, including its end points a and b.
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Fig. 7.4 The Soifer continuum of 6-colorings of the plane 

Fig. 7.5 Coloring boundaries 

Now we are ready to color this tiling in 6 colors. Denote by F the unit of our construction, 
bounded by a bold line (Fig. 7.4) and consisting of five octagons and four small squares. Use 
colors 1 through 5 for the octagons inside F and color 6 for all small squares. Include in the



colors of octagons and small squares the parts of their boundaries that are shown in bold in 
Fig. 7.5. Translates of F tile the plane and thus define the 6-coloring of the plane. We now 
wish to select the parameters to guarantee that each color forbids a distance. 
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At first, the complexity of computations appeared unassailable to me. However, a true 
Math Olympiad approach (i.e., good choices of variables, clever substitutions, and nice 
optimal properties of the chosen tiling) allowed for a successful sailing. 

Let x ≤ y (Fig. 7.3). It is easy to see (Figs. 7.6 and 7.7) that we can split each small square 
into four congruent right triangles with sides x and y and a square of side y - x. 

Fig. 7.6 A closer look at the tiling’s foundation 

Fig. 7.7 A foundation close-up
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The requirement for each color to forbid a distance produces the following system of two 
inequalities (see Fig. 7.6): 

d1 ≥ d2 
d3 ≥ d4 

Figures 7.6 and 7.7 allow for an easy representation of all di (i = 1, 2, 3, 4) in terms of x and 
y. As a result, we get the following system of inequalities: 

1þ y- xð Þ2 þ 2xð Þ2 ≥ 1þ 1- 2xð Þ2 
1- x- y≥ 2 x2 þ y2ð Þ  

ð7:2Þ 

Solving for x in each of the two inequalities in (7.2) separately, we unexpectedly get the 
following system: 

x2 þ 2 1- yð Þxþ y2 þ 2y- 1 ≥ 0 

x2 2 1- y x y2 2y- 1 ≤ 0: 

Therefore, we get the equation (!) in x and y: 

x2 þ 2 1- yð Þxþ y2 þ 2y- 1 = 0: 

Treating this as the equation in variable x, we obtain a unique (!) solution for x as a function 
of y that satisfies the system (7.2) of inequalities: 

x= 2- 4yþ y- 1,where 0≤ y≤ 0:5: ð7:3Þ 

Since 0 ≤ x ≤ y, we get even narrower bounds for y: 0:25≤ y≤ 2- 1. For any value of 
y within these bounds, x is uniquely determined by (7.3) and is accompanied by the equalities 
(!) d1 = d2 and d3 = d4. 

Thus, we showed that for every y 2 0:25, 2- 1 , there is a 6-coloring of type 
(1, 1, 1, 1, 1, α). But what values can α take on? Surely, 

α= 
d4 
d2 

: ð7:4Þ 

Let us introduce a new variable Y = 2- 4y, where Y 2 2- 2, 1  and figure out x and 
y from (7.3) as functions of Y: 

4y= - Y2 þ 2 
4x= - Y2 4Y - 2 7:5
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Now substituting from (7.1) and (7.2) the expressions for d4 and d2 into (7.4), and using the 
two equalities (7.5) to get rid of x and y everywhere, we get a “nice” expression for α2 as a 
function of Y (do verify my algebraic manipulations on your own): 

α2 = 
Y4- 4Y3 þ 8Y2- 8Y þ 4 

Y4 - 8Y3 þ 24Y2 - 32Y þ 20 : 

By substituting Z = Y - 2, where Z - 2, - 1 , we get a simpler function α2 of Z: 

α2 = 1þ 4Z Z2 þ 2Z þ 2 
Z4 þ 4 : 

To observe the behavior of the function α2 , we compute its derivative: 

α2 
0 
= -

4 

Z4 þ 4 2 
Z6 þ 4Z5 þ 6Z4 - 12Z2 - 16Z- 8 : 

Normally, there is nothing promising about finding the exact roots of an algebraic 
polynomial of a degree greater than 4. But we are positively lucky here, for this sixth-
degree polynomial can be nicely decomposed into factors: 

α2 
0 
= -

4 

Z4 þ 4 2 
Z2 - 2 Z þ 1ð Þ2 þ 1 

2 
: 

Hence, the derivative has only two zeros. In fact, in the segment of our 
interest, Z 2 - 2

p 
, - 1 , the only extremum of α2 occurs when Z = - 2

p 
. Going back 

from Z to Y to y, we see that on the segment y 2 0:25, 2
p

- 1 , the function α = α(y) 
decreases from α= 1 

5
p ≈ 0.44721360 (i.e., a 6-coloring of problem 6.4) to  α= 2

p
- 1≈ 

0.41421356 (i.e., a 6-coloring of problem 7.1). Since the function α = α(y) is continuous and 
increasing on 0:25, 2

p
- 1 , it takes on each intermediate value from the segment 

2
p

- 1, 1 and only once. 

We have proved the required result and much more: 

For every angle ω between the small and the large squares (see Fig. 7.3), there are unique 
sizes of the two squares (and unique square intersection of parameters x and y) such that the 
constructed 6-coloring has type (1, 1, 1, 1, 1, α) for a uniquely determined α. 

This is a remarkable fact: the working solutions barely exist – they form something of a 
curve in a three-dimensional space formed by the angle ω and two linear variables x and y! We  
thus found a continuum of permissible values for α and a continuum of working 6-colorings 
of the plane. ■ 

Remark The problem of finding the 6-realizable set Χ6 has a close relationship with the 
problem of finding the chromatic number χ of the plane. Its solution would shed light – if not 
solve – the chromatic number of the plane problem: 

If 1 = Χ6, then χ = 7; 
If 1 Χ6, then χ ≤ 6.

https://doi.org/10.1007/978-1-0716-3597-1_6#FPar4
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Open Problem 7.4 (A. Soifer [Soi5]). Find Χ6. 

I am sure you understand that this problem, formulated in just two words, is extremely 
difficult. 

In 1999, the Russian authorities accused my young coauthor and fine young violinist Ilya 
Hoffman of computer hacking (even though he did not pocket any money) and imprisoned 
him before the trial as a “danger to the society.” I flew to Moscow, met with the presiding 
judge, a middle-aged pretty lady, in a black gown, of course. We were alone in her office. I 
asked, “What danger to the society does my nephew-violinist present?” The judge replied that 
she was not at liberty to do what she thought was right. I understood: she could have lost her 
job for that – or worse. 

I met with Valery Vasilyevich Borshchev, a member of the Russian Parliament “Duma” 
and a human rights supporter. I also met with the vice president of the Russian Academy of 
Sciences and the head of the Judicial Division of the Academy, Vladimir Nikolaevich 
Kudryavtsev, who listened to me and generously volunteered to write a “Friend of the 
Court” opinion if the case were to reach the level of the City of Moscow Court or higher. 
Permit me to tell you a few words about the celebrated Jurist Kudryavtsev (10 April 
1923–5 October 2007). 

In 1951, Stalin’s prosecutor general, Vyshinsky, announced a new legal doctrine: “One is 
guilty whom the court finds guilty.” He called the presumption of innocence “bourgeois 
superstition.” A young senior lieutenant rose to speak against the new Stalin’s doctrine 
announced by Vyshinsky. This extraordinary hero was Vladimir N. Kudryavtsev. It was 
unforgettable to meet this brave man and get his full understanding and support. 

When the trial finally took place, Ilya was released home from the courtroom. While in 
prison, he was not allowed to play his viola and violin, so Ilya wrote music and mathematics. 
The following page he sent to me from his prison cell:



2 2
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Ilya discovered a new 6-coloring of the plane. Four colors consist of regular hexagons of 
diameter 1 and two colors occupy rhombuses. By carefully assigning colors to the boundaries, 

we get a 6-coloring of type (1, 1, 1, 1, 3
p 
, 3
p 
). 

When my writings require an English translation of brilliant Russian poetry, I connect with 
Ilya for a joint translation work. “Always invite me to play linguistic combinatorics – I’m very 
pleased,” wrote Ilya to me on New Year’s Day, January 1, 2023.
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Chapter 8 
Chromatic Number of the Plane in Special 
Circumstances 

As you know from Chapters 4 and 6, 3 years after Dmitry E. Raiskii, in 1973, Douglas 
R. Woodall published the paper [Woo1] on problems related to the chromatic number of the 
plane. In it, he provided his own proofs of Raiskii’s inequalities of problems 4.1 and 6.1. In 
the same paper, Woodall also formulated and attempted to prove a lower bound for the 
chromatic number of the plane for the special case of map-type coloring of the plane. This was 
the main result of [Woo1]. However, in 1979, the mathematician from the University of 
Aberdeen Stephen Phillip Townsend found an error in Woodall’s proof and constructed a 
counterexample, demonstrating that one essential idea of Woodall’s proof was false. 
Townsend had also found a proof of Woodall’s statement, which was very much more 
elaborate than Woodall’s unsuccessful attempt. 

The intriguing history of this discovery and Townsend’s wonderful proof are a better fit in  
Chapter 25, as a part of our discussion of map coloring – do not overlook them. Here I will 
formulate an important corollary of Townsend’s proof. 

Chromatic Number of a Map-Type Colored Plane 8.1 The chromatic number of the plane 
under a map-type coloring is 6 or 7. 

Woodall showed that this result implies one more meritorious statement: 

Closed Chromatic Number of the Plane 8.2 [Woo1]. The chromatic number of the plane 
under coloring with closed monochromatic sets is 6 or 7. 

I prefer not to use the Greek word “lemma” since there is an appropriate English word 
“tool”. Moreover, I would like to offer you the following tool from topology to prove on your 
own. We will use this tool in the proof that follows. 

Tool 8.3 If a bounded closed set S does not realize a distance d, then there is ε > 0 such that 
S does not realize any distance from the segment [d - ε, d + ε]. 
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Proof of Result 8.2 [Woo1] Assume that the union of closed sets A1, A2, . . ., An covers the 
plane and that for each i the set Ai does not realize a distance di. Place onto the plane a unit 
square lattice L and choose an arbitrary closed unit square U of L. Choose also i from the set 
{1, 2, . . ., n}. Denote by C(U)i the closed set that contains all points of the plane that are at 
most at the distance di from a point in U. The set Ai \ C(U)i is closed and bounded; thus, by 
tool 8.3, there is εi(U) such that no two points of Ai, at least one of which lies in U, realize any 
distance from the segment. 

di- εi Uð Þ; di þ εi Uð Þ½ �: ð8:1Þ 

Denote by ε(U) the minimum of εi(U) over all i = 1, 2, . . ., n. 

Now, for the square U, we choose a positive integer m(U) such that 

1 

2m Uð Þ  2 
p 

< 
1 
2 
ε Uð Þ: ð8:2Þ 

On the unit square U, we place a square lattice L’ of little closed squares u of side 1 
2m Uð Þ. The 

inequality (8.2) guarantees that the diagonal of u is shorter than half of ε(U). 
For each little square u contained in each unit square U of the entire plane, we determine 

f(u) = min {i : u \ Ai ≠∅} and, then, for each i = 1, 2, . . ., n define the monochromatic color 
set of our new n-coloring of the plane as follows: 

Bi = [
f uð Þ= i 

u ð8:3Þ 

As unions of closed squares u, each Bi is closed, and all Bi together cover the plane. The 
interiors of these n sets Bi are obviously disjoint. All there is left to prove is that the set Bi does 
not realize the distance di. Indeed, assume that the points b, c of Bi are at the distance di apart. 
The points b, c belong to little squares u1, u2, respectively, with each little square of side 1 

2m Uð Þ. 

Due to the definition (8.3) of  Bi, the squares u1, u2 contain points a1, a2 from Ai, respectively. 
With vertical bars denoting the distance between two points and by utilizing the inequality 
(8.2), we get: 

b, cj j- ε Uð Þ< a1, a2j j< b, cj j þ ε Uð Þ, 

i.e., 

di- ε Uð Þ< a1, a2j j< di þ ε Uð Þ, 

which contradicts (8.1). 
Thus, the chromatic number under the conditions of result 8.2 is not smaller than that under 

the conditions of result 8.1. ■
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During 1993–1994, a group of three young undergraduate students, Nathanial Brown, 
Nathan Dunfield, and Greg Perry, in a series of three essays, their first publications, proved on 
the pages of Geombinatorics [BDP1, BDP2, BDP3]1 that a similar result is true for coloring 
the plane with open monochromatic sets. As was easy to predict, the youngsters became 
professors of mathematics – Nathan at the University of Illinois at Urbana-Champaign and 
Nathanial at Pennsylvania State University. 

Open Chromatic Number of the Plane 8.4 (Brown–Dunfield–Perry). The chromatic num-
ber of the plane under coloring with open monochromatic sets is 6 or 7. 

1 The important problem book by Brass–Moser–Pach [BMP] mistakenly cites only one of these 
series of three papers. It also incorrectly states that the authors proved only the lower bound 
5, whereas they raised the lower bound to 6.
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Chapter 9 
Measurable Chromatic Number of the Plan 

9.1 Definitions 

As you know, the length of a segment [a, b], a < b, on the line E1 is defined as b- a. The area 
A of a rectangle [a1, b1] × [a2, b2], ai < bi, in the plane E

2 is defined as A = (b1- a1)(b2- a2). 
The French mathematician Henri Léon Lebesgue (1875–1941) generalized the notion of area 
to a vast class of plane sets. In place of area, he used the term measure. For a set S in the plane, 
we define its measure μ�(S) as follows: 

μ� Sð Þ= inf 
i 

A Rið Þ ð9:1Þ

with the infimum taken over all coverings of S by a countable sequence {Ri} of rectangles. 
When the infimum exists, S is said to be Lebesgue-measurable or – since we consider here no 
other measures – a measurable set – if for any set B in the plane μ�(B) = μ�(B \ S) +  μ�(B\S). 
For a measurable set S, its measure is defined by μ(S) = μ�(S). 

Any rectangle is measurable, and its measure coincides with its area. It is shown in every 
measure theory text that all closed sets and all open sets are measurable. Giuseppe Vitali 
(1875–1932) was the first to show that in the standard system of axioms ZFC for set theory 
(Zermelo–Fraenkel system plus the axiom of choice), there are nonmeasurable subsets of the 
set R of real numbers. 

We will use the same definition (9.1) for Lebesgue measure on the line E1 , when the 
infimum is naturally taken over all countable covering sequences {Ri} of segments. For a 
measure of S on the line, we will use the symbol l(S). Generalization of the notion of measure 
to n-dimensional Euclidean space En is straightforward; here we will use the symbol μn(S). In 
particular, for n = 2, we will omit the subscript and simply write μ(S). 

9.2 Bounds for the Measurable Chromatic Number of the Plane 

While a graduate student in Great Britain, Kenneth J. Falconer proved the following impor-
tant result [Fal1]: 
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Falconer’s Theorem 9.1 Let E2 = [4 
i= 1 

Ai be a covering of the plane by four disjoint 

measurable sets. Then at least one of the sets Ai realizes distance 1. 

I found his 1981 publication [Fal1] to be too concise and not self-contained for the result 
that I viewed as very important. Accordingly, I asked Kenneth Falconer, professor and dean at 
the University of St. Andrews in Scotland, for a more detailed self-contained exposition. In 
February 2005, I received Kenneth’s manuscript [Fal2], handwritten especially for this book, 
which I am delighted to share with you. 

Before we prove his result, we need to arm ourselves with some basic definitions and tools 
of the measure theory. 

A non-empty collection ּב of subsets of E2 is called σ-field, if  is closed under taking ּב 
complements and countable unions, i.e., 

(*) If A2ּב , then E2 \A 2 and ּב
1

Exercise 9.2 Show that any σ-field ּב is closed under a countable intersection and set 
difference. Also, show that ּב contains the empty set ∅ and the whole space E2 . 

It is shown in all measure theory textbooks that the collection of all measurable sets is a σ-
field. The intersection of all σ-fields containing the closed sets is a σ-field containing the 
closed sets and is the minimal such σ-field with respect to inclusion. Its elements are called 
Borel sets. Since closed sets are measurable and the collection of all measurable sets is a σ-
field, it follows that all Borel sets are measurable. 

(Observe that in place of the plane E2 , we can consider the line E1 or an n-dimensional 
Euclidean space En and define their Borel sets.) 

The following notations will be helpful: 
C(x, r) – A circle with center at x and radius r 
B(x, r) – A circular disk (or ball) with center at x and radius r 
For a measurable set S and a point x, we define the Lebesgue density, or simply density, of  

S at x as follows: 

D S, xð Þ= lim 
x→ 0 

μ S \ B x, rð Þð Þ
μ B x, rð Þð Þ , 

where μ(B(x, r)) is, of course, equal to πr2 . 

Lebesgue Density Theorem (LDT) 9.3 For a measurable set S ⊂ E2 , the density D(S, x) 
exists and equals 1 if x 2 S and 0 if x 2 E2 \S, except for a set of points x of measure 0. 

For a measurable set A, denote 

~A= x 2 A : D  A, xð Þ= 1gf :



g

E = [
i= 1

Ai is a disjoint union with the complement M � [
i= 1

∂Ai.

πr

πr
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Then, due to LDT, we get μ ~A△A = 0, i.e., ~A is “almost the same” as A.1 Observe also that 
μ(S \ B(x, r)) is a continuous function of x for r > 0; therefore, ~A is a Borel set. 

We will define the density boundary of a set A as follows: 

∂A= x : D A, xð Þ≠ 0, 1 or does not existf : 

By LDT, 

μ ∂Að Þ= 0: 

You can prove on your own or read in [Cro] the proof of the following tool: 

Tool 9.4 For a measurable set A ⊂ E2 , such that both μ(A) > 0 and μ(E2 \A) > 0, we have 
∂A ≠ ∅. 

Tool 9.5 If E2 = [4 
i= 1 

Ai is a covering of the plane by four disjoint measurable sets, then 

2 4 
~

4 

Proof follows from tool 9.4 and the observation that if x 2 ∂Ai then also x 2 ∂Aj for some j ≠ i. 
■ 

The next tool claims the existence of two concentric circles with the common center in M, 
which intersects M in length 0. 

Tool 9.6 Let M be as defined in tool 9.5; there exists x 2 M such that 

l C  x, 1ð Þ \Mð Þ= l C  x, 3 
p

\M = 0: 

I will omit the proof but include Falconer’s insight: “The point of this lemma is that if we 
place the ‘double equilateral triangle’ [see Fig. 9.1] of side 1 in almost all orientations with a 
vertex at x, the point x essentially has ‘two colours’ in any colouring of the plane, and other 
points just one colour. (Note xwj j= 3

p
.)” 

Tool 9.7 Let E2 = [4 
i= 1 

Ai be a covering of the plane by four disjoint measurable sets, none of 

which realizes distance 1. Let x 2 M as defined in tool 9.6, and without loss of generality, let 
x 2 ∂A1 and x 2 ∂A2. Then l C  x, 3

p
∖ ~A1 [ ~A2 = 0. 

Proof Since x 2 ∂A1 and x 2 ∂A2, there exists ε > 0 such that 

(1) ε< μ A1\B x, rð Þð Þ
2 < 1- ε for some arbitrarily small r and 

(2) ε< μ A2\B x, rð Þð Þ
2 < 1- ε for some arbitrarily small r 

1 Here AΔB stands for the symmetric difference of these two sets, i.e., AΔB = (A\B) [ (B\A).



(3) 1- 4 < πr2 ≤ 1;

(4) 1- 4 < πr2 ≤ 1;

(5) 1- 4 < πr2 ≤ 1.
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x 

y 

z 

w 

1 1 

1 

1 1 

Fig. 9.1 A unit diamond 

Consider the diamond (Fig. 9.1) consisting of two unit equilateral triangles xyz and yzw, 
where x is the point fixed in the statement of this tool, and y, z, w =2M (this happens for almost 
all orientations of the diamond, due to tool 9.6). Thus, suppose y 2Ãi( y), z 2Ãi(z), and w 2Ãi(w), 
where i(y), i(z), i(w) 2{1, 2, 3, 4}. For a sufficiently small r, say r < r0, we get: 

ε μ Ai yð Þ\B y, rð Þð Þ
ε μ Ai zð Þ\B z, rð Þð Þ
ε μ Ai wð Þ\B w, rð Þð Þ

We can now choose r < r0 such that (1) holds (as well as (3), (4), and (5)). Let v be a vector 
going from the origin to a point in B(0, r) and consider translation of the diamond x, y, 
z, w through v, i.e., to the diamond x +  v, y + v, z + v, w +  v.  Now (1), (3), (4), and (5) imply 
that 

1 
πr2 

μ B 0, rð Þ : x þ v 2 A1, yþ v 2 Ai yð Þ, z þ v 2 Ai zð Þ,w þ v 2 Ai wð Þ > ε-
ε 
4
-

ε 
4
-

ε 
4 
> 0: 

Thus, we can choose v 2 B(0, r) such that x + v 2 A1, y + v 2 Ai( y), z + v 2 Ai(z), w + v 2 Ai(w). 
Since by our assumption none of the sets Ai, i = 1, 2, 3, 4 realizes distance 1, we conclude 
(by looking at the translated diamond) that 1 ≠ i(y),1 ≠ i(z), i(y) ≠ i(z), i(z) ≠ i(w), and 
i(w) ≠ i(y). 

The same argument, using (2), (3), (4), and (5), produces 2 ≠ i(y), 2 ≠ i(z), i(y) ≠ i(z), 
i(z) ≠ i(w), and i(w) ≠ i(y). Therefore, i(y), i(z) are 3 and 4, respectively, in some order, and 
thus, i(w) = 1 or 2, i.e., w2Ã1 or w2Ã2. 

By tool 9.6, this holds for almost every orientation of the diamond. Since xwj j= 3
p

, we  
conclude that for almost all w 2 C x, 3

p
, we get w2Ã1 or w2Ã2. Thus, 

l C  x, 3
p

∖ ~A1 [ ~A2 = 0, as required. ■ 

Tool 9.8 Let C be a circle of radius r > 1 2 and let E1, E2 be disjoint measurable subsets of 

C such that l(C\(E1 [ E2) = 0. Then if ϕ= 2 sin - 1 1 
2r is an irrational multiple of π, either E1 

or E2 contains a pair of points distance 1 apart.
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1 
r φ 

Fig. 9.2 Parameterizing C by angle θ (mod 2π ) 

Proof Assume that neither E1 nor E2 contains a pair of points distance 1 apart. Parameterize 
C (Fig. 9.2) by angle θ (mod 2π). 

Let l(E1) > 0, then by LDT, there is θ and ε > 0 such that 

l E1 \ θ- ε, θ þ εð Þð Þ> 
3 
4 
2ε: 

Let θ1 be an angle. Since ϕ is an irrational multiple of π, there is a positive integer n such 
that 

θ1 - 2nϕþ θð Þj j< 
1 
4 
ε mod 2πð Þ: 

Since neither E1 nor E2 contain a pair of points distance 1 apart, we get (with angles 
counted mod 2π): 

l(E1 \ (θ + kϕ - ε, θ + kϕ + ε)) = l(E1 \ (θ - ε, θ + ε)) for even k and 
l(E1 \ (θ + kϕ - ε, θ + kϕ + ε)) = 2ε - l(E1 \ (θ - ε, θ + ε)) for odd k. 
In particular, l E1 \ θ þ 2nϕ- ε, θ þ 2nϕþ εð Þð Þ> 3 4 2ε, thus 

l E1 \ θ1 - ε, θ þ εð Þð Þ> 
3 
4 
2ε-

ε 
4
-

ε 
4 
= ε: 

Hence, for all θ1, 

l E1 \ θ1- ε, θ þ εð Þð Þ
2ε

≥ 1 
2 
, 

and by LDT l(C\E1)= 0. This means that E1 includes almost all of C and, therefore, contains a 
pair of points until a distance apart, a contradiction. ■ 

Surprisingly, we need a tool from abstract algebra or number theory.



- ≠ -ð Þ

by tool 9.8 – if only we can prove that ϕ= sin
2 3

is an irrational multiple of π.

2 3 2 3
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Tool 9.9 For any positive integer m, 1  i 11
p 2m 

12 m . 

Proof It suffices to note that Q - 11
p

is a Euclidean quadratic field; therefore, its integer 

ring Z - 11
p

(with units +1/-1) has a unique factorization (see Chapters 7 and 8 in the 
standard abstract algebra textbook [DF] for a proof). ■ 

Note I believe that an alternative proof is possible: it should be not hard to show that the left 
side cannot be an integer for any m. ■ 

Now we are ready to prove Falconer’s Theorem 9.1. 

Proof of Falconer’s Theorem Let E2 = [4 
i= 1 

Ai be a covering of the plane by four disjoint 

measurable sets, none of which realizes distance 1. Due to tool 9.6, there is x 2 M such that 
l C  x, 3

p
∖ ~A1 [ ~A2 = 0. Taking E1 = ~A1,E2 = ~A2, and r = 3

p
, we get the desired result

- 1 1p

Assume that mθ is an integer multiple of 2π for some integral 2m. Since 

sin θ= 1p ; cos θ= 11
p
p , we get 

11
p

2 3
p þ i 

1 

2 3
p

2m 

= 1, 

i.e., 

1- i 11 
p 2m 

= - 12ð Þm : 

We are done, as the last equality contradicts tool 9.9. ■ 

9.3 Kenneth J. Falconer 

I am always interested in learning about the life and personality of the author of a result that 
impressed me, aren’t you? Accordingly, I asked Kenneth to tell me about himself and his life. 
The following account comes from his September 30, 2005, e-mail to me. 

I was born on 25th January 1952 at Hampton Court on the outskirts of London (at a 
maternity hospital some 100 metres from the gates of the famous Palace). This was two 
weeks before Queen Elizabeth II came to the throne and when food rationing was still in 
place. My father had served in India for 6 years during the war while my mother brought 
up my brother, 12 years my senior, during the London blitz. My parents were both 
school teachers, specialising in English, my brother studied history before becoming a 
Church of England minister, and I was very much the ‘black sheep’ of the family, 
having a passionate interest in mathematics and science from an early age . . .
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I gained a scholarship to Corpus Christi College, Cambridge to read mathematics and 
after doing well in the Mathematical Tripos I continued in Cambridge as a research 
student, supervised by Hallard Croft. I worked mainly on problems in Euclidean 
geometry, particularly on convexity and of tomography (the mathematics of the brain 
scanner) and obtained my Ph.D. in 1977. 

I had the good fortune to obtain a Research Fellowship at Corpus Christi College, 
where I continued to study geometrical problems, including the fascinating problem of 
the chromatic number of the plane, showing in particular that the chromatic number of a 
measurable colouring of the plane was at least 5. Also around this time I worked on 
generalisations of the Kakeya problem (the construction of plane sets of zero area 
containing a line segment in every direction). Thus I encountered Besicovitch’s beau-
tiful idea of thinking of such sets as duals of what are now termed ‘fractals’, with 
directional and area properties corresponding to certain projections of the fractals. This 
led to my ‘digital sundial’ construction – a subset of R3 with prescribed projections in 
(almost) all directions . . .  

In 1980 I moved to Bristol University as a Lecturer, where the presence of theoretical 
physicist Michael Berry, and analyst John Marstrand were great stimuli. Here I started to 
work on geometric measure theory, or fractal geometry, in particular looking at prop-
erties of Hausdorff measures and dimensions, and projections and intersections of 
fractals . . .  

It became clear to me that much of the classical work of Besicovitch and his School 
on the geometry of sets and measures had been forgotten, and in 1985 I published my 
first book ‘The Geometry of Fractal Sets’ to provide a more up to date and accessible 
treatment. This was around the time that fractals were taking the world by storm, 
following Mandelbrot’s conceptually foundational work publicised in his book ‘The 
Fractal Geometry of Nature’ which unified the mathematics and the scientific applica-
tions of fractals. My book led to requests for another at a level more suited to 
postgraduate and advanced undergraduate students and in 1990 I published ‘Fractal 
geometry – Mathematical Foundations and Applications’ which has been widely used in 
courses and by researchers, and has been referred to at conferences as ‘the book from 
which we all learnt our fractal mathematics’. A sequel ‘Techniques in Fractal Geometry’ 
followed in 1998. In collaboration with Hallard Croft and Richard Guy, I also authored 
‘Unsolved Problems in Geometry,’ a collection of easy to state unsolved geometrical 
problems. Happily (also sadly!) many of the problems in the book are no longer 
unsolved! . . .  

In 1993 I was appointed Professor at the University of St Andrews in Scotland, 
where I have been ever since. Although St Andrews is a small town famous largely 
for its golf, the University has a thriving mathematics department, in particular for 
analysis and combinatorial algebra, to say nothing of its renowned History of 
Mathematics web site. I became Head of the School of Mathematics and Statistics 
in 2001, with the inevitable detrimental effect on research time. I was elected a 
Fellow of the Royal Society of Edinburgh in 1998, and to the Council of the London 
Mathematical Society in 2000 ...
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My main leisure activity is long distance walking and hillwalking. I have climbed all 
543 mountains in Britain over 2500 feet high. I am a keen member of the Long Distance 
Walkers Association, having been Editor of their magazine ‘Strider’ from 1986–91 and 
Chairman from 2000–03. I have completed the last 21 of the LDWA’s annual hundred 
mile non-stop cross-country walks in times ranging from 26 to 32 hours. 

Let me add the latest honor bestowed on Professor Falconer in early 2018. He was 
appointed Regius Chair of Mathematics by the Queen of England. The Regius Chair of 
Mathematics is one of the oldest and most prestigious positions in England, founded by King 
Charles II in 1668.
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Chapter 10
Coloring in Space

For myself, I like a universe that includes much that is
unknown and, at the same time, much that is knowable.

– Carl Sagan

When in 1958, Paul Erdős learned about the chromatic number of the plane problem, he
created a number of related problems, some of which we have discussed in the preceding
chapters. Paul also generalized the problem to the n-dimensional Euclidean spaces En. On
October 2, 1991, I received a letter from him, which contained a historic remark [E91/10/
2ltr]1:

I certainly asked for the chromatic number of E(n) long ago (30 years).

Paul was interested in both the asymptotic behavior as n increased and in the exact values
of the chromatic number for small n, first of all for n = 3.

As we have already discussed in Chapter 4, in 1970, Dmitry E. Raiskii [Rai] proved the
lower bound for n-dimensional Euclidean spaces.

Lower Bound 10.1 (D. Raiskii, 1970). n + 2 ≤ χ(En).

For n = 3, this, of course, gives 5 ≤χ(E3). This lower bound for the three-dimensional
space had withstood 30 years, until in January 2000, Oren Nechushtan of Tel Aviv University
improved it (and published 2 years later [Nec]):

Best Lower Bound 10.2 (O. Nechushtan): 6 ≤χ(E3).

At the end of his paper, Nechushtan remarks:

The proof given above can be used to obtain an explicit unit distance graph of the space
with chromatic number 5. This graph has less than 400 vertices. The author believes that
it is possible to reduce the size of such a graph.

Nechushtan’s paper continues to inspire still today. The reduction in size was achieved not
long ago by others, who started with Nechushtan’s steps and then diverged from them. In
2020, Aubrey de Grey constructed a 6-chromatic unit distance graph in 3-dimensional space

1Curiously, Paul wrote an improbable date on this letter: “1977 VII 25”: at that time, I still lived in
Moscow.
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on just 59 vertices [G3]; he also reported that Exoo and Ismailescu independently constructed
such a graph on 79 vertices.
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The obvious upper bound of 27 for the chromatic number of three-dimensional space was
reduced to 21; it was proved by David Coulson of Melbourne University in
[Cou1]. Curiously, the credit for the bound of 21 Coulson seems to give to me:

The upper bound of 21 was found [Mathematical Coloring Book (to appear in
1996–1997)] using a colouring based on the lattice D3 ffi A3, which is the face-centered
cubic lattice.

First of all, no one had a copy of The Mathematical Coloring Book in 1996–1997 and that
includes David Coulson and me – the book was finished and published a decade+ later, in
November 2008. Moreover, I had nothing to do with proving this upper bound. David
Coulson then goes on to further reduce the upper bound to 18 [Cou1]. Please, pay attention
to the dates, as it seems Coulson’s papers were slow to appear in print. The upper bound of
18 was first submitted in 1993 to the Transaction of the American Mathematical Society
(on September 27, 1993, and I received an e-mail from Coulson to that effect). Then (I assume
due to the lack of interest in the Transactions for combinatorial mathematics), Coulson
submitted it to Discrete Mathematics on April 24, 1995; he revised the paper on August
30, 1996, and it was finally published in 1997 [Cou1], 4 years after the initial submission.

Coulson then achieved an amazing improvement: He obtained the upper bound of 15 using
a face-centered cubic lattice (see Conway and Sloane [CS] for more about three-dimensional
lattices). The upper bound of 15 also took 4 years to appear in print. It was submitted to
Discrete Mathematics on December 9, 1998. A month later, I received this manuscript to
referee under the number DM 9298. Amazingly, a copy of my February 27, 1999, report
survives. I suggested five stylistic improvements and wrote:

I found the main result to be of high importance to the field. Indeed, Coulson has
dramatically improved his own previous bound of 18 by proving that 15 is an upper
bound of the chromatic number of the 3-space. He conjectures that 15 is the best
possible upper bound if one uses a lattice-based coloring. His argument in favor of
this conjecture is good, and we would encourage the author to pursue the proof . . .

The author hints that his methods may produce similar results in other dimensions.
Again, the referee would encourage the pursuit of these results.

I am at a loss to explain why the revised manuscript was received by the editors only about
2 years later, on December 11, 2000. While writing these lines, I am looking at the
uncorrected proofs that I received from the author – they are dated 2001. The paper was
published much later yet, in 2002 [Cou2].

In August 2002, David Coulson and I played a very unusual role at the Congress of the
World Federation of National Mathematics Competitions in Melbourne, Australia: we were
co-presenters of the 80-minute-long plenary talk, entitled 50 Years of Chromatic Number of
the Plane (we did not sing in a duet but rather presented one person at a time. I spoke about the
problem, its history, and results in the plane. On his part, David described his results on the
upper bounds of the chromatic number of the Euclidean 3-space. After the talk, I invited
David to submit a version of his part of the talk to Geombinatorics, where it appeared very
quickly, in the January issue of 2003 [Cou3].
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Best Upper Bound of 3-Space 10.3 (D. Coulson, 1998–2002). χ(E3) ≤ 15.

The curiosity surrounding this result did not end with its publication. It was published
again in 2003 by a pair of authors, Rados Radoičić and Géza Tóth [RT]. By the time they
received the proofs, the authors saw Coulson’s publication. They added it to the bibliography
and chose to publish their proof based on the same tiling of the 3-space. In a copy of this paper
downloaded from an author’s homepage, I read:

Very recently, Coulson [C02] also [sic] proved our [sic] Theorem, moreover, he found
essentially the same coloring.

The comment in the published journal version was fairer toward Coulson:

Added in proof. Very recently, Coulson [C02] has independently found a very similar
15-coloring of 3-space.

I respectfully disagree with the characterization “very recently,” for Coulson first submit-
ted his paper years earlier than Radoičić and Tóth, on December 9, 1998. It is quite possible
that Radoičić and Tóth found their proof independently and before reading Coulson’s proof.
Yet, I am assigning credit to Coulson alone for the following reasons:

1. Radoičić and Tóth saw Coulson’s publication before they received their proofs.
2. Their proof is not essentially different from Coulson’s.
3. Coulson first submitted his paper many years prior, in 1998.
4. Coulson has circulated his preprint fairly widely ever since 1998 (I was one of the

recipients).

In the same paper [RT], Rados Radoičić and Géza Tóth contributed an important upper
bound for the chromatic number of the four-dimensional Euclidean space:

Upper Bound of 4-Space 10.4 (Radoičić and Tóth [RT]).

χ E4 ≤ 54:

As I mentioned in my referee report, Coulson conjectured that the upper bound of 15 is best
possible for lattice coloring. I conjectured much more: I thought 15 was the exact value for
the 3-space as likely as 7 was for the plane:

Chromatic Number of 3-Space Conjecture 10.5 (A. Soifer, 2002).

χ E3 = 15:

Life in four and five dimensions was studied by Kent Cantwell in his 1996 work [Can1],
who found the following lower bounds:
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Lower Bounds for E4 and E5 10.6 (Cantwell, 1996).

χ E4 ≥ 7;

χ E5 ≥ 9:

Now, what do you think about Fig. 10.1?

A

B C

D

1

2

2
3

3

1

1

5

2

Fig. 10.1 A useful trapezoid

I hear you replying, “a trapezoid” and wondering: “what has this middle-school-like
geometry drawing got to do with chromatic numbers of n-spaces?” In fact, Fig. 10.1 is the
key in Leonid L. Ivanov’s proof [Iva] of the first Cantwell’s lower bound. Ivanov writes:
“Lower bound [6] was proved by D.E. Raiskii. In 4-dimensional space we made one more
step forward.” This is incorrect, for Ivanov’s proof came a whole 10 years after the 1996
Cantwell publication, and, Moscow State University, with a fine group working on these
problems, should have done a better publication search. In 2006, Leonid Ivanov must have
been an undergraduate student, for only in 2011 did he defend his PhD dissertation “Inves-
tigation of optimal configurations in problems about chromatic number of spaces and in the
Borsuk problem” that included this proof. Thus, Ivanov does not get credit in this book for
discovering the inequality χ(E4) ≥ 7. However, his proof is shorter than Cantwell’s, just one
page. Would you like to see it? All right. There are no illustrations in Ivanov’s proof; I am
adding Fig. 10.1 for you to easily “see” through the proof. I am also shrinking the proof
presentation to ca. 3/4 of a page.

Proof Assume that the Euclidean space E4 is six-colored without a monochromatic unit
segment. Toss on the plane <x1, x2 > spanned by the first two coordinate axes a circle O1 of
radius 2=3with the center at the origin. Let O2 be the circle in the plane<x3, x4 > of radius

1=3 with the center at the same origin. Inscribe in O2 a unit equilateral triangle. Its vertices



has to be colored in three colors. Since the distance between every point ofO1 and every point
of O2 is 1, this leaves at most three colors for the circle O1.
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Now choose on O1 a sequence of points A, B, C, D with unit distances between neighbors
(see Fig. 10.1). Let vertical bars denote the length of a segment; a simple calculation gives
|AD| = 3/2; |BD| = 5=2. As we can see, any triangle with sides like in ABC can be
extended to an isosceles trapezoid ABCD (Fig. 10.1).

Let AA’ be a unit segment and D at distance 3/2 from A and A’. Let A and D be of different
colors. Let S be the set of all points B that are at a distance 1 from A and 5=2 from D. S is a
2-dimensional sphere in the 3-space orthogonal to AD. The radius of S is 15

p
/4 (it is equal to

the altitude from B in a triangle like ABD (Fig. 10.1). Choose on S a unit equilateral triangle B1

B2 B3 (it exists because 15
p

/4 > 3
p

/2). Among its vertices, two must differ in color from D;
let it be B1, B2. Extend each of the triangles AB1D, AB2D to isosceles trapezoids AB1C1D;
AB2C2D, respectively. These trapezoids are inscribable in a circle of radius 2=3; therefore,
by the argument of the first paragraph, the vertices of trapezoids must utilize at most three
colors. This leaves for C1 only the same color as A and so does for C2 in its trapezoid. Finally,
observe that | B1C1| = | B2C2| = | B1B2| = | C1C2|. ■

It took almost two decades and three coauthors for the first Cantwell’s lower bound to be
improved. Geoffrey Exoo, Dan Ismailescu, and Michael Lim achieved it in 2014. They
constructed a 65-vertex unit distance graph of chromatic number 9 and embedded it into
the Euclidean 4-space [EIL].

Lower Bound for 4-Space 10.7 (Exoo, Ismailescu, and Lim, 2014).

χ E4 ≥ 9:

Thus, the best-known bounds for the 4-space are 9 ≤ χ(E4) ≤ 54, which, in my opinion, are
about equally distant from the exact value.

Conjecture for 4-Space 10.8 (Soifer, 2002).

χ E4 = 31:

On March 31, 2008, I received an impressive submission [Cib] to Geombinatorics from
Josef Cibulka of Charles University in Prague. His main result offered the new lower bound
for the chromatic number of E6:

Lower Bounds for E6 10.9 (Cibulka, 2008).

χ E6 ≥ 11:

In reply to my inquiry, Josef answered on April 1, 2008:

I am first year graduate student; actually, most results of the submitted paper are from
my diploma thesis.
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In 2014, Geoffrey Exoo and Dan Ismailescu improved Cibulka’s result and established the
lower bounds of chromatic numbers of Euclidean spaces En for n = 6, 7, 10, 11, 12, 13, and
14. Let us record their achievement:

Lower Bounds for Euclidean Spaces En for n = 6,7,10,11,12,13,14; 10.10 ([EI8], Exoo–
Ismailescu, 2014).

χ E6 ≥ 12;

χ E7 ≥ 16;

χ E10 ≥ 26;

χ E11 ≥ 26;

χ E12 ≥ 36;

χ E13 ≥ 36;

χ E14 ≥ 36:

In January 2015, Geombinatorics carried a paper [KaT] by Matthew Kahle and Bira Taha
with new lower bounds of chromatic numbers of Euclidean spaces En for n = 8,9,10,11,12.

Lower Bounds for Euclidean Spaces En for n = 8,. . .,12; 10.11 ([KT], Kahle–Taha,
2015).

χ E8 ≥ 19;

χ E9 ≥ 21;

χ E10 ≥ 26 Exoo–Ismailescu had it for E10 a year before

χ E11 ≥ 32;

χ E12 ≥ 32:

In 2018, the Russian group of Danila Cherkashin, Anatoly Kulikov, and Andrei
Raigorodskii improved several lower bounds of chromatic numbers of Euclidean spaces
En for n = 9, . . ., 12.

Lower Bounds for Euclidean Spaces En for n = 8,. . .,12; 10.12 ([CKR], Cherkashin–
Kulikov–Raigorodskii, 2015).

χ E9 ≥ 22;

χ E10 ≥ 30;

χ E11 ≥ 35;

χ E12 ≥ 37:



Erdős’ Conjecture on the Asymptotic Behavior of the Chromatic Number of Rn
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There are papers, [Sze3] and [BRa], presenting lower bounds of chromatic numbers of En

for n > 12. I refer you to these two papers for the results.
On February 12, 2022, Andrii Arman, Andriy V. Bondarenko, Andriy Prymak, and Danylo

Radchenko uploaded to arXiv the second version of their paper, containing a good number of
upper bound results [ABPR]. The authors point out that they obtained these results using
explicit constructions of colorings of En based on sublattice coloring schemes.

Upper Bounds for Euclidean Spaces En 10.13 [ABPR].

χ E4 ≤ 49;

χ E5 ≤ 140;

χ Enð Þ≤ 7n=2 for n 2 6,8,24f g;
χ E7 ≤ 1372;

χ E9 ≤ 17253;

χ Enð Þ≤ 3n for all n≤ 38 and n= 48, 49:

A long time ago, Paul Erdős conjectured, and often mentioned in his problem talks, for
example, [E75.24], [E75.25], [E79.04], [E80.38], [E81.23], and [E81.26], that the chromatic
number χ(En) of En grows exponentially in n.

10.14 χ(En) tends to infinity exponentially.

This conjecture was settled in the positive by a set of two results: the 1972 exponential
upper bound, found by D.G. Larman and C.A. Rogers, and the 1981 exponential lower
bound, established by P. Frankl and R.M. Wilson:

Frankl–Wilson’s Asymptotic Lower Bound 10.15 (Frankl and Wilson, 1981, [FW]).

1þ o 1ð Þð Þ1:2n ≤ χ Enð Þ:

Larman–Rogers’ Asymptotic Upper Bound 10.16 (1972, [LR]).

χ Enð Þ≤ 3þ o 1ð Þð Þn:

Asymptotically, Larman–Rogers’ upper bound remains the best possible still today. Frankl–
Wilson’s asymptotic lower bound has been improved by Andrei Raigorodskii:

Raigorodskii’s Asymptotic Lower Bound 10.17 (2000, [Raig2]).

1:239 . . .þ o 1ð Þð Þn ≤ χ Enð Þ:

In Chapter 4, you came across the polychromatic number χp of the plane and in Chapters 4, 6,
and 7 the results of it. This notion naturally generalizes to the polychromatic number χp(E

n) of
the Euclidean n-dimensional space En. Dmitry E. Raiskii was the first to publish a relevant
result [Rai]:



n 2≤ χ En :

Larman–Rogers Upper Bound 10.19

Frankl–Wilson Lower Bound 10.20

* * *
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Raiskii’s Lower Bound 10.18 þ pð Þ

Larman–Rogers’ upper bound 10.15 implies the same asymptotic upper bound for the
polychromatic number:

χp Enð Þ≤ 3þ o 1ð Þð Þn:

They also conjectured that χp(E
n) grows exponentially in n. The positive proof of the

conjecture, started by Larman and Rogers, was completed by Frankl and Wilson [FW]:

1þ o 1ð Þð Þ1:2n ≤ χp Enð Þ:

Asymptotically, Larman–Rogers’ upper bound remains the best possible still today.
Frankl–Wilson’s asymptotic lower bound was improved by Andrei M. Raigorodskii:

Raigorodskii’s Asymptotic Lower Bound 10.20 (2000, [Raig2]).

1:239 . . .þ o 1ð Þð Þn ≤ χp Enð Þ:

Obviously, there is a gap between the lower and upper bounds, and it would be very
desirable to narrow it down.

Problem 4.4 can be considered in an n-dimensional Euclidean space too. For a given finite
set S of positive numbers, called a set of forbidden distances, we define the graph GS(E

n),
whose vertices are points of the Euclidean n-space En, and a pair of points is adjacent if the
distance between them belongs to S.Wewill naturally call the chromatic number χS(E

n) of the
graphGS(E

n) the S-chromatic number of n-space En. The following problem is as general as it
is extremely hard:

Erdős’ Open Problem 10.21 Given S, find the S-chromatic number χS(E
n) of the space En.

By de Bruijn–Erdős compactness theorem, which we mentioned in Chapter 5, the problem
of investigating the S-chromatic number of En is a problem about finite graphs.2

As you can see, there are now a good number of results presenting lower and upper bounds
of chromatic numbers of Euclidean spaces. We all understand that these bounds are far from
the actual values of chromatic numbers. In my opinion, there is a simple formula for these
chromatic numbers. See my 2002 general conjecture for the chromatic number χ(En) of En for
any n > 1 near the end of this book.

2De Bruijn–Erdős Theorem assumes the axiom of choice – see later chapters of this book,
analyzing the influence of axioms we choose for set theory on combinatorial results.

https://doi.org/10.1007/978-1-0716-3597-1_4#FPar4
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Chapter 11 
Rational Coloring 

I would like to mention here one more direction of assault on the chromatic number of the 
plane. By placing Cartesian coordinates on the plane E2 , we get an algebraic representation of 
the plane as the set of all ordered pairs (x, y) with coordinates x and y from the set R of real 
numbers and the Euclidean distance function: 

E2 = x; yð Þ : x; y 2 Rf g ð11:1Þ 

Due to De Bruijn–Erdős Theorem 5.1, it suffices to deal with finite subsets of E2 ; thus, we 
can restrict the coordinates in (11.1) to some subset of R. The problem is, which one should be 
chosen? 

A set A is called countable if there is a one-to-one correspondence between A and the set of 
positive integers N. 

For any set C, we  define C2 as the set of all ordered pairs (c1, c2), where c1 and c2 are 
elements of C: 

C2 = c1, c2ð Þ  : c1, c2 2 Cf g  

Open Problem 11.1 Find a countable subset C of the set of real numbers R such that the 
chromatic number χ(C2 ) is equal to the chromatic number χ(E2 ) of the plane. 

The set of all algebraic numbers would work, but it would not advance our search for the 
chromatic number of the plane. The set Q of all rational numbers would not work, as Douglas 
R. Woodall showed in 1973. 

Result 11.2 (D.R. Woodall, [Woo1]). χ(Q2 ) = 2. 

Proof by D.R. Woodall [Woo1]. We need to color the points of the rational plane Q2 , i.e., the 
set of ordered pairs (r1, r2), where r1 and r2 are rational numbers. We partition Q2 into disjoint 
classes as follows: we put two pairs (r1, r2) and (q1, q2) into the same class if and only if both 
r1 – q1 and r2 – q2 have odd denominators when written in their lowest terms (an integer n is 
written in its lowest terms as n/1). 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_11&domain=pdf
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This partition of Q2 into subsets has an important property: if the distance between two 
points of Q2 is 1, then both points belong to the same subset of the partition. Indeed, let the 
distance between (r1, r2) and (q1, q2) be equal to 1. This precisely means that 

r1- q1ð Þ2 þ r2- q2ð Þ2 = 1, 

i.e., 

r1 - q1ð Þ2 þ r2 - q2ð Þ2 = 1: 

Let r1 – q1 = a/b and r2 – q2 = c/d be these differences written in their lowest terms. We 
have 

a 
b 

2 
þ c 

d 

2 
= 1 

i.e., 

a2 d2 þ b2 c2 = b2 d2 : 

Therefore, b and d must both be odd (can you see why?), i.e., by our definition above (r1, 
r2) and (q1, q2) must belong to the same subset. 

Since any class of our partition can be obtained from any other class of the partition by a 
translation (can you prove this?), it suffices for us to color just one class and extend the 
coloring to the whole Q2 by translations. Let us color the class that contains the point (0,0). 
This class consists of the points (r1, r2), where, in their lowest terms, the denominators of both 
r1 and r2 are odd (can you see why?). We color red the points of the form o 

o , 
o 
o and 

e 
o , 

e 
o and 

color blue the points of the form o 
o , 

e 
o and 

e 
o , 

o 
o , where o stands for an odd number and e for 

an even number. In this coloring, two points of the same color may not be at a distance 1 apart 
(prove this on your own). ■ 

Then there came a “legendary unpublished manuscript,” as Peter D. Johnson, Jr. referred 
[Joh8] to the paper by Miro Benda, then of the University of Washington, and Micha Perles, 
then of the Hebrew University, Jerusalem. The widely circulated and admired manuscript was 
called Coloring of Metric Spaces. Peter Johnson tells its story on the pages of Geombinatorics 
[Joh8]: 

The original manuscript of “Colorings. . .,” from which some copies were made and 
circulated (and then copies were made of the copies, etc.), was typed in Brazil in 1976. I 
might have gotten my first or second generation copy in 1977 . . .  The paper was a 
veritable treasure trove of ideas, approaches, and results, marvelously informative and 
inspiring. 

During the early and mid-1980s “Colorings. . .” was mentioned at a steady rhythm, in 
my experience, at conferences and during visits. I don’t remember who said what about 
it, or when (except for a clear memory of Joseph Zaks mentioning it, at the University of
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Waterloo, probably in 1987), but it must surely win all-time prize for name recognition 
in the “unpublished manuscript” category. 

Johnson’s story served as an introduction and homage to the conversion of the unpublished 
manuscript into the Benda–Perles publication [BP] in Geombinatorics’ January 2000 issue. 

This paper, dreamed up over a series of lunches the two authors shared in Seattle in the fall 
of 1975, created a new, algebraic approach to the chromatic number of the plane problem. 
Moreover, it formulated a number of open problems, not directly connected to the chromatic 
number of the plane, problems that gave algebraic chromatic investigations their own identity. 
Let us take a look at but a few of their results and problems. First of all, Benda and Perles 
prove (independently; apparently, they did not know about Woodall’s paper) Woodall’s result 
11.2 about the chromatic number of the rational plane. They are a few years too late to 
coauthor the result, but their analysis allows an insight into the algebraic structure that we do 
not find in Woodall’s paper. They then use this insight to establish more sophisticated results 
and the structure of the rational spaces they study. 

Result 11.3 (Benda and Perles [BP]). χ(Q3 ) = 2. 

Result 11.4 (Benda and Perles [BP]). χ(Q4 ) = 4. 

Benda and Perles then pose important problems. 

Open Problem 11.5 (Benda and Perles [BP]). Find χ(Q5 ) and, in general, χ(Qn ). 

Open Problem 11.6 (Benda and Perles [BP]). Find the chromatic number of Q2 ( 2
p 

) and, in 
general, of any algebraic extension of Q2 . 

This direction was developed by Peter D. Johnson, Jr. from Auburn University [Joh1], 
[Joh2], [Joh3], [Joh4], [Joh5], and [Joh6]; Joseph Zaks from the University of Haifa, Israel 
[Zak1], [Zak2], [Zak4], [Zak6], and [Zak7]; Klaus Fischer from George Mason University 
[Fis1] and [Fis2]; Kiran B. Chilakamarri [Chi1], [Chi2], and [Chi4]; Michael Reid, Douglas 
Jungreis, and David Witte ([JRW]); and Timothy Chow [Cho]). In fact, Peter Johnson 
published in 2006 in Geombinatorics “A Tentative History and Compendium” of this 
direction of research inquiry [Joh9]. I refer you to this survey and works cited there for 
many exciting results of this algebraic direction. 

In recent years, Matthias Mann from Germany entered the scene and discovered partial 
solutions to problem 11.6, which he published in Geombinatorics [Man1]. 

Result 11.8 (Mann [Man1]). χ(Q5 ) ≥ 7. 

This jump from χ(Q4 ) = 4 explains the difficulty in finding χ(Q5 ), the exact value of which 
remains open. Mann then found a few more important lower bounds [Man2]. 

Results 11.9 (Mann [Man2]). 

χ Q6 ≥ 10; 

χ Q7 ≥ 13;
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χ Q8 ≥ 16: 

In reply to my request, Matthias Mann wrote about himself on January 4, 2007: 

Since I have not spent too much time on unit-distance-graphs since the last article in 
Geombinatorics 2003, I do not have any news concerning this topic. To summarize, I 
found the following [lower bounds of] chromatic numbers: 

Q5 ≥ 7 

Q6 ≥ 10 

Q7 ≥ 13 

Q8 ≥ 16 

The result for Q8 improved the lower bounds for the dimensions 9–13. 
For the Q7 I think that I found a graph with chromatic number 14, but up to now I 

cannot prove this result because I do not trust the results of the computer in this case. 
Now something about me: I was born on May 12th, 1972, and studied mathematics at 

the University of Bielefeld, Germany from 1995 – 2000. I wrote my Diploma-thesis (the 
“Dipl.-Math.” is the old German equivalent to Master’ degree) in 2000. It was super-
vised by Eckhard Steffen, who has worked on edge-colorings. I had the opportunity to 
choose the topic of my thesis freely, so I read the book “Graph Coloring Problems” by 
Tommy Jensen and Bjarne Toft (Wiley Interscience 1995) and was very interested in the 
article about the Hadwiger–Nelson Problem, and found the restriction to rational spaces 
even more interesting. After reading articles of Zaks and Chilakamarri (a lot of them in 
Geombinatorics), I started to work on the problem with algorithms. 

Unfortunately, I had no opportunity to write a Ph.D. thesis about unit-distance 
graphs, so I started work as an information technology consultant in 2000. 

In the previous chapter, you have already met Josef Cibulka, a first-year graduate student at 
Charles University in Prague, who improved some of Mann’s lower bounds for the chromatic 
numbers of rational spaces: 

Lower Bounds for Q5 and Q7 11.10 (Cibulka, [Cib]). 

χ Q5 ≥ 8; 

χ Q7 ≥ 15: 

As I mentioned in the previous section, in 2018, Danila Cherkashin, Anatoly Kulikov, and 
Andrei Raigorodskii improved several lower bounds of chromatic numbers of Euclidean 
spaces En for n = 9, . . ., 12. In fact, the same lower bounds for rational spaces are even more 
impressive. 

Lower Bounds for Rational Euclidean Spaces Qn for n = 8,. . .,12; 11.11 ([CKR], 
Cherkashin–Kulikov–Andrei Raigorodskii, 2015).
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χ Q9 ≥ 22; 

χ Q10 ≥ 30; 

χ Q11 ≥ 35; 

χ Q12 ≥ 37: 

Woodall’s 2-coloring of the rational plane (result 11.2) has been used by the Australian 
student Michael Payne to construct a wonderful example of a unit distance graph – see it near 
the end of this book.



Part III 
Coloring Graphs
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Chapter 12 
Chromatic Number of a Graph 

12.1 The Basics 

The notion of a graph is so basic, so unrestrictive, that graphs appear in all fields of 
mathematics, and indeed in all fields of scientific inquiry. 

A graph G is just a non-empty set V(G) of  vertices and a set E(G) of unordered pairs {v1, 
v2} of vertices called edges. If  e = {v1, v2} is an edge, we say that e and v1 are incident as are 
e and v2; we also say that v1 and v2 are adjacent or are neighbors. Simple, don’t you think? 

By all standards of book writing, I am now supposed to give you an example of a graph. 
Why not create your own example instead? As the set V of vertices, take the set of all cities 
you have ever visited. Call two cities a and b from V adjacent if you have ever traveled from 
one of them to the other. Let us denote your travel graph by T(Y). 

We can certainly represent T(Y) in the plane. Just take a map of the world, plot a dot for 
each city you’ve been in, and draw the lines (edges) of all your travels (the shape of edges 
does not matter, but do not connect two adjacent vertices a and b of T(Y) by more than one 
edge even if you have traveled various routes between a and b). 

We often represent graphs in the plane, as we have just done for T(Y). When we do that, the 
only things that matter are the set of vertices (but not their positions) and which vertices are 
adjacent (but not the shape of edges; we presume that edges have no points in common, 
except vertices of the graph incident with them). 

In fact, you can think of a graph as a set of pins, some of which are connected by rubber 
bands. So, we consider the graph unchanged if we reposition the pins and stretch the rubber 
bands. Thus, we call two graphs isomorphic if “pins” of one of them can be repositioned and 
its “rubber bands” stretched so that this graph becomes graphically identical to the other 
graph. 

More formally, two graphs, G and G1, are called isomorphic if there is one-to-one 
correspondence f: V → V1 of their vertex sets that preserves adjacency, i.e., vertices v1 and 
v2 of G are adjacent if and only if the vertices f(v1) and f(v2), respectively, of G1 are adjacent. 

For example, the two graphs in Fig. 12.1 are isomorphic, whereas the two graphs in 
Fig. 12.2 are not (prove both facts on your own or see the proof, for example, in [BS] 
pp. 102–105). 

I would like to get to our main interest, coloring, as soon as possible. Thus, I will stop my 
introduction to graphs here and refer you to [BS] for a little more about graphs; you will find
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much more in the books dedicated exclusively to graphs, such as [BLW], [Har0], [BCL], and 
a great number of other books. In fact, graph theory is lucky: It has inspired more enjoyable 
books than most other relatively new fields.
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Fig. 12.1 A pair of isomorphic graphs

 

Fig. 12.2 A pair of non-isomorphic graphs 

The notion of the chromatic number of the plane (Chapter 2) was motivated by a much 
older notion of the chromatic number of a graph. As Paul Erdős put it in his 1991 letter to me 
[E91/10/2ltr]: 

Chromatic number of a graph is ancient. 

The chromatic number χ(G) of a graph G is the minimum number n of colors with which 
we can color the vertices of G in such a way that no edge of G is monochromatic (i.e., no edge 
ab has both vertices a and b identically colored). In this case, we also say that G is a 
n-chromatic graph. 

A graph G is called n-colorable if it can be colored in n colors without monochromatic 
edges. In this case, of course, χ(G) ≤ n. 

Let us determine the chromatic numbers of some popular (and important) graphs. 
A n-path Pn from x to y is a graph consisting of n distinct vertices v1, v2, ..., vn and edges 

v1v2, . . ., vn–1vn, where x = v1, y = vn.  If  n ≥ 3 and we add the edge vn v1, then we obtain a 
n-cycle Cn.
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Problem 12.1 Prove that 

χ Cnð Þ= 
2, if n is even 

3, if n is odd 

Problem 12.2 For a graph G, χ(G) ≤ 2 if and only if G contains no n-cycles for any odd n. 

Such a graph has a special name: bipartite graph. 
In particular, the complete bipartite graph Km,n has m vertices of one color and n vertices of 

the other, and two vertices are adjacent if and only if they have different colors. In Fig. 12.3, 
you can find examples of complete bipartite graphs. 

A complete graph Kn consists of n vertices, every two of which are adjacent. In Fig. 12.4, 
you will find complete graphs Kn for small values of n. 

Problem 12.3 Is there an upper limit to the chromatic numbers of graphs? 

Solution Since every two vertices of Kn are adjacent, they must all be assigned distinct 
colors. Thus, χ(Kn) = n, and there is no upper limit to the chromatic numbers of graphs. ■ 

Fig. 12.3 Complete bipartite graphs 

Fig. 12.4 Complete graphs
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The number of edges incident to a vertex v of the graph G is called the degree of v and is 
denoted by degGv. The maximal degree of a vertex in G is denoted by Δ(G). 

If v is a vertex of a graph G, then G - v denotes a new graph obtained from G by deleting 
v and its incident edges. 

Problem 12.4 For any graph G with finitely many vertices, 

χ Gð Þ≤Δ Gð Þ þ  1: 

Proof Let G be a graph of chromatic number χ(G) = n. If there is a vertex v in G, such that 
χ(G- v) = n, we replace G by G- v. We can continue this process of deleting one vertex at a 
time with its incident edges until we get a graph G1 such that χ(G1) = n but χ(G1 - v) ≤ n-1 
for any vertex v of G1. 

Let v1 be the vertex of maximum degree in G1, then 

Δ Gð Þ≥Δ G1ð Þ= degG1 
v1: 

If we can prove that degG1v1 ≥ n-1, then coupled with the above inequality, we would get 
Δ(G) ≥ n-1, which is exactly the desired inequality. 

Assume the opposite, i.e., degG1v1 ≤ n-2. Since χ(G1-v1) ≤ n-1, we color the graph 
G1-v1 in n-1 colors. In order to get a (n-1)-coloring of G1, we have to just color the vertex 
v1. We can do it because degG1v1 ≤ n-2, i.e., v1 is adjacent to at most n-2 other vertices of G1 

(Fig. 12.5); thus, at least one of the n-1 colors is unused around v1. We use it on v1. Thus, 
χ(G1) ≤ n–1, in contradiction to χ(G1) = n. ■ 

Fig. 12.5 Vertices adjacent to v1 

R. Leonard Brooks of Trinity College, Cambridge, in his now classic theorem, reduced the 
above upper bound by 1 (for most graphs), to the best possible general bound. His result was 
communicated by William T. Tutte on November 15, 1940, and published the following year 
[Bro]. 

Brooks’ Theorem 12.5 ([Bro]). IfΔ(G) = n > 2 and the graph G has no component Kn, then 

χ Gð  Þ≤Δ Gð  Þ:
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12.2 Chromatic Number and Girth 

W. T. Tutte, R. L. Brooks and Company pulled off the Blanche Descartes stint not unlike the 
better-known Nicolas Bourbaki. Arthur M. Hobbs and James G. Oxley convey the story of 
Blanche Descartes in the memorial article “William T. Tutte 1917–2002” [HOx]: 

Not long after he started his undergraduate studies at Cambridge, Tutte was introduced 
by his chess-playing friend R. Leonard Brooks to two of Brooks’s fellow mathematics 
students, Cedric A. B. Smith, and Arthur Stone. The four became fast friends and Tutte 
came to refer to the group as “the Gang of Four,” or “the Four” [Tut]. The Four joined 
the Trinity Mathematical Society and devoted many hours to studying unsolved math-
ematics problems together. 

They were most interested in the problem of squaring a rectangle or square, that is, of 
finding squares of integer side lengths that exactly cover, without overlaps, a rectangle 
or square of integer side lengths. If the squares are all of different sizes, the squaring is 
called perfect. While still undergraduates at Cambridge, the Four found an ingenious 
solution involving currents in the wires of an electrical network . . .  

The Gang of Four were typical lively undergraduates. They decided to create a very special 
mathematician, Blanche Descartes, a mathematical poetess. She published at least three 
papers, a number of problems and solutions, and several poems. Each member of the Four 
could add to Blanche’s works at any time, but it is believed that Tutte was her most prolific 
contributor. 

The Four carefully refused to admit that Blanche was their creation. Visiting Tutte’s office 
in 1968, Hobbs had the following conversation with him: 

Hobbs: “Sir, I notice you have two copies of that proceedings. I wonder if I could buy 
your extra copy?” 
Tutte: “Oh, no, I couldn’t sell that. It belongs to Blanche Descartes.” 

And yet, I found at least one occasion when Tutte allowed to use his name in place of 
Blanche Descartes. Paul Erdős narrates [E87.12]: 

Tutte sometimes published his results under the pseudonym Blanche Descartes, and in 
one of my papers quoting this result I referred to Tutte. Smith wrote me a letter saying 
that Blanche Descartes will be annoyed that I attributed her results to Tutte (he clearly 
was joking since he knew that I know the facts), but Richard [Rado] was very precise 
and when in our paper I wanted to refer to Tutte, Richard only agreed after I got a letter 
from Smith stating that my interpretation was correct. 

You may wonder, what paper by Blanche Descartes does Paul Erdős refer to? Our story 
commences with the problem [Des1] Blanche Descartes published in April 1947. To simplify 
the original language used by Descartes, let me introduce here a notion of the girth of a graph 
G as the smallest number of edges in a cycle in G. 

Descartes’ Problem 12.6 ([Des1], 1947). Find a 4-chromatic graph of girth 6. 

Descartes’ solution appeared in 1948 [Des2]. This was the start of an exciting train of 
mathematical thought. In 1949, the first Russian graph theorist Alexander A. Zykov produced 
the next result [Zyk1]. He limited the restriction to just triangles but asked in return for an 
arbitrarily large chromatic number:
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Zykov’s Result 12.7 ([Zyk1], 1949). There exists a triangle-free graph of an arbitrarily large 
chromatic number. 

Zykov’s 1949 comprehensive publication [Zyk1] contained a construction, proving his 
result. The cold war and the consequent limited exchange of information apparently made 
Zykov’s advance unknown in the West. Four years later, in 1953, Peter Ungar formulated the 
same problem in the American Mathematical Monthly [Ung], which attracted much of 
attention and results. The Monthly chose not to publish the proposer’s solution (which was 
supposedly similar to that of Zykov). Instead, in 1954, The Monthly published a solution by 
Blanche Descartes [Des3], which both generalized Descartes’ own 1948 result and solved 
Zykov–Ungar’s problem: Descartes constructed graphs of an arbitrarily large chromatic 
number, which contained no cycles of less than six lines. This [Des3] was the Blanche 
Descartes’ paper that Paul Erdős referred to in the above quote, and it was written by William 
T. Tutte alone. 

John B. Kelly and Le Roy M. Kelly obtained a very similar construction in the same year 
[KK]. Finally, Jan Mycielski, originally from Poland, professor emeritus at the University of 
Colorado at Boulder, published his original construction [Myc] in 1955. (Following Paul 
Erdős’ stays with me, I usually drove him to Boulder to stay with Jan.) 

Let us look at the mathematics of this explosion of constructions. We will start with an 
exercise showing how to increase the chromatic number by attaching 3-cycles. 

Problem 12.8 Let T be a 3-cycle with its vertices labeled 1, 2, and 3, and R a set of 7 vertices 
labeled 1, 2, ..., 7 (Fig. 12.6). For each three-element subset V of R, we construct a copy TV of 
T and attach it to R by joining vertex 1 of TV with the lowest numbered vertex of V, vertex 2 of 
TV with the middle-numbered vertex of V, and vertex 3 of TV with the highest numbered 
vertex of V. In Fig. 12.7, for example, this connection is drawn for V = {2, 3, 6}. 

Fig. 12.6 A3-cycle and the foundation set R 

Fig. 12.7 A 3-cycle attached to the foundation set R



3
= 35, the resultant graph G has 7 + 3 35 = 112 vertices. Prove that χ(G) = 4.
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Since the number of three-element subsets of the seven-element set R is equal to 
7 . 

Proof Four colors suffice to color G, since each Tv in G can be colored with the first three 
colors and all the vertices of R with the fourth color. Thus, χ(G) ≤ 4. 

Assume now that the graph G is three-colored. Then by the pigeonhole principle, among 
the seven vertices of R, there are three, say vertices 2, 3, and 6, which are colored in the same 
color, say color A. Then (see Fig. 12.7), color A is not present in the coloring of T{2,3,6}; thus, 
T{2,3,6} is two-colored. However, this is a contradiction since by problem 12.1, a 3-cycle 
cannot be two-colored. Hence, χ(G) = 4. ■ 

Problem 12.9 Use the construction of problem 12.8 with the Mosers Spindle (Fig. 2.2) in  
place of T and a 25-point set R. What is the chromatic number of the resulting graph G? How 
many vertices does G have? 

The answer should serve as a hint: a 5-chromatic graph on 

25þ 7 25 
7 

= 3,364,925 vertices:■ 

In his monograph [Har0], Frank Harary discloses the secret authorship of one result: “This 
so-called lady [Descartes] is actually a non-empty subset of {Brooks, Smith, Stone, Tutte}; in 
this [Des3] case {Tutte}.” Let us take a look at Blanche Descartes’ (Tutte’s) construction. 

Blanche Descartes’s Construction 12.10 [Des3]. For any integer n > 1, there exists a n-
chromatic graph Gn of girth 6. 

Proof For the case n = 2, we just pick a 6-cycle: G2 = C6. For n ≥ 3, we define a sequence of 
graphs G3, G4, ..., Gn, ... by induction. Let G3 be a 7-cycle: G3 = C7. 

Assume that the graph Gk is defined and has Mk vertices. We need to construct Gk + 1. The 
construction is the same as in problem 12.8. Let R be a set of k(Mk – 1) + 1 vertices. For each 
Mk-element subset U of R, we construct a copy GU 

k of Gk, then pick a one-to-one correspon-
dence f U between the vertices of U and GU 

k (two Mk-element sets surely have one), and, 
finally, connect by edges the corresponding vertices of U and GU 

k . The resulting graph is 
Gk + 1. 

Thus, we constructed the graphs G3, G4, ..., Gn, ... No graph Gn has a cycle of less than six 
edges (can you prove it?). 

By induction, we can prove that χ(Gn) ≥ n for every n ≥ 3. Indeed, G3 is 3-chromatic as an 
odd cycle. Assume that χ(Gk) ≥ k for some k ≥ 3. We need to prove that 

χ Gkþ1ð Þ≥ k þ 1: 

If, on the contrary, χ(Gk +  1) ≤ k, then by the pigeonhole principle, out of k(Mk – 1) + 1 
vertices of the set R, there will have to be an Mk-element subset U of vertices all colored in the 
same color, say color A. But then color A is not present in the copy GU 

k of Gk, i.e., the graph Gk 

can be (k–1)-colored in contradiction to the inductive assumption. The induction is complete.
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Please note that we proved the inequality χ(Gn) ≥ n. Since we want to have the equality, we 
may have to delete (one at a time) some vertices of Gn and their incident edges until we end up 
with G0 

n such that χ(G
0 
n) = n. ■ 

Mycielski’s Construction 12.11 [Myc]. For any integer n > 1, there exists a triangle-free n-
chromatic graph. 

Proof You may ask, why should we bother to prove the result that is weaker than Descartes’ 
and Kelly and Kelly’s result 12.10? Simply because this is a different construction, and it will 
work best for us in Chapter 15 and other places. 

Start with a triangle-free (k–1)-chromatic graph G. For each vertex vi of G, add a new 
vertex wi adjacent to all neighbors of vi. Next, add a new vertex z adjacent to all new vertices 
wi. The chromatic number of this new graph is k, and it is still triangle-free. ■ 

Observe that if we were to start with a 5-cycle, then the graph generated by Mycielski’s 
construction is the unique smallest triangle-free 4-chromatic graph (Fig. 12.8). Three years 
later, in 1958, this graph was independently found for different purposes by Herbert Grötzsch 
[Gro], and, thus, it makes sense to call it the Mycielski–Grötzsch graph. We will discuss 
Grötzsch’s reasons for constructing this graph in Chapter 20. 

Fig. 12.8 The Mycielski–Grötzsch graph 

The next major advance in our train of thought took place in 1959, when Paul Erdős, using 
probabilistic methods, dramatically strengthened result 12.10: 

Erdős’ Theorem 12.12 (P. Erdős, [E59.06]). For any two integers m, n ≥ 2, there exists a n-
chromatic graph of girth m. 

An alternative, non-probabilistic proof of this result was obtained in 1968 by the Hungar-
ian mathematician László Lovász [Lov1]. 

The greatest result was still to come 30+ years after Lovász. Paul O’Donnell proved the 
existence of 4-chromatic unit distance graphs of arbitrary girth. We will look at this remark-
able piece of work later in this book. 

Paul Erdős posed numerous exciting open problems related to the chromatic number of a 
graph. Let me share with you one such still open problem that I found in Paul’s 1994 problem 
paper [E94.26].
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Erdős’ Open Problem on 4-Chromatic Graphs 12.13 Let G be a 4-chromatic graph with 
lengths of the cycles m1 < m2 < . . .  Can min(mi + 1-mi) be arbitrarily large? Can this happen 
if the girth of G is large? 

12.3 Wormald’s Application 

In Chapter 5, I described Paul Erdős’ problem partially conquered by Nicholas C. Wormald 
[Wor]. Wormald’s first step was to construct what I will call the Wormald graph; he then 
embedded it in the plane. In his construction, Wormald used the Blanche Descartes construc-
tion of problem 12.10. In problem 12.8, I showed how one can use this construction. 
Analogously, Wormald uses a 5-cycle in place of T and a 13-point foundation set R. For 
each five-element subset V of R, he constructs a copy TV of T, fixes a one-to-one correspon-
dence of the vertices of V and TV, and attaches TV to V by connecting the corresponding 
vertices. 

He ends up with the graph G on 13 + 5 
13 

5 
= 6448 vertices. Wormald uses 5-cycles 

because his goal is to construct a 4-chromatic graph of girth 5. I leave the pleasure of proving 
these facts to you: 

Problem 12.14 (N.C. Wormald, [Wor]). Prove that the Wormald graph G is indeed a 
4-chromatic, girth 5 graph. 

So, what is so special about Nicholas Wormald’s paper [Wor] of 1979? Even though 
independently discovered (I think), didn’t he use the construction that was published 25 years 
earlier by Blanche Descartes [Des2]? The real Wormald’s achievement was to embed his huge 
6448-vertex graph in the plane, i.e., to draw his graph in the plane with all adjacent vertices, 
and only them, distance 1 apart. In my talk at the conference dedicated to Paul Erdős’ 80th 
birthday in Keszthely, Hungary, in July 1993, I presented Wormald’s graph as a picture frame 
without a picture inside it, to indicate that Wormald proved the existence and did not actually 
draw his graph. Nick Wormald accepted my challenge and shortly after the conference, on 
September 8, 1993, mailed to me a drawing of the actual plane embedding of his graph. I am 
happy to share his drawing with you here. Ladies and gentlemen, the Wormald Graph! 
(Fig. 12.9).
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Fig. 12.9 The 6448-vertex Wormald Graph embedded in the plane 

In his doctoral dissertation (May 25, 1999, Rutgers University), Paul O’Donnell offered a 
much simpler embedding than Wormald’s – see it in Chapter 14, where I present Paul’s 
machinery for embedding unit distance graphs in the plane. 

The following problem, however, is open. 

Open Problem 12.15 Find the smallest number λ4 of vertices in a 4-chromatic graph without 
3- and 4-cycles. 

We know, of course, [Wor] that λ4 ≤ 6448. Chapters 14, 15, and 16 will be dedicated to 
major improvements in this direction.
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Chapter 13 
Dimension of a Graph 

13.1 Dimension of a Graph 

In 1965, a distinguished group of mathematicians consisting of Paul Erdős, Frank Harary, and 
William Thomas Tutte created a notion of the dimension of a graph [EHT]. 

They defined the dimension of a graph G, denoted by dimG, as the minimum number 
n such that G can be embedded in an n-dimensional Euclidean space En with every edge of 
G being a unit segment. Here, we will call such an embedding 1-embedding. 

Dimensions of some popular graphs can be easily found. 

Problem 13.1 [EHT]. Prove the following equalities for complete graphs: 

dimK3 = 2, 

dimK4 = 3, 

dimKn = n- 1: 

The symbol Kn - x denotes the graph obtained from the complete graph Kn by deleting one 
edge x; due to the symmetry of all edges, this graph is well-defined. 

Problem 13.2 [EHT]. Prove that 

dim K3 - xð Þ= 1, 

dim K4 - x = 2: 

In general, 

dim Kn - xð Þ= n- 2: 

Now let us take a look at complete bipartite graphs. 
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Problem 13.3 [EHT].1 Prove that for m ≥ 1, 

dimKm,1 = 2, 

except for m = 1, 2 when dimKm,1 = 1. 

Fig. 13.1 Embedding of Km,1 in the plane 

Proof Let S be a circle of radius 1 with center at O. By connecting arbitrary m points A1, A2, 
..., Am of S with O, we get a desired embedding of Km,1 in the plane (Fig. 13.1). 

The graphs K1,1 and K2,1 can obviously be 1-embedded in the line E1 ; thus, dimK2,1 = 1. ■ 

Problem 13.4 [EHT]. Prove that for m ≥ 2, 

dimKm,2 = 3, 

except for m = 2 when dimK2,2 = 2. 

Proof Let ABC be an isosceles triangle with jABj=jBCj = 1. As we rotate ABC about AC, 
point B orbits a circle S (Fig. 13.2). By connecting arbitrary m points A1, A2, ..., Am of S with 
both A and C, we get a desired embedding of Km,2 in the 3-space E

3 . 

1 The article [EHT] contains a minor oversight: it says “Obviously, for every n > 1, dimKm,1 = 2.”
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Fig. 13.2 Rotating ABC about AC creates a circle S 

Since m ≥ 2, the graph Km,2 can be 1-embedded in the plane E2 if and only if m = 2. Prove 
the last statement on your own. ■ 

Problem 13.5 [EHT]. Prove that for m ≥ n ≥ 3, 

dimKm,n = 4: 

Proof In the solution of problem 13.4 (see Fig. 13.2), we had points of a one-dimensional 
“circle” (i.e., the two points A and C) at a distance 1 from the points of a circle S. Similarly, in 
the Euclidean four-dimensional space E4 , we can find two circles S1 and S2 such that any point 
of S1 is at a distance 1 from any point of S2. We pick the circle S1 in the plane through the 
coordinate axes X and Y and the circle S2 in the plane through the coordinate axes Z and W. 
Both S1 and S2 have the center at the origin O = (0, 0, 0, 0) and radius 1 

2
p . We then just pick 

m points on S1 and n points on S2. 

This solution was obtained by Lenz in 1955 according to Paul Erdős. Formally (i.e., 
algebraically) it goes as follows. Let {ui} be the m vertices of the first color, and let {vj} be  
the n vertices of the second color (remember, we are constructing a complete bipartite graph). 
We pick coordinates in E4 for ui = (xi, yi, 0, 0) and for vj = (0, 0, zj, wj) in such a way that they 
lie on our circles S1 and S2, respectively, i.e., xi 

2 + yi 
2 = 1 2 and zj 

2 + wj 
2 = 1 2. Then, the distance 

between every pair ui, vj will be equal to 1 (verify it using the definition of the distance in E
4 ). 

It is not difficult to show (do) that for m ≥ n ≥ 3, the graph Km,n cannot be 1-embedded in 
the 3-space E3 . ■ 

Problem 13.6 [EHT]. Find the dimension of the Petersen graph shown in Fig. 13.3.
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Fig. 13.3 The Petersen graph 

Solution I enjoyed the style of the article [EHT]. I quote this solution in its entirety in order to 
show you what I mean: 

It is easy to see (especially after seeing it) that the answer is 2; see Fig. 13.4. ■ 

Fig. 13.4 The 1-embedding of the Petersen graph in the plane 

Paul Erdős told me that it was Frank Harary’s joke, as the latter wrote this solution for their 
joint article. 

By connecting all vertices of a n-gon (n ≥ 3) with one other vertex, we get the graph Wn 

called the wheel with n spokes. Figure 13.5 shows some popular wheels. 

W4 W5 W6 

Fig. 13.5 Wheel graphs
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Problem 13.7 [EHT]. The edges and vertices of a cube form a graph Q3 . Find its dimension. 

Solution dimQ3 = 2. Just think of Fig. 13.6 as drawn in the plane! ■ 

Fig. 13.6 The 1-embedding of the cube graph in the plane 

The following two problems are for your own enjoyment. 

Problem 13.8 [EHT]. Prove that 

dimWn = 3, 

except for the “odd” number n = 6 when dimW6 = 2. 

Problem 13.9 [EHT]. A cactus is a graph in which no edge is on more than one cycle. Prove 
that for any cactus C, 

dimC ≤ 2: 

I hope that you have enjoyed finding dimensions of graphs. There is no known systematic 
method for determining it. However, look, it has its good side. As the authors of [EHT] write, 
“the calculation of the dimension of a given graph is at present in the nature of mathematical 
recreation.” 

There is, however, one general inequality in [EHT] that connects the dimension and the 
chromatic number of a graph. 

Problem 13.10 [EHT]. For any graph G, 

dimG≤ 2χ Gð Þ: 

I totally agree with the authors of [EHT] that “the proof of this theorem is a simple 
generalization of the argument” used in problem 13.5. However, for the benefit of young 
readers not too fluent with n-dimensional spaces, I am presenting here both a geometric 
ideology of the solution and a formal algebraic proof. 

Geometric Idea Let χ(G) = n. In the Euclidean 2n-dimensional space E2n , we can find 
n circles S1, S2, ..., Sn such that the distance between any two points from distinct circles is 
equal to 1. We pick the circle S1 in the plane through the coordinate axes X1 and X2; the circle
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S2 in the plane through the coordinate axes X3 and X4; ...; the circle Sn in the plane through the 
coordinate aces X2n - 1 and X2n. All n circles have radius 1 and their centers at the origin. 
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Finally, when we color G in n colors (it can be done since χ(G) = n), we get, say, k1 points 
of color 1, k2 points of color 2, ..., kn points of color n. Accordingly, we pick arbitrary k1 
points on S1, k2 points on S2, ..., kn points on Sn for the desired 1-embedding of G. 

Algebraic Solution Let u1 i be the k1 vertices of color 1, u2 i the k2 points of color 2, ..., 
{un i } the kn vertices of color n. We pick coordinates in E2n for these vertices as follows: 

u1 i = x1 i , x
2 
i , 0, 0,  . . . , 0  

u2 i = 0, 0, x3 i , x
4 
i , 0,  . . . , 0  

. . . . . . . . . . . . . . .  

un i = 0, 0, 0, 0, . . . , x2n- 1 
i , x2n i 

in such a way that they lie on our circles S1, S2, ..., Sn, respectively (see “Geometric Idea” 
above), i.e., 

x1 i 
2 þ x2 i 

2 
= 

1 
2 

x3 i 
2 þ x4 i 

2 
= 

1 
2 

. . . . . . . . . . . .  

x2n- 1 
i 

2 þ x2n i 
2 
= 

1 
2 

Then the distance between every pair of points that belong to different circles is equal 
to 1 (can you see why?). Thus, the distance between any two points of different colors 
of the graph G in this embedding in E2n is equal to 1. (We do not have to care at 
all about the distances between two points of G of the same color: they are not adjacent 
in G.) We got a 1-embedding of G in the space E2n ; therefore, dimG ≤ 2n. ■ 

If it so happened that every vertex of graph G1 is also a vertex of graph G, and every edge 
of G1 is also an edge of G, then graph G1 is called a subgraph of graph G. 

Prove on your own the following property of subgraphs. 

Problem 13.11 For every subgraph G1 of a graph G, 

dimG1 ≤ dimG: 

During his December 1991–January 1992 2-week visit of me in Colorado Springs, Paul Erdős 
posed the following (quite solvable, I think) problem: 

Erdős’ Open Problem 13.12 What is the smallest number of edges in a graph G such that 
dimG = 4?
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13.2 Euclidean Dimension of a Graph 

I enjoyed the Erdős–Harary–Tutte paper [EHT] very much. There was, however, one more 
thing I expected from the notions of 1-embedding and dimension but did not get it from 
[EHT]. I hoped that they would unite the chromatic number of a plane set (Chapter 5) and the 
chromatic number of a graph (Chapter 12). Here is what I meant. I wanted to consider such 
embeddings of a graph G in the plane E2 (and more generally in the n-dimensional space En ) 
that the chromatic number of a plane set V of vertices of the embedded graph G is equal to the 
chromatic number of G. 

It was certainly not the case with the 1-embeddings discussed above. The chromatic 
number of the 1-embedded set V of vertices of a graph G may be not uniquely defined. 
Take, for example, the cycle C4. We can 1-embed it in the plane so that its vertex set V has the 
chromatic number 2 (just think of a square), but we can also 1-embed C4 so that V has the 
chromatic number 3 (think of a rhombus with a π/3 angle). 

The notions of the chromatic number of the plane and the chromatic number of a plane set 
were generalized by Paul Erdős to Euclidean n-spaces over half a century ago: 

Let S be a subset of the n-dimensional Euclidean space En (S may coincide with En ). The 
chromatic number χ(S) of  S is the smallest number of colors with which we can color the 
points of S in such a way that no color contains a monochromatic segment of length 1.2 

Thus, if we adjoin two points a,b of S with an edge if and only if the distance jabj = 1, 
we will get the graph G with the chromatic number equal to the chromatic number of its 
vertex set S: 

χ Gð Þ= χ Sð Þ: �ð  

Two new definitions, as well as most of the problems below, occurred to me on September 
9, 1991. I remember this day very well: I was present in the delivery room when my daughter 
Isabelle Soulay Soifer was born on this very day at 6 in the evening. 

On September 12, 1991, I sent the news to Paul Erdős: 

On the Jewish New Year, 9/9/1991 the baby girl Isabelle Soifer was born. 

In my September 15, 1991, letter, I shared with Paul the mathematical thoughts that visited 
me as I was waiting in the delivery room for Isabelle’s arrival in this world: 

I enjoyed Erdős–Harary–Tutte 1965 article where dimension of a graph was introduced. 
(Apparently Harary and Tutte did not particularly like it: dimension of a graph did not 
appear in the books on graph theory.) 

In my book though I am going to introduce a more precise notion. An embedding of a 
graph G into En we call Euclidean if two vertices v,w of G are adjacent if and only if in 
En the segment vw has length 1. Euclidean dimension of a graph G is the minimum 
n such that there is a Euclidean embedding of G in En (notation EdimG). Of course, 
dimG ≤ EdimG. But a strict inequality is possible: let W6 be the wheel with 6 spokes, 
and W6’ [a wheel] without 1 spoke [my drawings in the letter are the Figs. 13.7 and 13.8 

2 Victor Klee was the first to prove (unpublished) that χ(En )  is  finite for any positive integer n.
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Fig. 13.8 Wheel W6 with one spoke removed 

below]. Then dimW6’ = 2 < 3 = EdimW6’. Also, there is a graph G and its subgraph G1 

such that EdimG1 > EdimG. Just take W6’ ⊆ W6. 
This Euclidean dimension (rather than dimension) of a graph connects precisely 

chromatic numbers of a graph and [of] a plane set: 
If a graph G is Euclideanly embedded in En , then χ(G) = χ(V), where χ(G) is the 

chromatic number of the graph, and χ(V) is the chromatic number of the vertex set V of 
G (i.e., subset of En ). 

What do you think? 

Paul Erdős’ reply arrived on October 2, 1991. Following my family affairs, “I am very 
sorry to hear about your father’s death [Yuri Soifer, June 20, 1907 – June 17, 1991], but 
congratulations for the birth of Isabelle.” Paul expressed his approval of the new notion of the 
Euclidean dimension of a graph and commenced posing problems about it [E91/10/2ltr]: 

“Can EdimG – dimG be arbitrarily large?” 

Little did I know at the time that, in fact, Paul Erdős himself with Miklós Simonovits 
invented the Euclidean dimension before me – in 1980 – they called it faithful dimension 
[ESi], and Paul did not remember his own baby definition when he discussed it with me. Of 
course, the credit for the discovery goes to Erdős and Simonovits. In my opinion, however, 
the term “Euclidean dimension” more faithfully names the essence of the notion, and, so, I 
will keep this term here.
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Let us summarize the definitions and the early knowledge that we have. 
We call a one-to-one mapping of the vertex set V of a graph G into a Euclidean space En the 

Euclidean embedding of G into En if two vertices v,w of G are adjacent if and only if the 
distance between f(v) and f(w) is equal to 1. 

In other words, to obtain a Euclidean embedding of G into En , we need to draw G in En 

with every edge of G being a unit segment and the distance between two nonadjacent vertices 
being not equal to 1. 

We define the Euclidean dimension of a graph G, denoted by EdimG, as the minimum 
number n such that G has a Euclidean embedding into En . 

Now, we do get the desired connection: 

Problem 13.13 The chromatic number of a graph G is equal to the chromatic number of its 
vertex set V when G is Euclideanly embedded in En for some n. 

The two dimensions are connected by the following inequality: 

Problem 13.14 Prove that for any graph G, 

dimG≤EdimG: 

For some popular graphs, we have the equality: 

Problem 13.15 For any complete graph Kn, 

dimKn =EdimKn 

i.e., EdimKn = n – 1. 

Problem 13.16 For any complete bipartite graph Km,n, 

dimKm,n =EdimKm,n 

Problem 13.17 For any wheel Wn, 

dimWn =EdimWn 

i.e., EdimWn = 3, except for the “odd” number n = 6 when EdimW6 = 2. 

Problem 13.19 For any graph G, 

dimG≤EdimG≤ 2χ Gð Þ: 

The new notion makes sense only if there is a graph G for which dimG ≠ EdimG. And it does 
exist: 

Problem 13.20 Find a graph G such that 

dimG<EdimG:
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The inequality dimG1 ≤ dimG that is trivially true for any subgraph G1 of a graph G may not 
be true at all for the Euclidean dimension: 

Problem 13.21 Construct an example of a graph G and its subgraph G1 such that 

EdimG1 >EdimG: 

Solutions to Problems 13.20 and 13.21 Take the wheel W6 with six spokes (Fig. 13.7) and 
knock out one spoke (Fig. 13.8). Let us prove that the resulting graph W 0 

6 has the Euclidean 
dimension 3, even though EdimW6 = 2. 

Indeed, when we draw the graph W 0 
6 in the plane so that its every edge is a segment of 

length 1, the rigid construction of W 0 
6 leaves no options for the distance OA. It is equal to 

1 even though the spoke is missing! Thus, there is no Euclidean embedding of W 0 
6 in the 

plane. It is easy to Euclideanly embed W 0 
6 in 3-space E

3 : start with the plane W 0 
6 depicted in 

Fig. 13.8 and rotate BAC in the space about the axis BC until the distance OA is not 1. 
We proved that EdimW 0 

6 > EdimW6 . Thus, problem 13.21 is solved. Problem 13.20 is 
solved at the same time because dimW 0 

6 = 2, and, therefore, 

EdimW 0 
6 > dimW 0 

6:■ 

The question that Paul Erdős posed to me, “Can EdimG – dimG be arbitrarily large?” – was 
answered in the positive by him and Simonovits 11 years earlier: 

Problem 13.22 [ESi]. For any positive n, there is a graph G such that dimG ≤ 4 while 
n–2 ≤ EdimG ≤ n–1. 

Hint In problem 13.5, we saw that for n ≥ 3, dimKn,n = 4. Let G be the graph obtained from 
Kn,n by removing a 1-factor, i.e., G is a graph on 2n vertices x1, . . ., xn and y1, . . ., yn with 
edges xi yj for all i ≠j. Clearly, dimG ≤ dimKn,n = 4. Show that G cannot be Euclideanly 
embedded in the space En–3 but can be Euclideanly embedded in En–1 . ■ 

Erdős and Simonovits also found an upper bound for the Euclidean dimension of a graph. 
Their results showed that the Euclidean dimension of a graph G is related to its maximal 
vertex degree Δ(G) and not to its chromatic number χ(G): 

Problem 13.23 [ES]. For any graph G, EdimG ≤2Δ(G)+ 1. 

Nine years later, this bound was slightly improved by László Lovász, Michael Saks, and 
Alexander Schrijver: 

Problem 13.24 [LSS]. For any graph G, EdimG ≤2Δ(G). 

Surprisingly, this bound still seems to be the best-known. 
We are now ready to continue our discussion of Nicholas Wormald’s paper [Wor], started 

in Chapter 5 and continued in Chapter 12. The big deal was not to construct his 4-chromatic 
graph G without 3- and 4-cycles. The real Wormald’s trick was to Euclideanly embed his 
huge 6448-vertex graph G in the plane. And he did it with the use of his ingenuity and a 
computer. Read more about his embedding in his paper [Wor]. Here I would like to discuss 
one approach to the chromatic number of the plane problem. The rest of this chapter, which



appeared in the first 2009 edition of this Mathematical Coloring Book, became dated when 
Aubrey de Grey came onstage; however, I would like to keep it here as a historical artifact, 
showing the thinking at that time of most colleagues working on this problem. 
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If you believe that the chromatic number of the plane χ is at least 5, here is what you can do 
to prove it. You can create a 5-chromatic graph G and then Euclideanly embed G in the plane. 
“Easier said than done,” you say? Sure, but let us discuss it, then who knows? You just might 
succeed! 

The 3,364,925-vertex graph G, which we constructed in problem 12.9, is surely 
5-chromatic. But we constructed it with the use of the Mosers Spindle; thus, G has a lot of 
triangles. It may be too rigid to have a Euclidean embedding in the plane. 

We can replace the Mosers Spindle with, say, the Mycielski–Grötzsch graph (Fig. 12.8) 
and use the same construction as we did in problems 12.8, 12.9, and 12.10. We would get a 

5-chromatic graph G with 41 + 11 
41 

11 
= 34,754,081,689 vertices. This graph G has no 

triangles. But does it have a Euclidean embedding in the plane? To begin with, I do not think 
(check it out) the Grötzsch graph itself has a Euclidean embedding in the plane. 

It seems that we need to start with a highly “flexible” graph having a Euclidean embedding 
in the plane. Let us start with the Wormald graph G (see Section 12.3) and the foundation set 
R of 6447×4  +  1  = 25,789 points. For every 6448-element subset V of R, we attach a copy GV 

of G. We get a 5-chromatic graph G1 without triangles, with 25,789 + 6448 
25798 

6448 
vertices. Does G1 have an Euclidean embedding? Computers are much better today than in 
1978, when Nicholas Wormald completed his paper [Wor]. Are computers good enough for 
this task? Are we good enough to break through these computational walls?

https://doi.org/10.1007/978-1-0716-3597-1_12#FPar12
https://doi.org/10.1007/978-1-0716-3597-1_12#FPar10
https://doi.org/10.1007/978-1-0716-3597-1_12#FPar12
https://doi.org/10.1007/978-1-0716-3597-1_12#FPar13
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Chapter 14 
Embedding 4-Chromatic Graphs in the Pla ne 

14.1 A Brief Overture 

In Chapters 1 and 2, we got acquainted with examples of 4-chromatic unit distance graphs, the 
Mosers Spindle, and the Golomb graph. In Chapters 5 and 12, we encountered Paul Erdős’ 
$25 Problem 5.6 and its partial solution by Nicholas Wormald, who used Blanche Descartes’ 
construction of a 4-chromatic graph and his own embedding of that graph in the plane. 
Wormald’s result was improved time and again on the pages of Geombinatorics by Paul 
O’Donnell, Rob Hochberg, and Kiran Chilacamari. Upon constructing a promising graph G, 
the authors of the new 4-chromatic unit distance examples used a two-part approach to 
complete their task: 

1. Graph-Theoretic Part: Show that the chromatic number of a graph G is 4 and that the 
graph has no short cycles. 

2. Geometric Part: Embed G in the plane in such a way that every pair of adjacent vertices is 
distance 1 apart and nonadjacent vertices are not 1 apart (like in the previous chapter 
dealing with the Euclidean dimension). 

In this chapter, we will concentrate on the essentials of Part 2 – tools for embedding in the 
plane, as developed and presented by Paul O’Donnell [Odo3], [Odo4], and [Odo5]. In the 
next chapter, we will look at the world records in the new sport of embedding. Do use a pencil 
as you read this chapter. 

We say that a k-vertex graph G with vertices V = {u1, u2, . . ., uk} is  attached to a set of 
vertices V* = u�1, u

�
2, . . . , u

�
k if the vertices of G are connected via a matching to V (i.e., via a 

one-to-one correspondence of V to V* and connection of the corresponding vertices by new 
edges). 

The shadow of G, denoted by G*, is the set to which G is attached. We often choose the 
graph G to be an odd cycle. Odd cycles are often attached to subsets of a large independent 
(i.e., no pair of vertices is adjacent) set of size n. The n independent vertices are called the 
foundation vertices. 

If the vertices of G are placed at points of the plane so that the adjacent vertices are exactly 
a unit distance apart, we say that this is a unit distance embedding of G. Thus, in the plane, if 
the odd cycle {u1, u2, . . ., uk} is attached to u�1, u

�
2, . . . , u

�
k , then the vertices u1, u2, . . ., uk, 

u�1, u
�
2, . . . , u

�
k are fixed points in the plane such that for some permutation σ, ui is a unit

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597
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distance from uσ(i) and from ui - 1 and ui +  1 (indices are added modulo k) for 1 < i < k. Since 
the vertices can be relabeled, we assume that ui is adjacent to u�i in the attachment. Usually, we 
do not want distinct vertices to be placed at the same point in the plane. If the vertices of G are 
placed at distinct points of the plane so that the adjacent vertices are exactly a unit distance 
apart, we say that this is a proper unit distance embedding of G. A graph with a proper unit 
distance embedding is called a unit distance graph in the plane. In this chapter, higher-
dimensional analogues are not considered, and so, a unit distance graph will mean a unit 
distance graph in the plane. In our geometric contexts, the terms point and vertex will be used 
interchangeably, while the term edge will mean a unit length edge. The following continuity 
argument of the attachment procedure is important, and Paul O’Donnell uses it in most of the 
results of this chapter:
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Continuity Argument 14.1 Given fixed points in the plane, 

u�1 = x1, y1ð Þ, u�2 = x2, y2ð Þ, . . . , u�n = xn, ynð Þ

and a point u1 on the unit circle centered at u�1. Let ui be a point distance 1 from both ui–1 and 
u�1 for 2 ≤ i ≤ k. (In the following examples, the distance between ui–1 and u�1 is less than 2, so 
there are two points satisfying the distance restrictions; let ui be the one closer to the 
corresponding point in the attachment.) For an appropriately chosen arc along the unit circle 
centered at u�1, ui is a continuous function of u1. If there exist two points u

short 
1 and ulong 1 such 

that the distance between ushort 1 and the corresponding ushort k is less than 1, while the distance 
between ulong 1 and the corresponding ulong k is greater than 1, then due to continuity, there must 
be a point, uunit 1 , such that the distance between uunit 1 and the corresponding uunit k is exactly 
1. In other words, the set of points u�1, u

�
2, . . . , u

�
k has a k-cycle attached, namely, 

uunit 1 , uunit 2 , . . . , uunit k . ■ 

The foundation points are distributed among four regions. They are placed inside the δ-
balls centered at the following four points: 

C1 = (0, 0) 
C2 = (0, 0.9) 
C3 = (0.9, 0.9) 
C4 = (0.9, 0) 

Since δ is very close to zero, it is impossible to attach a cycle to k points if they are all inside 
the same δ-ball. The partitioning of the foundation points is designed to prevent such an 
occurrence. Can a k-cycle be attached if the points are distributed among at least two of the 
δ-balls? Yes, they can. First, k-cycles are attached to k foundation points placed exactly at 
some or all of C1, C2, C3, or C4. Next, the points are moved slightly so that the k-cycles are 
attached to k distinct points, each placed inside the appropriate δ-ball surrounding C1, C2, C3, 
or C4. This prevents the foundation vertices from coinciding. Then, some of the vertices are 
moved slightly to eliminate all coincidences. 

In Geombinatorics [Odo5] (but not in his dissertation [Odo3]), O’Donnell introduces a 
useful notion of type: 

A set of foundation vertices has type (a1, a2, a3, a4)δ if it consists of ai vertices placed inside 
the δ-ball around Ci,  1  ≤ i ≤ 4.
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14.2 Attaching a 3-Cycle to Foundation Points in Three Balls 

Only δ-balls around points C1, C2, and C3 are dealt with for the basic argument. To 
distinguish between the preliminary and final situations, the foundation vertices coincident 
with C1, C2, and C3 are denoted; the paths or cycles attached to them are denoted by v1, v2,. . ., 
vk, while the foundation vertices inside the δ-balls around C1, C2, and C3 are denoted by 
u�1, u

�
2, . . . , u

�
k and the paths or cycles, attached to them, are denoted by u1, u2, . . ., uk. 

O’Donnell starts by attaching a triangle. 

Tool 14.2 A 3-cycle can be attached to the set of foundation points {C1, C2, C3} 

Proof Using the points listed in the Appendix at the end of this chapter (rounded to five 
decimal places), two three-vertex unit distance paths are attached to C1, C2, and C3. In the first 
path, Tshort 

1 , Tshort 
2 , Tshort 

3 , the distance from Tshort 
1 to Tshort 

3 is less than 0.99. In the second 

path, Tlong , Tlong , Tlong , the distance from Tlong to Tlong is greater than 1.01 (see Fig. 14.1). 

C1 
C4 

C3 

C1 
C4 

C3C2 

1.02 
0.98 

C2 

Fig. 14.1 A “too short” attachment and a “too long attachment” are shown together on the 
left. The “just right” attachment is on the right (all unlabeled edges have unit length) 

Since one path is obtained from the other by continuously sliding the starting vertex, by 
continuity argument, there must be a path for which the distance between the first and last 
vertices is exactly one. This is a required, attached 3-cycle. ■ 

Now, we will relax the condition of Tool 14.2 and allow the three foundation vertices to be 
anywhere inside δ-balls and not just at their centers. Given δ > 0, let u�1, u

�
2, and u

�
3 be the 

foundation vertices placed anywhere inside δ-balls, centered at C1, C2, and C3, respectively. If 
δ is small enough, we will show that a cycle can be attached to the foundation set {u�1, u

�
2, u

�
3}, 

which is very close to the cycle attached to the foundation set {C1, C2, C3} (which we have 
already accomplished in Tool 14.2). 

Tool 14.3 There exists δ > 0 such that a 3-cycle can be attached to any foundation vertex set 
of type (1, 1, 1, 0)δ. 

Proof Given ε > 0, choose δ so that we can find “too short” and “too long” paths whose 
vertices are less than ε from the corresponding “too short” and “too long” paths attached to 
{C1,  C2,  C3}. This is possible due to the continuity argument. As in Tool 14.2, we get a “just 
right” path, which is the required cycle. ■
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14.3 Attaching a k-Cycle to a Foundation Set of Type (a1, a2, a3, 0)δ 

To generalize the above construction to k-cycles, where k > 3 is odd, other special points are 
needed. The three triangle points, denoted by T1, T2, and T3, are the points of the 3-cycle 
attached to C1, C2, and C3, respectively. The three spoke points, denoted by S1, S2, and S3, 
respectively, are the points such that Si is a unit distance from Ti and Ci, for 1 ≤ i ≤ 3. We 
define “triangle” points Tshort 

i and Tlong 
i and “spoke points” Sshort i and Slong i analogously for 1 ≤

i ≤ 3. At first, cycles or paths are attached, which coincide with these triangles and spoke 
points. The shadows of these cycles coincide with the center points C1, C2, and C3. We then 
use the continuity argument to show the existence of cycles very close to these. 

Tool 14.4 Let k ≥ 3 be an odd number. For all positive integers a1, a2, a3 such that 
a1 + a2 + a3 = k, a  k-cycle consisting only of edges from Ti to Ti +  1 (addition modulo 3), 
and Ti to Si, for 1 ≤ i ≤ 3, can be attached to the union of ai points at Ci, 1  ≤ i ≤ 3. 

Proof The work involved in attaching 5-cycles contains all the details of the general case. 
Suppose, for example, we want to attach a 5-cycle to the set u�1, u

�
1a, u

�
1b, u

�
2, u

�
3 (where the 

number in the subscript indicates the δ-ball containing the vertex). 

By Tool 14.3, for δ small enough, we can attach a 3-cycle u1, u2, u3 to the foundation 
vertices u�1, u

�
2, u

�
3 . We just need to insert a “detour” into this cycle. Instead of going from u1 

to u2, we go from u1 to u1a to u1b, which is arbitrarily close to u1. We then continue to u2 to u3 
and finally back to u1. Of course, we cannot actually construct the 5-cycle directly from the 
3-cycle. Instead, we construct “too short” and “too long” 5-paths with corresponding vertices 
within ε of the vertices of the “too short” and “too long” 3-paths used to construct the 3-cycle 
(see Tools 14.2 and 14.3). Given ε, we choose δ such that this is possible. By the continuity 
argument, we get a “just right” 5-path. This is an attached 5-cycle (see Fig. 14.2). 

C1 C4 

C3 
C2 

Fig. 14.2 A 5-cycle attached to a set of type (3, 1, 1, 0) δ



14.4 Attaching a k-Cycle to a Foundation Set of. . . 121

Of course, it did not matter that three foundation vertices were in the same δ-ball. Only two 
were necessary for the argument to work. The basic idea is to take a 3-cycle u1, u2, u3 and 
construct a 5-cycle u1, z, u1, u2, u3. It does not matter where the foundation vertex z is so long 
as it’s close enough to u1 so that the unit length edges can be connected to z (i.e., z should be 
less than 2 units away from u1). 

For example, suppose we want to attach a 5-cycle to u�1, u
�
1a, u

�
2, u

�
3, u

�
3a . We  find “too 

short” and “too long” 5-paths that are arbitrarily close to the corresponding “too short” and 
“too long” 3-paths. By the continuity argument, we get a 5-cycle (see Fig. 14.3). 

C1 C4 

C3 
C2 

Fig. 14.3 A 5-cycle attached to a set of type (2, 1, 2, 0)δ 

Similarly (using induction and considering two cases as discussed above), k-cycles can be 
attached to k points by first looking at a (k–2)-cycle attached to k–2 points and, then, 
performing the insertion procedure described above. The cycle will look like a triangle with 
a few spokes coming off some of the vertices. ■ 

By symmetry, we can now attach k-cycles to sets of types (a1, 0, a3, a4)δ and (0, a2, a3, a4)δ. 
What if we need to place the foundation vertices inside all four of the δ-balls? In fact, for our 
purposes, we need only the case when the partitioning of the foundation vertices puts just one 
foundation vertex in the δ-ball around C4, and so, only this case needs to be considered. 

14.4 Attaching a k-Cycle to a Foundation Set of Type (a1, a2, a3, 1)δ 

Tool 14.5 Let k ≥ 5 be an odd number. For all positive integers a1, a2, a3, a4 such that 
a1 + a2 + a3 + a4 = k and a4 = 1, there exists δ > 0 such that a k-cycle can be attached to any 
foundation set of type (a1, a2, a3, 1)δ. 

Proof The argument of the previous chapter applies here as well. At least one of a1, a2, a3 is 
greater than 1, say a1.  We  first find a (k–2)-cycle attached to a set of type (al- 1, a2, a3, 0)δ and 
then replace the vertex u1 in the cycle by a path u1, u4, u1a. This produces an attached k-cycle. 
Like before, we really do all the work on the “too short” and “too long” paths and use the 
continuity argument to prove the existence of the desired “just right” cycle (see Fig. 14.4). ■
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C1 C4 

C3 
C2 

C1 C4 

C3 
C2 

Fig. 14.4 An 11-cycle attached to a set of type (5, 1, 4, 1) δ. The cycle and the attaching edges 
are shown on the left. The cycle alone is shown on the right 

14.5 Attaching a k-Cycle to the Foundation Sets of Types (a1, a2, 0, 0)δ 
and (a1, 0, a3, 0)δ 

We have shown that an odd cycle can be attached to k points placed inside δ-balls around any 
three or all four of Cl, C2, C3, and C4. But what if the points are distributed between δ-balls 
around just two of the center points? The crucial step is still attaching a triangle. Once it is 
shown that a triangle can be attached to the center points, the previous arguments show that a 
k-cycle can be attached for any odd k > 3. We simply think of one of the δ-balls as two 
overlapping δ-balls (so, now, we have three balls). 

Tool 14.6 Let k ≥ 3 be an odd positive integer. For all positive integers al, a2 such that 
al + a2 = k, there exists δ such that a k-cycle can be attached to any foundation set of type (a1, 
a2, 0, 0)δ. 

Proof Without loss of generality, assume al ≥ 2. We attach a 3-cycle to two vertices at Cl and 
one vertex at C2, using the same notation as before for the triangle points; only here, the 
triangle points with subscripts 1 or 2 correspond to C1, while those with subscript 3 corre-
spond to C2 (see the left drawing of Fig. 14.5). 

Using the points listed in the Appendix (rounded to five decimal places), two 3-vertex 
paths are attached to C1, Cl, and C2. In the first path, Tshort 

1 , Tshort 
2 , Tshort 

3 , the distance from 
Tshort 
1 to Tshort 

3 is less than 1. In the second path, Tlong 
1 , Tlong 

2 , Tlong 
3 , the distance from Tlong 

1 to 
Tlong 
3 is greater than 1. Since one path is obtained from the other by continuously sliding the 

starting vertex, by the continuity argument, there must be a path for which the distance 
between the first and the last vertices is exactly 1. This is a desired, attached 3-cycle. 

Now, we attach the k-cycle. Let a01 and a
00
1 be positive integers such that a

0
1 þ a001 = a1.  We  

treat Cl as if it were two separate vertices C
0
1 and C

00
1 and use the machinery from the previous 

section to find δ such that any a01 points in the δ-ball around C
0
1, a

00
1 points in the δ-ball around 

C00
1, and a2 points in the δ-ball around C2, can have a k-cycle attached. In other words, any al



points in the δ-ball around C1 and a2 points in the δ-ball around C2 can have a k-cycle 
attached. ■ 
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C1 C4 

C3 
C2 

C1 C4 

C3 
C2 

Fig. 14.5 Attaching a 3-cycle to {C1, Cl, C2} on the left. Attaching a 3-cycle to {C1, Cl, C3} 
on the right 

This allows the attachment of k-cycles if the center points are at a distance of 0.9 from each 
other, like Cl and C2. The configuration consisting of Cl and C3 can be handled similarly. 

Tool 14.7 Let k ≥ 3 be an odd positive integer. For all positive integers al, a3 such that 
al + a3 = k, there exists δ such that a k-cycle can be attached to any foundation set of type 
(a1, 0, a3, 0)δ. 

Proof We just need to show that we can attach a 3-cycle to one vertex at the center of one δ-
ball and two vertices at the center of the other. As is the proof of the previous tool, we use the 
“too short,” “too long,” and “just right” continuity argument (see the right drawing of 
Fig. 14.5). The Appendix at the end of this chapter contains the coordinates of the special 
points (rounded to five decimal places). ■ 

14.6 Removing Coincidences 

If two vertices from a graph are placed at the same points in the plane, small cycles may 
inadvertently be created. We must ensure that no vertices coincide. For δ small enough, the 
regions containing the foundation vertices are disjoint from the regions containing cycle 
vertices. Furthermore, the foundation vertices can be placed anywhere in the δ-balls, so we 
choose distinct locations for all of them. It is possible, however, for cycle vertices to coincide. 
In small graphs, it can be verified computationally that this doesn’t occur. For larger graphs, 
Paul O’Donnell has developed procedures to remove these coincidences. 

If the vertices from two different attached cycles coincide, then one foundation vertex is 
moved slightly, causing all the vertices of the one attached cycle to move slightly, whereas no 
vertices of the other cycle move. “Slightly” means not enough to introduce any new 
coincidences. If the vertices from the same cycle coincide, a modification of this method is 
used to remedy it. 

Tool 14.8 If there is an embedding of a unit distance graph G with m ≥ 1 pairs of coincident 
vertices, then there is an embedding with fewer than m pairs of coincident vertices.
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5-cycles, and made sure that no coincidences occurred.
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Proof Given an embedding of G with coincident vertices u and w, we shift some of the 
vertices of G, subject to several restrictions: no foundation vertex can move outside its δ-ball 
and no new coincidences may be introduced. Let ε1 be the minimal distance between any 
foundation point and the boundary of the δ-ball containing it, and let ε2 be the minimal 
distance between any two non-coincident vertices; we define 

ε= min ε1, 
ε2 
2 

: 

Given ε > 0, we choose δ′ , 0  < δ′ < ε, such that if a foundation vertex is moved a distance less 
than δ′ , then no vertex moves a distance ε or greater. Since the foundation vertices are not 
moved more than ε1, they remain inside their δ-balls; thus, all k-cycles can still be attached. 
Since all non-coincident pairs of vertices are at least ε2 apart, the movement by less than ε2/2 
does not create new coincidences. Let us consider two cases. 

Case 1 Assume that u and w are on different cycles: u is on the cycle u = ul, u2, . . .  while w is 
on the cycle w = w1, w2,. . .  

Let uj be a vertex such that no wi is attached to the foundation vertex u�j . Moving uj +  1 

along the unit circle centered at u�j 1 causes each vertex in the cycle 

ujþ1, ujþ2, . . . , uk, u1, . . . , uj- 1 

to move to maintain a unit distance from its foundation vertex and from the preceding cycle 
vertex. We move uj +  1 so that no vertex has moved more than ε, and, thus, there is a point unit 
distance from uj - 1 to uj +  1 and distance less than δ

′ from uj. This point is the new location of 
uj. Now, we move u�j the same distance so that it is a unit distance from the new uj. Of course, 
moving u�j may shift the vertices of cycles attached to it by distances less than ε, but no new 
coincidences are introduced. Since u1 moves and wl does not, at least one coincidence is 
removed. 

Case 2 Assume that u and w are on the same cycle; to reflect this, we call them u1 and ui. We  
choose a cycle vertex uj different from the coincident vertices and apply the procedure 
described in case 1. The only foundation vertex that moves is u�j . The only point in the ε-
ball around the coincident vertices, which is at a distance 1 from u�1 and u

�
i , is the original 

location of those points (u1 and ui). Since u1 and ui move, while u�1 and u
�
i do not, they no 

longer coincide. As before, no new coincidences are introduced. ■ 

This has been a display of Paul O’Donnell’s embedding machinery and his presentation of 
it [Odo3], [Odo4], and [Odo5]. Can we get an immediate reward from his tool chest? As you 
know from Chapter 12, Wormald embedded his 6448-vertex graph in the plane. He started 
with 13 foundation points forming the vertices of a regular 13-gon, attached and embedded 

13 

O’Donnell was able to do it much easier – let us take a look.
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14.7 O’Donnell’s Embeddings 

Embedding the Wormald Graph Place four foundation vertices in each of the δ-balls 
centered at C1, C2, and C3, plus one foundation vertex in the δ-ball centered at C4. The 
embedding tools above allow the attachment of all 5-cycles and elimination of all coinci-
dences that may occur. The unit distance embedding of the Wormald graph is thus accom-
plished! ■ 

Wormald hints that with considerable effort, he could probably embed a larger Blanche 
Descartes graph, which is constructed by attaching all 7-cycles to the foundation of 19 ver-
tices. No wonder he does not actually deal with it: for one, this is a 352,735-vertex graph, and, 
thus, calculations would have grown dramatically. Moreover, Wormald admits that he does 
not see his approach going any further than a graph of girth 6. 

The embedding of this 352,735-vertex graph too becomes trivial, compliments of 
O’Donnell’s embedding tools. 

Embedding the 352,735-Vertex Graph Indeed, just place six foundation vertices in each of 
the δ-balls centered at C1, C2, and C3, plus one foundation vertex in the δ-ball centered at C4. 
The embedding tools above allow the attachment of all 7-cycles and elimination of all 
coincidences that may occur. ■ 

The next chapter is dedicated to the World Records of Embedding set before the 2009 first 
edition of this book – join me for the exciting World Series! 

Appendix 

Vertices used to show a cycle can be attached to vertices at the points Cl, C2, and C3. 

Tshort 
1 (0.99635, 0.08533) 

Tshort 
2 (0.98269, 1.08524) 

Tshort 
3 (1.84978, 0.58709) 

Tshort 
4 (0.9980, 0.06319) 

Sshort 1 
(0.57208, - 0.82020) 

Sshort 2 
(0.65177, 0.14158) 

Sshort 3 
(1.64588, 1.56608) 

Sshort 14 (1.60981, - 0.70439), distance 1 from C4 and Tshort 
1 

Sshort 24 (1.77788, 0.47888), distance 1 from C4 and Tshort 
2 

Sshort 34 (1.81111, - 0.41216), distance 1 from C4 and Tshort 
3 

Tlong (0.99541, 0.09567) 

Tlong (0.98069, 1.09556) 

Tlong (1.85956, 0.61850) 

Tlong (0.99280, 0.11977)
4
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14 1

24 2

34 3

1
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4
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Slong (0.58056, - 0.81422) 

Slong (0.65971, 0.14848) 

Slong (1.62357, 1.59025) 

Slong 1.65414, - 0.65671), distance 1 from C4 and T
long 

Slong (1.77374, 0.48640), distance 1 from C4 and T
long 

Slong (1.82462, - 0.38089), distance 1 from C4 and T
long 

T1 (0.99591, 0.09038) 
T2 (0.98173, 1.09028) 
T3 (1.85476, 0.60261) 
S1 (0.57623, - 0.81729) 
S2 (0.65565, 0.14494) 
S3 (1.63492, 1.57815) 
S14 (1.63230, - 0.68098), distance 1 from C4 and Tl 
S24 (1.77587, 0.48255), distance 1 from C4 and T2 

S34 (1.81794, - 0.39671), distance 1 from C4 and T3 

Vertices used to show a cycle can be attached to vertices at the points C1, C2: 

Tshort 
1 (- 0.06194, 0.99808) 

Tshort 
2 (0.83339, 0.55268) 

Tshort 
3 (0.75995, 1.54998) 

Tshort 
4 (0.83339, 0.55268) 

Sshort 1 
(0.83339. 0.55268) 

Sshort 2 
(- 0.06194, 0.99808) 

Sshort 3 
(0.94288, 0.56685) 

Tlong (- 0.08916, 0.99602) 

Tlong (0.81800, 0.57522) 

Tlong (0.74037, 1.57220) 

Tlong (0.81800, 0.57522) 

Slong (0.81800, 0.57522) 

Slong (- 0.08916, 0.99602) 

Slong (0.95233, 0.59493) 

T1 (- 0.07551, 0.99715) 
T2 (0.82580, 0.56397) 
T3 (0.75029, 1.56111) 
S1 (0.82580, 0.56397) 
S2 (- 0.07551, 0.99715) 
S3 (0.94768, 0.58079)
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Chapter 15 
Embedding World Series 

During December 1991–January 1992, Paul Erdős and I were working on the book Problems 
of pgom Erdős at my home in Colorado Springs.1 Ron Graham called and invited me to meet 
him in person at a Florida Atlantic University’s conference, which I did not know existed. I 
had just started publishing the problem-posing quarterly Geombinatorics, and, at that con-
ference, I introduced it to my colleagues for the first time while giving a talk on the chromatic 
number of the plane problem. As a result, a group of brilliant young PhD students, including 
Paul O’Donnell and Rob Hochberg, got excited about the problem and the new journal. 
Geombinatorics has become the main home for related problems and results, outshining, in 
this regard, top journals on combinatorial theory and discrete geometry. One of the most 
exciting consequences was the competition for the smallest unit distance triangle-free graph, 
which I named Embedding World Series. 

As you recall from Chapter 5, in 1975, Paul Erdős posed a problem to prove or disprove the 
existence of 4-chromatic unit distance graphs of girths 4, 5, and higher. Nicholas Wormald 
constructed a girth 5 graph on 6448 vertices (Chapter 12). In my talk, I asked for the smallest 
example, and the World Series began in earnest on the pages of Geombinatorics! New records 
were set by Paul O’Donnell, Rob Hochberg, and Kiran Chilakamarri; some new record 
graphs earned names, such as the Moth Graph and the Fish Graph, and appeared on the 
covers of Geombinatorics. In a book form, for the first time, these World Series were 
presented in the first 2009 edition of this book. You will see that, once a mathematical 
construction and proof were out of the way, the record holders went on to find a “beautiful” 
symmetric embedding of their graphs, the ones to which they – or else I – gave special names. 

1 When this second edition is finished, I will get back to finishing Problems of pgom Erdős and 
Memory in Flashback: A Mathematician’s Adventures on Both Sides of the Atlantic, both under 
contracts with Springer; so, stay tuned. 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_15&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_15#DOI
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15.1 A 56-Vertex, Girth 4, 4-Chromatic Unit Distance Graph [Odo1] 

As we have touched on in Section 12.2, in 1955, Jan Mycielski [Myc] invented a method of 
constructing triangle-free graphs of an arbitrary chromatic number k: Start with a triangle-free 
(k–1)-chromatic graph G. For each vertex vi 2V(G), add a vertex wi adjacent to all vertices in 
the neighborhood of vi. Next, add a vertex z adjacent to all of the new vertices. The chromatic 
number of this new graph is k, and it is still triangle-free. Let us call this graph Mycielskian of 
G and denote it as M(G). Unfortunately, the resultant graph does not often embed in the plane. 
Notice that if a vertex of G has degree 3 or more, then the Mycielskian M(G) of  G contains a 
K2,3 subgraph. The plane contains no unit distance K2,3 subgraph, so the starting graph G must 
have a maximum degree at most 2 for the Mycielskian to be a unit distance graph. Thus, the 
only candidates for the unit distance version of the Mycielski construction are unions of paths 
and cycles. The Mycielskian of an odd cycle does not embed in the plane, however, so the 
Mycielski construction does not give a 4-chromatic unit distance graph. The Mycielskian of at 
least one even cycle does embed, though. 

The 5-cycle u1, u2, u3, u4, u5 is said to be attached to the set of vertices {v1, v2, v3, v4, v5} if  
vi is adjacent to ui for 1 ≤i ≤ 5 (see Fig. 15.1). Such an attachment is a useful operation 
because it can increase the chromatic number of a graph from 3 to 4 without introducing any 
3-cycles. 

Fig. 15.1 The 5-cycle u1, u2, u3, u4, u5 is attached to {v1, v2, v3, v4, v5} 

The graph H in Fig. 15.2 is the Mycielskian of the 10-cycle C10. It can be shown with basic 
geometry and algebra that H can be embedded in the plane, but O’Donnell reports that Rob 
Hochberg pointed out a nicer proof, which shows why this is so. H is a subgraph of the 
projection of the 5-cube along a diagonal onto the plane. The coordinates of the vertices v1, v3, 
v5, v7, v9 are the fifth roots of unity, while the edges are all of unit length since they are 
translations of these unit vectors. This graph is only 3-chromatic; thus, we will attach 5-cycles 
to make it 4-chromatic.
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w4 

w5 

w6 

w7 

w8 w9 

w10 

w1 

w2 

w3 

v4 v3 

v5 

v6 

v7 

v8 v9 

v10 

v1 

v2 

z 

Fig. 15.2 H = M(C10), the Mycielskian of C10 

Construction 15.1 A 5-cycle can be attached to the subgraph R = {v1, v3, v5, v7, v9} of the 
graph H depicted in Fig. 15.2. 

Proof Center a regular pentagon of side length 1 at the origin and rotate it until the distance 
from one of its vertices to v1 is 1 (see Fig. 15.3). Then the respective distances from the other 
vertices of the pentagon to the other vertices of the graph will all be 1. 

Does this attachment remind you of the construction of the Golomb Graph (Fig. 2.8)? It 
should, for the Golomb Graph was O’Donnell’s inspiration for this nice construction. As far 
as I am concerned, it reminds me of Fig. 13.4, obtained by Erdős–Harary–Tutte. 

Moreover, you will see in Part X: Ask What Your Computer Can Do for You that this 
construction is extensively used today and has earned the name the spindling method. ■
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Fig. 15.3 H with one 5-cycle attached 

Construction 15.2 A 5-cycle can be attached to T = {w1,w3,w6,w8, z} (see Fig. 15.2). 

Proof The proof relies on the intermediate value theorem and the continuity argument 
introduced in the beginning of Chapter 14. Described a little less formally, we try to attach 
a 5-cycle to the five vertices of T so that the cycle edges and the connecting edges are all of 
unit length. In fact, we try it twice. The problem with the attachments is that in the first one, 
one of the edges in the cycle is too short and in the second, it is too long. Since one 
configuration is obtained from the next by a continuous transformation, there exists an 
attachment where the same edge has unit length. Thus, T can have a 5-cycle attached (see 
Fig. 15.4). 

Fig. 15.4 The “short” attachment and the “long” attachment shown together on the left. The 
“just right” attachment is on the right. (All unlabeled edges are of unit length)
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The most efficient way to verify these attachments is by a computer, although it is 
necessary to make sure that the error made by approximating the numbers does not affect 
any of the inequalities. The error in the numbers listed below is <10-5 , which does not affect 
the results. 

Let Ci be the unit circle around the ith vertex in H. Let ul, u2, u3, u4, u5 be a path with unit 
length edges and with ui on Ci. This almost gives an attached 5-cycle. The attaching edges are 
all of a unit distance since each ui is on the unit circle around some vertex in H, and the four-
path edges are of a unit distance. This path can be slid back and forth in a continuous manner 
with each ui tracing out an arc on Ci. One such path is approximately (0.95, 0.74413), (-
0.04916, 0.70312), (-0.62463, -0.11470), (0.13436, -0.76580), (0.974661, -0.22369). 
The vertices of this path form a “too short” attachment where all distances are one, except 
from u5 to u1 where the distance is about 0.968. 

A second path that can be obtained from the first one by the continuous sliding is (1.1, 
0.85536), (0.13069, 0.60954), (-0.61938, -0.05183), (0.10423, -0.74206), (0.97027, -
0.24204). The vertices of this path form a “too long” attachment where the u5 to u1 distance is 
1.10. By continuity, there is a “just right” attachment where the edge from u5 to u1 is exactly 
one. The exact coordinates of this attachment are unknown, but, for claiming their existence, 
it suffices to show that a 5-cycle can be attached to our set (see Fig. 15.4). ■ 

Construction 15.1 allows us to attach a 5-cycle to {vl, v3, v5, v7, v9}. Similarly, we can 
attach another 5-cycle to {v2, v4, v6, v8, vl0}. We get the new graph and call it H′. In a 
proper 3-coloring of H′, the vertices in {vl, v3, v5, v7, v9} cannot get the same color since 
that leaves only two colors for the attached 5-cycle. The same holds for {v2, v4, v6, v8, 
vl0}. This is enough to rule out most of the 3-colorings of H′. In fact, except for the 
vertices of the attached 5-cycles, the coloring of H′ is completely determined up to 
symmetries. This coloring is shown in Fig. 15.5 (the attached 5-cycles are not shown 
in the figure). Note that there are numerous ways to color the attached 5-cycles, but their 
attachment  forces  the  rest  of  the  graph  to  have  a  unique  coloring  up  to  a  permutation  of  
the colors and rotation of the graph.
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Fig. 15.5 The vertices of H must have this coloring up to symmetries when two 5-cycles are 
attached. (The attached 5-cycles are not shown) 

In particular, in every 3-coloring of H′, for some j, 1 ≤ j≤ 5, the set {wj, wj + 2, wj + 5, wj + 7, 
z} (addition modulo 10) is monochromatic, where z and wi are as in Fig. 15.2. By attaching 
5-cycles to all five of these sets, we exclude all 3-colorings. The result is a 4-chromatic graph. 
Moreover, since H is triangle-free, this new graph is also triangle-free. Approximation of the 
coordinates of the vertices ensures that there are no coincident vertices. 

It is time to count the vertices of our construction: H has 21 vertices, then two 5-cycles are 
added, and then five 5-cycles more. The result is a triangle-free, 4-chromatic graph on 
56 vertices (Fig. 15.6).
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Fig. 15.6 A 56-vertex 4-chromatic graph in the plane with no 3-cycles 

Beating the 6448-vertex Wormald graph with the new world record of a 56-vertex graph 
was a striking achievement. 

In closing, Paul O’Donnell observes: One reason to search for triangle-free graphs is that 
they seem to be flexible. For example, H can be bent into a 4-chromatic graph, containing 
many Mosers Spindles (Fig. 15.7). 

Fig. 15.7 H can be bent so that new edges (unit distances) are introduced. The chromatic 
number of this graph is 4
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Paul ends [Odo1] with the ultimate goal (or ultimate musing): 

Perhaps flexibility will prove useful in the construction of a 5-chromatic unit-distance 
graph in the plane! 

15.2 A 47-Vertex, Girth 4, 4-Chromatic Unit Distance Graph [Chi] 

Professor Kiran Chilakamarri, then of the Ohio State University (and later of Texas Southern 
University) was one of the early researchers of the chromatic number of the plane. Among 
other related things, he was much interested in constructing the smallest possible example of a 
4-chromatic, triangle-free unit distance graph. I have little doubt that his work was well on the 
way when Paul O’Donnell published the first, 56-vertex breakthrough in these real (unlike 
baseball) World Series. In the fall of 1995, Kiran responded by beating Paul’s world record 
with the 47-vertex Moth Graph of his own, which I promptly published on the cover of the 
January 1995 issue of Geombinatorics. 

Chilakamarri constructs his example in stages, at each stage describing the properties 
shared by all possible colorings of the graph constructed. He begins with a graph on 
12 vertices and 20 edges, which he calls the core graph shown in Fig. 15.8. 

Fig. 15.8 A core graph 

Chilakamarri then invents the right-wing graph (Fig. 15.9) on 10 vertices and 12 edges and 
symmetrically the left-wing graph.
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Fig. 15.9 The right-wing graph 

He then attaches the wings to the core graph and gets the Butterfly Graph (Fig. 15.10). 

Fig. 15.10 The Chilakamarri butterfly graph 

Finally, he joins two butterflies to produce the 47-vertex graph, which he proves to be 
4-chromatic (Fig. 15.11).
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Fig. 15.11 The Chilakamarri Moth graph 

Kiran then proves “the existence” (i.e., the existence of an embedding in the plane) of the 
Moth Graph by producing its coordinates. Finally, he proves that the Moth graph has girth 4. 

by checking that (a) the vertices of the core graph do not form an equilateral triangle, (b) the 
left wing has no equilateral triangle, (c) as we add the wings to the core, no new edges are 
created, and, finally, (d) as we join two butterfly graphs, no new edges are created other than 
the edge we have added. ■ 

As Kiran Chilakamarri set his new world record of 47, our World Series became so intense 
in mid-1995, that Chilakamarri in this July 1995 paper mentions in the endnotes “Paul 
O’Donnell tells me he is shrinking the size of the example (≤40?). . .” Moreover, Robert 
Hochberg modified O’Donnell’s 56-vertex construction to get a 46-vertex, unit distance, 
triangle-free 4-chromatic graph and thus beat Chilakamarri’s world record of 47, but, Rob, to 
my regret, decided against publishing it because he too learned that O’Donnell was getting 
ready to roll out yet another new world record, the 40-vertex graph. 

15.3 A 40-Vertex, Girth 4, 4-Chromatic Unit Distance Graph [Odo2] 

Similarly, to [Odo1] approach, Paul O’Donnell starts with the Mycielskian of the 5-cycle C5. 
This 11-vertex Mycielski–Grötzsch graph (we saw it in Fig. 12.8) is the smallest triangle-free 
4-chromatic graph. Since it is not a unit distance graph, we modify it by taking out the 
“central” vertex adjacent to the 5 “new” vertices and replacing it with five vertices, each 
adjacent to a pair of “new” vertices as shown in Fig. 15.12. Call this graph H.
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Fig. 15.12 An “instructive” drawing of H on the left. A unit distance embedding of H is on 
the right 

H is 3-chromatic, but all the 3-colorings share a valuable property. In every 3-coloring, one 
of the sets {v1 +  i, v6 +  i, v11 + (i + 1), v11 + (i + 2), v11 + (i + 3)}, for 0≤i≤4 (where the parentheses 
indicate addition modulo 5), is monochromatic. By attaching 5-cycles, one of which is shown 
in Fig. 15.13, to all such sets, all 3-colorings get excluded. Thus, the resultant graph H′ is 
4-chromatic and still triangle-free. It remains to show that H′ is a unit distance graph. 

w1 

u1 

u5 

u2 u3 

u4w4 

w5 

w3 

w2 

Fig. 15.13 The 5-cycle ul, u2, u3, u4, u5 is attached to {w1, w2, w3, w4, w5}
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Construction 15.3 A 5-cycle can be attached to T = {v1, v6, v12, v13, v14} (see the right 
Fig. 15.12). 

Proof We try to attach a 5-cycle w1, w2, w3, w4, w5 so that the cycle edges and all the 
connecting edges are of unit length (see Fig. 15.14). It is fairly simple to attach a unit distance 
path w1, w2, w3, w4, w5 to T. The hard part is getting w5 and w1 to be at a unit distance to 
complete the cycle. 

Define a continuous function f(θ) to be the length of the edge {w1, w5} when vertex w1 is 
placed at an angle θ and at a unit distance from v1 and each subsequent wi is placed at a unit 
distance from both wi – 1 and its corresponding vertex in T. Typically, there are two possible 
positions for wi, so a precise description of f(θ) would include how all of the choices are made. 
It suffices to say that there exists f(θ) satisfying the above description and continuous on some 
interval [a, b] on which f(a) < 1 and f(b) > 1. By the intermediate value theorem, for some 
θ0 [a, b], f (θ0) = 1. ■ 

v1 
v13 

v12 

v6 

v14 

Fig. 15.14 H with a 5-cycle attached to T 

By attaching 5-cycles to T to all five of its rotations, we obtain a graph with the desired 
properties. Since H had 15 vertices and we attached five 5-cycles, the result is a 4-chromatic, 
triangle-free unit distance graph on 40 vertices (Fig. 15.15).
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Fig. 15.15 The O’Donnell pentagonal graph 

The new world record of 40 was fabulous; I gladly published it on the cover of the July 
1995 issue of Geombinatorics. However, it was not the end of the Embedding World Series. 
Paul ended his essay [Odo2] with a promise of more things to come: 

Some related questions are still wide open. Given k, is there a 4-chromatic unit-distance 
graph with no < k-cycles? What is the smallest 4-chromatic triangle-free unit-distance 
graph? And of course, is there a 5-chromatic unit-distance graph in the plane? Stay 
tuned to Geombinatorics research quarterly for further developments. 

15.4 A 23-Vertex, Girth 4, 4-Chromatic Unit Distance Graph 

Indeed, more things did come. It remains a mystery to me why Paul O’Donnell did not include 
in his doctorate dissertation the two world records he has jointly set with Rob Hochberg. In 
the dissertation, Paul mentions this achievement briefly, as if in passing: 

In joint work with R. Hochberg [HO], the upper bounds on the sizes of the smallest 
4-chromatic unit-distance graphs with girths 4 and 5 were lowered even more. A 
23-vertex, girth 4, 4-chromatic unit-distance graph was found. The construction 
involved a generalized version of cycle attachment. A 45-vertex, girth 5, 4-chromatic
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unit-distance graph was found. The construction involved a generalized version of cycle 
attachment. 

That is all! Fortunately, I published their remarkable paper in Geombinatorics in April 1996 
[HO], and, so, we are able to revisit it here. 

In [Odo1] and [Odo2], Paul O’Donnell used the idea of attaching odd cycles to specified 
subsets of vertices of a starting independent set. Here, Rob Hochberg and Paul O’Donnell use 
a more complicated notion of attaching: a cycle might not have all of its vertices attached to 
the independent set, and some vertices in the independent set may have more than one vertex 
of the cycle attached to them. Figure 15.16 illustrates two applications of this idea. 

a 

x 

v w b c d  

Here, a 5-cycle is partially attached to the Here, a 7-cycle is attached to the 

independent set {v, w}.  In any 3-coloring      independent set {a, b, c, d}. Any 

of this graph, if v and w get the same color,  coloring of this graph that, makes the 

then x must also get that color. independent set monochromatic, must use 

at least 4 colors. Note that this graph has girth 5. 

Fig. 15.16 Attaching odd cycles to independent sets 

In Fig. 15.17a, the 5-cycle (ul, u2, u3, u4, u5) is partially attached (by dashed lines) to 
{w, y}. Observe that in any 3-coloring, if w and y get the same color, then u5 must also receive 
that color. 

Fig. 15.17a Attaching a 5-cycle
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To these three vertices {w, y, u5}, we then attach the (bold) 5-cycle (v1, v2, v3, v4, v5), as 
shown in Fig. 15.17b. 

Fig. 15.17b Attaching a 5-cycle 

Now, in any 3-coloring of this graph, if w and y (and hence u5) receive the same color, then 
there are only two colors left, for the attached odd cycle, making such a 3-coloring impos-
sible. But in any 3-coloring of the square {w, x, y, z}, one of the pairs {w, y}  or  {x, z} must be 
monochromatic. So, we take a copy of the two 5-cycles shown in Fig. 15.17b (flipped about a 
horizontal axis so that they are now attached to the pair {x, y}). With the coincidence at the 
center of the square, this adds only 9 new vertices (rather than 10 – every vertex counts when 
we set world records!), creating a 23-vertex graph with no 3-coloring. This graph is shown in 
Fig. 15.18. I named it the Hochberg–O’Donnell Fish Graph.
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Fig. 15.18 The Hochberg–O’Donnell Fish Graph 

It remains to be shown that the graph is indeed of a unit distance. Clearly, it suffices to 
show that the 5-cycles can be attached in the way we described. The proof relies on the 
intermediate value theorem and the continuity argument. We try to attach a cycle to a 
specified set of vertices so that the cycle edges and the connecting edges are all of unit length. 
In fact, we do it twice: in the first, one of the edges in the cycle will be too short and, in the 
second, it will be too long. Since one configuration can be obtained from the other by a 
continuous transformation (which does not alter the lengths of the unit length edges), there 
exists an attachment where the same edge has length 1. This works for all the attachments and 
partial attachments in these constructions. We have looked at this argument in greater detail 
earlier in this chapter where we discussed O’Donnell’s 56- and 40-vertex record graphs. ■ 

The problem remained open: 

Problem 15.4 What is the smallest number of vertices in a 4-chromatic unit distance graph of 
girth 4? 

As you know, the smallest 4-chromatic, triangle-free graph is the Mycielski–Grötzsch 
Graph on 11 vertices. The Fish Graph satisfies all the Grötzsch conditions plus one extra: It is 
a unit distance graph. It was remarkable that Rob and Paul managed with merely 23 vertices. 
Was this the smallest possible number of vertices? I was not sure. I thought that it was fairly 
close to it.
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In the course of 2 years, on the pages of Geombinatorics, we traveled from 6448 vertices 
all the way to 23, a fine achievement. This record survived for two decades, until fairly 
recently Geoffrey Exoo and Dan Ismailescu have completely settled my Problem 15.4. 
Chapter 16 is dedicated to their work. 

15.5 A 45-Vertex, Girth 5, 4-Chromatic Unit Distance Graph 

Recall the Petersen Graph (Fig. 13.3) and its unit distance embedding in the plane (Fig. 13.4), 
which was discovered by the distinguished triumvirate of mathematicians Erdős–Harary– 
Tutte in their 1965 article [EHT] (yes, that is where they famously observed, “It is easy to see 
(especially after seeing it).” Here Hochberg and O’Donnell pursue their second idea (see 
Fig. 15.16 on the right). Accordingly, in Fig. 15.19, a 7-cycle (shown in bold) is attached to a 
4-vertex independent set of the Petersen graph. 

Fig. 15.19 The Petersen Graph with a 7-cycle attached (by dashed lines) 

The authors then simply write: “By the pigeonhole principle, in any 3-coloring of the 
Petersen Graph, one of the five rotations of the set {a, b, c, d} will be monochromatic.” Can 
you figure out how the pigeons help here? Upon pondering for a few minutes, I have 
understood it (though not sure whether the authors had the same argument in mind): In a 
3-coloring of the Petersen Graph, at least 4 out of its 10 vertices must appear in the same color 
(that is the Pigeonhole Principle). Now, which four vertices could that be (here the Pigeonhole 
Principle is of no help)? The answer is two vertices on the outer pentagon and two on the inner 
star. You can now verify (do) that the only pair of the outer monochromatic vertices that 
allows two inner vertices in the same color, up to a rotation is a, c (Fig. 15.19). It is then clear 
that a, c must be accompanied in the same color by the vertices b, d of the inside!
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Fig. 15.20 The Hochberg–O’Donnell Star Graph 

When 7-cycles are attached to all five rotations of {a, b, c, d}, the resulting graph will not 
be 3-colorable. This gives a 45-vertex 4-chromatic graph with no 3-cycles and 4-cycles. This 
beautiful graph is shown in Fig. 15.20. I gave it the name honoring its creators, the Hochberg– 
O’Donnell Star and published it on the front cover of the April 1996 issue of Geombinatorics. 

Finally, we need to show that the Star Graph is indeed embeddable in the plane. It suffices 
to show that the 7-cycles can be attached in the way we described. The proof again relies on 
the intermediate value theorem and the continuity argument. We need to attach a 7-cycle to a 
specified set of vertices so that the cycle edges and the connecting edges are all of unit length. 
Instead, we do it twice: in the first one, one of the edges in the cycle will be too short and, in 
the second one, it will be too long. Since one configuration can be obtained from the other by 
a continuous transformation (which does not alter the lengths of the unit length edges), there 
exists an attachment where the same edge has length one. This works for all the attachments 
and partial attachments in these constructions. We looked at this argument in greater detail 
earlier in this chapter where we discussed O’Donnell’s 56- and 40-vertex record graphs. ■
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Open Problem 15.5 What is the smallest number of vertices in a 4-chromatic unit distance 
graph of girth 5? 

I hope that you have enjoyed getting acquainted with the beautiful new graphs and the 
world records they represent. Tables 15.1 and 15.2 summarize the world records’ history as it 
stood at the time of this book’s first edition publication and underscore the role of 
Geombinatorics as the playing field of this World Series. In the next chapter, you will learn 
about the recent new achievements! 

Table 15.1 World records up to 2008: smallest unit distance 4-chromatic graph of girth 4 

Number of 
vertices 

Publication 
date 

6448 N. Wormald 1979 [Wor] 
56 P. O’Donnell July 1994 Geombinatorics IV(1), 23–29 
47 K. Chilakamarri January 1995 Geombinatorics IV(3), 64–76 
46 R. Hochberg 1995 Unpublished 
40 P. O’Donnell July 1995 Geombinatorics V(1), 31–34 
23 R. Hochberg and 

P. O’Donnell 
April 1996 Geombinatorics V(4), 137– 

141 

Table 15.2 World records up to 2008: smallest unit distance 4-chromatic graph of girth 5 

Number of vertices Author Publication date Journal 

6448 N. Wormald 1979 [Wor] 
45 R. Hochberg and 

P. O’Donnell 
April 1996 Geombinatorics V(4), 137–141 

It is time to move on: We still have a lot of exciting colored and coloring mathematics to 
experience. Armed with great results on colored integers in Part VII, we will return to Paul 
O’Donnell’s dissertation: Part IX will be dedicated to his main results.
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Chapter 16 
Exoo–Ismailescu: The Final Word on Probl 

16.1 A Brief Story of Submission 

On September 20, 2016, I received an e-mail from Dan Ismailescu: 

Can you please tell us if you had the chance to look over the paper we submitted a few 
months ago? 

The e-mail below from Ismailescu, copied to his coauthor Geoffrey Exoo, was in fact dated a 
whole 8 months earlier, on January 26, 2016, and read as follows: 

Dear Professor Soifer, 

Attached you will find an article to be considered for publication in Geombinatorics. 

The paper deals with triangle-free 4-chromatic unit distance graphs, a problem which we 
know is very dear to you. We hope you will like it. We included the signed copyright 
form as well. Please let us know if there is anything else on our end that has to be done. 

Many thanks 

Dan Ismailescu 

I sent my reply to the authors on September 25, 2016, after an extensive but futile search of 
my inbox: 

Dear Dan and Geoff, 

I searched my inbox several times – and found only your old submissions. 

I am terribly sorry, but your January submission must have fallen into a black hole. 

Now that I know that you sent your submission on 01/26, I will put your paper in the 
queue at that date. I do need you to resubmit the essay and the copyright form. 

I am glad you inquired, for this gives us an opportunity to fix the problem. 

And yes, I can’t wait to read your paper – you are right, the topic is dear to my heart. 
Moreover, I am interested in your research!

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_16&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_16#DOI


Best wishes, 

Alexander
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P.S.: it would be great to receive your resubmission now, today–tomorrow, as I am 
selecting material for the October issue. 

In 10 min, I had the essay in my hands and dove into it. It was a treasure. My response was 
immediate: 

Wow! 17! 

You came so close to 11 of the Grötzsch graph. Congratulations to you both. Write more 
for us. Your essay will appear in October or next, January issue. 

Yours always, 

Alexander 

Geoffrey replied: 

Thanks. I always loved Chapter 15 (in the coloring book)! 

– Geoff 

The nearly-lost essay was so impressive that I invited Geoffrey Exoo to join the editorial 
board of Geombinatorics. I am grateful to Geoff for his acceptance. Now that you know the 
Story of Submission, let us look at its content. 

To make their essay [EI1] self-contained, the authors begin with a historical chapter 
concisely presenting the contents of Chapters 2, 3, and 15 of this book. They end the history 
with open Problem 15.4, which they solve completely: 

We construct triangle-free 4-chromatic unit distance graphs with 21, 19, and 17 vertices, 
respectively. Moreover, we present evidence that the value 17 cannot be improved. 

16.2 Constructing Triangle-Free, 4-Chromatic Unit Distance Graphs 

Exoo and Ismailescu convey their result in the style of Hochberg–O’Donnell of the previous 
Chapter 15 so well that I pass the flaming pen to them for this chapter and only change 
references they use to those already present in my book. 

We first describe the main idea behind our constructions. Our presentation is modeled after 
[HO]. 

Let G be a triangle-free, 3-chromatic unit distance graph with n ≥ 7 vertices and e edges. 
For instance, the disjoint union of two unit 5-cycles is such a graph. Since x(G) = 3 and n ≥ 7, 
it follows that α(G), the independence number of G, is at least [n/3] ≥ 3.1 

Let I = {1, 2, 3} be a three-vertex independent set of G. We augment graph G by adding 
5 new vertices, all different from the vertices of G, and 10 new edges in the following manner. 
We say that the 5-cycle [a, b, c, d, e] is  attached to the independent set I if a and c are adjacent

1 The independence number α = α(G) of a graph G is the cardinality of a maximum independent 
set of vertices.



to vertex 1, b and d are adjacent to vertex 2, and e is adjacent to vertex 3. Furthermore, 
suppose that this attachment can be done so that all these 10 edges have unit length – see 
Fig. 16.1 for an illustration.
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We, thus, have 5 new vertices a, b, c, d, e, and 10 new unit edges: {a, b}, {b, c}, {c, d}, 
{d, e}, {e, a} as the edges of the 5-cycle as well as {1, a}, {2, b}, {1, c}, {2, d}, {3, e}. 

1 

a 

e 

c 

d 

b 

2 

3 

Fig. 16.1 Attaching a 5-cycle [a, b, c, d, e] to the independent set I = {1, 2, 3} 

The operation described above is very useful because it can increase the chromatic number 
of a graph from 3 to 4 without introducing any 3-cycles (triangles). We present the argument 
below. 

Suppose that the initial graph G has k independent sets of size 3. To each one of these sets, 
we attach a 5-cycle as described above. We obtain a new unit distance graph H, which has 
n + 5  k vertices and e + 10  k edges. We claim that this graph is triangle-free and its chromatic 
number is at least 4. 

The fact that H is triangle-free follows from the way that the 5-cycles are attached. For the 
sake of contradiction, assume that H can be properly colored with three colors. Since n ≥ 7, it 
follows that there exist three vertices of G that are assigned the same color. These three 
vertices clearly form an independent set, say I = {1, 2, 3}. There is a 5-cycle [a, b, c, d, e] 
attached to this independent set. Since vertices 1, 2, and 3 receive the same color, say red, 
none of the new vertices a, b, c, d, e can be colored red. It follows that each of a, b, c, d, e can 
only be assigned one of the remaining two colors. But this is impossible, since a 5-cycle 
cannot be properly colored with only two colors. So, H is 4-chromatic and triangle-free as 
desired. 

The problem is that k may be large, and, therefore, H would have many vertices. But maybe 
we do not have to attach a 5-cycle to every independent set of size 3! The crucial idea of our 
approach is summarized in the two paragraphs below.
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(1) Let G be a triangle-free, 3-chromatic unit distance graph. For a given proper 3-coloring of 
the vertices, and a given independent set I, we say that I is monochromatic if all vertices of 
I receive the same color. 

(2) Let I be a collection of independent sets of size 3 such that for every proper 3-coloring of 
G, there exists a set I 2 I , which is monochromatic. It is then sufficient to attach 5-cycles 
only to the independent sets from I , and the resulting graph will still be 4-chromatic. 

16.3 A Triangle-Free, 4-Chromatic Unit Distance Graph on 21 Vertices 

We are going to construct such a graph in two stages. First, we present a triangle-free, 
3-chromatic unit distance graph G of order 11 and size 18, on the vertex set {1,2, . . ., 11}, 
with the additional property that both {1, 2, 3} and {4, 5, 6} are independent sets in G and at 
least one of them is monochromatic under any proper 3-coloring of the vertices of G. Second, 
we will attach unit 5-cycles to the vertices of each of these independent sets, thus obtaining a 
graph of order 21 and size 38. This graph is still triangle-free and has chromatic number 
4. Indeed, if it were 3-colorable, it would imply that the vertices of a unit 5-cycle could be 
properly 2-colored. 

Lemma 16.1 Consider the graph G with vertex set {1, 2, 3, . . ., 9, 10, 11} and edge set: 

{{1, 8}, {1, 10}, {1, 11}, {2, 8}, {2, 11}, {3, 7}, {3, 9}, {3, 10}, {4, 9} and 
{4, 10}, {4, 11}, {5, 9}, {5, 11}, {6, 7}, {6, 8}, {6, 10}, {7, 11}, {8, 9}}. 

G is triangle-free and has chromatic number 3. Moreover, G has a faithful unit distance 
embedding, and, for every proper 3-coloring of the vertices, at least one of the independent 
sets {1, 2, 3} or {4, 5, 6} is monochromatic. 

Proof The first two properties are straightforward to check. A faithful unit distance embed-
ding is provided below in Fig. 16.2. 

1 

3 

10 

6 

4 

8 

11 

9 

52 

7 

z1 = (−1 + 7) /4,  (+1 + 7) /4  

z2 = (−1 − 7) /4,  (+1 − 7) /4  

z3 = (+1 + 7) /4,  (+3 + 7) /4  

z4 = (+1 − 7) /4,  (+1 + 7) /4  

z5 = (+1 + 7) /4,  (+1 − 7) /4  

z6 = (−1 − 7) /4,  (+3 + 7) /4  

0, (1 + (0,0)7 ) / 2  ,  

z7 = (0,1), z8 = (−1/2, 1/2), z9 = (1/2, 1/2) 

z10 = z11 = 

Fig. 16.2 A unit distance embedding of the graph in Lemma 16.1.
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and z14= z1 þ 1þb2
,

1þb2
for some reals a, b to be found later.
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A simple computer program shows that there are exactly 16 different proper 3-colorings. 

{{1, 2, 3, 4, 5, 6}, {7, 8, 10}, {9, 11}}, {{1, 2, 3, 4, 5, 6}, {7, 8}, {9, 10, 11}} 
{{1, 2, 3, 4, 5, 6}, {8, 10, 11}, {7, 9}}, {{1, 2, 3, 4, 5, 6}, {8, 11}, {7, 9, 10}} 
{{1, 2, 3, 4, 5}, {7, 8, 10}, {6, 9, 11}}, {{1, 2, 3, 4, 6}, {5, 7, 8, 10}, {9, 11}} 
{{1, 2, 3, 4, 6}, {5, 7, 8}, {9, 10, 11}}, {{1, 2, 3, 4}, {5, 7, 8, 10}, {6, 9, 11}} 
{{1, 2, 3, 5, 6}, {4, 7, 8}, {9, 10, 11}}, {{1, 2, 3, 6}, {4, 5, 7, 8}, {9, 10, 11}} 
{{1, 2, 4, 5, 6}, {3, 8, 11}, {7, 9, 10}}, {{1, 2, 7, 9}, {8, 10, 11}, {3, 4, 5, 6}} 
{{1, 3, 4, 5, 6}, {8, 10, 11}, {2, 7, 9}}, {{1, 3, 4, 5, 6}, {8, 11}, {2, 7, 9, 10}} 
{{1, 4, 5, 6}, {3, 8, 11}, {2, 7, 9, 10}}, {{1, 7, 9}, {8, 10, 11}, {2, 3, 4, 5, 6}}. 

Note that for each of the 16 3-colorings above, either the vertices 1, 2, and 3 fall in the same 
color class or the vertices 4, 5, and 6 have this property. This proves Lemma 16.1. ■ 

Next, we show how to attach a unit 5-cycle to the independent set {1, 2, 3}. Note that since 
{4, 5, 6} is the reflection of {1, 2, 3} across the y-axis, the same construction is going to work 
for {4, 5, 6} as well. 

Lemma 16.2 Attaching a unit 5-cycle to the independent set {1, 2, 3}. Consider the points 

z1 = - 1þ 7 
p 

=4, 1þ 7 
p 

=4 

z2 = - 1- 7 
p 

=4, 1- 7 
p 

=4 , and 

z3 = 1þ 7 
p 

=4, 3þ 7 
p 

=4 : 

Then there exist five points which we label 12, 13, 14, 15, and 16 such that 

z1 - z12k k= z2- z13k k= z1 - z14k k= z2- z15k k= z3 - z16k k= 

= z12- z13k k= z13- z14k k= z14- z15k k= z15- z16k k= z16- z12k k= 1: 

Proof Since z - z = z - z = 1 we set z = z + 1- a2 
2 , 2a 

2 

1- b2 2b
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1 

314 

15 

12 

2 

13 

16 

Fig. 16.3 Attaching the unit 5-cycle [12, 13, 14, 15, 16] (solid edges) to the monochromatic 
independent set {1, 2, 3}. The dashed segments are the edges joining the vertices of the 
independent set to the 5-cycle 

Similarly, since z - z = 1 set z = z 1- c2 
2 , 2c 

2 for some real c. 

Since [1, 12, 13, 14] and [2, 13, 14, 15] are both rhombi, it follows that z13 = z12 + z14 - z1 
and z15 = z2 + z14 - z13 = z1 + z2 - z12. 

We need to make sure that kz14 - z15k = kz15 - z16k = kz16 - z12k = 1. Straightforward 
calculations show that these conditions are equivalent to the following system in the variables 
a, b, and c: 

13- 4 7
p 

a2b2 þ 4 7
p 

aþ bð Þ  ab þ 1ð Þ þ 5 a2 þ b2 þ 16abþ 13 þ 4 7
p 

= 0 

5- 7
p 

a2c2 þ 2 7
p þ 2 aþ cð Þ  1 þ acð Þ þ  3 þ 7

p 
a2 þ c2ð Þ þ 8acþ 9 þ 3 7

p 
= 0 

a2c2- 4a2c þ 4ac2 - 11a2 þ 16ac- 3c2 þ 4a- 4c þ 1= 0: 

The last two equations depend on a and c only, and it can be checked that there are four real 
solutions. Using resultants, we can compute the minimal polynomials of a and c; they both 
have degree 6: 

minpoly a= 16a6 þ 261 7 
p 

þ 651 a5 þ 1233 7 
p 

þ 3303 a4 þ 1538 7 
p 

þ 4046 a3 -

- 318 7 
p 

þ 834 a2 - 579 7 
p 

þ 1533 aþ 305 7 
p 

þ 807 

minpoly c= 8c6 þ 27 7 
p 

þ 75 c5 þ 159 7 
p 

þ 399 c4 þ 414 7 
p 

þ 1038 c3þ 

þ 606 7 
p 

þ 1638 c2 þ 579 7 
p 

þ 1539 cþ 255 7 
p 

þ 671 : 

Each real root a of the first polynomial above (and there are four of them) can then be used 
to solve the first equation of the system, which is a quadratic in b. The minimal polynomial of 
b can be computed as well, but, since it has degree 12 and rather large coefficients, we omit 
it. We obtain a total of eight real solutions (a, b, c) of the original system. In the end, we select
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a= - 2:1426706655 . . . , b= 4:5753087820 . . . , c= - 1:2036751317 . . . , 

which produces Fig. 16.3. This completes the proof of Lemma 16.2. ■ 

All that is left to do is to now attach the unit 5-cycles to the independent sets {1,2,3} and 
{4,5,6}. Recall that these sets are reflections of one another across the y-axis, and, hence, no 
additional work is needed. The result is a triangle-free, 4-chromatic unit distance graph of 
order 11 + 2 • 5 = 21 and size 18 + 2 • 10 = 38 whose embedding is shown in Fig. 16.4. 

For the reader interested in checking our construction numerically, we provide the approx-
imate coordinates of the vertices 12 through 16 below. Again, vertices 17 through 21 are 
obtained by reflecting these points with respect to the y-axis. 

z12 = - 0:2308468159, 0:1449716273ð Þ, z13 = - 1:1396618925, 0:5621708083ð  
z14 = - 0:4973772488, 1:3286370087ð Þ, z15 = - 0:2691531840, 0:3550283726ð  
z16 = þ0:7281531072, 0:4283779561ð Þ: 

Fig. 16.4 A triangle-free, 4-chromatic unit distance graph of order 21. The edges of the base 
graph are the thin segments. The two unit 5-cycles are drawn in thick solid lines. The edges 
connecting the independent sets {1, 2, 3} and {4, 5, 6} to their respective cycles are shown in 
dashed segments
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16.4 A Triangle-Free, 4-Chromatic Unit Distance Graph on 19 Vertices 

The crucial property of the “core” graph given in Lemma 16.1 is the existence of the two 
independent sets, at least one of which is monochromatic under any proper 3-coloring. 

Naturally, one may ask whether there exist small, triangle-free, 3-chromatic unit distance 
graphs that contain one independent set of three vertices, which is monochromatic under any 
proper 3-coloring. If such a graph were to exist, we would only need to attach one unit 5-cycle 
to the vertices of the independent set to create a triangle-free, 4-chromatic unit distance graph. 
It turns out that such graphs exist with as few as 14 vertices. It follows that we can further 
improve the record and obtain triangle-free, 4-chromatic unit distance graphs with only 
14 + 5 = 19 vertices. The details are presented below. 

We are going to construct such a graph in two stages. We start with a triangle-free, 
3-chromatic unit distance graph G of order 14 and size 25 with the additional property that 
{1,2,3} is an independent set that is monochromatic under any proper 3-coloring of the 
vertices of G. Next, we will attach a unit 5-cycle to the vertices of this independent set, thus 
obtaining a graph of order 19 and size 35. This graph is still triangle-free and has chromatic 
number 4. Indeed, if it were 3-colorable, it would imply that the vertices of the unit 5-cycle 
can be properly 2-colored, a contradiction. 

Lemma 16.5 Consider the graph G with vertex set {1, 2, 3, . . ., 12, 13, 14} and edge set: 

{{1, 4}, {1, 5}, {1, 10}, {2, 4}, {2, 5}, {3, 7}, {3, 8}, {3, 10}, {4, 7}, 
{4, 11}, {4, 12}, {5, 6}, {5, 8}, {5, 13}, {6, 9}, {6, 12}, {7, 9}, {7, 13}, 
{8, 11}, {8, 14}, {9, 14}, {10, 11}, {10, 13}, {12, 13}, {13, 14}}. 

G is triangle-free and has chromatic number 3. Moreover, G has a faithful unit distance 
embedding, and, for every proper 3-coloring of the vertices, the independent set {1, 2, 3} is 
monochromatic. 

Proof A simple computer program shows that there are exactly 10 different proper 
3-colorings. 

{{1, 2, 3, 6, 11, 13}, {4, 8, 9, 10}, {5, 7, 12, 14}} 
{{1, 2, 3, 6, 13}, {4, 8, 9, 10}, {5, 7, 11, 12, 14}} 
{{1, 2, 3, 6, 11, 13}, {4, 8, 9}, {5, 7, 10, 12, 14}} 
{{1, 2, 3, 6, 11, 14}, {4, 8, 9, 13}, {5, 7, 10, 12}} 
{{1, 2, 3, 6, 11}, {4, 8, 9, 13}, {5, 7, 10, 12, 14}} 
{{1, 2, 3, 9, 11, 13}, {4, 6, 8, 10}, {5, 7, 12, 14}} 
{{1, 2, 3, 9, 13}, {4, 6, 8, 10}, {5, 7, 11, 12, 14}} 
{{1, 2, 3, 9, 11, 12}, {4, 6, 8, 13}, {5, 7, 10, 14}} 
{{1, 2, 3, 9, 11, 13}, {4, 6, 8}, {5, 7, 10, 12, 14}} 
{{1, 2, 3, 9, 11}, {4, 6, 8, 13}, {5, 7, 10, 12, 14}}. 

Note that the vertices 1, 2, and 3 fall in the same color class for any of the 10 3-colorings 
above. 

It is easy to verify that G is triangle-free and 3-chromatic. A faithful unit distance 
embedding is provided in Fig. 16.5 below. Note that vertices 4, 6, 8, and 9 are collinear in 
this embedding and this is why the edge {6,9} passes through vertices 4 and 8.
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Fig. 16.5 A unit distance embedding of the graph in Lemma 16.5. 

Next, we show how to attach a unit 5-cycle to the independent set {1, 2, 3} above. 

Lemma 16.6 Attaching a unit 5-cycle to the independent set {1, 2, 3}. 

Consider the points z1 = (0, 0), z2 = 2 7=3, 0 , and z3 = (-1/3, 0). Then, there exist five 
points, which we denote as 15, 16, 17, 18, and 19 such that kz1 - z15k = kz2 - z16k = kz1 -
z17k = kz2 - z18k = kz3 - z19k= =  kz15 - z16k = kz16 - z17k = kz17 – z18k = kz18 -
z19 = z19 - z15 = 1. 

1- a2 2a 

z17 = z1 þ 1- b2 

1þ b2 , 
2b 

1þ b2 

for some reals a, b to be found later. 

Similarly, since z - z = 1 set z = z 1- c2 
2 , 2c 

2 for some real c. 

Since [1, 15, 16, 17] and [2, 16, 17, 18] are both rhombi, it follows that z16 = z15 + z17 - z1 
and z18 = z2 + z17 - z16 = z1 + z2 - z15. 

We need to make sure that z17 - z18 = z18 - z19 = z19 - z15 = 1.
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Fig. 16.6 Attaching the unit 5-cycle [15, 16, 17, 18, 19] (solid edges) to the monochromatic 
independent set {1, 2, 3}. The dashed segments are the edges joining the vertices of the 
independent set to the vertices of the 5-cycle 

Straightforward calculations show that these conditions are equivalent to the following 
system in the variables a, b, and c: 

55þ 24 7 a2b2 þ 19 a2 þ b2 þ 72abþ 55- 24 7= 0 

3a2c2 þ 7
p

- 2 a2 þ c2ð Þ þ  7 7
p

- 17 acþ 9 7
p

- 24= 0 

a2c2- 2a2 þ 9ac- 5c2 þ 1= 0: 

The last two equations depend on a and c only, and the real solutions are of the form 
(a, c) = (±0.5970459772. . .,±0.0511624986. . .). Using resultants, it is easy to obtain the 
minimal polynomials of a and c; they are both of degree 6. 

minpoly a= a6 þ 738 7 
p

- 1950 a4 þ 2523- 954 7 
p 

a2 þ 16192- 6120 7 
p 

minpoly c= 18c6 þ 482 7 
p

- 1271 c4 þ 1805- 683 7 
p 

c2 þ 844- 319 7 
p 

: 

For each of these four solutions, we obtain two real values for b using the first equation of 
the system. In total, discounting symmetries, there are four different ways that the unit 5-cycle 
can be attached. 

We used the values a = 0.5970459772 . . ., b = 0.0380685953 . . ., and c =
- 0.0511624986 . . ., which produced the result in Fig. 16.6. Now, overlaying Figs. 16.5 
and 16.6, we obtain the desired triangle-free, 4-chromatic unit distance graph of order 19 – see 
Fig. 16.7 below.
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Fig. 16.7 A triangle-free, 4-chromatic unit distance graph of size 19 

16.5 A Triangle-Free, 4-Chromatic Unit Distance Graph on 17 Vertices 

At this point, it is natural to ask how close are we to finding the triangle-free, 4-chromatic unit 
distance graph of the smallest possible order? We already know that 19 vertices is optimal if 
we are to use the 5-cycle attaching approach. We searched for graphs of order n that satisfy the 
following properties:

• 4-Chromatic and edge-critical, that is, removal of any edge produces a graph, which is 
3-colorable

• Triangle-free and contains no forbidden subgraph of order up to 7 inclusive – see [PP] for a 
list of such graphs. 

We then look at these graphs and decide whether they are unit distance graphs or not. We 
found no such graphs with n ≤15. For n = 16, there is exactly one unit distance graph, which 
unfortunately is not a faithful unit distance graph since every embedding forces two accidental 
edges and these additional edges lead to a graph, which contains triangles. However, we 
found one good graph of order 17.
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Theorem 16.7 Consider the graph G with vertex set {1, 2, 3, . . ., 16, 17} and edge set: 

{{1, 8}, {1, 12}, {1, 15}, {2, 9}, {2, 10}, {2, 16}, {3, 9}, {3, 15}, {3, 16}, 
{3, 17}, {4, 10}, {4, 11}, {4, 16}, {5, 11}, {5, 13}, {5, 16}, {6, 12}, {6, 13}, 
{6, 14}, {7, 12}, {7, 14}, {7, 15}, {8, 13}, {8, 14}, {8, 17}, {9, 11}, {9, 13}, and 
{10, 15}, {10, 17}, {11, 14}, {12, 17}}. 

G is a triangle-free, 4-chromatic, faithful unit distance graph. 

Proof It can be verified that G is triangle-free, has chromatic number 4, and is edge-critical 
(removal of any edge results in a graph that is 3-colorable). We want to find a unit distance 
embedding of G. 

Start by setting z17 = [0, 0], z3 = [1, 0], and 

z8 = z17 þ a2 - 1 
a2 þ 1 , 

2a 
a2 þ 1 , z10 = z17 þ b2- 1 

b2 þ 1 
, 

2b 
b2 þ 1 , z9 = z3 þ c2- 1 

c2 þ 1 , 
2c 

c2 þ 1 , 

z14 = z8 þ d2 - 1 
d2 þ 1 , 

2d 
d2 þ 1 , z16 = z3 þ e2 - 1 

e2 þ 1 , 
2e 

e2 þ 1 , z11 = z9 þ f 2- 1 
f 2 þ 1 , 

2f 
f 2 þ 1 , 

where a, b, c, d, e, and f are the real parameters to be determined later. 
The graph contains nine 4-cycles: 

[1, 8, 17, 12], [1, 12, 7, 15], [2, 9, 3, 16], [2, 10, 4, 16], [3, 15, 10, 17], 
[4, 11, 5, 16], [5, 11, 9, 13], [6, 12, 7, 14], [6, 13, 8, 14]; 

Hence, z1– z8+ z17+ z12 = 0, z1– z12+ z7– z15 = 0, . . .  
Solving for z1, z2, z7, z9, z11, z13, z14, z15, z16, we obtain that 

z1 ¼ z8 þ z12–z17, 
z2 ¼ –2z3 þ z4 þ 2z8–z10 þ z12, z7 ¼ z3–z8 þ z10, z9 ¼ z3–z4 þ z10, 

z11 ¼ 2z3–z4 þ z5–2z8 þ 2z10–z12, z13 ¼ –z3 þ 2z8–z10 þ z12, 
z14 ¼ z3 þ z6 þ z10–z8–z12, z15 ¼ z3 þ z10–z17, 
z16 ¼ –2z3 þ 2z4 þ 2z8–2z10 þ z12: 

At this point, all zi,  1  ≤ i ≤ 17 can be expressed in terms of a, b, c, d, e, and f. The 
conditions kzi- zjk = 1 for every {i, j} 2 E are equivalent to the following polynomial system 
of six equations and six unknowns:
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This system has 48 real solutions (a, b, c, d, e, f ), which translates into 12 different 
embeddings discounting symmetries. The particular solution provided below generates the 
embedding in Fig. 16.8. 

a= 2:431002435387093, b= 14:100395866873264, c= 5:1601979612829399, 

d= - 2:723692158669673, e= 1:478517551159578, f = 0:171178647198113: 

The minimal polynomials of a, b, c, d, e, and f have degree 128, too large to be written here. 

Fig. 16.8 The Exoo–Ismailescu record graph a triangle-free, 4-chromatic unit distance graph 
of order 17
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The Exoo–Ismailescu graph decorates the front cover of the October 2016 issue of 
Geombinatorics. ■ 

On March 26, 2023, Geoffrey Exoo answered my request for an insight into their work. 

Note on 21-19-17 Graphs 
The overall structure of our search for triangle-free unit distance graphs works as follows. 

First we generate a (large) list of candidate graphs that we know are 4-chromatic and which 
do not contain any of the known forbidden subgraphs. Then we eliminate the candidates 
individually. 

The first step in the process involves generating two lists of forbidden subgraphs. The first list 
contains those graphs that will be checked during the candidate generation phase of the 
process. These are graphs that can be checked very quickly. In this case only three graphs 
are available, K3, K2,3, and the Möbius ladder of order 8. K3 is needed to guarantee the 
graphs are triangle free. The other two are the only triangle-free, edge-minimal, forbidden 
subgraphs of order less than 102 . 

The second list of forbidden subgraphs is created by running the procedure outlined here on 
smaller orders (up to 15), a procedure which found other triangle free 4-chromatic graphs 
that were not unit distance graphs. Checking whether these graphs are unit distance takes 
too much time to be used in the graph generation phase, but is useful later in the process to 
eliminate individual candidates. 

The third step involves configuring a fast randomized graph coloring function that attempts to 
3-color graphs very quickly. This function can be tuned to successfully 3-color well over 
99 percent of graphs of order 16 (or less) that can be so colored, and it does so in 
approximately one percent of the time that an exhaustive search would take. 

The fourth step is to generate all edge-minimal graphs of a given order (e.g., 16) that do not 
contain the forbidden subgraphs on the small list and which were not successfully 
3-colored by the randomized coloring function. The graphs are generated in two different 
ways. First by a modified version of the graph generating program in Brendan McKay’s 
nauty package. Second, by my own program, which is less efficient than nauty in general, 
but is designed specifically for the unit-distance problem. However, since there are so few 
forbidden subgraphs, nauty was faster for this problem. The lists generated by the two 
programs have been compared. 

The fifth step is to run exhaustive searches for 3-colorings on each of the graphs output in the 
previous step. This eliminates a few of the candidates that the randomized coloring 
function missed. 

The sixth step uses the large list of forbidden subgraphs (of orders up to 15) to eliminate a few 
more graphs. 

I congratulate Geoffrey Exoo and Dan Ismailescu for their commendable achievement of 
completely solving my Problem 15.4 and thank them for sharing with us their very insightful 
presentation of the 21-19-17 progress. They will resurface later in this book. 

2 This can be checked by looking at the Globus–Parshall list, where the Möbius ladder is identified 
as graph F(8, 12, 3). We independently verified the list, at least for triangle-free graphs, many 
years ago.
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Chapter 17 
Edge Chromatic Number of a Graph 

17.1 Vizing’s Edge Chromatic Number Theorem 

We can assign a color to each edge of a graph instead of its vertices. This gives birth to the 
following notion: 

A graph G is called n-edge-colorable if we can assign one of the n colors to each edge of G in 
such a way that the adjacent edges are colored differently. 

The edge chromatic number χ1(G) (also known as the chromatic index) of a graph G is the 
smallest number n of colors for which G is n-edge-colorable. 

The following two statements follow straight from the definitions: 

Problem 17.11 For any graph G, 

χ1 Gð Þ  ≥ Δ Gð Þ: 

Problem 17.2 For any subgraph G1 of a graph G, 

χ G1ð Þ  ≤ χ Gð Þ: 

In 1964, the Russian mathematician Vadim Georgievich Vizing published [Viz1] a 
wonderful result about the edge chromatic number of a graph. His proof is fairly long, but 
so nice that I am going to present it here in its entirety. Do read it with pencil and paper! 

The Vizing Theorem 17.3 (V.G. Vizing, [Viz1]). If G is a non-empty graph, then 

χ1 Gð Þ  ≤ Δ Gð Þ þ  1 �ð Þ  

i.e., the edge chromatic number χ1(G) of a graph is always equal to Δ or Δ + 1, where 
Δ = Δ(G). 

1 Δ(G) is defined in Chapter 8. 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_17&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_17#DOI


162 17 Edge Chromatic Number of a Graph

Proof I enjoyed a version of Vizing’s proof in [BCL]. My presentation is based on it. I did 
make it more visual by including many illustrations, splitting one case into two, and adding a 
number of elucidations. 

Part I. Preparation for the Assault We will argue by contradiction. Assume that the 
inequality (*) is not true. Then among the graphs for which (*) is not true, let G be a graph 
with the smallest number of edges. In other words, G is not (Δ + 1)-edge-colorable; but the 
graph G′ obtained from G by removing one edge e, is [Δ(G′) + 1]-edge-colorable. Since 
obviously Δ(G′) ≤ Δ(G), the graph G′ is (Δ + 1)-edge-colorable. 

Let G′ be actually edge-colored in Δ + 1 colors, i.e., every edge of the graph G, except e = uv 
(this equality simply denotes that the edge e connects vertices u and v), is colored in one of the 
Δ + 1 colors in such a way that the adjacent edges are colored differently. For each edge 
e’ = uv′ of G that is incident with u (including e), we define its dual color as any one of the 
Δ + 1 colors that is not used to color the edges incident with vertex v′. (Since the degree of any 
v′ does not exceed Δ, we always have at least one color to choose as dual. It may so happen 
that distinct edges have the same dual color – it is all right.) 

We are going to construct a sequence of distinct edges e0, e1,. . ., ek that are all incident with 
u as follows (see Fig. 17.1). Let e = e0 have the dual color α1 (i.e., α1 is not the color of any 
edge of G incident with v). There must be an edge, call it e1, of color α1 incident with u (for if 
not, then the edge e could be colored α1, thus producing a (Δ + 1)-edge coloring of G). Let α2 
be the dual color of e1. If there is an edge of color α2 incident with u and distinct from e0 and 
e1, we denote it by e2 and its dual color by α3, etc. We constructed a maximal (i.e., as long as 
possible) sequence e0, e1, . . ., ek, k ≥ 1, of distinct edges. The last edge ek by construction is 
colored αk and has the dual color αk +  1. 

Fig. 17.1 

If there were no edge of color αk +  1 incident with u, then we would recolor each edge of our 
sequence e0, e1, . . ., ek in its dual color and, thus, achieve a (Δ + 1)-edge coloring of 
G (do verify that). This contradicts our initial assumption. 

Therefore, there is an edge ek  +  1 of color αk +  1  incident with u; but since we have 
constructed the longest sequence of distinct edges e0, e1, . . ., ek, the edge ek  +  1 must coincide 
with one of them: ek  +  1 = ei for some i,  1  ≤ i ≤ k. Since the edges coincide, so do their colors: 
αk  +  1 = αi. The color αk of the edge ek may not be the same as the dual color αk  +  1 of ek: αk  +  1 

≠ αk. Thus, we get αk  +  1 = αi for some i,  1 ≤ i < k. Denote t = i – 1; then, the last equality can 
be written as follows:
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akþ1 = atþ1 

for some t, 0 ≤ t ≤ k- 1. Finally, this means that the edges ek and et have the same dual color. 
Now, the last preparatory remarks. 

(a) For each color α among the Δ + 1 colors, there is an edge of color α adjacent to the edge 
e = uv (for if not, e could be colored α, thus producing (Δ + 1)-edge coloring of G). But 
since there are at most Δ edges incident with the vertex u, there is a color, call it β, 
assigned to an edge incident with the vertex v that is not assigned to any edge incident 
with u. 

(b) The color β must be assigned to at least one edge incident with the vertex vi for each i = 1, 
2, . . ., k (see Fig. 17.1). Indeed, if we assume that there is a vertex vm, 1 ≤ m ≤ k, such that 
no edge incident with vm is colored β, then we can change the color of em to β and also 
change the color of each ei, 0 ≤ i ≤ m, to its dual color to obtain a (Δ + 1)-edge coloring of 
G (verify this). 

Part II. The Assault A sequence of edges a1, a2, . . ., an of a graph is called a path of length n 
if the consecutive edges of the sequence are adjacent (Fig. 17.2). You can trace a path with a 
pencil without taking it off the paper all the way from the initial vertex of the path v0 to the 
terminal vertex of the path vn. The edge a1 is called the initial edge, while the edge an is the 
terminal edge of the path. 

v 

v v 

v 
v 

a 
a 

a 
0 

1 

2 
1 

2 

n 

n 

n - 1 

Fig. 17.2 

Define two paths P and R as follows: Their initial vertices are vk and vt, respectively, and 
each of the paths has the maximum possible length with edges alternately colored β and 
αk +  1= αt +  1 (we established in Part I that colors αk + 1  and αt + 1  coincide). Denote the 
terminal vertices of the paths P and R by w and w′, respectively, and consider five possibilities 
for w and w′. 

Case 1 w = vm for some m,  0  ≤ m ≤ k – 1 (Fig. 17.3).
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Fig. 17.3 

Observe that the color αk + 1  as the dual color of the edge ek may not be adjacent to ek; 
therefore, the initial edge of the path P must be colored β and m ≠ k. 

The terminal edge of P must be colored β as well. Indeed, if alternatively, the terminal edge 
of P were colored αk +  1, then we would be able to make P longer by adding one more edge 
incident with vm and colored β (it exists as we noticed in (b) at the end of Part I of this proof). 

Note that the vertex vt is not on P unless vm = vt. Indeed, assume that vt is on P and vt ≠ vm, 
then vt is incident with the edges of P (Fig. 17.4). One of them must be colored αk + 1  (and the 
other β), but the dual color of et is αt + 1  = αk + 1; therefore, no edge of color αk + 1  may be 
adjacent to et. This contradiction proves that vt is not on P unless vt = vm. 

k + 1 

t 

Fig. 17.4 

We are ready to finish Case 1. Interchange the colors β and αk + 1  on the edges of P. Please 
note (and prove) that as a result of this interchange, we do not alter the dual colors of edges ei 
for any i < m and end up with no edge of color β incident with vm. Now to obtain a (Δ+1)-
edge coloring of G, we just change the color of em to β and change the color of every ei for 0 ≤ 
i < m to its dual. (Do verify that we get a (Δ+1)-edge coloring of G.) We got a contradiction, 
for G is not (Δ+1)-edge-colorable. 

Case 2 w′ = vm for some m, 0 ≤ m ≤ k (Fig. 17.5).



a
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Color αk + 1  = αt +  1 as the dual color of the edge et may not be adjacent to et; therefore the 
initial edge of the path R must be colored β and m ≠ t. 

Fig. 17.5 

The terminal edge of R must be colored β as well. Indeed, if alternatively, the terminal edge 
of R we colored αk + 1, then we would be able to make R longer by adding one more edge 
incident with vm and colored β (it exists as we showed in (b) at the end of Part I of this proof). 

The vertex vk is not on R unless vm = vk (the proof is identical to a relevant argument in 
Case 1 above). Now, we interchange the colors β and αk + 1  of the edges of R. As a result of 
this interchange, we do not alter the dual colors of edges ei for any i ≠ t and end up with no 
edge of color β incident with vm. 

If m < t, we  finish as in Case 1. If  m > t, then we change the color of e to β and change the 
color of every ei, 0  ≤ i < m, to its dual. In either case, we get a (Δ+1)-edge coloring of G, 
which is a contradiction. 

Case 3 w ≠ wm for any m, 0  ≤ m < k and w ≠ u. As in Case 1, the initial edge of P must be 
colored β. 

We interchange the colors β and αk + 1  of the edges of P. As a result (just like in Case 1), we do 
not alter the dual colors of edges ei for any i < k and end up with no edge of color β incident 
with vk. As in the previous cases, we can now obtain a (Δ+1)-edge coloring of G,  
contradiction. 

Case 4 w′ ≠ vm for any m ≠ t and w′ ≠ u. This case is similar to case 3 – consider it on 
your own. 

Case 5 w = w′ = u (Figs. 17.6 and 17.7).
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Fig. 17.6 

Fig. 17.7 

Since by definition of β, u is incident with no edge-colored β, the terminal edge of both 
paths P and R is colored αk + 1. 

If P and R have no edges in common (Fig. 17.6), then u is incident with two edges colored 
αk + 1, which cannot occur in edge coloring of a graph. But if P and R do have an edge in 
common, then there is a vertex (g in Fig. 17.7) incident with at least three edges of P and R. 
Since each of these three edges is colored β or αk +  1, two of them must be assigned the same 
color, which cannot occur with two adjacent edges of an edge-colored graph. In either case, 
we have obtained a contradiction. ■ 

This remarkable theorem partitions graphs into two classes: class one, when χ1 (G) = Δ 
(G), and class two, when χ1(G) = Δ(G) + 1.  

Each class does contain a graph. The graph in Fig. 17.8 is of class one. The graph in 
Fig. 17.9 is of class 2. Can you prove it? 

χ1 Gð Þ= 3=D Gð Þ  

c1(G) = 3 =Δ(G) 

Fig. 17.8 A class one graph
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χ1 Gð Þ= 4= Δ Gð Þ  þ  1

 

c1(G) = 4 =Δ(G) + 1 

Fig. 17.9 A class two graph 

Problem 17.4 Prove that a n-cycle Cn (n ≥ 3) is of class one if n is even and of class two if 
n is odd. 

Problem 17.5 Prove that a complete graph Kn is of class one if n is even and of class two if 
n is odd. 

Proof This problem does not sound exciting, does it? You are in for a nice surprise, a true 
mathematical recreation! In fact, do not read any further just yet, try to solve it on your own. 
Then read this solution, which comes from [BCL]. 

1. Assume the graph Kn is edge-colored in Δ(Kn) = n–1 colors. Every vertex is incident with 
n–1 edges, which must be colored differently. Therefore, every vertex is incident with an 
edge of every color. 

Now take color 1. Every vertex of Kn is incident with an edge of color 1, and the edges of 
color 1 are not adjacent. Therefore, the edges of color one partition the n vertices of Kn into 
disjoint pairs. Hence, n must be even. 

We proved that if Kn is a graph of class one, then n is even. 

2. Let us now prove that, conversely, the graph K2n is of class one. 

It is true for n = 1. Assume n ≥ 2. Denote the vertices of K2n by v0, v1, . . ., v2n–1. We  
arrange the vertices v0, v1, . . ., v2n–1 in a regular (2n–1)-gon and place v0 in its center. Every 
two vertices we join by a straight line segment, thereby creating K2n. 

We are ready to color the edges of K2n in 2n–1 colors. We assign the color i (i = 1, 2, . . ., 
2n–1) to the edge v0vi and to all edges that are perpendicular to v0vi. We are done! All edges 
are colored: indeed, we assigned n edges to each color for the total of n(2n–1) edges, which is 
the number of edges of K2n. No two edges of the same color are adjacent: they clearly do not 
share a vertex. Figure 17.10 illustrates for you all edges of color 1 for K8. Edge sets of other 
colors are obtained from this one by rotations about the center v0 – this fact is true for the 
general case of K2n.
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Fig. 17.10 

Which class of graphs is “larger”? It does not appear at all obvious! Paul Erdős and Robin 
J. Wilson showed in 1977 ([EW]) that almost all graphs are of class one. “Almost all” is 
made precise by the authors of [EW]: 

Problem 17.6 ([EW]) If Un is the number of graphs with n vertices of class one and Vn is the 
total number of graphs with n vertices, then Un approaches 1 as n approaches infinity. 

But how do we determine which graph belongs to which class? Nobody knows! 
In 1973, Lowell W. Beineke and R.J. Wilson published [BW] the following simple 

sufficient condition for a graph to be of the second class: 
The edge independence number β1(G) of a graph G is the maximum number of mutually 

nonadjacent edges of G (“Mutually nonadjacent edges” means that every two edges are 
nonadjacent.) 

Problem 17.7 ([BW]). Let G be a graph with q edges. If 

q>Δ Gð Þ  β1 Gð Þ, 

then G is of class two. 

Proof Assume G is of class one, i.e., χ1(G) =Δ(G); hence, we can think of G as being Δ(G)-
edge-colored. How many edges of the same color can we have in G? At most β1(G) because 
the edges of the same color must be mutually nonadjacent. Therefore, the number of edges 
q of G is at most Δ(G) β1(G), which contradicts the given inequality. G is of class two.
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Problem 17.8 For any graph G with p vertices, 

β1 Gð Þ≤ p 
2 

where p 
2 denotes the maximum integer not exceeding p 2. 

Proof Assume that the graph G has β1(G) mutually nonadjacent edges. The p vertices of 
G are thereby partitioned into β1(G) two-vertex subsets plus perhaps one more subset 
(of vertices non-incident with any of the β1(G) edges). Therefore, β1(G) ≤ p 2, but as an 
integer, β1 G ≤ 

p 
2 . ■ 

Problems 17.7 and 17.8 join in for an immediate corollary: 

Problem 17.9 Let G be a graph with p vertices and q edges. If 

q >Δ Gð Þ � p 
2 

, 

then G is of class two. 

The last problem shows that graphs with a relatively large ratio of their number of edges 
and number of vertices are “likely” to be of class two. 

Yet, conditions of Problems 17.7 and 17.9 are far from being necessary. Can you think of a 
counter example? Here is one for you: 

Problem 17.10 Show that the Peterson graph (Fig. 13.3) is of class two even though it does 
not satisfy the inequalities of problems 17.7 and 17.9. 

Can we use another approach to shed light on this mysterious, relatively rare class two? We 
can gain an insight if we limit our consideration to planar graphs, i.e., those that can be 
embedded in the plane without intersection of edges. It is easy to find (do) class two planar 
graphs G with maximum degree Δ(G) equal to 2, 3, 4, and 5. We do not know whether 
maximum degree 6 or 7 can be realized in a class two planar graph. In 1965, Vadim Vizing 
[Viz2] proved that higher maximum degrees are impossible. 

Problem 17.11 (Vizing, [Viz2, theorem 4]). If G is a planar graph with Δ(G) ≥8, then 
G belongs to class one. 

The following problem is still awaiting its solution: 

Open Problem 17.12 Find the criteria for a graph G to belong to class two.



17.2 Total Insanity Around Total Chromatic Number Conjecture 

You are entitled to your own opinion, 
but you are not entitled to your own facts. 
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— Daniel Patrick Moynihan, U.S. 
Senator from New York 

In February 1992, I gave my first talk at the International Southwestern Conference on 
Combinatorics, Graph Theory, and Computing at Florida Atlantic University, Boca Raton, 
Florida. The talk was about the problem of finding the chromatic number of the plane and my 
investigation into the authorship of the problem. My investigative skills must have looked 
good, for the British graph theorist Hugh Hind shared with me another controversy. In his 
manuscript on the total chromatic number conjecture, Hugh gave credit for the conjecture to 
Vizing and Behzad. As a condition of publication, the referee demanded (!) that the credit be 
given to Behzad alone. Even though Hind thought that both mathematicians authored the 
conjecture independently and deserved credit, he felt that he had no choice but to comply with 
the referee’s demand. Hugh asked me to investigate the authorship of the total chromatic 
number conjecture. 

I was shocked. The referee’s ultimatum, backed by the editor (who sent the referee report to 
the author), seemed to be nothing short of a cold war on the mathematical front. What were 
the referee’s and the editor’s motives? Was it a retaliation for the Soviet anti-Semitism and 
violations of scientific norms? Was it a retaliation for the leading Soviet graph theorist 
Alexander A. Zykov’s ridiculously giving in his book [Zyk3] credit for the Kuratowski 
planarity theorem to both Pontryagin and Kuratowski? Of course, Zykov’s crediting 
Pontryagin was outrageous, and Pontryagin deserved no credit whatsoever. However, life is 
no math – it does not multiply two negatives to get a positive – two wrongs make no right. 
Surely, the referee and the editor of Hugh Hind’s manuscript acted every bit as wrongly as the 
Soviet apparatchiks – unless the referee had historical factual grounds to deny Vizing credit, 
which they never disclosed. I accepted Hugh’s call to investigate. What follows in this chapter 
is my investigative report. 

The total chromatic number χve(G) of a graph G is the minimum number of colors required 
for coloring the vertices and edges of G so that incident and adjacent elements are never 
assigned the same color. 

Total Chromatic Number Conjecture 17.13 For any graph G, 

xve Gð Þ  ≤ Δ Gð Þ  þ  2: 

I started my historical investigation right away, in Boca Raton during the same conference 
(February 1992). I contacted, in person, the well-known graph theorist Mark K. Goldberg, 
professor of computer science at Rensselaer Polytechnic Institute. This was a very lucky 
choice, for Mark was an eyewitness to the story. Goldberg told me that in December 1964, he 
arrived in Akademgorodok (Academy Town), located just outside Novosibirsk, a major city 
in Siberia, to apply for their PhD program in mathematics. During this trip, he interacted with 
the junior research staff member Vadim G. Vizing, who shared with Goldberg his edge 
chromatic number theorem and the total chromatic number conjecture.



Three years later, I was able to ask Vadim Vizing himself to share with me historical 
details of the total chromatic number conjecture. I learned from Bjarne Tofts, a professor at 
Odense University in Denmark, that Vadim G. Vizing was presently visiting him. On March 
12, 1995, I asked Toft to pass my e-mail with numerous questions to Vizing. I asked 
biographical questions and, of course, questions about the conjecture. Two days later, on 
March 14, 1995, I received the following reply (my translation from Vizing’s Russian): 

Dear Alexander! 

At the present time I am in Odense on B. Toft’s invitation. 

I was born 25 March 1937 in Kiev. I commenced my work on Graph Theory in 1962 as 
a Junior Research Staff at the Institute of Mathematics in Novosibirsk, in the Depart-
ment of Computing Techniques [Computer Science]. As part of my job, I had to write a 
program for coloring conductors in circuits. I discovered C. E. Shannon’s work, 
dedicated to this question, published in 1949 (Russian translation was published in 
1960). Having studied Shannon’s work, I began to think about the precision of his 
bound. I knew only one type of multigraphs on which his bound was precise. This is 
why I assumed that for ordinary graphs (without multiple edges) Shannon’s bound 
could be strengthened. It took a year and a half for me to prove my theorem for ordinary 
graphs. 

In early 1964 the article was sent to “Doklady AN USSR” (AN abbreviates Academy of 
Sciences), but was rejected by the editorial board. In the fall of 1964, I obtained the 
generalization of the result to p-graphs and published an article about it in the anthology 
“Diskretnyi Analiz”, issue 3 [Viz1] that was released in December 1964 in Novosibirsk 
(I am mailing to you a copy of this article). 
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In early 1964, while presenting the theorem about coloring edges of a graph at A. A. 
Zykov’s’ Seminar (present were A. A. Zykov, L. S. Melnikov, K. A. Zaretskij, V. V. 
Matjushkov, and others), I formulated the conjecture on the total chromatic number, 
which we called then conjecture on the simultaneous coloring of vertices and edges. 
Many of my colleagues in Novosibirsk attempted to prove the conjecture but without 
success. By the time of the publication [Viz3] of my article on unsolved problems of 
Graph Theory in “Uspekhi Mat. Nauk” (1968), in which I first published the conjecture, 
the conjecture already had a wide distribution among Soviet mathematicians. In the 
nearest future I will mail to you the article in Russian; the conjecture on the total 
chromatic number of multigraph appears on p. 131.
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Vadim G. Vizing in the early 1960s, when he worked on his classic chromatic index theorem; 
courtesy of Vadim Vizing 

Thus, Vadim G. Vizing’s recollection of creating the total chromatic number problem by 
early 1964, verified independently by Professor Mark Goldberg, leaves no doubts about his 
authorship. Vizing’s total chromatic number conjecture was also presented by Alexander 
A. Zykov at the problem session of the Manebach Colloquium in May 1967 (published in 
1968 [Zyk2], p. 228). Vizing published the conjecture himself along with many other open 
problems in 1968 [Viz3]. In addition, any impartial expert would agree that this conjecture 
was a natural continuation of the train of thought emanating from Vizing’s famous theorem 
on the chromatic index of a graph (Theorem 17.3 above). 

I then looked at articles of specialists working on the total chromatic number of a graph. 
Hugh Hind [Hin1], [Hin2], Anthony Hilton and Hind [HH], and Amanda G. Chetwynd nearly 
universally credited Behzad for the conjecture. Chetwynd even “explained” what led Behzad 
to discover the conjecture [Che]:
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This [i.e., Brooks’ Theorem and Vizing’s Theorem] led Behzad to conjecture a similar 
result for the total chromatic number. 

What is wrong with this “explanation”? Everything: 

1. Reading Mehdi Behzad’s 1965 thesis (Chetwynd obviously did not read it before writing 
about it), it is obvious that Behzad did not know Vizing’s theorem: Behzad conjectures the 
statement of Vizing’s 1964 chromatic index theorem but is able to prove it only for a trivial 
case of graphs of maximum vertex degree 3. 

2. If Vizing’s theorem led even Behzad to the total chromatic conjecture, it would have surely 
led (and did!) Vizing himself to formulate the conjecture. Why does then Chetwynd give 
no credit to Vizing? 

I contacted Professor Behzad, on December 2, 2007, and asked him to present a case in 
support of his sole authorship. He was pleased with my commencing an investigation, and, on 
December 3, 2007, wrote: 

Dear Professor Soifer. 

I am extremely happy that after almost 40 long years eventually a genuine scholar spent 
time and effort to clarify an important point which unfortunately has happened many 
times in the past, due to different reasons. 

In a few days, on December 3, 2007, he sent me a detailed statement. Behzad then asked me to 
replace it by the new December 14, 2007, e-mail version, which I am quoting here: 

I started to think about my Ph.D. thesis in 1963–1964, at Michigan State University, to 
be written under the supervision of Professor E. A. Nordhaus. In those days there was 
only one book in the field of graph theory in English, and no courses were offered on the 
subject. I was interested in vertex coloring and then line coloring. For several months, 
naively, I tried to solve the 4-color problem. Then I thought of combining these two 
types of colorings. I mentioned the notion, which was later called “total chromatic 
number of a graph,”2 to Nordhaus. He liked the idea, but for several months he did not 
allow me to work on the notion. Later he told me this idea was so natural that he thought 
someone might have worked on the subject. Thanks to Professor Branko Grünbaum 
who resolved the problem. In my thesis I introduced this notion and presented the 
related conjecture. In addition, I introduced the total graph of a graph in such a way that 
the total chromatic number of G was equal to the vertex chromatic number of its total 
graph. My [doctoral] thesis was defended in the Summer of 1965. Prior to 1968, when 
Professor Vizing’s paper entitled “Some Unsolved Problems in Graph Theory” 
appeared, several papers were published on topics related to total concepts; I informally 
talked about TCC in two of the conferences that I attended in 1965 and 1966 held at The 
University of Michigan, and the University of Waterloo. As I mentioned before, aside 
from my thesis, the Proceedings of the International Symposium in the Theory of 
Graphs – Rome, 1966, contains the subject and the TCC. . .  

2 According to Behzad, it was Nordhaus who coined the term.
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As far as I know, out of several hundred articles, theses, books, and pamphlets 
containing TCC, none omits my name, and very many authors provide only one 
reference for TCC and that is my thesis. I am not aware of a single work mentioning 
TCC and giving reference to Vizing alone. There are authors who have given credit to 
the two of us but have decided to stop doing so. 

Let me first address the last argument of Professor Behzad. We, the scholars, do not determine 
the truth by a majority vote. 

Let us further differentiate here between “total graphs” and “total chromatic number 
conjecture.” Professor Behzad writes above “Prior to 1968, when Professor Vizing’s paper 
entitled ‘Some Unsolved Problems in Graph Theory’ appeared, several papers were published 
on topics related to total concepts.” Indeed, the following papers, authored or coauthored by 
Behzad, addressed “total graphs” but did not include “the total chromatic number conjecture”: 

M. Behzad and G. Chartrand, Total graphs and traversability, Proc. Edinburgh Math. Soc. (2) 15 
(1966). 117–120. 

M. Behzad, G. Chartrand, and J.K. Cooper Jr. The colour numbers of complete graphs, J. London 
Math. Soc. 42, (1967) 225–228. 

M. Behzad, A criterion for the planarity of the total graphs of a graph, Proc. Cambridge Philos. Soc. 
63 (1967). MR35#2771. 

M. Behzad and H. Radjavi, The total group of a graph, Proc. Amer. Math. Soc. 19 (1968), 158–163. 

I am reading Mehdi Behzad’s thesis [Beh]. I was surprised to see a PhD (!) thesis without 
nontrivial proofs. However, the author demonstrates a good intuition: he conjectures (already 
published by Vizing a year earlier) Vizing’s theorem on the edge chromatic number of a graph 
(conjecture 1, p. 18) and formulates the total chromatic number conjecture (conjecture 
1, p. 44). 

Mehdi Behzad and Gary Chartrand submitted their “expository article” on total graphs to 
the 1966 Rome Symposium, and it was published [BC1] in 1967. I read there (I am replacing 
their notations by contemporary ones): 

It was conjectured in [Beh1] that 

Δ(G) ≤ χ1(G) ≤ Δ(G) + 1 and 
Δ(G)  + 1  ≤ χ2(G) ≤ Δ(G) +  2.(ii) 

The conjecture (i) has been proved by Vizing [Viz1] but (ii) remains an open question. 

The good news is that Behzad and Chartrand thus published the total chromatic number 
conjecture. As to “conjecture (i),” we are told in the above that Behzad [!] conjectured the 
chromatic index theorem and that Vizing proved Behzad’s [sic] conjecture! In fact, Vizing’s 
paper was already published in 1964, a year before Behzad ever conjectured this result. Of 
course, Vizing worked on his conjecture about the chromatic index much earlier, during 
1962–1963, for as he says, it took him a year and a half to prove his conjecture, and, in early 
1964, Vizing submitted his paper. 

M. Behzad had no way of knowing about my findings that show that Vizing formulated the 
total chromatic number conjecture in early 1964, i.e., well before Behzad. However, Behzad 
knew about Vizing’s 1968 paper [Viz3], where the total chromatic number conjecture was 
published. Surely, it took considerable time, prior to the submission of this paper, for Vizing 
to assemble such a large survey of unsolved problems of graph theory. Thus, the independent 
authorship of Vizing should not have been questioned. Yet, Behzad in the 1971 book [BC,



p. 214], jointly with Gary Chartrand, his former fellow PhD student of E.A. Nordhaus, gives 
the sole credit to himself for the total chromatic number conjecture. It happens yet again in the 
1979 book by three authors, Behzad, Chartrand, and Linda Lesniak–Foster [BCL, p. 252]. 
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In our phone conversation on January 2, 2008, I informed Professor Behzad of my findings 
and determination of the Vizing and Behzad’s joint authorship of the conjecture. He 
expressed a pleasure that at long last somebody took the time and effort to investigate the 
credit for this famous conjecture and that credit was rightfully due to the two independent 
persons. Yet, Behzad’s Wikipedia page still today (February 2, 2023) alleges that “he 
introduced his [sic] total coloring theory (also known as ‘Behzad’s [sic] conjecture’ or ‘the 
total chromatic number conjecture’).” 

Summing up, the total chromatic number conjecture was first formulated by Vadim 
G. Vizing in early 1964 and published in 1968. Mehdi Behzad independently formulated 
the conjecture in his unpublished thesis in the summer of 1965 and published it, jointly with 
Gary Chartrand, in 1967. This, in my opinion, unquestionably merits a joint credit to Vizing 
and Behzad. 

I hope that this analysis will end editorial room bias, politicking, threats of not publishing 
papers that include Vadim G. Vizing’s name as the conjecture’s coauthor, and will restore the 
join credit for the conjecture. Joint credit and correct publication dates were given by Tommy 
R. Jensen and Bjarne Toft in their enlightened 1995 problem book [JT] and repeated from 
there in Reinhard Diestel’s textbook [Die]. In later papers, e.g., [HMR], Hugh Hind, Michael 
Molloy, and Bruce Reed are now giving credit to both Vizing and Behzad for the concept of 
the total chromatic number and the conjecture. Yet, even the fourth edition of Graphs & 
Digraphs [CL] by Chartrand and Lesniak (Behzad was dropped from the authors), which 
appeared in 2005, still credits M. Behzad, and Behzad alone, for total coloring and the total 
chromatic number conjecture. 

In the first edition of The Mathematical Coloring Book, I expressed my hope that, having 
read these lines, the authors will correct the credit in their next edition. I am pleased to report 
that in the 2011 fifth edition of Graphs & Digraphs [CLZ], Chartrand, Lesniak, and their new 
coauthor Ping Zhang finally gave a joint credit to Behzad and Vizing. There are still some 
authors, apparently, including Mehdi Behzad, who insist on Behzad’s sole authorship of the 
conjecture – it does not surprise me, for there are those few who invent “alternative facts” and 
insist that the Holocaust never happened, allege that the evolution theory is a “hoax,” and the 
coronavirus (SARS-CoV-2) pandemic was invented by the media and liberals. In my opinion, 
it should have been the highest honor for anyone to coauthor a conjecture with the author of 
the classic chromatic index theorem, Vadim G. Vizing. 

Until his 1981 early retirement at the age of 45, Mehdi Behzad was a professor at Sharif 
University of Technology in Iran. Wikipedia informs that after 1981, Dr. Behzad “has 
continued to serve the Iranian scientific community in different capacities.” 

Following his visit to Denmark in 1995, Vadim Vizing, who lately worked on the theory of 
scheduling, wrote to me that he was going to renew “intensive work on graph theory.” He has 
indeed, as his publications show. Vadim Georgievich Vizing (25 March 1937–23 August 
2017) spent most of his life in the beautiful subtropical Black Sea port of Odessa, Ukraine, 
where my parents also spent their youth. 

In spite of active work, the total chromatic number conjecture has withstood all assaults. 
With an ease of formulation and an apparent difficulty of proving, this conjecture now 
belongs to mathematics’ classic open problems.
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17.3 What Else Can We Color in a Graph? 

We could color vertices of a graph G, which poses a question of finding the chromatic number 
χv(G) or simply χ(G). 

We could color edges, which poses a question of finding the edge chromatic number χe(G), 
which is sometimes denoted by χ1(G). 

We could color vertices and edges, which poses a question of finding the total chromatic 
number χve(G), which is sometimes denoted by χ2(G). 

As mentioned before, the total chromatic number conjecture is open, but, in the case of 
planar graphs with a large enough maximum vertex degree, some results are obtained. For 
example, Oleg Borodin [Bor2] proved the following inequalities: 

Theorems on Total Coloring of Planar Graphs 17.14 (Borodin): 
Every planar graph with Δ(G) ≥ 9 is totally (Δ + 2)-colorable. 
Every planar graph G with Δ(G) ≥ 16 satisfies χve(G) = Δ(G) + 1. 

The series of works by Borodin, Jensen, and Toft was followed by Daniel P. Sanders and 
Yue Zhao, who proved that every planar graph with Δ ≥ 7 is totally (Δ + 2)-colorable. The 
remaining open case they formulated as a question [SZ2]: 

Open Problem 17.15 (Sanders–Zhao, 1999): Is every planar graph with Δ = 6 totally 
8-colorable? 

In the case of a plane graph, we could color vertices and faces, which poses a question of 
finding the vertex-face-chromatic number χvf(G). We could color edges and faces, which 
poses a question of finding the edge-face chromatic number χef(G). In addition, we could 
color “everything”: vertices, edges, and faces – the entire hardware of a graph – and pose a 
question of finding the vertex-edge-face chromatic number, also known as the entire chro-
matic number and denoted by χvef(G). 

What do we know about these characteristics of a graph? 
In 1965, Gerhard Ringel conjectured that the vertex-face-chromatic number χvf(G) of a  

plane graph G does not exceed 6. He also proved that seven colors suffice. In 1984, Oleg 
V. Borodin proved it and more [Bor3]. 

A graph is called a 1-plane if it is drawn in the plane so that every edge intersects at most 
one other edge in an interior point. Consistently, I attribute a joint credit to the author of the 
conjecture and the author of its proof. 

Ringel–Borodin’s Six-Color Theorem 17.16 [Bor3]: Every 1-plane graph G satisfies the 
inequality χvf(G) ≤ 6. 

This beautiful result is also the best possible, for the complete graph K6 is 1-planar and thus 
fewer than six colors will not always suffice. Borodin’s proof is noteworthy; he uses a set of 
35 unavoidable reducible configurations. 

A decade later, in 1995, Oleg Borodin found an even better proof [Bor4]. He reduced the 
set of unavoidable reducible configurations from 35 to 18. Let me include a proof of theorem 
17.16 limited to only plane graphs, for it is very short and very sweet: 

Theorem 17.17 (Archdeacon 1986, [Arc]): Every plane triangle-free graph G satisfies the 
inequality χvf(G) ≤ 6.
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Proof [Bor2] The Grötzsch theorem 20.13 (see it later in this book) allows coloring of the 
vertices of G with colors 1, 2, and 3. Erase color 3 from the vertices and “blow up” the now 
uncolored vertices into small faces so as to preserve the adjacency of “old” faces. (Thus, every 
uncolored k-vertex becomes a small k-face.) Color all faces with colors 3, 4, 5, and 6, which 
can be done due to the dual version of the Four-Color Theorem. Finally, contract the new 
faces back to vertices, preserving their colors. This gives the desired coloring. ■ 

In 1973, Hudson V. Kronk and John Mitchem posed the following conjecture [KMi]: 

Conjecture 17.18 (Kronk–Mitchem): Every plane graph G with Δ(G) ≥3 satisfies the 
inequality χvef (G) ≤ Δ (G) +  4.  

Following a series of works by a number of researchers, in 2011, Wenzhang Wang and 
Xuding Zhu [WZ] completed the remaining cases Δ = 4 and Δ = 5 of the Kronk–Mitchem 
conjecture, thus giving birth to the statement: 

Kronk–Mitchem–Waang–Zhu’s Theorem 17.21 Every plane graph G with Δ(G) ≥ 3 
satisfies the inequality χvef G ≤ Δ(G) +  4.  

As always, I assign a join credit to the authors of the conjecture and its provers. 
In 1974, Leonid S. Mel’nikov [Me] posed the following conjecture: 

Mel’nikov’s Conjecture 17.22 Every plane graphG satisfies the inequality χef (G)≤Δ(G) + 3. 

In 1997, Mel’nikov’s conjecture was proved by Daniel P. Sanders and Y. Zhao [SZ3] and, 
independently, by A.O. Waller [Wa]. 

Mel’nikov–Sanders–Zhao–Waller’s Theorem 17.23 Every plane graph G satisfies the 
inequality χef G ≤ Δ(G) + 3.  

&&& 

Oleg Veniaminovich Borodin is a professor at Novosibirsk State University and head of 
the Graph Theory Laboratory in the Sobolev’s Mathematics Institute of the Siberian Branch 
of Russian Academy of Sciences.
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Chapter 18 
Carsten Thomassen’s 7-Color Theorem 

One day in 1998, I was asked by The American Mathematical Monthly to referee a manuscript 
submitted by one of the world’s leading graph theorists, Professor Carsten Thomassen of the 
Technical University of Denmark. The paper offered a fresh, purely graph-theoretic approach 
to finding the chromatic number of the plane. I was very impressed, asked the author to 
expand his too concise (for The Monthly) presentation, and informed him of my research that 
proved that Edward Nelson, and Nelson alone (without Hadwiger), was the author of the 
problem. Of course, I recommended Monthly to publish this work. In this chapter, I will 
present Thomassen’s attempt to find the chromatic number of the plane. He has not found it – 
no one has – but he obtained a fine result and, in the process, showed how graph theory proper 
can be utilized in an assault on this problem. I will present Thomassen’s proof with minor 
editorial revisions. The use of paper and pencil is a must while reading the proof written in 
Thomassen’s style. 

Thomassen offers a vast generalization of the popular hexagonal coloring that we used to 
prove the upper bound 7 (Chapter 2) to the class of colorings that he calls nice. He considers a 
graph G on a surface S that is a metric space (i.e., curve-wise connected Hausdorff space in 
which each point has a neighborhood homeomorphic to an open circular disc of the Euclidean 
plane). The graph G on the surface S creates a map M(G, S), in which a region is an edge-
connected component of S\G. For his purposes, Thomassen assumes that each region that has 
diameter less than 1 is homeomorphic to a Euclidean disc and is bounded by a cycle in G. I  
choose to avoid a detour into the basics of topology and offer the unfamiliar reader to simply 
think that S is the plane or a sphere, i.e., the graph G is drawn on the Euclidean plane or a 
sphere – coloring the plane is, after all, our main goal. 

The area of a subset A of S is the maximum number of pairwise disjoint open discs of 
radius ½ that can be packed in A. (If this maximum does not exist, we say that A has infinite 
area.) A simple, closed curve C is contractible if S\C has precisely two edgewise connected 
components such that one of them is homeomorphic to an open disc in the Euclidean plane. 
This component is called the interior of C and is denoted by int(C). If S is a sphere, then int(C) 
denotes any component of S\C of the smallest area. 

Given a graph G on a surface S, Thomassen defines nice coloring of S as a coloring in 
which each color class is the union of regions (and part of their boundaries) such that the 
distance between any two of these regions is greater than 1. 
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Finally, I need to introduce here a map–graph duality, which we will use not only in this 
chapter but in the next chapter as well. Given a map M, we can define the graph of the map, or 
map graph Γ(M), as the graph whose vertices are the regions of M with two vertices adjacent 
if and only if the corresponding regions share a part of their boundary, which is not merely a 
finite number of points. If the map M(G, S) is induced by the graph G on the surface S, then we 
will simplify the notation for the map graph to Γ(G, S). 

The Thomassen 7-Color Theorem 18.1 Let G be a connected graph on a surface S. Then, 
every nice coloring of S requires at least seven colors, if there exists a positive integer 
k satisfying the following conditions (i), (ii), and (iii): 

(i) Every noncontractible, simple closed curve has diameter of at least 2. 
(ii) If C is a simple closed curve of diameter less than 2, then the area of int(C) is at most k. 
(iii) The diameter of S is at least 12 k +  30. 

Before proving his theorem, Thomassen introduces Tool 18.2, for which he needs a few 
notations and definitions. 

If V(G) is the vertex set of a graph G and x 2V(G), then D1(x) stands for the set of 
neighbors of x. For n > 2, we define Dn(x) inductively as the set of vertices in V(G) 
\[{x} [ D1(x) [ . . .  [ Dn - 1(x)] that have a neighbor in Dn - 1(x). A graph G is called 
locally finite if D1(x) is  finite for each vertex x of G and locally connected if the minimal 
subgraph of G that contains D1(x) is connected for each vertex x of G. We call G locally 
Hamiltonian if G has a cycle with vertex set D1(x) for each vertex x of G. 

Tool 18.2 Any connected, locally finite, locally Hamiltonian graph with at least 13 vertices 
has a vertex of degree at least 6. 

Proof If no vertex of the graph G satisfying all conditions has a degree of at least 6, pick a 
vertex x of maximum degree. Clearly, deg(x) ≥3. 

Assume deg(x) = 3. Since G contains a cycle with the vertex set D1(x), the subgraph of 
G induced by {x} [ D1(x) is the graph of the tetrahedron. Since the maximum degree in G is 
3, D2(x) is empty. Since G is connected, G is the graph of the tetrahedron, i.e., it has just 
4 vertices, in contradiction to the assumption that G has at least 13 vertices. 

Assume now that deg(x) = 4. Since the vertices of D1(x) form a cycle, we can conclude that 
each vertex y 2 D1(x) has at most one neighbor z 2 D2(x). Since the vertices of D1(y) form a 
cycle, z has at least three neighbors in D1(x). Thus, there are at most four edges from D1(x) to  
D2(x), and, therefore, every vertex in D2(x) has at least three neighbors in D1(x). Hence, D2(x) 
has at most one vertex z. Since the vertices of D1(z) form a cycle, it follows that D3(x) = ∅. 
Thus, G has at most six vertices, a contradiction. 

Finally, assume that deg(x) = 5. Each vertex y 2 D1(x) has at most two neighbors in D2(x) 
because the vertices of D1(x) form a cycle and this cycle uses up two points out of the 
maximum degree 5 of y. Since the vertices of D1(y) form a cycle, every neighbor z of y in 
D2(x) has at least two neighbors in D1(x). Observe that z cannot have two or more neighbors in 
D3(x) because then a cycle with vertex set D1(z) shows that z has at least two neighbors in 
D2(x), that is, z has a total of at least six neighbors, a contradiction. So, z has at most one 
neighbor in D3(x) and that neighbor has at least three neighbors in D2(x). Since there are at 
most 10 edges from D1(x)  to  D2(x), and every vertex in D2(x) has at least 2 neighbors in D1(x),



it follows that D2(x) has at most 5 vertices. Hence, there are at most five edges from D2(x) to  
D3(x). Since each vertex in D3(x) has at least three neighbors in D2(x), it follows that D3(x) has 
at most one vertex, and thus D4(x) =∅. Hence, G has at most 12 vertices, a contradiction that 
completes the proof. 
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Now we are ready to prove the theorem. ■ 

Proof of Thomassen’s Theorem Given a graph G on a surface S that satisfies (i), (ii), and 
(iii). Assume the opposite, i.e., that there is a nice coloring utilizing at most six colors. Let x be 
a vertex of the map graph Γ = Γ(G, S), and let Cx be the cycle in G bounding the 
corresponding region. Let us choose an orientation of Cx, and let x1, x2, . . ., xk, x1 be the 
vertices of D1(x) listed in the order in which they appear as we traverse Cx. 

Thomassen first considers a simple case, which illustrates the idea of his proof. Assume 
that for each vertex x, all vertices x1, x2, . . ., xk are distinct. In this case, Γ is locally 
Hamiltonian. Since the surface S is edgewise connected, it follows that Γ is connected. 
Since S has a diameter greater than 13, Γ has more than 12 vertices, and, hence, by Tool 
18.2, Γ has a vertex of degree at least 6. Now, x and its neighbors must have distinct colors 
because x corresponds to a face of diameter < 1 on  S. This contradiction completes the proof 
in this case. 

In the general case, a vertex may appear more than once in the sequence x1, x2, . . ., xk, x1 
above. Omit those appearances (except possibly one) of xi for which Cxi and Cx have only one 
vertex in common. In other words, if xi appears more than once in the new sequence, then we 
list only those appearances for which Cxi and Cx share an edge. Then, any two consecutive 
vertices in the sequence x1, x2, . . ., xk, x1 are neighbors in Γ, and thus, Γ is locally connected. 
It follows that Γ – x is connected. Moreover, if y is any other vertex of Γ, then Γ – x – y is 
connected unless y appears twice in the sequence x1, x2, . . ., xk, that is, Cx and Cy have at least 
two edges in common. 

Now, let x and y be vertices such that Cx and Cy have at least two edges e and f, 
respectively, in common, i.e., y = xi = xj for 1 ≤ i < j – 1 < k – 1. Let R be a simple closed 
curve in the regions bounded by Cx and Cy such that R crosses each of e and f precisely once 
and has no other point in common with G. By (i), R is contractible. Hence, Γ – x – y is 
disconnected. We say in this case that {x, y} is a  2-separator in Γ. For each vertex z in Γ such 
that Cz is in int(R) and has color 1, we pick a point Pz in int(Cz). By (ii), there are at most 
k points Pz and, hence, there are altogether at most 6 k vertices z such that int(Cz) ⊆ int(R). 

Let int(Γ, x, y) stand for the subgraph of Γ – x – y induced by all those vertices z in Γ such 
that Cz is in int(R) for some R. Then, each connected component of int(Γ, x, y) has at most 6 k 
vertices. Since S has a diameter of at least 12 k  +  3, it follows that G has two vertices whose 
graph distance is at least 12 k  +  2. Hence, Γ – x – y has some component that is not in int(M, x, 
y). We claim that Γ – u – v has precisely one such component, which we call ext(M, x, y). To 
see this, let e1, e2, . . ., em be the edges in Cx \ Cy occurring in this cyclic order on Cx. Then, e1, 
e2, . . ., em divide D1(x)\{y} into m classes A1, A2, . . ., Am. By letting {e, f} = {ei, ei +  1}, 1 ≤ 
i < m in the preceding argument, we conclude that for each i = 1, 2, . . ., m, either Ai ⊆ int(Γ, 
x, y)  or  Ai \ int(Γ, x, y) =∅. Since the former cannot hold for each i 2 {1, 2, . . ., m}, the latter 
must hold for some i, and, hence, the former holds for all other i 2 {1, 2, . . ., m}. Thus, we 
proved that for any two vertices x, y in Γ, Γ – x – y has precisely one connected component 
ext(Γ, x, y) with more than 6 k vertices.
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If {u, v} is a 2-separator in Γ such that either x or y or both are in int(Γ, u, v), then clearly 
int(Γ, x, y) ⊂ int(Γ, u, v). (To see this, we use the properties of Γ established previously and 
forget about S.) If no such 2-separator {u, v} exists, then we say that {x, y} is  a  maximal 
2-separator and that xy is a crucial edge. Since each connected component of int(Γ, x, y) has 
at most 6 k vertices, a maximal 2-separator exists (provided a 2-separator exists). Let H be the 
subgraph of Γ obtained by deleting int(Γ, x, y) for each maximal 2-separator {x, y}. Then, 
H ≠∅. Moreover, H is connected since the shortest path in Γ between two vertices in H never 
uses vertices in int(Γ, x, y). Similarly, H is locally connected. We now claim that H is locally 
Hamiltonian. Consider again a vertex x in H and the sequence x1, x2, . . ., xk, x1 in D1(x) (taken 
in Γ). If this sequence forms a Hamiltonian cycle in D1(x) in  H, we are done. By definition of 
H, k ≥ 3. So, assume that xi = xj where 1 ≤ i < j – 1 < k – 1. Then, {x, xi} is a 2-separator and 
vertices can be reindexed so that int(Γ, x, xi) contains all the vertices xi + 1, xi + 2, . . ., xj - 1. We 
repeat this argument for each pair i, j such that xi = xj where 1 ≤ i < j – 1 < k – 1. Then, the 
vertices in x1, x2, . . ., xk, x1 that remain after we delete all vertices in the interiors of the 
2-separators form a cyclic sequence with no repetitions. As H is connected and locally 
connected and has at least three vertices (by (iii)), the preceding reduced cyclic sequence 
has at least two distinct vertices. It cannot have precisely two vertices u, v because then H – 
u – v is disconnected, and, hence, Γ – u – v is disconnected (because Γ is obtained from H by 
“pasting graphs on the edges of H”). Since one of the edges xu or xv is crucial (because D1(x) 
is smaller in H than in Γ), the maximality property of the 2-separator {x, u} or  {x, v} implies 
that ext(Γ, u, v) is the connected component of Γ – u – v containing x. For each vertex z in that 
component, Γ has a path of length at most 6 k from z to x, u, or  v. Hence, Γ has diameter at 
most 12 k + 1, a contradiction that proves that H is locally Hamiltonian. 

If H has a vertex x of degree at least 6, we are done because x and its neighbors must have 
different colors in the nice coloring. Assume now that each vertex of H has a degree of at most 
5. By Tool 18.2, H has at most 12 vertices. Hence, H has at most 30 edges. Since Γ is obtained 
from H by “pasting” int(Γ, x, y) on the crucial edge xy for each crucial edge of H, we conclude 
that the diameter of Γ is at most 12 k + 29, a contradiction to (iii). ■ 

Observe: All three conditions in the theorem are essential. If any of these conditions (i), (ii), 
(iii) are dropped, then the number of colors needed may decrease: 

A thin two-way infinite cylinder has a nice 6-coloring, which shows that (i) cannot be omitted. 
A thin one-way infinite cylinder (with a small disc pasted on the boundary of the cylinder to 

form the bottom) shows that (ii) cannot be omitted. 
A sphere of diameter less than 1 has a nice coloring in two colors; hence, (iii) cannot be 

omitted. 

Later in this book, we will study a somewhat similar Townsend–Woodall’s theorem, – 
Woodall’s 5-color theorem, obtained by highly different means.



Part IV 
Coloring Maps 

G. D. Birkhoff once told one of the authors that every great 
mathematician had at some time attempted the Four Colour 
Conjecture, and had for a while believed himself successful. 

– Hassler Whitney and W. T. Tutte1 

The word disease is quite appropriate for a puzzle which is 
easy to comprehend, apparently impossible for anyone to 
solve, infectious, contagious, recurrent, malignant, 
painful, scarring, and sometimes even hereditary! 

– Frank Harary2 

If I may be so bold as to make a conjecture, I would guess 
that a map requiring five colors may be possible. 

– H. S. M. Coxeter3 

In this Part, we will color regions of maps. The following few definitions will help us 
formalize our intuitive notion of a map. 

By allowing more than one edge to connect two vertices, we slightly generalize the notion 
of a graph: what we get is called a multigraph. A multigraph that can be drawn in the plane 
without intersection of its edges is called planar, while a multigraph that is drawn in the plane 
without intersection of its edges is called a plane. A multigraph is called connected if for any 
two vertices, there is a path connecting them. An edge x of a connected multigraph G is called 
a bridge if the multigraph G – x is not connected. 

We will call a plane drawing of a connected multigraph without bridges a map. A map 
divides the plane into regions. Regions are adjacent if they share at least one edge. 

Coloring a map is an assignment of colors to each of the regions of the map such that no 
adjacent regions get the same color. Let n be a positive integer; a map M is called n-colorable 
if there is a coloring of M in n colors. 

1 [WT]. 
2 From the appropriately entitled paper [Har1] “The Four Color Conjecture and Other Graphical 
Diseases,” appropriately “supported in part by a grant from the National Institute of Mental 
Health.” 
3 [Cox2].
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A natural question then is what is the minimum number of colors we must use to color 
any map? You can easily construct an example showing that four colors are necessary. You 
have likely heard the puzzle and the conjecture I am going to introduce here as an overture to 
this map coloring part. 

The following puzzle originated in discussions between the well-known mathematician 
August Ferdinand Möbius and his amateur mathematician friend Adolph Weiske and “was 
perhaps originated by Weiske” [Tie2]. Möbius shared the puzzle with the public in his 1840 
lecture. It was apparently solved even by the Bishop of London, later Archbishop of 
Canterbury (see Chapter 20 for details). Wouldn’t you like to solve it on your own and try 
to help the brothers? 

Möbius–Weiske’s Puzzle IV–1. (Circa 1840) Once upon a time in the Far East, there lived 
a prince with five sons. These sons were to inherit the kingdom after his death. But in his will, 
the prince made the stipulation that each of the five parts into which the kingdom was to be 
divided must border on every other . . .  After the death of the father, the five sons worked hard 
to find a division of the land, which would conform to his wishes; but all their efforts were in 
vain.4 

The following conjecture together with Fermat’s Last Theorem had arguably been the two 
most popular open problems of mathematics. 

The Four-Color Conjecture (4CC) IV–2 (Francis Guthrie, 1852, or before) Any map in 
the plane is 4-colorable. 

My late friend Klaus Fischer of George Mason University once asked me in the early 
1990s, why would I want to write about the conjecture so celebrated that everything has been 
written about it? Well, everything is never written, I replied, and every little bit helps. 

4 [Tie2].
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Chapter 19 
How the Four-Color Conjecture Was Born 

19.1 The Problem Is Born 

It takes time and effort to gain access and read manuscripts. The two letters containing the first 
mention of the 4CC are of high importance; yet, to the best of my knowledge, their complete 
facsimiles have never been published before. Selected transcriptions served a purpose, but, as 
we will see in Section 19.2, they contained certain shortcomings. In view of this, I am 
reproducing here, for the first time, the facsimile of De Morgan’s letter to Hamilton and the 
relevant fragment of Hamilton’s reply. Seeing – and reading – these letters allows us to 
immerse in the World Victorian. Analysis of these documents and the corrected transcription 
of De Morgan’s letter will follow. I am grateful to the Board of Trinity College Dublin, whose 
kind permission made reproducing these letters ([DeM1] and [Ham]) possible. 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_19&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_19#DOI
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Augustus De Morgan, letter to William R. Hamilton, October 23, 1852; courtesy of Trinity 
College Dublin 

The written record of the problem begins with the October 23, 1852 letter that Augustus De 
Morgan, professor of mathematics at University College, London, wrote [DeM1] to Sir 
William Rowan Hamilton, professor of mathematics at Trinity College Dublin (the 
underlined words belong to the original manuscript; those in italics are mine): 

My dear Hamilton1 

. . .  A student of mine asked me to day to give him a reason for a fact which I did not 
know was a fact – and do not yet. He says that if a figure be any how divided and the 
compartments differently coloured so that figures with any portion of common bound-
ary line are differently coloured – four colours may be wanted but not more – the 
following is his case in which four are wanted [.] 

Query [:] cannot a necessity for five or more be invented [?] As far as I see at this 
moment, if four ultimate compartments have each boundary line in common with one of 
the others, three of them inclose the fourth, and prevent any fifth from connexion with 
it. If this be true, four colours will colour any possible map without any necessity for 
colour meeting colour except at a point. 

1 De Morgan, A., Letter to W.R. Hamilton, dated October 23, 1852; TCD MS 1493, 668; Trinity 
College Dublin Library, Manuscripts Department.
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Now it does seem that drawing three compartments with common boundary A B C two 
and two – you cannot make a fourth take boundary from all, except by inclosing one – 
But it is tricky work and I am not sure of all convolutions – What do you say? And has it, 
if true [,] been noticed? My pupil says he guessed it in colouring a map of England [.] 

The more I think of it the more evident it seems. If you retort with some very simple case 
which makes me out a stupid animal, I think I must do as the Sphynx did – If this rule be 
true the following proposition of logic follows [.] 

If A B C D be four names of which any two might be confounded by breaking down 
some wall of definition, then some one of the names must be a species of some name 
which includes nothing external to the other three [.] 

Yours truly 

ADeMorgan [Signed] 

7 CSCT2 

Oct 23/52 

So, if Hamilton were to find a “very simple” solution to this puzzle, De Morgan “must do 
as the Sphynx did.” What did the Sphynx do? In ancient mythology, the Sphynx offered hard 
riddles and viciously killed and ate those who could not solve the riddle. However, Oedipus 
solved the riddle, and, as a result, the Sphynx committed suicide. OK, we get it, De Morgan is 
the Sphynx, and if Hamilton finds an easy proof of De Morgan’s four-color riddle, De Morgan 
would kill himself. But whom does De Morgan refer to in “student of mine asked me to day”? 
That student brought 4CC to De Morgan, and, thus, the student’s identity may lead us to the 
author of 4CC. No one knew the student’s name; perhaps, even De Morgan did not know or 
did not remember, for he had never mentioned the name, just “a student of his.” 

It was only 28 years later, in 1880, that Frederick Guthrie disclosed that he was the student 
mentioned by De Morgan in this letter. Frederick published his own account [GutFr], which

2 These four letters must stand for De Morgan’s address, which was 7 Camden Street, 
Camden Town.



reveals for the first time that the author of 4CC, the four-color conjecture, is Frederick’s 
2-year-senior brother, Francis:
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Some thirty years ago, when I was attending Professor De Morgan’s class, my brother, 
Francis Guthrie, who had recently ceased to attend them (and who is now professor of 
mathematics at the South African University, Cape Town), showed me the fact that the 
greatest necessary number of colors to be used in coloring a map so as to avoid identity 
of color in lineally contiguous districts is four. I should not be justified, after this lapse of 
time, in trying to give his proof, but the critical diagram was as in the margin. 

With my brother’s permission I submitted the theorem to Professor De Morgan, who 
expressed himself very pleased with it; accepted it as new; and, as I am informed by 
those who subsequently attended his classes, was in the habit of acknowledging whence 
he had got his information. 

If I remember rightly, the proof which my brother gave did not seem altogether 
satisfactory to himself; but l must refer to him those interested in the subject. 

Thus, we learn from the younger brother Frederick Guthrie, a professor of chemistry and 
physics, that 4CC was created by the 20-year-old student Francis Guthrie (of course, he may 
have been even younger when the conjecture first occurred to him) and that Francis Guthrie 
found a configuration showing that four colors are necessary and shared this simple config-
uration with his brother Frederick, who then passed it to De Morgan. There was likely more to 
Francis’ proof, but it “did not seem altogether satisfactory to himself,” as Frederick reports. 
Will we ever learn what else Francis Guthrie, at such a tender age, deduced about this 
incredible mathematical conjecture? Read on, for I am adding in Section 19.2 my new, 
June 7, 2020, historical conjecture about Francis’ attempted proof! 

Let us roll back to De Morgan. The day he received the 4CC from Frederick Guthrie, i.e., 
on October 23, 1852, he immediately wrote about it to William Rowan Hamilton, who was 
not only one of the leading mathematicians at the time but also De Morgan’s “intimate friend” 
and lifelong correspondent3 . Hamilton’s October 26, 1852, reply (the Royal Post must have 
worked extremely well, as there were only 3 days between the dates of De Morgan’s letter and 
Hamilton’s reply) is also preserved in the manuscript collection of Trinity College Dublin.

3 When W.R. Hamilton died, De Morgan wrote about it in his September 13, 1865, letter to Sir 
J.F.W. Hershel [DeM5]: “W.R. Hamilton was an intimate friend whom I spoke to once in my 
life – at Babbage’s, about 1830; but for thirty years we have corresponded.”



4Hamilton, apparently, was so obsessed with his discovery of quaternions that he could not 
make himself interested in the coloring of maps [Ham]: 

My dear De Morgan5
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I am not likely to attempt your “quaternion of colors” very soon . . .  

William R. Hamilton, letter to A. De Morgan, October 26, 1852; reproduced by kind 
permission by the Board of Trinity College Dublin 

That is all! Just the Victorian, most cordial way of saying “I am not interested, lay off my 
back.” De Morgan was left alone to keep the 4CC alive, and he succeeded. He repeatedly 
mentioned the problem in his lectures at University College ([GutFr]) and formulated it in his 
letters (we know a few such instances: [DeM1], [DeM2],6 and [DeM3]7 ). As discovered in 
1976 by John Wilson, a high school teacher from Eugene, Oregon [WilJ], De Morgan also 
became the first to publish the problem in his April 14, 1860, unsigned long review in The 
Athenaeum [DeM4] of W. Whewell’s book The Philosophy of Discovery: 

4 Arguably, this obsession prevented Hamilton from inventing linear algebra. 
5 Hamilton, W.R., Letter to A. De Morgan, October 26, 1852; TCD MS 1493, 669; Trinity College 
Dublin Library, Manuscripts Department. 
6 Locations of both [DeM2] and [DeM3] come from N.L. Biggs [Big], who analyzed De Morgan’s 
contribution to the 4CC and the separation axiom. 
7 First found by Bertha Jeffreys in 1979 [JeffB].
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When a person colours a map, say the counties in a kingdom, it is clear he must have so 
many different colours that every pair of counties which have some common boundary 
line – not a mere meeting of two corners – must have different colours. Now, it must 
have been always known to map-colourers that four different colours are enough. 

De Morgan’s notion of acquaintance of cartographers with the sufficiency of 4 colors was a 
silly invention – there is no evidence whatsoever that cartographers (then or now for that 
matter) knew about it or needed to minimize the number of colors, since the juxtaposition of 
colors and the addition of textures create sufficient representations for scores of additional 
colors. While De Morgan did not advance the solution of 4CC at all, he single-handedly 
popularized it for decades and ensured its long life. Even the mathematician of the day, Arthur 
Cayley, got hooked on 4CC but was unable to prove it. In the report based on the June 
13, 1878, meeting of the London Mathematical Society, we read ([Cay1] and [Cay2]): 

Questions were asked by Prof. Cayley, F.R.S. (Has a solution been given of the statement 
that in colouring a map of a country, divided into counties, only four distinct colours are 
required, so that no two adjacent counties should be painted in the same colour?) 

Cayley also published a two-page article [Cay3] on the question. Does his choice of the 
publication, Proceedings of the Royal Geographical Society and Monthly Record of Geog-
raphy, suggest that Cayley believed De Morgan about the usefulness of 4CC for mapmakers? 
Perhaps, not, but the coincidence adds a touch of humor to our Victorian story. In his paper, 
Cayley shows that it suffices to prove 4CC for trivalent maps, as they are called now (i.e., 
maps in which three regions meet at every vertex): 

The theorem, if it is true at all, is true under more stringent conditions: if in any case the 
Figure includes four or more areas meeting in a point (such as the sectors of a circle), 
then if (introducing a new area) we place at the point a small circular area, cut out from 
and attaching itself to each of the original sectorial areas, it must according to the 
theorem be possible with four colours only to colour the new Figure; and this implies 
that it must be possible to colour the original Figure so that only three colours (or it may 
be two) are used for the sectorial areas. And in precisely the same way (the theorem is in 
fact the same) it must be possible to colour the original Figure in such wise that only 
three colours (or it may be two) present themselves in the exterior boundary of the 
Figure. 

Finally, Cayley tries to explain at length the difficulty of proving 4CC by a straightforward 
induction and that was all he was able to do. Arthur Cayley states twice – in the course of two 
pages – that he “failed to obtain a proof” of 4CC. These statements by one of the great 
mathematicians of his time must have stirred interest in 4CC. Professionals and amateurs 
alike jumped on the opportunity to make Cayley out to be “a stupid animal,” as De Morgan 
put it in his letter quoted above. 

The proof was very soon found and published in 1879 in a prestigious American (!) journal 
by Alfred Bray Kempe, a 30-year-old London barrister (lawyer) and an avid amateur 
mathematician and an expert on linkages8 . We will look at his work in the next chapter. 

8 His 1877 book How to Draw a Straight Line was published again 100 years later in the United 
States by the National Council of Teachers of Mathematics, with a funny (for 1977) statement on 
the copyright page: “Alfred Bray Kempe, 1849–” indicating Kempe’s very long life indeed.



19.2 A Touch of Historiography and a Historical Conjecture 195

19.2 A Touch of Historiography and a Historical Conjecture 

It is extremely surprising that for more than 100 years, confusion reigned in the history of the 
four-color conjecture (4CC), one of the most popular problems in the history of mathematics. 
Truth and fiction alternated like positive and negative parts of a sin curve. Without presenting 
here a complete historiography of the problem, I would just mention that the Möbius– 
Weiske’s puzzle is mixed up with 4CC countless times and, consequently, credit for 4CC 
is often given to Möbius. It has been happening even in relatively recent times. For example, 
as late as in 1958, the great geometer H.S.M. Coxeter wrote [Cox]: 

The Four-Color Theorem [sic] was first mentioned by Möbius [sic]. 

There are, however, authors, who present the problem’s history without fantasy and 
“inventions.” For example, Alfred Errera puts it about right in his December 1920 doctoral 
thesis [Err]: 

Cayley attributed the exposition of the map theorem [sic] to De Morgan, whereas 
Frederic Guthrie claimed, in 1880, that his brother Francis Guthrie had demonstrated 
[it] some thirty years earlier. 

In 1965, Kenneth O. May summarized 4CC’s history extremely well [May]. Apparently, 
he was the first to quote De Morgan’s letter: 

A hitherto overlooked letter from De Morgan to Sir William Rowan Hamilton. 

May then went on to quote De Morgan’s October 23, 1852, letter and Hamilton’s reply 
from the monumental three-volume edition Life of Sir William Rowan Hamilton, 1882–1889, 
written by Hamilton’s close friend, the Rev. Robert Perceval Graves [Grav]. Volume 
3 includes Hamilton’s correspondence with De Morgan, and the letter of our interest, De 
Morgan to Hamilton of October 23, 1852, appears on pages 422–423. Graves was pressed for 
space – he wrote (vol. 3, p. v): 

The . . .  larger portion of the volume [673 pp. long] consists of a selection from a very 
extensive correspondence between Sir W. R. Hamilton and Professor Augustus De 
Morgan . . .  The quantity of material was so great that I have had to exclude matter that 
possessed inherent value, either because it was in subject unsuited to this work, or 
because, being mathematical, the investigations carried on were too abstruse or too 
extended. The general reader will perhaps complain that I have introduced more than 
enough of mathematical investigation; but he will, I hope, withdraw the complaint when 
he calls to mind that it was as scientific men that the writers corresponded, that it would 
be unjust to them if their correspondence as printed should not retain this character, and 
that the mathematical discussion did in fact most often afford suggestion to the play of 
thought which, passing beyond the boundaries of science, prompted the wit and the 
learned and pleasant gossip which the readers will enjoy. 

Thus, May knew that Graves condensed letters – in fact, Graves used quotation marks to 
show in practically every letter that he published selections and not complete letters. Graves 
favored “pleasant gossip” indeed. For example, in De Morgan’s letter of our interest, he keeps 
in De Morgan’s trying “a fine pen with which to write in books,” and “Having given the 
nibbler a fair trial, I now resume my ordinary pen.” However, Graves – and consequently 
May – omitted all De Morgan’s mathematical drawings, illustrating the first ever thoughts on



the four-color conjecture, and they both omitted an important phrase. As a fine historian, May 
should have looked at these important letters in the manuscript at the place where Hamilton 
spent his life, the place that sponsored Graves’ voluminous biography of W.R. Hamilton, 
which appeared in the Dublin University Series, Trinity College Dublin. He would have 
found there the 1900 Catalog of the Manuscripts in the Library of Trinity College Dublin 
compiled by T.K. Abbott, where I read ([Abb], p. v): 
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In 1890 the Rev. Robert P. Graves presented [Trinity College, Dublin] a collection of 
mss. which had belonged to Sir W. R. Hamilton, including his correspondence with Sir 
John Herschel, Professor De Morgan, and others. 

In fact, the two letters of our interest, catalogued as 668 and 669 (De Morgan’s and 
Hamilton’s, respectively) are contained in the group TCD MS 1493 of Hamilton–De Morgan 
correspondence manuscripts, which was donated to Trinity College Dublin in 1900, as Stuart 
Ó Seanór, assistant librarian of the Manuscripts Department at Trinity College, disclosed to 
me in a letter from March 21, 1997 [OSe]: 

TCD MS 1493 was presented by J R H O’Regan of Marlborough, Wilts in 1900 
(a descendant of Hamilton’s through his daughter Helen) just in time to be mentioned 
in T K Abbott’s Catalogue of the manuscripts in the library of Trinity College Dublin 
published that year. . .  

Graves’ three volume biography of Hamilton or other writings of his may reveal that 
Hamilton corresponded with De Morgan and even citation of them might date from 
before the papers were in a library. 

Le meas 

Stuart Ó Seanór [signed] 

By now, you must be wondering, which important phrase is missing in Graves and May 
letter; I am putting it in italics: 

He says that if a figure be any how divided and the compartments differently colored so 
that figures with any portion of common boundary line are differently colored – four 
colors may be wanted but not more – the following is his case in which four are wanted 
[.] 

The missing phrase was restored in 1976 by Norman L. Biggs, E. Keith Lloyd, and Robin 
J. Wilson in their wonderful textbook on graph theory through its history [BLW]. To do that, 
the authors clearly had to see the manuscript letter or its photocopy. Unfortunately, they 
misread a word while transcribing the missing phrase, and the wrong word appeared in 
various editions of their book [BLW] as follows: 

. . .  the following is the [sic] case in which four are wanted [.] 

In the manuscript, one can clearly see the word “his” where the authors of [BLW] put the 
second “the.” The difference is subtle but important: “the following is the case” would have 
indicated that De Morgan showed to Hamilton his own example.9 In fact, De Morgan wrote

9 The authors of [BLW] misread another word as well: they quote De Morgan as “I am not sure of 
the [sic] convolutions,” whereas De Morgan wrote “I am not sure of all convolutions,” which 
makes more sense.



“the following is his [i.e., student’s] case,” i.e., De Morgan conveyed an example that four 
colors are wanted, which Francis Guthrie devised and passed on to De Morgan through his 
brother Frederick. Now, I present my new historical conjecture that appears for the first time 
in this expanded edition of The Mathematical Coloring Book:
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Historical Conjecture 19.1 (Soifer, 2020) Arguments and drawings in De Morgan’s 
October 23, 1852, letter belong to Francis Guthrie. 

A Plausible Argument We have established that at least one example and one drawing in De 
Morgan’s letter came from Francis Guthrie. I now believe that likely all arguments and all 
drawings in the letter must have belonged to Francis Guthrie as well. After all, on October 
23, 1852, in addition to his daily routine chores, De Morgan taught his course(s) and wrote to 
Hamilton his long, four-page letter with a good number of drawings and arguments. He did 
not have the time to ponder the map coloring problem and must have shared with Hamilton 
Francis Guthrie’s four-color conjecture and Guthrie’s attempted proof! 

We have thus established that De Morgan’s contemporaneous account agrees with Fred-
erick Guthrie’s 1880 recollection: Frederick presented to De Morgan not only the four-color 
conjecture but also his brother Francis’ “proof,” albeit “not altogether satisfactory to himself 
[i.e., to Francis],” as Frederick put it. 

The history of 4CC was enriched by the 1976 discoveries by John Wilson [WilJ] and in 
1979 by Bertha S. Jeffreys of Cambridge, England [JefB], who found additional examples of 
De Morgan’s writings about 4CC. 

19.3 The Creator of the Four-Color Conjecture: Francis Guthrie 

I find it fascinating to read old newspapers: yes, their life span is 1 day, and, for people of the 
day, they become worthless the day after their publication. However, they depict that 1 day in 
many ways better than any other sources. For a reader, a century or centuries later, newspa-
pers are a treasure trove of the life’s interests and people’s aspirations of the day. They allow 
us to “touch” the distant culture and to breathe its air. 

I was looking at Cape Times from Monday, October 23, 1899. In the column of my interest 
first came The America Cup: 

The possession of [the celebrated sailing] America Cup was decided to-day when the 
Columbia won her second race against the Shamrock by five minutes. The Cup therefore 
remains in America. 

All-important for South African people of the day, Ship’s Movements came next: 

The Clan Macpherson left Liverpool for Algon Bay on Thursday morning. 

The Pombroks Castle arrived at Plymouth at two on Thursday afternoon. 

The Spartan left St. Vincent last night. 

Following these 1.75-inch-long reports, I saw something that must have mattered to the 
folks of the colony of South Africa a great deal: a 22-inch-long (!) column of The Late 
Professor Guthrie. Let us read a bit of it together [Gut1]:



198 19 How the Four-Color Conjecture Was Born

There has just passed away from us a man who has left a greater mark upon our Colonial 
life than will be readily recognized by many who did not come into contact with him; or 
by some who have been taught by this age of self-advertisement to suppose that no good 
work can be done in modesty and retirement. Professor Francis Guthrie, L.L.B., B.A., 
whose death on the 19th . . .  we briefly announced in Saturday’s issue, was born in 
London in 1831. 

Francis Guthrie; courtesy of John Webb and the Mathematics Department, University of 
Cape Town
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We can learn much about Francis Guthrie from this eulogy [Gut1] and from [Gut2] and 
[Gut3]. 

Born on January 22, 1831 in London, Francis Guthrie received his degree B.A. with first 
class honors from the University College, London. He then earned L.L.D., a law degree, 
and for some time was a consulting barrister in Chancery practice. In 1861 Guthrie left 
the old world and accepted an appointment at the newly established Graff-Reinet 
College in the Colony of South Africa. Following his resignation in 1875, and a brief 
visit to England, in 1876 Guthrie was appointed to the Chair of Mathematics in the 
South African College, Cape Town [presently called the University of Cape Town], 
from which he retired after 22 years on January 31 of 1899. Several months later, on 
October 19, 1899, Guthrie died in Claremont, Cape Town. 

Professor Guthrie was universally liked and respected by his peers. He served on the 
University Council, 1873–1879, and was secretary of the Senate in 1894. He was an early 
member of the South African Philosophical Society (now the Royal Society of South Africa) 
and of its Council, a member of the Meteorological Commission, and, for many years, the 
examiner of the Cape University. 

His several publications cover mathematics (none on 4CC), meteorology, and his true 
passion: botany. Guthrie and his lifelong friend Harry Bolus were pioneers in the study of 
ericas of Southern Africa. In 1873, Harry Bolus discovered a new genus on the summit 
(altitude 6,500 feet) of the Gnadouw–Sneeuwbergen near Graff–Reinet. Bolus named it in 
honor of his friend Guthriea capensis. 

I am compelled to return to Cape Times [Gut1], as it conveys the life of the frontier 
unknown to most of us through personal experience and shows a side of Francis Guthrie that 
is not widely known. Guthrie was a pioneer of the frontier. He discovered not only the four-
color conjecture but also routed for the railroad that determined the future of his region of 
South Africa: 

In 1871–1873, when the agitation for railway extension was at its height and the battle 
of the routes was being fought, Professor Guthrie ardently espoused the Midland cause. 
The problem of that day was to show the Government and Parliament how, if a railway 
were made to Graaff-Reinet, it could get over the Sneeuwberg Mountains to the 
northwards. Some case had to be made out before the Government would sanction 
even a flying survey. Professor Guthrie, in a company with the late Charles Rubidge and 
some others, climbed the mountains, aneroid in hand, in search of the most available 
pass. Their efforts had for immediate result the construction of Forth Elizabeth and 
Graaff-Reinet line; and it is a tribute to the accuracy of those early amateur railway 
explorers that the more recent extension of that line to Middelburg follows very nearly 
the route over the Lootsberg which they had suggested as the most feasible. The people 
of Graaff–Reinet were not ungrateful, and a public banquet and laudatory addresses 
showed their appreciation of the efforts of Professor Guthrie and his colleagues. 

This remarkable 22-inch-long eulogy ends with unattributed poetic lines, which I traced to 
James Shirley (1596–1666): 

Only the actions of the just 
Smell sweet, and blossom in the dust.
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19.4 The Brother 

While we are moving through the Victorian history of the problem, I can offer you something 
mathematical to do as well. Frederick Guthrie (1833–1886), who, by 1880, was a professor of 
chemistry and physics at the School of Science, Kensington, and the younger brother of the 
4CC creator Francis Guthrie, in his letter, quoted above [GutFr], created and solved a three-
dimensional analogue of 4CC that Francis allegedly neglected: 

I have at various intervals urged my brother to complete the theorem in three dimen-
sions, but with little success. 

It is clear that, at all events when unrestricted by continuity of curvature, the maximum 
number of solids having superficial contact each with all is infinite. Thus, to take only 
one case n straight rods, one edge of whose projection forms the tangent to successive 
points of a curve of one curvature, may so overlap one another that, when pressed and 
flattened at their points of contact, they give n – 1 surfaces of contact. 

Thus, Frederick Guthrie posed and solved the following problem: 

Problem 19.2 (Frederick Guthrie, 1880) Is there a positive integer n such that n colors 
suffice for proper coloring of any three-dimensional Euclidean map? 

Frederick Guthrie continues: 

How far the number is restricted when only one kind of superficial curvature is 
permitted must be left to be considered by those more apt than myself to think in 
three dimensions and knots. 

Guthrie’s prose is imprecise. It seems to me that he intended to pose the following problem: 

Problem 19.3 (Frederick Guthrie, 1880) What is the minimum number of colors required 
for proper coloring of any three-dimensional Euclidean map if each monochromatic set is 
convex? 

I am compelled to allow you the time to ponder an alternative solution to Problem 19.2 and 
a solution to Problem 19.3. We will return to them in Chapter 21.
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Chapter 20 
A Victorian Comedy of Errors and Colorful Prog ress

20.1 A Victorian Comedy of Errors 

This period in the history of the four-color conjecture (4CC) plays itself out like a Victorian 
version of Shakespeare’s The Comedy of Errors. Judge for yourself! 

Alfred Bray Kempe’s proof of 4CC was announced on July 17, 1879, in Nature 
[Kem1]. The proof itself was published later the same year in the American Journal of 
Mathematics, Pure and Applied [Kem2], as Kempe puts it (p. 194), “at the request of the 
Editor-in-Chief,” i.e., James Joseph Sylvester. Being Jewish, the famous English mathema-
tician J.J. Sylvester could not get a job at Oxford or Cambridge, as those were Christian 
institutions. Following many jobs at many places in England, the United States, and, again, 
England, Sylvester was invited to the New World as an inaugural professor of mathematics at 
the newly founded Johns Hopkins University, to the great benefit of the young American 
mathematicians. But that is another story. 

Apparently, Kempe believed in mapmakers’ myth of De Morgan and even expanded it: 

It has been stated somewhere by Professor De Morgan [must be a reference to Athe-
naeum [DeM4]] that it has long been known to map-makers as a matter of experience – 
an experience however probably confined to comparatively simple cases – that four 
colours will suffice in any case. 

Kempe entitled his paper to fit the myth, On the Geographical Problem of the Four 
Colours. 

The proof was an unqualified success. While Kempe was elected a fellow of the Royal 
Society based on this work on linkages, the coloring success might have been a factor in 
Cayley, Sylvester, and others nominating him for the honor. 

Soon, a number of authors produced simplifications and variations of Kempe’s proof. The 
first one came from William E. Story, associate editor in charge of the American Journal of 
Mathematics, Pure and Applied ([Sto]). Story’s paper immediately followed Kempe’s article 
[Kem2]. Simplifications then came from Kempe himself ([Kem3] and [Kem4]). They were 
followed by the new “series of proofs of the theorem that four colours suffice for a map” by 
Peter Guthrie Tait ([Tai1], [Tai2], and [Tai3]). 
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The popularity of the four-color theorem (4CT) became so overwhelming that in late 1886, 
the headmaster of Clifton College somehow learned about it and offered the problem as a 
“challenge problem” to his students: 

In colouring a plane map of counties, it is of course desired that no two counties which 
have a common boundary should be coloured alike; and it is found, on trial [sic] that 
four colours are always sufficient, whatever the shape or number of the counties or areas 
may be. Required, a good proof of this. Why four? Would it be true if the areas are 
drawn so as to cover a whole sphere? 

In the funniest turn of this story, the headmaster warned the contestants that “no solution 
may exceed one page, 30 lines of MS., and one page of diagrams”! Published on January 
1, 1887, in the Journal of Education [Head1], the challenge attracted a solution from such an 
unlikely problem-solver as the bishop of London, whose “proof” [Head2] was published in 
the same journal on June 1, 1889. 

Let us give a compliment to the headmaster for his unexpectedly great question: 
“Why four?” Even today, although we have two proofs of 4CC (see Chapters 22 and 24), 
we still do not really know the answer to this innocent question. 

Then comes the 29-year-old Percy John Heawood – and spoils the party! Almost with 
regret for his own discovery [Hea1], Heawood apologetically writes: 

The present article does not profess to give a proof of this original Theorem [i.e., 4CT]; 
in fact its aims are rather destructive than constructive, for it will be shown that there is a 
defect in the now apparently recognized proof. 

Yes, 11 (eleven!) years after Kempe’s 1879 publication [Kem2], Heawood discovered a 
hole in it (as well as in the later two versions of Kempe’s proofs ([Kem3] and [Kem4])). 
Moreover, Heawood constructed an example that showed that Kempe’s argument as it was, 
could not work. There was a positive side to Heawood’s paper: he showed that Kempe’s 
argument actually proved that five colors suffice for coloring any map. 

In a gentlemanly way, Heawood informed Kempe first, and Kempe was the one who 
cordially accepted Heawood’s findings and reported them to the London Mathematical 
Society at its Thursday, April 9, 1891, meeting, with “Major P. A. MacMahon, R.A., F.R. 
S., Vice-President, in the Chair” [Kem5]: 

Mr. Kempe spoke on the flaw in his proof “On the Map-Colour Theorem,” which had 
recently been detected by Mr. P. J. Heawood and showed that a statement by the latter at 
the close of his paper failed. He further stated that he was unable to solve the question to 
his satisfaction. 

The authors of [BLW] researched publications of the period at hand. They reported that 
they found “no complimentary references to Heawood in the popular journals, and no record 
of honours granted to him.” Heawood’s work [Hea1] and his consequent papers dedicated to 
map coloring are certainly major contributions and deserve better recognition. As it were, 
Heawood’s work [Hea1] remains almost unnoticed and unquoted by his contemporaries. 
Long after 1890, we can find papers still giving credit to Kempe and Tait for proving 4CT 
(see, for example, [DR]).
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While giving credit to Kempe, Tait offered his own “proofs.” It appears that the belief in 
Kempe’s proof is extrapolated by the contemporaries to the belief in Tait’s proofs: I was 
unable to find any contemporaneous refutation of Tait’s “proofs.” 

Tait described his strategy as follows [Tai1]: 

The proof of the elementary theorem is given easily by induction; and then the proof that 
four colours suffice for a map follows almost immediately from the theorem, by an 
inversion of the demonstration just given. 

This is true: Tait found a nice proof that his “elementary theorem” is equivalent to 4CT. 
The trouble is, it is not so “elementary,” and, moreover, its proof is not “given easily by 
induction” and, in fact, is not given at all. 

The bishop of London erred too: he mistakenly believed that the Möbius–Weiske’s 
problem IV–1 was equivalent to 4CT. The direct refutation of his “proof” was published 
many years later, in 1906, by John C. Wilson [JWil]. Both De Morgan and Cayley, nearly half 
a century earlier, knew that 4CC was much more than a mere fact that five countries in a map 
cannot be mutually adjacent. Obviously, the headmaster of Clifton College and the bishop of 
London did not. 

True to its genre, our Comedy of Errors had a happy end. Alfred Bray Kempe eventually 
became the president of the London Mathematical Society. Frederick Temple, our bishop of 
London, reached the highest religious title of the Archbishop of Canterbury. 

Let me translate for you the ending of “The Fairytale about the Gold Cockerel” (“Сказка о 
золотом петушке”) by the great Russian poet Aleksandr Pushkin: 

Tale is lie, but with a hint, 
Bright young lad can learn a bit.1 

Accordingly, our Victorian Comedy of Errors leaves us plenty of valuable and enjoyable 
mathematics. The bright ideas of Kempe, Tait, and Heawood are alive and well. Get your 
paper and pencil ready: in this chapter and in the next one, we will look at our British 
Victorian inheritance. As the Bard put it, 

All’s well that ends well! 

20.2 2-Colorable Maps 

Let us now visit some of the Victorian problems. To simplify the excursion, we will translate 
the Victorian problems into today’s jargon. I suggest we start with a warmup. 

Problem 20.1 Prove that a map formed in the plane by finitely many circles can be 
two-colored (Fig. 20.1). 

1 The original Pushkin’s Russian text is as follows: 
Сказка ложь, да в ней намек! 
Добрым молодцам урок.
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Fig. 20.1 A map formed by circles 

Proof Partition regions of the map into two classes (Fig. 20.2): those contained in an even 
number of circles (color them gray) and those contained in an odd number of circles (leave 
them white). Clearly, the neighboring regions get different colors because when we travel 
across their common boundary line, the parity changes. ■ 

Fig. 20.2 2-coloring of a map formed by circles 

I am sure you realize that the shape of a circle is of no consequence. We can replace circles 
in Problem 20.1 by their continuous one-to-one images, called simple closed curves, because 
the Jordan curve theorem holds for them all2 : 

Jordan Curve Theorem 20.2 A simple closed curve in the plane divides the plane into two 
regions (inside and outside). 

Problem 20.3 Prove that a map formed in the plane by finitely many simple closed curves is 
2-colorable. 

We can replace simple closed curves by straight lines: 

Problem 20.4 Prove that a map formed in the plane by finitely many straight lines is 
2-colorable (Fig. 20.3). 

2 See its proof, for example, in [BS]
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Fig. 20.3 A map formed by straight lines 

An inductive proof is well-known,3 but, as is usually the case with proofs by induction, it 
does not provide an insight. I found a “one-line” proof that creates similarity between simple 
closed curves and straight lines. 

Proof Attach to each line a vector perpendicular to it (Fig. 20.4). Call the half-plane inside if 
it contains the vector and outside otherwise. Repeat the proof of Problem 20.1 word by word. 
(Fig. 20.5). ■ 

3 See, for example, [DU].
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Fig. 20.4 Attaching vectors to lines 

Fig. 20.5 2-coloring of a map formed by straight lines
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Problem 20.5 Prove that a map formed in the plane by finitely many simple closed curves 
and straight lines is 2-colorable. 

So, what is in common between simple closed curves and straight lines? What allows a 
2-coloring to exist? Each vertex in the above maps is a result of the intersection of two or 
more curves or lines and, therefore, has an even degree. This fact first appears in print on the 
last page of the 1879 paper by Alfred Bray Kempe in which he attempted to prove 4CC 
[Kem2]. 

Kempe’s Two-Color Theorem 20.6 (A.B. Kempe, 1879, [Kem2]). A map is 2-colorable if 
and only if all its vertices have even degrees. 

Let us take another look at the map M formed by circles in Fig. 20.1. We can construct the 
dual graph G(M) of the map M as follows: we represent every region by a vertex (think of the 
capital city) and call two vertices adjacent if and only if the corresponding two regions are 
adjacent, i.e., they have a common boundary line.4 The dual graph G(M) of the map M of 
Fig. 20.1 is presented in Fig. 20.6 (I bent and stretched the edges to make the graph look 
aesthetically pleasing). 

Observe: The dual graph G(M) of any map M is planar: We can draw its edges through 
common boundaries of the adjacent regions so that the edges will have no points in common, 
except the vertices of the graph. 

Fig. 20.6 The dual graph of the map from Fig. 20.1 

Now the problem of coloring maps can be translated into the language of coloring vertices 
of planar graphs. But wait a second; this problem is not new to us: we have already solved it as 
Problem 12.2. Let us repeat it here: 

Kempe’s Two-Color Theorem 20.7 (In Graph-Theoretical Language). The chromatic 
number χ(G) of a graph G does not exceed 2 if and only if G contains no odd cycles. 

4 The idea of the dual graph of a map was one of the first ideas of graph theory: Leonard Euler used 
it in 1736 to solve the Problem of Bridges of Königsberg. The language of maps was universally 
used by the first researchers of 4CC. Yet, I noticed that while Kempe used the language of maps in 
the main body of his 1879 paper [Kem2], he did describe the construction of the dual graph on the 
last page of this paper.
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20.3 3-Colorable Maps 

It is natural to give a name to the smallest number of colors required to color a map M; let us 
call it the chromatic number of map M or the face chromatic number and denote it by χ2(M). 

We have an abundance of maps of chromatic number 2 around us: maps created by circles, 
by straight lines, and by simple closed curves (Problems 20.1–20.5). Square grids deliver us 
examples of large periodic maps of chromatic number 2: just recall the chessboard coloring. 
Can you think of a way of creating large periodic maps of chromatic number 3? You have 
already seen a couple of such constructions in this book, but in a totally unrelated context. 

Problem 20.8 Find the chromatic number of the hexagonal map created by the old Chinese 
lattice in Fig. 6.7. 

Solution Behold (Fig. 20.7): 

Fig. 20.7 3-coloring of a Chinese lattice 

Problem 20.9 Find the chromatic number of the map in Fig. 6.6, which is formed by 
octagons and squares. 

Solution Behold (Fig. 20.8):
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Fig. 20.8 3-coloring of the Soifer tiling of the plane from Fig. 6.6 

What is special about the maps in Problems 20.8 and 20.9 that makes their chromatic 
number to be 3? Is it the fact that they are cubic, i.e., each vertex of these maps has degree 3? 
Or is it due to an even number of neighbors of every region? 

A.B. Kempe [Kem2] repeats Cayley’s argument that we can convert any map M into the 
trivalent map M′ such that 

χ2 Mð Þ  ≤ χ2 M0ð Þ  

Kempe writes: 

I should show that the colours could be so arranged that only three should appear at 
every point of concourse. This may readily be shown thus: Stick a small circular patch, 
with a boundary drawn round its edge, on every point of concourse, forming new 
districts. Colour this map. Only three colours can surround any district, and therefore 
the circular patches. Take off the patches and colour the uncovered parts the same colour 
as the rest of their districts. Only three colours surrounded the patches, and therefore 
only three will meet at the points of concourse they covered. 

Our maps in Problems 20.8 and 20.9 are cubic, and, for cubic maps, an even number of 
neighbors is the key indeed: 

Kempe’s Three-Color Theorem 20.10 (A.B. Kempe, 1879, [Kem2]). A cubic map M has 
face chromatic number 3 if and only if the boundary of each of its regions consists of an even 
number of edges5 . 

Let us translate Kempe’s three-color theorem into the language of graphs by going to the 
dual graph G = G(M) of the map M. Of course, since M is a trivalent map, all regions of G are 
triangular (i.e., 3-cycles). A plane graph, whose regions are all 3-cycles, is called a 
triangulation. 

5 Kempe states only the sufficient condition, but, in my opinion, the necessary condition is easier 
to prove and was possibly known to him.
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Kempe’s Three-Color Theorem 20.11 (Three-Color Theorem for Graphs). Let G be a 
connected plane triangulation. Then the following three assertions are equivalent: 

(a) The chromatic number χ(G) of  G satisfies the inequality χ(G) ≤3. 
(b) The face chromatic number χ2(M) of  G satisfies the inequality χ2(M)≤2. 
(c) The degree of every vertex of G is even. 

Proof Kempe does not prove his statement. The proof presented here is a substantially 
simplified version of several problems from the 1952 Russian book by Evgenii B. Dynkin 
and Vladimir A. Uspensky [DU]. 

(a) ) (b). Since χ(G) = 3, we can label each vertex of G with one of the colors a, b, or  c. 
For every face, we have one vertex of each of the colors a, b, or  c. Take a face F; if the 
direction of going around its vertices a → b → c is clockwise, then we color F red; otherwise, 
we color F blue. It is easy to see that any two adjacent faces are thus assigned different colors. 

(b) ) (a). Let G be face two-colored red and blue. For every edge xy of G, we assign one 
direction (out of possible two: x → y or y → x) such that when we travel along the assigned 
direction, the red triangle is on our right (and thus a blue triangle is on our left). Obviously, for 
any two vertices v, w of G, there is a directed path from v to w, and, while the length of such a 
path (i.e., the number of edges in it) is not unique, its length modulo 3 is unique. 

Assuming that we proved this uniqueness (see next paragraph for the proof), the rest is 
easy. Let us call our three colors 0, 1, and 2. Pick a vertex v and color it 0; then, for any vertex 
w of G, we select one directed path P from v to w and the remainder upon division of the 
length l(P) of  P by 3 determines the color we assign to w. This guarantees that the adjacent 
vertices are assigned different colors (do you see why?), and the implication (b) ) (a) is  
proven. 

Proof of Uniqueness Let us first prove that the length l(P) of any closed directed path P is 
divisible by 3. Assume it is not; then, among all directed closed paths of length not divisible 
by 3, there is one of minimum length l; we call it P′. P′ has no self-intersections, for, 
otherwise, it could be shortened (can you see how?) in contradiction to its minimum length. 
P′ partitions the plane into two areas: the inside and the outside. We combine the outside into 
one region O and, as a result, get a new map M1, all regions of which are already colored red 
and blue, except the region O (see Fig. 20.9). 

Fig. 20.9 2-colored map M1
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If the loop P′ has a clockwise direction, then all triangles bordering on P′ are colored red; 
otherwise, they are all colored blue. Since, in either case, all triangles bordering on P′ are 
assigned the same color, say, red, we can complete the 2-coloring of the map M1 by assigning 
the outside region O the opposite color – blue. 

Every edge belongs to the boundary of one red and one blue region; therefore, the total 
numbers of edges on the boundaries of all red and all blue regions are equal. Thus, we get the 
following equality: 

3r= 3bþ l, 

where r and b denote the number of red and blue triangles, respectively (and l, as you recall, is 
the length of P′). This equality contradicts the fact that l is not divisible by 3. 

Assume now that there are two directed paths P1 and P2 from a vertex v to a vertex w with 
their lengths l1 and l2, respectively, such that l1 and l2 give different remainders upon division 
by 3. Let P3 be a path of length l3 from w to v. Then we get two different closed paths P1 + P2 

and P1 + P3 of lengths l1 + l2 and l1 + l3, respectively. Therefore, in view of the above, both 
integers l1 + l2 and l1 + l3 are divisible by 3. But, then, the number 

l1 þ l2ð Þ– l1 þ l3ð Þ= l2–l3 

is divisible by 3, and the desired uniqueness is proven. 
(b) (c). This is precisely the two-color theorem we have discussed above. ■ 

Kempe’s three-color theorem, as can be easily seen, has the following corollary: 

Corollary 20.12 (P.J. Heawood, 1898, [Hea2]). Let G be a connected planar graph G. Then, 
the following assertions are equivalent: 

(a) The chromatic number χ(G) of  G satisfies the inequality χ(G) ≤ 3. 
(b) G can be embedded (as a subgraph) into a triangulation graph G’ such that the degree of 

every vertex of G′ is even. 

In his survey [Ste], Richard Steinberg describes the history of the three-color problem and 
its state at the time of his writing in 1993. In this otherwise wonderful historical work, 
Steinberg dismisses Alfred B. Kempe in a number of unjustified ways: 

The most notorious paper in the history of graph theory: the 1879 work by A. B. Kempe 
[Kem2] that contains the fallacious proof of the Four Color Theorem . . .  

Kempe’s language is somewhat unclear – he was a barrister by profession. 

I object to this arrogance of a “professional.” Pierre de Fermat was a “barrister by 
profession” too. Does the mere fact that professionals are paid for services make them 
necessarily superior to amateurs? And when an amateur turns professional (which happens 
every day), does his language improve overnight? 

Yes, Kempe’s language is not as precise as our present standards require. But the same can 
be said of Tait and Heawood, yet, Steinberg approvingly quotes Gabriel Dirac’s passionate 
but illogical argument in defense of Heawood’s writing:
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Most of the assertions stated in [Hea2] are not actually proved, only made plausible, but 
they have since been proved rigorously by other writers, which indicates [sic] that 
Heawood was in possession of the necessary proofs but did not choose to include them. 

As we have seen, Kempe’s last page of [Kem2] contained a number of observations, 
including both the two-color theorem and the three-color theorem that are listed without 
proof, as “two special cases” of map coloring. I believe that Kempe knew the proofs but 
omitted them possibly because his main, if not the only, goal was to prove the much more 
complex four-color theorem. 

Tomas L. Saati, in the title of his 1967 paper, called the attempt “The Kempe Catastrophe” 
[Saa1]. I cannot disagree more. As we will see in the next chapter, Alfred B. Kempe did not 
succeed in his goal, but what a fine try it had been, far exceeding anything his celebrated 
professional predecessors De Morgan and Cayley achieved in years of toying with 4CC! 
Moreover, today, both known successful assaults of 4CC have Kempe’s approach as their 
foundation. Kempe came up with beautiful ideas; his chain argument has been used many 
times by fine twentieth-century professionals, such as Dénes Kőnig in his 1916 work on the 
chromatic index of bipartite graphs and Vadim Vizing (Chapter 18) in his famous 1964 
chromatic index theorem. 

For his important work on linkages, the contemporaries elected A.B. Kempe (1849–1922), 
a fellow of the Royal Society (1881) and president (1892–1894) of the London Mathematical 
Society. Kempe was knighted in 1913. 

20.4 The New Life of the Three-Color Problem 

In the first half of the twentieth century, it seemed that the three-color problem had been 
settled in the Victorian age. Since the late 1940s and the 1950s, we have witnessed the 
accelerating explosion of results on the relationship between the chromatic number of a graph 
and its small cycles (please see the discussion of it in Chapter 12). Examples of triangle-free 
graphs were in the mathematical air. Only one word, planar, needed to be added for revisiting 
the three-color problem and seeking a deeper understanding of what causes a map to be 
3-colorable. 

The first significant step of this new era of 3-colorable graphs was taken by the German 
mathematician Herbert Grötzsch in 1958–1959 [Grö]. 

The Grötzsch Theorem 20.13 Every triangle-free planar graph is 3-colorable; moreover, 
every proper 3-coloring of a 4- or 5-cycle can be extended to a 3-coloring of the whole graph. 

In order to demonstrate that the restriction to planar graphs cannot be omitted, Grötzsch 
constructed the graph we discussed in Chapter 12 (see Fig. 12.8). His theorem, however, 
allowed an improvement, which was delivered by the great geometer (and Geombinatorics’ 
major contributor and editor from its inception in 1991 to his passing on September 14, 2018) 
Branko Grünbaum [Grü] in 1963.
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The Grünbaum Theorem 20.14 A planar graph with at most three 3-cycles is 3-colorable.6 

This result is best possible, as K4, a graph with four 3-cycles shows. Is there a life after the 
best possible result? 

In mathematics – of course! As Valeri A. Aksionov and Leonid S. Mel’nikov observed 
[AMe], “Grünbaum put forth the question which determined the direction of further 
research.” Grünbaum defined the distance between triangles of a graph as the length of the 
shortest path between the vertices of these triangles. He conjectured that if this distance is at 
least 1, then the planar graph is 3-colorable. Ivan Havel, who constructed a counterexample to 
Grünbaum’s conjecture, posed and refuted his own conjecture (with a distance of at least 2) 
and, in the end, posed a more restrained open problem in 1969 [Hav]. 

Havel’s Open Problem 20.15 Does there exist an integer n such that if the distance between 
any pair of triangles in a planar graph G is at least n, then G is 3-colorable? 

Havel’s problem is still open. According to Baogang Xu (e-mail of May 10, 2007), it is 
known that if such an n exists, it is at least 4. 

Meanwhile, Richard Steinberg reasoned as follows: the restrictions on 3-cycles have been 
settled; but what if we were to impose no restrictions on 3-cycles but, instead, limit 4-cycles 
and 5-cycles? In his 1975 letter to the Russian mathematicians V.A. Aksionov and 
L.S. Mel’nikov, Steinberg posed his now well-known and still open problem [Ste]. 

Steinberg’s Open Problem 20.16 Must a planar 4- and 5-cycle-free planar graph be 
3-colorable? 

Further research on the three-color problem was inspired by Havel’s and Steinberg’s open 
problems and often by a combination of the two of them. I am grateful to the Chinese 
mathematician Baogang Xu for navigating me through the labyrinth of the recent state of the 
problem. Let us look at the explosion of 3-coloring results. 

Abbott–Zhou’s Theorem 20.17 ([AZ], 1991). A planar graph without cycles of lengths 
4–11 is 3-colorable. 

Sanders–Zhao and Borodin’s Theorem 20.18 ([SZ1], 1995; [Bor1], 1996). A planar graph 
without cycles of lengths 4–9 is 3-colorable. 

Borodin–Glebov–Raspaud–Salavatipour’s Theorem 20.19 ([BGRS], 2005). A planar 
graph without cycles of lengths 4–7 is 3-colorable. 

Luo–Chen–Wang’s Theorem 20.20 ([LCW], 2007). A planar graph without cycles of 
lengths 4, 6, 7, and 8 is 3-colorable. 

Chen–Raspaud–Wang’s Theorem 20.21 ([CRW], 2007). A planar graph without cycles of 
lengths 4, 6, 7, and 9 is 3-colorable. 

In 2003, Oleg V. Borodin and André Raspaud [BoR] started a direction that combined 
Steinberg’s and Havel’s problems. 

6 A lemma used in the proof of Grünbaum’s theorem was corrected and proved by Valeri 
A. Aksionov in 1974 [Aks].
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Borodin–Raspaud’s Theorem 20.22 ([BoR], 2003). A planar graph without 5-cycles and 
triangles of distance less than four is 3-colorable. 

They also formulated two conjectures stronger than the (still open) positive answer to 
Steinberg’s Problem 20.16. The authors called them “Bordeaux 3-Color Conjectures” – I will 
add the authors’ names to give them credit. By intersecting triangles, the authors mean those 
with a vertex in common; by adjacent triangles, they call those with an edge in common. 

Bordeaux 3-Color Borodin–Raspaud’s Conjecture 20.23 ([BoR], 2003). A planar graph 
without 5-cycles and intersecting triangles is 3-colorable. 

Bordeaux 3-Color Borodin–Raspaud’s Strong Conjecture 20.24 ([BoR], 2003). A planar 
graph without 5-cycles and adjacent triangles is 3-colorable. 

A proof of conjecture 20.24 in the positive would imply the validity of conjecture 20.23 
and the positive answer to Steinberg’s problem 20.16. 

Baogang Xu strengthened Borodin–Raspaud’s result 20.22: 

Xu’s Theorem 20.25 ([Xu2], 2007). A planar graph without 5-cycles and triangles of 
distance less than 3 is 3-colorable. 

In a significant improvement of Borodin et al.’s Theorem 20.19, Baogang Xu proved a 
strong result in the direction of proving Bordeaux 3-color Borodin–Raspaud’s conjecture 
20.24: 

Xu’s Theorem 20.26 ([Xu1], 2006). A planar graph without adjacent triangles and 5- and 
7-cycles is 3-colorable. 

Two more results were obtained in the direction of Steinberg’s and Havel’s problems. 

Lu–Xu’s Theorem 20.27 ([LX], 2006). A planar graph without cycles of lengths 5, 6, and 
9 and without adjacent triangles is 3-colorable. 

Xu’s Theorem 20.28 ([Xu3], 2014). A planar graph without cycles of lengths 5 and 6 and 
without triangles of distance less than 2 is 3-colorable. 

The international group of mathematicians, Oleg V. Borodin, Aleksey N. Glebov, both 
from Russia, Tommy R. Jensen from Denmark, and André Raspaud from France [BGJR] put 
a new twist on the three-color oeuvre. 

Borodin–Glebov–Jensen–Raspaud’s Theorem 20.29 ([BGJR], 2006). A planar graph 
without triangles adjacent to cycles of lengths 4–9 is 3-colorable. 

The authors have also formulated an attractive conjecture and named it after the city they 
posed it in: 

Novosibirsk 3-Color Conjecture 20.30 ([BGJR], 2006). A planar graph without triangles 
adjacent to cycles of lengths 4 and 5 (or equivalently 3 and 5) is 3-colorable. 

A few years later, this group produced more relevant results. 

Borodin–Glebov–Montassier–Raspaud’s Theorem 20.31 ([BGMR], 2009). Planar graphs 
without 5- and 7-cycles and without adjacent triangles are 3-colorable.
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Borodin–Glebov’s Theorem 20.32 ([BGl], 2011). Planar graphs without 5-cycles and with 
minimal distance between triangles of at least 2 are 3-colorable. 

The decade that followed brought about many more results of the kind. The explosion of 
recent results has been so great that the field surely needed a new comprehensive survey, like 
the one that Richard Steinberg authored in 1993. Indeed, Oleg V. Borodin authored such a 
survey, Colorings of plane graphs: A survey in 2013 [Bor2]. I refer you to this valuable 
comprehensive survey for many exciting results (a number of statements are not translated 
correctly; I corrected the translations of those quoted above). My deep gratitude goes to Oleg 
Borodin for sharing his most impressive works. 

It is fascinating to see how the seemingly lesser known cousin of the celebrated four-color 
conjecture (4CC) has flourished so beautifully and has become an exciting area of mathe-
matical inquiry, even after 4CC was settled!
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Chapter 21 
Kempe–Heawood’s Five-Color Theorem and Tait’s 
Equivalence 

21.1 Kempe’s 1879 Attempted Proof of the Four-Color Theorem 

I am compelled to present here Alfred Bray Kempe’s attempted proof of the four-color 
conjecture (4CC). As you recall from Chapter 20, that proof contained an oversight, found 
a “mere” 11 years later by Percy John Heawood. Why then do I choose to present the 
unsuccessful attempt here? First of all because of the beautiful ideas Kempe invented. 
Second, because it is not easy to notice a flaw right away. Third, because P.J. Heawood did 
not have to do much to salvage Kempe’s ideas to show that, in fact, they (i.e., Kempe’s ideas!) 
prove the five-color theorem. Finally, because just like their contemporaries underestimated 
the work of Heawood, my contemporaries often underestimate the contributions of Kempe. 

So it comes. Fasten your seat belts; I challenge you to find Kempe’s oversight! 
I will translate both the theorem and Kempe’s proof into the usual nowadays language of 

dual graphs. The authors of The Four-Color Problem [SK], the first ever book on the subject, 
Thomas L. Saaty and my friend Paul C. Kainen, write (p. 7): 

The notion of dual graph mentioned above was introduced by Whitney (1931) and used 
to give an elegant characterization of when a graph is planar. 

In fact, the notion of dual graphs appears on the last page of A.B. Kempe’s 1879 paper 
[Kem2], as I mentioned after theorem 20.6 in the previous section, and Leonard Euler used it 
already in 1736. Kempe reinvented the notion but did not do much with it (what can one do 
with a promising notion that is introduced too late, on the last page of the paper?). I will use it 
here to make Kempe’s attempted proof easier to read. I will also rearrange Kempe’s proof. 

The Four-Color Theorem (4CT) for Graphs 21.1 The chromatic number of any planar 
graph does not exceed 4. 

Attempted Proof by Alfred Bray Kempe First, Kempe presented his brilliant chain argument, 
and, then, he rediscovered Euler’s formula 21.2 and used it to find the graph theory’s first ever 
set of unavoidable configurations (Tool 21.3 and the equivalent Tool 21.3’), as it is called 
today. We will do the latter two first. 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597
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Euler’s Formula for Maps 21.2 For any map M in the plane, the following equality holds: 

Rþ V =E þ 2, 

where R, V, and E are the number of regions, vertices, and edges of M, respectively. 

Hint You can add edges to M as necessary, until you get a triangulation T(M) so that Euler’s 
formula holds for M if and only if it holds for T(M), and then use induction. Let me not present 
here the complete proof: too many books have already done so. ■ 

Kempe’s Tool 21.3 (A.B. Kempe, 1879, [Kem2]). Any planar map contains a vertex of 
degree at most 5. 

Proof We can assume without loss of generality that each face is incident with at least three 
edges, for, otherwise, we can insert some vertices of degree 2 to remedy the situation. 

We will argue by contradiction. Assume that the desired statement does not hold for a 
planar graph G, i.e., all V vertices of G have degrees of at least 6. Let R and E stand for the 
number of regions and edges of G, respectively. Since every edge is incident with two 
vertices, and with two regions, we get 6V ≥ 2E and 3R ≥ 2E or V ≥ 1 

3E and R≥ 2 
3E. Then, 

by Euler’s formula 21.2, we get: 

2 
3 
E þ 1 

3 
E≥E þ 2, 

which is absurd. ■ 

I enjoyed translating Kempe’s attempt into the contemporary terminology of unavoidable 
sets of reducible configurations that I found in Douglas R. Woodall’s paper [Woo2]. I will 
present Kempe’s attempted proof here in this language, for this would better prepare you for 
the next chapter, where we will discuss Appel and Haken’s proof of 4CT. 

A configuration C is called reducible if the minimal (in terms of the number of vertices) 
counterexample G to 4CT cannot contain C; i.e., should G contain C, G can be reduced to a 
smaller counterexample. 

A finite set S of configurations is called unavoidable for a certain class Φ of maps if every 
map from Φ contains at least one element of S. Tool 20.3 could be reformulated in the 
language of unavoidable configurations as follows: 

Kempe’s Tool in Current Terminology 21.3’ The set of four configurations in Fig. 21.1 is 
unavoidable, i.e., at least one of them appears in any nontrivial plane triangulation.
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Fig. 21.1 The unavoidable set of four configurations 

Kempe’s Argument Kempe set out to prove that the four configurations in Fig. 21.1 form an 
unavoidable set of reducible configurations. 

Assume that there is a planar graph that is not 4-colorable. Then, among all planar non-4-
colorable graphs, there is a graph, call it G, of minimum order (i.e., minimum number of 
vertices). Embed G in the plane as a plane graph and add edges, if necessary, to make a 
triangulation T out of G. T is not 4-colorable as it may have even more restriction on coloring 
than G, but T –v is 4-colorable for any vertex v. Fix a vertex v, and color T –v in four colors. 
According to Tool 21.3, T contains one of the four configurations listed in Fig. 21.1, which 
prompts us to consider a few cases. 

1. If T contains a configuration (a) or (b), the 4-coloring of T –v can be easily extended to a 
4-coloring of T: just assign the vertex v a color not used on the vertices adjacent to v. We  
got a contradiction; therefore, the assumption that T is a minimal counterexample to 4CT is 
false, and, thus, T can be reduced. Configurations (a) and (b) are reducible. 

2. Let T contain a configuration (c). We will look at three subcases. 

(2a) If no more than three colors have been used to color the vertices a, b, c, and d, we can 
extend the 4-coloring of T–v to a 4-coloring of T: just assign the vertex v a color not 
used on the vertices adjacent to v. 

(2b) Assume now that the vertices a, b, c, and d are assigned four different colors: 
following Kempe’s taste, let these colors be red, blue, green, and yellow, respec-
tively. Consider a subgraph TRG of T –v that is formed by all red and green vertices of 
T –v, with all edges connecting these vertices (we call TRG a subgraph induced by the 
red and green vertices). If the vertices a and c belong to different components of TRG, 
we interchange colors, red and green, in the component that contains the vertex c. As  
a result, we get a new 4-coloring of T–v, in which both vertices a and c are colored 
red. Thus, we can extend the 4-coloring of T–v to a 4-coloring of T: just color the 
vertex v green.
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(2c) Let us now assume that both vertices a and c belong to the same component of TRG, 
i.e., there is, what we call today the Kempe chain CRG in TRG that connects a and 
c (see Fig. 21.2). 

Fig. 21.2 Kempe’s chains at work 

Consider a subgraph TYB of T–v induced by all yellow and blue vertices of T–v. Since the 
chain CRG separates the vertices b and d, they must lie in different components of TYB. We  
now interchange colors, yellow and blue, in the component of TYB that contains the vertex b. 
As a result, we get a new 4-coloring of T–v, in which both vertices b and d are colored yellow. 
Thus, we can extend the 4-coloring of T–v to a 4-coloring of T: just color the vertex v blue. 

We have thus proved in all cases that T is 4-colorable. A contradiction, therefore, the 
assumption that T is a minimal counterexample to 4CT is false, and, thus, T can be reduced. 
Configuration (c) is reducible. 

3. Finally, let T contain a configuration (d). We will consider three subcases. 

(3a) If no more than three colors have been used to color the vertices a, b, c, d and e, we  
can extend the 4-coloring of T –v to a 4-coloring of T: just assign the vertex v a color 
not used on the vertices adjacent to v. 

(3b) Assume now that the vertices a, b, c, d and e are assigned four different colors: red, 
blue, yellow, green, and blue, respectively. Consider subgraphs TRY and TRG of T –v 
that are induced by all its red-and-yellow and red-and-green vertices, respectively. If 
the vertices a and c belong to different components of TRY, or  a and d belong to 
different components of TRG, we interchange colors in the component that contains 
the vertex a. As a result, we get a new 4-coloring of T –v such that the color red is not 
assigned to any of the vertices a, b, c, d and e. Thus, we can extend the 4-coloring of 
T –v to a 4-coloring of T: just color the vertex v red. 

(3c) Let us now assume that vertices a and c belong to the same component of TRY, and 
a and d belong to the same component of TRG, i.e., there is a Kempe chain CRY in TRY 
that connects a and c and a Kempe chain CRG in TRG that connects a and d (see 
Fig. 21.3).
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Fig. 21.3 Kempe’s chains at work 

Consider subgraphs TBG and TBY of T –v induced by all its blue-and-green and blue-and-
yellow vertices, respectively. The vertex b must lie in a component of TBG that is different 
from those to which d and e belong, and e lies in a component of TBY that is different from 
those to which b and c belong. We, therefore, interchange colors, blue and green, in the 
component of TBG that contains b; and blue and yellow, in the component of TBY that contains 
e. As a result, b becomes green and e yellow. Thus, we can extend the 4-coloring of T –v to a 
4-coloring of T: just color the vertex v blue. 

We have proved in all cases that T is 4-colorable. A contradiction, therefore, the assump-
tion that T is a minimal counterexample to the 4CT is false, and, thus, T can be reduced. 
Configuration (d) is reducible. ■ 

The four-color theorem has thus been proved or has it? In hindsight, we know that it was 
not. Have you noticed the hole? Try finding it on your own before reading the next section, in 
which I will reveal the hole. 

21.2 The Hole 

The hole occurs in subcase 3c. Everything Kempe did in the neighborhood of the vertex v was 
fine. He did get rid of color blue among the vertices adjacent to v and was, therefore, able to 
assign blue to v. However, while interchanging two colors in one component (as was done in 
subcase 2c) does create an allowable coloring of T –v, in subcase 3c, Kempe interchanged 
coloring in two components. Moreover, he interchanged colors in the components of TBG and 
TBY that shared a color (blue). Thus, there was no guarantee that what he got in the outset was 
an allowable coloring of T –v (i.e., that everywhere in the graph adjacent vertices were 
assigned different colors). Thus, Kempe’s attempted proof has a hole. 

21.3 The Counterexample 

In fact, Percy John Heawood was not only the first to find the above hole: he constructed a 
map such that if one follows Kempe’s argument, two adjacent regions would get the same 
color assigned to them. Tomas L. Saati did not just translate Heawood’s example into the 
language of graph theory but also added niceties of symmetries to his graph [Saa2, p. 9]. My



assistant Phillip Emerich and I added further niceties of regular hexagons and pentagons to 
Saati’s graph – see Fig. 21.4 for our embedding. Letters R, B, Y, and G stand for colors red, 
blue, yellow, and green, respectively. As a result of Kempe’s recoloring, the adjacent vertices, 
x and z, end up with the same color assigned to them. 
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Fig. 21.4 Heawood’s counter example in graph form 

Heawood’s counterexample is a graph of order 25. While reading Kempe’s attempted 
proof, I found a counterexample of order just 9 that refutes Kempe’s proof as written by him. 
In 1997, I published my counterexample in the Mathematics Competitions journal [Soi32]. 

Problem 21.4 (Soifer, 1997, [Soi32]). Construct a counterexample to Kempe’s attempted 
proof of order not greater than 9. 

Behold (Fig. 21.5):
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Fig. 21.5 The Soifer graph: a counterexample to Kempe of the smallest order 

Moreover, in 1997, I conjectured that my counterexample is the smallest possible: 

Conjecture 21.5 (Soifer, 1997, [Soi32]). For any graph of order less than 9, Kempe’s 
argument works. 

By accident, I ran into a familiar word “Soifer” in Wolfram MathWorld: 

http://mathworld.wolfram.com/SoiferGraph.html 

The Wolfram article included my Fig. 21.5, embedded in the plane in a slightly different 
way, and named it the Soifer graph (Fig. 21.6): 

Fig. 21.6 The Soifer graph in Wolfram MathWorld

http://mathworld.wolfram.com/SoiferGraph.html
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The Soifer Graph is a planar graph on 9 nodes that tangles the Kempe chains in Kempe’s 
algorithm and thus provides an example of how Kempe's supposed proof of the Four-
Color Theorem fails. As proved by Gethner and Springer, the Soifer graph is the 
smallest such counterexample (and is smaller than the Kittell Graph and Errera Graph). 

It is implemented in the Wolfram Language as GraphData [“SoiferGraph”]. 

Little did I know that in 2003, Ellen Gethner and William M. Springer, II, of my University 
of Colorado’s Denver campus named Fig. 21.5 “the Soifer graph,” relabeled it, and proved 
my Conjecture 21.5 that the Soifer graph is the smallest possible [GS]. 

I also discovered that the Soifer graph was commercially used by Lisa Crosby Clark for 
making “Soifer graph bags”! Behold: 

https://www.deviantart.com/lisacclark/art/Soifer-Graph-Bag-214832082 

Fig. 21.7. A Soifer graph bag

http://mathworld.wolfram.com/PlanarGraph.html
http://mathworld.wolfram.com/KempeChain.html
http://mathworld.wolfram.com/Four-ColorTheorem.html
http://mathworld.wolfram.com/Four-ColorTheorem.html
http://mathworld.wolfram.com/KittellGraph.html
http://mathworld.wolfram.com/ErreraGraph.html
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/GraphData.html
https://www.deviantart.com/lisacclark/art/Soifer-Graph-Bag-214832082
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I asked Lisa Crosby Clark to send me a complimentary copy of the Soifer graph bag but got 
no bag and no reply. 

Rudolf and Gerda Fritsch created a graph [FF, p. 176], now known as the Fritsch graph, 
which is also of order 9, and also delivers a counterexample to Kempe’s original 1879 
attempted proof. 

21.4 The Kempe–Heawood Five-Color Theorem 

P.J. Heawood in his 1890 paper [Hea1] pointed out that Kempe’s argument actually proves 
that five colors suffice. When we use five colors, there is no need to simultaneously 
interchange colors in two Kempe chains, and, thus, Kempe’s chain argument works. Do 
verify the proof of the five-color theorem on your own. 

I believe that the name often used today for this result, “the Heawood five-color theorem,” 
is unfair. While Heawood was the first to formulate and prove the theorem, he merely adjusted 
an ingenious argument created by Kempe. It is therefore only fair to name the result after both 
inventors. I have little doubt Heawood would have agreed! 

The Kempe–Heawood Five-Color Theorem 21.6 Five colors suffice to color any map in 
the plane. 

21.5 Tait’s Equivalence 

Not only Augustus De Morgan but also Arthur Cayley contributed to spreading the word 
about the four-color conjecture. Peter Guthrie Tait is clear about it [Tai1, p. 501]: 

Some years ago, while I was working at knots, Professor Cayley told me of De Morgan’s 
[sic] statement that four colours had been found by experience [sic] to be sufficient for 
the purpose of completely distinguishing from one another the various districts on 
a map. 

When, in 1880, Alfred B. Kempe published yet another sketch of a proof [Kem5], similar 
to his original attempt, Tait was apparently inspired to enter the map coloring arena. In 1 year, 
1880, he published a paper [Tai1] and then withdrew and replaced it with a one-page 
“abstract” [Tai2], which he expanded to an article [Tai3]. These papers contain some amusing 
statements, for example [Tai3, p. 657]: 

The difficulty in obtaining a simple proof of this theorem originates in the fact that it is 
not true without limitation. 

One can paraphrase it to say, “It is difficult to prove, especially what is not true.” Indeed, 
very much so! The Tait papers, however, also contain brilliant observations, such as what we 
call Tait’s equivalence (Problem 21.8 below). Let us start our Tait review with his inductive 
attempt of proving 4CC.
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The Four-Color Theorem 21.7 Every map on the plane is 4-colorable. 

Tait’s Attempted Proof ([Tai3]). Proof by induction in the number of regions. For a map with 
one region, 4CC holds. 

Assume that any map with less than n regions is 4-colorable. 
Given a map M with n regions, by Kempe’s Tool 21.3, M contains a region R bounded by 

at most five edges. If R is bounded by two or three edges, erase one of them, say e. The 
resulting map can be 4-colored by the inductive assumption. Now reinstate e. At most three 
colors are forbidden for coloring R (one per each neighbor), and, we, therefore, use the 
remaining color for R. 

Let R be bounded by four edges, and the adjacent regions clockwise are R1, R2, R3, and R4. 
[At least one of the two pairs of the opposite regions R1 and R3, R2 and R4, is nonadjacent; let 
R2 and R4 be the nonadjacent regions.] We erase a pair of opposite edges e2 and e4 that 
separate the regions R2, R, and R4 (Fig. 21.8)

1 . The resulting map can be 4-colored by the 
inductive assumption. 

Fig. 21.8 Tait’s attempted proof of the Four-Color Theorem 

Now, reinstate e2 and e4. At most three colors are forbidden for coloring R (because R2 and 
R4 are assigned the same color!) and we, therefore, can use the remaining color on R. Please 
observe that no Kempe chain argument was used in this case, and the proof is much shorter 
than in Kempe’s attempt. 

Finally, let R be bounded by five edges, and erase a pair of nonadjacent edges, say e1 and 
e2. Here, Tait suddenly stops and writes:

1 Tait in [Tai3, p. 660] wrote: “either pair of opposite sides of a four-sided region may be erased, 
and afterwards restored.” This choice can cause a problem if the opposite regions are adjacent, 
hence I had to correct Tait’s attempt by adding the previous sentence in brackets. 
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But when we erase any two non-adjacent sides of a five-sided district, a condition is 
thereby imposed on the nomenclature of the remaining lines, with which I do not yet see 
how generally to deal. 

Of course, Tait knew that he could continue his proof by 4-coloring the resulting map, 
which can be done by the inductive assumption, and then reinstate e1 and e2 and use the 
Kempe chain argument, as in [Kem2] or [Kem5]. He did not! Why? 

The only plausible explanation, in my opinion, is that Tait at the very least had doubts 
about the validity of Kempe’s argument in the last case, if not realized the existence of the 
hole – 10 years prior to Heawood’s work [Hea1]. ■ 

With mathematical Olympiad-like brilliance, Tait proved the following fabulous equiva-
lence. A fine statement meets as fine a proof. Enjoy! 

The dual graph of a planar triangulation graph is a planar graph, whose vertices all have 
degree 3. If all vertices of a graph have the same degree 3, then we say that the graph is 
regular of degree 3 or simply a 3-regular graph. 

Tait’s Equivalence, Graph Version 21.8 (Tait, 1880). A planar 3-regular graph can be 
(vertex) 4-colored if and only if it can be edge-3-colored. 

Proof [Tai2], [Tai3]: Let vertices of a planar 3-regular graph G be 4-colored in colors a, b, c, 
and d. We then color its edges in colors x, y, and z as follows: an edge is colored x if it 
connects vertices colored a and b or c and d; an edge is colored y if it connects vertices colored 
a and c or b and d; and an edge is colored z if it connects vertices colored a and d or b and c. 
We can easily verify that a proper edge coloring is thus obtained, i.e., no adjacent edges are 
assigned the same colors. In view of symmetry, it suffices to show it for the edges incident 
with a vertex colored a, which is demonstrated in Fig. 21.9. 

Fig. 21.9 Proof of Tait’s equivalence 

For the proof of the converse statement, Tait added points and edges to make degrees of every 
vertex even. Instead, I will subtract (remove) edges,whichmakes the argumentmore transparent. 

Let edges of a planar 3-regular graph G be 3-colored in colors x, y, and z. Look at the 
subgraph Gxy of G induced by all its edges colored x and y.

2 Every cycle of Gxy must be even, 
as it alternates edges colored x and y. Therefore, by Kempe’s two-color theorem (Problem 
20.7), the vertices of Gxy (which precisely comprise all vertices of G) can be 2-colored in 
colors, say A and B. Similarly, we create the subgraph Gyz of G induced by all its edges

2 I substantially simplified here Tait’s language without changing his ideas. He talks about 
converting every triangular face into a four-sided one by inserting one new vertex per face inside 
an edge. He then throws the inserted vertices away, which is equivalent to keeping precise edges 
without insertions. These kept edges are then 2-colored. 



colored y and z, and color all its vertices in two colors, say 1 and 2. We thus assigned every 
vertex of G one of the following four pairs of colors: A1, A2, B1, or  B2. It is easy to verify that 
we have ended up with the proper vertex 4-coloring of G! ■ 
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The Tait equivalence can also be formulated in the dual language of maps: 

Tait’s Equivalence, Map Version 21.9 (Tait, 1880, [Tai2], [Tai3]). A map whose underly-
ing graph is 3-regular can be (face) 4-colored if and only if it can be edge-3-colored. 

21.6 Frederick Guthrie’s Three-Dimensional Generalization 

Have you found your own solution of Frederick Guthrie’s Problems 19.1 and 19.2? As you 
recall, he generalized his brother’s four-color problem to the three-dimensional Euclidean 
space and proved that no finite number of colors suffices. 

Problem 21.10 For any positive integer n, there is a three-dimensional map that cannot be 
colored in n colors (so that regions having a common boundary – and not merely finitely 
many points – are assigned different colors). 

In fact, unlike the Möbius–Weiske’s puzzle, for any positive integer n, there are n solids 
such that every two have a common boundary surface. 

Second Solution This solution appears in the 1905 paper of the Austrian mathematician and 
puzzlist Heinrich Tietze [Tie1]. As Frederick Guthrie before him, Tietze showed that in the 
three-dimensional space, we can easily construct n + 1 mutually adjacent solids. Just put n + 
1 long enough parallelepipeds, numbered 1 through n + 1 on a plane, and, then, put on top of 
them n + 1 more parallelepipeds, which are perpendicular to the first ones and combine into 
one two solid parallelepipeds that are labeled with the same number (see Fig. 21.10). ■ 

1 2 ...... n n+1 

1 

2 

...

...

n+1 
n 

Fig. 21.10 Tietze’s argument in the 3-space
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Granted, this puzzle was easy to solve. However, according to Tietze, the German 
mathematician Paul Stäckel, who also solved the above problem, posed the same question 
for convex solids (I believe that Frederick Guthrie posed it first but did not formulate it very 
precisely – see the end of Chapter 19). Heinrich Tietze solved this harder problem in the same 
1905 paper [Tie1]. 

Tietze’s Theorem 21.11 (H. Tietze, 1905). For any positive integer n, there are n convex 
solids such that every two have a common boundary surface. 

Thus, map coloring in three dimensions did not provide as lasting fun as has the 
two-dimensional variety of map coloring.
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Chapter 22 
The Four-Color Theorem 

The most famous conjecture of graph theory or perhaps of the 
whole mathematics, the four colour conjecture, became 
recently the theorem of Appel and Haken. 

—Paul Erdős, 19791 

Four–colour problem, the as yet unsolved [sic] problem of 
proving as a mathematical theorem that on any plane map 
only four colours are needed to give different colours to any 
regions that have a common boundary. 

—Oxford English Dictionary, May 24, 2023 [!]2 

The year is 1976. I receive a notice about a meeting of the Moscow Mathematical Society in 
disbelief: the topic is the proof of the four-color conjecture (4CC) just obtained by two 
Americans, whose names do not ring my bell, but if the proof holds, are certainly destined to 
enter the history of mathematics, perhaps, history of culture. Every attendee is exhilarated. 

So, it is happening: Kenneth Appel and Wolfgang Haken of the University of Illinois, with 
the aid of John Koch and some 1200 hours of fast main frame computing, convert Francis 
Guthrie’s 4CC into 4CT, the four-color theorem. 

The Four-Color Theorem 22.1 (K. Appel, W. Haken, and J. Koch [AH1–AH4]). Every 
planar map is 4-colorable. 

In this chapter, we will look, however concisely, at the ideas of Appel–Haken’s proof as 
presented by the authors in their monograph [AH4]. 

Appel and Haken’s work grew from the 1879 approach discovered by Alfred B. Kempe 
(discussed in Chapter 20), improved in 1913 by George D. Birkhoff of Harvard University, 
and was brought into the realm of possibility by Heinrich Heesch of the University of 
Hanover through his committed work over many decades (1936–1972). 

1 [E81.16] was published in 1981 in the premier issue of Combinatorica and received by the 
editors on September 15, 1979. 
2 [OED] https://www.oed.com/view/Entry/73969?redirectedFrom=four-colour+problem#eid3 
604483 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_22&domain=pdf
https://www.oed.com/view/Entry/73969?redirectedFrom=four-colour+problem#eid3604483
https://www.oed.com/view/Entry/73969?redirectedFrom=four-colour+problem#eid3604483
https://doi.org/10.1007/978-1-0716-3597-1_22#DOI
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Birkhoff found new sets of reducible configurations [Bir], larger than those of Kempe. 
Heesch built on the work of his predecessors and developed a theory of reducible configu-
rations [Hee1]: 

An investigation of the concepts of reduction has been attempted in the Heesch’s 
“Untersuchungen zum Vierfarbenproblem” (Mannheim, 1969, Chapter I), where the 
concepts of A-, B-, C-, or D-reducible configurations are developed from the work of 
A. Errera, G. D. Birkhoff, and C. E. Winn. 

Heesch was the first to utilize a computer in his pursuit [Hee2]: 

The D- or the C-reducibility of a configuration can be recognized much better by 
computing than by such direct calculations as have been given by the authors up to now. 

Above all major technical contributions, Heinrich Heesch envisioned and conjectured the 
existence of a finite set of unavoidable reducible configurations. Appel and Haken paid their 
tribute to Heesch on the very first lines of their major paper that preceded their great 
announcement [AH0]: 

This work has been inspired by the work of Heesch [Hee1], [Hee2] on the Four-Color 
Problem, especially his conjecture [Hee1, p. 11, paragraph 1, and p. 216] that there 
exists a finite set S of Four-Color reducible configurations such that every planar map 
contains at least one element of S. (This conjecture implies the Four-Color Conjecture 
but is not implied by it.) Furthermore, in 1970 Heesch communicated an unpublished 
result . . .  which he calls a finitization of the Four-Color Problem. 

In 1969, Heesch also pioneered a brilliant idea of discharging in search for unavoidable 
sets of configurations [Hee1]. His book paved the way for computer-aided pursuits of 
reducibility.3 

Heesch’s role is hard to overestimate. In addition to the credits we have enumerated above, 
Heesch personally influenced Haken and shared with him many unpublished ideas. In Appel 
and Haken’s own words [AH2]: 

Haken, who had been a student at Kiel when Heesch gave his talk, communicated with 
Heesch in 1967 inquiring about the technical difficulties of the project of proving 
Heesch’s conjecture and the possible use of more powerful electronic computers. 

In 1970 Heesch communicated to Haken an unpublished result which he later referred to 
as a finitization of the Four-Color Problem, namely that the first discharging step . . ., if  
applied to the general case, yields about 8900 z-positive configurations (most of them 
not containing any reducible configurations) which he explicitly exhibited. . .  

Heesch asked Haken to cooperate on the project and, in 1971, communicated to him 
several unpublished results on reducible configurations.4 

3 Looking back, it seems highly surprising that in his 1972 42-page survey [Saa2] of various 
approaches to 4CC, T.L. Saati did not even mention the name of Heinrich Heesch. 
4 Haken then explains why his collaboration with Heesch ended: “The cooperation between 
Heesch and Haken was interrupted in October 1971 when the work of Shimamoto was thought 
to have settled the Four Color Problem.”
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To understand how the discharging works, let us look at the following simple example that 
I found in Douglas R. Woodall’s papers [Woo2], [Woo3] where he credits K. Appel and 
H. Haken for it. 

Problem 22.2 
(K. Appel and H. Haken). The set of five configurations in Fig. 22.1 is unavoidable, i.e., at 
least one of them appears in any plane triangulation. 

( (b) c)a) 

( e)d) 

Fig. 22.1 An unavoidable set of configurations 

Proof 
1. Observations. We will argue by contradiction. Assume that there is a plane triangulation 

G that contains none of the configurations from Fig. 22.1. We can make the following 
observations: 

Observation A. G has no vertices of degree less than 5 because G contains no configura-
tions (a), (b), and (c). 

Observation B. Every vertex v of degree 5 in G has at least three neighbors of degree 7 or 
greater; for, otherwise, v would have at least one neighbor of degree 5 and hence 
G would contain the forbidden configuration (d)  or  v would have at least three 
neighbors v1, v2, v3 of degree 6. What is wrong with the latter, you may ask? In the 
latter case, at least two of the 6-valent neighbors of v, say, v1 and v2, must be neighbors 
of each other (in the triangulation G, the neighbors of v are connected to each other in a 
closed path; see Fig. 22.2), and, thus, the forbidden configuration (e) is contained in G.



Observation C. Every vertex v of degree 7 has at most three neighbors of degree 5, for,

Þ
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Fig. 22.2 In the triangulation G the neighbors of v are connected to each other in a closed path 

otherwise, two of its 5-valent neighbors would be neighbors of each other (it is similar to 
the argument in observation B above: prove it on your own), which would precisely mean 
that G contains a configuration (d). 

Observation D. Every vertex v of degree i ≥ 8 has at most iþ1 
2 neighbors of degree 5, where 

for a real number r, the symbol brc denotes the maximum integer such that brc ≤ r. The 
proof of this observation is similar to the proof of observation C above (try it on your own). 

2. Charging. To each vertex of G of degree i, we assign an electrical charge equal to 6–i. 
This means that vertices of degree 5 receive a unit charge, vertices of degree 6 get a zero 
charge, vertices of degree 7 receive a charge equal to a negative one, etc. In his paper 
[Kem2], Kempe derived the following equality as a corollary of his rediscovering Euler’s 
formula (Problem 20.2): 

Δ

i= 2 

6- ið Þ  Vi = 12, Kð  

where Vi stands for the number of vertices of degree i. In Heesch’s language of electrical 
charges, this equality precisely means that the sum of charges of all vertices in G, i.e., the 
total charge in G, is equal to positive 12 units. 

3. Discharging. Let us now perform discharging, i.e., redistribution of charge among the 
vertices without changing the total charge of G. The crux of such a proof is to find the 
discharging that “works” for the set of configurations in question, which, in our case, is 
presented in Fig. 22.1, i.e., brings us the desired contradiction. Let us transfer 1 3 of the 
charge from each vertex of degree 5 to each of its neighbors of degree 7 or greater. 

As a result, every vertex of degree 5 ends up with zero or a negative charge because it has at 
least three neighbors of degree 7 or greater (see observation B above). Vertices of degree 
6 will remain with a zero charge, as they are unaffected by discharging. A vertex v of degree 
7 would not end up with a positive charge because v has at most three neighbors of degree 
5, each contributing charge 1 3 to v (observation C). Finally, a vertex of degree i ≥ 8 that started 
with a charge 6 – i, in view of observation D, can end up with the charge at most
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6–iþ 1 
3 

iþ 1 
2 

< 0 

Thus, we end up with no vertices of position charge, which contradicts the total charge 
remaining the positive 12. ■ 

Did you enjoy the mathematical Olympiad-like discharging argument? Then, you would 
enjoy proving on your own the following result first obtained without discharging in 1904 by 
Paul August Ludwig Wernicke from Göttingen University, who in the same year defended his 
doctorate under the great Hermann Minkowski. 

Problem 22.3 (Wernicke, 1904, [Wer]). Prove that the set of five configurations in Fig. 22.3 
is unavoidable. 

Fig. 22.3 A set of five unavoidable configurations 

Let us now look at the other critical aspect of the Appel–Haken proof: reducibility. Appel 
and Haken used the so-called C- and D-reducibilities introduced by Heesch as vast extensions 
of the technique used by Kempe to show that a region with four neighbors could not occur in a 
minimal counterexample to the four-color conjecture. In fact, it suffices to restrict ourselves to 
configurations with vertices of degree five and greater since Kempe showed that vertices of 
lesser degrees cannot occur in a minimal counterexample. The authors provide the following 
example [AK4]. 

Assume that the planar triangulation Δ is the minimal counter-example to the Four-
Color Conjecture, which contains, for example, a configuration C of Fig. 22.4a. (Legend 
in Fig. 22.4d shows how to read the degrees of the vertices of the configuration from the 
diagram in Fig. 22.4.) Then the graph Δ – C obtained from Δ by removing C and edges 
connecting C to the rest of Δ, must be four-chromatic. A contradiction would be 
obtained, if we show that every four-colorings of Δ – C can be extended to a four-
coloring of Δ. 

Appel and Haken repeatedly used good humor while praising the use of computers. Here is 
one example (numbers 0, 1, 2, and 3 on the ring in Fig. 22.4c indicate the four colors we are 
using):



They continued until they had excluded
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If one were lucky, one might be able to show a fourteen-ring configuration D-reducible 
with only a few years of careful work. There are obviously some slackers who would not 
be fascinated by such a task. Such people, with an immorally low tolerance for honest 
hard work, tend to program computers to do this task. In fact, they find it ideally suited 
to computers, which are fast, meticulous, and not able to complain about the boring 
aspects of the work. 

All humor aside, however, their solution required an enormous amount of both manual and 
computer work. The crux of the Appel–Haken proof was to find such a set of configurations 
that was both unavoidable and consisted of reducible configurations, the so-called unavoid-
able set of reducible configurations. In one of the early 1978 analyses of the proof [Woo3], 
Douglas R. Woodall assessed this critical part as follows: 

Discharging procedure and the unavoidable set of configurations were modified every 
time a configuration in the set turned out not to be C-reducible (or was not quickly 
proved to be C-reducible). It is clear that these progressive modifications relied on a 
large number of empirical rules, which enabled an unwanted configuration to be 
excluded from the unavoidable set at the expense of possibly introducing one or more 
further configurations. Appel and Haken carried out about 500 such modifications in all. 

(i) Every configuration that contained one of three “reduction obstacles” – features 
that Heesch had discovered, by trial and error, to prevent configurations from being 
C-reducible. 

(ii) Every configuration of ring size 15 or more. 
(iii) Every configuration that was not proved to be reducible fairly quickly 

(in particular, within 90 minutes on an IBM 370-158 or 30 min on a 370-168). 

By the time they had finished (iii), they had constructed an unavoidable set all of whose 
configurations had been proved reducible; they had therefore proved the theorem. 
Probably they had excluded from the unavoidable set many configurations that are 
actually C-reducible but it turned out to be quicker to exclude any configuration that was 
not quickly proved reducible, and to replace it by one or more other configurations, than 
to carry the analysis of any one configuration to its limit. 

The empirical rules, upon which these progressive modifications were based, were 
discovered in the course of a lengthy process of trial and error with the aid of a 
computer, lasting over a year. By the end of this time, however, Appel and Haken 
had developed such a feeling for what was likely to work (even though they could not 
always explain why) that they were able to construct the final unavoidable set without 
using the computer at all. This is the crux of their achievement. Unavoidable sets had 
been constructed before, and configurations had been proved reducible before, but 
no-one before had been able to complete the monumental task of constructing an 
unavoidable set of reducible configurations. 

It was a great achievement by Appel and Haken, for they reduced the infinity of various 
maps to a finite set of unavoidable reducible configurations, which needed to be checked. This 
reduction was a mathematical achievement, and it allowed the use of computers (surely, with 
infinitely many cases, a computer would have been useless!). The set was now finite, but very



(

(

22 The Four-Color Theorem 237

large, at first consisting of 1936 configurations. The enormous computer verification used 
over 1200 hours of main frame computing time (on IBM-360 and IBM-370). By 1989, when 
Appel and Haken produced the 741-page book [AH4] presenting their solution, they reduced 
the number of configurations to 1476. Such a surprising resolution of the famous problem, 
both in its volume of work and in use of computing, was bound to cause controversy, and it 
promptly did. The Appel–Haken–Koch proof of 4CT was a cultural event: it prompted 
debates and reassessments in many fields of human endeavors, particularly in mathematical 
and philosophical circles. In the next chapter, we will look at the debates and some striking 
views it has inspired, as well as at the new proof of 4CT, and an old but still most promising 
Hadwiger’s conjecture. 

(a) b) 

(c) d ) 
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Fig. 22.4 Appel–Haken’s example of a fourteen-ring configuration



In a phone interview in the fall of 1991 (before October 14, 1991), Wolfgang Haken 
shared with me brief details of his life: born on June 21, 1928, in Berlin; obtained his 
doctorate from the University of Kiel in 1953; came to the United States in 1962; started to 
work on 4CC in 1968; and came up with the first ideas of his own in October 1970. Kenneth 
Ira Appel was born on October 8, 1932, in Brooklyn, New York, and got his doctorate from 
the University of Michigan in 1959. 

During the interview, Wolfgang Haken accepted my invitation to write his view of the 
Appel–Haken accomplishment entitled, on my recommendation, in Alexandre Dumas’ style, 
“Fifteen Years Later.” I offered to publish his complete unedited essay in Geombinatorics and 
include it in my Mathematical Coloring Book. The day after my interview with Haken, 
I received a phone call from Kenneth Appel, who questioned my person and my goals in 
asking for an essay, as if he was a guard at an armory and I was suspected of stealing 
explosives. Consequently, no essay came from Wolfgang. Appel and Haken probably 
expected – and rightly so – a great reception for their achievement. It did not quite happen 
and likely caused their disappointment and suspicion. 

The second epigraph, from the Oxford English Dictionary [OED], shows how little 
attention is paid to mathematics: Oxford failed to notice even by 2023 the now 47-year-old 
solution of one of two most famous problems in the multi-millennial history of mathematics! 

I have got to quote from the March 2005 unpublished, but web-posted, paper by Georges 
Gonthier, a researcher from the Programming Principles and Tools Group of Microsoft-
Cambridge, UK [Gon]. With a deep insight of someone who verified a 4CT proof and came 
up with a “machine proof,” he assessed the contributions of the players of the first successful 
assault of 4CC: 

Although Heesch had correctly devised the plan of the proof of the Four Colour 
Theorem, he was unable to actually carry it out because he missed a crucial element: 
computing power. The discharge rules he tried gave him a set R containing configura-
tions with a ring of size 18, for which checking reducibility was beyond the reach of 
computers at the time. However, there was hope, since both the set of discharge rules 
and the set R could be adjusted arbitrarily in order to make every step succeed.
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Appel and Haken cracked the problem in 1976 by focusing their efforts on adjusting the 
discharge rules rather than extending R, using a heuristic due to Heesch for predicting 
whether a configuration would be reducible (with 90% accuracy), without performing a 
full check. By trial and error they arrived at a set R, containing only configurations of 
ring size at most 14, for which they barely had enough computing resources to do the 
reducibility computation. Indeed the discharging formula had to be complicated in many 
ways in order to work around computational limits. In particular the formula had to 
transfer arity between non-adjacent faces, and to accommodate this extension 
unavoidability had to be checked manually. It was only with the 1994 proof by 
Robertson et al. that the simple discharging formula that Heesch had sought was found. 

We will discuss the Robertson–Sanders–Seymour–Thomas proof and its Gonthier’s ver-
ification in one of the subsequent chapters.
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Chapter 23 
The Great Debate 

Computers are useless. 
They can only give you answers. 

– Pablo Picasso 

To reject the use of computers as what one may call 
“computational amplifiers” would be akin to an astronomer 
refusing to admit discoveries made by telescope. 

– Paul C. Kainen, 1993 [Kai] 

I would be much happier with a computer-free proof of 
the four color problem, but I am willing to accept the 
Appel–Haken proof – beggars cannot be choosers. 

– Paul Erdős, 1991 Erdős’ letter to A. Soifer [E91/8/14ltr] 

Interest in the 4CC seems not to be high in the math literature 
because it is now thought to have been proven or something. 
– Thomas L. Saaty, 1998 Saaty’s e-mail to A. Soifer of April 

13, 1998 

23.1 40 Years of Debate 

Forty+ years later, the controversy surrounding the Appel and Haken proof is amazingly alive 
and well. Even when the extraordinary in many respects Appel and Haken’s proof was just 
announced, the President of the Mathematical Association of America Lynn Arthur Steen was 
very careful [Ste]: he did not write that the conjecture had been proved but instead used the 
word “verified” in describing the most important mathematical event of that year. 

The proof was met with considerable confusion in the mathematical community due to the 
authors’ extensive use of computers and a verification issue. This was the first computer-aided 
solution to a major, celebrated mathematical problem. As such, it naturally raised mathemat-
ical, philosophical, and psychological questions. In Table 23.1, I put together a “representa-
tive” collection of reactions – take a long look at it, then join me for a discussion. 
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Table 23.1 Reflections on the 4CT 

Steen 1976 [Ste] The Four-Color Conjecture...was verified [sic] this sum-
mer . . .  

Appel & 
Haken 

1977 [AH1] Our proof of the Four-Color Theorem suggests that there 
are limits to what can be achieved in mathematics by 
theoretical methods alone. 

Gardner 1980 [Gar3] The proof is an extraordinary achievement...To most 
mathematicians, however, the proof of the Four-Color 
conjecture is deeply unsatisfactory. 

Halmos 1990 [Hal] By an explosion I mean a loud noise, an unexpected and 
exciting announcement, but not necessarily a good thing. 
Some explosions open new territories and promise great 
future developments; others close a subject and seem to 
lead nowhere. The Mordell conjecture...is of the first kind; 
the Four-Color Theorem of the second. 

Erdős 1991 [E91/8/14ltr] I would be much happier with a computer-free proof of the 
four-color problem, but I am willing to accept the Appel– 
Haken proof – beggars cannot be choosers. 

Graham 1993 [Hor] The things you can prove may be just tiny islands, 
exceptions, compared to the vast sea of results that cannot 
be proven by human thought alone. 

Kainen 1993 [Kai] To reject the use of computers as what one may call 
“computational amplifiers” would be akin to an astrono-
mer refusing to admit discoveries made by telescope. 

Hartsfied 
& Ringel 

1994 [HR] Appel and Haken proved it by means of computer pro-
gram. The program took a long time to run, and no human 
can read the entire proof because it is too long. 

Jensen & 
Toft 

1995 [JT] Does there exists a short proof of the Four-Color Theo-
rem... in which all the details can be checked by hand by a 
competent mathematician in, say, two weeks? 

Graham 2002 [Gra4] Computers are here to stay. There are problems for which 
computer helps; there are problems for which computer 
may help; and there are problems for which computer will 
never help. 

The confusion of mathematicians is very clear when we read the words of Martin Garner in 
his celebrated Scientific American column [Gar3]: 

The proof is an extraordinary achievement . . .  To most mathematicians, however, the 
proof of the Four-Color conjecture is deeply unsatisfactory. 

Which is it, dear Martin, “an extraordinary achievement” or “deeply unsatisfactory”? 
Surely these terms are mutually exclusive. Paul Halmos, who chose to sum up the main 
twentieth century contributions to mathematics a decade too early (and thus missed a lot, 
proof of Fermat’s Last Theorem, for example), writes in 1990 [Hal]:
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By an explosion I mean a loud noise, an unexpected and exciting announcement, but not 
necessarily a good thing. Some explosions open new territories and promise great future 
developments; others close a subject and seem to lead nowhere. The Mordell conjecture 
. . .  is of the first kind; the Four-Color Theorem of the second. 

A loud noise that leads nowhere, Professor Halmos? It suffices to observe that much of 
graph theory has been invented through the 124 years of attempts to settle 4CC. Nora 
Hartsfield and Gerhard Ringel [HR] paint this historic event as routine, boring, and unworthy 
of attention: 

Appel and Haken proved it by means of computer program. The program took a long 
time to run, and no human can read the entire proof, because it is too long. 

Moreover, Hartsfield and Ringel [HR] cite a 2-page announcement of Appel and Haken, 
and not their articles and a complete 741-page proof, as if questioning the legitimacy of the 
proof. 

There were, however, those who gave the event much thought. In 1978, the philosopher 
Thomas Tymozcko of Smith College illustrates the arrival of computer-aided proofs with a 
brilliant allegory [Tym]: 

Let us consider a hypothetical example which provides a much better analogy to the 
appeal to computers. It is set in the mythical community of Martian mathematicians and 
concerns their discovery of the new method of proof “Simon says.” Martian mathemat-
ics, we suppose, developed pretty much like Earth mathematics until the arrival on Mars 
of the mathematical genius Simon. Simon proved many new results by more or less 
traditional methods, but after a while began justifying new results with such phrases as 
“Proof is too long to include here, but I have verified it myself.” At first Simon used this 
appeal only for lemmas, which, although crucial, were basically combinatorial in 
character. In his later work, however, the appeal began to spread to more abstract 
lemmas and even to theorems themselves. Oftentimes other Martian mathematicians 
could reconstruct Simon’s results, in the sense of finding satisfactory proofs; but 
sometimes they could not. So great was the prestige of Simon, however, that the Martian 
mathematicians accepted his results; and they were incorporated into the body of 
Martian mathematics under the rubric “Simon says.” 

Is Martian mathematics, under Simon, a legitimate development of standard mathe-
matics? I think not; I think it is something else masquerading under the name of 
mathematics. If this point is not immediately obvious, it can be made so by expanding 
on the Simon parable in any number of ways. For instance, imagine that Simon is a 
religious mystic and that among his religious teachings is the doctrine that the morally 
good Martian, when it frames the mathematical question justly, can always see the 
correct answer. In this case we cannot possibly treat the appeal “Simon says” in a purely 
mathematical context. What if Simon were a revered political leader like 
Chairman Mao? Under these circumstances we might have a hard time deciding 
where Martian mathematics left off and Martian political theory began. Still other 
variations on the Simon theme are possible. Suppose that other Martian mathematicians 
begin to realize that Simonized proofs are possible where the attempts at more tradi-
tional proofs fail, and they begin to use “Simon says” even when Simon didn’t say! The 
appeal “Simon says” is an anomaly in mathematics; it is simply an appeal to authority 
and not a demonstration.
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The point of the Simon parable is this: that the logic of the appeals “Simon says” and 
“by computer” are remarkably similar. There is no great formal difference between these 
claims: computers are, in the context of mathematical proofs, another kind of authority. 
If we choose to regard one appeal as bizarre and the other as legitimate, it can only be 
because we have some strong evidence for the reliability of the latter and none for the 
former. Computers are not simply authority, but warranted authority. Since we are 
inclined to accept the appeal to computers in the case of the 4CT and to reject the appeal 
to Simon in the hypothetical example, we must admit evidence for the reliability of 
computers into a philosophical account of computer-assisted proofs. . .  

The conclusion is that the appeal to computers does introduce a new method into 
mathematics. 

Tymoczko is correct: Appel–Haken–Koch’s proof changed the meaning of the word 
“proof” by letting in a reliable experiment as allowable means, by taking away the absolute 
certainty we cherished so much for so long in the mathematical proof. Thomas L. Saaty and 
Paul C. Kainen, whose great timing allowed them to publish in 1977 the first ever book on 
The Four-Color Problem that included a discussion of its solution, were first to insightfully 
observe the substantial but inevitable trade-offs of the acceptance of such a proof [SK, end of 
part one]: 

To use the computer as an essential tool in their proofs, mathematicians will be forced to 
give up hope of verifying proofs by hand, just as scientific observations made with a 
microscope or telescope do not admit direct tactile confirmation. By the same token, 
however, computer-assisted mathematical proof can reach a much larger range of 
phenomena. There is a price for this sort of knowledge. It cannot be absolute. But the 
loss of innocence has always entailed a relativistic world view; there is no progress 
without the risk of error. 

In the essay [Kai] written in 1993 on my request especially for Geombinatorics, Paul 
C. Kainen elaborates further on the above allegory: 

To reject the use of computers as what one may call “computational amplifiers” would 
be akin to an astronomer refusing to admit discoveries made by telescope. 

This is certainly an elegant and powerful metaphor. However, one cannot argue with 
Tymoczko’s warning about keeping the order right, that we have accepted the legitimacy of 
the use of computers first, and only based on this acceptance, we can claim the existence of 
the formal proof [Tym]: 

Some people might be tempted to accept the appeal to computers on the ground that it 
involves a harmless extension of human powers. On their view the computer merely 
traces out the steps of a complicated formal proof that is really out there. In fact, our only 
evidence for the existence of that formal proof presupposes the reliability of computers. 

As Tymoczko rightly observes, the timing of Appel–Haken–Koch work was favorable for 
the acceptance of their proof [Tym]: 

I suggest that if a “similar” proof had been developed twenty-five years earlier, it would 
not have achieved the widespread acceptance that the 4CT has now. The hypothetical 
early result would probably have been ignored, possibly even attacked (one thinks of the



23.2 Twenty Years Later, or Another Time – Another Proof 243

early reaction to the work of Frege and of Cantor). A necessary condition for the 
acceptance of a computer-assisted proof is wide familiarity on the part of mathemati-
cians with sophisticated computers. Now that every mathematician has a pocket calcu-
lator and every mathematics department has a computer specialist, that familiarity 
obtains. The mathematical world was ready to recognize the Appel–Haken methodol-
ogy as legitimate mathematics. 

Douglas R. Woodall and Robin Wilson state in their 1978 essay [WW] that “there is no 
doubt that Appel and Haken’s proof is a magnificent achievement which will cause many 
mathematicians to think afresh (or possibly for the first time) about the role of the computer in 
mathematics.” Yet, they share concerns with Paul Halmos and others: 

The length of Appel and Haken’s proof is unfortunate, for two reasons. The first is that it 
makes it difficult to verify . . .  The other big disadvantage of a long proof is that it tends 
not to give very much understanding of why the result is true. This is particularly true of 
a proof that involves looking at a large number of separate cases, whether or not it uses 
the computer. 

Paul Erdős put the state of 4CT most aptly in his August 14, 1991 letter to me [E91/8/ 
14ltr]: 

I would be much happier with a computer-free proof of the four color problem, but I am 
willing to accept the Appel–Haken proof – beggars cannot be choosers. 

So, what are we, mathematicians, to do? The answer, in a form of a question, comes from 
the Danish graph theorists Tommy R. Jensen and Bjarne Toft in their book of open coloring 
problems of graph theory [JT]: 

Does there exist a short proof of the Four-Color Theorem... in which all the details can 
be checked by hand by a competent mathematician in, say, two weeks? 

Appel and Haken [AH1] apparently do not believe in the existence of a computer-free 
proof of the Four-Color Theorem. I beg to disagree: the mere existence of a computer-aided 
proof does not exclude that one day someone will find a computer-free proof of 4CT. 

In 1976, many humans believed that they make less mistakes than computers. Today, 40+ 
years after Appel–Haken, we all are ready to stipulate that computers are much more mistake-
free in pursuing tasks we assign to them than humans proving theorems “by hand.” 

23.2 Twenty Years Later, or Another Time – Another Proof 

Twenty years later, when the familiarity with and trust in computing have dramatically 
improved, as did computers themselves, a new team of players came on 4CT stage: leading 
graph theorists Neil Robertson and Paul Seymour and their young students and colleagues 
Daniel Sanders and Robin Thomas. This reminded me of the Hollywood film Seven Brides for 
Seven Brothers. Only here we had Four Mathematicians for Four Colors. Four on four, they 
had to be able to handle 4CT and handle they did. 

In their work on graph theory, the authors thought that in a sense, the validity of 
H(6) (Hadwiger’s Conjecture for 6 – we will formulate it later in this chapter) depended
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find their own. They decided that the latter was an easier task. 
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The “Four Musketeers” undoubtedly realized that “20 years later,” as Alexandre Dumas 
used to say (precisely the title of Alexandre Dumas’ sequel to the famed Three Musketeers), 
they would have to get a much better proof than the original one by Appel and Haken, for 
otherwise they would be asked “why did you bother?” The remarkable thing is these authors 
have achieved just such a proof. 

I first learned about it in February 1993 on the coast of the Atlantic Ocean during a Florida 
Atlantic University conference from Ron Graham, who also forwarded to me the e-mail 
announcement of the forthcoming March 24, 1994, DIMACS talk by Paul Seymour, who at 
the time worked at Bellcore. I asked Paul’s coauthor Neil Robertson for the details. His May 
9, 1994 reply [Rob1] due to its medium, e-mail, concisely, and instantly summarized what he 
thought was most important about the new proof: 

We have a new proof, along the same lines as the AHK1 proof, relying more on the 
computer, and so more reliable. The unavoidable set is in the area of 600 configurations 
(<= 638), and we get a quadratic algorithm. Dan wrote a nice article about this for 
SIAM (I think). Seymour, Thomas, Sanders and I are involved. With a slightly larger 
unavoidable set the overall proof becomes very simple (apart from the calculations) as 
we avoid almost all degeneracies by using D-reduction and reducers for C-reduction 
from the single edge contraction minors of the given configuration. Will forward to you 
a copy of Dan’s article. 

One important point to notice here is that the proof relies more (not less!) on the computer 
than Appel–Haken–Koch’s proof, and it makes the proof more (not less) reliable due to its 
clear separation of human and machine tasks. The size of the unavoidable set of reducible 
configurations is substantially reduced from Appel and Haken’s 1476 to 636, but the greatest 
improvements are in the much-much simpler discharging procedures. Later the same day, 
Neil forwarded to me Daniel Sander’s summary, entitled, in a word, 

“ NEWPROOFOFTHEFOURCOLORTHEOREM:” 

I have got to share with you parts of this announcement summary, as it includes the 
authors’ assessment of the Appel–Haken proof and comparisons of the two proofs; I will add 
my comments as footnotes: 

Before and after Appel and Haken, many claims have been made to prove 4CT with the 
aid of a computer, none of which held up to the test of time. But Appel and Haken’s 
proof has stood; for 18 years. Why? Some may say that the proof is inaccessible. It is so 
long and complicated; has anyone actually read every little detail? At least two attempts 
were made to independently verify major portions of Appel and Haken’s proof [AH2, 
AH3], which yielded no significant problems. Appel and Haken [AH4] published a 
more complete (741 pages) version of their proof five years ago, but many remain 
hesitant.

1 Appel, Haken and Koch. 
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The author of this paper, together with Neil Robertson, Paul Seymour, and Robin 
Thomas, announces a new proof of 4CT. The proof uses the same techniques as that of 
Appel and Haken: discharging and reducibility. The new proof, however, makes 
improvements in the complexity of the arguments. Hopefully these improvements will 
help people to better understand and appreciate Appel and Haken’s method. 

To describe the improvements in more detail requires a discussion of the discharging 
method. Simple reductions show that one needs [to] only consider plane triangulations 
of minimum degree five. 

An easy manipulation of Euler’s formula gives the following equality for these 
graphs: ∑v 2 V(G)(6 - deg (v)) = 12.2 This value 6 - deg (v) has come to be known 
as the charge of v. The vertices of degree five are the only vertices of positive charge. 
The vertices of degree at least seven have negative charge and are known as major 
vertices. 

The discharging method is to locally redistribute the positive charge from the vertices 
of degree five into the major vertices. The sum of the new charges will equal the sum of 
the old charges, and thus the[re] will be a vertex which has its new charge positive, 
known as an overcharged vertex. 

The structure of the graph close to an overcharged vertex is determined by the rules 
that were used to discharge the vertices of degree five. Each possible structure that can 
yield an overcharged vertex must be examined [to] find within it some configuration that 
is reducible (provably cannot exist in minimal counterexample to 4CT). Thus, there are 
the two steps of the proof of 4CT. 

Discharging: defining a set of discharging rules which in turn gives a list of config-
urations that a plane triangulation of minimum degree five must have. 

Reducibility: showing that no minimal counterexample to 4CT can contain any of 
these configurations. 

The two forms of reducibility that Appel and Haken use are known as C-reducibility 
and D-reducibility. The idea of D-reducibility is that no matter what coloring the ring 
(border of the configuration) has, it can be changed by Kempe chains (swapping the 
colors of an appropriate 2-colored subgraph) into a coloring that extends into a coloring 
of the configuration. C-reducibility is the same idea, except with first replacing the 
configuration [b]y a smaller configuration, thus restricting the possible colorings of the 
ring. Bernhart (see [GS]) found a new form of reducibility which can show some 
configurations reducible that D- and C-reducibility cannot. 

Although we were able to produce six configurations which were reducible by the 
block count method, these configurations turned out not to be needed. 

The new proof still uses only D- and C-reducibility, which were clearly defined by 
Heesch [Hee1] based upon ideas of Birkhoff [Bir]. 

The primary discharge rule that Appel and Haken use is the following: 
A vertex x of degree five originally has a charge of 1. Send a charge of 1/2 from x to 

each major neighbor of x. Unfortunately, this simple rule is not enough to prove 4CT. It 
yields a list of configurations, but not all of them are reducible. So, for each

2 This formula is due to A. B. Kempe, 1879 [Kem2]. 
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non-reducible configuration, they define secondary discharge rules, which move the 
charge around a bit more. 

These new rules produce the need for even more rules, and so on, but eventually the 
process stopped with a list of 1476 reducible configurations. The total number of 
secondary discharge rules that they used was 486. A better primary discharge rule 
permits improvement in both of these areas.3 

Here is the primary discharge rule used in the new proof. Imagine each vertex x of 
degree five expelling its positive charge equally in each of the five directions around 
it. Thus, x will send 1/5 to each of its neighbors. The major vertices have a negative 
charge that attracts this positive charge that was expelled. Thus, if the neighbor y of x is 
major, it absorbs this 1/5. If the neighbor y is not major, the charge just keeps going, 
splitting half to the left and half to the right. Let p and r be the common neighbors of 
x and y, to the left and right the edge xy. 

The left 1/10 rotates counterclockwise through the neighbors of p, while the right 
1/10 rotates clockwise through the neighbors of r. If  deg(p) ≥ 8, its attraction is so great, 
that the 1/10 doesn’t make it to the next neighbor; this charge gets absorbed by p. 
Otherwise, the 1/10 rotates until it reaches a major neighbor of p, unless deg p = 7, and 
it has rotated through four neighbors; in this case p absorbs it. Similarly, for r. Using this 
primary rule, only 20 secondary discharge rules are necessary to produce a list of 
638 reducible configurations . . .  

The largest size ring that Appel and Haken use is a 14-ring; their original list had 
660 14-rings. The list of 638 mentioned above contains 161 14-rings. It is not known 
whether 14-rings can be avoided altogether, but at least 12-rings appear to be necessary 
. . .  

Totally automating the discharge analysis allowed us to try several heuristics on how 
to make these choices. Having the discharge analysis automated also hinders the 
possibility of errors creeping in; a human error was found in Appel and Haken’s 
discharge analysis (its correction can be found in [AH4, p. 24]). 

Recently, Appel and Haken [AH4] have proven a quartic algorithm to Four-Color 
planar graphs using their list of 1476 reducible configurations . . .  we have found a 
quadratic algorithm to Four-Color planar graphs . . .  

The reducibility and discharging programs that were used to complete the new proof 
of 4CT will soon be available by anonymous ftp. The total amount of computer time 
required to prove 4CT on a Sun Spark 10 is less than twenty-four hours. 

About two years later, on February 19, 1996, I attended Paul Seymour’s plenary talk at the 
Southeastern International Conference on Combinatorics, Graph Theory, and Computing at 
Florida Atlantic University. I knew that the new proof was superior to the original one in a 
number of ways. Yet, I was wondering what compelled the authors to look for another 
computer-aided proof of 4CT. Paul Seymour addressed it right in the beginning of his talk, as 
I was jotting down his words:

3 Better discharge rules of the new proof allowed a reduction of secondary discharge rules from 
486 in Appel and Haken to just 20, which resulted is a much more accessible ideologically proof 
and a 43-page paper [RSST] vs. the 741-page oversized book [AH4] by Appel and Haken. 
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It was difficult to believe it [Appel–Haken’s proof]: you can’t check it. First you need a 
computer. Second, non-computer part is awful: it contains hundreds of pages of notes. 
You can’t understand. You are not quite sure that the theorem is true. Nobody checked 
the proof. This is a bit scary. 

We assumed 4CT is true in earlier work, so we had to have a sure proof. General 
framework is the same, but details are better. 

The talk ended with questions and Paul Seymour’s answers: 

Erdős: Is there going to be a normal proof? 
Seymour: I don’t have any reason to think it is impossible. I try it from time to time. 
Soifer: What are approaches to “normal proof”? 
Seymour: I am not going to tell you my wrong proofs. Start with a triangle, flip it over, 

put a rubber band around, look for a smaller set of reducible configurations. 
Soifer: Why did you use Sun Microsystems workstation in your solution? 
Seymour: This is what I have in my office. 
Soifer: How long does it take to verify your proof? 
Seymour: Computer can verify the proof in 5 min; 6 months by hand. 

Table 23.2 compares the two proofs side by side. 

Table 23.2 Comparison of the Two 4CT Proofs 

Robertson–Sanders2 
Seymour–Thomas 

Number of secondary discharging rules 486 20 
Number of unavoidable configurations 1476 638 
Computer time to prove 1200 h 24 h 
Computer time to verify Not available 5 min 
Speed of graph coloring algorithm quartic Quadratic 
Number of pages in the final publication 741 43 

When the paper [RSST] with the new proof was submitted on May 25, 1995, it consisted of 
just 43 pages – a vast improvement over the 741+XV-page oversized monograph [AH4]. With 
great advantages of the new proof (see Table 23.2), let us not forget, however, that Appel and 
Haken discovered a proof first. And let us remember that “the most notorious paper in the 
history of graph theory: the 1879 work by A. B. Kempe [Kem2] that contains the fallacious 
proof of the Four Color Theorem” [Ste], “The Kempe Catastrophe” [Saa1] – paved the way! 

March 2005 brought a new development in 4CT saga, when Georges Gonthier of 
Microsoft-Cambridge, UK, produced “a formal proof of the famous Four Color Theorem 
that has been fully checked by the Coq proof assistant.” “It’s basically a machine verification 
of our proof,” wrote Paul Seymour in his January 17, 2008 e-mail to me. Let me give the 
podium to Georges Gonthiers for the assessment of his work in the unpublished but posted on 
the web paper [Gon]:4 

4 The Economist (April 2–8, 2005) reported “Dr Gonthier says he is going to submit his paper to a 
scientific journal in the next few weeks.” This, however, to the best of my knowledge has not 
happened.
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We took the work of Robertson et al. as our starting point, reusing their optimized 
catalog of 633 reducible configurations, their cleverly crafted set of 32 discharge rules, 
and their branch-and-bound enumeration of second neighborhoods [RSST]. However, 
we had to devise new algorithms and data structures for performing reducibility checks 
on configurations and for matching them in second neighborhoods, as the C integer 
programming coding tricks they used could not be efficiently replicated in the context of 
a theorem prover, which only allows pure, side effect free data structures (e.g., no 
arrays). And performance was an issue: the version of the Coq system we used needed 
three days to check our proof, whereas Robertson et al. only needed three hours . . .  ten 
years ago! (Future releases of Coq should cut our time back to a few hours, however.) 

We compensated in part this performance lag by using more sophisticated algo-
rithms, using multiway decision diagrams (MDDs) . . .  for the reducibility computation, 
concrete construction programs for representing configurations, and tree walks over a 
circular zipper . . .  to do configuration matching. This sophistication was in part possible 
because it was backed by formal verification; we didn’t have to “dumb down” compu-
tations or recheck their outcome to facilitate reviewing the algorithms, as Robertson 
et al. did for their C programs [RSST]. 

Even with the added sophistication, the program verification part was the easiest, 
most straightforward part of this project. It turned out to be much more difficult to find 
effective ways of stating and proving “obvious” geometrical properties of planar maps. 
The approach that succeeded was to turn as many mathematical problems as possible 
into program verification problems. 

In the concluding section, “Looking ahead,” Gonthier sees his success as a confirmation 
that the “programming” approach to theorem proving may be more effective than the 
traditional “mathematical” approach, at least for researchers with computer science 
background: 

As with most formal developments of classical mathematical results, the most interest-
ing aspect of our work is not the result we achieved, but how we achieved it. We believe 
that our success was largely due to the fact that we approached the Four Colour Theorem 
mainly as a programming problem, rather than a formalization problem. We were not 
trying to replicate a precise, near-formal, mathematical text. Even though we did use as 
much of the work of Robertson et al. as we could, especially their combinatorial 
analysis, most of the proofs are largely our own. 

Most of these arguments follow the generate-and-test pattern... We formalized most 
properties as computable predicates, and consequently most of our proof scripts 
consisted in verifying some particular combination of outcomes by a controlled stepping 
of the execution of these predicates. In many respects, these proof scripts are closer to 
debugger or testing scripts than to mathematical texts. Of course this approach was 
heavily influenced by our starting point, the proof of correctness of the graph colouring 
function. We found that this programs-as-proof style was effective on this first problem, 
so we devised a modest set of tools (our tactic shell) to support it, and carried on with it, 
generalizing its use to the rest of the proof. Perhaps surprisingly, this worked, and 
allowed us to single-handedly make progress, even solving subproblems that had 
stumped our colleagues using a more orthodox approach. 

We believe it is quite significant that such a simple-minded strategy succeeded on a 
“higher mathematics” problem of the scale of the Four Colour Theorem. Clearly, this is
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the most important conclusion one should draw from this work. The tool we used to 
support this strategy, namely our tactic shell, does not rely on sophisticated technology 
of any kind, so it should be relatively easy to port to other proof assistants (including the 
newer Coq). However, while the tactic shell design might be the most obvious 
byproduct of our work, we believe that it should have wider implications on the 
interface design of proof assistants. If, as this work seems to indicate, the “program-
ming” approach to theorem proving is more effective than a traditional “mathematical” 
approach, and given that most of the motivated users of proof assistants have a computer 
science background and try to solve computer-related problems, would it not make 
interface of a proof assistant more similar to a program development environment, rather 
than strive to imitate the appearance of mathematical texts? 

These Georges Gonthier’s words proved to be prophetic. Near the end of this new edition, 
you will meet a computer scientist who used solvers to advance the chromatic number of the 
plane problem. 

23.3 The Future that Commenced 80 Years Ago: Hugo Hadwiger’s 
Conjecture 

There are a number of conjectures that, if proved, would imply the Four-Color Theorem. In 
1943, Hugo Hadwiger posed the most prominent of these conjectures [Had3]. 

An edge contraction of a graph G consists of deleting an edge and “gluing” together (i.e., 
identifying) its incident vertices. We say that a graph G is contractible to a graph H if H can be 
obtained from G by a sequence of edge contractions. In this case, H is called a contraction of 
G and G is said to be contractible to H. 

We can view the Hadwiger conjecture H(n) as a series of conjectures, one for every 
positive integer n. 

The Hadwiger Conjecture H(n) 23.1 (1943, [Had3]). Every connected n-chromatic graph 
G is contractible to Kn. 

The truth of the conjecture H(n) for n < 5 has been proved in 1952 by G. A. Dirac 
[Dir]. But it is the case H(5) that proved to be particularly important. Why? Because the 
following equivalence takes place: 

Theorem 23.2 H(5) is equivalent to the Four-Color Theorem (4CT). 

H(5)) 4CT. Proof in this direction is very simple. Given H(5), assume G is a planar graph 
that is not 4-colorable. But then by H(5), G is contractible to K5, which is absurd since any 
contraction of the planar G must be planar as well. 

4CT ) H(5). Proof in this direction is more involved: here is its sketch. Assume 4CT 
is true. Let G be a 5-chromatic graph, not contractible to K5, of the minimum order with 
respect to this property. Then, it can be shown that G is 4-connected. In 1937, before 
Hadwiger formulated his conjecture, K. Wagner [Wag] showed that a 4-connected graph 
not contractible to K5 is planar. Thus, G is a planar graph of chromatic number 5, which 
contradicts 4CT. ■
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The most surprising result was published in 1993 by Neil Robertson, Paul D. Seymour, and 
Robin Thomas. They proved that H(6) is also equivalent to 4CT! 

Theorem 23.3 ([RST], 1993). The following statements are equivalent: 

(a) 4CT; 
(b) H(5); 
(c) H(6). 

The authors [RST] comment in the abstract: 

We show (without assuming the 4CC) that every minimal counterexample to 
Hadwiger’s conjecture [for 6] is “apex”, that is, it consists of a planar graph with one 
additional vertex. Consequently, the 4CC implies Hadwiger’s conjecture [for 6], 
because it implies that apex graphs are 5-colourable. 

Right after his plenary talk on February 19, 1996, at the Southeastern International 
Conference on Combinatorics, Graph Theory, and Computing in Boca Raton, Florida, I 
asked Paul Seymour about his and Robertson’s result on the relationship between 4CT and 
Hadwiger’s Conjecture. Paul replied as follows: 

I believe that all of them (Hadwiger’s Conjectures for various n) are equivalent. We 
have a result that if 4CC is true, then for every n there is f(n) such that for Hadwiger’s 
Conjecture to be true, it suffices to check graphs of order not exceeding f(n). 

Paul Seymour’s Conjecture 23.4 All Hadwiger’s conjectures for various n ≥ 5 are equiv-
alent to each other and equivalent to 4CT. 

It seems plausible that a computer-free proof of the Four-Color Theorem (shouldn’t i  
exist!) will come as a consequence of a (computer-free) proof of the Hadwiger Conjecture 
H(n) for some n > 4. 

Another way of finding a short computer-free proof was suggested by Appel and Haken 
[AH1]: 

Of course, a short proof of the Four-Color Theorem may some day be found, perhaps, by 
one of those bright high school students. 

I would love that, amen. Perhaps, by one of the winners of the Soifer (formerly Colorado) 
Mathematical Olympiad!
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Chapter 24 
How Does One Color Infinite Maps? A Bagatelle 

How does one measure fun in mathematics? Certainly not by the length of exposition. This is 
a short chapter, a bagatelle. I hope nonetheless that you will enjoy it. 

We know (4CT) that every finite map in the plane is 4-colorable. What about maps with 
infinitely many countries? This sounds like a natural question, which I have heard from 
various people at various times. In particular, Peter Winkler, then Director of Fundamental 
Mathematics Research at Bell Labs and now professor of mathematics at Dartmouth, asked 
me this question on October 11, 2003, right after my talk at the Princeton-Math Discrete 
Mathematics Seminar. The 4-colorability of infinite maps follows from 4CT due to De 
Bruijn–Erdős’ Compactness Theorem 27.1, which will appear later in this book. Let us record 
this corollary formally. 

Infinite Map Coloring Theorem 24.1 Every map with infinitely many countries is 
4-colorable. 

Proof Given an infinite map M. As we know, we can translate the problem of coloring 
M into the problem of coloring the planar graph G(M). Since by 4CT every finite subgraph 
of G(M) is 4-colorable, G(M) is 4-colorable as well by De Bruijn–Erdős’ Compactness 
Theorem 27.1. ■ 

In late December 2004, I was giving talks at the Mathematical Sciences Research Institute 
in Berkeley, California. There my old friend Professor Gregory Galperin showed me a proof 
of Theorem 24.1. His proof was longer and worked only for countable maps. Nevertheless, I 
have got to share it with you here because of its striking beauty. Plus, of course, Galperin’s 
proof – unlike the proof above – does not require the Axiom of Choice in its full force. 

Countable Map Coloring Theorem 24.2 Every map with countably many countries is 
4-colorable. 

Proof by G. Galperin [Gal]. Given a countable map M. Enumerate the countries of the map 
by positive integers: 1, 2, . . ., n, . . .  Let integers 1, 2, 3, and 4 be the names of the colors to 
be used. 
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Let n be a positive integer. Take a map consisting of the first n countries. By 4CT, there is a 
4-coloring of the submap consisting of these n countries. Let the colors assigned to these 
countries be a1, a2, . . ., an, respectively (of course, each ai is equal to 1, 2, 3, or 4). We 
represent this coloring by a number xn in its decimal form: xn = 0.a1a2. . .an. 

As we do this for each positive integer n, we end up with the sequence S ={x1, x2, . . ., 
xn, . . .} of real numbers. Since S in bounded, S⊂ [0, 1], by the Bolzano–Weierstrass theorem, 
it contains a convergent subsequence S′. 

S0 = xi1 , xi2 , . . . , xin , . . .f g, 

where i1 < i2 < . . .  < in < . . .  Let the limit point of S′ be y, which in decimal form looks like 

y= 0:y1y2 . . . yn . . .  

It is easy to prove that the sequence y1, y2, . . ., yn,  .  . . .  delivers a (proper) 4-coloring of the 
respective regions 1, 2, . . ., n, . . .  Indeed, since all the decimal digits of all xi were 1, 2, 3, or 
4, the same must be true about the decimal digits y1, y2, . . ., yn, . . .  of the limit point y. Two 
neighboring regions could not be assigned the same color by this rule, for otherwise they 
would have been assigned the same color already in a coloring that we decoded by one of 
the xin . ■
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Chapter 25 
Chromatic Number of the Plane Meets 
Map Coloring: Townsend–Woodall’s 
5-Color Theorem 

In Chapter 8, I described Douglas R. Woodall’s 1973 attempt to obtain a result on chromatic 
number of the plane under an additional condition that monochromatic sets are closed or 
simultaneously divisible into regions [Woo1]. Six years after his publication, Stephen 
P. Townsend found a logical mistake in Woodall’s proof, constructed a counterexample 
showing that Woodall’s proof cannot work and went on to discover his own proof of the 
following major result. 

The Townsend–Woodall Theorem 25.0 [Tow2]. Every 5-colored planar map contains two 
points of the same color unit distance apart. 

In this chapter, I will convey the story of the proof and the proof itself. 

25.1 On Stephen P. Townsend’s 1979 Proof 

This story reminds me the famed Victorian Affair, which we discussed in Chapters 20 and 21 
of this part. To concisely sum it up, in 1879 Alfred B. Kempe published a proof of the 4-Color 
Theorem, in which 11 years later, Percy J. Heawood found an error and constructed a 
counterexample to demonstrate its irreparability. Heawood salvaged Kempe’s proof as the 
5-Color Theorem, but the Four-Color Conjecture had to wait nearly a century more for its 
proof. 

Our present story started with Douglas R. Woodall’s 1973 publication, in which 6 years 
later Steven P. Townsend found an error and constructed a counterexample to demonstrate its 
irreparability. So far, the two stories are very similar. Unlike its Victorian counterpart, 
however, Townsend went on to prove Woodall’s statement and so I thought the new story 
had a happy end – until February 11, 2007, when I asked Stephen Townsend about “the story 
of the proof.” The surprising reply reached me by e-mail on February 20, 2007: 

Story of the Proof 

I first became interested in the plane-colouring problem in 1977 or 1978. At that time I 
was a lecturer in the Department of Mathematics at the University of Aberdeen, having 
just completed my doctoral thesis (in Numerical Analysis). I had read an article that 
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listed some of the unsolved problems in Combinatorics at that time, and this one caught 
my attention. 

I was totally unaware of Douglas’s 1973 proof, which was both my folly and my good 
fortune. Folly, in that I should have conducted a more exhaustive literature search before 
devoting time to the problem. Good fortune in that had I been aware of Douglas’s paper 
I would not have spent any time on the problem; I certainly would not have had the 
temerity to check Douglas’s proof for accuracy. It should be noted that I was a numerical 
analyst, not a combinatorialist, so my awareness of the field of combinatorics was 
somewhat limited, in spite of brushing shoulders at Aberdeen with some eminent 
contributors to the field. 

It was not until I had completed the proof, and was considering what references to 
include, that I came upon Douglas’s paper. I was both devastated and puzzled. The 
puzzlement came from my intimate knowledge of the difficulties of certain aspects of 
the proof and the fact that Douglas seemed to have produced a proof that 
circumnavigated these difficulties. So it was with an attitude of “how did he 
manage this?” that I went through his proof and consequently spotted the error. 

A colleague at Aberdeen, John Sheehan, whom I’m sure you will have come across, 
encouraged me nonetheless to submit my proof for publication, but including a refer-
ence to Douglas’s work. The rest I think you know. 

Yes, Stephen Townsend was lucky, for not only was he first to produce a proof – he also 
discovered the statement of the result on his own, albeit after Woodall’s publication – and this 
Townsend’s independent discovery was a necessary condition for finding the proof. 

Townsend’s good luck, however, ran into a wall, when the Journal of Combinatorial 
Theory’s Managing Editor and distinguished Ramsey theorist Bruce L. Rothschild wrote thus 
to Townsend on April 3, 1980: 

The Journal of Combinatorial Theory – Series A is now trying very hard to reduce its 
large backlog, and we ask all our referees to be especially attentive to the question of the 
importance of the papers. In this case the referee thought that the result was not of great 
importance. In view of our backlog situation then, we are reluctant to publish the paper. 
However, since it does correct an error in a previously published paper, we would like to 
have a very short note about it. Perhaps, you would be willing to do the following: Write 
a note pointing out the error, stating the theorem (Theorem 1) (without proof) used to get 
around the trouble, and that the theorem must be used with care to get around the 
problem. 

Stephen P. Townsend had satisfied the Editor (what choice did he have!) and produced a 
2-page proof-free note [Tow1], which was published the following year. This is where the 
story was to end in 1981. 

No blame should be directed at Douglas R. Woodall – we all make mistakes (except those 
of us who do nothing). The mistake notwithstanding, Woodall’s 1973 paper has remained one 
of fine works on the subject. Moreover, he was the one who first alerted me to his mistake and 
Townsend’s 2-page note. “I am a fan of your 1973 paper,” I wrote to Woodall in the October 
10, 1993, e-mail, in which I called [Tow1] “the Townsend’s addendum.” The following day 
Woodall replied as follows:
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I will put a reprint in the post to you today, together with a photocopy of Townsend’s 
“addendum,” as you so tactfully describe it. (The fact is, I boobed, and Townsend 
corrected my mistake.) 

However, regret is in order about the decision by the Journal of Combinatorial Theory 
Series A (JCTA). While they apparently (and correctly) assessed Woodall’s paper as being “of 
great importance” (an impossible test if one interprets it literally), they labeled Townsend’s 
paper as “not of great importance” and denied its readers – and the world – the pleasure and 
the profit of reading Townsend’s proof of the major result. 

I have corrected JCTA’s quarter-a-century old mistake, when I published Townsend’s 
complete paper in the April 2005 issue of Geombinatorics [Tow2]. Townsend’s work was 
preceded by my historical introduction [Soi24], a version of which you have just read. I ended 
that introduction with the words I would like to repeat here: It gives me a great pleasure to 
introduce and publish Townsend’s proof. In my opinion, it is of great importance – judge for 
yourselves! 

It pains me to see that most researchers in the field are still unaware of Woodall’s mistake 
and Townsend’s proof. It suffices to look at the major problem books to notice that: the 1991 
book by Croft–Falconer–Guy [CFG] and the more recent 2005 book by Brass–Moser–Pach 
[BNP] give credit to Woodall and do not mention Townsend. I hope this chapter will inform 
my esteemed colleagues of the correct credit and Townsend’s achievement. 

Stephen Phillip Townsend was born on July 17, 1948 in Woolwich, London, England. He 
received both graduate degrees, Master’s (1972) and doctorate (1977) from the University of 
Oxford. Townsend has been a faculty first in the department of mathematics (1974–1980) and 
then in the department of computer science (1982–present) at the University of Aberdeen, 
Scotland. Since 1995, he has also been Director of Studies (Admissions) in Sciences. In 
addition to publications in mathematics, Steven’s list of publications includes “Women in the 
Church – Ordination or Subordination?” (1997). 

25.2 Proof of Townsend–Woodall’s 5-Color Theorem 

In this section, I will present Stephen P. Townsend’s proof. As you now know, it first 
appeared in 2005 in Geombinatorics [Tow2]. However, when I was writing this book chapter, 
I asked Stephen to improve the exposition, make his important proof more accessible to the 
reader not previously familiar with topology, and include plenty of drawings to help you 
visualize the proof. He did it, quite brilliantly. Thus, presented below exposition of the proof 
has been written by Professor Townsend especially for this book in 2007. 

He starts with a few basic definitions from general (point set) topology. 

Definitions 
A pair of points in the Euclidean plane E2 unit distance apart having the same color is called a 
monochrome unit. 

Let S and T be subsets of E2 . S is said to subtend T at unit distance if T is the union of all 
unit circles centered on points in S.
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Let A be any closed, bounded doubly connected set in E2 containing a circle of unit radius. 
If the removal of any point in A renders A simply connected, then such a point is called a cut 
point of A. If A has no cut points, its interior A0 is said to be a unit annulus. If A has a finite 
number of cut points (which must occur on a circle of unit radius), then A0 is said to be a 
finitely disconnected unit annulus (Fig. 25.1). 

A planar map (Fig. 25.2) is an ordered pair M(S, B) where S is a set of mutually disjoint 
bounded finitely connected open sets (regions) in  E2 and B is a set of simple closed curves 
( frontiers) in  E2 satisfying 

(i) The union of the members of S and B forms a covering of E2 ; 
(ii) There exists a one-to-one function F:S→B such that b = F(s), s2S, is the exterior 

boundary of s; 

the boundary of s2S is the union of F(s) and at most a finite number of other members of B, 
which are the interior boundaries of s. 

circle of unit 
radius 

cut point 

Fig. 25.1 Finitely disconnected unit annulus 

A point on the boundary of s is called a boundary point of s. A boundary point, which lies 
on the boundary of k regions, k ≥ 3, is called a vertex of degree k. A closed subset of a frontier 
b2B, which is bounded by two vertices and contains no other vertices, is called an edge of 
each region for which b is part of the boundary. Two regions are adjacent if their boundaries 
contain a common edge or a common frontier. 

The above definition is more general than the usual definition of a planar map, which 
requires each region s2S to be simply connected and requires each frontier b2B to contain at 
least two vertices.
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region s 

exterior 
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vertex of 
degree 5 

edge of s 

Fig. 25.2 Planar map 

An r-coloring of a planar map is a function Cr:E
2 →{c1, c2,. . ., cr} where Cr is constant 

over each region in S and where a boundary point is given the color of one of the regions in 
the closure of which it lies. 

Initial Observations 
To prove that an r-colored map must contain a monochrome unit, it is sufficient to examine 
only those r-colored maps satisfying 

(i) Each region has no interior boundaries, i.e., its closure does not contain the closure of any 
other region; 

(ii) Different regions of the same color have no common boundary points. 

This is best understood by observing that every r-colored map with no monochrome units 
may be simplified to an r-colored map with no monochrome units satisfying (i) and (ii) above 
as follows. 

(a) For each region s with interior boundaries, remove these boundaries and assimilate into s 
all regions whose closures are contained in the closure of s. 

(b) Remove any edges common to adjacent regions of the same color. 
(c) For each vertex v which is a boundary point of two nonadjacent regions of the same color, 

choose ε> 0 sufficiently small and describe an ε-neighborhood whose closure contains v 
and whose intersection with each of the two regions is non-null, coloring this 
ε-neighborhood the same color as the two regions, and thus forming one new region 
incorporating the original two and the ε-neighborhood (see Fig. 25.3).
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c1 

c2 
c3 

c4c5 

c1 
c1 

c2 
c3 

c4c5 

c1 

Fig. 25.3 Incorporating the original two regions and the ε-neighbourhood 

Note that a consequence of (ii) is that we do not need to consider vertices of degree greater 
than r in an r-colored map. A sequence of theorems now follows, concluding with the main 
result that every 5-colored planar map contains a monochrome unit. Here is an outline of the 
proof: 

(1) We show that every 4-colored planar map contains a monochrome unit; 
(2) We show that every 5-colored planar map containing a vertex of degree 3 contains a 

monochrome unit; 
(3) We show that every 5-colored planar map without a monochrome unit must contain a 

vertex of degree 3; 
(4) For 2 and 3 both to be true, every 5-colored planar map must contain a monochrome unit. 

The Proof Townsend presents the proof in stages through five theorems. 

Theorem 25.2 Let A0 be a finitely disconnected unit annulus (see Fig. 25.1), for which a 
circle of unit radius contained in its closure, A, has at least one arc of length greater than π/3 
containing no cut points of A. Then, any 2-coloring of A0 contains a monochrome unit. 

Outline of Proof The basic argument is as follows (see Fig. 25.4). 

1. We assume that A0 is 2-colored and contains no monochrome unit. 
2. Points x and y can be selected from A0 , so that they are differently colored and as close 

together as we want. 
3. The points x and y can also be chosen so that (a) x is unit distance from at most one cut 

point of A, and (b) y is unit distance from no cut points of A. 
4. Point x subtends an arc α of finite length in A0 , each point of which is unit distance from x, 

and consequently the opposite color to x. Similarly y subtends an arc β in A0 which is the 
opposite color to y. 

5. Arc α subtends a two-dimensional region, each point of which is unit distance from a point 
on α. This region intersects A0 in a band P′ of finite width, each point of which must be the 
same color as x. A similar region subtended at unit distance by arc β intersects A0 in a band 
Q’, each point of which is the same color as y. 

6. Points x and y can be chosen to lie sufficiently close together to make R = P′ \ Q′
non-null. 

7. But points in R must simultaneously have the color of x and the color of y, which is 
impossible. Consequently, the initial two assumptions are incompatible.
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Fig. 25.4 

The proof hinges on our ability to construct arcs α and β such that each does not intersect a 
cut point of A. This will be true if x is unit distance from at most one cut point of A and y is 
unit distance from no cut points of A. 

Tool 25.2 Let γ be any simple arc of length L in A0 with the following properties:

• γ contains at least two points unit distance apart.
• γ contains at most M points, each unit distance from exactly one cut point of A.
• all other points in γ are unit distance from no cut points of A.
• γ is 2-colored with no monochrome units. 

Then given ε> 0, there exists an ε-neighborhood in γ containing a point of each color, one 
of which is unit distance from no cut points of A and the other of which is unit distance from at 
most one cut point of A. 

Proof Let d(x, y) be the straight line distance between two points x and y on γ, and let δ(x, y) 
be the distance along γ between x and y. 

By assumption, there exist two points x1 and y1 in γ, not both the same color, with d(x1, 
y1) = 1. Let ε> 0 be given. The following algorithm uses the method of bisection to prove the 
lemma (see Fig. 25.5).
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1. If M > 1, then from the M points in γ that are unit distance from exactly one cut point of A, 
select the two that are closest together measuring along γ. Let h be the distance between 
them along γ. 

2. If h < ε then set ε = h. 
3. Set i = 1. 
4. Let wi be the point in γ mid-way (by arc-length) between xi and yi. 
5. If the colors of wi and xi are not the same, then put xi+1 = xi and yi+1 = wi otherwise 

put xiþ1 =wi and yiþ1 = yi: 

6. If δ(xi+1, yi+1) ≥ ε increase i by 1 and re-cycle from 4. 
7. Points xi+1 and yi+1 satisfy the requirements. 

xi 

yi 
wi 

xi+1 
yi+1 

(xi+1,yi+1) d 

Fig. 25.5 

The algorithm terminates in not more than n cycles, where n is the smallest integer such 
that ε2n > L. ■ 

Proof of Theorem 25.2 
Let A0 be 2-colored with no monochrome units. Let N be the number of cut points of A. Let C 
be a circle of unit radius contained in A. By assumption, C has at least one arc of length 
greater than π/3 containing no cut points of A; hence, C has an arc containing no cut points 
of A, whose end points are unit distance apart. There are at most 2N points on C in A0 that are 
unit distance from a cut point of A. Some of these may be unit distance from two different cut 
points of A, but none can be unit distance from more than two cut points of A. By following a 
path sufficiently close to C, it is possible to construct a simple closed curve that, apart from the 
cut points of A, lies entirely within A0 that contains at most 2N points in A0 that are unit 
distance from a cut point of A, and that contains no points in A0 that are unit distance from 
more than one cut point of A. (This curve can merely trace the path of C for the most part, 
deviating only to bypass any points on C in A0 that are unit distance from two different cut 
points of A.) There exists an infinite family Γ of such simple closed curves, for each of which 
there is an arc of finite length containing two points unit distance apart not separated by a cut 
point (see Fig. 25.6). This must be so since C has two such points, and we can choose the 
members of Γ to be as close to C as required. For any given ε > 0, this arc contains an ε-
neighborhood in which lies a point of each color, one of which is unit distance from at most 
one cut point of A, and the other of which is unit distance from no cut points of A (by Tool 
25.3).
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Let γ1 and γ2 be members of Γ. Let x and y be two differently colored points in an 
ε-neighborhood on γ1 such that x is unit distance from at most one cut point of A and y is unit 
distance from no cut points of A. 

In A0 , there exists an arc α of unit radius and center x which intersects γ1 at x′ and γ2 at x″
and no point of which is a cut point of A. (If x is unit distance from one cut point of A, then the 
arc α can be constructed on the other side of x from this cut point.) Arc α cannot be the same 
color as x so must be the same color as y. Similarly, there exists an arc β in A0 of unit radius 
and center y which intersects γ1 at y′ and γ2 at y″ and no point of which is a cut point of A. Arc 
β must be the same color as x. 

Let P and Q be sets subtended at unit distance by α and β, respectively. P and Q are finitely 
disconnected unit annuli, each having one cut point at x and y, respectively, and each 
intersecting A0 in a band of finite width between γ1 and γ2. Let these bands be P′ and Q′, 
respectively. All points in P′must be the same color as x, and all points in Q′ the same color as 
y. Q′ may be considered to be the image of P′ under a homeomorphism T which depends on 
|x–y|. Defining d(P′, Q′) = sup{|p–T(p)|:p2P′}, we have d(P′, Q′) → 0 as |x–y|→0; in 
this sense, we say P′ → Q′ as |x–y|→0. There must then exist ε > 0 such that for |x–y| < ε, 
P′ \ Q′≠ ∅. But all points in P′ \ Q′ must simultaneously be colored the same as x and y, 
which is impossible. Consequently, the original assumptions are incompatible, and so if 
A0 is 2-colored it must contain a monochrome unit. ■ 

Using this result, it is possible to exclude two configurations from any 4-coloring of E2 

without monochrome units and show as a natural consequence that any 4-colored map in E2 

contains a monochrome unit.
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Theorem 25.4 Let E2 be 4-colored. If for some distinct points x and y, there exist two simple 
arcs with endpoints x and y, each, excepting the endpoints, being monochrome but not both 
the same color, then E2 contains a monochrome unit. 

Proof Let the two simple arcs be γ and δ. If |x– y| > 1, then both γ and δ contain a 
monochrome unit. 

Assume |x–y| ≤ 1. Then, the intersection of the sets subtended at unit distance by γ and δ
(excluding the endpoints) is a finitely disconnected unit annulus with at most two cut points 
(see Fig. 25.7). This annulus is 2-colored at most, since it cannot contain the colors of γ and δ, 
and a circle of unit radius contained in its closure has an arc of length greater than π/3 
containing no cut points, and so by theorem 25.2 the annulus contains a monochrome unit. ■ 

x 

�
�

y 

All points in the 
shaded region 
are unit distance 
from both � and
�

Fig. 25.7 

Theorem 25.5 If a 4-coloring of E2 contains two differently colored, bounded, open 
connected monochrome sets with a common boundary of finite length, then E2 contains a 
monochrome unit. 

Proof Let G and F be two such sets, and let x and y be two distinct points on the common 
boundary. Because the closure of G is a simply connected Jordan region, there is a simple arc 
γ with endpoints x and y which, apart from its endpoints, lies in G. There exists a similar arc δ 
in F. By Theorem 25.4, E2 contains a monochrome unit. ■ 

Corollary Every 4-colored planar map contains a monochrome unit. 

A similar result involving three sets can be proved for 5-colorings of E2 , and again the 
consequence is that every 5-colored planar map contains a monochrome unit, but this requires 
a careful proof.
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Theorem 25.6 If a 5-coloring of E2 contains three disjoint, differently colored, bounded, 
open, connected, monochrome sets each having a common boundary with each of the other 
two, and all three having one common boundary point, then E2 contains a monochrome unit. 

Proof Let v be the boundary point common to all three sets and let a1, a2 and a3, respectively, 
be boundary points common to each pair of sets. We assume that these points are distinct and 
are chosen to be not more than one unit from each other. There are simple closed curves γ1 
colored c1 containing v, a1 and a2; γ2 colored c2 containing v, a1 and a3; and γ3 colored c3 
containing v, a2, and a3, where in each case the coloring refers to every point on the curve 
with the possible exception of the points v, a1, a2, and a3 (see Fig. 25.8). 
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Fig. 25.8 

Let P be the intersection of the sets subtended at unit distance by γ1, γ2, and γ3 excepting 
the points v, a1, a2, and a3. P is either a unit annulus or a finitely disconnected unit annulus 
with at most three cut points. (A necessary condition for such a cut point to exist is that a set 
boundary incident to v is an arc of a circle of unit radius; if the cut point exists, then it lies at 
the center of this circle.) P satisfies the requirements of Theorem 25.2, and since it is 2-colored 
(viz. not c1, c2, or  c3), it must contain a monochrome unit. ■ 

Corollary Every 5-colored planar map containing a vertex of degree 3 contains a 
monochrome unit.
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Theorem 25.7 Every 5-colored planar map contains a monochrome unit. 

Proof We show (i) that every 5-colored planar map with no monochrome units contains a 
vertex of degree 3 or 4 and (ii) that every such map containing a vertex of degree 4 also 
contains a vertex of degree 3. 

(i) Let v be any vertex in a 5-colored planar map and assume that it has degree 5. Assume that 
the map has no monochrome units. 

Let γ be the boundary of one of the regions which has v as a boundary point. Let a be a 
point on γ that lies on an edge connected to v. Let b be a point on γ that lies on the other edge 
connected to v (see Fig. 25.9). Let c be a point on the edge connected to v that is on the 
opposite side of va to b. Let d be a point on the edge connected to v that is on the opposite side 
of vb to a. 

There is a simple closed curve γ1 passing through v, a, and b all the points of which, except 
possibly v, a, and b, are colored c1. There is a simple closed curve γ2 passing through v, a, and 
c all the points of which, except possibly v, a, and c, are colored c2. And there is a simple 
closed curve γ3 passing through v, b, and d all the points of which, except possibly v, b, and d, 
are colored c3. Let T2 be the intersection of the sets subtended at unit distance by γ1 and γ2 and 
let T3 be the intersection of the sets subtended at unit distance by γ1 and γ3 (In Fig. 25.9, T2 is 
the hatched region and T3 is the gray region). 

Fig. 25.9
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We consider two cases. 

(1) The first is when the angle θ subtended at v by a line from a to b (through the region 
enclosed by γ) is greater than π. The interiors of T2 and T3, T2 

0 and T3 
0 , respectively, are 

unit annuli with no cut points, and so by Theorem 25.2 cannot be 2-colored. T2 
0 must 

contain regions colored c3, c4, and c5, and T3 
0 must contain regions colored c2, c4, and c5. 

The interior of T1 = T2 T3 is a 4-colored unit annulus with no cut points. 
There is a vertex in T1 

0 . To prove this, assume it is not so. Then, there must be edges in 
T1 

0 that do not intersect each other in T1 
0 , each of which intersects both the interior and 

the exterior boundary of T1. Any such edge, e, must cross both T2 
0 and T3 

0 . This means 
that the regions on either side of e must be colored c4 and c5. Consequently, T1 

0 is a 
2-colored unit annulus, containing no cut points. 

(2) The second case is when the angle θ is not greater than π. It is clear, since v is a vertex of 
degree 5, that the region enclosed by γ may be chosen such that θ is not less than 2π/5. Let 
a1 be a point between v and a on the edge on which a lies. Similarly let b1 be a point 
between v and b on the edge on which b lies. Choose curve γ1 so that it passes through a1 
and b1 as well as v, a, and b and so that all of its points, except possibly v, a, a1, b1, and b, 
are colored c1. Similarly choose γ2 to pass through a1 as well as v, a, and c and γ3 to pass 
through b1 as well as v, b, and d. 
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Now each of T2 
0 and T3 

0 is a finitely disconnected unit annulus with at most one cut 
point (see Fig. 25.10). The single cut point in T2 

0 , say p, only occurs in the event that v, a, 
and a1 lie on the circle of unit radius centered in p. Similarly, the single cut point in T3 

0 , 
say q, only occurs in the event that v, b, and b1 lie on the circle of unit radius centered in q. 
The interior of T1 = T2 [ T3 is a 4-colored finitely disconnected unit annulus with at most 
one cut point. This cut point only occurs in the event that p and q are coincident, and all of



v, a, a1, b1, and b lie on the same circle of unit radius. If one of p and q lies on the exterior 
boundary of T1 and the other lies on the interior boundary, then the length of the arc of the 
unit circle centered in v passing through p and q is θ radians, and this means that the 
distance between p and q is greater than one. 
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As before we assert, there is a vertex in T1 
0 . To prove this, assume it is not so. Then 

there must be edges in T1 
0 that do not intersect each other in T1 

0 , each of which intersects 
both the interior and the exterior boundary of T1. Any such edge, e, must cross both T2 

0 

and T3 
0 except in the case that e passes through p and remains entirely within T3 until it 

reaches the opposite boundary of T1, or  e passes through q and remains entirely within T2 

until it reaches the opposite boundary of T1. Note that such an edge e cannot pass through 
both p and q, since this would imply the existence of a monochrome unit in one of the 
regions on either side of e. Apart from these exceptional edges, every edge in T1 

0 must 
separate regions colored c4 or c5. This means that T1 

0 contains a 2-colored finitely-
disconnected unit annulus, containing at most two cut points. 

Clearly there is a circle of unit radius in T1 which has an arc of length greater than π/3 
containing no cut points of T1 

0 . Therefore, by theorem 25.2, T1 
0 contains a monochrome 

unit. This is a contradiction to the initial assumption; consequently, there must be a vertex 
in T1 

0 , and since T1 
0 is 4-colored, this vertex is at most of degree 4. 

(ii) We show that every 5-colored planar map with no monochrome units containing a vertex 
of degree 4 also contains a vertex of degree 3. 

Suppose v is a vertex of degree 4 in a 5-colored planar map. Let c1, c2, c3, and c4 be the 
colors of the four regions of which v is a boundary point. Let a, b, c, and d be points on the 
four edges incident to v. Let a1, b1, c1, and d1 be points on the edges between a and v, b and 
v, c and v, and d and v, respectively. Assume that the map has no monochrome units. 

There exists a simple closed curve γ1, defined in the closure of the region colored c1, that 
passes through v and four of the edge points defined above, and such that every point in γ1, 
except possibly v and the four edge points, is colored c1. Similarly, there exist simple closed 
curves γ2, γ3, and γ4, each of which contains v and four of the edge points, the points on each 
curve being colored, respectively, c2, c3, and c4 except possibly v and the edge points. Let the 
order of the γi be chosen such that γ2 and γ4 have only the point v in common (see Fig. 25.11). 

Let Ti, i=1, 2, 3, 4, be the intersection of sets subtended at unit distance by γj, j=1, 2, 3, 
4, j≠i. Set Ti is 2-colored with colors ci and c5. Define T = [ Ti. The interior of T, T

0 , is a unit 
annulus with center v, possibly finitely disconnected with at most two cut points (see 
Fig. 25.11). 

Every point within T0 that is on a boundary of a region of the planar map is a boundary 
point of at most three regions. Suppose none of these boundary points is a vertex. Then there 
must exist edges that pass from the interior boundary to the exterior boundary of T, which 
pass through either both of T1 and T3 or both of T2 and T4. It is possible for an edge to cut T 
and only cut one of T1 and T3 or one of T2 and T4, but such an edge must intersect the unit 
circle centered in v at one of at most four points, these points being cut points (if they exist) of 
the finitely disconnected annuli which are the interiors of T1 [ T2,  T3 [ T4,  T1 [ T4, and T2 [ 
T3. There must be edges crossing T which intersect the circle of unit radius centered in v at 
points other than these four cut points. (If not, then there is an arc of the circle of unit radius 
centered in v, of length greater than or equal to π/2, that lies in or on the boundary of a region



of the map. But then this region must contain a monochrome unit.) An edge crossing both T1 

and T3 (or both T2 and T4) must separate regions with different colors. But the only color 
common to both T1 and T3 (or both T2 and T4) is c5. We have arrived at a contradiction. 
Hence, there must be vertices in T0 , and these are of degree 3. 
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Now, by the corollary of Theorem 25.6, our 5-colored map contains a monochrome unit! ■
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Chapter 26 
Paul Erdős 

I hope several [of my] results will survive for centuries, 
but we will see. 

– Paul Erdős (Talk at the Keszthely, Hungary, 1993, at the 
Conference dedicated to Paul Erdős’ 80th birthday.) 

Paul Erdős’ contributions to mathematics cannot be measured 
through his papers alone. Over the years he has traveled 
extensively among the mathematical centers of the globe. Like 
the bumblebee, flying from flower to flower transmitting pollen, 
Paul Erdős has created an enormous cross-pollination effect in 
mathematics. An Erdős visit to a mathematical center is marked 
by intense work. Mathematicians gather round and discuss the 
current problems in their various fields. The resulting interplay 
of ideas is exhausting and highly productive. 

– Joel H. Spencer ([Sp1]) 

The early involvement of Paul Erdős in problem solving at high 
school level had a strong influence on his own life-work, and to 
this day he can make the young feel close to him. This closeness 
to the young is determined also by another factor: the human 
side of Erdős, his warmth and compassion, his love of youth, his 
strong sense of justice, unspoilt and at times childishly naïve. 

– Marta Sved ([Sve1]) 

26.1 The First Encounter1 

In August 1988, I came to Budapest for an international congress. A Moscow friend 
suggested to contact a Hungarian mathematician Károly Mályusz, a PhD from Moscow 
State University, who could show me around the Hungarian capital. Károly kindly decided 
to be my genie. 

1 This chapter is based on my two essays published in Geombinatorics in 1993 [Soi28], 
and in 1997 [Soi30]. 
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– Would you like me to show you something – he asked – a place to buy Hungarian 
souvenirs, or perhaps, a disco to meet beautiful Hungarian girls? 

The offer sounded attractive. But, the many legends I heard about Paul Erdős came to my 
mind, and I replied: 

– Is Erdős a real person? Is he in Budapest? 
– Of course, he is a real person, but he can be anywhere in the world on any given day. 
– Well – said I – you offered to grant me one wish. My choice is to meet Erdős. 

The following day Károly called me early with the good news: Paul Erdős was in town and 
willing to see me. We found Paul in his huge office with high ceilings at the Alfréd Rényi 
Institute of Mathematics on Reáltanoda 13–15, speaking with two Russian mathematicians, 
the father Sergei Borisovich Stechkin and the son Boris Sergeevich Stechkins. I joined them. 
No language was known to all, but every two had a language in common: Erdős and the 
Stechkins spoke German, Erdős and I used English, and the Stechkins and I knew Russian. 

The Russians soon left. Without looking at me, Paul opened with: 

– Let x sub 1, . . ., x sub n be n points in the plane no three on a line . . .  

Paul Erdős and Alexander Soifer, the first working meeting in Colorado Springs. (Photo by 
Tom Kimmel, March 1989, University of Colorado, Colorado Springs) 

I realized that Paul was formulating a problem and started jotting it down. The problem was 
beautiful. But did he ask himself or me? Did he want me to solve it right there? Did he want 
me to offer him a problem in return? I gave him the most difficult problem of that year’s 
Colorado Mathematical Olympiad that I created, and none of some 1,000 participating high 
school students solved:
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– Five points lie inside a triangle of area one . . .  

To my disbelief, Paul solved it on the spot! As we were parting, I received a treasure of 
a gift: two reprints inscribed for me. 

The next day I came back. I had an idea but still no solution for his problem. My 
embarrassment disappeared when Paul said: 

– This is an open problem, and I offer . . .  dollars for its [first] solution. 

The few meetings with Paul during the congress affected my life and started our very 
special friendship. The idea for the book Problems of pgom Erdős occurred to me right then, 
in August 1988, when for the first time I was listening to Paul presenting “some of my favorite 
problems” for standing only room of ca. 300 international congress delegates. Erdős’ 
problems were legendary, and as true legends, they were passed from person to person, and 
sometimes changed in the process to become something else, not intended by the author. 
Right after the talk, I asked Paul to write such a book, but he replied, “why don’t you write a 
book of my problems?” “I envision it as a book of your favorite open problems with your 
commentaries for each of the problems,” replied I, and added, “I would be happy to publish it 
if you like.” I had a few meetings with Paul Erdős in August 1988 in Budapest. These 
meetings could make for an enjoyable story elsewhere. During these visits, I convinced Paul 
that his “Wandering Jew” constant traveling around the world, preaching his mathematics, is 
important. His problem-posing papers are too. Yet, there is something most important: he 
ought to write a book of his favorite open problems. Soon Paul agreed to write such a book, 
and I agreed to publish it, and we signed a contract. However, Paul’s nomadic life out of a 
single suitcase and a garment bag did not lend itself to writing a book, which requires less 
movement and more contemplation. A few years had passed, and the writing train did not 
leave the station. 

During Paul’s next stay with me in Colorado Springs (December 1991–January 1992), we 
were thinking math, accompanied by the gentle “noise” of Mozart (Beethoven created too 
much “noise” for Paul), and taking walks in the Garden of the Gods, an old American Indian 
sacred ground full of remarkable red vertical rocks. Paul wanted to attempt an ascent up the 
Pikes Peak, rising to 14,115 feet above the sea – he accomplished it once a long time before – 
but I talked him out of it. One night the phone rang. Ron talked with Paul, as he has done 
every night, and then called me to the phone. “You know, Sasha, this book will never happen 
unless you join Paul in writing it.” “I would be very pleased if you and Ron were to join me in 
writing the book,” Paul told me. Ron chose not to join the writing but promised to read the 
manuscript and give his feedback. And so, in addition to joint papers, I became Paul’s 
coauthor on the book Problems of pgom Erdős. The book is not yet finished but is in the 
works. (Ron and Fan Chung did publish a book of Paul’s problems in graph theory.) 

A list of mathematicians inspired by Paul Erdős may go on for longer than the list of his 
ca. 1600 publications. Trajectories of his travels probably added up to a set dense at every 
point on the globe. Paul inscribed his reprints for me with mysterious sequence of letters after 
his name: 

Erdős Pal, pgom, ld, ad, ld, cd.
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To my inquiry, Paul explained: 

pgom = poor great old man 
ld = living dead (i.e., over 60 years old) 
ad = archaeological discovery (> 65) 
ld = legally dead (> 70) 
cd = counts dead (> 75) 

– “Great” I agree, “old” alas, but why “poor”? asked I. 
– “All old men are poor,” replied Paul. 

In July 1993 in Keszthely, Hungary, I reminded Paul that “the emergency” of adding 
another pair of initials had arrived. Paul thought for a moment and then declared: “nd, nearly 
dead.” 

Paul Erdős and Alexander Soifer, the last time together, Baton Rouge, February 22, 1996 

It is impossible to overestimate how much the field of this book owes to Paul Erdős. With 
the intuition of a genius, Paul saw the beauties to be had in what became known as Ramsey 
Theory and led our way to this Garden of Eden.
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“Two Thinkers”, Paul Erdős in Colorado Springs, December 28, 1991. (Photograph by 
Alexander Soifer) 

26.2 Old Snapshots of the Young2 

Martha (Waksberg) Svéd (1909, Budapest – September 30, 2005, Adelaide), a member of the 
legendary Budapest circle of young Jewish students-mathematicians that included Paul 
Erdős, Paul Turán, Tibor Gallai, Esther Klein, George Szekeres, and many others, had 
known Erdős as few did. For Paul’s 80th birthday, she wrote on my request her warm, lyrical 
reminiscences especially for Geombinatorics’ “Erdős is Eighty” special issue [Sve2]. This 
subsection is all hers. Martha Svéd recollects: 

Yes, E. P., this is the name: initials for Erdős Pál, Hungarian form of the name Paul 
Erdős, name by which we, old Hungarian friends called him and still refer to him. This is 
the year when he is eighty years YOUNG. At this point I recall his Cambridge lecture

2 First published in Geombinatorics [Sve2]. 
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attended by the two of us, G. [George] and M. Sved in 1959. Ahead of those formulae 
about the secrets of primes, Hebrew words appeared on the blackboard: 

 המיענאלאיההנקז

(This lecture was held just after his extended stay in Israel.) The translation is: “Old 
age is not pleasant,” referring to himself. His greeting words to us (having last seen each 
other in Budapest in 1938) were: “SAM SURRENDERED.” 

It is now necessary to give an Erdős dictionary for those who are not initiated. Since 
the set of those whose Erdős number is 1, has measure, there will be a large subset not 
needing such a dictionary, hence they may skip it. I add here for the uninitiated the 
definition of the “Erdős number.”3 It is the number of links in the chain leading to the 
origin, E. P. himself. The aristocrats are those whose name has appeared together with 
E. P. in at least one publication, hence can boast of number 1. My own number is 2, but 
without great claims of merit. The thanks for it must go to George Szekeres for my 
single joint publication with him. G. Szekeres holds number 1 with high multiplicity. 
Since G. Sved and I have lived in Australia for more than fifty years and only for a few 
years in the same city as G. & E. Szekeres, my mathematical contacts have been locals, 
so my Erdős number would have been hard to trace. This is why I am proud and happy 
for being asked to add my lines to this celebratory volume. I should add here that some 
conjecture is floating around: if you have joint publications with at least three coauthors 
then your Erdős number is finite, (though it could be distressingly large!). This is my 
reason to leave the mathematical bits to others, restricting myself to reminiscences about 
our great and faithful friend whose letters still begin: “G. and M. Sved”, followed by a 
paragraph about his own personal jaunts across four continents, with the last paragraph 
beginning “Let n points...” I try to translate (not adequately) his Hungarian self-
description of “not being a university professor but a world professor of mathematics,” 
the traveling missionary, to whom “Sam surrendered” in 1959. 

Now to the Dictionary, apologizing for its incompleteness and haphazard ordering: 

Epsilon: small, negligible in some respects, but the word has also another meaning, an 
endearing one: child generally. When talking about the offsprings of his friends, the 
Epsilon could be quite grown up, perhaps having Epsilons of his own, i.e., epsilon 
squares.

3 Casper Goffman must have been first to define Erdős Numbers in print in 1969 
[Gof]. Apparently, the concept was born in the 1960s and Paul Erdős himself did not know 
about it before 1968. 
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Paul Erdős with the Epsilon, Isabelle Soulay Soifer, Kalamazoo, Michigan, June 4, 1992. 
(Photograph by Alexander Soifer) 

Omega: large, many. 
Trivial: of a person: mean, uncaring, unjust etc., hence Triviality. 
Victory: solution of a problem found. However, once during a hike he sang out: 

“Victory! I lost my wallet.” ??? 
Fascism: the nastiest swearword Paul can think of, when he is clumsy and drops or 

mislays something. 
Boss: wife or girlfriend. 
Slave: husband or boyfriend. 
Captured: snared into marriage or long term relationship. 
Liberated slave: divorced man. 
Sam: United States of America. 
Joe: the late Soviet Union, abbreviated name of Joseph Stalin. 
Cured: passed away, “cured” of the illness of life.4 

I am now in the position of being able to explain that greeting in Cambridge in 1959. 
While E. P. is not “patriotic” in the nationalistic sense, he could never deny his

4 This reminds me the Polish film director Krzysztof Zanussi, who entitled his 2000 film “Life as a 
Fatal Sexually Transmitted Disease.” 
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Hungarian identity. During the oppressive communist regime of Hungary in the 1950s 
he visited Budapest and was probably the only person who was allowed to leave freely. 
While having lived in the States permanently after World War II, he did not acquire 
U.S. citizenship, moreover, refused to sign the “loyalty oath” of the McCarthy era 
during the “cold war.” He was not expelled for this but was warned that he would not get 
a return visa when leaving. Nevertheless, when invited to an international mathematical 
conference in Holland in 1954, he took it up. His return visa was refused for years. A 
letter went then to President Eisenhower, signed by the greatest names of American 
Mathematics. This letter pointed out what the loss of Paul Erdős meant to their country. 
There was now a whole generation of youngsters growing up, entirely missing his 
inspiring influence. This was a loss which U.S. mathematics could not afford. This 
worked. E. P. was given the visa, for a limited period at that time, but by now he is 
welcome with open arms at any time when he wishes to enter and spend a very short or a 
long period there. In fact, he has now two main “bases.” One is in Budapest at the 
Mathematical Research Institute of the Hungarian Academy, where all his publications 
are kept and which serves him as a home when in Hungary, since he has not entered his 
own flat since the death of his mother at an advanced age. She had been his faithful 
companion and secretary through all his travels. His flat is now used by visiting 
mathematician friends. The other base is at Bell Laboratories, where his friend Ronald 
Graham looks after the business matters of his life. 

I go back now to early days to write reminiscences. The name Erdős Pál was well 
known by us, Esther Szekeres (then Klein) and myself before we met him at the 
university. All of us were frequent problem solvers of our beloved Hungarian magazine, 
the School Journal for Mathematics and Physics. 

The beginnings of this journal date at the turn of the century, in a great period of 
prosperity, liberalism and culture. World War I and years in the era to follow washed it 
all away. The mathematical school journal was revived in 1925, to go into oblivion 
again late during World War II. Nazism, taking hold of Hungary killed not only the 
journal, but also its editor, Andrew Farago together with his family. There was also a 
number of mathematicians, most of them young and of great promise who became 
victims of fascism. A plaque at the Research Institute of Mathematics commemorates 
their names. The school journal came to vigorous life again after this second war, also 
new journals for secondary students were born around the world to inspire the young, 
but the human victims could not be brought back to life. 

Esther Klein (Szekeres) was my classmate and best friend in the four final years of our 
secondary schooling. We had an exceptional teacher of mathematics, R. Rieger. That day in 
the beginning of year 1925 pictures still clearly in my mind, when our teacher appeared in 
class with the first issue of the revived school journal in his hand. He pointed out the two sets 
of problems, aimed at two levels, at the lower and higher grades of schooling. Both Esther 
and I became problem solvers working completely independently of each other, continuing 
until the time when we left school and became university students, a privilege meted to a 
very restricted number of Jewish youngsters. 

Esther, to whom I shall refer from now on as Eps, (for, as coined by E. P. twisting the 
petting name used by her mother) remained really faithful to mathematics during our 
university years but I became somewhat wavering. My loss of dedication was only 
partly due to the early “capture” of each other with G. Sved whose mathematics was rich 
but not “pure,” being an engineer. The case with G. Szekeres was different. He studied
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chemical engineering, to satisfy his father, in 1928 still a leather manufacturer. Yet the 
real love of this other George was always mathematics, with some theoretical physics 
thrown in, as his later contributions to relativity theory show. Nevertheless, he com-
pleted his course successfully, and worked for some years in the leather industry, in 
Hungary first, then during the early war years in Shanghai. He found time during 
engineering studies to join our little circle. His name together with those of T. P. 
(Paul Turán) and G. T. (Tibor Gallai) and of course, E. P. known to us through that 
journal which published not only the names of successful problem solvers, specially 
printing (with some editing) the best solutions, but supplied also at the end of each 
school year the photos of the most frequent contributors of solutions. 

T. P. (Paul Turán) was in the same year as ourselves, but E. P. and G. T., younger 
than the three of us, appeared on the scene two years later, E. P. as mover and shaker, 
G. T. as sharp critic. E. P. seldom graced the lecture room with his presence. I am not 
sure now whether he was even enrolled, like the rest of us for secondary teachers 
training, running in conjunction with our courses in mathematics and physics. He 
certainly missed the fifth and final year required, consisting of teaching practice in 
one of the schools officially prescribed and ending with the examination in philosophy 
and theory of education. In that fifth year of academic education he was already in 
Manchester with a scholarship, working as a post-doctoral fellow with Mordell, having 
gained his Ph. D. with L. Fejer being his supervisor. His doctoral thesis was based on 
results obtained on the distribution of prime numbers. Still as an undergraduate he 
obtained new results, (elementary proof of Csebisev’s theorem). To this day primes are 
one of his prime concerns. 

However, I must go back now to those earlier years, when E. P. was holding court, in 
the students’ common room, or being one of our crowd in our City Park, where we were 
tackling problems set in the then new and by now classic collection of problems in 
analysis and number theory by G. Polya and G. Szego. In those years with E. P. at the 
university, Esther and I had to take charge of him to ensure that required enrolment and 
semester end formalities were satisfied. Our rewards were rich. Our group held together 
strongly then and in some later years, with some of us already graduates (though not 
holding teachers’ appointments, with our teaching work being confined to private 
tutoring). We shared hikes at our charming hills near our city and continued our 
mathematical meetings at a site around the Statue of Anonymous in our city park. 

Paul’s parents adopted all his young friends. The Erdős home became our second 
home. The parents, Louis and Anne were both mathematics teachers, but in our time 
only Louis was active as a schoolteacher. His mother was sacked in 1919, in the days 
following the upheavals after the war. Louis, who had been on active war service and 
had returned after long years in Russian camps for war prisoners, could not be 
dismissed. Fascism (the word had not yet come into existence) in those days was 
“mild” in comparison with what came at the end of World War II. Louis, outstanding 
as a teacher, a man of wisdom, vision combined with a sense of humour, was a 
delightful company for us. Taking breath in that warm and stimulating atmosphere 
created by Anne and Louis nurturing Paul was a gift. During the years after 1939 E. P. 
was in the U.S. and ourselves in Australia, being able to keep some contact. I was 
shaken when I read the news in one of Paul’s letters that his father died a natural death
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during those war years. Then I was comforted by the thought that he was spared the 
dangers, degradations and humiliations to be meted out at the end of that war. 

Since E. P. and his mathematics, (the two are being inseparable), form the pivot of 
such large collection of mathematicians (with their bosses or slaves), the number of 
stories surrounding him together with those histories of mathematical problems solved 
or still in states of conjecture is also of an impressive multitude, I want to add here my 
own story about a problem I witnessed at birth. 

Paul calls it “the happy [end] problem.” My friend Eps, not long after her return from 
Göttingen, in those days the world centre of mathematics, posed the following question: 
given 5 points in the plane, no 3 collinear, conjecture: it is always possible to select 4 to 
form the vertices of a convex quadrilateral. It was a problem of unusual flavour, but my 
own waverings did not point in that direction. All the more were E. P. and Gy. Szekeres 
aroused. As Gy. S. confessed later, his attraction to the problem was sparked by the 
person proposing it. Actually, Eps found the proof, and efforts to generalize began. They 
resulted in the first Erdős–Szekeres joint publication to appear about two years later. The 
authors were not aware at the time that they solved and extended an old theorem by 
Ramsey. The significance of this publication was that it yielded life time results for the 
Trio involved: Eps and Gyu (pronounce Dew, and I am not giving here a linguistic 
lecture to explain this) became the couple of mathematicians bearing the name G. and 
E. Szekeres; P. Erdős and G. Szekeres became life-long coworkers, though in fields 
different from that first joint paper; E. P. became the originator of a new field in 
mathematics: combinatorial geometry, one of the new chapters created by him. 

The youth of E. P. is of a lifetime duration. His approach to problems is “elementary,” 
his best working pals are the young, his games, hobbies and relaxations do not belong to 
the world of the old, and ignoring social conventions are those of a child. He has 
remained the Peter Pan of mathematics. 

&&& 

Márta Svéd passed away on September 30, 2005. She outlived her dear friends Esther 
Klein and George Szekeres by just two days.
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Chapter 27 
De Bruijn–Erdős’ Theorem and Its History 

27.1 The De Bruijn–Erdős Compactness Theorem 

They were both young. On August 4, 1947, the 34-year-old Paul Erdős, in a letter to the 
29-year-old Nicolaas Govert de Bruijn of Delft, The Netherlands, offers the following 
conjecture [E47/8/4ltr]: 

Let G be an infinite graph. Any finite subset of it is the sum of k independent sets (two 
vertices are independent if they are not connected). Then G is the sum of 
k independent sets. 

Paul adds in parentheses “I can only prove it if k = 2.” In his 5-page August 18, 1947, reply 
[Bru1], de Bruijn reformulates the Erdős conjecture in a way that is very familiar to us today: 

Theorem. Let G be an infinite graph, any finite subgraph of which can be k-colored (that 
means that the nodes are coloured with k different colours, such that the two connected 
nodes have different colours). Then G can be k-coloured. 

Following a nearly 3-page long transfinite induction proof of the “Theorem,” de Bruijn 
observes [Bru1]: 

I am sorry that this proof takes so much paper; its idea, however, is simple. Perhaps, you 
do not call it a proof at all, because it contains “Wellordering,” but we can hardly expect 
to get along without that. 

This is a very insightful observation, as de Bruijn and Erdős rely on the Axiom of Choice 
or equivalent (like Well-Ordering Principle or Zorn’s Lemma) very heavily. When in early 
2004 Professor de Bruijn received from me a reprint of Shelah–Soifer 2003 paper (to be 
discussed closer to the end of this book) which analyzed what happens with the de Bruijn– 
Erdős Theorem in the absence of the Axiom of Choice, de Bruijn replied to me on January 
27, 2004, as follows [Bru6]: 

About the axiom of choice, I remember a conversation with Erdős, during a walk around 
1954. I told him that I hated the axiom of choice, and that I wanted to do analysis 
without it, maybe except for the countable case. He was surprised and said: but you were 
always so good at it. Indeed, I had loved transfinite induction, just because it worked 
exactly the same way as ordinary induction. 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_27&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_27#DOI


282 27 De Bruijn–Erdős’ Theorem and Its History

This invaluable de Bruijn’s e-mail also contained the conclusion of the story of the de 
Bruijn–Erdős Theorem [Bru5]: 

Erdős and I did not take any steps to publish the k-coloring theorem. In 1951 I met Erdős 
in London, and from there we went together by train to Aberdeen, which took a full day. 
It was during that train ride that he told me about the topological proof of the k-coloring 
theorem. Not long after that, he wrote it up and submitted it for publication. I do not 
think I had substantial influence on that version. 

Let us look at a proof of this celebrated theorem, which we have formulated without proof 
and used in Chapter 5. 

The De Bruijn–Erdős Compactness Theorem 27.1 (August 18, 1947; pub. [BE2], 1951). 
An infinite graph G is k-colorable if and only if every finite subgraph of G is k-colorable.1 

In what follows, we will need a few definitions from set theory. 
Given a set A, any subset R of the so-called Cartesian product A × A = {(a1, a2) :  a1, 

a2 2 A} is called a binary relation on A. We write a1Ra2 to indicate that the ordered pair (a1, 
a2) is an element of R. 

Poset, or  partially ordered set, is a set A together with a particularly “nice” binary relation 
on it, i.e., a relation that satisfies the following three properties: 

1. Reflexivity: a ≤ a for all a 2 A; 
2. Antisymmetry: If  a ≤ b and b ≤ a for a, b 2 A, then a = b; 
3. Transitivity: If  a ≤ b and b ≤ c for a, b, c 2 A, then a ≤ c. 

A chain, or  totally ordered set, is a poset that satisfies the fourth property: 

4. Comparability: For any a, b 2 A, either a ≤ b or b ≤ a. 

Let A be a set with a partial ordering ≤ defined on it, and B a subset of A. An  upper bound 
of B is an element a 2 A such that b ≤ a for every b 2 B. 

Let ≤ be a partial ordering on a set A, and B ⊆ A. Then, we say that b 2 B is a maximal 
element of B if there exists no x 2 B such that b ≤ x and x ≠ b. 

In 1935, Max Zorn (1906, Germany–1993, USA) introduced the following important tool, 
which he called maximum principle. It was shown by Paul J. Campbell that, in fact, a number 
of famous mathematicians – Hausdorff, Kuratowski, and Brouwer – preceded Zorn, but 
Zorn’s name got as attached to this tool as, say, Amerigo Vespucci’s name to America. 

Zorn’s Lemma 27.2 If S is a nonempty partially ordered set in which every chain has an 
upper bound, then S has a maximal element. 

During the summer of 2005, I supervised at my University of Colorado a research month of 
Dmytro “Mitya” Karabash, who had just completed his freshman year at Columbia Univer-
sity. One of my assignments for him was to prove the de Bruijn–Erdős theorem 27.1 and then 
to write a proof as well. After going through several revisions, Mitya produced a fine proof, 
which follows here, slightly edited by me.2 

1 This theorem requires the Axiom of Choice or equivalent. 
2 You can also read the original proof in [BE2]; a nice proof by L. Pósa in the fine book [Lov2] by 
László Lovász; and a clear insightful proof of the countable case in the best introductory book to 
Ramsey Theory [Gra2] by Ronald L. Graham.
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Proof of theorem 27.1 by D. Karabash We say that a graph G has the property P and write 
P(G) if every finite subgraph of G is k-colorable. For a graph G, we write G = (V, E), where 
V is the vertex set and E is the edge set of G. Now let S be the set of all graphs with the 
property P which are obtained from G by the addition of edges, i.e., 

S= V ,Fð ÞjE⊆F and P V ,Fð Þf g: 

Let S be partially ordered by the inclusion of edge sets. Observe that for every chain Ai in S, 
its union A= (V, [

i 
E Aið Þ is also in S [here E(Ai) stands for the edge set of the graph Ai]. Indeed, 

every finite subgraph F of A must be contained in some Ai (because F is finite), and therefore, 
F is k-colorable. Since A has property P, A is in S, as desired. 

We have proved that in S, every chain has an upper bound. Therefore, by Zorn’s Lemma, 
S contains a maximal element, call it M. Since M is in S, M has property P; since M is 
maximal, no edges can be added to M without violating property P. 

We will now prove that non-adjacency (here to be denoted by the symbol Øadj) is a  
equivalence relation on M, i.e., for every a, b, c 2 V (M), if aØadj b and b Øadj c, then a Øadj 
c. Let us consider all finite subgraphs of M that contain a and b, and all k-colorings on them. 
Since a Øadj b, there must be a subgraph Mab for which the colors of a and b are the same for 
all k-colorings of this subgraph, for otherwise we could add the edge ab to M while preserving 
property P and attain a contradiction to M being a maximal element of S. Construct a subgraph 
Mbc similarly. The subgraph Mab [ Mbc is finite and, thus, k-colorable; it contains subgraphs 
Mab and Mbc; therefore, by construction of Mab and Mbc, any coloring of Mab [ Mbc must have 
pairs (a,b) and (b,c) colored in the same color. Thus, a and c have the same color for all k-
colorings of the subgraph Mab [ Mbc, and therefore, a is not adjacent to c. 

From the fact that the non-adjacency is an equivalence relation on M, we conclude that the 
edge-complement M′ of M is made of some number of disjoin complete graphs Ki because in 
M′ adjacency is an equivalence relation. Therefore, a 2 Ki, b 2 Kj, i ≠ j implies a Øadj b in M′ 
or equivalently a adj b in M. 

Suppose there is more than k disjoint complete subgraphs Ki in M′. Then pick k +1 vertices, 
all from distinct V(Ki). Since all of the vertices are located in distinct V(Ki), they must be all 
pairwise non-adjacent in M′ and thus form a complete graph Mk + 1  on k + 1 vertices in M. We  
obtained a finite subgraph Mk + 1  of M which is not k-colorable, in contradiction to M having 
property P. Therefore, M′ consists of at most k complete subgraphs V(Ki), i =1, . . ., k. Now 
we can color each subgraph V(Ki) in a different color. Since no two vertices of V(Ki) are 
adjacent in M, this is a proper k-coloring. Since G is a subgraph of M, G is k-colorable, as 
desired. ■ 

Corollary 27.3 Compactness Theorem 5.1 is true. 

The proof of theorem 27.1 is much more powerful than you may think. It works not only 
for graphs, but even for their important generalization – hypergraphs. Permit me to burden 
you with a few definitions. 

As you recall from Chapter 12,  a  graph G = G(V, E) is a non-empty set V (of vertices) 
together with a family E of 2-element subsets (edges) of V. If we relax the latter condition, we 
will end up with a hypergraph.

https://doi.org/10.1007/978-1-0716-3597-1_5#FPar1
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A hypergraph H = H(V, E) is a non-empty set V (of vertices) together with a family E of 
subsets (edges) of  V, each containing at least two elements. Thus, an edge e of H is a subset of 
V; its elements are naturally called vertices of the edge e (or vertices incident with e). 

Let n be a positive integer. We would say that a hypergraph H is n-colored if each vertex of 
H is assigned one of the given n colors. If all vertices of an edge e are assigned the same color, 
we call e a monochromatic edge. 

The chromatic number χ(H) of a hypergraph H is the smallest number of colors n for 
which there is an n-coloring of H without monochromatic edges. 

A hypergraph H1 = H1(V1, E1) is called a subhypergraph of a hypergraph H = H(V, E), if 
V1 ⊆ V and E1 ⊆ E. 

Compactness Theorem for Hypergraphs 27.4 The chromatic number χ(H) of  
hypergraph H is equal to the maximum chromatic number of its finite subhypergraphs. 

Proof Repeat word-by-word the proof of Theorem 27.2, just replace “graph” by 
“hypergraph”). ■
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Chapter 28
Nicolaas Govert de Bruijn

Ever since 1995, I have exchanged numerous e-mail messages – and sometimes letters – with
the Dutch mathematician N. G. de Bruijn. His elegant humor, openness in expressing views
even on controversial issues, his eyewitness accounts of post-World War II events in Holland
made this correspondence fascinating and enjoyable for me. We also shared interest in finding
out who created the conjecture on monochromatic arithmetic progressions, which was proved
by B. L. van der Waerden (see the rigorously argued answer later in this book). Yet, for years,
I have been asking Professor de Bruijn to share with me his autobiography to no avail. For a
long while, I did not even know what “N. G.” stood for. On October 29, 2005, I tried to be a
bit more specific in my e-mail. I wrote:

May I ask you to describe your life – and any participation in political affairs – during
the occupation, May 1940–1945, and during the first post-war years, 1945 up to your
Sep–1952 appointment to replace Van der Waerden at Amsterdam?

De Bruijn understood my maneuver but provided the desired reply on November 1, 2005
[Bru11]:

You are asking for an autobiography in a nutshell.
I was born in 1918 [on July 9th, in Den Haag], so I just left elementary school in 1930

when the great depression broke out. I managed to finish secondary school education in
4 years (the standard was 5 or 6). After that, I could not get any job, and could not get
any financial support for university education. I used my next two years (1934–1936) to
study mathematics from books, without any teacher. I passed the examinations that
qualified me as a mathematics teacher in all secondary schools in the Netherlands. But
there weren’t any jobs. Yet I had some success: I could get a small loan that enabled me
to study mathematics and physics at Leiden University. In the academic year 1936–1937
I attended courses in physics and astronomy, and in 1937–1938 courses in mathematics
on the master’s degree level. That was all the university education I had. The most
inspiring mathematician in those days at Leiden was H. D. Kloosterman.

In 1939 I was so lucky to get an assistantship at Delft Technical University. It didn’t
pay very much, but it left me plenty of time to get involved in various kinds of
mathematical research. It was quite an inspiring environment, and actually it was the
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only place in the Netherlands that employed mathematical assistants (Delft had about
8 or 9 of them). In 1940 the country was occupied, and from then on the main problem
was to avoid being drawn into forced labour in Germany. In that respect my assistant-
ship was a good shelter for quite some time.

All the time I lived with my parents in The Hague, not so safe as it seemed. We were
hiding a Jewish refugee (a German boy, a few years younger than me), who assisted my
brother in producing and distributing forbidden radio material, like antennas that made it
possible to eliminate the heavy bleep-bleep-bleep that the Germans used in the wave-
lengths of the British Radio. And later, when radios were forbidden altogether, my
brother built miniature radios, hidden in old encyclopedia volumes. All this activity
ended somewhere in the beginning of 1944 when our house was raided by the
Sicherheitspolizei. My brother and his Jewish assistant were taken into custody, but
by some strange coincidence they came back the next day. Nevertheless, they had to
leave to a safer place, where both of them survived the war. A few months later, I got my
first real job. It was at the famous Philips Physical Labs at Eindhoven. The factory
worked more or less for German war production, just like most factories in the country,
but the laboratories could just do what they always did.

Four months later, Eindhoven was occupied by the allied armies, in their move
towards the battle of Arnhem. From then on we were cut off from the rest of the
country, where people had a very bad time.

So this was about my life during the war. Compared to others, I had been quite lucky.
I had even managed to get my doctorate at the [Calvinist] Free University, Amsterdam
[March 1943], just a few weeks before all universities in the country were definitely
closed (Leiden University had already been closed in 1940, because of demonstrations
against the dismissal of Jewish professors).

In 1946 I got a professorship at Delft Technical University. I had to do quite
elementary teaching, leaving me free to do quite some research, mainly in analytical
number theory. It got me into correspondence with Erdős, and around 1948 he visited us
at Delft.

In 1951 I made a mathematical trip abroad for the first time in my life. There I had
contact with Erdős too. We had a long train ride together from London to Edinburgh.

In 1952 I got that [Van der Waerden’s] professorship at Amsterdam, at that time the
mathematical Mecca of the Netherlands. I stayed there until 1960, when I got my
professorship at Eindhoven Technological University, where I retired in 1984. After
that, I always kept a place to work there.

I think this is all you wanted to know.

In fact, on November 1, 2005, I asked for a few additional details:

I know you are one of the most modest men. Yet, I would think you were not just an
observer when your family hid a Jewish boy and your brother did activities not
appreciated by the occupiers. Would you be so kind to share with me your role is
these activities during 1940–1945?

What were the names of your brother and his Jewish-German assistant? What was the
difference in age between you and your brother?

Two days later, my questions were answered [Bru12]:
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I hardly ever participated in my brother’s activities. At most three times I delivered an
antenna or a radio to some stranger. My brother was a year and a half older than I. His
name was Johan.

The Jewish boy’s name was Ernest (Ernst) Goldstern. He was born 24 December
1923 (in Muenchen, I believe). His family came to Holland in the late 1930s, where
Ernst just completed his secondary school education in Amsterdam. He lived with us in
The Hague from 1940 to 1944. I helped him to study advanced mathematics, which he
could use after the war. He went into Electrical Engineering and got his degree in Delft.
He died 19 January 1993. Johan died in 1996.

My treasured and admired correspondent Nicolaas Govert de Bruijn passed away on
February 17, 2012. He was 93.
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Chapter 29 
Edge-Colored Graphs: Ramsey and Folkma n 
Numbers 

29.1 Ramsey Numbers 

In this chapter, we will see that no matter how edges of a complete graph Kn are colored in two 
or, more generally, finitely many colors (each edge in one color), we can guarantee the 
existence of the desired monochromatic subgraph as long as we choose n to be large enough. 

Naturally, when we talk about edge-colored graphs, we call a subgraph monochromatic if 
all its edges are assigned the same color. 

Frank Harary told me that he was once asked to suggest problems for the W. L. Putman 
Mathematical Competition, and he suggested to use a problem that had already existed in the 
mathematical folklore:1 

Problem 29.1 (W. L. Putnam Mathematical Competition, March 1953). Prove that no matter 
how the edges of the complete graph K6 are colored in two colors, there is always a 
monochromatic triangle K3. 

Proof Let v0 be a vertex of K6, whose five incident edges are colored red and blue. Then, v0 is 
incident with at least three edges of the same color, say, red (Fig. 29.1). 

1 Stanisław Radziszowski advises me that already in 1947 this problem was offered in a compe-
tition in Hungary (e-mail from 07/04/2020). 
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Fig. 29.1 Vertex v0 is incident with at least 3 red edges 

If any two of the vertices v1, v2, v3, say, v1 and v2 are connected by a red edge, then we 
are done: v0, v1, and v2 is a red monochromatic triangle. Otherwise, all three edges v1,v2, v2, 
v3, and v3, v1 are blue, and we are done as well. ■ 

Problem 29.2 Show that in the statement of Problem 29.1, 6 is the best possible number, i.e., 
there is a way to color the edges of K5 in two colors without creating any monochromatic 
triangles. 

Solution Behold (Fig. 29.2): 

Fig. 29.2 2-colored K5 without monochromatic triangles 

For positive integers m and n, the Ramsey number R = R(m, n) is the smallest positive 
integer such that any red and blue edge coloring of the complete graph KR contains a red 
monochromatic Km or a blue monochromatic Kn. 

Problems 29.1 and 29.2 together prove, for example, that 

R 3, 3ð Þ= 6: 

You do not need more than definitions to prove the following two equalities.
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Problem 29.3 For any two positive integers m and n 

R m, nð Þ=R n,mð Þ: 

Problem 29.4 For any positive integer n 

R 2, nð Þ= n: 

When and who coined the term “Ramsey number”? The publication search readily proves 
that it did not exist in print before 1966. “Ramsey number” makes its first appearance in 
January 1966 in the remarkable Ph.D. thesis Chromatic Graphs and Ramsey’s Theorem by 
James (Jim) G. Kalbfleisch [Ka2] at the University of Waterloo, Ontario, Canada. He proves a 
good number of new upper and lower bounds, uniqueness of certain colorings, and the exact 
value R(3, 6) = 18 (which was also proved independently by G. Kéry). Kalbfleisch may have 
been the first to use computer programs in aid of his Ramsey numbers research. And, 
Kalbfleisch was the first to use “Ramsey number” term in print (his thesis, as was typical in 
mathematics in North America, was not published), in his 1966 paper [Ka3], submitted for 
publication on February 26, 1966. Nearly half a year later, on July 13, 1966, Jack E. Graver 
and James Yackel’s paper [GY] was communicated by Victor Klee. Both papers, [Ka3] and 
[GY], proudly displayed the new term “Ramsey number” in their titles. The term took hold 
and was used in an enormous number of publications since. 

As to Jim Kalbfleisch, following a number of fine Ramsey number-related publications, he 
“defected” to statistics. Kalbfleisch served the University of Waterloo for 37 years, 
1963–2000, as a student, professor, dean of mathematics, academic vice-president, and 
provost. On 31 December 2000, at 60, he retired to enjoy his artistic hobbies, Daily Bulletin 
reported on Thursday, 5 October 2000: 

“There’s never a good time to go,” he [Kalbfleisch] said, but after 14 years, “I feel the need 
for a break.” He said he is looking forward to a chance to get back to stained glass work 
(his long-time hobby) and enjoy music, bridge, and some travel that isn’t just for business. 

The following year Kalbfleisch was awarded the title “Provost Emeritus,” a rare distinction 
indeed. 

I would like to compute a few Ramsey numbers with you. For this, we will need the 
following simple but useful tool. 

Basic Tool 29.5 For any graph G with p vertices v1, v2, . . ., vp and q edges, deg v1 + deg v2 + 
⋯ + deg vp = 2q. 

The following Ramsey numbers were first found in 1955 by Robert E. Greenwood of the 
University of Texas and Andrew M. Gleason of Harvard. 

Problem 29.6 (R.E. Greenwood and A. M. Gleason, [GG]). Prove that R(3, 4) = 9. 

Proof Let the edges of a complete graphK9 be colored red and blue.Wewill consider two cases. 

Case 1 Assume there is a vertex, say v0,  of  K9 that is incident with at least four red edges 
(Fig. 29.3). Then should any two of the vertices v1, v2, v3, and v4 be connected by a red edge, 
we get a red triangle. Otherwise, we get a blue monochromatic K4 on the vertices v1, v2, v3, 
and v4.
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Fig. 29.3 Vertex v0 is incident with at least 4 red edges 

Case 2 Every vertex of K9 is incident with at least five blue edges. The nine vertices of K9 

with all blue edges form a graph G. The degree of each vertex of G may not be equal to five 
because we would get an odd 5.9 = 45 in the left side of the equality of tool 29.5 with an even 
2q in the right side. Therefore, at least one vertex, say v0, of  K9 is incident with at least six blue 
edges (Figure 29.4). 

Due to Problem 29.1 applied to the complete graph K6 on the vertices v1, v2, . . ., v6, K6 

contains a monochromatic triangle K3. If  K3 is red, we are done. If K3 is blue, then the three 
vertices of K3 plus v0 form a blue monochromatic graph K4, and we are done again. 

Thus, we proved the inequality R(3, 4) ≤ 9. 

Fig. 29.4 Vertex v0 is incident with at least 6 blue edges 

Figure 29.5 shows all red edges of K8. The edges that are not drawn, we color blue. It is 
easy to verify that this 2-coloring of the edges of K8 creates neither a red monochromatic K3 

nor a blue monochromatic K4. ■
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Fig. 29.5 All red edges of K8 

Problem 29.7 (R.E. Greenwood and A. M. Gleason, [GG]). Prove that R(4, 4) = 18. 

Proof First, we will prove the inequality R(4, 4) ≤ 18. 

Let the edges of a complete graph K18 be colored red and blue, and v0 be a vertex of K18. 
Since v0 is incident with 17 edges, by the Pigeonhole Principle v0 must be incident with at 
least 9 edges of the same color. 

If these 9 edges are red, we apply the equality R(3, 4) = 9 of Problem 29.6 to the 9-element 
set S = {v1, v2, . . ., v9}. If S contains a blue monochromatic K4, we are done. If S contains a 
red monochromatic triangle T, then T together with v0 and three red edges between them 
composes a red monochromatic K4. 

If the 9 edges are blue, we apply the equality R(4, 3) = 9 to the 9-set S = {v1, v2, ⋯ , v9} 
and reason similarly to the above “red” case. Thus, the inequality R(4, 4) ≤ 18 is proven. 

Now, we have to prove that R(4, 4) > 17. Figure 29.6 shows all red edges of the red–blue 
edge coloring of K17 (all missing edges are blue). It is easy to verify that our K17 contains no 
monochromatic K4.■ 

You can now solve on your own the following couple of problems, of which the first one 
gives a rare exact value of a Ramsey number, while the second problem is just an exercise. 

Problem 29.8 (R.E. Greenwood and A.W. Gleason, [GG]). Prove that R(3, 5) = 14. 

Problem 29.9 Prove that R(4, 5) ≤ 32 and R(5, 5) ≤ 64.
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Fig. 29.6 All red edges of the red-blue edge coloring of K17 

In fact, the problem of calculating R(4, 5) was settled completely by Brendan D. McKay of 
the Australian National University and Stanisław P. Radziszowski of the Rochester Institute 
of Technology, originally of Poland. 

Result 29.10 (B. D. McKay and S. P. Radziszowski, [MR4]). R(4, 5) = 25. 

This remarkable result took years of computing to achieve, with the happy end taking place 
right in front of my eyes. I attended Stanisław Radziszowski’s talk in early March of 1993 at 
the Florida Atlantic University conference. During the talk, he mysteriously remarked that the 
value of R(4, 5) may be established very soon. Imagine, in a matter of days, I received his 
e-mail, announcing the birth of the result up to a hundredth of a second (this is what computer-
aided communication delivers): 

From: MX%“spr@cs.rit.edu” 
To: ASOIFER 
Subj: R(4, 5) = 25 
From: spr@cs.rit.edu (Stanisław P Radziszowski) 
Message–ID: <9303191824.AA22893@rit.cs.rit.edu>
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Subject: R(4, 5) = 25 
To: jackkasz@utxvm.cc.utexas.edu, asoifer@happy.uccs.edu, goldberg@turing.cs.rpi.edu 
Date: Fri, 19 Mar 1993 19–MAR–1993 11:24:29.37 (EST) 

R(4, 5) = 25 
––––––––––– 
Brendan D. McKay, Australian National University 
Stanisław P. Radziszowski, Rochester Institute of Technology 

The Ramsey number R(4, 5) is defined to be the smallest n such that every graph on n vertices 
has either a clique of order 4 or an independent set of order 5. We have proved that 
R(4, 5) = 25. Previously it was only known that R(4, 5) is one of the four numbers 25–28. 
Our proof is computational. 

For integers s,t define an (s, t, n)-graph to be an n-vertex graph with no clique of order s or 
independent set of order t. Suppose that G is a (4, 5, 25)-graph with 25 vertices. If a vertex 
is removed from G, a (4, 5, 24)-graph H results; moreover, the structure of H can be 
somewhat restricted by choosing which vertex of G to remove. Our proof consists of 
constructing all such structure–restricted (4, 5, 24)-graphs and showing that none of them 
extends to a (4, 5, 25)-graph. In order to reduce the chance of computational error, the 
entire computation was done in duplicate using independent programs written by each 
author. The fastest of the two computations required about 3.2 years of cpu time on Sun 
workstations. 

A side result of this computation is a catalogue of 350866 (4, 5, 24)-graphs, which is likely to 
be most but not all of them. 

We wish to thank our institutions for their support. Of particular importance to this work was 
a grant from the ANU Mathematical Sciences Research Visitors Program. 
— bdm@cs.anu.edu.au and spr@cs.rit.edu; March 19, 1993. 

Imagine, how quickly the amount of computation increases in these “small” Ramsey 
numbers: “The fastest of the two computations required about 3.2 years of cpu time on Sun 
Workstations,” and “A side result of this computation is a catalogue of 350,8662 (4, 5, 24)-
graphs”! 

What about the value of the next Ramsey number, R(5, 5)? In the historical summary 
included in [MR5], we see that the lower bound of R(5, 5) increased slowly from 38 (Harvey 
Leslie Abbott in his impressive 1965 Ph.D. thesis [Abb]) to 42 (Robert W. Irving, 1974 
[Irv2]), to finally 43 (Geoffrey Exoo, 1989 [Ex4]): Exoo produced a K5-free 2-coloring of the 
edges of K42. 

I included an easy upper bound in problem 29.10 just as an exercise – already in 1965 J. G. 
Kalbfleisch [Ka1] knew better when he came up with the upper bound 59. The first half of the 
1990s saw a rapid improvement due to the works by Brendan D. MacKay and Stanisław 
P. Radziszowski: 53 (1992), 52 (1994), 50 (1995, an implication of the R(4, 5) result above), 
and 49 (1995, [MR5]). Finally, Vigleik Angeltveit and McKay reduced it by 1 to 48 in 2016 
[AnM1]. 

2 Later in 1993 this number grew to 350,904.
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Thus, today’s world records in lower and upper bound competitions for the value of R(5, 5) 
are due to Geoffrey Exoo, and Vigleik Angeltveit and Brendan McKay, respectively: 

Best Bounds 29.11 ([Ex4], [AnM1]). 43 ≤ R(5, 5) ≤ 48. 

And when the great expert of lower bounds Geoffrey Exoo and the great experts of upper 
bounds Brendan McKay and Stanisław Radziszowski agree that there is evidence for a 
“strong conjecture,” we’d better listen – and record: 

R 5, 5ð Þ= 43: 

It may take decades or even a century to settle this number – when done, we will see whether 
the three coauthors of the conjecture are right. In fact, Paul Erdős liked to popularly explain 
the difficulties of this problem [E94.21]: “It must seem incredible to the uninitiated that in the 
age of supercomputers R(5, 5) is unknown. This, of course, is caused by the so-called 
combinatorial explosion: there are just too many cases to be checked.” Paul even made up 
a joke about it, which I have heard during his talks in a few different variants: 

Suppose aliens invade the earth and threaten to destroy it in a year if human beings do 
not find R(5, 5). It is, probably, possible to save the earth by putting together the world’s 
best minds and computers. If, however, the invaders were to demand R(6, 6), the human 
beings might as well attempt a preemptive strike without even trying to ponder the 
problem.3 

Ever since 1994 Stanisław Radziszowski has maintained and revised 16 times a major 
compendium of “world records” in the sport of small Ramsey numbers [Radz1]. This is an 
invaluable service to the profession. I will present here Table 29.1 of all known non-trivial 
classic 2-color small Ramsey numbers and their best lower and upper bounds. Where lower 
and upper bounds do not coincide, they both are listed in the appropriate cell. 

The cells below the main diagonal are left empty because filling them in would be 
redundant due to the symmetry of the Ramsey function R(m, n) = R(n, m), (problem 29.3). 
In Table 29.2, you will find references for the results listed in Table 29.1 – see the rest in 
Stanisław Radziszowski’s 116-page compendium, revision #16, January 15, 2021 [Radz1], 
readily available on the Internet. You will find there a wealth of other fascinating small 
Ramsey-related world records, Ramsey numbers (understood broader than here), Ramsey 
number inequalities, and a bibliography of over 500 referenced items (Table 29.3). 

In the standard 1990 text on Ramsey Theory [GRS2, pp. 89–90], a tiny “Table 4.1” of 
known values and bounds is presented, accompanied by quite a pessimistic prediction: 

3 Alternative versions appear in [E93.20] and [E94.21].
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Table 29.1 World records in classical 2-color small Ramsey numbers: known nontrivial 
values, lower bounds (2020) and upper bounds (2017) for two color Ramsey numbers R (k, l) 
= R (k, l; 2), for k ≤ 10, l ≤ 15. For the best known upper bounds (2020) with k ≥ 4 see 
Table 29.3 

l 
k 3  4  5  6 7 8 9 10 11 12 13 14 1  

3 6  9 14  18 23 28 36 40  
42 

47 
50 

53 
59 

60 
68 

67 
77 

74 
87 

41 
49 
61 

59 
84 

73 
115 

92 
149 

102 
191 

128 
238 

138 
291 

147 
349 

158 
417 

48 
58 
87 

80 
143 

101 
216 

133 
316 

149 
442 

183 
633 

203 
848 

233 
1138 

267 
1461 

269 
1878 

6 102 
165 

115 
298 

134 
495 

183 
780 

204 
1171 

262 
1804 

294 
2566 

347 
3703 

5033 401 
6911 

7 205 
540 

219 
1031 

252 
1713 

292 
2826 

405 
4553 

417 
6954 

511 
10578 

15263 22112 

8 282 
1870 

329 
3583 

343 
6090 

10630 16944 817 
27485 

41525 873 
63609 

9 565 
6588 

581 
12677 

22325 38832 64864 

10 798 
23556 

45881 81123 1313 

Table 4.1 gives all known exact bounds [values] and some upper and lower bounds on 
the function R. It is unlikely that substantial improvement will be made on this table. 

Just compare their Table 4.1 to Table 29.1 above, and you would agree with me that the 
researchers in small Ramsey numbers have dramatically exceeded expectations of the authors 
of [GRS2] in short 40 years. We have a race here: combinatorial explosion vs. improvements 
in computers and computational methods. It seems that computers and mathematicians in this 
field have held their own and gained some! 

What would happen if we were to color edges of a complete graph Kn in more than two 
colors? Can we then guarantee the existence of, say, a monochromatic triangle K3? Yes, 
we can. 

Problem 29.13 (R.E. Greenwood and A. M. Gleason, 1955, [GG]). Prove that for any 
positive integer r, there is a positive integer n(r) such that any r-coloring of edges of a 
complete graph Kn(r) contains a monochromatic triangle K3. 

Proof We will prove this statement by induction. For r = 1 (i.e., 1-color edge coloring), we 
can certainly choose n = 3: 1-colored edges of K3 form a monochromatic triangle. The 
statement for r = 2 has been proven as Problem 29.1. 

Assume that for a positive integer r, there is n(r) such that any r-coloring of edges of the 
complete graph Kn(r) contains a monochromatic triangle K3. We need to find the value of the
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function n(r + 1) such that any (r + 1)-coloring of edges of a complete graph Kn(r+1) contains a 
monochromatic triangle K3.
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Table 29.3 Upper bounds for R (k, l), k ≥ 4, l ≥ 5 

l 
k 

4 25 40 58 79 106 136 171 211 257 307 364 
5 48 85 133 194 282 381 511 673 861 1082 1342 
6 161 273 427 656 949 1352 1865 2510 3308 4305 
7 497 840 1379 2134 3216 
8 1532 2683 4432 7647 

All of them were obtained by Angeltveit and McKay [AnM2] in 2019, except R (4, 5) [MR4], 
and they improve over previously best-known bounds presented in Table 29.1 

Let us define the value of the function n(r + 1) as  

n r  þ 1ð Þ= r þ 1ð Þ  n rð Þ- 1ð Þ þ  2: 

Assume that the edges of Kn(r+1) are (r+1)-colored, and v0 is a vertex of Kn(r+1). Since v0 is 
incident with (r+1)(n(r) –1) + 1 edges, by the Pigeonhole Principle there is a color, say color 
A, such that v0 is incident with n(r) edges of color A (Fig. 29.7). 

Fig. 29.7 Vertex v0 is incident with n(r) edges of the same color 

If any two of the vertices v1, v2, . . ., vn(r) are connected by an A-colored edge, these two 
vertices plus v0 form an A-colored monochromatic triangle. Otherwise, we have a complete 
graph Kn(r) on vertices v1, v2, . . ., vn(r), whose edges are r-colored. By the inductive 
assumption, Kn(r) contains a monochromatic triangle. 

Note that in fact it is easy to prove by induction that n(r) ≤ br ! ec + 1, where e is the base of 
the natural logarithms, e = 2.718281828459045. . .  ■ 

We computed some particular Ramsey numbers and looked at ideas of proofs. Surpris-
ingly, they are fairly recent. Even more surprising to me is that general existence results came



first. The foundation for this beautiful direction in mathematics, now called Ramsey Theory, 
was laid by the young British mathematician Frank P. Ramsey. We will discuss his impres-
sive work and short life in Chapters 30 and 31, respectively. Here, I will only formulate 
particular cases, graph-theoretic diagonal versions of Ramsey’s Theorems. 
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Ramsey’s Theorem, Infinite Diagonal Graph Version 29.14 Every complete infinite 
graph with 2-colored edges contains a complete infinite monochromatic subgraph. 

Ramsey’s Theorem, Finite Diagonal Graph Version 29.15 For any positive integers n and 
k, there is an integer R(n; k) such that if m > R(n; k) and the edges of a complete graph Km are 
k-colored, then Km contains a complete monochromatic subgraph Kn. 

These theorems should sound familiar to you. We have solved some particular cases of 
Problem 29.15 earlier in this chapter and even found the values of R(n; k), which for k = 2 we  
will simply denote as R(n, n).4 For example, Problems 29.1 and 29.2 show that R(3, 3) = 6; 
Problem 29.6 gives us R(3, 4) = 9; Problem 29.13 demonstrates that R(3; k) exists for any 
positive integer k. 

Instead of demonstrating 29.15, we will prove a stronger pair of results, 29.16 and 29.17, 
obtained in early 1933 and published two years later by two young unknown Hungarian 
university students, Pál (Paul) Erdős and Gjörgy (George) Szekeres. 

Problem 29.16 (P. Erdős and G. Szekeres, [ES]) Assume that the Ramsey number R(m, n) 
exists for every pair of positive integers m and n. Then for any integers, m ≥ 2 and n ≥ 2 

R m, nð Þ≤R m–1, nð Þ þ  R m, n–1ð Þ: 

Proof Let L = R(m–1, n) +  R(m, n–1). We have to prove precisely that if the edges of a 
complete graph KL with L vertices are colored red and blue, KL contains a Km with all red 
edges or a Kn with all blue edges. Indeed, let v0 be a vertex of KL whose edges are colored red 
and blue. We consider two cases and use an approach that proved successful in Problems 29.7 
and 29.8. 

Case 1 Let v0 be incident with at least R(m–1, n) red edges. Then by the definition of R(m–1, 
n), the vertex set S={v1, v2, . . ., vR(m–1,n)} contains a blue monochromatic Kn (and we are 
done) or a red monochromatic Km–1. In the latter case, Km–1 together with v0 and m–1 red 
edges connecting them forms a red monochromatic Km. 

Case 2 Let v0 be incident with less than R(m–1, n) red edges. Since v0 is incident with L–1 = 
R(m–1, n) +  R(m, n–1) – 1 edges, each colored red or blue, we see that in this case v0 is 
incident with at least R(m, n–1) blue edges. 

By the definition of R(m, n–1), the vertex set S ={v1, v2, . . ., vR(m,n–1)} contains a red 
monochromatic Km (and we are done), or a blue monochromatic Kn–1. In the latter case, Kn–1 

together with v0 and n – 1 blue edges connecting them forms a blue monochromatic Kn. ■ 

Problem 29.17 (P. Erdős and G. Szekeres, [ES]). For every two positive integers m and n, 
the Ramsey number R(m, n) exists, and moreover, 

4 Please, do not overlook the significant difference between R(n,k) and R(n;k).
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R m, nð Þ  ≤
mþ n- 2 

m- 1 
: 

Proof We will use induction on k = m + n. We have equality when one of the numbers m, n 
equals 1 or 2 and the other is arbitrary (see Problems 29.4 and 29.3, and observe that 
R(1, n) = 1). Therefore, the inequality is true for k ≤ 5, and we can assume that m ≥ 3 and 
n ≥ 3. 

Assume further that R(m–1, n) and R(m, n–1) exist and that 

R m–1, nð Þ  ≤
mþ n- 3 

m- 2 

and 

R m, n–1ð Þ  ≤
mþ n- 3 

m- 1 
: 

Then by Problem 29.17 and Pascal binomial equality, we get 

R m, nð Þ≤R m–1, nð Þ þ  R m, n–1ð Þ≤ mþ n- 3 

m- 2
þ mþ n- 3 

m- 1 
= 

mþ n- 2 

m- 1 

as desired. We are done: R(m, n) exists and satisfies the required inequality. ■ 

In the same paper, Paul Erdős and Gjörgy Szekeres also proved in similar spirit the 
Monotone Subsequence Theorem, which we will discuss in Chapter 31. 

What can we learn about large Ramsey numbers if we could compute only some small 
Ramsey numbers? Nothing at all as far as the exact values are concerned. We can, however, 
aspire to estimate their growth, strive for asymptotics. This is precisely what interested Paul 
Erdős the most. Paul traces the developments in this direction at the 1980 Graph Theory 
conference at Kalamazoo [E81.20]: 

It is well known that 

c1n2 
n 
2 <R n; nð Þ< c2 

2n- 2 
n- 1 

, c2 < 1ð Þ: 

He reports an improvement in the upper bound a few years later [E88.28]: 

c1n2 
n 
2 <R n, nð Þ< 

c2 
2n 
n 

log nð Þε �ð  

Every time Erdős speaks on this subject, he offers the same important conjecture, which 
still remains open today:



1

n→1
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Erdős’ $100 Conjecture 29.18 lim
n→1R n, nð Þn = c: 

Paul adds [E88.28]: “I offer 100 dollars for a proof [of this conjecture] and 10,000 dollars for 
a disproof. I am sure that [the conjecture] holds.” He continues with the problem of 
determining the limit in conjecture 29.18. 

Erdős’ $250 Problem 29.19 Determine c in conjecture 29.18. 

Paul also gives a hint [E88.28]: “ 2
p 

≤ c≤ 4 follows from (*), perhaps c = 2?” Let us 
record it formally. 

Erdős’ Open Problem 29.20 Prove or disprove that lim R n, nð Þ1 n = 2. 

These problems matter a great deal to Paul Erdős, for he repeats these problems in his many 
problem talks and papers, for example [E81.20], [E88.28], [E90.23], and [E93.20]. He even 
offers rare for Erdős unspecified compensation [E90.23]: 

Any improvement of these bounds [ 2
p 

≤ c≤ 4] would be of great interest and will 
receive an “appropriate” financial reward. (“Appropriate” I am afraid is not the right 
word, I do not have enough money to give a really appropriate award.) 

He is pessimistic about finding the asymptotic formula any time soon [E93.20]: 

An asymptotic formula for R(n) would of course be very desirable, but at the moment 
this looks hopeless. 

Yet, Erdős poses a number of other problems related to the Ramsey numbers’ asymptotic 
behavior. Let me mention here just two examples. 

Erdős’ Open Problem 29.21 ([E91.31]). Is it true that for every ε > 0 and n > n0 (ε) 

R 4, nð Þ> n3- ε ? 

In fact, probably 

R 4, nð Þ> 
cn3 

log nð Þα : 

Erdős’ Open Problem 29.22 ([E91.31]). Is it true that 

R(n + 1, n + 1)  > (1 + c)R(n, n)? 

In fact, it is not even known that 

R nþ 1, nþ 1ð Þ-R n, nð Þ> cn2 : 

In the mid-1990s, when I was looking for the author of the term Ramsey Theory (you will 
find out the answer in Chapter 32), on February 19, 1996 in Baton Rouge, Louisiana, the 
famous graph theorist Frank Harary half-wrote, half-dictated to me a letter [Har3], which is



most relevant to this chapter on Ramsey numbers, and so I will transcribe it here in its entirety 
(see facsimile of the opening lines in Figure 29.8): 
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To A Soifer 19 Feb 96 
In 1965, I looked into the ramsey nos. of C4 and 2K2 [two copies of K2] and found (proved) 

their values are 6 and 5 resp. 
Before then only ramsey nos. of complete graphs had been studied; e.g. 
r(K3) = 6 (folklore) 
r(K4) = 18 (A. Gleason + R. Greenwood) 
r(K5) = ? ($100 from FH for 1st exact solution) 

I called r(C4) = 6 and r(2K2) = 5 generalized ramsey nos. for graphs. 
In November 1970, V. Chvatal defended his Ph.D. thesis at U Waterloo on ramsey nos. of 

hypergraphs. Erdős was visiting professor at the same time at Waterloo. He saw me 
drinking tea and grabbed my elbow saying “You must hear this doctorate defense, as 
Chvatal is brilliant.” The next night Chvatal invited me to dinner at his house, and I 
proposed a series of papers to him. He accepted gladly and we had a good time writing 
them. I told Erdős that this was part of my big research project on Ramsey Theory. 
I saw that he [Chvatal] and I would be able to carry out my research project of calculating 
the Ramsey Numbers of all the small G[graphs]. We wrote a series of papers “Generalized 
Ramsey theory for graphs” I, II, III, and maybe IV. I then continued the series to XVII. I 
referred early to this as the study of ramsey theory for graphs. 

Fig. 29.8 First lines of Frank Harary’s letter 

Thus, Frank Harary and Václav Chvátal introduced the term Generalized Ramsey Theory 
for Graphs and started an impressive series of papers under this title. They generalized the 
notion of Ramsey number by including in the study the existence of monochromatic sub-
graphs other than complete graphs. This is a flourishing field today, and I refer you to 
Radziszowski’s compendium [Rad1] for a summary of many achievements of this direction 
of research. The authors Graham–Rothschild–Spencer of [GRS2, p. 138] write:
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A major impetus behind the early development of Graph Ramsey theory was a hope that 
it will eventually lead to methods for determining larger values of the classical Ramsey 
numbers R(m, n). However, as so often happens in mathematics, this expectation has not 
been realized; rather, the field has evolved into a discipline of its own. Asymptotic 
results obtained in Graph Ramsey theory may prove to be more valuable than knowing 
the exact value of R(5, 5) [or even R(m, n)]. 

Do they prefer asymptotic results? All right. As we all know, the first exponential lower 
bound for diagonal Ramsey numbers was obtained by Paul Erdős in 1947 [E47.09]: 

First Asymptotic Lower Bound 29.23 (Erdős, 1947 [Erd30]). 2n/2 ≤ R(n, n). 

Only in 1975, Joel Spencer improved this bound [Sp5]: 

Spencer’s Asymptotic Lower Bound 29.24 (Spencer, 1975 [Sp5]. 

2 
p 

e- 1 n2n=2 1þ o 1ð Þð Þ  < R n, nð Þ: 

A group of scholars, Marcelo Campos, Simon Griffiths, Robert Morris, and Julian 
Sahasrabudhe, has just on March 16, 2023, at 17:38:08 uploaded [CGMS] in arXiv best 
exponential upper bounds for diagonal and nondiagonal Ramsey numbers. “This is the first 
exponential improvement over the upper bound of Erdős and Szekeres, proved in 1935,” the 
authors write. 

New Asymptotic Upper Bound 29.25 ([CGMS], 2023). There exists ε > 0 such that 

R n, nð Þ  ≤ 4- εð Þn 

for all sufficiently large n 2 N. 

All right, “there exists ε,” but wouldn’t you like to know the value of ε? The authors 
obligate: 

Let us mention here for the interested reader that we will give two different proofs of 
Theorem1.1, the first (which is a little simpler) with ε = 2-10 , and the second with ε = 
2-7 . It will be clear from the proofs that these constants could be improved further with 
some additional (straightforward, but somewhat technical) optimization. 

While revisiting Paul Erdős’ relevant essay [E90.23], I read (slightly changing notations): 

It would be very desirable to get an asymptotic formula for R(3, k) (an exact formula 
might “not exist” in the same sense as there is no exact (and useful) formula for the nth 
prime). Also 

R 4, kð Þ  > 
c1k

3 

log kð Þc2 

should be proved. I offer for both of these problems $250. The current best result R(4, k) > 
ck5/2 is due to Joel Spencer.
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Let us record it formally: 

Paul Erdős’ $250 Conjecture 29.26 [90.23]. Prove that R(4, k) > c1k
3 

log kð Þc2 for sufficiently 
large k. 

Imagine my shock when early in the morning (today is June 27, 2023), I received a link 
from Staszek Radziszowski taking me to an incredible result [MV] uploaded by Sam 
Mattheus and Jacques Verstraete to arXiv first on June 6, second version June 16, and the 
final version (so far) on June 21, 2023. Sam Mattheus informs me that they submitted their 
paper to Annals of Mathematics, an important bimonthly of Princeton-Math and the Institute 
for Advanced Study. 

The Mattheus–Verstraete Theorem 29.27 There exist constants c1, c2 > 0 such that for all 
t ≥ 3, 

c1 
t3 

log 4 t 
≤ r 4, tð Þ≤ c2 

t3 

log 2 t 
: 

This theorem, of course, proves Paul Erdős’ $250 conjecture 29.26. The authors “believe 
the upper bound in theorem 29.27 is closer to the truth.” 

Under [20] in their Bibliography, Mattheus–Verstraete [MV] cite “R.L. Graham, 
B. Rothschild, J. Solymosi, J. Spencer, Ramsey Theory (3rd ed.), New York: John Wiley 
and Sons (2015).” This is puzzling, for I knew directly from Ron Graham that the idea of 
producing the 3rd edition with the additional coauthor Jószef Solymosi had been in the works 
for some time, but has never materialized. 

The distinguished authors of [GRS2] write about “value” (see their quote above), but how 
does one measure and compare values of discovering small Ramsey numbers and figuring out 
their asymptotic behavior? It seems that the relationship between theoretical and numerical 
directions of inquiry has been, as so often happens in mathematics, a marriage made in 
heaven. Numerical results provided a foundation for theoretical generalizations and asymp-
totics, while theoretical results allowed to dramatically reduce sprawling computational 
explosion and thus make numerical results possible. Moreover, numerical results can contain 
beauties both in mathematical arguments and in extreme graphs they uncover – just look at the 
graph in Fig. 29.9 below! I hope the rest of this chapter will illustrate my point of view. We 
will look at one related train of thought and the direction it has inspired, Folkman numbers. 
We will see that Paul Erdős was very interested in small Folkman numbers, and the authors of 
the above quotation, among others, have contributed their talents, energies, and results to this 
cause. 

29.2 Folkman Numbers 

In 1967, Paul Erdős and András Hajnal take the first step in a typically subtle Erdős style: they 
pose a particular problem.
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Problem 29.28 (Erdős–Hajnal [EH2]). Construct a graph G which does not contain K6 such 
that every 2-coloring of its edges contains a monochromatic K3. 

They follow up with a more general conjecture: 

Erdős–Hajnal’s Conjecture 29.29 [Erdős–Hajnal EH2]. For every positive integer r, there 
is a graph G which contains no K4 such that every r-coloring of its edges contains a 
monochromatic K3. 

In the same year, 1967, Jon H. Folkman [Fol] generalizes Erdős–Hajnal conjecture. 
Folkman, a winner of the 1960 William Lowell Putnam Mathematical Competition and 
University of California Berkeley graduate before joining Rand Corporation, tragically leaves 
this world in 1969. He was only 31 years of age. Before I formulate Folkman’s theorem in 
contemporary terminology, I need to introduce a few terms that have recently become 
standard. 

Given positive integers m, n, l, an  edge Folkman graph G is a graph without a Kl subgraph, 
and such that if its edges are 2-colored, there will be a subgraph Km with all edges of color 1 or 
a subgraph Kn with all edges of color 2. 

The edge Folkman number Fe(m, n; l) is defined as the smallest positive integer k such that 
there exists an k-vertex Folkman graph G. 

More generally, given positive integers n, m1, m2, . . ., mn, l, an edge Folkman graph G is a 
graph without a Kl subgraph, and such that if its edges are n-colored, there will be a subgraph 
Kmi with all edges of color i for at least one value of i, 1 ≤ i ≤ n. 

The edge Folkman number Fn 
e m1,m2, . . . ,mn; lð Þ is defined as the smallest positive integer 

k such that there exists a k-vertex Folkman graph G. 
In this terminology, Folkman’s result can be formulated as follows: 

The Folkman Theorem 29.30 [Fol]. For all positive integers m, n, l; l > max(m, n), edge 
Folkman numbers Fe(m, n; l) exist.

5 

Folkman ends [Fol] with a far-reaching generalization of Erdős–Hajnal’s conjecture 29.24: 

Folkman’s Conjecture 29.31 [Fol]. For all positive integers m1,m2,. . ., mn, l, l > max(m1, 
m2,. . ., mn), edge Folkman numbers Fn 

e m1,m2, . . . ,mn; lð Þ  exist. 

Vertex Folkman graphs and vertex Folkman numbers Fn 
v m1,m2, . . . ,mn; lð are defined 

similarly for coloring of vertices instead of edges. When n = 2, we omit the superscript n. 
In his lyrical (a rare quality for mathematical prose) paper [Sp2], Joel Spencer recalls that 

in 1973, during the Erdős 60th birthday conference in Keszthely6 , Hungary, the Erdős–Hajnal 
conjecture 29.24 was given to the Czech mathematician Jaroslav Nešetřil and his student 
Vojtěch Rödl, who proved it during the conference. Moreover, they came up with pioneering 
results, so general, that they could be considered as principles, not unlike the Ramsey 
Theorems! 

A clique number ω (G) of a graph G is the order n of its largest complete subgraph Kn. 

5 Of course, Jon Folkman did not use the term “Folkman number,” which seems to have appeared 
first in 1993, and has since become standard. 
6 Spencer misidentifies the town as Balatonfüred; both towns are on lake Balaton.
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The Edge Nešetřil–Rödl Theorem 29.32 [NR]. Given a positive integer n and a graph G, 
there exists a graph H of the same clique number as G, such that if edges of H are n-colored, 
H has an edge-monochromatic subgraph isomorphic to G. 

The Vertex Nešetřil–Rödl Theorem 29.33 [NR]. Given a positive integer n and a graph G, 
there exists a graph H of the same clique number as G, such that if vertices of H are n-colored, 
H has a vertex-monochromatic subgraph isomorphic to G. 

These remarkable theorems, in our terminology, imply the following: 

Corollary 29.34 For any positive integers m, n, the edge Folkman numbers 
Fn 
e m,m, . . . ,m;m þ 1ð Þ  and vertex Folkman numbers Fn 

v m,m, . . . ,m;mþ 1ð exist, where 
m inside the parentheses repeats n times. 

Erdős–Hajnal problems, Folkman’s paper, and Nešetřil–Rödl theorems inspired a new 
direction in Ramsey theory as well as new exciting problems on Ramsey-like numbers. 

How should these new numbers be called? Several names were used at first: Restricted 
Ramsey, Erdős–Hajnal, Graham–Spencer [HN1], [Irv1]. Nešetřil and Rödl [NR] use such 
names as “Galvin–Ramsey” and “EFGH” (which, I guess, stood for Erdős–Folkman– 
Graham–Hajnal). In 1993, some researchers in these new numbers seem to have started, 
suddenly and simultaneously, to use the name Folkman Numbers: see, for example, Jason 
I. Brown and Vojtěch Rödl [BrR]; and Martin Erickson [Eri]. Slowly, through the decade that 
followed, this name has won out and became standard. 

Obviously, if l > R(m, n), where R(m, n) is a Ramsey number, then Fe(m, n; l) = R(m, n). 
The real challenge in calculating Folkman numbers occurs when l ≤ R(m, n), even in the 
simplest case Fe(3, 3; l). As could be expected, the lower l is the harder is the problem (except 
for trivially small values of l). 

In 1968 Ronald L. Graham [Gra0] published a solution of the first problem, 29.23. In fact, 
Graham found the smallest order graph that does the job for Fe(3, 3, 6). 

Graham’s Result 29.35 [Gra0]. The graph G = K8 - C5 = K3 + C5 satisfies the conditions 
of problem 29.23, i.e., 

Fe 3, 3; 6ð Þ= 8: 

Graham was not alone working on this new kind of a problem, as he wrote in the 
conclusion of [Gra0]: 

To the best of the author’s knowledge, the first example of a graph satisfying the 
conditions [29.28] of Erdős and Hajnal was given by J. H. van Lint; subsequently 
L. Pósa showed the existence of such a graph containing no complete pentagon [l = 5] 
and Jon Folkman constructed such a graph containing no complete quadrilateral [l = 4] 
(all unpublished). 

Paul Erdős’ problem, reported in 1971 [GS1, p. 138], in the current terminology, reads 
simply as follows: 

Paul Erdős’ Open Problem 29.36 Compute edge Folkman numbers. 

The simplest unknown edge Folkman number was at that time Fe(3,3;5). Its first upper 
bound of 42 was established by M. Schäuble in 1969, which two years later was reduced to
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23 by Graham and Spencer [GS1], who conjectured that 23 was the exact value. In 1973, 
Robert W. Irving [Irv1] reduced the upper bound to 18 and thus disproved the Graham– 
Spencer conjecture. A year earlier, the best lower bound of 10 was established by Shen Lin 
[Lin]. Joel Spencer, in his review of Irving’s paper, wrote (MR0321778):7 

It is now known that 10 ≤ Fe(3, 3; 5) ≤ 18. The determination of Fe(3, 3; 5) appears to be 
extremely difficult. 

Then, the Bulgarian mathematicians took over the problem. In 1979, N. G. Hadziivanov 
and N. D. Nenov [HN1] reduced the upper bound to 16. A year later, Nenov [Nen1] increased 
the lower bound to 11, and in 1981 he reduced the upper bound to 15 [Nen2]. In 1985, 
Hadziivanov and Nenov [HN2] increased the lower bound to 12. 

In 1999, Stanisław P. Radziszowski, Konrad Piwakowski, and Sebastian Urbánski [PRU] 
increased the lower bound to match Nenov’s upper bound at 15 and thus closed the problem: 
Fe(3, 3; 5) = 15. 

Exact value of an edge Folkman number 29.37 ([Nen2], [PRU]). Fe(3, 3; 5) = 15. 

In [PRU], the authors also proved that Fv(3,3;4) = 14 and found a unique bi-critical 
14-vertex Folkman graph without a K4 subgraph, such that any vertex 2-coloring contains a 
monochromatic triangle K3 (Figure 29.9). They, as well as some of their predecessors, 
observed that by adding a new vertex adjacent to all 14 vertices of this graph, they get a 
15-vertex Folkman graph without a K5 subgraph and such that any edge 2-coloring contains a 
monochromatic triangle K3. 

Fig. 29.9 The Piwakowski–Radziszowski–Urbánski Graph is a unique 14-vertex bi-critical 
Fv(3,3;4) graph. (This graph is so striking, that I chose it to decorate the cover of the April– 
2007 issue of Geombinatorics XVI(4) that contained Stanisław P. Radziszowski’s paper) 

7 He used the Greek α in place of not yet established Folkman symbol.
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In 2017, Geombinatorics carried new bounds for a vertex Folkman number, obtained by 
Aleksandar Bikov and Nedyalko Nenov: 

New bounds for a vertex Folkman number 29.38 ([BN1]). 20 ≤ Fv(2, 3, 3; 4) ≤ 24. 

Later the same year, these authors improved their algorithms and found more lower 
bounds: 

Lower bounds for vertex Folkman numbers 29.39 ([BN3]). 

19≤Fv 2, 2, 2, 4; 5ð Þ  
29≤Fv 7, 7; 8ð Þ  

Fv a1, . . . , as;mð Þ≥mþ 12, if max a1, . . . , asf g= 7: 

This fine paper [BN3] appears to have been a Ph.D. thesis for Aleksandar Bikov, I venture 
to conjecture, supervised by Nedyalko Nenov in Nedyalko Nenov's Laboratory of Sofia 
University “St. Kliment Ohridski.” 

In 1974 in Prague, Paul Erdős gave a talk of a special kind [E75.33]: 

I discuss some of the problems which occupied my collaborators and myself for a very 
long time. I tried to select those problems which are striking and which are not too well 
known. 

One of the striking problems posed in Paul’s talk dealt with the next Folkman’s number, 
Fe(3, 3; 4). In 1975, we knew very little about it, and Paul Erdős summarized the state of the 
problem as follows: 

Folkman’s upper bound for Fe(3, 3; 4) is enormous (it is much bigger than 1010
1010

1010
10 

, 
the same holds for the bound of Nešetřil and Rödl. 

Erdős then offered an unusual, mathematically defined price, max(100 dollars, 300 Swiss 
francs) for the specific bound. 

Paul Erdős’ max($100, 300 SF) Problem 29.40 [E75.33]. Prove or disprove the inequality 

Fe 3, 3; 4ð Þ< 1010 : 

Dozen years later, in 1986, Frankl and Rödl [FR2] came close, within a factor of 100 from 
Paul Erdős’ conjectured upper bound: they used a probabilistic proof to show that Fe(3,3; 4)≤
1012 . Soon after, in 1988, Joel H. Spencer in a paper proudly called Three Hundred Million 
Points Suffice [Sp3] squeezed out of the probabilistic approach a better bound: Fe(3, 3; 4) < 
3 × 108 . A mistake found in Spencer’s proof by Mark Hovey of MIT prompted Spencer in 
1989 [Sp4] to increase his bound to Fe(3, 3; 4) < 3 × 109 and change the title to Three Billion 
Points Suffice, which miraculously was still within Paul Erdős’ limit for the cash prize. The 
probabilistic techniques proved the existence of a Folkman graph of order 3 × 109 without 
actually constructing it.
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Spencer’s Upper Bound 29.41 ([Sp3], [Sp4], 1988–1989). Fe(3,3;4) < 3,000,000,000. 

The first lower bound is a consequence of Lin’s 1972 results [Lin], 10 ≤ Fe(3, 3; 5) ≤
Fe(3, 3; 4). In the paper published in Geombinatorics [RX], Stanisław P. Radziszowski and 
the Chinese mathematician Xiaodong Xu remark that the analysis in the cited above 1999 
result Fe(3, 3; 5) = 15 [PRU] allows to devise a better lower bound: all 659 15-vertex graphs 
that have no K5 subgraph and in every 2-coloring of edges contain a monochromatic K3, have 
a subgraph K4, hence 16 ≤ Fe(3, 3; 4). This 2007 paper [RX] contains a computer-free proof 
that 18 ≤ Fe(3, 3; 4), and a further computer-aided improvement to 19 ≤ Fe(3, 3; 4), which 
remained the best known lower bound for 10 years. In 2017, Geombinatorics carried the new 
lower bound obtained in a computer-aided proof by Aleksandar Bikov and Nedyalko Nenov 
[BN1]. In 2020, the same authors increased their lower bound to the best known today 21. 

Bikov–Nenov’s Lower Bound 29.42 ([BN4], 2020). 21 ≤ Fe(3, 3; 4). 

Let us now trace the history of the upper bound after Spencer with the aid of [XR]. In 2008, 
L. Lu [Lu] dramatically lowered Spencer’s upper bound: he showed that Fe(3, 3; 4)≤ 9697 by 
constructing a certain family of K4-free circulant

8 graphs. 
During the same year, Andrzej Dudek and Vojtěch Rödl [DuR] developed a strategy to 

construct new Folkman graphs by approximating the maximum cut of a related graph. They 
substantially reduced the upper bound to 941. 

Alexander Lange, Stanisław Radziszowski, and Xiaodong Xu first reduced the upper 
bound to 860 and then further to the best known bound of 786 with the MAX-CUT 
semidefinite programming relaxation as in the Goemans–Williamson algorithm. While the 
results were obtained by 2012 and presented in May 2012 at the 25th Cumberland Confer-
ence, Johnson City, TN, they were published only in 2014 [LRX]. 

Lange–Radziszowski–Xu’s Upper Bound 29.43 [LRX]. Fe(3, 3; 4) ≤ 786. 

Thus, the state of the problem today is this: 

21≤Fe 3, 3; 4ð Þ≤ 786: 

Enormous efforts to find Fe(3, 3; 4) made me ask the expert, Stanisław Radziszowski, what 
would happen if we replace K4 by K4 – e usually denoted by J4? Would it be harder? No, 
Fe(3, 3; J4) does not exist. Here, any two triangles can share at most a vertex (not edge), thus 
we can always 2-color the edges of all triangles with 2-1 split between the colors. What about 
K5 – e = J5? The bounds we have today are quite wide: 

15=Fe 3, 3;K5ð Þ≤Fe 3, 3; J5ð Þ≤Fe 3, 3;K4ð Þ≤ 786: 

Not much is known about “neighboring” Folkman numbers. Radziszowski and Xu men-
tion one such number obtained by L. Lu in 2008 [Lu]: 

8 The circulant graph can be drawn (possibly with crossings) so that its vertices lie on the corners 
of a regular polygon, and every rotational symmetry of the polygon is also a symmetry of the 
drawing.



Fe K4–e;K4–e;K4ð Þ≤ 30193: 

During the 2012 SIAM Conference on Discrete Mathematics in Halifax, Nova Scotia, 
Ronald Graham announced a $100 award for determining whether Fe(3, 3; 4) < 100. 

Graham’s $100 Problem 29.44 Is it true that Fe(3, 3; 4) < 94? 

As you can see, the gap between the best known lower and upper bounds of Fe(3, 3; 4) is 
much smaller, but still significant. The authors of [RX] report: 

Geoffrey Exoo suggested to look at the well-known Ramsey coloring of K127 defined by 
Hill and Irving [HI] in 1982 in order to establish the bound 128 ≤ R(4, 4; 4). 

Exoo suggested that even a 94-vertex induced subgraph, obtained by removing 3 disjoint 
independent sets of order 11, may still work. If true, this would imply Fe(3, 3; 4) ≤ 94. 

During Staszek Radziszowski’s 8 March 2007, talk at the Florida Atlantic University 
conference, I hinted that a prize for a dramatic improvement in the upper bound would be in 
order and the speaker obligated by offering $500. Better yet, in his 22 March 2007 e-mail to 
me, Staszek offered two $500 prizes, for proof or disproof of the lower bound 50 and for the 
upper bound 127 of Fe(3, 3; 4). “I believe that both of these bounds are true,” he added in the 
e-mail. 

Radziszowski’s Double $500 Conjecture 29.45 50 ≤ Fe(3, 3; 4) ≤ 127. 

In his 2007 talk, Radziszowski mysteriously hinted that an upper bound he conjectured to 
be 127 may be proved in the year 2013. On May 18, 2021, Staszek informed me that he did 
not conquer the upper bound, for “it is too hard.” The same day I checked with another wizard 
of the computer-aided mathematics, Geoffrey Exoo. Here is Geoff’s reply: 

Dear Alexander,
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Yes I did work on the Folkman problem, and I conjectured a long time ago that the cubic 
residue graph on 127 vertices was a Folkman graph. In fact, I believe that that graph has 
subgraphs of order approximately 80 that also cannot be two edge colored without a 
monochromatic triangle. Proving that is approximately as hard as R(5, 5). 

As we all know, determining the exact value of the Ramsey number R(5, 5) is really hard. 
Recently, Stanisław Radziszowski edited his double $500 conjecture, which now requires 

a harder effort on the upper bound side and reads as follows: 

Radziszowski’s New Double $500 Conjecture 29.46 50 ≤ Fe(3, 3; 4) ≤ 94. 

In looking at recent work on Folkman numbers, I encountered an explosion. A group 
Zohair Raza Hassan, Yu Jiang, David E. Narváez, Stanisław Radziszowski, Xiaodong Xu 
produced many new results [HJNRX] (2021–2022 in arXiv, and the 2023 acceptance by the 
journal Graphs and Combinatorics.
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The Ramsey Principles
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Chapter 30 
From Pigeonhole Principle to Ramsey Principle 

30.1 Infinite Pigeonhole and Infinite Ramsey Principles 

The Infinite Pigeonhole Principle states: 

Infinite Pigeonhole Principle 30.1 Let k be a positive integer. If elements of an infinite set 
S are colored in k colors, then S contains an infinite monochromatic subset S1. 

I am sure you will have no difficulties in proving it. 
Do you see anything in common between this simple principle and Infinite Diagonal Graph 

Version of the Ramsey Theorem 29.14? Both say that if we have enough objects, then we can 
guarantee the existence of something: in the Pigeonhole Principle, it is an infinite subset; in 
Ramsey Theorem 29.14, we get an infinite subset of edges, i.e., the subset of two-element sets 
of vertices of the graph (since an edge is a pair of vertices). This connection is very close; both 
results are particular cases of the so-called Ramsey Theorem, one result for r = 1 and the other 
for r = 2. Let me formulate it here under the new, more appropriate in my opinion name: 

The Infinite Ramsey Principle 30.2 For any positive integers k and r, if all r-element 
subsets of an infinite set S are colored in k colors, then S contains an infinite subset S1 such that 
all r-element subsets of S1 are assigned the same color. 

I have always felt that something was wrong with the title “Ramsey Theorem.” To see that, 
it suffices to read the leader of the field Ronald L. Graham, who in 1983 wrote [Gra2]: 

The generic [sic] result in Ramsey Theory is due (not surprisingly) to F. P. Ramsey. 

Exactly: a “generic result,” compared to much more specific typical examples, such as the 
Schur Theorem (Chapter 34) and the Baudet–Schur–Van der Waerden Theorem (Chapter 35). 
The Ramsey Theorem occupies a unique place in Ramsey Theory. It is a powerful tool. It is 
also a philosophical principle stating, as Theodore S. Motzkin put it, that “complete disorder 
is an impossibility. Any structure will necessarily contain an orderly substructure”1 . It is, 
therefore, imperative to call the Ramsey Theorem by a much better fitting name: The Ramsey 
Principle. 

1 Quoted from [GRS2]. 
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The original double induction proof of the Infinite Ramsey Principle 30.2 by F. P. Ramsey 
is crystal clear – read it in the original [Ram2]. I choose to present here the proof by Ronald 
L. Graham from [Gra1]. This is not only a beautiful proof: It demonstrates a method that has 
worked very productively in Ramsey Theory. Keep it in your mathematical toolbox. 

Proof of 30.2 by Ronald L. Graham [Gra1]. For r = 1, we get the Infinite Pigeonhole 
Principle, which is true. 

Without loss of generality, we can assume that our infinite set S coincides with the set of 
positive integers N. (Every infinite set S contains a countable subset equivalent to N, and N is 
sufficient for us to select the required in the problem subset S1.) 

We first treat the case r = 2 since it is easy to visualize. We can identify the 2-element 
subsets of N with edges of the infinite complete graph KN with the vertex set N = {1, 2, . . ., n, 
. . .}. Let the edges of KN be colored in k colors. It is convenient to denote the color of an edge 
{x, y} by  χ{x, y}. 

(1) Consider the edges of the form {1, x}, i.e., the edges incident with the vertex 1. There are 
infinitely many of them and only k colors; therefore, by the Infinite Pigeonhole Principle, 
infinitely many of these edges {1, x1}, {1, x2}, . . ., {1, xn}, . . .  are assigned the same 
color, say c1. Denote X = {x1, x2, . . ., xn, . . .}; and let x1 be the smallest number in X. Note 
that χ{1, x} = c1 for any x in X. 

(2) Consider the edges of the form {x1, x} where x2X; i.e., the edges incident with the vertex 
x1 with the other endpoint x being an element of the set X. Once again, by the Infinite 
Pigeonhole Principle, infinitely many of these edges {x1, y1}, {x1, y2}, . . ., {x1, yn}, . . .  are 
assigned the same color, say c2. Denote Y = {y1, y2, . . ., yn, . . .}; and let y1 be the smallest 
number in Y. Note that χ{x1, y} = c2 for any y in Y. 

(3) Consider the edges {y1, y}, where y2Y, i.e., edges incident with the vertex y1 with the 
other endpoint y being an element of Y. By the Infinite Pigeonhole Principle, infinitely 
many of these edges {y1 ,z1}, {y1, z2}, . . ., {y1, zn}, . . .  are assigned the same color, say c3. 
Denote Z = {z1, z2, . . ., zn, . . .}; and let z1 be the smallest number in Z. We have χ{y1, 
z} = c3 for any z in Z, etc. 

We can continue this construction indefinitely. As a result, we get the infinite set 
T = {1, x1, y1, z1, . . .}. It has one key property: for any two elements t, t′ from T the color 
of the edge {t, t′} depends only on the value of min{t, t′}. Consequently, our edge coloring 
χ on T uniquely determines vertex coloring χ* on  T as follows: 

χ� tð Þ= χ t, t0f g for t0 > t: 

Thus, we get the set T colored in k colors. By the Infinite Pigeonhole Principle, some 
infinite subset S1 of T must be monochromatic under χ*, i.e., all colors χ*(s) for s from S1 are 
the same. But by the definition of χ*, this means precisely that all edges {s, s′} of  S1 have the 
same color under χ. This proves the Infinite Ramsey Principle for r = 2. 

As an example of the method, let me sketch the proof for r = 3. The given k-coloring χ of 
3-element subsets of N uniquely determines k-coloring χ1 of the 2-element subsets of X=N 
\{1} by χ1{x, x′} = χ{1, x, x′}. By the Infinite Ramsey Principle for k = 2, X contains an 
infinite subset X′monochromatic under χ1, (i.e., all values χ1{x, x′} are the same for x, x′2Y),



say having color c1, and the smallest element x1. Next, the original k-coloring χ uniquely 
defines k-coloring of 2-element subsets of Y=X′\{x1} by  χ2{y, y′} = χ{x1, y, y′}. Once again, 
by the Infinite Ramsey Principle for r = 2, Y contains an infinite subset Y′ monochromatic 
under χ2, having color c2 and the smallest element y1. We next observe that the original 
k-coloring χ uniquely defines k-coloring χ3 of 2-element subsets of Z=Y′\{y1} by  χ3{z, 
z′} = χ{y1, z,  z′}, etc. 

30.1 Infinite Pigeonhole and Infinite Ramsey Principles 317

Similarly to the case r = 2 above, we end up with the infinite set T = {1, x1, y1, z1, . . .} 
which by construction has the property that the color of any triple {t, t′, t″} depends only on 
min{t, t′, t″}. Thus, the original k-coloring χ of 3-element subsets of T uniquely defines the 
k-coloring χ* of the vertices of T as follows: 

χ� tð Þ= χ t, t0, t00f g for t00> t0 > t:ð

By the Infinite Pigeonhole Principle, some infinite subset S1 of T is monochromatic under 
χ*. By the definition of χ*, this means that all 3-element subsets of S1 have the same color 
under χ. We are done for r = 3. 

The inductive step for the general case follows exactly the same lines. ■ 

Have you heard of the famous Helly Theorem? I noticed in 1990 that the Helly Theorem 
and its variations are ready for the marriage to the Infinite Ramsey Principle. This could be a 
new observation: not just I, but the world-leading expert Branko Grünbaum, a coauthor of the 
monograph Helly’s Theorem and its Relatives [DGK], written jointly with Ludwig Danzer 
and Victor Klee, tells me that he has not heard of such a marriage. Here is a plane version of 
the Helly Theorem for the case of infinitely many figures. 

Helly’s Theorem for Infinite Family of Convex Figures in the Plane 30.3 Given an 
infinite family of closed convex figures in the plane, one of which is bounded. If every 3 of 
them have a point in common, then the intersection of all figures in the family is non-empty. 

We can obtain the following result, for example, by combining the Helly Theorem and the 
Infinite Ramsey Principle. I am naming it the Helly × Ramsey. 

The Helly × Ramsey Theorem 30.4 (Soifer, 2007). Let F1, F2, . . ., Fn, . . .  be a family of 
closed convex figures in the plane, and F1 be bounded. If among any 4 figures, there are 
3 figures with a point in common, then infinitely many figures of the family have a point in 
common. 

Proof Consider the set S = {F1, F2, . . ., Fn, . . .}. We color a 3-element subset {Fi, Fj, Fk} of  
S red if Fi\Fj\Fk ≠ ∅ and blue otherwise. By the Infinite Ramsey Principle, S contains an 
infinite subset S1 such that all 3-element subsets of S1 are assigned the same color. This color 
cannot be blue because every 4-element subset of S1 contains a 3-element subset T = {Fi, Fj, 
Fk}, such that Fi\Fj\Fk ≠ ∅, i.e., T is colored red. Thus, all 3-element subsets of S1 are red. 
By the Helly Theorem 30.3, all figures of the infinite subset S1 have a point in common. ■ 

The statement of theorem 30.4 remains true if we replace 4 by any larger integer n. 
In 1990, Paul Erdős informed me in a letter that a stronger statement was conjectured 

(he was not sure by whom).
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Conjecture 30.5 Given an infinite family of closed convex figures in the plane, one of which 
is bounded. If among any 4 figures, there are 3 figures with a point in common, then there is a 
finite set S (consisting of n points), such that every given figure contains at least one point 
from S. 

Moreover, n is an absolute constant (i.e., it is one and the same for all families that satisfy 
the above conditions). 

Vladimir Boltyanski and I first published this conjecture in 1991 [BS]. Eighteen years later, 
on September 26, 2008, while reading the manuscript of the forthcoming new expanded 2009 
Springer edition of [BS], Branko Grünbaum resolved this conjecture in the negative: I mailed 
him the $25 prize. Grünbaum showed that Conjecture 30.5 does not hold even for line E. 

Grünbaum’s Counterexample 30.6 (e-mail to A. Soifer, September 26, 2008). Define the 
sets as follows: 

F0 = {0}; 
Fn = {x 2 E : x ≥ n}, for every positive integer n. 

Of course, all conditions of Conjecture 30.5 are satisfied, while for any finite set S of reals, 
there is an integer n that is greater than any number from S. By definition, Fn does not contain 
any element from S. ■ 

On September 29, 2008, I asked Branko Grünbaum whether he can “save” conjecture 30.5 
and the following day he sent me his saving recipe: 

Yes, I conjecture that Erdős problem may be resuscitated by requiring two (instead of 
just one) of the sets to be compact. But I do not see any easy proof. 

Grünbaum’s Conjecture 30.7 (e-mail to A. Soifer, September 30, 2008). Given an infinite 
family of closed convex figures in the plane, two of which are compact. If among any four 
figures, there are three figures with a point in common, then there is set S consisting of 
N = N(n) points, such that every given figure contains at least one point from S. 

On 3 July 2014, I received an email from Pablo Soberón from the University of Michigan: 

Dear Alexander, 
Recently I’ve been working with some colleagues on Conjecture 30.7 from your 

(very nice) mathematical coloring book, regarding Helly’s theorem. In case it is of 
interest to you, I’ve copied the arXiv link to the manuscript below, 

Kind regards, 
Pablo 

This paper [MMRS] by Amanda Montejano, Luis Montejano, Edgardo Roldán-Pensado, 
and Pablo Soberón, dated inside the paper “September 15, 2018,” cites the Boltyanski–Soifer 
conjecture that first appeared in 1990 in our joint book [BS], then the story of my exchange 
with Branko Grünbaum that I’ve just shared with you. Then they cite Tobias Müller [Mül], 
who in 2013 disproves conjecture 30.7, and observe that “a natural extension of Müller’s 
work refutes the possibility of ‘saving’ the conjecture by replacing the condition of two 
bounded sets by any number.”
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30.2 Pigeonhole Principle and Finite Ramsey Principle 

Let us take another look at Frank P. Ramsey’s pioneering 1930 paper [Ram2]. Having 
disposed of the infinite case, Ramsey proves the finite one [Ram2, Theorem B]. As a 
methodology of the new theory, it ought to be elevated to the status of a principle. 

The Finite Ramsey Principle 30.8 For any positive integers r, n, and k, there is an integer 
m0 = R (r, n, k) such that if m > m0 and all r-element subsets of an m-element set Sm are 
colored in k colors, then Sm contains an n-element subset Sn such that all r-element subsets of 
Sn are assigned the same color. 

Proof The Finite Ramsey Principle follows from the Infinite Ramsey Principle 30.2 by the de 
Bruijn–Erdős Compactness Theorem 27.1. 

A clearly written direct proof, without the use of compactness argument, can be found in 
the original 1930 paper by F. P. Ramsey [Ram2]; it is also reproduced in full in [GRS2]. ■ 

As you surely noticed, the (finite) Pigeonhole Principle is a particular case of the Finite 
Ramsey Principle for r = 1. 

The Pigeonhole Principle 30.9 Let n and k be positive integers. If elements of a set S with at 
least m0 = (n –1)k +  1 elements are colored in k colors, then S contains a monochromatic 
n-element subset. 

Since edges can be viewed as 2-element subsets of the vertex set of a graph, by plugging in 
r = 2 in the Finite Ramsey Principle, we get the result we encountered in the previous chapter: 
Finite Diagonal Graph Version of Ramsey Theorem 29.15. 

It is amazing to me how swiftly the news of the Ramsey Principle travel in the times that 
can hardly be called the Information Age. Ramsey’s paper appears in 1930. Already in 1933, 
the great Norwegian logician Thoralf Albert Skolem (1887–1963) publishes his own proof 
[Sko] of the Ramsey Theorem (with a reference to Ramsey’s 1930 publication!). In 1935, yet 
another proof (in the graph-theoretic setting) appears in the paper [ES1] by two young 
Hungarians, Pál (Paul) Erdős and Gjörgy (George) Szekeres. We will look at this remarkable 
paper in the next chapter. The authors then consider generalizations of Erdős–Grünbaum 
conjectures, which are valuable, but lie outside of the scope of this book.

https://doi.org/10.1007/978-1-0716-3597-1_27#FPar1
https://doi.org/10.1007/978-1-0716-3597-1_29#FPar22
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Chapter 31 
The Happy End Problem 

31.1 The Problem 

During the winter of 1932–1933, two young friends, mathematics student Paul (Pál) Erdős, 
aged 19, and chemistry student George (György) Szekeres, 21, solved the problem posed by 
their young lady friend Esther Klein, 22, but did not send it to a journal for a year and a half. 
When Erdős finally sent this joint paper for publication, he chose J. E. L. Brouwer’s journal 
Compositio Mathematica, where it appeared in 1935 [ES1]. 

Erdős and Szekeres were first to demonstrate the power and striking beauty of the Ramsey 
Principle when they solved the problem. Do not miss G. Szekeres’ story of this momentous 
solution later in this chapter. In the process of working with Erdős on the problem, Szekeres 
actually rediscovered the Finite Ramsey Principle before the coauthors ran into the 1930 
Ramsey publication [Ram2]. 

The Erdős–Szekeres Theorem 31.1 [ES1]. For any positive integer n ≥ 3, there is an 
integer m0 such that any set of at least m0 points in the plane in general position

1 contains 
n points that form a convex polygon. 

To prove the Erdős–Szekeres Theorem, we need the following two tools. 

Tool 31.2 (Esther Klein, Winter 1932–33). Any 5 points in the plane in general position 
contain 4 points that form a convex quadrilateral. 

In fact, in anticipation of the proof of the Erdős–Szekeres Theorem, it makes sense to 
introduce an appropriate notation ES(n) for the Erdős–Szekeres function. For a positive 
integer n, ES(n) will stand for the minimal number such that any ES(n) points in the plane 
in general position contain n points that form a convex n-gon. Esther Klein’s result can then 
be written as follows: 

Result 31.3 (Esther Klein). ES(4) = 5. 

1 I.e., no three points lie on a line. 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597
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Proof Surely, ES(4) > 4. Given 5 points in the plane in general position, consider their 
convex hull H.2 If H is a quadrilateral or a pentagon, we are done. If H is a triangle, two of the 
five given points, call them a, b lie inside H. The line ab does not intersect one of the sides of 
triangle H, let it be the side de. Then, we get a convex quadrilateral formed by the four points 
a, b, d, and e. ■ 

Tool 31.4 (P. Erdős and G. Szekeres, [ES1]). Let n ≥ 3 be a positive integer. Then n points in 
the plane form a convex polygon if and only if every 4 of them form a convex quadrilateral. 

Paul Erdős told me that two members of his Budapest circle E. Makai and Paul Turán 
established (but never published) one more exact value of ES(n): 

Result 31.5 (E. Makai and P. Turán). ES(5) = 9. 

Erdős mentioned the authorship of this result numerous times in his problem papers and 
talks. However, I know only one instance when he elaborated on it. During Paul Erdős’ stay 
with me in March 1989, he gave two lectures at the University of Colorado at Colorado 
Springs. In his first lecture, Paul mentioned that Makai and Turán found proofs of 31.5 
independently. Paul said that Makai proof was lengthy and shared with us Turán’s short 
Olympiad-like proof. Turán starts along Esther Klein’s lines, by looking at the convex hull of 
the given 9 points. Let me stop right here to allow you the pleasure of finding a proof on 
your own. 

We are now ready to prove the Erdős–Szekeres Theorem asserting the existence of the 
function ES(n). 

Proof of Theorem 31.1 by P. Erdős and G. Szekeres Let n ≥ 3 be a positive integer. By the 
Ramsey Principle 30.8 (we set r = 4 and k = 2), there is an integer m0 = R(4, n, 2) such that if 
m > m0 and all 4-element subsets of an m-element set Sm are colored in 2 colors, then Sm 
contains a n-element subset Sn with all 4-element subsets of Sn assigned the same color. 

Now let Sm be a set of m points in the plane in general position. We color a 4-element 
subset of Sm red if it forms a convex quadrilateral and blue if it forms a concave (i.e., 
non-convex) quadrilateral. Thus, all 4-element subsets of Sm are colored red and blue. 
Hence, Sm contains an n-element subset Sn such that all 4-element subsets of Sn are assigned 
the same color. This color cannot be blue because in view of tool 31.2 any 5- or more element 
set contains a red 4-element subset! Therefore, all 4-element subsets of Sn are colored red, i.e., 
they form convex quadrilaterals. By tool 31.4, Sn forms a convex n-gon. ■ 

I must show you a beautiful alternative proof of the Erdős–Szekeres Theorem 31.1, 
especially since it was found by an undergraduate student, Michael Tarsi of Israel. He missed 
the class when the Erdős–Szekeres solution was presented and had to come up with his own 
proof under the gun of the exam! Tarsi recalls (e-mail to me of December 12, 2006): 

Back in 1972, I took the written final exam of an undergraduate Combinatorics course at 
the Technion – Israel Institute of Technology, Haifa, Israel. Due to personal circum-
stances, I had barely attended school during that year and missed most lectures of that 
particular course. The so-called Erdős–Szekeres Theorem was presented and proved in 

2 Convex hull of a set S is the minimal convex polygon that contains S. If you pound a nail in every 
vertex of S, then a tight rubber band around all nails would produce the convex hull.
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class, and we have been asked to repeat the proof as part of the exam. Having seen the 
statement for the first time, I was forced to develop my own little proof. 

Our teacher in that course, the late Professor Mordechai Levin, had published the 
story as an article, I cannot recall the journal’s name, the word ‘Gazette’ was there, and it 
dealt with Mathematical Education. 

I was born in Prague (Czechoslovakia at that time) in 1948 but was raised and grew 
up in Israel since 1949. Currently I am a professor of Computer Science at Tel Aviv 
University, Israel. 

Proof of Theorem 31.1 by Michael Tarsi Let n ≥ 3 be a positive integer. By the Ramsey 
Principle 30.8 (r = 3 and k = 2), there is an integer m0 = R(3, n, 2) such that, if m > m0 and all 
3-element subsets of an m-element subset Sm are colored in 2 colors, then Sm contains an 
n-element subset Sn such that all 3-element subsets of Sn are assigned the same color. 

Let now Sm be a set of m points in the plane in general position labeled with integers 1, 2, 
. . ., m. We color a 3-element subset {i, j, k}, where i < j < k, red if we travel from i to j to k in 
a clockwise direction and blue if counterclockwise. By the above, Sm contains an n-element 
subset Sn such that all 3-element subsets of Sn are assigned the same color, i.e., have the same 
orientation. But this means precisely that Sn forms a convex n-gon! ■ 

In their celebrated paper [ES1], P. Erdős and G. Szekeres also discover the Monotone 
Subsequence Theorem. 

A sequence a1, a2, . . ., ak of real numbers is called monotone if it is increasing, i.e., 
a1 ≤ a2 ≤ . . .  ≤ ak, or decreasing, i.e., a1 ≥ a2 ≥ . . .  ≥ ak (we use weak versions of these 
definitions that allow equalities of consecutive terms). 

The Erdős–Szekeres Monotone Subsequence Theorem 31.6 [ES1]. Any sequence of 
n2 + 1 real numbers contains a monotone subsequence of n + 1 numbers. 

I would like to show here how the Ramsey Principle proves such a statement with, of 
course, much worse upper bound than n2 + 1. I haven’t seen this argument in literature before. 

Problem 31.7 Any long enough sequence of real numbers contains a monotone subsequence 
of n + 1 numbers. 

Solution Take a sequence S of m = R(2, n + 1, 2) numbers a1, a2, . . ., am. Color a 2-element 
subsequence {ai, aj}, i < j red if ai ≤ aj and blue if ai > aj. By the Ramsey Principle, there is 
an (n + 1)-element subsequence S1 with every 2-element subsequence of the same color. This 
subsequence is monotone! ■ 

In [ES1] P. Erdős and G. Szekeres generalize Theorem 31.6 as follows: 

The Erdős–Szekeres Monotone Subsequence Theorem 31.8 Any sequence S: a1, a2, . . ., 
ar of r > mn real numbers contains a decreasing subsequence of more than m terms or an 
increasing subsequence of more than n terms. 

A quarter of a century later, in 1959, Abraham Seidenberg of the University of California, 
Berkeley, found a brilliant “one-line” proof of theorem 31.8, thus giving it a true Olympiad-
like appeal. 

Proof of Theorem 31.8 by A. Seidenberg [Sei]. Assume that the sequence S: a1,  a2, . . .,  ar of 
r > mn real numbers has no decreasing subsequence of more than m terms. To each ai assign a



\ \

pair of numbers (mi, ni), where mi is the largest number of terms of a decreasing subsequence 
beginning with ai and ni the largest number of terms of an increasing subsequence beginning 
with ai. This correspondence is an injection, i.e., distinct pairs correspond to distinct terms ai, 
aj, i  < j. Indeed, if ai ≤ aj, then ni ≥ nj + 1, and if ai > aj, then mi ≥ mj + 1.  
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We get r > mn distinct pairs (mi,ni), they are our pigeons, and m possible values for the first 
coordinates mi, since 1 ≤ mi ≤ m, they are our m pigeonholes. By the Pigeonhole Principle, 
there are at least n +  1 pairs (m0, ni) with the same first coordinate m0. Terms ai corresponding 
to these pairs (m0,ni) form an increasing subsequence! ■ 

Erdős and Szekeres note that the result of their theorem 31.8 is the best possible: 

Problem 31.9. ([ES1]) Construct a sequence of mn real numbers such that it has no 
decreasing subsequence of more than m terms and no increasing subsequence of more than 
n terms. 

Proof Here is a sequence of mn terms that does the job: 

m,m- 1, . . . 1; 2m, 2m- 1, . . . ,mþ 1; . . . ; nm, nm- 1, . . . , n–1ð Þ mþ 1:■ 

H. Burkill and Leon Mirsky in their 1973 paper [BM] observe that the Monotone Subse-
quence Theorem holds for countable sequences as well. 

Countable Monotone Subsequence Theorem 31.10 [BM]. Any countable sequence S: a1, 
a2, . . ., ar, . . .  of real numbers contains an infinite increasing subsequence or an infinite 
strictly decreasing subsequence. 

Hint Color the 2-element subsets of S in two colors. ■ 

The authors “note in passing [without proof] that the same type of argument enables us to 
show” the following cute result: 

Curvature Preserving Subsequence Theorem 31.11 [BM]. Any countable sequence S: a1, 
a2, . . ., ar, . . .  of real numbers possesses an infinite subsequence which is convex or concave. 

Hint Recall Michael Tarsi’s proof of the Erdős–Szeklers Theorem, and color the 3-element 
subsets of S in two colors! ■ 

The results of this chapter reminded me about the celebrated Helly Theorem, this time its 
main, finite version. 

The Helly Theorem 31.12 Let F1 . . ., Fm be convex figures in n-dimensional space E
n . If  

every n + 1 of these figures have a common point, then the intersection of them all F1\. . .\Fm 

is non-empty. 

In particular, for n = 2, we get the Helly Theorem for the plane. 

The Helly Theorem for the Plane 31.13 A finite family F1, . . ., Fm of convex figures is 
given in the plane. If every 3 of them have a non-empty intersection, then the intersection 
F1 . . .  Fm of all these figures is non-empty as well. 

The structure of the Helly Theorem appears to me similar to one of the theorem 31.1. This 
is why I believe that the Helly Theorem and its numerous beautiful variations are a fertile 
ground for applications of the powerful tool, the Finite Ramsey Principle 30.8. To the best of

https://doi.org/10.1007/978-1-0716-3597-1_30#FPar10


my – and Branko Grünbaum’s – knowledge, this marriage of Helly and Ramsey has not been 
noticed before. To illustrate it, I have created a sample problem. Its result is not important, but 
the method may lead you to discovering new theorems. 
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Problem 31.14 (A. Soifer, 2007). Let m be a large enough positive integer, m ≥ R(3, 111, 2) 
to be precise, and F1, . . ., Fm convex figures in the plane. If among every 37 figures there are 
3 figures with a point in common, then there are 111 figures with a point in common. 

Hint. The fact that 37 × 3 = 111 is a diversion, it has absolutely nothing to do with the 
solution: the statement of problem 31.14 remains true if we replace 37 and 111 by arbitrary 
positive integers l and n, respectively, as long as l ≤ n. 

Solution Letm≥ R (3, 111, 2), and F1, F2, . . ., Fm be convex figures in the plane. Consider the 
set S= {F1,F2, . . ., Fm}.We color a 3-element subset {Fi, Fj, Fk} of S red ifFi\Fj\Fk≠∅, and 
blue otherwise. By the Finite Ramsey Principle 30.8, there is a 111-element subset S1 of S such 
that all its 3-element subsets are assigned the same color. Which color can it be? Surely not 
blue, for among every 37 Figures, there are 3 figureswith a point in common, thus forming a red 
3-element subset. Thus, all 3-element subsets of S1 are red. Therefore, by the Helly Theorem 
31.13, the intersection of all 111 figures of the set S1 is non-empty. ■ 

31.2 The Story Behind the Happy End Problem 

On Paul Erdős’ 60th birthday, his lifelong friend George (György) Szekeres gave Paul and us 
all a present of magnificent reminiscences, allowing us a glimpse into Erdős and Szekeres’ 
first joint paper [ES1] and the emergence of a unique group of young unknown Jewish 
Hungarian mathematicians in Budapest, many of whom were destined to a great mathematical 
future. My request to reproduce these remarkable reminiscences, George Szekeres answered 
in the March 5, 1992 letter: 

Dear Alexander, . . .  Of course, as far as I am concerned, you may quote anything you 
like (or see fit) from my old reminiscences in “The Art of Counting”. . .  But of course it 
may be different with MIT Press, that you have to sort out with them. 

I am grateful to George Szekeres and the MIT Press for their kind permissions to reproduce 
George’s memoirs here. His Reminiscences are sad and humorous at the same time and warm 
above all. George kindly shared with me two photographs, allowing us an extremely rare 
glimpse at young handsome George and Esther, and also young Paul Turán with his first wife 
Edit (Klein) Kóbor and their son Robert. György (George) Szekeres recollects [Szek]: 

It is not altogether easy to give a faithful account of events which took place forty years 
ago, and I am quite aware of the pitfalls of such an undertaking. I shall attempt to 
describe the genesis of this paper, and the part each of us played in it, as I saw it then and 
as it lived on in my memory. 

For me there is a bit more to it than merely reviving the nostalgic past. Paul Erdős, 
when referring to the proof of Ramsey’s theorem and the bounds for Ramsey numbers 
given in the paper, often attributed it to me personally (e.g., in [E42.06]), and he obviously 
attached some importance to this unusual step of pinpointing authorship in a joint paper. 
At the same time the authorship of the “second proof” was never clearly identified.
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György Szekeres and Esther Klein, Bükk Mountains, Northern Hungary, 1938 (shortly after 
their 1937 marriage). (Courtesy of György Szekeres)



I used to have a feeling of mild discomfort about this until an amusing incident some
years ago reassured me that perhaps I should not worry about it too much. A distin-
guished British mathematician gave a lunch hour talk to students at Imperial College on
Dirichlet’s box principle, and as I happened to be with Imperial, I went along. One of his
illustrations of the principle was a beautiful proof by Besicovitch of Paul’s theorem (2nd
proof in [ES1]), and he attributed the theorem itself to “Erdős and someone whose name
I cannot remember.” After the talk I revealed to him the identity of Paul’s co-author
(incidentally also a former co-author of the speaker) but assured him that no historical
injustice had been committed as my part in the theorem was less than ε.
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The origins of the paper go back to the early thirties. We had a very close circle of 
young mathematicians, foremost among them Erdős, Turán and Gallai; friendships were 
forged which became the most lasting that I have ever known and which outlived the 
upheavals of the thirties, a vicious world war and our scattering to the four corners of the 
world. I myself was an “outsider,” studying chemical engineering at the Technical 
University, but often joined the mathematicians at weekend excursions in the charming 
hill country around Budapest and (in summer) at open air meetings on the benches of the 
city park.
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Paul Erdős, early 1930s, Budapest. (Courtesy of Paul Erdős)
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Paul, then still a young student but already with a few victories in his bag, was always 
full of problems and his sayings were already a legend. He used to address us in the 
same fashion as we would sign our names under an article and this habit became 
universal among us; even today I often call old members of the circle by a distortion 
of their initials. 

“Szekeres Gy., open up your wise mind.” This was Paul’s customary invitation – or 
was it an order? – to listen to a proof or a problem of his. Our discussions centered 
around mathematics, personal gossip, and politics. It was the beginning of a desperate 
era in Europe. Most of us in the circle belonged to that singular ethnic group of 
European society which drew its cultural heritage from Heinrich Heine and Gustav 
Mahler, Karl Marx and Cantor, Einstein and Freud, later to become the principal target 
of Hitler’s fury. Budapest had an exceptionally large Jewish population, well over 
200,000, almost a quarter of the total. They were an easily identifiable group, speaking 
an inimitable jargon of their own and driven by a strong urge to congregate under the 
pressures of society. Many of us had leftist tendencies, following the simple reasoning 
that our problems can only be solved on a global, international scale and socialism was 
the only political philosophy that offered such a solution. Being a leftist had its dangers 
and Paul was quick to spread the news when one of our number got into trouble: 
“A. L. is studying the theorem of Jordan.” It meant that following a political police 
action A. L. has just verified that the interior of a prison cell is not in the same 
component as the exterior. I have a dim recollection that this is how I first heard 
about the Jordan curve theorem. 

Apart from political oppression, the Budapest Jews experienced cultural persecution 
long before anyone had heard the name of Hitler. The notorious “numerus clausus” was 
operating at the Hungarian Universities from 1920 onwards, allowing only 5% of the 
total student intake to be Jewish. As a consequence, many of the brightest and most 
purposeful students left the country to study elsewhere, mostly in Germany, Czecho-
slovakia, Switzerland, and France. They formed the nucleus of that remarkable influx of 
Hungarian mathematicians and physicists into the United States which later played such 
an important role in the fateful happenings towards the conclusion of the second 
world war. 

For those of us who succeeded in getting into one of the home universities, life was 
troublesome and the outlook bleak. Jewish students were often beaten up and humiliated 
by organized student gangs and it was inconceivable that any of us, be he as gifted as 
Paul, would find employment in academic life. I myself was in a slightly better position 
as I studied chemical engineering and therefore resigned to go into industrial employ-
ment, but for the others even a high school teaching position seemed to be out of reach. 

Paul moved to Manchester soon after his Ph.D. at Professor Mordell’s invitation and 
began his wanderings which eventually took him to almost every mathematical corner 
of the world. But in the winter of 1932/33 he was still a student; I had just received my 
chemical degree and, with no job in sight, I was able to attend the mathematical 
meetings with greater regularity than during my student years. It was at one of these 
meetings that a talented girl member of our circle, Esther Klein (later to become Esther 
Szekeres), fresh from a one-semester stay in Göttingen, came up with a curious problem: 
given five points in the plane, prove that there are four which form a convex quadrilat-
eral. In later years this problem frequently appeared in student’s competitions, also in
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the American Mathematical Monthly (53(1946)462, problem E740). Paul took up the 
problem eagerly and a generalization soon emerged: is it true that out of 2n–2 + 1 points 
in the plane one can always select n points so that they form a convex n–sided polygon? 
I have no clear recollection how the generalization actually came about; in the paper we 
attributed it to Esther, but she assures me that Paul had much more to do with it. We 
soon realized that a simple-minded argument would not do and there was a feeling of 
excitement that a new type of geometrical problem emerged from our circle which we 
were only too eager to solve. For me the fact that it came from Epszi (Paul’s nickname 
for Esther, short for ε) added a strong incentive to be the first with a solution and after a 
few weeks I was able to confront Paul with a triumphant “E. P., open up your wise 
mind.” What I really found was Ramsey’s theorem, from which it easily followed that 
there exists a number N <1 such that out of N points in the plane it is possible to select 
n points which form a convex n-gon. Of course, at that time none of us knew about 
Ramsey. It was a genuinely combinatorial argument and it gave for N an absurdly large 
value, nowhere near the suspected 2n–2 . Soon afterwards Paul produced his well known 
“second proof” which was independent of Ramsey and gave a much more realistic value 
for N; this is how a joint paper came into being. 

I do not remember now why it took us so long (a year and a half) to submit the paper 
to the Compositio. These were troubled times and we had a great many worries. I took 
up employment in a small industrial town, some 120 km from Budapest, and in the 
following year Paul moved to Manchester; it was from there that he submitted the paper. 

I am sure that this paper had a strong influence on both of us. Paul with his deep 
insight recognized the possibilities of a vast unexplored territory and opened up a new 
world of combinatorial set theory and combinatorial geometry. For me it was the final 
proof (if I needed any) that my destiny lay with mathematics, but l had to wait for 
another fifteen years before I got my first mathematical appointment to Adelaide. I never 
returned to Ramsey again. 

Paul’s method contained implicitly that N > 2n–2 , and this result appeared some 
thirty-five years later [ES2] in a joint paper, after Paul’s first visit to Australia. The 
problem is still not completely settled, and no one yet has improved on Paul’s value of 

N = 
2n- 4 
n- 2 

þ 1: 

Of course, we firmly believe that N = 2n–2 + 1 is the correct value. ■ 

These moving memories prompted me to ask for more. George Szekeres replied on 
November 30, 1992: 

Dear Sasha, . . .  Marta Svéd rang me some time ago from Adelaide, reminding me of an 
article that I was supposed to write about the old Budapest times . . .  From a distance of 
60 years, as I approach 82, these events have long lost their “romantic” freshness . . .  My 
memories of those times are altogether fading away into the remote past, even if they are 
occasionally refreshed on my visits to Budapest. (I will certainly be there to celebrate 
Paul’s 80-th birthday.) 

The following year George Szekeres and Esther Klein did come to Keszthely, Hungary, 
located on the shores of beautiful Lake Balaton. We met for an outdoor dinner during the



unforgettable conference dedicated to Paul Erdős’ 80th birthday. George and Esther shared 
with me unique memories of Tibor Gallai, a key member of their Budapest group. See them in 
a later chapter, dedicated to the Gallai Theorem. During the outdoor dinner, George and 
Esther passed to me all complimentary shot glasses with something Hungarian resembling 
Russian vodka. 
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31.3 An Early Photograph of Turán Pál and His First Family 

As you know from the previous chapter, György (George) Szekeres shared with me a rare 
early photograph of an essential member of the group of young Jewish mathematicians of 
Budapest, Turán Pál, or Paul Turán. This photograph George Szekeres and Esther Klein 
carried with them from Hungary to their exile in China and then to their new home in Sydney, 
Australia. George wanted me to have this photograph, and so I owed it to him to publish it. 

I did not include it in the first edition of this book because I could not find the names of 
Paul’s first wife and son. Almost nobody knew, and those few who did, would not answer me, 
as if the first marriage of Paul Turán is a classified national security secret, and I – and you, my 
reader – do not have security clearance to learn about Paul Turán’s first family. 

Paul Turán, his first wife Edit (Klein) Kóbor, and their son Róbert Turán, ca. 1940s. (Courtesy 
of György Szekeres) 

Finally, this photograph for the first time is seeing the light of day, and you get to meet 
young Paul Turán with his beautiful first wife Edit (Klein) Kóbor, and their son Róbert Turán.
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We know that Hungary, collaborating with Nazi Germany, was not a bed of roses for the 
Jews. For a while, Paul Turán could not get an academic job. In the years 1940–1944, he was 
involuntarily sent to labor camps. In the process of searching for Paul Turán’s first family, I 
obtained from Hungary information that I did not see in print, at least not in mathematical 
texts. My inquiry to Magyar Zsidó Múzeum (Hungarian Jewish Museum) was answered on 
July 22, 2019, by Dr. Zsuzsanna Toronyi: 

Dear Prof. Soifer, 
Thank you for your inquiry about our former director’s father who was a world-

famous mathematician. Róbert Turán was the director of the Hungarian Jewish Museum 
and Archives between 1994 and 2008. He himself is a writer, with amazing stories about 
the family as well. His homepage is available at: http://turanrobert.hu/index.html. His 
e-mail address is <snip>. 

Let me draw your attention to Turán Pál’s other son as well: he is Tamas Turán, now 
lives in Israel and works for the Hebrew University as well as for our Jewish Studies 
Department at the ELTE University, Budapest. He also started as a mathematician but 
studies philosophy as well. His publications at the academia.edu are available here: 
https://mta.academia.edu/TamasTuran. 

His mother is Vera Sós, also a professor of mathematics.3 Tamas’s e-mail address is 
<snip>. 

Turán Pál was active in the Jewish Community and as a member of the General 
Assembly, his portrait is available in our collection http://collections.milev.hu/items/ 
show/33044 as part of huge tableaux displaying the members of the General Assembly 
in 1950: http://collections.milev.hu/items/show/32853. 

I contacted Róbert Turán several times without receiving a reply. Tamas Turán replied that 
the family did not wish to share information. 

31.4 Progress on the Happy End Problem 

In May 1960, when Paul Erdős visited George Szekeres in Adelaide, Australia, they improved 
the lower bound in the Happy End Problem [ES2]. 

Lower Bound 31.15 (P. Erdős and G. Szekeres [ES2]). 2n–2 ≤ES(n), where ES(n) is the 
Erdős–Szekeres function, i.e., the smallest integer such that any ES(n) points in general 
position contain a convex n-gon.4 

It is fascinating how sure Erdős and Szekeres were of their conjecture. In one of his last, 
posthumously published problem papers [E97.18], Paul Erdős attached the prize and mod-
estly attributed the conjecture to Szekeres: “I would certainly pay $500 for a proof of 
Szekeres’ conjecture.” 

3 Vera T. Sós, Paul Turán’s second wife, is a famous mathematician, member of the Hungarian 
Academy of Sciences, a frequent collaborator with Paul Turán and Paul Erdős. 
4 Erdős and Szekeres actually proved a strict inequality.

http://turanrobert.hu/index.html
http://academia.edu
https://mta.academia.edu/TamasTuran
http://collections.milev.hu/items/show/33044
http://collections.milev.hu/items/show/33044
http://collections.milev.hu/items/show/32853
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The Erdős–Szekeres Happy End $500 Conjecture 31.16 

ES nð Þ= 2n- 2 þ 1: 

Their confidence is a bit surprising5 because the foundation for the conjecture was quite thin, 
just results 31.2 and 31.5: 

ES 4ð Þ= 5, 

ES 5 = 9: 

Of all people, I should not be surprised, for my general conjecture for the chromatic 
number of the Euclidean n-dimensional space (see it near the end of the book) also has a slim 
foundation, but my firm belief. Btw, both conjectures utilize an exponential function with the 
base 2. 

Computing exact values of the Erdős–Szekeres function ES(n) proved to be a very difficult 
matter. It took over 70 years to make the next step. In 2006, George Szekeres (posthumously) 
and Lindsay Peters, with the assistance of Brendan McKay and heavy computing, established 
one more exact value in the paper [SP] written “In memory of Paul Erdős”: 

Result 31.17 (G. Szekeres and L. Peters [SP]). ES(6) = 17. 

In his surveys [Gra7], [Gra8],6 Ronald L. Graham offered $1000 for the first proof – or 
disproof – of the Erdős–Szekeres Happy End Conjecture 31.16. 

George Szekeres was, of course, correct when he wrote in his 1973 reminiscences that their 
1935 upper bound 

ES nð Þ≤ 2n- 4 
n- 2 

þ 1 

had not been improved. In fact, it withstood all attempts of improvement until 1997 when Fan 
Chung and Ron Graham [CG] willed it down by 1 point to 

ES nð Þ≤ 2n- 4 
n- 2 

: 

In my late 2006 New Year’s greetings, I asked Ron Graham to tell me how this progress 
came about, and on 29 December 2006, received his reply: 

Hi Sasha, 
Happy New Year to you as well! Regarding your questions, here is the story. 
For the Happy End Theorem, I thought it would be nice to improve the bounds on this 

problem before I saw Szekeres in 1996 at the Erdős ceremony in Budapest. So, Fan and I 

5 In fact, Paul Erdős repeated $500 offer for the proof of the conjecture in [E97.21] but offered 
there “only 100 dollars for a disproof,” thus amplifying his belief in the conjecture. 
6 I thank Ron Graham for kindly providing the preprints.
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worked a bit on it and did manage to lower the known upper bound by 1! (but even this 
took some new ideas). We circulated the preprint and very soon Kleitman and Pachter 
lowered the upper bound by a linear term, and shortly thereafter (still in 1997), Toth and 
Valtr lowered it basically by a factor of 2. More recently, this bound has been lowered 
by another 1! I offer $1000 to prove that 

2^(n – 2) + 1 is the correct bound, and $100 to prove an upper bound of O((4–c)^n) 
for some c > 0 . . .  

Best regards, 
Ron 

Let me add the bounds that Ron mentions in his e-mail. Fan Chung and Ron Graham were 
first to improve the bound and offer a fresh approach which started an explosion of improve-
ments. Then the upper bound was improved by Daniel J. Kleitman and Lior Pachter [KP] to 

ES nð Þ≤ 2n- 4 
n- 2 

þ 7- 2n: 

Géza Tòth and Pavel Valtr [TV1] came next with 

ES nð Þ≤ 2n- 5 
n- 2 

þ 2: 

These developments happened so swiftly, that all three above papers appeared in the same 
1998 issue of Discrete Computational Geometry! In 2005, Tòth and Valtr came again [TV2] 
with the best known upper bound 

ES nð Þ≤ 2n- 5 
n- 2 

þ 1: 

which is about half of the original Erdős–Szekeres upper bound. 
Paul Erdős’ trains of thought are infinite—they never end, and each problem solved gives 

birth to a new problem, or problems. The Happy End Problem is not an exception. Paul writes 
about the Aftermath of the Happy End Problem with his vintage humor and warmth [E83.03]: 

Now there is the following variant which I noticed when I was once visiting the 
Szekereses in 1976 in Sydney, the following variant which is of some interest I think. 
It goes as follows. n(k) is derived as follows, if it exists. It is the smallest integer with the 
following property. If you have n(k) points in the plane, no three on a line, then you can 
always find a convex k-gon with the additional restriction that it doesn’t contain a point 
in the interior. You know this goes beyond the theorem of Esther, I not only require that 
the k points should form a convex k-gon, I also require that this convex k-gon should 
contain none of the [given] points in its interior. And surprisingly enough this gives a lot 
of new difficulties. For example it is trivial that n(4) is again 5, that is no problem. 
Because if you have a convex quadrilateral, if no point is inside we are happy; if from 
the five points one of them is inside you draw the diagonal AC (Fig. 31.1):
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Fig. 31.1 

And you join these (AE, EC) and now this convex quadrilateral (AECD) contains 
none of the points. And if you have four points and the fifth point is inside then you take 
this quadrilateral. This is convex again and has no point in the inside. And Harborth 
proved that n(5) = 10. f (5) was 9 in Esther Klein’s problem but here n(5) is 10. He 
dedicated his paper to my memory when I became an archeological discovery. When 
you are 65 you become an archeological discovery. Now, nobody has proved that 
n(6) exists. That you can give, for every t, t points in the plane, no three on a line and 
such that every convex hexagon contains at least one of the points in its interior. It’s 
perfectly possible that can [be done]. Now Harborth suggested that maybe n(6) exists 
but n(7) doesn’t. Now I don’t know the answer here. 

Indeed, in 1978, Heiko Harborth [Harb] of Braunschweig Technical University, Germany, 
and a Geombinatorics editor, proved that n(5) = 10. In 1983, J. D. Horton [Hort] of the 
University of New Brunswick, Canada, proved Harborth’s conjecture that n(t) does not exist 
for t ≥ 7. This left a mystifying gap: 

Open Problem 31.18 Does n(6) exist? If yes, find its value. 

This new rich train of thought now includes many cars. I would like to share with you my 
favorite, the beautiful 2005 result by Adrian Dumitrescu of the University of Wisconsin-
Milwaukee. 

Dumitrescu’s Theorem 31.19 [Dum].7 For each finite sequence h0, h1, . . .  , hk , with hi ≥ 3 
(i = 0, . . .  , k), there is an integer N = N(h0, h1, . . .  , hk) such that any set S of at least N points 
in general position in the plane contains either an empty convex h0-gon (i.e., a convex h0-gon 
that contains no points of S in its interior) or k convex polygons P1, P2, , . . .  , Pk, where Pi is an 
hi-gon such that Pi strictly contains Pi+1 in its interior for i = 1, . . .  , k - 1. 

7 Adrian mistakenly credits 1975 Erdős’s paper with the birth of the problem about empty convex 
polygons. In the cited story Erdős clearly dates it to his 1976 visit of the Szekereses.
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31.5 The Happy End Players Leave the Stage as Shakespearian Heroes 

Paul Erdős named it The Happy End Problem. He explained the name often in his talks. On 
June 4, 1992, in Kalamazoo I took notes of his talk: 

I call it The Happy End Problem. Esther captured George, and they lived happily ever 
after in Australia. The poor things are even older than me. 

This paper also convinced George Szekeres to become a mathematician. For Paul Erdős, 
the paper had a happy end too: it became one of his early mathematical gems and Paul’s first 
of the numerous contributions to and the leadership of Ramsey Theory and, as Szekeres put it, 
of “a new world of combinatorial set theory and combinatorial geometry.” 

I always wanted to know the membership of the amazing 1930 Budapest group of young 
Jewish mathematicians. On May 28, 2000, during a dinner in the restaurant of the Rydges 
North Sydney Hotel,8 I asked George Szekeres and Esther Klein to name the members of their 
group, so to speak the Choir of the Happy End Play. Esther produced – and signed “Esther 
Szekeres 28-5-00 SYDNEY” – the following list of the young participants, of which 
according to her “half a dozen usually met”: 

Paul Erdős, Tibor Grünwald (Gallai), Géza Grünwald (Gergőr), Esther Klein 
(Szekeres), Lily Székely (Sag), George (György) Szekeres, Paul Turán, Martha 
Wachsberger (Svéd), and Endre Vázsonyi. Miklós Ság, and László Molnár occasionally 
joined the group too. 

Esther Klein, Alexander Soifer, and George Szekeres, Sydney, Australia, May 28, 2000 

8 Esther wrote the list on the letterhead of the hotel, thus preserving the location of our meeting.



31.5 The Happy End Players Leave the Stage as Shakespearian Heroes 337

It was a warm, unforgettable conversation, full of reminiscences. George told me that his 
father was a cantor. He too was a musician: George played viola in orchestra and also played a 
violin. 

George Szekeres told me that night “my student and I proved Esther’s Conjecture for 
17 with the use of computer.” “Which computer did you use?” asked I. “I don’t care how 
pencil is made,” answered George. 

The personages of The Happy End Problem appear to me like heroes of Shakespeare’s 
plays. Paul, very much like Tempest’s Prospero, gave up all his material possessions, 
including books, to be free. George and Esther were so close that they ended their lives 
together, like Romeo and Juliette. In the late summer 2005 e-mail, Tony Guttmann conveyed 
to the world the sad news from Adelaide: 

George and Esther Szekeres both died on Sunday morning [August 28, 2005]. George, 
94, had been quite ill for the last 2–3 days, barely conscious, and died first. Esther, 
95, died an hour later. George was one of the heroes of Australian mathematics, and, in 
her own way, Esther was one of the heroines. 

Esther was not ill. She must have seen no sense in living without her lifelong love . . .



o msey

-1_32
339

Chapter 32 
The Man Behind the Theory: Frank Plumpt n Ra 

I harmony by algebra confirmed, 
And only then, in science sophisticated, 
Surrendered to the bliss of dream creative. 

– Alexander Pushkin, Mozart and Salieri 
(Translated from the Russian by Alexander Soifer for this book.) 

Knowledge is a correspondence between idea and fact. 
– Frank Plumpton Ramsey 

32.1 Frank Plumpton Ramsey and the Origin 
of the Term “Ramsey Theory” 

Who was “Ramsey,” the man behind the theory named for him by others? 
Let us start with the introduction to Ramsey’s collected works [Ram3], assembled and 

edited right after his passing in 1930 by Ramsey’s friend and disciple Richard Bevan 
Braithwaite, then Fellow of King’s College and later the Knightbridge Professor of Philos-
ophy at the University of Cambridge, who opens as follows: 

Frank Plumpton Ramsey was born on 22nd February 1903, and died on 19th January 
1930 [a jaundice attack prompted by an unsuccessful surgery]. The son of the President 
of Magdalene [College], he spent nearly all his life in Cambridge, where he was 
successively Scholar at Trinity, Fellow at King’s [at 21], and Lecturer in Mathematics 
in the University [at 23]. His death at the height of his powers deprives Cambridge of 
one of its intellectual glories and contemporary philosophy of one of its profoundest 
thinkers. Though mathematical teaching was Ramsey’s profession, philosophy was his 
vocation. 

The celebrated British philosopher, Cambridge “Professor of Mental Philosophy and 
Logic” and Fellow of Trinity College, George Edward Moore writes in the preface for 
Ramsey’s book [Ram3]: 

He [Ramsey] was an extraordinarily clear thinker: no-one could avoid more easily than 
he the sort of confusions of thought to which even the best philosophers are liable, and 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597
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he was capable of apprehending clearly and observing consistently, the subtlest distinc-
tions. He had, moreover, an exceptional power of drawing conclusions from a compli-
cated set of facts: he could see what followed from them all taken together, or at least 
what might follow, in cases where others could draw no conclusions whatsoever. And, 
with all this, he produced the impression of also possessing the soundest common sense: 
his subtlety and ingenuity did not lead him, as it seems to have led some philosophers, to 
deny obvious facts. He had, moreover, so it seemed to me, an excellent sense of 
proportion: he could see which problems were the most fundamental, and it was these 
in which he was most interested and which he was most anxious to solve. For all these 
reasons, and perhaps for others as well, I almost always felt, with regard to any subject 
that we discussed, that he understood it much better than I did, and where (as was often 
the case) he failed to convince me, I generally thought the probability was that he was 
right and I was wrong, and that my failure to agree with him was due to lack of mental 
power on my part. 

Indeed, Ramsey’s philosophical essays impress me immensely by their depth, clarity, and 
common sense – a combination that reminds me the great Michel de Montaigne. Here is my 
favorite quotation from Ramsey [Ram5, p. 53]: 

Knowledge is a correspondence between idea and fact. 

Frank P. Ramsey’s parents were Arthur Stanley Ramsey and Agnes Mary Wilson. In 
addition to Magdalene College’s presidency, Arthur S. Ramsey was a tutor in mathematics. 
Frank was the oldest of four children. He had two sisters and a brother, Arthur Michael 
Ramsey, who much later became The Most Reverend Michael Ramsey, Archbishop of 
Canterbury (1961–1974). In 1925, Frank P. Ramsey married Lettice C. Baker, and their 
marriage produced two daughters. It is surprising to find in one family two brothers, Michael, 
the head of the Church of England and Frank, “a militant atheist,” as Lettice described her 
husband. 

The great economist John Maynard Keynes (1883–1946), then a Fellow at King’s College 
and a close friend of Frank Ramsey, writes in March 1930 about Ramsey’s contribution to 
economics [Key]: 

He [Ramsey] has left behind him in print (apart from his philosophical papers) only two 
witnesses of his powers – his papers published in the Economic Journal on “A 
Contribution to the Theory of Taxation” in March 1927, and on “A Mathematical 
Theory of Saving” in December 1928. The latter of these is, I think, one of the most 
remarkable contributions to mathematical economics ever made, both in respect of the 
intrinsic importance and difficulty of its subject, the power and elegance of the technical 
methods employed, and the clear purity of illumination with which the writer’s mind is 
felt by the reader to play about its subject. 

Keynes also draws for us a portrait of Ramsey the man (ibid): 

His bulky Johnsonian frame, his spontaneous gurgling laugh, the simplicity of feelings 
and reactions, half-alarming sometimes and occasionally almost cruel in their directness 
and literalness, his honesty of mind and heart, his modesty, and the amazing, easy 
efficiency of the intellectual machine which ground away behind his wide temples and
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broad, smiling face, have been taken from us at the height of their excellence and before 
their harvest of work and life could be gathered in. 

This portrait reminds me Frank Plumpton’s joking about his size while favoring human 
emotion over all issues of the universe (February 28, 1925): 

Where I seem to differ from some of my friends is in attaching little importance to 
physical size. I do not feel the least humble before the vastness of the heavens. The stars 
may be large, but they cannot think of love; and those are qualities which impress me far 
more than the size does. I take no credit for weighing nearly seventeen stones. 

By kind permission of the Provost and Scholars of King’s  College,  Cambridge,  I  am  sharing  
with you here two photographs of the gentle giant, Frank Plumpton Ramsey. As Jacqueline 
Cox, Modern Archivist of King’s College Library advises in her November 21, 1991, letter to 
me [Cox], “Both photographs come from the J. M. Keynes Papers (ref. JMK B/4). The first is a 
portrait of him aged 18 in 1921. The second shows him sitting on the ground in the open air 
reading a book aged 25 in 1928. The photographers are not indicated, but in the case of the 
second photograph a note records that it was taken in the Austrian Tyrol in August 1928.”
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Frank Plumpton Ramsey, aged 18. (Reproduced by kind permission of the Provost and 
Scholars of King’s College, Cambridge)
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Considering his short life, Ramsey produced an enormous amount of work in logic, 
foundations of mathematics, mathematics, probability, economics, decision theory, cognitive 
psychology, semantics, and of course philosophy. Ramsey manuscripts, held in the Hillman 
Library of the University of Pittsburg, fill 7 boxes and number about 1500 pages1 

[Ram5]. Probability fare is worthy of our attention. In his February 27, 1978, BBC radio 
broadcast (reprinted as an article [Mel] in 1995), Emeritus Professor of Philosophy at 
Cambridge D. H. Mellor explains: 

The economist John Maynard Keynes, to whom Braithwaite introduced Ramsey in 
1921, published his Treatise on Probability in August of that year . . .  It did not satisfy 
Ramsey, whose objections to it – some of them published before he was nineteen – were 
so cogent and comprehensible that Keynes himself abandoned it. 

Frank Plumpton Ramsey, aged 25, Austrian Tyrol, August 1928. (Reproduced by kind 
permission of the Provost and Scholars of King’s College, Cambridge) 

1 In A Tribute to Frank P. Ramsey [Har2], Frank Harary writes: “At her home, she [Mrs. Lettice 
Ramsey, the widow] showed me box upon box of notes and papers of Frank Ramsey and invited 
me to pore through them. As they dealt mostly with philosophy, I had to decline.” As “a tribute,” 
could Professor Harary have shown more interest and curiosity?
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In fact, my friend, the Princeton Double Professor Emeritus of both Mathematics and of 
Economics Harold W. Kuhn tells me that Keynes decided against continuing with mathe-
matics because Ramsey was so much superior in it. Mellor continues: 

In this paper [Ram4], after criticizing Keynes, Ramsey went on to produce his own 
theory. This starts from the fact that people’s actions are largely determined by what 
they believe and what they desire – and by strength of those beliefs and desires. The 
strength of people’s beliefs is measured by the so-called ‘subjective probability’ they 
attach to events. . .  Subjective utility measures the strength of people’s desires just as 
subjective probability measures the strength of their beliefs. 

The problem is how to separate these two components of people’s actions ... One of 
the things Ramsey’s paper did was to show how to extract people’s subjective utilities 
and probabilities from the choices they make between different gambles; and by doing 
so it laid the foundations for the serious use of these concepts in economics and statistics 
as well as in philosophy. 

It took a long time, however, from this 1926 paper of Ramsey’s to bear fruit. Only 
after the publication in 1944 of a now classic book by John von Neumann and Oskar 
Morgenstern, The Theory of Games and Economic Behavior [NM], did utility theory 
begin to catch on and be applied in modern decision theory and games theory. And for 
many years no one realized how much of it had been anticipated in Ramsey’s 1926 
paper. 

I am looking at the first 1944 edition of the classic [NM] that Mellor mentions above, 
written by two celebrated Institute for Advanced Study and Princeton University people, John 
von Neumann (1903–1957) and Oskar Morgenstern (1902–1977), respectively, and its later 
editions (Fine Library of Princeton-Math is very fine). The authors cite in their book many 
colleagues, classics of the past and contemporaries: Daniel Bernoulli, Dedekind, Kronecker, 
D. Hilbert, F. Hausdorff, E. Zermelo, G. Birkhoff, E. Borel, W. Burnside, C. Carathéodory, 
W. Heisenberg, A. Speiser – even Euclid. One name is missing that merits credit the most, 
that of Frank P. Ramsey. Harold W. Kuhn tells me that in a 1953 letter, he asked von 
Neumann why the latter gave no credit to Ramsey for inventing subjective probability. 
Indeed, this question and von Neumann’s answer are reflected in H. W. Kuhn and A. W. 
Tucker’s 1958 memorial article about John von Neumann [KT, pp. 107–108]: 

Interest in this problem as posed [measuring “moral worth” of money] was first shown 
by F. P. Ramsey [Ram4] who went beyond Bernoulli in that he defined utility opera-
tionally in terms of individual behavior. (Once von Neumann was asked [by H. W. 
Kuhn] why he did not refer to the work of Ramsey, which might have been known to 
someone conversant with the field of logic. He replied that after Gödel published his 
papers on undecidability and the incompleteness of logic, he did not read another paper 
in symbolic logic.)2 

2 Indeed, von Neumann and Morgenstern probably did not expect Ramsey to publish on a topic far 
away from the foundations, such as economics, and thus might not have known about Ramsey’s 
pioneering work by the time of the first 1944 edition of their celebrated book. However, in 1953 if 
not earlier they learned about Ramsey’s contribution from Harold W. Kuhn, and yet new editions, 
which came out in 1947, 1953, 1961, etc., did not give Ramsey credit either.
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Ramsey’s priority was discovered and acknowledged in print by others. In already 
mentioned D. H. Mellor’s broadcast, the philosopher of probability Richard Carl Jeffrey 
(1926–2002; Ph.D. Princeton 1957; Professor of Philosophy at Princeton 1974–1999) says: 

It was when Leonard Savage, statistician, was working on his book on subjective 
probability theory, and he wished to find out what if anything the philosophers had to 
say on the subject, he went to Ramsey article [Ram4] and read it, and he found that what 
he [Ramsey] had done was to a great extend fairly describable as rediscovering another 
aspect of Ramsey’s work in that article – the foundations of the theory of subjective 
probability. It was Savage’s book, The Foundations of Statistics, that was published in 
1954, that made subjectivism a respectable sort of doctrine for serious statistician to 
maintain; and the remarkable thing is that Ramsey in this little paper to the Moral 
Sciences Club in 1926 has done all of that already. 

Indeed, Leonard Jimmie Savage (1917–1971) writes in 1954 [Sav, pp. 96–97]: 

Ramsey improves on Bernoulli in that he defines utility operationally in terms of the 
behavior of a person constrained by certain postulates. . .  

Why should not the range, the variance, and the skewness, not to mention countless 
other features, of the distribution of some function join with the expected value in 
determining preference? The question was answered by the construction of Ramsey and 
again by that of von Neumann and Morgenstern. 

Richard Jeffrey writes [Jef, p. 35]: 

This method of measurement [of desirability] was discovered by F. P. Ramsey and 
rediscovered by von Neumann and Morgenstern, through whose work it came to play its 
current role in economics and statistics. 

More importantly, much of Jeffrey’s 1965 book The Logic of Decision [Jef] is based on 
Ramsey’s ideas, while Chapter 3 is simply called Ramsey’s Theory. 

Ramsey’s first mathematical paper, Mathematical Logic [Ram1] appeared in 1926, in the 
midst of the Grundlagenstreit (Crisis in the Foundations), the confrontation between the two 
giants, David Hilbert and L. E. J. Brouwer, over the foundations of mathematics. Ramsey, 
who always addresses the most important issues of his day, does not shy away from this one 
either. He does not, however, take either side. Ramsey does not agree with the intuitionist 
approach: 

Weyl has changed his view and become a follower of Brouwer, the leader of what is 
called the intuitionist school, whose chief doctrine is the denial of the Law of Excluded 
Middle, that every proposition is either true or false. This is denied apparently because it 
is thought impossible to know such a thing a priori, and equally impossible to know it 
by experience. . .  Brouwer would refuse to agree that either it was raining or it was not 
raining, unless he had looked to see. 

Neither does Ramsey support Hilbert: 

I must say something of the system of Hilbert and his followers, which is designed to put 
an end to such skepticism once and for all. This is to be done by regarding higher 
mathematics as the manipulation of meaningless symbols according to fixed rules. We
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start with certain symbols called axioms: from these we can derive others by substituting 
certain symbols called constants for others called variables, and by proceeding from the 
pair of formulae p, if  p then q to the formula q. 

Mathematics proper is thus regarded as a sort of game, played with meaningless 
marks on paper rather like noughts and crosses; but besides this there will be another 
subject called metamathematics, which is not meaningless, but consists of real asser-
tions about mathematics, telling us what this or that formula can or cannot be obtained 
from the axioms according to the rules of deduction . . .  

Now, whatever else a mathematician is doing, he is certainly making marks on paper, 
and so this point of view consists of nothing but the truth; but it is hard to suppose it is 
the whole truth. There must be some reason for the choice of axioms, and some reason 
why the particular mark 0≠0 is regarded with such abhorrence. This last point can, 
however, be explained by the fact that the axioms would allow anything whatever to be 
deduced from 0≠0, so that if 0≠0 could be proved, anything whatever could be proved, 
which would end the game for ever, which would be very boring for posterity. Again, it 
may be asked whether it is really possible to prove that the axioms do not lead to 
contradiction, since nothing can be proved unless some principles are taken for granted 
and assumed not to lead to contradiction. 

Summing up both Hilbert and Brouwer–Weyl approaches, Ramsey concludes: 

We see then that these authorities, great as they are the differences between them, are 
agreed that mathematical analysis as originally taught cannot be regarded as a body of 
truth, but is either false or at best a meaningless game with marks on paper. 

What then was a mathematician to do? Ramsey was in favor of using the Axiom of Infinity. 
“As to how to carry the matter further, I have no suggestion to make; all I hope is to have 
made it clear that the subject is very difficult,” wrote Ramsey in the end. Four years later 
Ramsey would take a finitist view of rejecting the existence of any actual infinity. 

Ramsey comes back with a specific approach in his second mathematical paper On a 
Problem of Formal Logic [Ram2], submitted on November 28, 1928 and published posthu-
mously in 1930. This paper gives a clear and unambiguous start to what was later named 
Ramsey Theory. What is the aim of this work? Fortunately, Ramsey answers this question 
right at the start of the paper: 

This paper is primarily concerned with a special case of one of the leading problems of 
mathematical logic, the problem of finding a regular procedure to determine the truth or 
falsity of any given logical formula. But in the course of this investigation it is necessary 
to use certain theorems on combinations which have an independent interest and are 
most conveniently set out by themselves beforehand. 

Indeed, Ramsey solves the problem in the special case, as he promises. However, little 
does he – or for that matter anyone else – expect that the next year, in 1931, another young 
genius, the 25-year-old Kurt Gödel will shake the mathematical world by publishing the 
(Second) Incompleteness Theorem [Göd1] that shows that Hilbert–Ackermann’s 
Entscheidungsproblem, “the leading problem of mathematical logic” as Ramsey calls it, 
cannot have a solution in general case. Ramsey continues:
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The theorems which we actually require concern finite classes only, but we shall begin 
with a similar theorem about infinite classes which is easier to prove and gives a simple 
example of the method of argument. 

Yes, the infinite case here – as happens often – is easier than the finite one but is very well 
worth of the presentation (in fact, the finite case follows from the infinite by the de Bruijn– 
Erdős Compactness Theorem, as we have seen in Chapter 28). Later in the paper, Ramsey 
also observes that his infinite case requires the use of the Axiom of Choice: 

Whenever universe is infinite, we shall have to assume the axiom of selection. 

In fact, some 40 years later, in 1969, Eugene M. Kleinberg [Kle] will prove that Ramsey’s 
Theorem is independent from ZF, the Zermelo–Fraenkel Set Theory. (More precisely, if ZF is 
consistent, then Ramsey’s theorem is not provable in ZF.) 

Ramsey realizes – and clearly states – that his new pioneering method and his “theorems on 
combinations have an independent interest.” Indeed, Ramsey’s theorems deliver the princi-
ples and the foundation to the new field of mathematics, Ramsey Theory. Now, this requires a 
clarification. 

Three Ramsey Theory results appeared before Frank P. Ramsey erected its foundation, and 
this is why I combine these three early results under the name Ramsey Theory before Ramsey. 
They are the Hilbert Theorem of 1892, the Schur Theorem of 1916, and the Baudet–Schur– 
Van der Waerden Theorem of 1927. These classic results, which we will discuss in great 
detail in the next Part, discovered particular properties of colored integers or colored spaces in 
particular circumstances. These theorems constituted a real “meat” of Ramsey Theory, real 
applications of the Ramsey Principle in particular contexts before Ramsey formulated it. 

Ramsey’s amazing logical-philosophical gift allowed him to abstract the idea from any 
particular context, to formulate his theorems as a method, a  principle of the new theory – a 
great achievement indeed. Surely, Ramsey fully deserves his name to be placed on the new 
theory, whose principle he so clearly formulated and proved, but could anyone point out who 
and when coined the term Ramsey Theory? 

32.2 What’s in a Name? That Which We Call a Rose by Any Other Name 
Would Smell as Sweet 

Yes, Shakespeare believes that the name does not matter. With greatest admiration, I beg to 
disagree with the Bard and undertake research into the authorship of Ramsey Theory name. 
We have already seen Ramsey’s Theory of Decision in Richard Jeffrey’s 1965 book [Jef]. But 
we are after Ramsey Theory, a new and flourishing branch of combinatorial mathematics. On 
21 July 1995, I asked a leader of Ramsey Theory, Ronald L. Graham. Here is our brief 
exchange of the day: 

Dear Ron: 
Who and when coined the name “Ramsey Theory”? 

Yours, Sasha 

Sasha, 
Beats me! Who first used the term Galois theory?
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Ron 

On January 22, 1996, I asked Ron again and received another concise reply the same day: 

Dear Sasha, 
I would imagine that Motzkin may have used the term Ramsey Theory in the 60’s. 

You might check with Bruce Rothschild at UCLA who should know. 

Still the same day I received a reply from Bruce Rothschild: 

Dear Alexander, 
This is a good question, to which I have no real answer. I do not recall Motzkin using 

the phrase,3 though he might have. I also don’t recall hearing Rota use it when I was at 
MIT in the late 60’s. My best recollection is that I began using the term informally along 
with Ron sometime in the very early ‘70’s . . .  But I could be way off here. 

Frank Harary was less concise. On February 19, 1996, during the Southeastern Interna-
tional Conference on Combinatorics, Graph Theory, and Computing in Baton Rouge, Lou-
isiana, he gave me a multipage statement (you saw it in Chapter 29), suggesting that Frank 
Harary and Václav Chvátal were first to introduce the term Generalized Ramsey Theory for 
Graphs in their series of papers that started in 1972. 

I am looking at the first paper [CF] of the series: Chvátal, Václav, and Harary, Frank, 
Generalized Ramsey theory for graphs. The authors generalize the notion of Ramsey Number 
by including it in the study graphs other than complete graphs. By doing so, Harary and 
Chvátal open a new, now flourishing chapter, Graph Ramsey Theory. However, Ramsey 
Theory as we understand it today stands for so much broader a body of knowledge, including 
the Schur, the Baudet–Schur–Van der Waerden, and the Hales–Jewett Theorems, that it does 
not fit inside Graph Theory. Thus, my search for the true birth of the name continued. 

One 1971 survey [GR2], by Ronald L. Graham and Bruce L. Rothschild, shows a clear 
realization that a new theory has been born and needs an appropriate new name. Following a 
recitation of the Ramsey Theorem and the Schur Theorem, the authors write: 

These two theorems are typical of what we shall call a Ramsey theorem and a Schur 
theorem, respectively. In this paper we will survey a number of more general Ramsey 
and Schur theorems which have appeared in the past 40 years. It will be seen that quite a 
few of these results are rather closely related, e.g., van der Waerden’s theorem on 
arithmetic progressions [Wae2], [Khi4], Rado’s work on regularity and systems of 
linear equations [Rad1], [Rad2], the results of Hales and Jewett [HJ] and others [Garsia, 
personal communication] on arrays of points and Rota’s conjectured analogue of 
Ramsey’s Theorem for finite vector spaces, as well as the original theorems of Ramsey 
and Schur. 

Yes, I agree, the new theory has been born by 1971, and the choice of its name was 
between two well-deserving candidates: Schur Theory, in honor of the main early contributor 
Issai Schur and his School (Schur’s work was continued by his students Alfred Brauer and 
Richard Rado); and Ramsey Theory, in honor of Frank P. Ramsey who formulated the

3 Motzkin did not use “Ramsey Theory” in his 1960s articles, as I have verified shortly after.



principles of the new theory. Soon Graham and Rothschild make the decision, and in their 
1974 survey publish the first announcement of their choice [GR3]:
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Recently a number of striking new results have been proved in an area becoming known 
as RAMSEY THEORY. It is our purpose here to describe some of these. Ramsey 
Theory is a part of combinatorial mathematics dealing with assertions of a certain type, 
which we will indicate below. Among the earliest theorems of this type are RAMSEY’s 
theorem, of course, VAN DER WAERDEN’s theorem on arithmetic progressions and 
SCHUR’s theorem on solutions of x + y  = z. 

It seems that Ramsey Theory has been suddenly and rapidly shaping through the 1970s, 
and the central engine of this process was new results and the above-mentioned surveys. In 
1980, the long life of the name was assured when it appeared as the title of the book Ramsey 
Theory [GRS1] by three of the leading researchers of the field, Ronald L. Graham, Bruce 
L. Rothschild, and Joel H. Spencer. A decade later, the authors produced the second, updated 
edition [GRS2]. This book not only assured the acceptance of the name but it has also become 
the standard text on the new field of mathematics. 

And now is the time to share a bit of information about the co-creators of the term Ramsey 
Theory, who of course contributed much-much more to the field than just its name. 

32.3 Bruce Lee Rothschild 

Bruce L. Rothschild was born on August 26, 1941, in Los Angeles. Following BS degree 
from the California Institute of Technology in 1963, he earned PhD degree from Yale in 1967 
with the thesis A Generalization of Ramsey’s Theorem and a Conjecture of Rota, supervised 
by the legendary Norwegian graph theorist Øystein Ore (1899–1968). After two years 
1967–1969 at MIT, Rothchild became a professor at the University of California, Los 
Angeles, where he worked for many decades. In 1972, Graham, Rothschild, and Leeb shared 
the Polya Prize of SIAM with Hales and Jewett. Professor Rothschild’s papers, many joint 
with Graham, made a major contribution to Ramsey Theory. 

32.4 Remembering Ronald Lewis Graham 

(October 31,1935–July 6, 2020)4 

When Paul Erdős left this world in 1996, Ron became our universally admired Captain. 
Now I do not see anyone who could fill these shoes. I feel like and orphan in Ramsey 
Theory. 

Ron touched uncountably many people, and deserves countless remembrances. This 
is one of them, my personal brief tribute. 

4 First published in [Soi48].
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The Royal Couple of Mathematics, Fan Chung and Ronald L. Graham, June 4, 1992, 
Kalamazoo, MI. (Photo by Alexander Soifer) 

My phone rang, “This is Ron Graham, can I talk to Paul?” This was my first encounter with 
Ron. He called Paul Erdős every night, so that Ron could tell numerous enquirers where Paul 
was on any given day. Love and admiration for Paul united Ron and me from the start. Once, 
after chatting with Paul, Ron asked for me: “Why don’t you come to the conference at Florida 
Atlantic University in Boca Raton, Florida? We’ll finally meet in person.” As so we did. The 
time stamp: February 1992. 

Ron has been the most influential mathematician of the United States for many decades. He 
served as President of the American Mathematical Society, President of the Mathematical 
Association of America, member of the American Academy of Arts and Sciences, member of 
the Hungarian Academy of Sciences, Chief Scientist of Bell Labs, Endowed Chair at the 
University of California San Diego, etc. Ron was not only a member of the National Academy 
of Sciences – he served two terms as its Treasurer. Ron showed me once his impressive 
Treasurer’s office at the Academy, across a narrow street from the U.S. Department of State. 
All these accolades did not spoil Ron’s personality one bit. He has always been open, friendly, 
curious, generous to a fault, sprinkling conversations with lovely humor. 

I do not know whether young Ron competed in mathematical Olympiads. I do remember 
him serving as the Chair of the Jury of the 2001 International Mathematical Olympiad in



Washington, D.C. (I was a coordinator). For representatives of ca. 90 countries – for this 
virtually herd of cats – Ron was an easy going, humorous, yet principled shepherd. 
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Paul Erdős “preached” (his term) to professionals, young and old. His open problems 
inspired generations. But he was not a natural lecturer, whereas Ron certainly was. I attended 
many of Ron’s addresses, always with paper and pencil. His lectures were well composed – as 
pieces of music – elegant, deep, inspiring, yet lightened by humor. Ron excited every 
audience, from professional mathematicians to high school students, who in 2002 came to 
MIT to compete in the USA Mathematical Olympiad. In 2014, Ron gave a brilliant keynote 
address at the Congress of World Federation of National Mathematics Competitions 
(WFNMC) in Barranquilla, Colombia. All his audiences got their share of intriguing open 
problems and conjectures, some with cash prizes for first solutions. 

WFNMC Keynote speakers Ronald Graham and Alexander Soifer, Barranquilla, July 
22, 2014 

Center for Discrete Mathematics and Theoretical Computer Science, DIMACS, is a joint 
venture of universities, such as Princeton, Rutgers, Columbia, and industrial research giants 
AT&T Labs – Research, Avaya Labs, IBM Research, Microsoft Research, NEC Laboratories 
America, Nokia Bell Labs, and Perspecta Labs. For three years between 2002 and 2007, I was 
a long-term visiting scholar at DIMACS and a visiting fellow at Princeton. I left Princeton and 
Rutgers in 2007, I thought forever. However, a year later, Executive Director of DIMACS 
Fred Roberts invited me back to create an international 3-day workshop on Ramsey Theory.



He offered plenty of money to my discretion (which I used to pay plenary speakers’ travel and 
registration for graduate students). I accepted, on the condition that Ron Graham would be 
one of my plenary speakers. Ron agreed, and we had an incredible workshop that I titled 
Ramsey Theory: Yesterday, Today, and Tomorrow, where everyone attended every talk. 
Springer commemorated the workshop by publishing a book of talks [Soi49] under the 
same title in its prestigious series Progress in Mathematics. 
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Ron’s support of colleagues was most inspirational. In 2009, Ron traveled coast to coast, 
from California to Florida with a copy of the original edition of The Mathematical Coloring 
Book, a heavy book I should add. He asked me to inscribe his copy. To our Captain Ron 
Graham, I wrote on the title page. Ron signed for me a poster created by his daughter and 
started our conversation with a question I myself thought about for a while: 

– Can you write another book like this one? 
– No, Ron. 
– I did not think you could: so much blood, sweat, and tears. I bought three copies of it. 
– Why, Ron? 
– I have three offices, and I want to have your book handy wherever I am. 

Ron was incredibly modest. As you know, in my research for The Mathematical Coloring 
Book, I wanted to establish who gave the new 100-year-old theory its name, Ramsey Theory. 
The famous graph theorist Frank Harary readily stated to me that he was the author. Ron 
Graham and Bruce L. Rothschild each wrote to me that they had no idea who coined the term. 
Imagine, I determined that Ron and Bruce in their 1970s joint papers in fact coined the name 
of this exciting new area of mathematics, Ramsey Theory! 

I asked Ron many times to write his autobiography for the new edition of The Mathemat-
ical Coloring Book. I was sure his reminiscences about his first interest in mathematics, his 
numerous achievements, and leadership in a number of fields would inspire mathematicians 
young and old. In addition, I admired his elegant humorous writing and lecturing style. Ron 
refused every time. Here is Ron’s 3 July 2019 reply to my request: 

Hi Sasha, 
I am too modest for such a profile! 

Ron 

Ron’s interests were not limited to mathematics and computer science. He was a fine 
gymnast, ping pong player, and professional-level juggler. His passion for sports was clear 
when he went to Canada to watch Winter Olympics in person. In 2014, when we both were 
keynote speakers in Colombia, I recommended Ron to watch Leviathan, a cinematic master-
piece directed by my Moscow friend Andrey Zvyagintsev. Ron enjoyed the film and followed 
its fate through various competitions (the film won the Golden Globe and narrowly lost 
Oscar). Knowing that Leviathan painted a very grim picture of the present Russia, Ron asked 
me on August 27, 2016, “By the way, how is Leviathan now received in Russia?” 

As you know, Paul Erdős offered cash prizes for first solutions of his open problems. These 
ranged from $10 up to several thousand dollars for problems that were both difficult and 
mathematically significant. When in 1996 Paul “left,” Ron offered to pay on behalf of Paul for 
many solutions, as he explained on February 13, 2007:



* * *
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Hi Sasha, 
I am willing to pay all the prizes offered by Paul that are listed in the book that Fan 

and I wrote: Erdős on Graphs: His Legacy of Unsolved Problems. These we have 
checked. The others (e.g., in number theory or set theory) are not (automatically) part of 
the offer . . .  
Best regards, 
Ron Graham 

Ron presented his personal checks for a good number of great achievements; $500 to 
Saharon Shelah and $1000 to Timothy Gowers come to mind. 

Ron presented a $1000 check to Aubrey de Grey for the construction of the first 
5-chromatic unit-distance graph – what should Ron “buy” next, I was thinking. I felt that I 
knew Ron’s style of problem posing and had a sense of his intuition. I also knew that we were 
friends, that Ron with his great sense of humor would not get angry at me by announcing 
Ron’s New $1000 Open Problem without clearing it with him first. 

And so I did in my March 14, 2019 talk at Florida Atlantic University, with a disclaimer 
“subject to Ron’s approval.” My audience filled the room with laughter. Immediately after the 
conference, on March 16, 2019, I sent Ron an e-mail: 

Dear Ron, 
Unfortunately, I did not see you at my talk in Boca, where I premiered your new 

$1000 problem, of course, subject to your approval. :) The audience loved it. 
The New Graham’s $1,000 Problem. Prove or disprove the existence of a unit-

distance 6-chromatic graph. 
So . . .  please, reply with a yes, or a no, or your different related open problem(s) – for 

the inclusion in the second expanded edition of The Coloring Book. 
Yours always, 
Sasha 

Ron replied the same day: 

Hi Sasha, 
I had to check out by 11 so unfortunately I couldn’t make your talk! :( 
I approve of the new $1000 problem! 
Ron 

In the time of pandemic, I was concerned about Ron’s and Fan’s health. My last inquiry on 
June 14, 2020, remained unanswered . . .  Ron “left” on July 6, 2020. 

Life Is a Fatal Sexually Transmitted Disease, so named his film the Polish director 
Krzysztof Zanussi. Yes, fatal. . .  The Giants of Geombinatorics’ Editorial Board are leaving 
the stage, Erdős, Grünbaum, Graham. I will keep them on our Editorial Board as Emeriti. 
Forever. 

This certainly does not cover Ron’s excellence in juggling (“juggling is a metaphor,” he 
used to say), fluency in Mandarin, close friendship with Paul Erdős, etc. See all those on 
“Ronald Graham’s special page” created by Ron’s wife, coauthor, and well-known mathe-
matician in her own rights Fan Chung at http://math.ucsd.edu/~fan/ron/.

http://math.ucsd.edu/~fan/ron/
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32.5 Reflections on Ramsey and Economics, by Harold W. Kuhn 

In the fall 2006, upon my return to Princeton University, I asked myself, who could best 
evaluate Frank P. Ramsey’s works on economics? It would take an expert in mathematics and 
economics. I chose two great Princeton scholars to write their views for this book: John 
Forbes Nash, Jr. and Harold William Kuhn. They both agreed to write. A week later, during 
Princeton-Math coffee hour conversation with me, John Nash deferred the task to Harold: 

– I am sorry, but I do not think I could write about economics of Ramsey. 
– Why not, John? 
– I am not an economist. 
– Let me try to understand: You are a Nobel Laureate for Economics but not an economist? 
– I am a mathematician. I can study economics of Ramsey for you, but I am not sure I would 

be able to write something meaningful about it. On the other hand, Harold will do a 
fine job. 

– Of course, John. 

The closest friend of my Princeton years, Harold Kuhn, already knew from John Nash that 
the “jingle” was his. “Give me two months, and I will write for your book an essay on 
economics of Frank Ramsey,” said Harold to me. 

John F. Nash, Jr. and Alexander Soifer at Princeton-Math, July 2007
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Why do sometimes people work together for decades and remain strangers, and other times 
friendship arrives at the instant of first sight? This is a question for psychologists to ponder. 
Harold W. Kuhn and I became instant friends in early 2003 when I arrived in Princeton-
Math., just as in 1988 an instant friendship linked Paul Erdős and me. It has always been 
intellectually stimulating to discuss with Harold any subject, and we shared passion for many, 
from mathematics to the cinema of Michelangelo Antonioni, from the scholars in the Third 
Reich to the Princeton-Math historic personalities, from the Fang Art of Equatorial Africa to 
Pierre Bonnard’s drawings. Wheelchair-bound, Harold wrote to me on July 20, 2013, email, 
“I do not want to write anything like a foreword now.” To cheer him up, I replied immedi-
ately, “That’s alright. Maybe after supper? :-)” In a week, Harold sent his foreword for my 
book “The Scholar and the State” [Soi47] to Springer and to me. It was his last essay. My dear 
friend Harold passed away peacefully on July 2, 2014, in his Manhattan condo with his family 
by his side. 

32.5.1 Harold William Kuhn 

Harold W. Kuhn was born in Santa Monica, California on July 29, 1925. Following BS 
degree in 1947 from the California Institute of Technology, he earned PhD degree from 
Princeton University in 1950, while also serving as Henry B. Fine Instructor in the Mathe-
matics Department of Princeton, 1949–1950. Following a professorship at Bryn Mawr, 
1952–1958, Harold has been a Professor of Mathematical Economics at Princeton’s two 
departments, Mathematics and Economics, becoming Emeritus in 1995. His honors include 
presidency of the Society for Industrial and Applied Mathematics (1954–1955), service as 
Executive Secretary of the Division of Mathematics of the National Research Council 
(1957–1960), John von Neumann Theory Prize of the Operation Research Society of America 
(1982; jointly with David Gale and A. W. Tucker), and Guggenheim Fellowship (1982). It 
was Harold Kuhn who nominated John F. Nash Jr. for the Nobel Prize (awarded in 1994) and 
presided over the Nash Nobel Prize Seminar in Stockholm. 

From the beginning, Harold decided to not just contribute an essay about the economics of 
Frank P. Ramsey but also touch on John von Neumann and John F. Nash Jr., both of whom 
he knew personally very well. In all that follows in this chapter, the podium – shall I say, the 
pages – belongs to Harold W. Kuhn. I join my dearest late friend Harold W. Kuhn (July 1925– 
July 2, 2014) in thanking Sylvia Nasar, the author of A Beautiful Mind, for meeting with 
Harold over a Manhattan lunch and copy-editing this treasure of an essay. “Writing this essay 
is the most important thing I did this year,” wrote Harold Kuhn in his Christmas 2007 report to 
friends and family. I hope you will enjoy this remarkable, deep, and supremely informed 
Triptych as much as I have! ■
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Harold W. Kuhn is passing to Alexander Soifer his Triptych, Princeton, July 2007. (Photo by 
John Morgan, Professor of Mathematics at Columbia University) 

Although mathematics became the lingua franca of twentieth century economics, only a 
handful of mathematicians have exerted a direct and lasting influence on the subject. They 
surely include Frank Plumpton Ramsey, John von Neumann, and John Forbes Nash Jr. The 
similarities and differences in their life trajectories are striking. Ramsey died at 26 years of 
age after an exploratory liver operation following a bout of jaundice, while Nash’s most 
productive period ended when he fell prey to schizophrenia at the age of 30. Von Neumann’s 
original work on game theory and growth models was done before he was 30 years old. For all 
three, the work in economics appears as a sideline. Ramsey’s friend and biographer, Richard 
Braithwaite wrote: “Though mathematical teaching was Ramsey’s profession, philosophy 
was his vocation,” without mentioning his contributions to economics at all or including the 
three papers on economics in the posthumous “complete” works that Braithwaite edited. The 
contributions of von Neumann to mathematical economics are but one chapter in the seven 
chapters comprising the memorial issue devoted to von Neumann’s research and published as 
a special issue of the Bulletin of the American Mathematical Society. Regarding Nash, John 
Milnor considered “. . .  Nash’s [Nobel Economics] prize work [to be] an ingenious but not 
surprising application of well-known methods, while his subsequent mathematical work was 
much more rich and important.” 

Ramsey, von Neumann, and Nash came from very different backgrounds and had very 
different relationships to the economics and the economists of their day. Ramsey, an intimate



friend of Bertrand Russell and Wittgenstein, was a Cambridge man by birth. He appears to 
have been interested in economics from the age of 16 and wrote his first published piece on 
economics at 18. He had close personal and professional contacts with such well-known 
economists as John Maynard Keynes, Arthur Pigou, Piero Sraffa, and Roy Harrod. He served 
as an advisor to the Economic Journal, where Keynes took his counsel most seriously. He was 
well acquainted with the trends in the economic theory of his day. 

32.5 Reflections on Ramsey and Economics, by Harold W. Kuhn 357

Von Neumann, the scion of a Jewish banking family in Budapest, had a wide circle of 
intellectual friends from Budapest, Berlin, and Vienna that included economists such as 
William Fellner (who was a friend from gymnasium days) and Lord Nicholas Kaldor, who 
gave von Neumann a reading list in contemporary economics in the 20s, and who arranged for 
an English translation of von Neumann’s growth model to be published in the Review of 
Economic Studies in 1945. Thus, there is ample evidence that von Neumann was well 
informed of the state of economics throughout his life. 

The case of John Nash, who grew up in the coal mining and railroad town of Bluefield, 
West Virginia, is very different. When he came to Princeton to do graduate work in 
mathematics at the age of 20, he had taken one undergraduate course in economics 
(on International trade) at Carnegie Tech, taught by an Austrian émigré, Bert Hoselitz. His 
major contribution on bargaining, which appears to have had its origin in this course, has two 
boys (Bill and Jack) trading objects such as a whip, a bat, a ball, and a knife. This was the 
work of a teenager. There is no evidence that Nash had read any contemporary economist 
outside the required readings of his one undergraduate course. Of course, later in his life, in 
the period when he was on the faculty at the Massachusetts Institute of Technology, he had 
contact with Paul Samuelson and Robert Solow, Nobel Prize winners in Economics, who 
knew of his work in game theory. Nash’s only later excursion into economics is a theory of 
“ideal money,” an idea that appears to have been anticipated in part by Friederich Hayek. 

Now that game theory has become part of the economist’s tool kit, anyone who takes an 
introductory economics course learns about the contributions of von Neumann and Nash. 
Ramsey’s work, however, is less well known and the principal reason for this note is to give 
the reader an appreciation for the contributions of Ramsey to economics. Between the ages of 
18 and 27, Ramsey wrote four papers, which we shall discuss in detail below. 

(A) “The Douglas Proposals,” The Cambridge Magazine, Vol. XI, No. 1, January 1922, 
pp. 74–76. 

Ramsey’s first work related to economics (A) was published when he was 18. He was no 
common 18-year-old; here is how Keynes described him: “From a very early age, about 
sixteen I think, his precocious mind was intensely interested in economic problems.” The 
Cambridge Magazine was edited by C. K. Ogden, a Fellow of Magdalene College where 
Ramsey’s father was President, from 1912 to 1922. Ramsey and Ogden met while Ramsey 
was still a student in his public school, Winchester, and Ogden persuaded him to study the 
then much-discussed social credit proposals of a certain Major Douglas. I. A. Richards 
recalled the upshot: “Soon after he’d done the Douglas credit thing, you know, A. S. Ramsey, 
his father, called up Ogden and said ‘What have you been doing to Frank?’, and Ogden said 
‘What’s he been doing?’. ‘Oh he’s written a paper on Douglas Credit which would have won 
him a Fellowship in any University anywhere in the world instantly. It’s a new branch of 
mathematics.’”
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Who was this Major Douglas? Briefly, he was one of those crackpots who exist on the 
fringe of academic economics and whose theories promise a redistribution of wealth that 
appealed to a large part of the public (including, in Douglas’s case, Ezra Pound and T. S. 
Eliot). Like many of those offering a panacea for the Great Depression, he was also an anti-
Semite who invoked the theses expounded in the Protocols of the Elders of Zion in defense of 
his economic theories. 

What was Major Douglas’s heresy that Ramsey demolished? It is centered on the so-called 
A +  B  “theorem” (called by Keynes “mere mystification”). In producing a good, price is made 
up of two parts of the cost paid out by the producer: A equals the amount paid out for raw 
materials and overhead and B equals the sums paid out in wages, salaries, and dividends. 
According to Douglas, the amount B, paid to the consumers, is never sufficient to buy all of 
the good, whose cost (and price) is A + B. Therefore, the state should make up the difference 
through “social credit.” 

Ramsey first provides a verbal argument that shows that, in a stationary state, the total rate 
of distribution of purchasing power (taking into account payments originating in intermediate 
goods) equals the rate of flow of costs of consumable goods. He then writes: 

“. . .  it is possible, using some complicated mathematics to show that the ratio is unity 
under much wider conditions which allow for changes in the quantity of production, in 
the rate of wages, in the productivity of labour, and in the national wealth.” The 
“complicated mathematics”, other than Ramsey’s curiously rigid set of modeling 
assumptions, consists of the use of “integration by parts,” a technique taught to every 
beginning student of the calculus. 

(B) “A Contribution to the Theory of Taxation,” The Economic Journal, Vol. XXXVII, 
March 1927, pp. 47–61. 

The young Ramsey assisted A. C. Pigou, who was the successor to Alfred Marshall in the 
chair of Political Economy at Cambridge, on a number of occasions beginning before 1926. 
After providing Pigou with a mathematical proposition and examples for two articles, one on 
credit and one on unemployment, Ramsey assisted Pigou with changes in the third edition of 
The Economics of Welfare, published in 1929. However, it appears that Ramsey’s work on 
taxation (B) was inspired by questions raised in Pigou’s A Study in Public Finance. 

The problem posed by Ramsey in (B) was to find an optimal system of taxation of 
commodities so as to raise a given quantity of revenue. For Ramsey in (B), “optimal” 
means minimizing aggregate sacrifice. Using this objective function, he shows that the 
production of each commodity should be reduced in the same proportion, thus a system of 
differential taxation. The mathematics employed is rather standard, namely, optimization 
under equality constraints using Lagrange multipliers which was taught to mathematicians of 
this period by treatises such as de la Vallee Poussin’s Cours d’Analyse. The treatment is 
careful for the period, and Ramsey includes a number of examples of potential applications of 
his results. Of particular interest is a discussion of the application of income tax to savings, a 
subject that I believe was part of a larger research agenda that Ramsey had formulated. 

(C) “A Mathematical Theory of Saving,” The Economic Journal, Vol. XXXVIII, December 
1928, pp. 543–549.
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Papers (B) and (C) were published in the Economic Journal which Keynes controlled with 
an iron hand. Keynes wrote of (C) that it “is, I think, one of the most remarkable contributions 
to mathematical economics ever made, both in respect of the intrinsic importance and 
difficulty of its subject, the power and elegance of the technical methods employed, and the 
clear purity of illumination with which the writer’s mind is felt by the reader to play about its 
subject.” The article (C) is concerned with the derivation of optimal saving programs under a 
variety of conditions. Samuelson captures the spirit of the paper in the society in which it was 
created when he wrote: “Frank Ramsey, living in a happier age and being a Cambridge 
philosopher assumed society would last forever and seek to maximize the utility of its 
consumption over all infinite time.” A major stumbling block immediately presents itself in 
that the “utility of its consumption over all infinite time” is an improper integral which, in 
general, will not have a finite maximum value. Ramsey proposed an elegant device to get 
around this problem. He assumed that there was a maximum amount of attainable utility 
(called “bliss”), and instead of maximizing the improper integral, he minimized the deviation 
from bliss over the infinite horizon. 

Ramsey then derives a result that is easy to express in common English, namely: “The 
optimal rate of saving multiplied by the marginal utility of consumption should always equal 
the difference between bliss and the actual rate of utility enjoyed.” The paper contains a 
derivation of this result by simple verbal reasoning provided by Keynes (which does not apply 
to the most general cases considered by Ramsey but which does give the non-mathematically 
adept the feeling of “understanding the result”). Contemporary mathematical economists will 
instantly recognize the problem as one to which the calculus of variations applies and, indeed, 
over 30 years after Ramsey wrote (C) such techniques took over the theoretical models of 
growth. We can say with real justice that Ramsey was “ahead of his time.” 

Recently, three economic historians (D. A. Collard, M. Gaspard, and P. C. Duarte) have 
put forth a very persuasive theory (based largely on unpublished notes of Ramsey that are 
archived at the University of Pittsburg) that Ramsey’s two papers on taxation and savings 
were not isolated works of a mathematician answering questions put to him by economists but 
were rather part of an over-arching research program that Ramsey had clearly in mind. If this 
plausible theory is true, it makes his early death even more tragic. 

(D) “Truth and Probability,” in R. B. Braithwaite (ed.), The Foundations of Mathematics and 
Other Logical Essays, London: Routledge and Kegan Paul, 1931, pp. 156–198. 
Reprinted in H. E. Kyburg and H. E. Smokler (eds.) Studies in Subjective Probability, 
New York: Wiley 1964, pp. 61–92. 

In modeling the decisions of an individual who chooses an alternative from a set of 
uncertain outcomes, it has long been the tradition to introduce a numerical function to 
measure the objective of the individual involved. When von Neumann first formulated “the 
most favorable result” for a player in a strategic game, he identified “the most favorable 
result” with “the greatest expected monetary value,” remarking that this or some similar 
assumption was necessary in order to apply the methods of probability theory. While doing 
so, he was well aware of the objections to the principle of maximizing expected winnings as a 
prescription for behavior but wished to concentrate on other problems. The St. Petersburg 
paradox illustrates in clear terms the fact that the principle of maximizing expected winnings 
does not reflect the actual preferences of many people.
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To resolve this paradox, Daniel Bernoulli suggested that people do not follow monetary 
value as an index for preferences but rather the “moral worth” of the money. He then proposed 
a quite serviceable function to measure the moral worth of an amount of money, namely, its 
logarithm. Whatever the defects of this function as a universal measure of preferences, and 
they are many, it raises the question of the existence of a numerical index which will reflect 
accurately the choices of an individual in situations of risk. Interest in this problem was first 
shown by Ramsey in (D) in which he defined utility operationally in terms of individual 
behavior. As Mellor writes: “In this paper (D), after criticizing Keynes, Ramsey went on to 
produce his own theory. This starts from the fact that people’s actions are largely determined 
by what they believe and what they desire – and by strength of those beliefs and desires. The 
strength of people’s beliefs is measured by the so-called subjective probability they attach to 
events. . .  Subjective utility measures the strength of people’s desires just as subjective 
probability measures the strength of their beliefs. The problem is how to separate these two 
components of people’s actions... One of the things Ramsey’s paper did was to show how to 
extract people’s subjective utilities and probabilities from the choices they make between 
different gambles; and by doing so it laid the foundations for the serious use of these concepts 
in economics and statistics as well as in philosophy.” 

The bible of game theory, The Theory of Games and Economic Behavior by von Neumann 
and Morgenstern, which confronts similar problems contains no reference to the work of 
Ramsey. When von Neumann was queried about this omission, he explained it by saying that, 
after Goedel published his papers on undecidability and the incompleteness of logic, he did 
not read another paper in symbolic logic. Although his excuse is strengthened by the fact that 
(D) first appeared in the volume that Braithwaite edited after Ramsey’s death, no such excuse 
exists for Morgenstern, when he wrote “Some Reflections on Utility” in 1979 and cited two 
articles by J. Pfanzagl while overlooking Ramsey’s paper (D) and Savage’s The Foundations 
of Statistics. 

Aside from Ramsey’s paper on Major Douglas, which was an exemplary mathematical 
model refuting errant nonsense, he has clear precedence in four major themes of twentieth 
century economics. The paper on taxation (B) was a source for both public finance theorists 
and for monetary economists who have characterized inflation as a tax on money holdings and 
have formulated optimal inflation policies as optimal taxation schemes. The paper on savings 
(C) has become the touchstone for economists working on growth. The fourth area is the 
theory of expected utility and decisions under risk which is used in an essential way in 
Ramsey’s insights on subjective probability in (D). 

I have been a friend of John Nash since he arrived in Princeton in 1948. I knew John von 
Neumann from 1948 until his death in 1957. I very much regret not having known Frank 
Ramsey. Given the modernity of his work, it is hard to grasp the fact that he died over 
77 years ago. 

While in Cambridge, I tried – and failed – to find the grave of Frank Plumpton Ramsey. My 
son Mark Samuel Soifer succeeded.
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Grave of Frank Plumpton Ramsey and his parents, Cambridge, photo by Mark S. Soifer. The 
tombstone reads: “In loving memory of Mary Agnes Ramsey 8 Jan. 1876–15 Aug. 1927. Also 
of Frank Plumpton Ramsey 22 Feb. 1903–19 Jan. 1930. Also of Arthur Stanley Ramsey 
12 Sept. 1869–31 Dec. 1954”



Part VII 
Colored Integers: Ramsey Theory 
Before Ramsey and Its AfterMath 

History will be written many different ways. Look 
out, the Chinese are coming, the Chinese are coming 
and they will write history from their perspective and 
many things we believe are important facts will not 
matter to them. 

– Thomas L. Saaty1 

1 Thomas L. Saaty e-mail to A. Soifer, Aril 13, 1998.
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Chapter 33 
Ramsey Theory Before Ramsey: Hilbert’s Theore 

A new theory often appears in an attempt to answer new questions or to shed a new light on 
old problems. It is not usually born overnight. Before its birth, a new mathematical theory 
usually grows unnoticed within old and well-established branches of mathematics. Ramsey 
Theory is no exception. Its roots go back decades before the 1930 pioneering paper of Frank 
Plumpton Ramsey saw the light of day after his untimely passing at the age of 26. As far as we 
know today, the first Ramseyan-type result appeared in 1892 as a little-noticed assertion in 
[Hil]. Its author was the great David Hilbert. In this work, Hilbert proved the theorem of our 
interest merely as a tool for his study of irreducibility of rational functions with integral 
coefficients. The tool is known as “Hilbert’s Cube Lemma”: We will call it here “The Hilbert 
Theorem.” 

A set Qn(a, x1, x2, . . ., xn) of integers is called an n-dimensional affine cube if there 
exist n + 1 positive integers a, x1, . . ., xn such that 

Qn a, x1, x2, . . . , xnð Þ= aþ 
i2F xi : ∅≠F⊆ 1, 2, . . . , nf g  : 

In this chapter and the rest of the book, it is convenient to use the symbol [n] for the starting 
segment of positive integers: 

n½ ]= 1, 2, . . . , nf g: 

This theorem, which precedes Schur’s Theorem (Chapter 34) and the Baudet–Schur–van 
der Waerden Theorem (Chapter 35), reads as follows. 

The Hilbert Theorem 33.1 For every pair of positive integers r, n, there exists a least 
positive integer m = H(r, n) such that in every r-coloring of [m], there exists a monochromatic 
n-dimensional affine cube. 

Proof easily follows from the Baudet–Schur–van der Waerden Theorem (see it in 
Chapter 35): the arithmetic progression {a, a+x, a+2x,. . ., a+nx} is precisely the cube 
Qn(a, x1, x2, . . ., xn) with x1 = x2 = . . .  = xn = x. Of course, this is not Hilbert’s proof, for 
his proof precedes van der Waerden’s paper by 35 years. ■ 
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This is a Ramseyan theorem, as it asserts a property invariant under all r-colorings of a 
certain set, in this case, the initial segment [m] of the set of positive integers. You can see 
Hilbert’s proof of Hilbert’s Cube Lemma, its use in the proof of Hilbert’s Irreducibility 
Theorem, and well researched and presented through history train of thought spanning from 
Gauss to Hilbert and beyond in the paper [VGR] by Mark B. Villarino, William Gasarch, and 
Kenneth W. Regan. 

Nearly 100 years later, in 1989, Paul Erdős, András Sárkösy, and Vera T. Sós published 
[ESS] a generalization of the Hilbert Theorem. They called it aptly “a density version” of the 
Hilbert Theorem. 

Density Version of Hilbert’s Theorem 33.2 [ESS]. For every positive integer n, there is a 
number m0 = H(n) such that for any m > m0, B⊆ [m] with Bj j> 3m1- 2- n 

, there exist distinct 
positive integers a, x1, x2, . . ., xn such that all 2

n sums forming the n-dimensional affine cube 
Qn(a, x1, x2, . . ., xn) belong to B. 

Hilbert’s place as one of the world’s leading mathematicians around the turn of the XX 
century had certainly not been won by this result. He did not come back to Ramseyan-style 
mathematics (unlike Issai Schur, as we will see in the following few chapters). Nevertheless, 
the style of this book calls for a brief essay on Hilbert’s life. I refer you to the celebrated 
Hilbert’s biography by Constance Reid [Reid] and Herman Weil’s paper David Hilbert and 
his mathematical work for a much worthier narrative. 

David Hilbert was born near Königsberg (currently Kaliningrad, Russia) in Wehlau (cur-
rently Znamensk). In 1885, he earned his PhD degree at the University of Königsberg under 
Ferdinand von Lindemann. Following 10 years at Königsberg, he moved to the University of 
Göttingen where he remained for the rest of his life. 

Hilbert made major contributions to numerous areas of mathematics and physics. In 1900, 
at the International Congress of Mathematicians in Paris, he presented a set of problems, 
known as The 23 Hilbert’s Problems (during the talk he was able to articulate 10 of them) that 
profoundly influenced the development of mathematics in the twentieth century. The prob-
lems included questions related to Cantor’s Continuum Hypothesis and Zermelo’s Axiom of 
Choice (problem 1), the provability of the consistency of axioms for logic (problem 2), the 
possibility of the axiomatization of physics (problem 6), and The Riemann Hypothesis 
(problem 8). 

Following Felix Klein, Hilbert made Göttingen the world’s premier center of mathematics. 
He lived to see Göttingen’s superiority collapse, when following Hitler’s 1933 ascent to 
power, many leaders of mathematics and physics were forced to leave the University and the 
country. 

Constance Reid [Reid] conveys how Hilbert must have felt: 

Sitting next to the Nazi’s newly appointed minister of education [Bernard Rust] at a 
banquet, he [Hilbert] was asked, “And how is mathematics at Göttingen now that it has 
been freed of the Jewish influence?” 

“Mathematics in Göttingen?” Hilbert replied. “There is really none any more.” 

Hilbert passed away in Göttingen on February 14, 1943.
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Chapter 34 
Ramsey Theory Before Ramsey: Schur’s Co loring 
Solution of a Colored Problem and Its Gene ralizations

34.1 Schur’s Masterpiece 

Nobody remembered – if anyone even noticed – Hilbert’s 1892 lemma by the time the second 
Ramseyan type result appears in 1916 in number theory as another little noticed lemma. Its 
author is Issai Schur. Our interest here lies in the result he obtained during 1913–1916 when 
he worked at the University of Bonn as the successor to Felix Hausdorff.1 There he wrote his 
pioneering paper [Sch]: Über die Kongruenz xm + ym� zm (mod. p). In it, Schur offers another 
proof of a theorem by the American number theorist Leonard Eugene Dickson from [Dic1], 
who was trying to prove Fermat’s Last Theorem. For use in his proof, Schur creates, as he put 
it, “a very simple lemma, which belongs more to combinatorics than to number theory.” 

Nobody then asked questions of the kind Issai Schur posed and solved in his 1916 paper 
[Sch]. Consequently, nobody appreciated this result much when it was published. Now it 
shines as one of the most beautiful, classic theorems in the history of mathematics. Its setting 
is positive integers, colored in finitely many colors. The beautiful solution I am going to 
present utilizes coloring as well. I have got to tell you how I received this solution (see [Soi9] 
for more details). 

In August 1989, I taught at the International Summer Institute in Long Island, New York. 
A fine international contingent of gifted high school students for the first time included a 
group from the Soviet Union. Some members of this group turned out to be mathematics 
Olympiads’ “professionals,” winners of the Soviet Union National Olympiads in Mathemat-
ics and in Physics. There was nothing in the Olympiad genre that they did not know or could 
not solve. I offered them – and everyone else in my class – an introduction to certain areas of

1 Both Alfred Brauer [Bra2] and Walter Ledermann [Led1] reported the year of 1911 as the time 
when Schur became an Extraordinarius in Bonn, while Schur’s daughter Mrs. Hilde Abelin– 
Schur [Abe1] gave me 1913 as the time her family moved to Bonn. The Humboldt University’s 
Archive contains personnel forms (Archive of Humboldt University at Berlin, document UK Sch 
342, Bd. I, Bl.25) filled up by hand by Issai Schur himself, from which we learn that he worked at 
the University of Bonn from April 21, 1913, until April 1, 1916, when he returned to Berlin. 
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combinatorial geometry. We quickly reached the forefront of mathematics, full of open 
problems. Students shared with me their favorite problems and solutions as well. Boris 
Dubrov from Minsk, Belarus, told me about a visit to Moscow by the American mathema-
tician Ronald L. Graham. During his interview with the Russian physics and mathematics 
magazine Kvant, Graham mentioned a beautiful problem that dealt with 2-colored positive 
integers. Boris generalized the problem to n-coloring, strengthened the result, and proved it 
all! He gave me this generalized problem to use in the Colorado Mathematical Olympiad.

368 34 Ramsey Theory Before Ramsey: Schur’s Coloring Solution of a. . .

This problem was in fact the Schur Theorem of 1916, rediscovered by Boris, with his own 
proof that was more beautiful than Schur’s original proof, but which had already been known 
for ca. 18 years. Paul Erdős received this proof from Vera T. Sós and considered it important 
enough to include it in his talk at the 1970 International Congress of Mathematicians in Nice, 
France [E71.13]. Chances of receiving a solution of such a problem during the Olympiad 
were slim. Yet, the symbolism of a Soviet kid offering an astonishingly beautiful problem to 
his American peers was so great, that I decided to include it as an additional problem 
6 (Colorado Mathematical Olympiad usually offers 5 problems of increasing difficulty). 

The Schur Theorem 34.1 ([Sch]). For any positive integer n, there is an integer S(n) such 
that any n-coloring of the initial positive integers array [S(n)] contains a monochromatic triple 
a, b, c, such that a + b  = c. 

Proof of the Schur Theorem Let all positive integers be colored in n colors c1, c2, . . .  , cn. 
Due to Problem 29.13, there is S(n) such that any n-coloring of edges of the complete graph 
KS(n) contains a monochromatic triangle K3. 

Construct a complete graph KS(n) with its vertices labeled with integers from the initial 
integers array [S(n)] = {1, 2,. . ., S(n)}. Now color the edges of KS(n) in n colors as follows: 
let i and j, (i > j), be two vertices of KS(n), color the edge ij in precisely the color of the 
integer i – j (remember, all positive integers were colored in n colors!). We get a 
complete graph KS(n) whose edges are colored in n colors. By Problem 29.13, KS(n) contains 
a triangle ijk, i > j > k, whose all three edges ij, jk, and ik are colored in the same 
color (Fig. 34.1). 

Fig. 34.1 Edge-monochromatic triangle
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Denote a = i – j; b = j – k; c = i – k. Since all three edges of the triangle ijk are colored in 
the same color, the integers a, b, and c are colored in the same color in the original coloring of 
the integers (this is how we colored the edges of Ks(n)). In addition, we have the following 
equality: 

aþ b= i–jð Þ þ  j–kð Þ= i–k= c 

We are done! ■ 

The result of the Schur Theorem can be strengthened by an additional clever trick in the 
proof. 

Stronger Version of the Schur Theorem 34.2 For any positive integer n, there is an integer 
S*(n) such that any n-coloring of the initial positive integers array [S*(n)] contains a triple of 
distinct integers a, b, c, such that a + b  = c. 

Proof Let all positive integers be colored in n colors c1, c2, . . .  ,cn. We add n more colors c1’, 
c2’, . . .  , cn’ different from the original n colors and construct a complete graph KS(2n) with the 
set of positive integers {1, 2, . . .  ,S(2n)} labeling its vertices (see the definition of S(2n) in the 
proof of Theorem 34.1). Now we are going to color the edges of KS(2n) in 2n colors. 

Let i and j, (i > j), be two vertices of KS(2n), and cp be the color in which the integer i – j is 
colored, 1≤ p ≤ n (remember, all positive integers are colored in n colors c1, c2, . . .  , cn). Then, 

we color the edge ij in color cp if the number i 
i- j is even, and in color cp’ if the number 

i 
i- j is odd (for a real number r, the symbol brc, as usual, denotes the largest integer not 

exceeding r). 
We get a complete graph KS(2n) whose edges are colored in 2n colors. By Theorem 34.1, 

KS(2n) contains a triangle ijk, i > j > k, whose all three edges ij, jk, and ik are colored in the 
same color (see Fig  . 34.1). 

Denote a = i – j; b = j – k; c = i – k. Since all three edges of the triangle ijk are colored in 
the same color, from the definition of coloring of edges of KS(2n), it follows that in the original 
coloring of positive integers, the integers a, b, and c were colored in the same color. In 
addition, we have 

a þ b= i–jð Þ þ j–kð Þ= i–k= c: 

We are almost done. We only need to show (our additional pledge!) that the numbers a, b, 
c are all distinct. In fact, it suffices to show that a ≠ b. Assume the opposite: a = b and cp is the 
color in which the number a = b = i – j = j – k is colored. But then 

i 
i- j 

= 1þ j 
i- j 

= 1þ j 
i- j 

= 1þ j 
j- k 

,
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i.e., the numbers i 
i- j and j 

j- k have different parity; thus, the edges ij and jk of the 

triangle ijk must have been colored in different colors. This contradiction to the fact that 
all three edges of the triangle ijk have the same color proves that a ≠ b. Theorem 34.2 is 
proved. ■ 

34.2 Schur’s Numbers 

Solve the following problem: 

Problem 34.3 Can integers 1; 2; . . .; 581,130,733 be colored in 19 colors without creating a 
monochromatic triple x, y, z, such that x +  y  = z? 

Are you scared? 
You should! :) 
Let me help you. Hint: for n = 19, (3n - 1)/2 = 581, 130, 733. 

This is a good illustration that the general case may be easier to prove than a particular one. 
Issai Schur proved this general case in his 1916 paper [Sch]. The Olympiad spirit of the 
problem prompted me to offer it to mid- and high school students at the 36th Soifer 
Mathematical Olympiad as problem 5: 

Schur’s Lower Bound 34.4 For any positive integer n, find an n-coloring of inte-
gers 1, 2, . . ., (3n - 1)/2 such that there is no monochromatic triple x, y, z, such that 
x + y  = z. 

Solution. Coloring will be constructed by induction. The case n = 1 is trivial. Assume that 
there is a n-coloring of the set T: 1, 2, . . ., (3n - 1)/2 not creating a monochromatic triple x, y, 
z, such that x + y  = z. Partition the set R: 1,  2,  . . ., (3n + 1 - 1)/2 into 3 subsets: 

1, 2, . . . , 3n- 1ð Þ=2; 

3n - 1ð Þ=2þ 1, . . . , 3n- 1ð Þ=2þ 2, . . . , 3n ; 

3n þ 1, 3n þ 2, . . . , 3nþ1 - 1 =2: 

The first subset can be properly colored due to the inductive assumption. We assign color 
n + 1 to the entire second subset. Since (3n +  1 - 1)/2 – (3n +  1)  +  1  = (3n - 1)/2, the third 
subset has exactly the same number of elements as the first one, and we color it by the 
translation of the coloring of the first subset by 3n :  if  a of the first subset is assigned color m, 
we color a +  3n of the third subset in color m. Let us now prove that we created no 
monochromatic triple x, y, z with x  +  y  = z.
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If x, y both belong to the first subset, and their sum x + y is in the first subset, then by the 
inductive assumption, the triple is not monochromatic. If x, y both belong to the first subset 
and x + y is in the second subset, then the sum is in color n + 1 and the triple is not 
monochromatic. If x, y both belong to the first subset, x + y cannot belong to the third 
subset – in all cases, we get no monochromatic triple. 

The sums of any two numbers from the second subset belong to the third subset, thus again 
preventing a monochromatic triple. 

If x belongs to the first subset and y and x + y  belong to the third subset, we do not get a 
monochromatic triple. Indeed, in this case, y – 3n has the same color as y (by our definition of 
colors in the third subset). And if the triple x, y, x + y  is monochromatic, then the triple x, y – 
3n , x +  (y – 3n ) is monochromatic and entirely in the first subset, which contradicts our 
inductive assumption. 

Finally, if x, y both belong to the third subset, their sum x + y lies outside of it. ■ 

There are two known definitions of the Schur Number, differing by 1. Let us choose to 
define the Schur Number as the largest integer S(n), such that there is a n-coloring of [S(n)] 
that forbids a monochromatic triple x, y, z with x + y  = z. 

As we have observed, Schur established the lower bound S(n) ≥ (3n - 1)/2. This lower 
bound is sharp for n = 1, 2, 3, which is easy to prove: S(1) = 1, S(2) = 4, and S(3) = 13. 

For n = 4, Schur’s formula gives 40; however, in 1965, using computer, Leonard 
D. Baumert and Solomon W. Golomb showed [BG] that in fact S(4) = 44. 

Finding the exact value of S(5) appeared to be very hard. In the 1970s, best-known bounds 
for S(5) were 157 ≤ S(5) ≤321, the lower bound obtained in 1979 by Harold Fredricksen [F] 
and the upper bound in 1973 by Earl Glen Whitehead [W]. 

Only ca. two decades later, in 1994, Geoffrey Exoo proved [Ex18] that S(5) ≥ 160. 
Moreover, Geoffrey shares with us valuable comments (ibid): 

We have found approximately 10,000 different partitions [colorings] of [1, 160]; of 
these, four are symmetric [palindromal]. These 10,000 partitions are all ‘close’ to each 
other. In other words, one can begin with one of the partitions, move an integer from one 
set to another, and obtain a new partition. This can be contrasted with the situation for 
partitions of [1, 159] where we found over 100,000 partitions, most of which were not 
close in this sense. It is tempting to conclude that there are far fewer sum-free partitions 
of [1, 160] than of [1, 159]. 

In 2017, the computer scientist Marijn J.H. Heule became interested in this problem. 
His result [Heu1] also appeared [Heu2] in AAAI (Submitted Tue, 21 Nov 2017 22: 
54:59): 

S 5ð  Þ= 160: 

It was a very significant result, for until this publication, the upper bound of S(5) stood at 
315. Marijn writes:



Þ
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We obtained the solution, n = 160, by encoding the problem into propositional logic 
and applying massively parallel satisfiability solving techniques on the resulting for-
mula. We constructed and validated a proof of the solution to increase trust in the 
correctness of the multi-CPU-year computations. The proof is two petabytes in size and 
was certified using a formally verified proof checker, demonstrating that any result by 
satisfiability solvers—no matter how large—can now be validated using highly trust-
worthy systems. 

As you already know, the coloring of integers from 1 to 160 in 5 colors without a 
monochromatic pair and its sum was first demonstrated by Geoffrey Exoo. He even 
produced a number of palindromal colorings, i.e., colorings where numbers i and 160 – 
i are assigned the same color. I am showing here a palindromal coloring found by Marijn 
Heule: 

Summing up, we record: 

Schur Number 5 by Heule 34.5 (Heule [Heu1], [Heu2]). S(5) = 160. 

The asymptotic lower bound was slightly improved from Schur’s exponential base 3. 
Following Abbott and Moser 1966 [AM], Abbott and Hanson 1972 [AH], Exoo’s result 

allowed for the lower bound of S nð Þ≥ c 315ð Þn 5 ≈ c 3:15981831ð Þn for n > 5 and a constant 
c [Ex18]. Heule’s result [Heu1] raised it higher: S nð Þ≥ c 321ð Þn 5 ≈ c 3:17176503ð Þn . 

In 2000, Harold Fredricksen and Melvin M. Sweet [FS] constructed colorings that proved 
new lower bounds S(6) ≥536 and S(7) ≥ 1680. 

34.3 Generalized Schur 

It is fitting that the Schur Theorem was generalized by one of Schur’s best students – Richard 
Rado. Rado calls a linear equation 

a1x1 þ a2x2 þ . . .þ anxn = b �ð
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regular, if for any positive integer r, any r-coloring of positive integers N contains a 
monochromatic solution of the equation (*). As before, we say that a solution x1, x2, . . ., xn 
is monochromatic, if all numbers x1, x2, . . ., xn are assigned the same color. 

For example, the Schur Theorem 34.1 proves precisely that the equation x + y - z = 0 is  
regular. In 1933, Richard Rado, among other results, found the following criterion: 

The Rado Theorem 34.6 (A particular case of [Rad1]). Let E be a linear equation 
a1x1 + a2x2 + . . .  + anxn = 0, where all a1, a2, . . ., an are integers. Then E is regular if and 
only if some non-empty subset of the coefficients ai sums up to zero. 

For example, the equation x1 + 3x2 - 2x3 + x4 + 10x5 = 0 is regular because 1 + 3 – 2 = 0. 

Corollary 34.7 The Schur Theorem 34.1 follows from The Rado Theorem. 

Richard Rado found regularity criteria for systems of homogeneous equations as well. His 
fundamental contributions to and influence on Ramsey Theory are hard to overestimate. I 
have given you just a taste of his theorems here. For more of Rado’s results read his papers 
[Rad1], [Rad2], and others, and the monograph [GRS2]. Instead of a formal biographical 
data, I prefer to include here a few passages about Richard Rado (1906, Berlin – 1989, 
Henley-on-Thames, Oxfordshire) written by someone who knew Rado very well – Paul 
Erdős – from the latter’s paper My joint work with Richard Rado [E87.12]: 

I first became aware of Richard Rado’s existence in 1933 when his important paper 
Studien zur Kombinatorik [Rad1, Rado’s Ph.D. thesis under Issai Schur]2 appeared. I 
thought a great deal about the many fascinating and deep unsolved problems stated in 
this paper, but I never succeeded to obtain any significant results here and since I have to 
report here about our joint work I will mostly ignore these questions. Our joint work 
extends to more than 50 years; we wrote 18 joint papers, several of them jointly with 
A. Hajnal, three with E. Milner, one with F. Galvin, one with Chao Ko, and we have a 
book on partition calculus with A. Hajnal and A. Mate. Our most important work is 
undoubtedly in set theory and, in particular, the creation of the partition calculus. The 
term partition calculus is, of course, due to Rado. Without him, I often would have been 
content in stating only special cases. We started this work in earnest in 1950 when I was 
at University College and Richard at King’s College. We completed a fairly systematic 
study of this subject in 1956, but soon after this we started to collaborate with A. Hajnal, 
and by 1965 we published our GTP (Giant Triple Paper – this terminology was invented 
by Hajnal) which, I hope, will outlive the authors by a long time. I would like to write by 
centuries if the reader does not consider this as too immodest . . .  

I started to correspond with Richard in late 1933 or early 1934 when he was a 
[Jewish] German refugee in Cambridge. We first met on October 1, 1934 when I first 
arrived in Cambridge from Budapest. Davenport and Richard met me at the railroad 
station in Cambridge and we immediately went to Trinity College and had our first long 
mathematical discussion . . .  

Actually, our first joint paper was done with Chao Ko and was essentially finished in 
1938. Curiously enough it was published only in 1961. One of the reasons for the delay 
was that at that time there was relatively little interest in combinatorics. Also, in 1938, 

2 Two years later, Rado obtained his second Ph.D. degree at Cambridge under G. H. Hardy. 
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Ko returned to China, I went to Princeton, and Rado stayed in England. I think we 
should have published the paper in 1938. This paper “Intersection theorems for systems 
of finite sets” became perhaps our most quoted result. 

It is noteworthy to notice how differently people can see the same fact. For Richard Rado, 
the Schur Theorem was about monochromatic solutions of a homogeneous linear equation x +  
y – z = 0 and so Rado generalized the Schur Theorem to a vast class of homogeneous linear 
equations (Rado’s Theorem 34.6 above) and systems of homogeneous linear equations 
[Rad1]. Three other mathematicians, totally unaware of the existence of each other, saw the 
Schur Theorem quite differently. This group consisted of Jon Folkman, a young Rand 
Corporation scientist; Jon Henry Sanders, the last Ph.D. student of the legendary Norwegian 
graph theorist Øystein Ore at Yale (B.A. 1964 Princeton University; Ph.D. 1968, Yale 
University); and Vladimir I. Arnautov, a 30-year old Moldavian topological ring theorist. 
Arnautov’s contribution to combinatorics was totally unknown in the West until I carefully 
looked at his ring theory paper. I shared my giving Arnautov credit with our leader Ronald 
L. Graham, who asked me in an e-mail “Who is Arnautov?” 

For the three, the Schur Theorem spoke about monochromatic sets of symmetric sums 

a1, a2, a1 þ a2f g= 
i= 1, 2 

εiai : εi = 0, 1; ε1ε2 ≠ 0 : 

Consequently, the three proved a generalization of the Schur Theorem, quite different from 
Rado’s kind, and paved the way for further important developments. I see therefore no choice 
at all but to name the following fine theorem by its three independent inventors. This may 
surprise readers accustomed to different attributions. I will address their concerns later in this 
chapter. 

The Arnautov–Folkman–Sanders Theorem 34.8 ([San1], [Arn]). For any positive 
integers m and n, there exists an integer AFS(m,n) such that any m-coloring of the initial 
integers array [AFS(m,n)] contains an n-element subset S ⊂ [AFS(m, n)] such that the 

Corollary 34.9 Both the Hilbert Theorem 33.1 and the Schur Theorem 34.1 follow from the 
Arnautov–Folkman–Sander Theorem 34.8. 

On 25 April 2009, i.e., half a year after the first edition of The Mathematical Coloring Book 
was published, I received the following e-mail from Dr. Jon Henry Sanders: 

Dear Prof. Soifer: What has been referred to throughout the literature as the Graham– 
Rothschild conjecture (resolved by Hindman) was first posed by me (in the more general 
form for an arbitrary finite number of colors) in my disertation [spelling corrected in the 
next e-mail], A Generalization of Schur’s Theorem, Yale ‘68. Attached is a photocopy 
of pgs 9 and 10 of my dissertation – Theorem 2’ is the conjecture. Since Rothschild was 
one of two readers of my dissertation (Plummer the other) it is strange that this 
misattribution has existed for so long.

https://doi.org/10.1007/978-1-0716-3597-1_33#FPar1
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The same day, Dr. Sanders sent me one more e-mail: 

Dear Prof. Soifer: I am sending this again to 
A. correct the spelling of the word ‘disertation’ to ‘dissertation’. 
B. explain that I was pleased to see your correct efforts at attribution of the 

‘Arnautov-Folkman-Sanders’ Theorem in the ‘Mathematical Coloring Book’ (I only 
have read some excerpts of the latter but I just purchased it on-line and look forward to 
reading it) and that this prompted me to try to help clarify the origins of the countable 
version. 

C. Share with you the anecdote that when I first proposed the theorem to Prof. Ore 
early in ’67 to see if it was known and if he thought it would be a reasonable dissertation 
topic, he told me that it was not known to him and to go ahead and try to prove it (he did 
not mention the existence of van der Waerden’s theorem) – When I first learned of van 
der Waerden’s theorem, after my dissertation had been accepted and right before 
graduating, I was worried that it might easily imply my theorem and somehow negate 
or trivialize it. Folkman’s original proof using van der Waerden’s theorem when I 
learned of it turned out to be short but not trivial and I was happy that the conferring 
of my degree was not jeopardized. 
Best Regards, 
Jon Henry Sanders 

While working on the original edition of The Mathematical Coloring Book [Soi44], I 
verified J. H. Sanders’ proof of Theorem 34.8 in his dissertation (where it is called “Theorem 
2”), but I failed to notice the conjecture. In 2011 [Soi33], I verified Dr. Sanders’ priority and 
changed the credit for the conjecture. Looking at the 1968 dissertation [San1] again, I see the 
conjecture listed as “Theorem 2’” and preceded by the words “It is natural [!] to ask whether 
either Lemma 1 or Theorem 2 generalize in the following way”: 

The Sanders Conjecture 34.10 [San1, p. 9]. Let the positive integers be divided into 
t classes A1, A2, . . ., At, [t a positive integer]. Then there exists an infinite [countable] sequence 
a1, a2, . . .  of positive integers and a number l, 1≤l ≤t, such that 

i2I 
ai 2 Al for all (non-empty) 

finite sets I of positive integers. 

A general problem with the American system of awarding doctorates is in play here. One 
does not have to publish the results of a thesis. In the Soviet Union, on the other hand, main 
results had to be published in (refereed) journals before a candidate for doctorate earned the 
right to defend the doctoral thesis. Jon H. Sanders published a relevant part of his 1968 
dissertation, but nearly 50 years later, on 11 December 2017, in arXiv [San2]. A Russian 
proverb observes, “Spoon is good for dinner,” i.e., not after it. Dr. Sanders has been justly 
unhappy for half a century that his authorship of the conjecture was never acknowledged and 
his coauthorship of the theorem was acknowledged not always. 

In their important 1971 paper [GR], Ron Graham and Bruce Rothschild vastly generalized 
a number of Ramsey type theorems and formulated this Conjecture 34.10 three years later 
than Jon H. Sanders and only for a division into 2 classes. Thus, the credit for the conjecture 
does belong to Jon Henry Sanders. Paul Erdős gave a high praise to the conjecture during his 
1971 talk in Fort Collins, Colorado, published in 1973 [E73.21]:
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Graham and Rothschild ask the following beautiful question: split the integers into two 
classes. Is there always an infinite sequence so that all the finite sums ∑εiai, εi = 0 or  
1 (not all εi = 0) all belong to the same class? . . .  This problem seems very difficult. 

Graham–Rothchild’s and Erdős’ papers made the conjecture well known and its proof very 
desirable. In his impressive paper submitted in 1972 and published in 1974 [Hin], Neil 
Hindman proved Conjecture 34.10. As I have tried to do uniformly throughout this mono-
graph and my other writings, I am giving credit for this result to both the author of the 
conjecture and the author of its first proof. 

The Sanders–Hindman Theorem 34.11 ([San1], [Hin]). For any positive integer n and 
any n-coloring of the set of positive integers N, there is an infinite subset S ⊆ N such that 

2 
Only on 19 July 2020, did I notice that in their fine but nearly impossible to obtain problem 

book [EG] published in 1980 by the Université de Genève, Paul Erdős and Ron Graham 
report (p. 13) that Hindman proved the theorem “answering a conjecture of Graham and 
Rothschild and Sanders.” Thus, Sanders’ authorship of the conjecture was known to the 
leaders of the field and should have been acknowledged all along. 

Let us now go back and establish the most appropriate credit for Theorem 34.8. It is called 
“Folkman–Rado–Sanders’ Theorem” in [GRS1], [Gra2], and [EG] and “Folkman’s Theo-
rem” in [Gra1] and [GRS2]. Most of the other authors have simply copied attribution from 
these works. Which credit is justified? In one publication only [Gra2], Ronald L. Graham 
gives the date of Jon Folkman’s personal communication to Graham that contained the 
relevant proof: 1965. In one late, 1981 publication [Gra1], Graham includes Folkman’s 
proof that uses the Baudet–Schur–Van der Waerden Theorem (see Chapters 35 and 37). 
Thus, Folkman merits a credit. In the standard text on Ramsey Theory [GRS2] by Graham– 
Rothschild–Spencer, I find an argument for credit to Folkman alone that disagrees with the 
first edition [GRS1] of the same book by the same authors: 

Although the result was proved independently by several mathematicians, we choose to 
honor the memory of our friend Jon Folkman by associating his name with the result. 

Jon H. Folkman left this world tragically in 1969. He was 31. Jon was full of great promise. 
Sympathy and grief of his friends are understandable and noble. Yet, do we, mathematicians, 
have the liberty to award credits based on something other than mathematics? In this case, 
how can we deny Jon Henry Sanders a credit, when Sanders’ independent authorship is 
absolutely clear and undisputed (he could not have been privy to the above-mentioned 
personal communication)? Sanders formulates and proves Theorem 34.8 in his 1968 Ph.D. 
dissertation [San1]. Moreover, Sanders proves it in a different way than Folkman: he does not 
use the Baudet–Schur–Van der Waerden Theorem but instead generalizes the Ramsey 
Theorem to what he calls in his dissertation “Iterated Ramsey Theorem” [San1, pp. 3–4]. 

Vladimir Ivanovich Arnautov’s discovery is even more striking. Living in the Soviet 
Union, he was certainly not privy to the Folkman’s private communication nor to the 
unpublished Sanders’ 1968 thesis at Yale. Arnautov’s paper is much closer in the presentation 
style to Schur’s classic 1916 paper, where the Schur Theorem appears as a useful tool, “a very 
simple lemma,” and is immediately used for obtaining a number-theoretic result, related to 
Fermat’s Last Theorem. Arnautov formulates and proves Theorem 34.8 but treats it as a 
useful tool and calls it simply “Lemma 2” (in the proof of Lemma 2, he uses the Baudet–



Schur–Van der Warden Theorem). He then uses Lemma 2 and other Ramseyan tools to prove 
that every (not necessarily associative) countable ring allows a nondiscrete topology. This 
brilliant paper was submitted to Doklady Akademii Nauk USSR on August 22, 1969 and on 
September 2, 1969 was recommended for publication by the celebrated topologist Pavel 
S. Aleksandrov.3 We have no choice but to savor the pleasure of associating Vladimir 
I. Arnautov’s name with Theorem 34.8. 
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What about Rado, I hear you asking? As Graham–Rothschild–Spencer [GRS2] observe, 
Theorem 34.8 “may be derived as a corollary of Rado’s theorem [Rad1] . . .  by elementary, 
albeit nontrivial, methods.”4 In my opinion, this is an insufficient reason to attach Rado’s 
name to Theorem 34.8. Arnautov, Folkman, and Sanders envisioned a generalization of Schur 
in the direction different from that of Rado and paved the way for Sanders’ conjecture proved 
by Hindman. In fact, Erdős came to the same conclusion as I in 1973 [E73.21] when he put 
Rado’s name in parentheses: 

Sanders and Folkman proved the following result (which also follows from the earlier 
results of Rado [Rad1]). 

I knew Paul Erdős well enough to be certain that had he have seen Arnautov’s paper, he 
would have definitely added Vladimir I. Arnautov’s name to the authors of Theorem 34.8. 

Vladimir Ivanovich Arnautov, who is to turn 84 on 30 July 2023, has been a professor at 
the Institute of Mathematics and Computer Science, and a member of the Academy of 
Sciences of Moldova. He served as the director of the Institute of Mathematics of the 
Moldavian Academy of Sciences, and a member of the presidium of the Academy. 

34.4 Nonlinear Equations or Pythagoras Meets Ramsey 

A number of mathematicians studied regularity of nonlinear equations. A special attention 
was paid to the Pythagorean quadratic equation. Ron Graham writes to me on January 
26, 2007: 

Hi Sasha, 
Here is the info on the meeting in Georgia (2005). I don’t [remember] when Erdős 

and I first published the x^2 + y^2 = z^2 partition regularity question. We both 
certainly mentioned it in talks for quite a while (especially in connection with the 
positive result of Rödl for the regularity of 1/x + 1/y = 1/z (which was never published) 
. . .  
Best regards, 
Ron 

3 Doklady published only papers by full and corresponding members of the Academy of Sciences 
of USSR. To be published, a non-member’s paper had to be recommended for publication by a 
full member of the Academy. I had this honor once, when A.N. Kolmogorov wrote diagonally on 
my manuscript “Recommend, A.N. Kolmogorov.” In print, right below my article’s title I see 
“Presented by the Academy member A.N. Kolmogorov 10/11/1973.” 
4 Theorem 34.8 also follows from Graham and Rothschild’s results published in 1971 [GR1]. 
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In fact, in his 2005 talk, published as [Gra7], Graham estimates that this Erdős–Graham 
problem “has been opened for over 30 years” and remains open as Graham reports in [Gra7], 
[Gra8], where he offers $250 for the first solution: 

$250 Pythagoras-Meets-Ramsey Problem 34.12 (R. L. Graham and P. Erdős, before 
1975). Determine whether the Pythagorean equation x2 + y2 = z2 is partition regular, i.e., 
whether for any positive integer k, any k-coloring of the set of positive integers contains a 
non-trivial monochromatic solution x, y, z of the equation. 

“There is actually very little data (in either direction) to know which way to guess,” 
Graham remarks [Gra7], [Gra8]. I recall the following story. 

In May 1993 in a Budapest hotel, right after Paul Erdős’ 80th Birthday Conference in 
Keszthely, Hungary, Hanno Lefmann from Bielefeld University, Germany, told me that he 
and Arie Bialostocki from the University of Idaho, Moscow, generated by computer, with an 
assistance of a student, a coloring of positive integers from 1 to over 60,000 in two colors that 
forbade monochromatic solutions x, y, z of the equation x2 + y2 = z2 . They must have made a 
mistake: see Theorem 34.13 below. 

In the first edition of this book, I wrote: 

This could be a basis for conjecturing a negative answer to Problem 34.12, but of course 
the problem remained open, awaiting new approaches. 

While these results were a step forward, they remain in a little studied vast area of 
Ramsey Theory. It deserves its own Richard Rado. 

Indeed, it happened when the problem was over 40 years old. In 2016, three computer 
scientists, using innovative computer science machinery, solved the Pythagoras–Ramsey 
problem of Graham and Erdős for 2 colors. Marijn J. H. Heule, the leader of the group that 
also included Oliver Kullmann and Victor W. Marek, answered the call on 3 May 2016 
[HKM]. Everyone was in awe of the size of the solution; “200 terabytes is unbelievable,” Ron 
Graham said. Many popular scientific magazines published essays about it. On my request 
Marijn Heule, sums-up his view of the problem and its solution in his 10 September 2020 
e-mail to me: 

The Pythagorean Triples Problem asks whether any coloring of the positive numbers 
with two colors, let’s call them red and blue, results in a monochromatic solution of the 
Pythagorean equation a2 + b2 = c2 . Our approach focused on answering the question 
positively by looking for a range of numbers {1, . . ., n} for which the answer is positive. 
We translated the problem into propositional logic by introducing a Boolean variable for 
each number in the range. Assigning a Boolean variable to true means that the 
corresponding number is colored red, while assigning it to false means that the number 
is colored blue. For each solution of a2 + b2 = c2 with a, b, and c within the range, one 
clause enforces that at least one of a, b, and c must be colored red and another clause 
enforces that at least one of a, b, and c must be colored blue. The formula with n = 7824 
is satisfiable (a monochromatic solution can be avoided), while the formula with n = 
7825 is unsatisfiable. State-of-the-art local search solvers can compute the former in 
about a minute, while proving the latter requires years of computation on a single 
computer. We did not only solve the problem, but also generated a proof, which can be 
validated using high-trustworthy systems. Below I will briefly recapitulate some 
highlights.
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Let’s start with the elephant in the room: the size of the proof. After all, this is what 
got the most attention in the media. In outlets around the world, from Nature News to 
Der Spiegel, everybody was talking about “the largest proof ever.” And yes, it is big. 
The proof of the Pythagorean Triples Problem is 200 terabytes in size, or, as one blog 
commentator wrote, “400 PlayStations 4.” Yet in my opinion, the proof size is really not 
that interesting. It would have been trivial to generate a substantially larger proof by 
simply using heuristics that are less effective. The size of 200 terabytes is the result of 
heavily optimizing the heuristics used in the automated reasoning. After about three 
weeks of optimization, the computation became within reach using the computational 
resources at my disposal at the time. If I would have had more resources, I might have 
stopped earlier, resulting in a larger proof. With fewer resources, I would [have] tried 
even harder to trim the computational costs and the size of the proof. A reduction of 
about 50% is probably within reach. 

I consider the ability to generate and validate this enormous proof using highly 
trustworthy proof checkers as the most interesting result of the project. On its face, it 
is only natural to doubt the correctness of a computation that takes years to complete on 
a single computer. Various other mathematical problems that have been solved using 
automated reasoning even failed to produce a proof altogether. Authors of such results 
often argued that storing and checking a very large proof would be infeasible, that it 
could not be done. I refuse to accept such defeatism. To counter their argumentation, I 
looked for a problem that would require enormous computation resources to solve. Once 
solved, I also insisted on producing and validating a proof of that computation. The 
Pythagorean Triples Problem turned out to be a suitable problem for this purpose. 

Of course, storing 200 terabytes of proof can be challenging if not impossible for 
many researchers. However, the size of the proof is measured in the proof format that is 
supported by most automated reasoning tools. The storage on disk is two orders of 
magnitude smaller due to heavy compression. The checker reads small chunks of the 
proof at a time to reduce memory consumption. Proof validation can also be performed 
in parallel. Most importantly, everybody can easily check if I did my work correctly: A 
variety of tools is available to check the proof’s validity. In addition, a similar tool chain 
can be used to validate many other automated reasoning results. 

A technique called cube-and-conquer was crucial to obtain the result. The use of 
cube-and-conquer realized linear time speedups even when using hundreds (or even 
thousands) of cores. The key ingredient of this technique is that it partitions the original 
problems into billions of subproblems that are solved independently. In many cases it 
can be challenging to partition a problem is such a way that the total runtime of solving 
the subproblems is similar or smaller than the runtime to solve the original problem. For 
the Pythagorean Triples Problem this was made possible by the above-mentioned 
heuristics. 

It is still up in the air whether there exists a compact proof for the infinite Pythagorean 
Triples Problem: Will any coloring of the positive integers with two colors result in a 
monochromatic Pythagorean triple? The current proof shows the exact point of transi-
tion: one can avoid a monochromatic Pythagorean triple when bi-coloring all positive 
numbers up till 7824. However, this is not possible for all positive numbers up to 7825 
(and higher). Notice that by searching for the smallest counterexample (the numbers up 
to 7825), the reasoning – and thus an infinite number of Pythagorean triples – is reduced 
to only 9472 Pythagorean triples.
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I also experimented with formulas that express whether the numbers up to 100,000 
can be bi-colored while avoiding a monochromatic Pythagorean triple. The impossibil-
ity of that statement is significantly smaller, about a terabyte (in the same proof format). 
Thus, there may be a reasonably short proof if the range of numbers is extremely large. 
Therefore, a humanly understandable argument for the infinite Pythagorean Triples 
Problem might be out there. However, I consider it unlikely that there exists a short 
proof for the inability to bi-color the positive integers up to 7825. The shortest proof of 
that statement is likely multiple terabytes in size. 

While the Pythagorean Triples Problem is now solved for two colors, the problem is 
still wide open for more colors. Although I expect that the problem [the problem’s 
answer] holds for any finite number of colors, it is highly unlikely that the method that 
was successful for two colors can be used for three colors or more. Some experiments 
showed that it is easy to color positive numbers up to 10 million using three colors 
without creating a monochromatic Pythagorean triple. Hence the transition point for 
three colors will be high. The transition point for four colors is probably astronomically 
large, and this might even be the case for three colors. I don’t expect that we will ever 
establish them. 

For more details, please, see Marijn’s exposition “Everything’s Bigger in Texas”: 

https://www.cs.utexas.edu/~marijn/ptn/ 

The Heule–Kullmann–Marek Theorem 34.13 Any 2-coloring of the set of all positive 
integers from 1 through 7825 contains a monochromatic solution x, y, z of the Pythagorean 
Equation x2 + y2 = z2 . Moreover, 7825 is the smallest number for which the statement is true. 

I find it amazing that Heule did not only solve the old and hard problem (albeit for 2 colors) 
but also found the exact minimal value, 7825, that guarantees a monochromatic triple. His 
conjecture is of a fundamental importance: 

Heule’s Conjecture 34.14 The Pythagorean equation x2 + y2 = z2 is partition regular, i.e., 
for any positive integer k, any k-coloring of the set of positive integers contains a monochro-
matic solution x, y, z of the equation. 

For k≥ 3 colors, the solution seems to be out of reach of today’s computing. And yet, let us 
create a definition and pose a problem. 

For a positive integer k, the Pythagorean Number P(k) is the smallest integer, such that 
any k-coloring of the set of all positive integers from 1 to P(k) contains a monochromatic 
solution x, y, z of the Pythagorean equation x2 + y2 = z2 . In this language, Theorem 34.13 
looks particularly concise: 

Theorem 34.15 P(2) = 7825. 

And now an open problem that begs to be posed and not likely to be solved in “real time” 
of our lives: 

Open Problem 34.16 For each positive integer k, find P(k) if it exists. At least find the upper 
and lower bounds of P(k) for small values of k≥ 3.

https://www.cs.utexas.edu/~marijn/ptn/
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Marijn J.H. Heule 

34.5 Marienus Johannes Hendrikus “Marijn” Heule 

Marijn Heule was born on 12 March 1979, in Rijnsburg, the Netherlands. He solved his first 
100-piece puzzle before he could walk. Still, a knack for mathematics does not run in 
the family, even though his dad stubbornly claims all the credits because his final high 
school grade in math was 5 (out of 10), while his mom’s was a meager 4. More than anything, 
Marijn became passionate about mathematical problems thanks to inspiring teachers in 
high school – the Rijnlands Lyceum in the neighboring town of Oegstgeest. 

Marijn went to Delft University of Technology, the Netherlands, to study Applied Com-
puter Science. There, the undergraduate course Computational Logic and Satisfiability, taught 
by Hans van Maaren, piqued his interest. In short, Satisfiability (SAT) asks whether a 
propositional formula can be made true. Many problems in application areas such as 
verification, planning, and mathematics can be expressed as a SAT problem. There exist 
very efficient tools, called SAT solvers, to solve these problems automatically. The course got 
Marijn hooked on improving SAT solving. Hans van Maaren, who later became his Ph.D. 
advisor, brought Marijn with him to the SAT 2002 conference as an undergraduate, where 
that initial spark quickly ignited into a burning passion that is still the main focus of his 
research.
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The topic of Marijn’s Ph.D. research was look-ahead solvers. This type of solvers was 
practically abandoned by the community in 2004, when he started his Ph.D.Marijn was able 
to make look-ahead solving efficient for many applications and his solver won many awards 
at various international SAT competitions. Look-ahead techniques became the key enabler for 
his later research on parallelizing SAT solving. 

During his Ph.D., Marijn worked as a co-editor with Armin Biere, Hans van Maaren, and 
Toby Walsh on the Handbook of Satisfiability. The first edition (900+ pages) was published 
in 2009 and has become the go-to reference for SAT research. The second edition (1500+ 
pages) was published in 2022. 

In April 2011, Marijn started a postdoc position in the group of Armin Biere at the 
Johannes Kepler University in Linz, Austria. Although the duration was relatively short 
(7 months), it was a very inspiring visit that influenced much of his later work. Armin’s 
SAT solvers have been the strongest in the field for over a decade. Armin considers them 
“experimentally correct”: i.e., they produce the right answer on a million small problems. 
However, Marijn suspected that one of the techniques in Armin’s top-tier solver could 
accidentally produce wrong answers, which he demonstrated by providing a small example. 
This started a long discussion on how to make sure that automated reasoning tools are reliably 
correct. 

Note that SAT solvers are used in industry and academia to show that hardware and 
software designs are correct. Also, an increasing number of long-standing math problems are 
tackled using SAT solvers. A bug in a SAT solver could therefore mean that such results are 
false. It is therefore important to ensure that we can have full confidence in the results. 

One option would be to formally verify the solvers. However, that would be an enormous 
effort, which would substantially reduce their performance and make it harder to update the 
tools. The alternative that Marijn and co-authors explored produces a certificate of correctness 
of each result. Such certificates can be checked with a simpler tool, which ideally is verified in 
a trustworthy system. 

After Linz, Marijn became a Research Fellow at the University of Texas at Austin in 2012, 
where he made various contributions to make his certificate vision a reality: He invented a 
single rule that captures all reasoning in SAT solvers. He showed that existing solvers can 
easily produce certificates based on this rule and he implemented an efficient checker for these 
certificates. Today, all top-tier SAT solvers support certificate logging, thereby boosting 
confidence in the correctness of the results. Marijn and others have also been using these 
certificates as proofs for a range of long-standing open math problems, including the Boolean 
Pythagorean Triples problem (which Tim Gowers called “the most disgusting proof ever”), 
the Boolean Erdős discrepancy problem, and Keller’s conjecture. 

During his time at UT Austin, Marijn’s research also focused on how to exploit the 
enormous potential of massive parallel computation in the cloud. Important initial results 
on parallelizing SAT dated back to his time in Linz. The Texas Advanced Computing Center 
(TACC) provided him with an abundance of resources to apply and improve these techniques 
on hard math problems. 

Parallel computation and certificates played a crucial role in finding smaller and smaller 
unit-distance (UD) graphs with chromatic number 5. In short, the method works as follows: 
given a UD graph, ask the SAT solver to produce a 4-coloring. If the chromatic number is 5 or 
larger, this is impossible. The solver can produce a certificate of that. Marijn developed 
techniques to minimize certificates. To extract a subgraph with chromatic number 5, one takes



the induced subgraph consisting of all vertices mentioned in the certificate. This allowed him 
to improve Aubrey de Grey’s 1581-vertex result down to an 874-vertex result in a few days. 
By improving the certificate minimization techniques, Marijn was able to get it down to 
510 vertices in a competition with Jaan Parts. 
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Currently, Marijn is an Associate Professor at Carnegie Mellon University (CMU), where 
he started in August 2019. One of his first results at CMU was the resolution of Keller’s 
conjecture. This problem was open since 1930. He finally solved it together with Joshua 
Brakensiek, JohnMackey, and David Narvaez using SAT solving technology. Together with 
his Ph.D. student Bernardo Subercaseaux, he recently determined that the packing chromatic 
number of the infinite grid is 15, a problem that was open for two decades. Again, SAT 
solving was essential to tackle this problem. With Emre Yolcu and Scott Aaronson, he is 
currently working on a moonshot project to solve the Collatz Conjecture using SAT. 

Ron Graham presented Marijn Heule with a check, a prize for Marijn’s achievement in the 
Pythagorean Triples Problem. We will meet Marijn again later in this book, where we discuss 
5-chromatic unit-distance graphs. 

Oliver Kullmann is a German computer scientist, who is a lecturer in computer science at 
Swansea University, United Kingdom. 

Victor W. Marek is an American computer scientist, born and educated in Poland. He is 
Professor-Emeritus in the Department of Computer Science at the University of Kentucky, 
where he served as a professor for well over three decades. 

Let us roll back and look at related problems. Inspired by the old K. F. Roth’s conjecture 
(published by Erdős in 1961) [E61.22, problem 16, p. 230], Paul Erdős, András Sárkösy, and 
Vera T. Sós proved in 1989 a number of results and posed a number of conjectures [ESS]. I 
would like to present here one of each, see others in [ESS]. 

Erdős–Sárkösy–Sós’s Theorem 34.17 [ESS, theorem 3]. Any k-coloring of the positive 
integers, k≤3, contains monochromatic pairs x, y such that x + y  = z2 , for infinitely many 
integers z. 

The authors then pose a conjecture: 

Erdős–Sárkösy–Sós’s Conjecture 34.18 [ESS, problem 2]. Let f(x) be a polynomial with 
integer coefficients, such that f(a) is even for some integer a. Is it true that for any k-coloring 
of positive integers, the equation x + y = f(b) has a monochromatic solution with x≠y for some 
b (for infinitely many b)? 

On the first reading, you may be surprised by the condition on f(a) to be even for some 
integer a. You could, however, easily construct a counterexample to Erdős–Sárkösy–Sós’s 
Conjecture 34.18 if this condition were not satisfied. Indeed, let f(x) = 2x2 + 1, and color the 
integers in two colors, one color for even integers and another for the odd ones. Obviously, 
there are no monochromatic solutions. 

In 2006, Ayman Khalfalah, professor of engineering in Alexandria, Egypt, and Endre 
Szemerédi [KSz] generalized Theorem 34.17 to all k. 

Kalfalah–Szemerédi’s Theorem 34.19 [KSz]. For any positive integer k, there exists N(k), 
such that any k-coloring of the initial segment of positive integers [N(k)] contains a mono-
chromatic pair x, y such that x +  y  = z2 , for an integer z. 

Khalfalah and Szemerédi also proved Conjecture 34.18.
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Kalfalah–Szemerédi’s Generalized Theorem 34.19 [KSz]. Given a positive integer k and a 
polynomial with integer coefficients f(x) such that f(a) is even for some a; there exists N(k), 
such that any k-coloring of the initial segment of positive integers [N(k)] contains a mono-
chromatic pair x, y, x ≠ y, such that x + y  = f(z), for some integer z. 

Endre Szemerédi is a witty speaker, with humor reminiscent of Paul Erdős’  –  this was on 
display on 4 April 2007, when as a Visiting Fellow at Princeton-Math I attended his 
presentation of these results at the Discrete Mathematics Seminar.
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Chapter 35 
Ramsey Theory Before Ramsey: Van der W 
Tells the Story of Creation 

aerde 

It is like picking apples from a tree. If one has got an apple and 
another is hanging a little higher, it may happen that one knows: 
with a little more effort one can get that one too. 

– B. L. van der Waerden [Wae18] 

A thing of beauty is a joy for ever. 
– John Keats, Endymion 

The third result in Ramsey Theory before Ramsey was proved by Bartel Leendert van der 
Waerden in 1926 and published a year later. 

Monochromatic Arithmetic Progressions Theorem 35.1 (Van der Waerden, 1927, 
[Wae2]). For any k, l, there is W = W(k, l) such that any k-coloring of the initial array of 
positive integers [W] contains a monochromatic arithmetic progression of length l. 

B. L. Van der Waerden proved this pioneering result while at Hamburg University and 
presented it the following year [1927] at the meeting of D.M.V., Die Deutsche Mathematiker 
Vereinigung (The German Mathematical Society) in Berlin. The result became popular in 
Göttingen, as the 1928 Russian visitor of Göttingen Alexander Y. Khinchin noticed and later 
reported [Khi1], but the result’s original publication [Wae2] in an obscure Dutch journal 
hardly helped its popularity. Only Issai Schur and his two students Alfred Brauer and Richard 
Rado learned about it and improved upon Van der Waerden’s result almost immediately 
(details in the next chapter); and somewhat later, in 1936, Paul Erdős and Paul Turán 
commenced density considerations related to Van der Waerden’s result [ET] (more in the 
next chapter). Only after World War II, when Alexander Yakovlevich Khinchin’s book Three 
Pearls of Number Theory came out in Russian in 1947 [Khi1] and again in Russian in 1948 
[Khi2], in German in 1951 [Khi3], and in English in 1952 [Khi4], the result became a classic 
and has remained one of the most striking “pearls” of mathematics. N.G. de Bruijn kindly 
shared with me his correspondence with Van der Waerden (and with Erdős). In his April 
5, 1977, reply to de Bruijn’s compliment, Van der Waerden wrote: “Your praise ‘A thing of 
beauty is a joy for ever’ pleases me.” Let me second de Bruijn: the praise, taken (without 
credit) from the great British poet John Keats, is well deserved! 

Now that the success of Khinchin’s booklet had made the result classic, the latter merited a 
special attention and commentary by its solver. Van der Waerden obligated and in 1954
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published an essay Der Beweis der Vermutung von Baudet with a more expressive English 
title How the Proof of the Baudet’s Conjecture Was Found. This essay has appeared four 
times in German: twice in 1954 [Wae13], [Wae14], in 1965 [Wae16], and posthumously in 
1998 [Wae26]; and once in English in 1971 [Wae18]. It is not only invaluable as a historical 
document. The essay delivers a vibrant portrait of mathematical invention in the making. Van 
der Waerden presents all critical ideas of the proof in the most clear and engaging way. 
Thanks to the permission granted to me by Professor Bartel L. van der Waerden in his letter 
[Wae24] and the permission by Academic Press, London, I am able to bring this delightful, 
lively essay [Wae18] to you here instead of presenting a formal “dehydrated” proof of the 
result.
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Enjoy! From here on, this chapter belongs to the Author; Bartel Leendert van der 
Waerden recollects: 

Once in 1926, while lunching with Emil Artin and Otto Schreier, I told them about a 
conjecture of the Dutch mathematician Baudet: 

If the sequence of integers 1, 2, 3, . . .  is divided into two classes, at least one of the classes 
contains an arithmetic progression of l terms: 

a, a þ b, . . . aþ l- 1ð Þb, 

no matter how large the length l is. 

After lunch, we went into Artin’s office in the Mathematics Department of the University 
of Hamburg and tried to find proof. We drew some diagrams on the blackboard. We had what 
the Germans call “Einfälle”: sudden ideas that flash into one’s mind. Several times such new 
ideas gave the discussion a new turn, and one of the ideas finally led to the solution. 

One of the main difficulties in the psychology of invention is that most mathematicians 
publish their results with condensed proofs but do not tell us how they found them. In many 
cases, they do not even remember their original ideas. Moreover, it is difficult to explain our 
vague ideas and tentative attempts in such a way others can understand them.1 To myself I am 
accustomed to talking in short hints which I alone can understand. Explaining these hints to 
others requires making them more precise and thus changing their nature. 

In the case of our discussion of Baudet’s conjecture, the situation was much more favorable 
for a psychological analysis. All ideas we formed in our minds were at once put into words 
and explained by little drawings on the blackboard. We represented the integers 1, 2, 3, . . .  in 
the two classes by means of vertical strokes on two parallel lines. Whatever one makes 
explicit and draws is much easier to remember and to reproduce than mere thoughts. Hence, 
this discussion between Artin, Schreier, and myself offers a unique opportunity for analyzing 
the process of mathematical thinking. 

1 And when mathematicians attempt to be subjective and include thoughts and emotions of the 
emergence of their results, most of journal editors, these priests of gloom and doom, would 
mercilessly cut manuscripts to bring them to an ‘objective’ and relentless theorem-proof style. – 
A.S.
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It was clear to us from the very beginning that the case l = 2 is trivial. One need not even 
consider the infinite sequence of integers; it is sufficient to consider the three integers 1, 2, 
3. If they are divided into two classes, one of the classes contains a pair of numbers 
(in arithmetic progression). 

The next case we considered was l = 3. In this case, too, it is not necessary to consider all 
integers: it suffices to take the integers from 1 to 9. The numbers 1 to 8 can be divided, in 
several ways, into 2 classes without obtaining an arithmetic progression of 3 terms in one 
class, e.g. like this: 

1 2 5 6 in the first class 
3 4 7  8  in the second class. 

However, in any one of these cases, the number 9 cannot escape. If we put it into the first 
class, we have the progression 1 5 9, and if we put it into the second class, we get the 
progression 7 8 9. Just so in all other possible cases. I had observed this already the day 
before. 

Next, Schreier asked if Baudet’s conjecture is at all true for a certain value of l, is it always 
possible to find an integer N(l) such that the conjecture holds already for the segment 

1 2 3 . . .N lð Þ, 

in the sense that every division of this segment into two classes yields an arithmetic 
progression of length l in one class? 

Schreier himself found the answer: it was Yes. If Baudet’s conjecture holds for a 
fixed value of l, it is possible to find an N such that the conjecture holds already for the 
segment 1 2 . . .  N. This was proved by a well-known procedure from set theory, the 
“diagonal procedure.” The argument is as follows. 

If no such N existed, then for every N there would be a division DN of the numbers from 
1 to  N into 2 classes such that no class contains an arithmetic progression of length l. Thus, 
one could obtain an infinite sequence 

D1 D2 . . .  

of such divisions. The number 1 lies, in every one of these divisions, in one of the two classes. 
Hence, it happens an infinity of times that 1 is in the same (first or second) class, and an 
infinite sequence D0 

1,D
0 
2, . . . exists such that in all these divisions 1 is in the same class, say in 

class number i1 (i1 = 1 or 2). 
In the divisions D0 

2,D
0 
3, . . ., the number 2 belongs to one of the two classes. Hence, by the 

same argument, an infinite subsequence D00 
2,D

00 
3, . . .  exists such that 2 is always in the same, 

i2th class. 
And so on. For every n, one obtains a subsequence of divisions 

D nð Þ  
n , D nð Þ  

nþ1, . . .  

such that in all these divisions, the integers 1, 2, . . ., n are always in the same classes:
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1 in class i1 
2 in class i2 
. . .  
n in class in. 

Next, one can form a “diagonal division” D D  of all integers 1, 2, 3, . . .  in which 1 lies in 
class i1, 2 in class i2, and so on. In this division, the number n lies in the same class as in the 
division D nð Þ  

n , hence the name “diagonal procedure.” 
In this division D D,  no arithmetic progression of length l could exist in which all terms 

belong to the same class. For if it existed, it would exist already in D nð Þ  
n , i.e., in one of the 

original divisions. But we have assumed Baudet’s conjecture to be true for the sequence of 
integers 1 2 3 . . .  and for this particular value of l. Thus, we obtain a contradiction. 

From this point onward, we tried to prove the “strong conjecture,” as we called it, for a 
finite segment from 1 to N(l), i.e., we tried to find a number N(l) having the desired property. 
For l = 2 and l = 3, such numbers had been found already: 

N 2ð Þ= 3, N 3ð Þ= 9: 

So we tried to go from l – 1 to  l. For this induction proof, the replacement of the original 
conjecture by a stronger one is a definite advantage, as Artin rightly remarked. If one can 
assume for l – 1 the existence of a finite bound N(l – 1), one has a chance to find a proof for the 
next number l. 

Next, Artin observed: If the strong conjecture is true for 2 classes and for all values of l, it  
must be true for an arbitrary number of classes, say for k classes. To prove this assertion, he 
first proposed k to be 4. The 4 classes can be grouped into 2 and 2. This gives us a rough 
division of the integers into 2 big classes, every big class consisting of 2 smaller classes. In 
one of the big classes, an arithmetic progression of N(l) terms exists. The terms of this 
progression can be numbered from 1 to N(l). These numbers are now divided into two smaller 
classes, and hence in one of the smaller classes, an arithmetic progression of length l exists. 
Thus, if the strong conjecture is true for 2 classes, it is also true for 4 classes. By the same 
argument, one finds that it also holds for 8 classes, etc., hence, for any number of classes 
k = 2n . But if it holds for k = 2n , it also holds for every k ≤ 2n because we may always add a 
few empty classes. Hence, if Baudet’s conjecture holds for 2 classes, it also holds, even in the 
strong form, for an arbitrary number of classes. 

We now tried to prove the “strong conjecture” for arbitrary k and l by induction form 
l – 1 to  l. This means: we tried to find a bound N = N(l, k) such that, if the integers from 1 to 
N are divided into k classes, one of the classes contains an arithmetic progression of length l. 

Artin expected – and he proved right – that the generalization from 2 to k classes would be 
an advantage in the induction proof. For, he argued, we might now try to prove the strong 
conjecture for an arbitrary fixed value of k and for length l under the induction hypothesis that 
it holds for all k and for length l – 1. This means: we have a very strong induction hypothesis 
to start with, which is a definite advantage. 

Following the line indicated by Artin, we now tried to prove Baudet’s conjecture for 
2 classes and for progressions of length l, assuming the strong conjecture to hold for all k for 
progressions of length (l – 1).
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Next, Artin had another very good idea. If the integers 1, 2, . . .  are divided into 2 classes, 
blocks of (say) 3 successive integers are automatically partitioned into 23 = 8 classes. For 
each of the 3 numbers within, the block can lie in the first or second class and this gives us 
8 possibilities for the whole block. Now the blocks of 3 successive integers can be numbered: 
block number n consists of the integers n, n + 1,  n + 2. If the blocks are partitioned into 
8 classes, their initial numbers n are also partitioned into 8 classes, and to this partition, we can 
apply the induction hypothesis. Thus, we obtain the following result: among sufficiently 
many successive blocks, we can find an arithmetic progression of (l – 1) blocks all in the same 
class. The pattern of the distribution of integers over the two classes in the first block will be 
repeated, exactly as it is, in the other (l – 2) blocks. 

The same holds for blocks of arbitrary length m, each consisting of m successive numbers 

n, nþ 1, . . . , nþ m- 1: 

The number of classes for those blocks is 2m . Once more one can obtain arithmetic 
progressions of (l – 1) blocks in the same class, with exact repetition of the pattern in the 
first block. Moreover, if the blocks are long enough, we can also find arithmetic progressions 
of (l – 1) integers within each block. 

In the simplest case l = 2, the conjecture is certainly true for all k, for if the integers from 
1 to  k + 1 are divided into k classes, there must be two integers in one of the classes. This is 
Dirichlet’s “box principle”2 : if  k + 1, objects are in k boxes, one of the boxes contains two of 
them. A very useful principle in Number Theory. 

Thus, starting with the obvious case l = 2, we tried to treat the case of 2 classes and 
l = 3 (although this case had been dealt with already by an enumeration of all possible cases). 
We represented the integers in the two classes by small vertical strokes on two parallel 
lines, as in Fig. 35.1. 

Fig. 35.1 

Among three successive integers, there are always two in the same class, by the induction 
hypothesis, i.e., in this case, by the “box principle.” Now consider a block of 5 successive 
integers. Among the first three, there are two in the same class; this gives us an arithmetic 
progression of length 2. The third term of this progression still lies within the block of 5. If it is 
in the same class as the first two terms, we have in this class a progression of length 3, as 
desired. Therefore, we may suppose that the third term lies in the other class, and we have, 
within every block of 5, a pattern like the one of Fig. 35.1. 

I was drawing such blocks on the blackboard, and I thought: There are 25 = 32 classes of 
blocks of 5; hence, among 33 successive blocks of 5, there must be 2 blocks in the same class. 
In the first of these blocks, a pattern like the one of Fig. 35.1 exists, and in the second block of 
5, this pattern is exactly repeated (Fig. 35.2). 

2 In the USA, it is usually called the Pigeonhole Principle.
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Fig. 35.2 

What we wanted to construct were progressions of length 3. Hence, I drew one more block at 
the same distance from the second block as the second from the first, and I drew three strokes in 
the third block in the same position as the strokes in the first and second block (Fig. 35.3). 

Fig. 35.3 

The third of these strokes represents an integer, which may be in the first or second class. If 
it is in the first, we have in this class an arithmetic progression a a  a  (Fig. 35.3). If it is in the 
second class, we have in this class a progression b b  b. Hence, we have in any case within the 
block of integers from 1 to 5 + 32 + 32 = 69, an arithmetic progression of 3 terms in one class. 

After having found this proof in the special case k = 2 and l = 3, I explained it to Artin and 
Schreier. I felt sure that the same proof would work in the general case. They did not believe 
it, and so I proceeded to present the proof in the next higher case k = 3, l = 3. 

Instead of considering blocks of 3 + 2 = 5, I now considered blocks of 4 + 3 = 7 successive 
integers. Since the first four numbers of such a block are distributed among 3 classes, two of 
them must belong to the same class. The third term of the arithmetic progression starting with 
these two terms still belongs to the same block of 7. If the third term lies in the same class, we 
have a progression of length 3 in this class. Hence, we may suppose the third term to lie in 
another class. Thus, we obtain, in every block of seven, a pattern like the one in the first small 
block of Fig. 35.4. 

Fig. 35.4 

The blocks of 7 are partitioned into 37 classes. Hence among 37 + 1 successive blocks of 
7, there are two belonging to the same class. In the first block, we have three integers in 
arithmetic progression, two of which belong to the same class, and this pattern repeats itself in 
the second block. If the second block is shifted once more over the same distance, one 
contains 3 blocks forming an arithmetic progression of blocks, as shown in Fig. 35.4. 

In the third block, I drew 3 strokes in positions corresponding to the 3 strokes in the first or 
second block and I considered the possibilities for the third of these strokes. If it falls into the 
first or second class, we have an arithmetic progression of length 3 in the same class, by the 
same argument as before; but now the third stroke can escape into the third class. Thus, we 
obtain the pattern drawn in Fig. 35.4.
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In every large block of 37 + 37 + 7  = h successive integers, we have such a pattern. Now the 
large blocks of h are divided into 3h classes. Hence, among 3h + 1 successive large blocks, 
there are two belonging to the same class. Drawing the small blocks within the large ones, I 
obtained the picture of Fig. 35.5. 

Fig. 35.5 

Now shifting the second large block over the same distance and considering the third 
stroke in the third small block in the third large block, I showed that it cannot escape anymore. 
If it lies in the first class, there is a progression a a a  in the first class. If it lies in the second 
class, there is a progression b b  b  in that class, and if in the third class, a progression c c  c  in 
that class. (Fig. 35.6). 

Fig. 35.6 

After this, all of us agreed that the same kind of proof could be given for arbitrary k. 
However, Artin and Schreier still wanted to see the case l = 4. 

As before, I first considered the case of 2 classes. For this case, I had already proved that 
among sufficiently many, say n, successive integers, there is a progression of 3 terms in the 
same class. We may suppose n to be odd. The distance between the first and the last term of 
the progression is (n – 1) at most; hence, the difference between two successive terms is 
1 
2 n- 1ð Þ  at most. Now consider the fourth term of the same progression. All four terms lie 
within a block of 

g= nþ 1 
2 

n- 1ð Þ  

successive integers. If the fourth term belongs to the same class as the other three, we are 
satisfied. Suppose it lies in the other class; then we have the pattern of Fig. 35.7. 

Fig. 35.7
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In every block of g successive integers, such a pattern must occur. Now the blocks of g are 
divided into 2g classes. Hence among sufficiently many, say N(3, 2g ) blocks of length g, there 
are three blocks in arithmetical progression belonging to the same class. The pattern in the 
first block is exactly repeated in the second and third block (Fig. 35.8). 

Fig. 35.8 

Adding a fourth block to this progression, I easily obtained a progression a a a a  in the first 
or b b  b b  in the second class. 

Now, it was clear to every one of us that the induction proof from (l – 1) to l works for 
arbitrary l and for any fixed value of k. Hence if Baudet’s strong conjecture is true for length 
(l – 1) and all k, it is also true for l and any k. Since it is true for l = 2, its truth follows quite 
generally. 

Analyzing this record, one can clearly distinguish a succession of sudden ideas, which 
gave the discussion a new turn every time. 

1. The first was Schreier’s idea of restricting oneself to a finite segment from 1 to N. This idea 
was fundamental to the whole proof. 

2. The second idea was to try an induction from l – 1 to  l. This was quite a natural idea 
because the case l = 2 was obvious and the case l = 3 could be solved by enumerating all 
possible cases. 

3. Artin proved: If the strong conjecture is true for 2 classes, it is also true for 4 classes. In his 
proof, another idea was implicit, viz.: If the conjecture is true for a segment of all integers 
from 1 to N, it is also true for any arithmetical progression of length N 

a, aþ b, . . . , aþ N- 1ð Þb 

because the terms of this progression can be numbered by the integers 1 to N. This is also a 
central idea in the proof. 

4. Next, Artin said: in an induction, it is always an advantage to have a strong induction 
hypothesis to start with. Therefore, let us start with the assumption that the conjecture 
holds for progressions of length (l – 1) and for all k, and try to prove the conjecture for 
progressions of length l and for one value of k, say k = 2. Thus the plan for the proof was 
devised. 

5. The next idea, which also came from Artin, was of decisive importance. He said: we can 
apply the induction hypothesis not only to single integers but also to blocks, for they too 
are divided into classes. Thus, we are sure that whole blocks are repeated (l – 1) times. 

6. After this, it was only natural to consider progressions of (l – 1) integers within the blocks 
and to try to extend these progressions of length (l – 1) to progressions of length l. The 
simplest non-trivial case is l = 3, and thus I was led, quite naturally, to consider patterns 
like the one of Fig. 35.2.
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7. This pattern still does not contain a progression of length 3 in one class. Therefore, it was 
necessary to extend the progression of length 2 occurring in the second class in Fig. 35.2 to 
a progression of length 3. Hence, I extended the pattern of Fig. 35.2 by drawing the third 
block of Fig. 35.3, and I considered the third term of the progression b b  b. As soon as 
attention was focused upon this term, it was clear that it cannot escape from forming an 
arithmetic progression of length 3 in the first or second class. 

This final idea was accompanied by a feeling of complete certainty. I felt quite sure that this 
method of proof would work for arbitrary k and l. I cannot explain this feeling; I can only say 
that mathematicians often have such a conviction. When a decisive idea comes to our mind, 
we feel that we have the whole proof we are looking for: we have only to work it out in detail. 

However, I can explain, to a certain extent, why Artin and Schreier did not feel so sure. 
They saw only the result: the presence of the progression a a  a  in the first class or b b b  in the 
second one, but I had discovered a method for finding such progressions, and I was convinced 
that this method would work in higher cases as well. 

It is like picking apples from a tree. If one has got an apple and another is hanging a little 
higher, it may happen that one knows: with a little more effort one can get that one too. The 
man standing next to me only sees that I have just got the first apple, and he is in doubt 
whether I can get the other too, but I myself have not only got the apple but I also have a 
feeling of the movement that enabled me to pick it. 

The feeling that a method of proof can be carried over to the other cases is still sometimes 
deceptive. Often the higher cases offer additional difficulties. Still, feelings of this kind are 
extremely useful in mathematical research. 

Finding the proof of Baudet’s conjecture was a good example of teamwork. Each of the 
three of us contributed essential ideas. After the discussion with Artin and Schreier, I worked 
out the details of the proof and published it in Nieuw Archief voor Wiskunde 15, p. 212 (1927). 
(Interesting applications and generalizations of the theorem proved in my paper were given by 
Richard Rado3 ). 

A. J. Khinchin included the theorem among his “Three Pearls of the Theory of Numbers” 
(1952) and published a proof due to M. A. Lukomskaja, which is in all essentials the same as 
mine, the only difference being that in her proof the blocks are required to be 
non-overlapping. ■ 

Van der Waerden, assisted by Emil Artin and Otto Schreier, actually proved a “strong 
conjecture” as they called the result: 

Van der Waerden’s Theorem Strong Version 35.1 For all positive integers n and r, there 
exists an integer W=W(n, r) such that if the initial set of integers [W] = {1, 2, . . ., W} is  
colored in r colors, then there exists a monochromatic n-term arithmetic progression. 

It is natural to inquire whether the finality of n and of r is essential. Prove first that the 
finality of the length n of the guaranteed arithmetic progression is essential: 

3 R. Rado: Studien zur Kombinatorik, Ph.D Thesis Berlin 1931, Math. Zeitschr. 36, p. 424. 
Verallgemeinerung eines Satzes von van der Waerden, Sitzungsber. preuss. Akad., Berlin 1933, 
p. 589. Note on Combinatorial Analysis, Proc. London Math. Soc. (2)48, p. 122.
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Problem 35.2 Color the set of all positive integers in two colors in a way that forbids infinite 
monochromatic arithmetic progressions. 

Of course, the finality of the number of colors is essential, for otherwise we can color each 
integer in its own color and thus exclude even length two arithmetic progressions. However, 
Paul Erdős and Ronald L. Graham proved a nice “consolation” result [EG]. We will say that a 
sequence is representative if each term is colored in a different color. 

Theorem 35.3 (Erdős–Graham, [EG]). Any coloring of the positive integers in infinitely 
many colors contains arbitrarily long monochromatic or representative arithmetic 
progressions. 

Hint Peek at the Szemerédi Theorem in Chapter 37 – and use it. ■ 

I have been unable to explain why the leader of the new field, Ramsey Theory, Paul Erdős 
almost universally quoted Van der Waerden’s result as addressing only the case of two colors 
(see, for example, [E57.13], [E61.22], [E71.13], [E73.21], [E76.35], [E81.16], [E80.03], 
[E83.03], [E85.33], [E89.32], etc.). Is it because Van der Waerden’s paper opens with 
Baudet’s Conjecture for two colors, or because Erdős wanted, as he often did, to gain insight 
into the simplest case first (and then forgot about the general case)? 

Besides Issai Schur and his former PhD students Alfred Brauer and Richard Rado, and also 
Erdős and Turán, practically nobody seemed to have appreciated and furthered Van der 
Waerden’s proof during many years following Van der Waerden’s publication. There was, 
however, one exception – a pair of mathematicians, who published on Van der Waerden’s 
proof very shortly after its publication. Their paper, submitted for publication to the Japanese 
Journal of Mathematics on March 25, 1930, was somehow noticed and cited by Paul Erdős 
and Ronald L. Graham in their very fine and very hard-to-find 1980 problem book [EG]. I got 
my copy when Ron sent me one on the request of Paul Erdős. 

Erdős and Graham characterized the Japanese paper as “an easy consequence of Van der 
Waerden’s Theorem.” In fact, it is much more!
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Chapter 36 
A Japanese Insight into Baudet–Schur–Van 
Waerden’s Theorem 

der 

The great surprise is, [KM] was published by the two Japanese mathematicians Sôichi 
Kakeya and Seigo Morimoto in 1930, much earlier than Erdős and Turán’s 1936 paper. 
How did they get a hold of the little-read Dutch journal, where Van der Waerden published 
his result just 3 years earlier in German? The authors do misspell the name of Baudet 
everywhere, even in the title: On a Theorem of M. Bandet [sic] and van der Waerden. But 
they were first to recognize that credit is due to both mathematicians, Baudet for creating the 
conjecture, and to Van der Waerden for proving it. Without the conjecture, Van der Waerden 
would have had nothing to prove! 

The authors of [KM] prove that in fact the statements of Theorem 35.1 and Theorem 36.1 
are equivalent! In my opinion, Theorem 36.1 explains the essence of the celebrated Theorem 
35.1 better than anything ever has. 

The Kakeya–Morimoto Theorem 36.1 ([KM], 1930). If A= {a1, a2, . . .} is an increasing 
infinite sequence of integers with a bounded growth ak + 1- ak< d, then A contains arbitrarily 
long arithmetic progressions. 

Proof Let me present my version of the authors’ proof; I think it is easier to read. The fact that 
differences ak + 1- ak are bounded by d suggests a d-coloring of the set of all positive integers 
in colors 0, 1, . . ., d–1 as follows: given a positive integer n, find the smallest term a in the 
sequence A such that 0≤a – n. Obviously, a – n < d. We then color n in the color of a – n. By  
the Baudet–Schur–Van der Waerden’s theorem, for any length l, there is a monochromatic 
arithmetic progression b1, b2,. . ., bl of color, say, i. But then the progression b1+i, b2+i, . . ., 
bl+i is both arithmetic and is entirely contained in A. ■ 

Kakeya and Morimoto then show that Baudet–Schur–Van der Waerden’s theorem follows 
from the statement of their Theorem 36.1. 

Theorem 36.2 (Kakeya–Morimoto, 1930, [KM]). If any increasing infinite sequence of 
integers A= {a1, a2, . . .} with ak + 1- ak < d for a fixed positive integer d, contains arithmetic 
progressions of l terms for any positive integer l, then the Baudet–Schur–Van der Waerden 
Theorem holds. 

Proof I am presenting the authors’ proof, in which I eliminated a number of typos in symbols 
and clarified the arguments. There is a number n = n(l,d) such that any n consecutive terms of
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A contain an arithmetic progression of l terms, for otherwise we can create a countable 
number of sequences:
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an1, an2, . . . , ann, . . . ðBÞ 

such that an1 = 1, an, i + 1 - an, i< d for any n and i and none of them contains an arithmetic 
progression of l terms. 

Since the number of possible values that a1,2 can take is finite, there is an a2 that appears 
infinite times as an2. Let us now keep only those arithmetic progressions from (B) that have a2 
as their second term. Continuing in the same fashion, we identify an a3 that appears as the 
third term in infinitely many sequences (B), and so on. We end up with the infinite sequence: 

1= a1, a2, a3, . . .  satisfying aiþ1 - ai < d ðCÞ 

whose first terms coincide with the terms of in the same position in some sequences (B). Thus, 
sequence (C) does not contain any arithmetic progression of l terms, which contradicts our 
assumption. 

We can now prove Baudet–Schur–Van der Waerden’s theorem by induction. Assume that 
it holds for k colors, i.e., the initial array of integers 1, 2, . . ., n(k,l) colored in k colors contains 
a monochromatic arithmetic progression of l terms. Let the following array of integers be 
colored in k +  1 colors: 

1, 2, 3, . . . , v, where v= n l, n l, kð Þð Þ× n l, kð Þ: 

If the (k +  1)th color does not contain any sequence of n(l, k) consecutive integers, then 
these integers are colored in the first k colors, and by the inductive assumption, one of these 
colors contains an arithmetic progression of l terms. 

Otherwise, the (k +  1)th color has at least h(l, n(l, k)) terms with the difference between any 
two consecutive terms less than n(l, k). Theorem 36.1 guarantees the existence of the desired 
monochromatic arithmetic progression in color (k +  1). ■ 

Corollary 36.3 The Kakeya–Morimoto Theorem 36.1 is equivalent to the Baudet–Schur– 
Van der Waerden Theorem 35.1. 

Kakeya and Morimoto also construct a lovely example, showing that in their Theorem 
36.1, the words “arbitrarily long arithmetic progressions” cannot be replaced by “infinite 
arithmetic progressions.” 

Try to come up with a counterexample on your own. Then compare it to the following 
construction. 

Counterexample 36.4 (Kakeya–Morimoto, 1930, [KM]). There is an increasing infinite 
sequence A= {a1, a2, . . .} of integers with ak + 1 - ak ≤ 2, such that A does not contain an 
infinite arithmetic progression. 

Construction An infinite arithmetic progression P of integers is defined by an ordered pair 
(m, n) of integers, where m is the first term and positive n is the constant difference of P. 
Therefore, the set of all such progressions is countable, i.e., can be enumerated by positive 
integers to look like P1, P2, . . ., Pn, . . .

https://doi.org/10.1007/978-1-0716-3597-1_35#FPar1
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Now we construct a sequence S as follows. For the first term s1 of S, we pick the first term 
of P1. For the second term s2 of S, we choose a term of P2, which is greater than s1 + 1, and so 
on. Now consider the increasing sequence A of all positive integers from which we removed 
all terms of the sequence S. Clearly, A does not contain any infinite arithmetic progression 
because it is missing a term from each arithmetic progression and satisfies the condition 
ak + 1 - ak ≤ 2. ■ 

As you may know, I created and have been running for 39 years the Soifer (formerly 
Colorado) Mathematical Olympiad for middle and high school Olympians of my state. I like 
to extract Olympiad-style beautiful ideas from research mathematics and offer them to our 
young colleagues at a 5-problem 4-hour written annual competition. There is a reverse 
influence as well: some Olympiad problems inspire research. 

The construction of Kakeya and Marimoto’s Counterexample 36.4 had such an Olympiad 
flavor that I decided to use it as the hardest problem 5 in the 37th Soifer Mathematical 
Olympiad (SMO-37), October 2021. In the process, we found a much simpler counterexam-
ple than the one published by the two Japanese mathematicians. The only person, whom I 
show the problems in advance, has been Robert “Bob” Ewell, an ED and Air Force retired 
lieutenant colonel. In interaction with Bob, the problem grew to contain 3 parts: A, B, and C. I 
will show you problem 5 as evolution of ideas. 

Second Proof of 36.4 (SMO-37, Problem 5A). Start the increasing sequence S with one 
positive odd integer s1, followed by two consecutive evens starting with s1 + 1, then by three 
consecutive odds starting with the previous even +1, etc. Assume S contains an infinite AP 
(arithmetic progression), call it S1, of constant difference D. At some point, S will have more 
than 2D consecutive odd numbers, containing two consecutive terms of S1, thus making all 
terms of S1 odd. But further on S1 will have an even integer: A contradiction. ■ 

Bob Ewell found the idea of this simple counterexample – so I had to “tighten the nuts” of 
the problem to disallow Bob’s solution. Thus, Problem 5B was born. 

Problem 5B (SMO-37). For an increasing sequence A of positive integers, An denotes the 
number of terms of A that do not exceed n. We say that the sequence’s density D(A) = 1 if the 
ratio An/n becomes as close to 1 as we are pleased as n increases without bound. Is there a 
sequence A with D(A) = 1 that does not contain an infinite arithmetic progression? 

Solution of 5B by Bob Ewell There is such a sequence. 
Let A be the sequence of all positive integers except: 

[1]. All of the integers between 1 and 10 
[2]. The first ½ of the integers between 11 and 100 
[3]. The first ¼ of the integers between 101 and 1000 
[4]. The first 1 /8 of the integers between 1001 and 10,000 
[5]. . . .  
[6]. The first 1/2k of the integers between 10k and 10k+1 

[7]. . . .



� )
� )
� )
� )
� )
� )
� )

398 36 A Japanese Insight into Baudet–Schur–Van der Waerden’s Theorem

Note that the number of integers removed at each power k of 10 (except the first 10) is 
9 ×10k /2k = 9 × 5k . That is, the “holes” increase without bound. Therefore, no matter where an 
arithmetic sequence starts and no matter how big its constant difference is, the sequence will 
run into a hole too big to cross. It is easy to show that the density D(A) = 1. ■ 

Bob solved Problem 5B, thus “forcing” me to create Problem 5C to stop Bob’s 
successes. :) 

Problem 5C (Soifer, SMO-37). We call an increasing sequence A of positive integers super 
dense if for any positive integer n, A contains all integers from 1 through 10n except at most 
n integers, and the differences between the consecutive integers excepted from A are strictly 
increasing. Is there a super dense sequence A that does not contain an infinite arithmetic 
progression? 

Solution of 5B and 5C As in the construction of Counterexample 36.4, we enumerate all 
infinite arithmetic progressions of positive integers to look like P1, P2, . . ., Pn, . . .  and 
construct a sequence S as follows. For the first term s1 of S, we pick the first term of P1. 
For the second term s2 of S, we pick the term of P2 that is no less than s1 + 10. For the third 
term s3 of S, we choose a term of P3, which is no less than s2 + 100, and so on. Now consider 
the increasing sequence A of all positive integers from which we removed all the terms of the 
sequence S. Clearly, A does not contain any infinite arithmetic progression because it is 
missing a term from each of them. Its densityD(A) is the limit of (10n - n)/10n = 1 – n/10n as 
n increases without bound, which is obviously 1. ■ 

Notice We can explicitly calculate the sequence S if, for example, we use the following 
fantastic mapping: 

f a, bð Þ= 2a- 1 2b- 1ð Þ  

of ordered pairs of positive integers onto positive integers. Let now a be the first term and 
b the constant difference of an AP. Every positive integer can be uniquely expressed as a 
power of 2 times an odd integer; thus, each positive integer has a unique pair that maps into 
it. This inverse function f –1 maps an integer 2a–1 (2b – 1) into the pair (a, b), and we easily 
construct the terms of the sequence S: 

1 = 21 – 1 (2 1 – 1) (1, 1) s1 = 1 
2 = 22 – 1 (2 1 – 1) (2, 1) s2 = 11 
3 = 21 – 1 (2 2 – 1) (1, 2) s3 = 111 
4 = 23 – 1 (2 1 – 1) (3, 1) s4 = 1111 
5 = 21 – 1 (2 3 – 1) (1, 3) s5 = 11113 
6 = 22 – 1 (2 2 – 1) (2, 2) s6 = 111130 
7 = 21 – 1 (2 4 – 1) (1, 4) s7 = 1111301 
. .  .  .  .  . .  . .  . . .  . . .  . .  . . .  . .  . . .  . .  . . .  . . .  . .  . . . .. 

■
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Chapter 37 
Whose Conjecture Did Van der Waerden P 
Lives Between Two Wars: Issai Schur and 
Joseph Henry Baudet 

ove? 

As far as your advice to leave priority matter . . .  alone, it is my 
opinion that the tiniest moral matter is more important than all 
of science, and that one can only maintain the moral quality of 
the world by standing up to any immoral project. 
– L. E. J. Brouwer (From the February 24, 1929, letter to H. Hahn, 

quoted from [Dal2], p. 651.) 

37.1 Prologue 

Bartel L. van der Waerden credits “Baudet” [sic] with conjecturing the result about mono-
chromatic arithmetic progressions. Decades later, Van der Waerden gives a most insightful 
story of the birth of his proof, which I have reproduced for you in Chapter 35. As  
enumerated there, the “Story of Creation” appears four times in German: twice in 1954 
[Wae13], [Wae14], in 1965 [Wae16], posthumously in 1998 [Wae26]; and once in English in 
1971 [Wae18]. In these publications, Van der Waerden extends the credit for the conjecture to 
“the Dutch mathematician Baudet,” still without the first name or even initials. Biographers of 
Van der Waerden faithfully follow him with crediting “Baudet” for the conjecture (see [Fre], 
[FTW], [Per], and [Bru1]). 

On the other hand, Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer in their 
definitive monograph [GRS1], [GRS2] cite Alfred Brauer [Bra2], [Bra3] in taking the credit 
for the conjecture away from Baudet and giving it to Issai Schur. Schur is also credited by 
Hillel Furstenberg in his pioneering paper [Fur1]. Consequently, practically all mathemati-
cians have uncritically quoted or simply copied credit from [GRS1], [GRS2], or [Fur1]. 

False attributions are never pleasant. One may wonder, however, why the authorship of 
this conjecture is so extremely important that I have most thoroughly researched it and am 
dedicating this whole chapter to my findings. This is so because we have here, for the third 
time in the history of mathematics,1 a totally new Ramseyan type question, quite uncommon 
in mathematics of the time: “if a system is partitioned arbitrarily into a finite number of

1 First two being the Hilbert Theorem of 1892 [Hil] and the Schur Theorem of 1916 [Sch] – see 
Chapters 33 and 34. 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_37&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_37#DOI


2subsystems, then at least one subsystem possesses a certain specified property.” It was a 
major achievement indeed to envision and conjecture such a result, which allowed Ramsey 
Theory to be born. But whose achievement was it, Baudet’s or Schur’s? And who was 
“Baudet” anyway? My early investigative reports appeared in mid 1990s [Soi10], [Soi11], 
and [Soi12]. Let us look at the more complete evidence that I have been able to assemble 
to date.
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37.2 Issai Schur 

Germany has surely been one of the best countries in preserving documents through all the 
cataclysms that have befallen on and arguably were triggered by this land. Issai Schur’s 
personnel file, and personnel forms it contains, is preserved in the Archive of the University 
Library of the Humboldt University at Berlin.3 Let us make a good use of them. 

2 Leon Mirsky in [Mir], in reference to the Schur Theorem. 
3 Archive of Humboldt University at Berlin, documents UK–Sch 342, Bd. I, Bl. 1, 1R, and 2R, 3.
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Young Issai Schur. (Courtesy of Hilde Abelin-Schur, his daughter) 

Issai Schur was born on January 10, 1875, in the Russian city of Mogilyov (presently in 
Belarus) in the family of the merchant Moses Schur and Golde Landau. Being a Jew, Issai 
could not enroll in any Russian university. At 13, he went to live with his older sister in Libau, 
Russia (now Latvia), in order to attend the German language Nicolai-Gymnasium 
(1888–1894). That prepared him for entering a German university in 1894. In Berlin, on 
September 2, 1906, Issai Schur married Regina Malka Frumkin, born January 8, 1881, in 
Kowno (presently Kaunas, Lithuania), a medical doctor, also Jewish, and apparently an 
émigré from Russia. Issai Schur, who originally filled the personnel form in his hand, likely 
in 1916 (it was later updated, probably by clerks), on the line “Arian” promptly put “nicht” for 
himself and “nicht” for his wife. The happy and lasting marriage produced two children, 
Georg (named in honor of Schur’s mentor, the celebrated algebraist F. Georg Frobenius), 
born on July 25, 1907 and Hilde, born on March 15, 1911.
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Issai Schur. (Courtesy of his daughter, Hilde Abelin–Schur)
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Issai Schur gave most of his life to the University of Berlin, first as a student 
(1894–1901; Ph.D. in Mathematics and Physics summa cum laude, November 27, 1901); 
then as a Privatdozent (1903–1909), ausserordentlischer Professor (equivalent to an 
associate professor, December 23, 1909 – April 21, 1913 and again April 1, 1916 – 
April 1, 1919); and Ordinarius (equivalent to a full professor, April 1, 1919 – September 
30, 1935).4 On April 1, 1921, Schur was appointed to the Ordinarius chair of Prof. 
Dr. Schottky with a very respectable compensation: 16200 marks base salary; plus local 
adjustment and family allowances; plus 5000 marks for lecturing the minimum of 8 hours a 
week. The only three years away from Berlin, 1913–1916, Schur spent at the University of 
Bonn. These years are important for our story, and we will thoroughly look at them in the 
next section. 

Issai Schur was elected to a good number of academies of sciences. He was a legendary 
lecturer. Schur’s student and friend Alfred Theodor Brauer (Ph.D. under Schur 1928) recalls 
[Bra2] that the number of students in Schur’s elementary number theory courses often 
exceeded 400, and during the winter semester of 1930 even exceeded 500. Brauer would 
know, for as Schur’s Assistant, he had to grade homeworks of all those students! Walter 
Ledermann, who estimates to have taken about 500 lectures from Schur, writes [Led1] that 
“Schur’s lectures were exceedingly popular. I remember attending his algebra course which 
was held in a lecture theatre filled with about 400 students.” Ledermann adds in his year 2000 
interview [Led2]: 

I was absolutely captivated by Schur. I wrote about 300 lectures in fair copy in cloth 
bound book which I had until quite recently, running to something like 2000 pages of 
Schur’s lectures. 

Hitler’s appointment as Reichskanzler by President von Hindenburg on January 30, 1933 
changed this idyllic life. Schur’s former student Menahem Max Schiffer recalls in his talk at 
the 4th Schur conference in May 1986 at Tel Aviv University, which was consequently 
published [Schi]: 

Now, the year 1933 was a decisive cut in the life of every German Jew. In April of that 
year [April 7, 1933 to be precise] all Jewish government officials were dismissed, a 
boycott of Jewish businesses was decreed, and anti-Semitic legislation was begun. 
When Schur’s lectures were cancelled there was an outcry among the students and 
professors, for Schur was respected and very well liked. The next day Erhard Schmidt 
started his lecture with a protest against this dismissal and even Bieberbach, who later 
made himself a shameful reputation as a Nazi, came out in Schur’s defense. Schur went 
on quietly with his work on algebra at home. 

4 Archive of Humboldt University at Berlin, documents UK–Sch 342, Bd. I, Bl. 4.
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Issai Schur (left) and Edmund Landau. (Courtesy of Schur’s daughter, Hilde Abelin–Schur) 

Ledermann shares with us vivid details [Led2]: 

When Hitler finally came to power, all the Jewish faculty were dismissed instantly, 
including Schur who was not allowed to come even to the library anymore. 

However Erhardt Schmidt, who was the decent sort of German, found that in the 
regulations of the Nazis there was a clause to say that these dismissals would not apply 
to two types of non-Aryan: 

1) those who had fought in the First World War in the German army on the front, and 
2) those who had during the First World War held a position making them German/ 

Prussian civil servants. 

The first of these applied to Alfred Brauer who had been a soldier . . ., and yes, he was 
badly wounded, and the second applied to Schur because in 1916 he was an extraordi-
nary professor at Bonn, so had effectively become a Prussian civil servant. 

So, Schmidt applied this clause. He went to Goebbels and said, “You must abide by 
your own law and reinstate Schur for this reason,” and he was reinstated. He could then 
come to the University but he was not allowed to lecture. For supervision of my 
dissertation, I had to go to his house. It was nice to meet with him, he lived in a suburb 
of Berlin, to see him and his wife and talk not only about mathematics but also about the 
Jews. He said, “I can read the English Times which is still allowed,” all the other papers 
were taken over by the Nazis. I cannot bear this. And then the time came for me to have 
my exam, the oral, and he was allowed to come to take [conduct] this examination in 
mathematics for one hour. Also, a co-examiner was expected to come. They did not
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normally ask questions but would take a record, more like a secretary. This co-examiner 
was, unfortunately, none other than Bieberbach, who appeared in Nazi uniform, brown 
shirt and swastika. He came and sat down to take notes about what Schur was asking 
me. But I must say he was quite fair. He didn’t interfere and I got a very good result. 

Hindenburg negotiated with Hitler exemptions from the April 7, 1933, Restoration of 
Professional Civil Service Law for those Jews who fought for Germany in World War I, those 
who lost a father or a son in the war, and those who entered their civil service jobs (university 
professorships included) before the start of the war. Schur had held a civil service (university) 
appointment before the war and thus fell under the exemption. Nevertheless, by the order UI 
No. 6362 of the Prussian Minister for Science, Art and Public Education of on April 29, 1933, 
Schur and 18 other faculty were “relieved of their duties effective immediately” – yes, 
immediately, as was customary in the Nazi orders.5 At that time, a representative of the 
English Jewish Emergency Council visited Schur. We are lucky to have had a witness at the 
meeting – Schiffer reports [Schi]: 

The lady asked Schur whether and where he wanted to go, because for a man of his 
reputation all doors would be open. But Schur responded that he did not intend to go; for 
he did not want to enable the Nazis to say, that many Jewish professors just left for better 
jobs. Besides, there were many younger colleagues which needed help much more 
urgently, and he would not take away their chances. He would stick it out in Berlin, for 
the craze of the Hitlerites could not last long. 

I believe in Schur’s incredible generosity and genuine care for his younger colleagues. Yet, 
there had to be more to his refusal to leave Germany early, when the Nazis came to power in 
1933. In 1995, Schur’s former student Walter Ledermann, Professor at the University of 
Sussex, UK, sent me his 1983 reprint [Led1], where he introduces additional reasons for the 
unfortunate Schur’s decision to stay in Nazi Germany: 

When the storm broke in 1933, Schur was 58 years of age and, like many German Jews 
of his generation, he did not grasp the brutal character of the Nazi leaders and their 
followers. It is an ironic twist of fate that, until it was too late, many middle-aged Jews 
clung to the belief that Germany was the land of Beethoven, Goethe and Gauss rather 
than the country that was now being governed by Hitler, Himmler and Goebbels. Thus 
Schur declined the cordial invitations to continue his life and work in America or 
Britain. There was another reason for his reluctance to emigrate: he had already once 
before changed his language, and he could not see his way to undergoing this transfor-
mation a second time. 

So he endured six years of persecution and humiliation under the Nazis. 

On October 7, 1933, the Prussian Minister for Science, Art and Public Education, by the 
order UI No. 8831, “canceled the suspension for Dr. Mittwoch and Dr. Schur, Ordinarius 
professors on the Philosophical Faculty,” imposed by the previous order, effective – of 
course – immediately.6 The legal exemption worked. Walter Ledermann, whom I quoted

5 Archive of Humboldt University at Berlin, documents UK–Sch 342, Bd. I, Bl. 23 and Bl. 23R. 
6 Archive of Humboldt University at Berlin, document UK–Sch 342, Bd. I, Bl.24.



above, and Alfred Brauer [Bra2] credited Erhard Schmidt’s efforts for the success. Conse-
quently, Schur was able to carry out some of his duties but not all (no lecturing, for example) 
and not for long. Issai Schur was a famous professor, a pride of his university and of his 
profession. However, no achievement was high enough for a Jew in Nazi Germany. Follow-
ing two years of pressure and humiliation, Schur, faced with imminent expulsion, “voluntar-
ily” asked for resignation on August 29, 1935. On September 28, 1935, Reich’s- and Prussian 
Minister of Science, Instruction and Public Education replied on behalf of “Der Führer und 
Reichskanzler,” i.e., Adolf Hitler himself (see facsimile on one of the following pages)7 :
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Führer and Reichskanzler has relieved you from your official duties in the Philosophical 
Facultät of the University of Berlin effective at the end of September 1935, in accor-
dance with your August 29 of this year request. 

As Henrik Hofer of the Humboldt University Library reports [Hof], Schur was the last 
Jewish professor to lose his job at the University of Berlin. Only a few of his closest friends 
had the courage to visit him, recalls Schiffer, and recollects one such visit, about which he 
learned from Schur himself [Schi, p. 180]: 

When he complained to [Erhard] Schmidt about the Nazi actions and Hitler, Schmidt 
defended the latter. He said, “Suppose we had to fight a war to rearm Germany, unite 
with Austria, liberate Saar and the German part of Czechoslovakia. Such a war would 
have cost us half a million young men. But everybody would have admired our 
victorious leader. Now, Hitler has sacrificed half a million of Jews and has achieved 
great things for Germany. I hope someday you will be recompensed but I am still 
grateful to Hitler.” So spoke a great scientist, a decent man, and a loyal friend. Imagine 
the feelings of a German Jew at that time. 

7 Archive of Humboldt University at Berlin, document UK–Sch 342, Bd. I, Bl.25.
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Letter relieving Issai Schur from his duties at the University of Berlin. (Courtesy of the 
Archive of the Humboldt University at Berlin)
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Clearly, Erhard Schmidt, who, as we have seen, helped Schur after the latter’s initial 
dismissal, held extreme nationalistic aspirations for Great Germany, Deutschland über Alles. 
Schmidt acknowledges and accepts the brutal sacrifice of half a million of Jews, including his 
friend Schur, and Schmidt is willing to sacrifice half a million of young German men for 
“great things for Germany.” How low the morality fell in the Third Reich, if these were the 
views of “a decent man” (Schiffer’s words), Erhardt Schmidt! 

One very special 1936 visitor of Issai Schur, Paul Erdős recalls on the pages 
Geombinatorics [E95.32]: 

Schur was of the Russian Jewish origin. He always viewed himself as a German, and he 
was greatly attracted by the German culture. The horrible degeneration of Nazism was a 
great disappointment and a personal tragedy to him. 

Menahem Schiffer lists Schur’s numerous honors that were stripped away: 

He [Schur] was a member of many distinguished academies and learned societies; for 
example, the Prussian, Bavarian, Saxonian Academies of Science and many more. He 
had been ejected from each of them. 

A document published in 1998 by the authors of [BFS] sheds light on one of these 
expulsions. Schur had been a member of the Prussian Academy of Sciences ever since his 
election in 1921. The Academy was going to publish works of Weierstrass – what can be 
political about that? The editorial board was to routinely sign off on the publication in a 
“Zirkular.” Let us look together at this document [BFS, p. 26]. The first two lines seem 
routine and are handwritten by Erhard Schmidt and Issai Schur, respectively (I am translating 
the lines from German here): 

Seen – 11.3.38 Erhard Schmidt 
Seen 12/3/38 Schur 

Here comes Bieberbach, the founder of the racist doctrine of German Mathematics (that he 
opposes to Jewish Mathematics) and writes right below Schur, clearly hinting at Schur’s 
presence: 

Bieberbach 29.3.38 
I am surprised that Jews still belong to the Academic Commissions. B. 

In his turn Theodore Vahlen, a long-term Nazi and anti-Semite, a mathematician and an 
official in the Ministry of Education for University Affairs, in charge of hiring professors, 
agrees with Bieberbach: 

Seen Vahlen 30.3.38 
I request change. V. 

The great Max Plank, a near 80-year-old icon of science, comes last and writes: 

Planck 3.4.38 
I will settle the affair. Planck 

And settle Planck did. Just 4 days later, on 7 April 1938, Schur resigns from all Commis-
sions of the Prussian Academy of Sciences. How does one assess Planck’s role? Nazi 
collaboration, a pedantic fulfillment of his duties as the Secretary of the Academy, or a desire



to dismiss Schur gentler than someone else, like Vahlen or Bieberbach would have done? We 
will never know for sure which one(s) of these motivations prompted Planck’s actions. I for 
one deeply regret that, whatever the motive, Planck carried out the Nazi’s dirty laundry. There 
were – had to be – other options. For example, Planck could have resigned from his Secretary 
position, or from the Academy itself. Meanwhile, the pressure on Issai Schur continues and 
later that year he resigns from the Academy itself. 
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On November 15, 1938, Issai Schur applies for a foreign passport, needed for leaving 
Germany. On January 14, 1939, the Reichsminister for Science, Instruction and Public 
Education states8 that he “no longer objects to the issuance of a foreign passport for 
Dr. Schur” in view of “vulnerable health of Dr. Schur.” He even approves paying Schur his 
emeritus remuneration through the date of Schur’s departure. 

On February 2, 1939, amid the Gestapo’s “personal interest” in him,9 depressed and sick, 
Schur leaves, I would say, runs away from Germany to Switzerland. Incredibly, the 
Reichsminister for Science, Instruction and Public Education believes that he could 
order Issai Schur where to live after Schur leaves Germany and, apparently, when to 
come back to the Third Reich, for on February 24, 1939, he issues the following order 
number W T Schur 410 : 

I hereby authorize the change of permanent address for the Emeritus Prof. Dr. Issai 
Schur of the University of Berlin, residing in Berlin–Schmargendorf, Ruhlaer Str. 4, first 
to Switzerland and thereafter to Palestine starting February 1st 1939 until the end of 
March 1941.11 

Schur’s wife of 33 years, Med. Dr. Regina Frumkin–Schur, joins him in Switzerland in 
March 1939. They stay in Bern for a few weeks with their daughter Hilde Abelin–Schur and 
her husband, Med. Dr. Chaim Abelin. Switzerland does not allow Schur to remain there 
permanently, so much for Swiss “neutrality.” Broken mentally, physically, and financially, 
the Schurs move on to Palestine. 

While in Palestine, without means, Schur has to sell his only valuables, scientific books 
and journals, to the Institute for Advanced Study, Princeton, where his former student and 
friend Alfred Brauer is Hermann Weyl’s assistant and is charged with library acquisitions. 
This book transfer must have been painful for both Schur and Brauer. Schiffer recalls one 
1939 episode that shows how infinitely professional Schur was: 

[Schur] agreed to give a lecture at the Hebrew University and this I will never forget. He 
spoke about an interesting inequality in polynomial theory with the customary clarity 
and elegance. Suddenly, in the middle of his talk he sat down, bent his head and was 
silent. We, in the audience, did not understand what was going on; we sat quietly and 
respectfully. After a few minutes he got up and finished his talk in his usual manner. 

I was sitting next to a physician from the Hadassa Hospital who had come to see this 
famous man. He was quite upset; after the lecture he told me that Schur had obviously 

8 Archive of Humboldt University at Berlin, document UK–Sch 342, Bd. I, Bl. 47 and Bl. 47R. 
9 [Bra2]. 
10 Archive of Humboldt University at Berlin, document UK–Sch 342, Bd. I, Bl. 53 and Bl. 53R. 
11 Of all people, I should not be surprised, for when I was leaving another bastion of tyranny, the 
Soviet Union, in 1978, I too was told where to go and where to live.



410 37 Whose Conjecture Did Van der Waerden Prove? Two Lives Between Two Wars. . .

had a heart attack and he could not understand the self-discipline which had enabled 
Schur to finish his talk. That was the man Schur, for you! 

Schiffer informs us that Schur eventually gets better, writes several research papers, 
supervises a number theoretic work of Theodore Motzkin, and “starts interacting with 
younger men at the Mathematics Institute.” Issai Schur died from yet another heart attack 
in Tel Aviv on January 10, 1934, right on his 66th birthday.12 

The list of Issai Schur’s Ph.D. students, who became world-class mathematicians, is 
amazing. It includes Heinz Prüfer (1921), Richard Brauer (1925), Eberhard Hopf (1926), 
Alfred Brauer (1928), Bernhard Neumann (1932), Hans Rohrbach (1932), Wilhelm Specht 
(1932), Richard Rado (1933), and Helmut Wielandt (1935). The list of successful mathema-
ticians, who were Schur’s undergraduates or were influenced by him in other significant 
ways, is too numerous to be included here. Schur with his teacher and a student produced one 
of the most remarkable succession lines in the history of modern algebra: Ferdinand Georg 
Frobenius – Issai Schur – Richard Dagobert Brauer. 

37.3 Argument for Schur’s Authorship of the Conjecture 

Issai Schur made major contributions to various areas of mathematics.13 Our interest here lies 
in the result he obtained during 1913–1916 when he worked at the University of Bonn as the 
successor to the celebrated topologist Felix Hausdorff. There he writes his pioneering paper 
[Sch] containing, as he put it, “a very simple lemma, which belongs more to combinatorics 
than to number theory.” We proved the Schur Theorem in Chapter 36. Here, I would like just 
to formulate it again for your convenience: 

The Schur Theorem 37.1 (Schur, [Sch]). Let m be a positive integer and N > m!e. If the 
initial array [m] of positive integers is m-colored, then there is a monochromatic triple a, b, 
and c of the same color such that a + b = c. 

The Schur Theorem gave birth to this novel way of thinking, a new direction in mathe-
matics, today called the Ramsey Theory. 

Leon Mirsky writes [Mir] on the centenary of Issai Schur’s birth: 

We have here a statement of the type: “if a system is partitioned arbitrarily into a finite 
number of subsystems, then at least one subsystem possesses a certain specified 
property.” To the best of my knowledge, there is no earlier result which bears even a 
remote resemblance to Schur’s theorem. It is this element of novelty that impresses itself 
so forcibly on the mind of the reader. 

Mirsky continues: 

After writing his paper, Schur never again touched on the problem discussed there; and 
this is in itself something of a mystery. For the strongest impression one receives on 

12 For more details see [Bra2], [Schi], [Led1] and [Soi10]. 
13 For details see [Bra2] and [Led1].
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scanning his publications is the almost compulsive striving for comprehensiveness. 
There are few isolated investigations; in algebra, in analysis, in the theory of numbers, 
Schur reverts again and again to his original questions and pursues them to the point of 
where one feels that the last word has been spoken ... Why, then, did he not investigate 
any of the numerous questions to which his Theorem points so compellingly? There is 
no evidence to enable us to solve the riddle. (Footnote: As will emerge from the 
discussion below, Professor Rado, if anyone, should be able to throw light on the 
mystery – and he tells me that he cannot.) 

The latter Mirsky’s statement, backed by Richard Rado, was echoed in the standard text on 
Ramsey Theory [GRS2, p. 70], thus becoming a universal view on this matter: “Schur never 
again touched on this problem.” 

I have solved the Mirsky’s “mystery,” and my findings contradict Mirsky’s, Rado’s, and 
Graham–Rothschild–Spencer’s conclusion. I will show in this section that the new Ramseyan 
mathematics, discovered by Issai Schur in his 1916 paper, remained dear to his heart for years 
to come. He thought about this new mathematics himself, and he passed his interest on to a 
number of his students: Hildegard Ille, Alfred Brauer, and Richard Rado. 

As we have seen in Chapter 35, the third classic result of Ramsey Theory was published by 
B. L. van der Waerden in 1927, in which he presented “Proof of a Baudet’s Conjecture” 
[Wae2]. The credit to Baudet for the conjecture remained unchallenged and unsubstantiated, 
until 1960, when Alfred Brauer (1894–1985) made his sensational revelations. 

“I remember Alfred [Brauer],” told me over the phone Mrs. Hilde Abelin–Schur, the 
daughter of Issai Schur [Abe2], “he was Assistant of my father, and I was then a little girl.” An 
Assistant, a doctoral student (Ph.D. in 1928), a colleague (Privatdozent at the University of 
Berlin), co-author, and a friend through the difficult years of the Nazi rule, Alfred Brauer had 
unique knowledge of Issai Schur. Away from Germany for over twenty years, he returned to 
Berlin in 1960 to pay tribute to his teacher. His moving talk about Issai Schur given at the 
Humboldt University of Berlin on November 8, 1960, appeared in print in 1973 as an 
introduction [Bra3] to the three-volume set of Schur’s collected works that Brauer edited 
jointly with another former Schur’s Ph.D. student Hans Rohrbach. This talk offered a wealth 
of information about Schur. In particular, it revealed that Issai Schur, inspired by 
E. Jacobsthal’s results about quadratic residues,14 came up with the following two 
conjectures: 

Conjecture 37.2 For any positive integer k and any large enough prime p, there is a sequence 
of k consecutive quadratic residues modulo p. 

Conjecture 37.3 For any positive integer k and any large enough prime p, there is a sequence 
of k consecutive quadratic non-residues modulo p. 

As was the case with the Schur Theorem of 1916 [Sch], a search for a proof of number-
theoretic conjectures 37.2 and 37.3 led Schur to conjecture a “helpful lemma”: 

14 If the congruence xn � a (modm) has a solution for x, then a is called an n-th power residue 
modulo m. In particular, 2nd power residues are called quadratic.
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Conjecture 37.4 (Issai Schur). For any positive integer k, there is N = N(k) such that the set 
of whole rational numbers 1, 2, ..., N, partitioned into two classes, contains an arithmetic 
progression of length k in one of the classes. 

Alfred Brauer describes the circumstances of Schur discovering that his conjecture 37.4 
was proven: 

Many years passed, but neither Schur nor many other mathematicians, who were 
familiar with this conjecture, were able to prove it. One day in September of 1927 my 
brother [i.e., Richard Brauer, Ph.D. in 1925 under Schur] and I were visiting Schur, 
when [John] von Neumann came unexpectedly. He was participating in the meeting of 
the D.M.V.15 and came to tell Schur that at the meeting Van der Waerden, using a 
suggestion by Artin, gave a proof of the combinatorial conjecture and was going to 
publish it under the title “Beweis einer Baudetschen Vermutung.” Schur was very 
pleased with the news, but a few minutes later he became disappointed when he learned 
that his conjecture about sequences [i.e., conjectures 37.2 and 37.3 above] was not 
proven yet ... It would have made sense if Schur were to propose a change in the title of 
van der Waerden’s publication or an addition of a footnote in order to indicate that this 
was an old conjecture of Schur. However, Schur was too modest for that. 

Paul Erdős, a man of an incredible memory for events, told me that in everything 
concerned with Schur, Alfred Brauer was by far the most reliable source of information. 
Paul also shared with me a critical unpublished confirmation of Schur’s authorship of the 
conjecture. During our long conversation,16 that commenced at 7:30 PM on Tuesday 7 March 
1995, in Boca Raton, Florida, during the traditional combinatorics conference’s “Jungle 
Party,” Paul told me that he heard about Schur’s authorship of this conjecture from Alfred 
Brauer. Independently, he heard about it from Richard Brauer, a brilliant algebraist and the 
younger brother of Alfred. Finally, Schur’s authorship was confirmed to Erdős by Erich 
Rothe, who obtained the information from his wife and Schur’s former student Hildegard 
Rothe (born Hildegard Ille; Ph.D. in 1924 under Schur). As I am writing these lines, I am 
looking at a yellow lined sheet that Paul tore out of his notebook and next to his mathematical 
texts wrote for me “Hildegard Ille,” so that I would remember her name when I get to write 
about her. Thank you, Paul, I remember! 

I believe you will agree with me that I have produced as rigorous a proof as a historical 
endeavor allows that Issai Schur had the conjecture and created it independently from 
anyone else. 

The historical research of this chapter shows for the first time that Issai Schur had been the 
most instrumental leader in the development of “Ramsey Theory Before Ramsey.” I did not 
know that myself until the completion of this research. Started with his 1916 theorem 
(Chapter 34), Schur’s interest in not-yet-born Ramsey Theory continued with the conjecture 
on arbitrarily long monochromatic arithmetic progressions in finitely colored integers. Right

15 Deutsche Mathematiker–Vereinigung, German Mathematical Society – the Annual September 
18–24,1927 meeting took place in Bad Kissingen in Bavaria. 
16 Knowing the importance of Paul Erdős’ information, I audio-recorded our conversation.



after Van der Waerden’s publication, Issai Schur produced, as we will see in Chapter 38, The 
Generalized Schur Theorem, which generalized at the same time both the Schur and the 
Baudet–Schur–Van der Waerden theorems. With Schur’s guidance, his former student Alfred 
Brauer proved a Ramseyan result of his own (Chapter 38). Schur offered Ramseyan type 
problems to his doctoral student Hildegard Ille. Under Schur’s guidance, Richard Rado 
generalized the Schur and the Baudet–Schur–Van der Waerden theorems in his doctoral 
dissertation and important consequent publications. In fact, Rado contributed to Ramsey 
Theory, perhaps, more than anyone.
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As proof on the Schur’s pudding, we will observe in Chapter 38 that Schur appears to have 
been first to raise the problem of arbitrarily long arithmetic progressions of primes in the 
1920s–1930, before Paul Erdős took the leading role in the development of Ramsey Theory. 
Erdős recalls on the pages of Geombinatorics [E95.32] on the occasion of Schur’s 120th 
birthday in 1995: 

I first heard about Schur when I was a student of an old Hungarian algebraist Michael 
Bauer, who advised me to write to Schur about my results on prime numbers in 
arithmetic progressions. Schur was the first foreign mathematician with whom I 
corresponded. I wrote [to] him my elementary proofs on some of my results on prime 
numbers in arithmetic progressions, which Schur liked very much, the results were 
published in Math. Zeitschrift in 1935. 

In fact, the Ramseyan baton from Schur to Erdős may have been passed at their 1936 
meeting in Berlin. “I was told that Schur sometimes referred to me as the Sorcerer from 
Budapest,” Paul recalled fondly in our conversations and in print [E95.32].17 Amazingly, I 
found the eyewitness’ reminiscences of this Erdős’ visit of Berlin when Hilde Brauer, the 
widow of Schur’s Assistant and close friend Alfred Brauer, gave me a gift of her wonderful 
unpublished memoirs [BraH]. She married Alfred on August 19, 1934, and as a “mathemat-
ical wife” from the Schur’s circle, met Erdős during his Berlin visit: 

The latter [Paul Erdős], who was a child prodigy, surprised me at his first visit when he 
was barely twenty with curious interest for all details in bringing up a baby. He called all 
children epsilons but knew all the names of his friends’ babies. 

I have got to mention here one more Schur’s activity, in which he, in a sense, predates 
Erdős. Schur’s former student Richard Brauer (February 10, 1901–April 17, 1977) writes in 
the February 1977 introduction to his 3-volume collected papers [BraR] that appeared 
posthumously in 1980: 

He [Schur] conducted weekly problem hours, and almost every time he proposed a 
difficult problem. Some of the problems had already been used by his teacher Frobenius, 
and others originated with Schur. Occasionally he mentioned a problem he could not 
solve himself. One of the difficult problems was solved by Heinz Hopf and also by my 
brother Alfred and myself. We saw immediately that by combining our methods, we 

17 Paul Erdős was not only mathematically, but also personally attached to Issai Schur and his wife 
Regina. “I several times visited his widow. In 1965, I visited her in Tel-Aviv with my mother,” 
writes Paul [E95.32].
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could go a step further than Schur. Our joint paper [BBH] in the list below originated 
this way. 

So, Issai Schur had a great interest in creating problems and conjectures, and disseminating 
them on the regular basis, weekly, starting at least in 1920. Ramseyan-style problems and 
conjectures must have been part of this Schur’s oeuvre. Paul Erdős, who took over the 
leadership of the Ramsey Theory, also had, as we all know, a great interest in problem 
posing. He created his first open problem in 1931. In 1957, Paul commenced his celebrated 
“some of my favorite unsolved problems” series of papers. 

This inquiry into the life of Issai Schur was made possible by the invaluable help from Issai 
Schur’s daughter Hilde Abelin–Schur; the widow of Alfred Brauer, Hilde Brauer; Schur’s 
former student Walter Ledermann; Paul Erdős; Heiko Harborth; Henrik Hofer; and the 
Archive of Humboldt University of Berlin. 

37.4 Enters Henry Baudet II 

When in 1995, I presented my argument for Issai Schur’s credit in an essay [Soi10] written on 
the occasion of his120th birthday, I specifically included a historically significant disclaimer: 

Nothing presented here excludes the possibility that Baudet created the conjecture 
independently from Schur. N. G. de Bruijn [Bru3], clearly understanding the rarity of 
Ramseyan ideas at the time, hypothesizes that Baudet was inspired by the 1916 paper 
[Sch] of Schur to independently create the conjecture. Perhaps, in the future historians 
would shed light on the question whether Baudet was an independent from Schur author 
of the second [counting Hilbert–1892, third] conjecture in the history of Ramsey 
Theory. Until then the conjecture ought to be rightfully called Schur’s. 

When my essay [Soi10] appeared, I learned from N. G. de Bruijn about the existence of 
P. J. H. Baudet’s son, Henry Baudet, or as he sometimes called himself Henry Baudet II, and 
mailed him a copy of my paper. I sowed an essay and harvested a fury! The young Henry 
Baudet (his full name Ernest Henri Philippe Baudet born on January 29, 1919, in Scheve-
ningen; he was 76 at the time) replied in style all his own: 

I write to you in my own English, which is far from good, but it might be better than 
your own French or Dutch. 

He then offered a counterexample18 to Schur’s 1916 theorem and questioned Brauer’s 
assessment of Schur: 

“Too modest” seems hardly possible and hardly believable, considering the revolution-
ary essence of the theorem or the conjecture. 

Henry was clearly upset with my putting in doubt his father’s credit. In my August 
30, 1995 letter, I admitted that indeed “my French and Dutch are far inferior” to his fine 
English and offered Henry to publish in my quarterly Geombinatorics his essay challenging

18 Schur’s Theorem survived; Henry simply misunderstood it.
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37.4 Enters Henry Baudet II 415

Henry offered to help with documents upon his return to Holland from his summer home in 
Bourgogne, France. In addition to being a History Professor, Henry was The Historian of the 
Delft Technical University, and the last PhD student of the legendary Johan Huizinga of The 
Waning of the Middle Ages fame. From letter to letter, I was promoted from “Professor 
Soifer” to “Alexander,” to “Sasha.” Our correspondence for the ensuing year was very 
intense: we exchanged some 30 letters (letters, not e-mails). My family and I then paid a 
5-day visit to Henry and his wife Senta Govers Baudet in their centuries-old stone house in the 
medieval village Corpoyer-la Chapelle, population 26, in Bourgogne, France.19 As I am 
writing these lines, I am holding in front of me a copy of Henry’s book Mon Village en France 
warmly inscribed to my (then) wife Maya and me by Henry on August 1, 1995. Later that year 
we also visited the Baudet family in their Dutch house in the town of Oegstgeest, population 
ca. 24,000, nestled on the outskirts of Delft. 

I learned much about Henry and Senta helping Jews in the Netherlands occupied by Nazi 
Germany for the long five years 1940–1945. Henry recalls [Bau5]: 

I myself, finally, started studying history at Leiden University but this was interrupted 
when the Germans, during the war, closed the University. Somehow, nevertheless, I 
could remain in touch with my professors, at least in the beginning. Of course, the 
German occupation made life extremely difficult, and this every year more and more. 
Resistance was a new activity we had to learn; hiding Jews was a daily concern and 
hiding ourselves was another. We lost many friends but somehow or other I got through 
myself (though my wife, then my girlfriend, then 17 years [old], got temporarily into jail 
for helping Jewish classmate to escape – she (I mean: her Jewish girlfriend) lives in 
Dallas now and we see each other and call each other by telephone). 

In fact, Senta Govers Baudet’s name is inscribed in Yad Vashem – The World Holocaust 
Remembrance Center in Israel as she was awarded the high title of a Righteous Among the 
Nations, granted to non-Jews who risked their lives to save Jews during the Holocaust. Senta 
helped her Jewish friend Liny L. Yollick escape from the Netherlands by lending her Senta’s 
identification card. The escape was successful, but silly Liny sent the card back with a boy 
who was caught by the Germans. On June 27, 1942, Senta was imprisoned by the Germans 
and spent a week in jail, interrogated daily and nightly. Only her consistent denial of loaning 
the card to Liny, had finally convinced the jailers.20 This was but one episode of the young 
family’s participation in the resistance. In fact, Henry and Senta risked their lives, on 
numerous occasions by helping Jews hide or escape. They themselves had to hide from the 
Germans, who came to look for them on occasion. 

19 Both Henry Baudet II and his son Remy Baudet, a wonderful violinist (music, even more than 
mathematics and chess, was a family tradition for generations), looked so Gascogne, that they 
could play Alexandre Dumas Père’s D’Artagnan without any make-up. 
20 I thank Yad Vashem, The Holocaust Martyrs’ and Heroes’ Remembrance Authority, for sharing 
with me copies of the relevant documents substantiating Senta’ high recognition.
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With Henry’s help, I was able to successfully investigate the question of whether Baudet I 
earned the credit that Van der Waerden so nonchalantly had given him. 

My dear friend Henry Baudet II was one of the most charming people I have met in my life. 
He passed away on December 16, 1998. In 2003, Delft Technical University created the 
Henry Baudet Institute dedicated to the history of design, one of his many interests. 

37.5 Pierre Joseph Henry Baudet 

B. L. van der Waerden gave Baudet credit in his 1927 paper [Wae2], which in fact was called 
Beweis einer Baudetschen Vermutung (i.e., Proof of a Baudet Conjecture). We do not find 
Baudet’s initials in Van der Waerden’s paper. Indeed, Van der Waerden did not even know 
that at the time his publication came out, Baudet had been dead for six years. As is often the 
case with young and brilliant mathematicians, Van der Waerden was probably not interested 
in the history of the problem he solved and in the identity of the author of the conjecture. In 
reply to my questions, Van der Waerden answers on April 24, 1995 [Wae25]: 

1. I heard of “Baudet’s Conjecture” in 1926. 
2. I never met Baudet. 
4. I never met Schur. 
5. I never heard about Schur’s [1916] result. 

By the time Van der Waerden publishes a detailed story of the emergence of his proof in 
German in 1954 and in English in 1971 (presented in Chapter 35), he is not only a celebrated 
mathematician but also a famous historian of science, author of the well-known book Science 
Awakening [Wae15] and numerous historical articles. Sometimes he is deservedly harsh 
toward other historians [Wae15]: 

How frequently it happens that books on the history of mathematics copy their asser-
tions uncritically from other books, without consulting the sources! How many fairy 
tales circulate as “universally known truths”! 

Yet Van der Waerden-historian does not investigate the authorship of the conjecture that 
became his classic theorem. Biographers of Van der Waerden faithfully follow the Master and 
credit “Baudet” with the conjecture, ignoring – or being ignorant of – Brauer’s reminiscences 
[Bra3], and providing no independent historical analysis (see [Fre], [FTW], [Per], etc.). 

I thought that in all likelihood someone, sometime during the long years between 1927 and 
1971, must have mentioned to Van der Waerden Brauer’s assertion that Van der Waerden 
proved Schur’s conjecture. Nobody, apparently, has until now, as you can see from Van der 
Waerden’s March 9, and April 4, 1995 replies [Wae23], [Wae24] to my inquiry21 : 

Dear Professor Soifer: Thank you for informing me that ‘Baudet’s conjecture’ is in 
reality a conjecture of Schur. I did not know this. 

21 See the facsimile of [Wae23] in this chapter.
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Van der Waerden, March 9, 1995 letter to Alexander Soifer 

While Van der Waerden’s acceptance of my argument for Schur’s credit was important, it 
contributed nothing to the question whether Baudet created the conjecture independently of 
Schur. As I wrote [Soi10], “Perhaps, in the future, historians will shed light on the question 
whether Baudet was an author, independent of Schur.” This future has arrived: let us look at 
Baudet’s role in our saga. 

It appears that Alfred Brauer is first to speak in print about Baudet on 8 November 1960 
[Bra3] (see also its later English translation [LN]) ever since Baudet’s obituaries appeared in 
1921 [Schuh] and 1922 [Arr]. Since Brauer knows firsthand that Schur has created the 
conjecture (and, I gather, assumes it to be unlikely that two people could independently 
come up with such a revolutionary conjecture), he attempts to “prove” that Baudet did not 
create the conjecture independently by showing how the conjecture got from Schur to Baudet: 

Baudet at that time was an unknown student at Göttingen, who has later made no 
mathematical discoveries. On the other hand, at this time Schur’s friend Landau was a 
professor at Göttingen, who obviously knew the conjecture, and used to offer unsolved 
conjectures as exercises to every mathematician he met. It was therefore highly probable 
that Baudet learned the conjecture directly or indirectly [from Landau]. 

Brauer repeats his assertions in English in print in 1969 [Bra2]: 

It seems that the title of van der Waerden’s paper “Beweis einer Baudetschen 
Vermutung” [Wae2] is not justified. Certainly [sic] van der Waerden heard about the 
conjecture from Baudet, a student at Goettingen. 

When Alfred Brauer speaks about Baudet (I wish he did not!), he enters the area not 
personally known to him. Consequently, Brauer presents his hypotheses as if they are true



facts. In fact, I find Brauer’s hypotheses to be dramatically false. Baudet “at that time” was not 
“an unknown student at Göttingen,” but instead a brilliant young Ph.D. from Groningen. 
Brauer’s allegation that Baudet “later made no mathematical discoveries” was as gratuitous as 
it was incorrect: in addition to publishing his doctoral thesis [Bau1] and the inaugural speech 
[Bau2], Baudet published three papers [Bau3], [Bau4], and [Bau5] that appeared in 
Christiaan Huygens – not bad for someone who left this world untimely at the age of 30. 
Baudet became a Full Professor at Delft University at the tender age of 27 – can this be said of 
many mathematicians, then or now? 
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Alfred Brauer’s valuable testimony about Schur’s creation of the conjecture, as well as his 
regrettable misrepresentations about Baudet, are repeated by Graham–Rothschild–Spencer in 
their standard texts on Ramsey Theory [GRS1], [GRS2] and from there are copied by a good 
number of publications. It is time, therefore, to set the record straight, and convey to the world 
how great a man the world lost in Pierre Joseph Henry Baudet. 

The following account of Baudet’s life was possible only due to the indispensable 
assistance of Henry Baudet II, the son of the mathematician Pierre Joseph Henry Baudet. 
Unless otherwise credited, the following information, slightly edited, comes from Henry 
Baudet II’s letters to me [BII1 – BII13] and my personal interviews with him in his Medieval 
house in Bourgogne, France. 

My father was born on January 22, 1891, in Baarn (province of Utrecht, The Nether-
lands) in nothing less than a psychiatric clinic, where my grandfather – a neurologist – 
was medical superintendent. A few years later my grandparents moved to The Hague, 
where my grandfather started a private practice. So it was in The Hague that my father 
grew up, attended the elementary school and then the Gymnasium from which he 
graduated in 1908. He was a dedicated chess player and cellist. (In this, he followed 
the family tradition: we all are musicians and chess players, though not on his level). 

In September 1908 my father enrolled as a student of mathematics at Leiden Univer-
sity, where he studied under Kluyver. I know next to nothing about his study in Leiden, 
except the fact of his early fame as a chess player, amusician, and a futuremathematician. 
He obtained his master’s degree in 1914, as far as I know just on the eve of theWorldWar 
I and became amathematician at the sameGymnasium in TheHaguewheremy father had 
been a pupil. He stayed there until his 1919 appointment as a Professor at the University 
of Technology at Delft (then still named the Technical High School). 

As a student at Leiden, he met my mother [Ernestine van Heemskerck] who studied 
in the Faculty of Arts, and my parents got married on April 7th of 1914 ... My sister (also 
a mathematician) was born in 1915 on the 31st of January. I myself arrived four years 
later on January 29th , 1919. So, all of us are Aquarius. 

How my father and Schuh22 met, I don’t know, probably in the Society of Mathe-
maticians. They were, however, close friends since 1914 or 1915 ... With Schuh as 
supervisor, my father began to work on his thesis, but he could not take his doctor’s 
degree with him, as Delft had no doctorate in mathematics. And [Johan A.] Barrau 
[1874–1953, a professor of mathematics at Groningen University] ultimately took over 
Schuh’s job. 

22 Frederick Schuh, 1875–1966, Ph. D. under Diederik Korteweg, as was L. E. J. Brouwer after 
him, a very versatile mathematician, with numerous publications in analysis, geometry, number 
theory, statistics, recreational mathematics, teaching of mathematics, etc.
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Pierre Joseph Henry Baudet (1891–1921). (Courtesy of Henry Baudet II)
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The eulogy “In Memoriam Prof. P. J. H. Baudet” [Arr] by Dr. E. Arrias appeared on 
January 28, 1922. The author, who has known Baudet for 15 years, reports astonishing talents 
of Pierre Joseph Henry: 

At 15, Baudet was known for virtually never losing a game [in chess] and playing 
several simultaneous games blindfold ... But all these achievements were outshone by 
the miraculous things he has done with the Laskagame, invented by Dr. E. Lasker 
[a mathematician and the legendary world chess champion during the incredibly long 
period 1894–1921]. Before Lasker had his new game published, he submitted it to 
Baudet for evaluation. With his characteristic tempestuous application Baudet mastered 
this game; it was as if he finally had found something that could fully satisfy his wits. 
This exceptionally intricate game with its discs in four different colours, its capricious, 
almost incalculable combinations, suited his mathematical brain exactly. It is, therefore, 
not surprising that having studied the game for half a year, he could scarcely be beaten 
by Lasker himself... Thanks to his enthusiasm a Lasca society was founded in The 
Hague, and even a first national tournament organized, but after everything had taken 
shape, he died one day before the tournament, to which he had been looking forward 
like an eager child (for in spite of his scientific greatness he was a child in joy) ...23 

As proficient as he was at board games, as high was his reputation as a musician ... 
Being an extraordinarily sensitive cellist, he completely mastered the technique of this 
instrument. Many were the times that he contributed to the success of concerts by his 
impassioned playing. And all this without score; a feat only very few people are so 
privileged. With him it was not a matter of learning notes, but he absorbed the complete 
picture of the composition, and even when he had not seen the composition for ten 
years, he was able to conjure it up clearly and to play it from memory, when only 
hearing the piano part ... He was excellent at reading scores and he conducted already 
during his grammar school period. He was fully familiar with theory and counterpoint. 
Only recently, he could prove this when the vice-chancellor of Delft University asked 
him to orchestrate the Don Juan for the students’ string orchestra. Next to all his 
excessively many occupations, this task could be added without any problem. He 
finished it just before death overtook him 

. . .  
It was pure scientific curiosity that had made him master this as well as everything 

he did: ... learning Hebrew and the four Slavic languages simultaneously was no trouble 
at all, since he was learning anyway – and in fact this was far more interesting – that 
comparative linguistics ... Stacks of work are lying in his study; constantly new ideas 
suggested themselves to him which he noted down only in lapidary form. He did not get 
around to publish much, but his confrere friends will need years of hard work to sort out 
and work on his sketchy notes. 

23 As I learned from Professor N. G. de Bruijn [Bru1], “In his Brettspiele der Völker (Berlin 1931) 
Lasker describes a game of ‘Laska’ he lost to Baudet at a tournament in The Hague 1920. (‘Laska’ 
was Lasker’s own invention, which he tried to promote at a time he thought that eventually all 
serious chess games would lead to a draw.)”
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On the birthday of Jesus this highly gifted man with his magnificent Christ like 
features parted from this earthly life, at the same age, as his greatest master. But in our 
thoughts he will rise again and stay alive for us as long as we keep breathing! 

Baudet defended his doctoral thesis cum laude in 1918 at Groningen University and 
became Professor in Pure and Applied Mathematics and Mechanics at Delft Technical 
University in 1919. He was 27. Pneumonia brought his life to an untimely end on the 
Christmas Day of 1921. His first obituary [Schuh] was written by his friend and teacher 
Frederik Schuh. 

Pierre Joseph Henry Baudet was an extraordinary man indeed. But did he create the 
conjecture? 

The credit given Baudet by Van der Waerden [Wae2] is insufficient since he “never met 
Baudet” and “heard of ‘Baudet’s Conjecture in 1926”, i.e., years after Baudet’s passing 
[Wae26]. However, by backtracking the link from Van der Waerden to Baudet, we reach 
firmer grounds. 

37.6 Argument for Baudet’s Authorship of the Conjecture24 

The search, in fact, was started by Henry Baudet II. Born on January 29, 1919, Henry lost his 
father at the age of not quite two and always wanted to find out more about him. In 
1962–1963, professor of tax law and an amateur mathematician Tj. S. Visser gave a talk 
Attack on Sequences of Natural Numbers attended by Henry Baudet and his 15–16-year-old 
son Rémy. Unbelievably, the four-page brochure (in Dutch) of this talk survived in the family 
papers and was shared with me by Henry. Thus, we are granted an attendance to Visser’s 
lucid and informed talk: 

My story is about the most beautiful statement of number theory, The Theorem of 
Baudet. The pearl of Baudet . . .  

Baudet is the early departed in the beginning of this century Delft’s Professor of 
Mathematics, born in Nenegouw . . .  

His pearl of the theory of numbers is: If one divides the natural numbers 1, 2, 3, 4... ad 
infinitum into a random number of boxes, then there is nevertheless always at least one 
box which contains an arithmetic progression of arbitrary length . . .  

This proposition was formulated by Prof. Dr. P. J. H. Baudet in 1921. He died shortly 
after, leaving a wife and a baby. Many celebrities tried to find a proof of this theorem. 
The young, also Dutch mathematician succeeded. His name was B. L. van der Waerden. 
He published his proof in 1927 in Het Nieuw Archief under the title Beweis einer 
Baudetschen Vermutung. 

It takes five pages, uses no higher mathematics but is very heavy. He seems to have 
found it during a holiday session at Göttingen where his astuteness rightly won large 
admiration. Bartel van der Waerden is a son of the engineer-teacher Theo, doctor in 
technical sciences, a very prominent person elected to Parliament from the S.D.A.P., 

24 This is an expanded version of my tribute [Soi11] to P. J. H. Baudet that was published 
on the occasion of his 105th birthday.
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known as ‘rooie Theo’ [Red Theo]. The young Bartel became professor at Groningen, 
was later oil-mathematician, is now at Zurich director of the Mathematical Institute, and 
is world-renowned. 

After 1927, the statement and its proof fell asleep. 

Tj. Visser then conveyed how the Russian mathematician Aleksandr Yakovlevich 
Khinchin brought the theorem back to life by publishing it, with a slightly different proof 
found by his student M. A. Lukomskaja, as one of the pearls in his book Three Pearls of 
Number Theory, which appeared in Russian, German, and English. 

As an amateur mathematician, Henry-the-son was fascinated by the conjecture. “Could I 
write to him [i.e, to Van der Waerden]?” he asked the family friend and his father’s mentor 
Frederick Schuh (February 7, 1875–January 6, 1966). “Of course,” Schuh replied. Henry 
recalls: 

In the context and the fact that I proposed to Schuh to give me the address of Van der 
Waerden, it was clear that Schuh considered it [the conjecture] to be an important affair. 
He agreed that I should write. 

I asked Henry (we had long interviews in his centuries-old Bourgogne stone house): 

Does it appear that Schuh was in total agreement that it was Baudet’s conjecture that 
Van der Waerden proved? 

“Absolutely, absolutely yes, absolutely,” replied Henry. And so, on September 1, 1965, 
Henry Baudet II wrote to Van der Waerden in style already known to you from Henry’s first 
letter to me: 

I am the son of my father. It is always the case, but you understand what meaning this 
introduction has in this case. Somehow from afar I was following your publications, and 
thus I was able to get into my hands your work in the Abhandlungen aus dem 
Mathematischen Seminar Hamburg [Wae16]. For me this is not a completely closed 
book. Having at one point started in mathematics, I have become a historian in the end, 
and it is something entirely different. 

In this letter to you, a fairly remarkable fact is taking place. It is a fact that I cannot say 
anything special, but nevertheless I wanted very much to establish a contact with you. 
Of course, I would like to ask you whether you have a reprint of your publication of 
1926, in which you present a well-known proof; possibly also other publications, if such 
exist related to my father, especially to the abovementioned work in Hamburgsche 
Abhandlungen. 

Last year in Zürich I tried to find your name in the telephone book. Unfortunately, I 
was unable to find there your name. I also tried to contact you at the University of 
Zürich, but also without result. 

As far as I can follow number theory, I find it exciting. If I were to become a 
mathematician, my inclinations would have certainly led me in this direction – in the 
direction of numerical mathematics and number theory. In my free time I continue to 
deal with Fermat and Mersenne; although “in general” with the history of mathematics. I 
would appreciate it very much if I could hear something from you and possibly you 
could send me one or several copies of your works of those where you have written 
about my father.
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On October 20, 1965, Van der Waerden replied to Henry: 

It was very nice to receive a letter from you. I have not known your father and have 
never written anything about him. I heard about his [!] conjecture which he had posed at 
Het Wiskundig Genootschap (Mathematical Society) in Amsterdam. 

I am sending you a overdrukje (reprint) of my work from Hamburger Abh. and on 
loan a photocopy of my work in Het Archief from 1926. I will further ask the publisher 
Birkhäuser to send you a copy of my psychological research “Einfall und Überlegung” 
in which the history of the solution of this problem is also considered. 

Thus, Van der Waerden stated that P. J. H. Baudet posed his conjecture at the Mathemat-
ical Society in Amsterdam. Van der Waerden attached to his letter copies of his original proof 
[Wae2] and his just published reminiscences [Wae16]. Henry Baudet II discussed this 
correspondence with Frederick Schuh, a major figure in the Amsterdam mathematical circles 
in the 1920s. This is why the following Henry Baudet’s May 27, 1996 reply to my inquiry is 
the crux of the matter [BII12]: 

When I told Schuh about my correspondence with Van der Waerden, he would have 
definitely told me that the conjecture was not my father’s, if it had been not his. 

Schuh did not correct Henry Baudet, most likely because for him P. J. H. Baudet’s 
authorship of the conjecture was a long-known fact. 

After Henry Baudet the son, the next person who showed active interest in the authorship 
of the conjecture was N. G. de Bruijn. Wiskundig Genootshcap (Mathematical Society) 
decided to publish a 2-volume edition entitled Two Decades of Mathematics in the Nether-
lands: 1920–1940. A retrospection on the occasion of the bicentennial of the Wiskundig 
Genootschap. The books were to reproduce short works of the leading Dutch mathematicians 
of the period, such as Van der Corput, Van der Waerden, Van Danzig, each followed by a 
commentary. Van der Waerden was to be represented by Beweis einer Baudetschen 
Vermutung [Wae2], with a commentary by de Bruijn, who in his March 29, 1977 letter 
posed to Van der Waerden several questions about the history of the conjecture. The latter 
replied on April 5, 1977 [Wae19]. I thank Nicolaas G. de Bruijn for sharing with me this very 
important Van der Waerden’s letter an translating it from the original Dutch: 

I will happily answer your questions. 
1. I am quite sure that I heard about the conjecture for the first time in 1926, around 

the time I got my Ph.D. in Amsterdam. I probably picked it up at one of the monthly 
meetings of the Wiskundig Genootschap, where Schuh appeared regularly. I do not 
know if it was Schuh himself or someone else who made me aware of this. 

2. Yes, the entire affair happened on a single afternoon. Only the cases k=2, k=3, I 
had already figured out before. 

3. I think I only later heard of I. Schur’s proposition. 
4. No, I do not know anything about Baudet. I have a vague memory that he was a 

friend or pupil of Schuh. 
5. My biography: I have studied mathematics, physics, astronomy, and chemistry. 

Mathematics mostly with Mannoury, Hendrik de Vries and Brouwer. Astronomy with 
the excellent Pannekoek. In 1972 I retired in Zürich. Not “emeritus” because that does 
not exist in Switzerland.
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Included is the Bibliography with a few corrections. Furthermore, I have nothing to 
add to your piece. You praise “A thing of beauty is a joy forever,”25 pleases me. 

Thus, Van der Waerden got the conjecture in 1926 directly or indirectly from Frederick 
Schuh, Baudet’s mentor and close friend, and the authorship of Baudet came to Van der 
Waerden with the conjecture. Van der Waerden has even “a vague” but correct memory that 
Baudet was Schuh’s “friend and/or pupil.” Thus, we have traced the way the conjecture 
traveled from Baudet to Van der Waerden via Schuh. However, one question remains open: 
Did Baudet independently create the conjecture or received it indirectly from Schur (try not to 
mix up here Schur and Schuh)? This is the question I was unable to address until December 
18, 1995, when Henry Baudet II, the son and historian, came up with what he humorously 
named “A Second Conjecture of Baudet” [BII4]: 

It seems reasonable to suppose that neither Professor F. Schuh nor my father were 
informed of Schur’s work. Though Germany was ‘next door,’ the World War broke 
nearly all contacts, which were only slowly restored in the course of the ‘20s. 

And Henry Baudet II found convincing evidence to prove his conjecture. The first major 
mathematical event after World War I was unquestionably Congrés International des 
Mathématiciens, which took place during September 22–30, 1920 in Strasbourg, France. 
The whole world was represented there, with the notable exception of the German mathema-
ticians, even though Strasbourg was located right by the French border with Germany. The 
wounds of World War I were still very painful. On the French initiative, the Germans were 
banned from the 1920 and the consequent 1924 International Congress of Mathematicians. 
It was not until the congress of 1928 that they were allowed to rejoin the world of 
mathematics. 

Both J. A. Barrau and P. J. H. Baudet attended the Strasbourg’s 1920 Congress. Baudet 
mailed to his wife daily accounts of his meetings at the Congress, and these letters have 
survived the long years and another war that followed. The letters report the meetings with a 
most impressive group of mathematicians: Denjoy, Fréchet, Valiron, Châtelet, Dickson, 
Eisenhart, Le Roux, Typpa, Lebesgue, Larmon, Young, De Vallée Poussin, Deruyts, Jordan, 
Montel, and Volterra [Bau3]. The letters also capture Baudet’s impressions and emotions of 
days long gone [Bau5]: 

I am in nearly permanent contact with the Americans here. They are after all the nicest 
people here. And this is not only my opinion but also Barrau’s. The nicest of all is 
Eisenhart. [Letter of September 29, 1920] 

At 11 P.M. all the cafés here are closed. You understand that this is not our cup of tea. 
It will be much better at our next Congress. That will be in the U.S. in 1924. The 
Americans here are really very nice people. Dickson and Eisenhart are their principal 
representatives, Eisenhart brought his wife who is quite a nice person. We talked a lot in 
these days, and she definitely expects you [Ernestine Baudet] too in the U.S. next time. 
You see: nothing can change it, you must join me next time. Barrau told Dickson about 
the critical review he [Barrau] had written and has modified after my severe critical 

25 The text in quotation marks is in English in Van der Waerden’s otherwise Dutch letter.
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comments. The consequence of the discussion was that Dickson asked me to write him 
about the matter, as Barrau and I had here no copy of our controversial texts. [Letter of 
September 23, 1920] 

Thus, Baudet and Barrau met Princeton’s Professor and future Dean and Mathematics 
Chair Luther Pfahler Eisenhart. Do not forget his name: we will meet Eisenhart again later in 
this book when he will invite Van der Waerden to come and work at Princeton. 

Baudet and Barrau also met and had discussions with the famous American number 
theorist Leonard Dickson. The meeting with Dickson attracted my attention in particular 
because Dickson’s result inspired Issai Schur to come up with the Schur Theorem of 1916. 
However, this route only confirmed Baudet II’s conjecture. Right before the Congress, in 
April 1920, Dickson had completed volume 2 of his monumental 3-volume History of the 
Theory of Numbers [Dic2]. He did cite there (p. 774) Schur’s 1916 paper [Sch]: “* I. Schur 
gave a simpler proof of Dickson’s theorem.” But in the Preface Dickson explained that “the 
symbol * before the authors’ names” signified “that the papers were not available for review,” 
i.e., even Leonard Dickson, the most informed number theorist of his time, had not himself 
seen Schur’s 1916 paper before the Congress. 

Geographically speaking, Baudet and Schur had one chance to meet in August 1921, when 
Henry and Ernestine Baudet with their daughter Puck visited their friend and the legendary 
world chess champion Emanuel Lasker and had a short stay in his Berlin house. Puck “still 
has clear recollection of their stay at the Laskers, particularly when their rowing boat on the 
Wannsee26 was wrecked,”27 because neither Lasker nor Baudet could swim and had to be 
rescued. We are fortunate to have a photograph from this visit. Puck, however, does not 
remember visiting the University. 

26 You would recognize the name of this lake. The Lasker–Baudet humorous episode took place at 
the site where on January 20, 1942, fifteen high-ranking civil servants and SS officers discussed 
“The Final Solution” of the Jewish question in Europe. They decided to deport European Jews to 
the East and murder them all. 
27 [BII7].
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Seated Ernestine, Puck and P. J. H. Baudet; standing (from the left) Emanuel Lasker and a 
Gymnasium Rektor, Lasker’s house, August 1921, Berlin. (Courtesy of Henry Baudet II) 

The family correspondence has survived, and it does not indicate that any new acquain-
tances were made during this Berlin trip, which took place just a few months before the 
untimely passing of P. J. H. Baudet. 

Thus, it is plausible to conclude that Baudet and Schur never met and that P. J. H. Baudet 
discovered the conjecture independently from Issai Schur. 

My investigation into the life of Pierre Joseph Henry Baudet was made possible by the 
invaluable and enjoyable help of Henry Baudet II and Nicolaas G. de Bruijn, to whom I 
extend my deepest gratitude. 

37.7 Summing Up 

The evidence presented here clearly shows that two brilliant men, Issai Schur and Pierre 
Joseph Henry Baudet, independently created the third conjecture of Ramsey Theory before 
Ramsey. From now on, let it be known as The Baudet–Schur Conjecture. What can be a 
happier conclusion to historical research! 

Obviously, without the conjecture, no proof would have been possible. To conjecture such 
a pioneering result was surely as great a contribution as its proof by Bartel L. van der



Waerden. It is therefore fitting to call the monochromatic arithmetic progressions theorem 
after all three contributors: The Baudet–Schur–Van der Waerden Theorem. 
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At the time when Alfred Brauer’s work [Bra1] proving two original Schur’s conjectures 
appeared in 1928, Frank Plumpton Ramsey was working on his pioneering work [Ram2], that 
he submitted for publication later that year. A few years later, in 1932, Issai Schur’s student 
Richard Rado defended his doctorate dissertation [Rad1], which was Rado’s first fundamental 
contribution to Ramsey Theory. During the winter of 1932–1933 Paul Erdős and George 
Szekeres wrote their first Ramseyan paper [ES1]. Since then, Paul Erdős inspired many 
mathematicians around the world to enter the field. A new era of a maturing Ramsey Theory 
began. 

I ought to point out amazing ways in which the lives of the players of this story are 
interwoven. Mentor and friend of Baudet, Frederik Schuh was instrumental in Van der 
Waerden getting to know the Baudet–Schur conjecture. Baudet’s Ph. D. thesis Promotor 
(supervisor) was the very same Johan Antony Barrau, who in 1928, while moving to Utrecht, 
offered Van der Waerden his chair at Groningen, and again in 1942 proposed Van der 
Waerden for his chair at Utrecht. Read much more about it all in the following chapters, 
dedicated to vast generalizations of the Baudet–Schur–Van der Waerden Theorem and to my 
search for Van der Waerden the man. 

The brutal war separated the authors of the Baudet–Schur–Van der Waerden Theorem and 
their families. As we have seen here, Baudet’s son Henry Baudet II and his girlfriend Senta 
worked in the Dutch underground saving lives of Jews. Issai Schur was thrown out of the 
University of Berlin and following years of humiliation escaped to Palestine; his tired heart 
soon gave up. Being Dutch, Van der Waerden served as a Professor in Germany the entire 
Nazi time. Van der Waerden’s life and fate prompted more controversy among scholars who 
care about historical truth than even presidential elections in the U.S. I had to get to the truth 
since no one before me had done it. Read the chapters dedicated to it later in this foliant.
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Chapter 38 
Monochromatic Arithmetic Progressions or 
Van der Waerden’ Proof 

Life 

38.1 Schur’s Generalization 

And God said, “Let there be light.” 
– Genesis 

And there was light: Issai Schur – who else – produced the first spark, a generalization of 
the Baudet–Schur–Van der Waerden Theorem. In fact, his result generalizes both, the Schur 
and the Baudet–Schur–Van der Waerden Theorems. With all the search engines of today’s 
Internet, one would be hard pressed to find it, for it does not appear in any Schur’s paper: This 
most modest man gave it to his former student Alfred Brauer to publish! 

Alfred Brauer writes [Bra2] that a few days after his and Richard Brauer’s 1927 visit of 
Schur, he proved Schur’s conjecture about quadratic residues (conjecture 37.2), with the use 
of the Baudet–Schur–Van der Waerden Theorem. Schur then noticed that Brauer’s method of 
proof can be used for obtaining a result about sequences of n-th power residues. Soon Issai 
Schur found a short, Olympiad-like, brilliant way to prove the following result that general-
ized both theorems. 

The Generalized Schur Theorem 38.1 (I. Schur, [Bra1], [Bra2]). For any k and l, there is 
S(k, l) such that any k-coloring of the initial array of positive integers [S(k, l)] contains a 
monochromatic arithmetic progression of length l together with its constant difference. 

Proof For 1 color, we define S(1, l) = l and the statement is true. 

Assume the theorem is true for k colors. We define 

S k þ 1, lð Þ=W k þ 1, l- 1ð ÞS k, lð Þ þ  1ð Þ, 

where W(k, l) is  as defined in theorem 35.1. Let the initial array of integers [S(k + 1, l)] be 
colored in k +  1 colors. Then by theorem 35.1 (see the right side of the equality above), there 
is a (l - 1)S(k, l) + 1 term monochromatic arithmetic progression 

a, aþ d, . . . , aþ l- 1ð ÞS k, lð Þd: 

© Alexander Soifer 2024 
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For every x = 1, 2, . . ., S(k, l), this long monochromatic arithmetic progression contains the 
following l-term arithmetic progression: 

a, aþ xd, . . . , aþ l- 1ð  Þxd: 

If for one of the values of x, the constant difference xd is assigned the same color as the 
progression above, we have concluded the proof of the inductive step. Otherwise, the 
sequence 

d, 2d . . . , S k, lð Þd 

is colored in only k colors, and we can apply to it the inductive assumption to draw the 
required conclusion. ■ 

A great proof, don’t you think! It is interesting to note here that unlike the Baudet–Schur– 
Van der Waerden Theorem, the Generalized Schur Theorem does not have a Szemerédi-style 
density generalization – see more about it later in this chapter. 

Schur wanted Alfred Brauer to include this theorem (as well as the one about n-th power 
residues) in Brauer’s paper because Schur believed to have used Brauer’s method in these 
proofs. Schur did not want to take away any credit from his student. The student had to oblige 
but he “always called it Schur’s result”1 and gave Schur credit everywhere it was due in his 
paper [Bra1] that appeared in 1928. A few weeks later Brauer also proved Schur’s conjecture 
about quadratic non-residues (conjecture 37.3), which appeared in the same wonderful, yet 
mostly overlooked paper [Bra1].2 

Schur’s ingenious contributions to Ramsey Theory before Ramsey do not end here. We will 
come back to them later in this chapter. For now, I wish to speak about density results. 

38.2 Density and Arithmetic Progressions 

Let us look at how this flourishing field has evolved. We will start with the key definition from 
the Erdős–Turán 1936 paper [ET]. Denote by rl(N) the maximum number of integers not 
exceeding N such that no l of them forms an arithmetic progression. Paul Erdős and Paul 
Turán proved a number of results about r3(N) and conjectured that 

r3 Nð Þ= o Nð Þ: 

This conjecture was proved in 1953 by Klaus F. Roth [Rot]. The only conjecture about the 
general function rl(N) in Erdős–Turán paper was attributed to their friend George Szekeres 
and was later proven false. Sixteen years have passed before Endre Szemerédi proved in 1969 
[Sz1] that 

1 [Bra2]. 
2 I say ‘overlooked’ because the leading Ramsey Theory book [GRS2] contains almost identical 
result (theorem 2, p.70) without reference or credit to Schur.

https://doi.org/10.1007/978-1-0716-3597-1_37#FPar2
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r4 Nð Þ= o Nð Þ: 

In a 1973 paper, Paul Erdős [E73.21, pp. 118–119] remarks: “[this] very complicated proof 
is a masterpiece of combinatorial reasoning.” A very surprising paragraph follows (ibid.): 

Recently, Roth [1970] obtained a more analytical proof of r4(n) = o(n). r5(n) = o(n) 
remains undecided. Very recently, Szemerédi proved r5(n) = o(n). 

Clearly, Erdős added the last sentence in the last moment and should have removed the 
next to last sentence. The latter result has never been published, probably because Endre 
Szemerédi was already busy trying to finish the proof of the general case. On 4 April 2007, 
right after his talk at the Princeton Discrete Mathematics Seminar, I asked Szemerédi whether 
he had that proof for 5-term arithmetic progressions and what came of it. Endre replied: 

Hmm, it was so close to finding the proof of the general case, maybe two months before, 
that I did not check all the details for 5. It was more difficult than the general case. 

Indeed, in 1974, he submitted and in 1975 published [Sz2] a proof of the general case, i.e., 
for any positive integer l 

rl Nð Þ= o Nð Þ: 

This work in one stroke earned Szemerédi the reputation of a wizard of combinatorics. 
Since then the terminology changed and I wish to present here a more contemporary 
formulation than the one used in Szemerédi [Sz2]. We will make use of the notion of 
“proportional length,” known as density, in the sequence of positive integers N = {1, 
2, . . ., n, . . .}. The density is one way to measure how large a subset of N is. Its role is 
analogous to the one played by length in the case of sets on the line R of reals. 

Let A be a subset of N; define A(n) = A \ {1, 2, . . ., n}. Then density d(A) of  A is naturally 
defined as the following limit if one exists: 

d Að Þ= lim
n→1 

A nð Þj j  
n 

: 

The upper density �d Að Þ  of A is analogously defined as

�d Að Þ= lim
n→1sup 

A nð Þj j  
n 

: 

Now we are ready to look at a classically simple formulation of Szemerédi’s result. 

The Szemerédi Theorem 38.2 Any subset of N of positive upper density contains arbitrarily 
long arithmetic progressions. 

In various problem papers, Erdős gives the date of Szemerédi’s accomplishment and 
Erdős’ payment as 1972 (sometimes 1973, and once even 1974). The following statement 
appears most precise as Erdős made it very shortly after the discovery at the 3–15 September 
1973, International Colloquium in Rome [E76.35] and places Szemerédi’s proof around 
September 1972:
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About a year ago Szemerédi proved rk(n) = o(n), his paper will appear in “Acta 
Arithmetica”. . .  

Erdős was delighted with Szemerédi’s result and awarded him $1000 in late 1972 to 1973 
[E85.33]: 

In fact denote by rk(n) the smallest integer for which every sequence 1 ≤ a1 < a2 < . . .  < 
al ≤ n, l= rk(n) contains an arithmetic progression of k terms. We conjectured 

15ð Þ  lim rk nð Þ=n= 0: 

I offered $1000 for (15) and late in 1972 Szemerédi found a brilliant but very difficult 
proof of (15). I feel that never was a 1000 dollars more deserved. In fact several 
colleagues remarked that my offer violated the minimum wage act. 

On 4 April 2007, in a personal conversation, Szemerédi confirmed my historical 
deductions: 

I proved [the] general case in fall 1972 and received Erdős’ prize in 1973. 

I refer the interested reader to the original paper for the proof, which is brilliant and hard. 
Partial results are proved in [GRS2] (it is remarkable that even this standard text in the field 
did not include Szemerédi’s complete proof). We do not know whether Szemerédi alone 
could have prepared his truly hard proof for publication: Ron Graham tells me that he spread 
numerous sheets around his house while trying to figure out and write up a proof one could 
understand. 

While Szemerédi’s Theorem is a very strong generalization of the Baudet–Schur–Van der 
Waerden Theorem, Paul Erdős, and Ronald L. Graham observe in their 1980 problem book 
[EG, p. 19] that the analogue of the Szemerédi Theorem does not hold for the Generalized 
Schur Theorem 38.1. Can you think of a counterexample before reading the one below? 

Observation 38.3 (Erdős–Graham, 1980). Szemerédi-like generalization does not hold for 
the Generalized Schur Theorem. 

Proof The set of odd integers of density ½ cannot contain even a 2-term arithmetic progres-
sion and its difference! ■ 

38.3 Who and When Conjectured What Szemerédi Proved? 

As I mentioned earlier, throughout this book (and my life), I have given credit for a result to 
both the creator of the conjecture and the author of the first proof. Truly, without good 
conjectures, we would not have many good results. Moreover, pioneering conjectures, such as 
the Baudet–Schur, played a major role in paving the way for new mathematics. Our question 
here naturally is: Who and when conjectured what Szemerédi proved? 

No one would expect a mystery here – just look at Szemerédi’s 1975 paper, in which he 
presents the history of advances in good detail. He starts with giving credit for conjecturing 
his theorem to Paul Erdős and Paul Turán in their 1936 paper [ET]. And so, I am looking at 
this short important paper – without finding the conjecture, except for the case of 3-term 
arithmetic progressions. This incorrect credit is then repeated in the standard Ramsey Theory



texts by Graham–Rothschild-Spencer [GRS1] and [GRS2] in 1980 and 1990 respectively, 
and from there on everywhere else, until 2002 when leaders of the field Ronald L. Graham 
and Jaroslav Nešetřil notice the discrepancy and explain it in the following way [GN, p. 356]: 
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Although they [Erdős and Turán] do not ask explicitly whether rl(N) = o(N) (as Erdős 
did many times since), this is clearly on their mind as they list consequences of a good 
upper bound for rl(N): long arithmetic progressions formed by primes and a better 
bound for the van der Waerden numbers. 

Clearly, my friends, Ron and Jarik, and I agree that the conjecture does not appear in the 
1936 paper [ET]. Their argument that the young Erdős and Turán had the conjecture “clearly 
on their mind” could be viewed more as an eloquent homage to the two great mathematicians 
than a historical truth. Besides, mind reading is not a part of mathematics nor history. We 
therefore must research further. 

In his 1957 first-ever open-problem paper [E57.13], Paul Erdős indicates that before him 
and Turán, Issai Schur (!) called on studying longest arithmetic-progression-free opening 
arrays of positive integers. Erdős writes: 

The problem itself seems to be much older (it seems likely that Schur gave it to 
Hildegard Ille, in the 1920’s). 

Erdős returns to Issai Schur’s contribution in his second 1961 open-problem paper 
[E61.22], which in 1963 also appears in Russian [E63.21]3 : 

The problem may be older, but I cannot definitely trace it. Schur gave it to Hildegard Ille 
around 1930. 

Paul told me that he “met Issai Schur once in mid 1930s,” more precisely in 1936 in Berlin. 
They shared a mutual admiration (as we have seen in section 37.3). Undoubtedly, they 
discussed prime numbers, but likely not arithmetic progressions. Erdős learned about Schur’s 
interest in arithmetic progressions and early Ramsey-like conjectures and results from 
Hildegard Ille (1899–1942). Now, this requires a bit of explanation because they probably 
had never met! 

Erich H. Rothe (1895–1988), Dr. phil. Universität Berlin 1926 under the eminent Erhard 
Schmidt and Richard Mises, in 1928 married a fellow student Hildegard Ille (1899 – Iowa, 
1942), Dr. phil. Universität Berlin 1924 under Issai Schur. They taught at Universität 
Breslau, Germany (later and earlier Wrocław, Poland) until, as the Jews, they were forced 
to flee Nazi Germany in 1937 and came to the United States. In 1942, Hildegard passed away 
at the young age of 43. The accomplished mathematician Erich Rothe held a professorship at 
the University of Michigan at Ann Arbor from 1941 until his retirement in 1964. His eulogy 
(Notices of Amer. Math. Soc., 1988, 544) quotes Chair of the University of Michigan Math. 
Department D. J. Lewis saying that “Rothe was a scholar of the old school. He was very 
broadly educated . . .  He was a wise and judicious man of much wit. His companionship was 
very much in demand.” 

Erich Rothe was Paul Erdős’ source of reliable information on problems and conjectures in 
number theory that Issai Schur shared with Rothe’s wife Hildegard (Ille) Rothe. From Erich

3 This Russian publication does not appear in any of Paul Erdős’ bibliographies.



Rothe, Erdős learned about Schur’s authorship of the monochromatic arithmetic progressions 
conjecture, proved later by Van der Waerden (Chapter 37). From Erich Rothe, Erdős learned 
that Issai Schur yet again contributed to number theory and Ramsey theory when he asked his 
graduate student Hildegard to investigate arithmetic progression-free arrays of positive 
integers. To my surprise, no one before acknowledged credit Erdős gave to Schur in his 
first open-problem papers [E57.13], [E61.22] and [E63.21].
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I believe, however, that Erdős learned about Schur being first to investigate this subject 
after Erdős and Turán independently rediscovered it: their paper [ET] was published in 1936, 
while Erich and Hildegard Rothe came to the Unites States in 1937; moreover, Erdős–Rothe 
conversations took place after Hildegard’s passing in 1942. Paul was certainly correct when in 
both his 1957 and again 1961 open-problem papers he wrote, “The first publication on the 
function rk(n) is due to Turán and myself.” This was an important paper, and Paul knew that. 
Yet, it contained the “density” conjecture only for 3-term arithmetic progressions. Graham 
and Nešetřil are correct when they write [GN] that “Erdős did [pose the general case 
conjecture] many times,” but the real question is: when did he pose the conjecture for the 
first time? 

I am reading yet again Erdős’ first 1957 open-problem paper. Paul writes: 

In [ET] we stated our conjecture that limr3(n)/n = 0 . . .  Roth [Rot] proved that 
r3(n) = o(n) . . .  The true order of magnitude of r3(n) and, more generally, of rk(n), 
remains unknown. 

Paul discusses the general function rk(n), but the conjecture in the general case is not here. 
If the conjecture were to exist consciously in his mind, he would have included it in this open-
problem article, I am almost certain of it. Paul had not, and this, in my opinion, is a reliable 
indicator that the general conjecture did not exist yet in 1957. 

In the second 1961 open-problem paper, Paul publishes the general conjecture explicitly 
for the first time: 

For k > 3 the plausible conjecture rk(n) = o(n) is still open. 

This “still open” indicates that Erdős created the problem well before he submitted this 
paper, which was “Received October 5, 1960.” This suggests the birth of the general 
conjecture in 1957–1959. 

During his 23 December 1991 “favorite problems” lecture at the University of Colorado at 
Colorado Springs, Paul indicated the time when he offered for the first time the high prize of 
$1000 for this conjecture: 

Twenty-five years ago I offered $1000 for it. 

This places the $1000 offer in 1966 or so. In early January 1992, in Colorado Springs, Paul 
confirmed to me in person that this was the highest prize he has ever paid: 

The maximum amount of money I paid [was] $1000 to Szemerédi in 1972. This was a 
conjecture of Turán and myself. If you have a sequence of positive density, then it 
contains arbitrarily long arithmetic progression. 

Paul also told me then that “Turán and I posed this problem in the early 1930s.” I hope, 
however, that my argument, presented here, indicates that it took time for the plot to thicken, 
that it was a long pregnancy, and from the early seeds in the 1930s the great conjecture had 
grown inside Paul Erdős’ head and was born in 1957–1959.
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Even after Szemerédi, Erdős was not quite happy with the state of knowledge in this field. 
In 1979, he offered an extravagant prize for the discovery of the asymptotic behavior 
(published in 1981 [E81.16]): 

It would be desirable to improve [lower and upper bounds] and if possible to obtain an 
asymptotic formula for r3(n) and more generally for rk(n). This problem is probably 
enormously difficult and I offer $10,000 for such an asymptotic formula. 

Erdős’ $10,000 Open Problem 38.4 Find an asymptotic formula for r3(n) and more 
generally for rk(n). 

We have already witnessed Erdős directing research on the chromatic number of the plane 
and creating a good number of related problems. Here too Erdős is in the driver’s seat (well, 
actually, Paul did not drive), following a prophetic start by Issai Schur. 

Endre Szemerédi (born 21 August 1941, in Budapest; Ph.D. 1970, Moscow State University 
under Israel M. Gelfand) is the State of New Jersey Professor of computer science at Rutgers 
University and researcher in combinatorics and discrete mathematics division of Alfréd Rényi 
Institute of Mathematics in Budapest. In 1989, he was elected to the membership in the 
Hungarian Academy of Sciences. In 2012, Endre received the highest award a mathematician 
can win, the Abel Prize. 

38.4 Paul Erdős’ Favorite Conjecture 

During our Colorado Springs joint work on (not yet finished) book Problems of pgom Erdős, 
between December 24, 1991 and January 9, 1992, I asked Paul which of his open problems 
were his favorite. Paul gave me a list of a few favorites. He started it with this problem 
[Soi29]: 

One of the most interesting problems is this: If you have a sequence the sum of whose 
reciprocals diverges, then for every r, there are r terms that form an arithmetic 
progression. 

On another occasion during these two working weeks, Paul told me that he offered, not 
surprisingly, the highest prize for the same problem: 

The largest amount of money, which I offered really is: if you have a sequence of 
integers the sum of whose reciprocals diverges, then it contains arbitrarily long arith-
metic progressions. This would imply in particular that the primes contain arbitrarily 
long arithmetic progressions. That is $3000.4 

4 In fact, already in 1980, the prize reached $3000. I read the footnote [EG, p. 11]: “One of the 
authors (P. E.) currently offers US $3000 for the resolution of this problem.
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The Erdős $3000 Conjecture 38.5 A set A = {a1, a2, . . ., an, . . .} of positive integers, where 
ai < ai + 1  for all i, with the divergent sum n2N 

1 
an 
, contains arbitrarily long arithmetic 

progressions. 

What brought Paul Erdős to this conjecture? On September 15, 1979, in the problem paper 
[E81.16] submitted to the premier issue of Combiniatorica, Paul writes: 

In this connection I conjecture that if 1 
r= 1 

1 
ar 
=1 then for every k there are k ar’s in  

arithmetic progression. Since Euler proved that the sum of the reciprocals of the primes 
diverges, our conjecture would settle the conjecture of primes . . .  I offer 3000 dollars for 
the proof or disproof of the conjecture. 

It appears that Paul Erdős offered for the first time his (then) largest prize, $3000 in his 
1976 talk “To the memory of my lifelong friend and collaborator Paul Turán” at the 
University of Manitoba, Canada Conference [E77.28]. (In the paper [E77.26] submitted the 
previous year, 1975, I see the prize of $2500.) The highest prize and high frequency of 
including this conjecture in talks and papers indicate that this was one of Erdős’ favorite 
conjectures. During his second talk at the University of Colorado at Colorado Springs on 
March 17, 1989, referring to this conjecture, Paul said [E89.61]: 

I should leave some money for it in case I leave. “Leave” means, of course, get cured of 
the incurable decease of life.5 

The prize stood at $3000 for nearly two decades, when in one of his last problem articles 
[E97.18], written in 1996 and published posthumously in 1997, Paul raised the prize to 
$5000: 

I offer $5000 for a proof (or disproof) of this [problem]. Neither Szemerédi nor 
Furstenberg’s methods are able to settle this but perhaps the next century will see its 
resolution. 

Since, as Paul believed, it may be a while before this conjecture is proven, we ought to 
record it with the new, highest ever Erdős’ (serious) prize: 

The Erdős $5000 Conjecture 38.5′ A set A = {a1, a2, . . ., an, . . .} of positive integers, 
where ai < ai + 1  for all i, with the divergent sum n2N 

1 
an 
, contains arbitrarily long arithmetic 

progressions. 

One question remains: when did Erdős first pose this problem? I searched for evidence in 
the ocean of his writings and found three indicators. First, in a paper submitted on 7 September 
1982 to Mathematical Chronicle (now called New Zealand Journal of Mathematics), that 
appeared the following year [E83.03], Paul writes: 

This I conjectured more than forty years ago. 

In the same year, 1982, Paul spoke at the Conference on Topics in Analytic Number 
Theory in Austin, Texas. I read in the proceedings (published in 1985 [E85.34], p. 60): 

5 Quoted first in [Soi14]. Earlier Paul mentioned leaving some money for this conjecture in some 
of his papers, e.g., [E77.28].
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I conjectured more than 40 years ago that if a1 < a2 < ... is a sequence of integers for 
which 1 

i= 1 
1 
a =1 then the ai’s contain arbitrarily long arithmetic progressions. 

Thus, both of these publications indicate that the conjecture was posed before 1942. On the 
other hand, in the 1986 Jinan, China, Conference proceedings (published in 1989 [E89.35]) 
Paul writes (p. 142): 

About 30 years ago I conjectured that if 1 
n= 1 

1 
an 
=1, then the a’s contain arbitrarily 

long arithmetic progressions. 

This would date the birth of the conjecture at about 1956. This information allows us to 
conclude only that this important conjecture is old and was born somewhere between very 
early 1940s and mid 1950s. The conjecture is obviously hard, for in spite of all assaults, it 
remains open. Moreover, even its weakest $250 version has not been conquered: 

Paul Erdős’ $250 Conjecture 38.6 A set A = {a1, a2, . . ., an, . . .} of positive integers, where 
ai < ai + 1  for all i, with the divergent sum n2N 

1 
a , contains a 3-term arithmetic progression. 

In his 1983 survey, Ronald L. Graham proposes a “related perhaps easier conjecture.” This 
beautiful conjecture is still open today, which is a good indicator that it is not so easy as it may 
seem. Z2 denotes the set of points in the plane (i, j) with integral coordinates i,j. 

Graham’s Conjecture 38.7 [Gra3]. If A is a subset of Z2 and i,jð Þ2A 
1 

i2þj2 
= 1, then 

A contains a square.6 

The Erdős $5000 Conjecture 38.5 is still open. However, the existence of arbitrarily long 
progressions of primes has been proved by two brilliant young mathematicians, Ben Green 
and Terence Tao [GT] (they first submitted their proof on April 8, 2004; the 6th revision is 
dated September 23, 2007). Quite expectedly, their result is an existence proof and does not 
help to construct long arithmetic progressions of primes. In the first edition of this book, the 
credit for the longest actually constructed example consisting of 24 terms, went to Jarosław 
Wróblewski, a mathematician from the Wroclaw University, Poland. The present World 
Record is AP27, an arithmetic progression of 27 primes, was constructed by Rob Gahan of 
Ireland on 23 September 20197 : 

224584605939537911þ 81292139 � 23# � n, 

where n = 0, . . ., 26 and p#, called “p primordial,” stands for the product of all primes not 
exceeding p (in particular, 23# = 2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 × 23 = 223092870). 

On 15 April 2010, I received an email from the celebrated Norwegian mathematician 
Helge Arnulf Tverberg (1935–2020). I admired him and his 1966 theorem, but never 
communicated with him before: 

Dear Professor Soifer, 

6 In our convention, a square is a set of its 4 vertices. 
7 https://www.primegrid.com/forum_thread.php?id=7012&nowrap=true#133172.

https://www.primegrid.com/forum_thread.php?id=7012&nowrap=true#133172
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Reading your excellent colouring book, I suddenly recalled an episode from Canberra 
in 1988.There P.E. gave a problem lecture, and he described the (then) $3000 conjecture 
(38.5). After a short break he said that he would also pay $3000 for a counterexample. 
To this the famous group theorist B.H. Neumann commented immediately: “and $6000 
for both?” That was so immediate that B.N. laughed as loud as everyone else, apparently 
one part of the brain had produced this joke before some other part had taken it in. 

I must add that unfortunately I have always been extremely interested in much of the 
material in your book, but, although trying, never been able to prove any result in those 
fields. I once found an amusing trifle: an alternative proof of [Esther Klein’s] tool 31.3. 
Points A, ..., E in the plane, in general position, define a natural drawing of K5 and 
therefore, by Kuratowski’s theorem, the segment AB, say, intersects CD, which makes 
quadrilateral ACBD convex. 
Best regards from 
Helge Tverberg 

38.5 Hillel “Harry” Furstenberg 

Two years after Szemerédi’s combinatorial proof was published, which incidentally used the 
Baudet–Schur–Van der Waerden Theorem, in 1977 Harry Furstenberg published a totally 
different proof [Fur1], using tools of Ergodic Theory. In fact, in doing so, Furstenberg created 
a new field, Ergodic Ramsey Theory. “Both results are beyond the scope of this book,” write 
the authors of the standard text [GRS2] about Szemerédi’s and Furstenberg’s proofs – they are 
beyond the scope of this book too, for my goal is to introduce ideas and the excitement of 
mathematics of coloring and “meet” the people behind these ideas. 

I first met this remarkable mathematician in Keszthely on Lake Balaton in July 1993, 
where we celebrated Paul Erdős’ 80th birthday with a fitting conference, attended by who-is-
who in Erdősian mathematics. Hillel (Harry) Furstenberg looked exactly the way I imagined 
Moses (in different clothing, of course). In fact, he looked much more like the Prophet than 
Charleston Heston ever had, Hollywood make-up trickery notwithstanding. We then met at 
Princeton when Harry was an invited speaker. Yakov “Yasha” Sinai, the host of Harry’s visit, 
invited me to a reception. I sat next to Harry and asked him to write his autobiography for this 
book, which he kindly agreed to do. Harry was born right when Adolf Hitler fired Issai Schur 
from his professorship, in the same city of Berlin. Harry, you have the podium, and I am 
joining your audience! 

I was born in Berlin on 29/9/35. I have few recollections of Berlin of the time. I 
remember my sister (older than myself by 3 years) pointing out a boarded-up bakery, 
saying this was Hitler’s bakery. Apparently, she (over)heard that because of Hitler this 
Jewish establishment had been closed off, I remember some visits to a synagogue. We 
actually lived next to one (33 Brunnenstrasse) which today is a perfume factory, with 
only a lintel giving evidence of the one time use as synagogue, because the words “This 
is the gate to the Lord, the righteous shall pass through” appear on it. 

Already before Krystallnacht (8/11/38) some of my parents’ Jewish friends had 
received expulsion orders from the Nazis. Our own expulsion order came soon after 
Krystallnacht and my parents frantically searched for shelter. One of my early
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recollections is that of the morning after Krystallnacht when the four members of my 
family lined up underneath the broken windows of our basement apartment viewing the 
damage. I was old enough to realize the seriousness of the occasion. 

From letters I later found, I discovered that my parents had sent a request to the 
Australian government for asylum and were refused. I have no idea to how many other 
places we applied. Fortunately, an aunt of mine was able to deposit 1,000 pounds 
sterling with the bank of England, thereby obtaining for us temporary asylum. We 
arrived in England sometime in 1939, shortly before the Blitzkrieg over London. I 
remember the shelters in London, the women knitting, I remember the skies at night 
criss-crossed with searchlights, and I remember my mother, sister and myself being sent 
to Norfolk, out of the London danger. My father hoped very much at that time to come 
to America and join my mother’s brother who had recently bought a poultry farm in East 
Brunswick, NJ. He had a health problem (a thyroid condition), and knowing the 
Americans were strict, he underwent what was at that time risky surgery to rectify the 
problem. He did not survive the surgery and my widowed mother took her two children 
to the U.S. where we arrived shortly before the outbreak of WW II. We stayed at my 
uncle’s poultry farm for over a year, and I attended McGinnis Elementary School. 
Kindergarten, first and second grades were in one room. Two years in the room were 
enough for me, so that when after two years we moved to Manhattan, I found myself in 
third grade in PS 169, near 168th street where we lived. The Rabbi of the nearby 
synagogue that we attended convinced my mother that I should go to a Jewish Day 
School, and that she needn’t worry that I’d become a Rabbi myself. I attended Yeshiva 
Rabbi Moses Soloveitchik through eighth grade and got the rudiments of a traditional 
orthodox education. I graduated that institution in 1948 and, again, with some persua-
sion by the Rabbi, continued at a Jewish High School called Talmudical Academy, now 
known as Yeshiva University High School. Spending some summers in summer-school 
I finished high School in 1951 and continued at Yeshiva University, Since the college 
and high school were located in the same building I had already in high school come 
under the influence of Professor Jekuthiel Ginsburg, editor of Scripta Mathematica, a 
journal devoted to historical and recreational aspects of Mathematics, and from whom I 
first heard of Paul Erdős, and believed even then that he must be very old. (Shlomo 
Sternberg was also a student at the high school at the time and we both had found our 
own proofs of the famous problem of showing that if two angle bisectors of a triangle are 
equal then the triangle is isosceles, and we went to share our discoveries with Professor 
Ginsburg. Thenceforth he would regularly give us problems to solve.) Prof. Ginsburg 
realized that for me to devote myself to mathematics, I would need an income, which he 
obtained for me by having me do editorial work for Scripta. I learned to draw diagrams 
that were used in the magazine, and I sharpened my mathematical German and French 
by translating papers sent to the journal in those languages. I don’t recall now if any of 
those translations were ever actually used. In the early fifties, Ginsburg took advantage 
of his friendship with various prominent mathematicians and set up a graduate school in 
mathematics at Yeshiva University. The first staff members traveled to Y. U. from their 
home institutions: Eilenberg and Kolchin from Columbia, Jesse Douglas from City 
College, Gelbart from Syracuse. I graduated in 1955 receiving both a B.A. and an M.Sc. 
degrees.
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I continued at Princeton, having made the decision not to pursue a rabbinic career at 
Y. U. and quickly came under the influence of Salomon Bochner who took an interest in 
me because of his own religious background, and I imagine he found in me someone 
with whom he could share ideas in a long abandoned area of his past experience. (His 
father was an accomplished Jewish scholar, and Bochner kept in his office a portion of 
his father’s library which with its annotated volumes attested to his father’s 
scholarship.) 

I received my Ph.D. in 1958 and two weeks later was married to Rochelle Cohen 
from Chicago, whose grandparents had immigrated to the U.S. from Poland. I spent one 
year as instructor at Princeton, followed by two years at MIT as C.E. Moore Instructor. 
Following a path taken by Eugenio Calabi (Bochner student – MIT and University of 
Minnesota) we moved to Minneapolis where we lived from ‘61 to ‘65 except for one 
year I spent as a visitor to Princeton [‘63–’64]. During this time I was negotiating taking 
a position in Israel at the Hebrew University and in the summer of 1965 we made our 
move, spending first several months in Paris with a Sloan fellowship which provided our 
income during the year of our move. I also took a half-time position at Bar-Ilan 
University, and I’m proud particularly of Alex Lubotzky who was my Ph.D. student 
at Bar-Ilan, and is now my colleague at the Hebrew University. 

Harry was professor at the Hebrew University’s Einstein Institute of Mathematics from 
1965 until his retirement in 2003. At the time of our meeting at Princeton, he split his time 
between the Hebrew University and Yale. He won major awards: Israel Prize (1993) and Eolf 
Prize in Mathematics (2006/2007). Furstenberg shared the highest award, Abel Prize, with 
Grigory Margulis (2020) “for pioneering the use of methods from probability and dynamics in 
group theory, number theory and combinatorics.” 

Furstenberg both created a new field of mathematics, the Ergodic Ramsey Theory, and 
founded a school in this new field. This manifested itself in 1996, when Furstenberg’s 
scientific son and grandson joined together in generalizing Furstenberg’s result. Vitali 
Bergelson (Ph.D. under Furstenberg 1984 at the Hebrew University, born in Kiev in 
1950) and Alexander Leibman (Ph.D. under Bergelson in 1995 at the Technion, born in 
Moscow in 1960), both presently at Ohio State University, obtained [BL] what is often 
called the Polynomial Szemerédi Theorem. The authors in their paper give several 
versions of their result. Here is one, most relevant to our theme (it is the authors’ 
Theorem B0 for l = 1): 

The Bergelson–Leibman Theorem 38.8 [BL]. Let pi(x), i = 1, . . .k, be polynomials with 
rational coefficients taking on integer values on integers and with the zero last coefficients, 
i.e., pi(0) = 0. Then any subset of positive integers N of positive upper density contains for 
any array of integers v1, v2, . . ., vn a set of the form 

aþ p1 xð Þv1, aþ p2 xð Þv2, . . . , a þ pn xð Þvnf  

for some a, x 2 N.
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In particular, 

The Bergelson–Leibman Theorem, Version II, 38.9 Let pi(x) be polynomials with integer 
coefficients with the zero last coefficients, i. e., pi(0) = 0. Then any subset of N of positive 
upper density contains a set of the form 

aþ p1 xð Þ, aþ p2 xð Þ, . . . , a þ pn xð Þf  

for some x 2 N. 
You can easily observe the validity of the following corollary that Paul O’Donnell will use 

in his result later in the book: 

BLT’s Corollary 38.10 For any positive integers m, r, any r-colorings of the set N of 
positive integers contain arbitrarily long monochromatic arithmetic progressions whose 
constant difference is an m-th power of a positive integer. 

Presently, new exciting developments came from the pen of Vitali Bergelson. I have got to 
share those with you however briefly. 

38.6 Bergelson’s AG Arrays 

In 2005, Vitaly Bergelson [Ber] extended the Ramseyan hunt for arithmetic progressions to 
geoarithmetic progressions. The following two easy exercises highlight the setting better than 
any words. 

Proposition 38.11 Any coloring of positive integers N in finitely many colors contains 
arbitrarily long monochromatic geometric progressions. 

Proof Given m-coloring C of the set N, and a positive integer k. Pick an integer t, t > 1. The 
coloringC of the whole setN, of course, assigns colors to all elements of the subset {tn : n2N}. 
Now we get the new coloring C′ of the set N by assigning the color of tn to n. For the coloring 
C′, the Baudet–Schur–Van der Waerden theorem guarantees the existence of an n-term 
monochromatic arithmetic progression a, a + d, . . ., a + (k - 1)d. The numbers ta , ta + d , 
. . ., ta + (k - 1)d form a geometric progression, and under the original coloring C, they are 
assigned the same color. ■ 

This proposition shows that we need to look for the existence of something more 
sophisticated than geometric progressions. Bergelson looked for an appropriate new term: 
he used AG set, then geoarithmetic progression. I propose a term array as more descriptive, 
as we really have here a square array of numbers. 

Geoarithmetic array – or for short AG array – of rank k is a set of the form 

rj aþ idð Þ; i, j 2 0, 1, . . . , kf g  : 

Observe: an AG array contains lots of arithmetic and geometric progressions, and more.



442 38 Monochromatic Arithmetic Progressions or Life After Van der Waerden’ Proof

Proposition 38.12 There is a set of positive (additive) density that contains no 3-term 
geometric progressions. 

Proof Just pick the set of square-free positive integers. ■ 

This proposition shows that we need here a different notion of density, a sort of geometric 
density. In his introduction, Bergelson offers an example of what this means. 

A set A ⊆ N is multiplicatively large if for some sequence of positive integers a1, 
a2, . . ., an, . . .  

lim
n→1sup 

A \ anFnj j  
anFj j  > 0, 

where Fn = pi1 1 p
i2 
2 . . . p

in 
n : 0≤ ij ≤ n, 1≤ j≤ n and where {pi} is the sequence of primes in 

some arbitrarily preassigned order. 

We are ready now to look at a special case of Bergelson’s result. 

The Bergelson Theorem 38.13 Let A ⊆ N be a multiplicatively large set. Then A contains 
AG arrays of arbitrarily large rank. 

Observe: for any coloring of N in r colors, at least one of the monochromatic sets is 
multiplicatively large and thus contains AG arrays of arbitrarily large rank. It is clear that 
Vitaly Bergelson and his coauthors are up to vast generalizations of the celebrated results of 
Ramsey Theory. I wish them much success. 

38.7 Van der Waerden’s Numbers 

Through Issai Schur, Richard Rado was aware of the Baudet–Schur–Van der Waerden 
theorem from the beginning, and generalized it, but in his early years he did not seem to be 
much interested in numerical bounds. On the other hand, already in his 1935 celebrated joint 
paper with George Szekeres, Paul Erdős showed interest in numerical bounds of combinato-
rial functions. So, when the leaders of Ramsey Theory Erdős and Rado got together in 1951, 
the result was the paper ([ER] (read November 15, 1951; published 1952), that poineered 
quantitative evaluation of Van der Waerden’s numbers. Having addressed the Ramsey 
Theorem, Erdős and Rado created Van der Waerden’s function, and therefore Van der 
Waerden’s numbers (they do not use the word “numbers” per se, but what are Van der 
Waerden’s numbers if not values of Van der Waerden’s function?), and introduce a natural 
notation W(k,l) for both: 

The last example of the paper is not concerned with Ramsey’s theorem but with the 
following theorem due to van der Waerden [Wae2]. Given positive integers k and l, 
there is a positive integer m such that, if the set {1, 2, ..., m} is divided into k classes, at 
least one class contains l+1 numbers which form an arithmetic progression. The least 
number m possessing this property is denoted by W(k,l), (van der Waerden’s function).
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Our final example yields what seems to be the first non trivial, no doubt, extremely 
weak, lower estimate of W, namely W(k, l) > ck(1/2) l(1/2) . An upper estimate of W, at any 
rate one which is easily expressible explicitly in terms of the fundamental algebraic 
operations, seems to be beyond the reach of methods available at present. 

The Erdős–Rado notation W(k,l), in today’s conventions, would stand for W(k,l + 1). The 
second variable, as used today (and in theorem 35.1), stands for the number of terms in the 
arithmetic progression. When the number of colors is k = 2, we simply omit the first variable: 
W(l) = W(2,l). 

Observe, the Erdős–Rado’s interpretation of the notation simplifies statements of some 
results. For example, best lower bound, due to Elvyn R. Berlekamp, is simpler in the Erdős– 
Rado notation, than in the one he used in the original paper [Berl]: 

Lower Bound 38.14 (Berlekamp, 1969). W(k) > k2k if k is a prime (Erdős–Rado’s under-
standing of the notation is used). 

In today’s standard notation (where the variable k stands for the number of terms in AP), 
the result reads as W(k +  1) > k2k . 

Surprisingly, Berlekamp’s result remains the best known for primes after five decades. In 
1990, Zoltán Szabó, using Lovász’ Local Lemma, found the best known lower bound for all 
n [Sza]. 

Lower Bound 38.15 (Szabó, 1990). For any ε > 0, W(k) ≥ 2n 
ε for large enough n. 

The upper bound has withstood all assaults for decades. Erdős writes in 1957 (I have 
simply changed the notation to the one used today), [E57.13]: 

All known functions W(k) increase so rapidly that they do not even satisfy the condition 

k:
::
k 

The problem was that all known proofs of the Baudet–Schur–Van der Waerden Theorem 
used double induction. This prompted doubts even in such a mathematical optimist as Paul 
Erdős, who wrote in 1979 [E81.16]: 

Until recently nearly everybody was sure that W(k) increases much slower than 
Ackermann’s function. I first heard doubt expressed by Solovay which I more or less 
dismissed as a regrettable aberration of an otherwise great mind. After the surprising 
results of Paris and Harrington [PH] Solovay’s opinion seems much more reasonable, 
and certainly should be investigated as much and as soon as possible. 

Yet, Ron Graham persisted with optimism and bet $1000 on it in his 1983 survey [Gra2]: 

There is currently no known upper bound for W(k) which is primitive recursive.8 This is 
because all available proofs leading to upper bounds involve at some point a (perhaps 
intrinsic) double induction, with k as one of the variables. This leads naturally to rapidly 
growing functions like the Ackermann function which may help to explain the enor-
mous gap in our knowledge here. The possibility that W(k) might in fact actually have 

8 See [Soa] for definitions and comparison of rapidly growing functions.

https://doi.org/10.1007/978-1-0716-3597-1_35#FPar1
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this Ackermann-like growth has been strengthened by the work of Paris and Harrington 
[PH], Ketonen and Solovay [KS], and more recently Friedman [Fri], who show that 
some natural combinatorial questions do indeed have lower bounds which grow this 
rapidly (and even much more rapidly . . .). In spite of this potential evidence to the 
contrary, I am willing to make the following [conjecture]. 

Graham then formulated the conjecture for first proof (or disproof) of which he was 
offering $1000 ever since the late 1970s: 

Graham’s $1000 Van der Waerden’s Numbers Conjecture 38.16 [Gra2]. 

W kð Þ< 22
::
:2: 

for k ≥ 1, where the number of 2’s is  k. 

Paul Erdős asked for less, just for a primitive recursive upper bound, in the 1984 
conference talk in Japan, published the following year [E85.33; p. 75]: 

I give 100 dollars for a proof that f(n) is primitive recursive and 500 dollars for a proof 
that it is not. 

Ron’s and Paul’s expectations were soon rewarded. Saharon Shelah proved exactly what 
the doctor ordered (I mean Doctor Erdős): Shelah’s Primitive recursive bounds for van der 
Waerden numbers [She1] was published in 1988 “with a beautifully transparent proof,” as 
Gowers commented later [Gow, p. 466]. 

Shelah’s Upper Bound 38.17 [She1]. Van der Waerden’s numbers are primitive recursive. 

Ron Graham described this event in the December 29, 2006 e-mail to me: 

I gave Shelah the check [a consolation $500 prize for conjecture 38.16] when he was 
lecturing at Rutgers (as you know, he visits there for 2 months each year). It was shortly 
after he proved his bound, which was somewhat before it was published. Incidentally, 
the original title of his paper was quite different from what appeared! 

Erdős too gave Shelah the highest praise in many talks. Here, for example, is a quotation 
from Erdős’ 1988 talk at the 7th Fischland Colloquium in Wustrow, Germany [E89.27]: 

This was certainly a sensational triumph. 

Shelah’s result inspired Paul Erdős to pose a new, most challenging conjecture. In 
[E94.21], first submitted on January 25, 1993, and published a year later, Paul Erdős wrote: 

It was a great achievement when a few years ago Shelah gave a primitive recursive 

bound for W(k). Probably, this bound was still much too large, perhaps W(k) < 22
k 
. 

We thus get Paul Erdős’ conjecture, which he repeated in 1996 (posthumously published in 
1997 [E97.18]):
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Paul Erdős’ 1993 Van der Waerden’s Numbers Conjecture 38.18 [E94.21]. 

W kð Þ< 22
k 

: 

In 1998, Timothy Gowers announced and in 2001 published his incredible 124-page A 
New Proof of Szemerédi’s Theorem. His upper bound for Van der Waerden’s numbers 
appears on the next to last page as “corollary 18.7”: 

Gowers’ Upper Bound 38.19 [Gow]. Let k be a positive integer and let N ≥ 22
22

2kþ9 

. Then 
however set {1, 2, . . ., N} is colored with two colors, there will be a monochromatic 
arithmetic progression of length k. 

In other words, 

W kð Þ≤ 22
22

2kþ9 

: 

In answering my inquiry, Ron Graham wrote to me in the 28 December 2006 e-mail: 

Regarding the payment to Gowers, I gave him the check during a talk I gave in Hungary 
(again in connection with celebrating Erdős’ mathematics but I’m not sure of the exact 
year). I attach a photograph showing the actual presentation. I interrupted my talk and 
came down into the audience to give him the check! 

In one of my talks, I used this photograph that Ron kindly provided. One day, I received a 
communication from Tom C. Brown, a professor at Simon Fraser University in Vancouver, 
Canada. Imagine, he was the photographer of Graham–Gowers photo! Tom sent me copies of 
his correspondence with Paul Erdos, his reprints, and a fine quality photo, with all the details 
of the event: 

Date: July 07, 1999 
Place: Hungarian Academy of Sciences, Budapest 
Subject: Ron Graham gives $1000 check to Tim Gowers 
Photographer: Tom Brown 
(The time was either late morning or early afternoon.)



446 38 Monochromatic Arithmetic Progressions or Life After Van der Waerden’ Proof

Ron Graham presenting the $1000 check to Tim Gowers; Photo by Tom C. Brown. (Courtesy 
of Ron Graham and Tom C. Brown) 

Tim Gowers [Gow, p. 586] seemed to question whether he fully deserved the $1000 
reward: 

Ron Graham has conjectured in several places (see e.g. [GRS2]) that the function W(k) 
is bounded above by a tower of twos of height k. Corollary 18.7 [i.e., result 38.19 above] 
proves this conjecture for k ≥ 9, and indeed gives a much stronger bound. It looks as 
though more would be needed to prove it for k = 7 (for example) than merely tidying up 
our proof. For k ≤ 5, the exact values of W(k) are known and satisfy the conjecture. 

Gowers should not worry. Graham’s $1500 ($500 to Shelah and $1000 to Gowers) is 
clearly the money best ever spent in the encouragement and support of mathematical research. 

As to Ron Graham, as soon as he paid Tim Gowers, he offered another $1000 conjecture 
[Gra7], [Gra8]. Prefacing this conjecture, Graham wrote [Gra7], [Gra8]: 

In particular, this [Gow] settled a long-standing conjecture I had made on the size of 
W(n) . . ., and as a result, left me $1000 poorer (but much happier). Undaunted, I now 
propose the following:
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Graham’s 2007 $1000 Van der Waerden’s Numbers Conjecture 38.20 [Gra6], 
[Gra7]. For all k, 

W kð Þ< 2k
2 

: 

Observe, that for k > 3, we have 2k
2 
< 22

k 
, thus, Graham’s 2007 conjecture is harder – if 

true – than Paul Erdős’ 2003 conjecture 38.18. Which one is “better”? Only time will tell – a 
very long time, I believe. 

We have discussed here the asymptotic behavior of the function W(k). So little is known 
about its exact values for small k that in their 1980 monograph [EG] Erdős and Graham 
exclaimed “It would be very desirable to know the truth here.” A few values were found in 
1969 by Vašek Chvátal [Chv] (first three) and in 1978 by R. S. Stevens and R. Shanturam 
[StSh] (the last one): 

W 2ð Þ= 3 

W 3ð Þ= 9 

W 4ð Þ= 35 

W 5ð Þ= 178 

In spite of all dramatic improvements in computers, no further values have been computed 
in three decades that followed, when in 2008 Michal Kouril and Jerome L. Paul determined 
the next Van der Waerden’s number [KoP]: 

W 6ð Þ= 1132: 

For other Van der Waerden’s numbers (cases when more than 2 colors are used, or settings 
are non-symmetric), please, consult section 2.3 of the impressive 2004 monograph [LR] by 
Bruce M. Landman and Aaron Robertson. 

It is time to say a few words about our genius record holders. 

38.8 Saharon Shelah 

The time stamp – late 1974; the place – Moscow. I went to Anna Petrovna Mishina’s Abelian 
Group Seminar at Moscow State University. She told us that the young Israeli mathematician 
Saharon Shelah had just published a solution of the Whitehead problem.9 This was a 
sensational news, for everyone who was somebody in Abelian Group Theory tried to solve 
this problem – and failed. Better yet, the answer was not a yes or a no, as we all expected, but 
“it depends” – depends upon the system of axioms for set theory! 

9 Must an Abelian group G with Ext(G, Z) = 0 be free?
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Nine years later. Roll forward to the spring of 1984. As an American, attending the 
Abelian Groups and Modules Conference in Udine, Italy, dedicated to László Fuchs’s 60th 
birthday, I was introduced to Saharon Shelah at a dinner the night before the conference’s 
opening. Answering his question “what are you working on?” I shared with Saharon my 
problems and conjectures. The following morning Saharon invited me to his hotel room and, 
to my surprise and delight, offered to collaborate on solving my problems. Right there he 
handed in to me a page with a finite lemma, which was the only element I was missing for 
settling one of my conjectures dealing with uncountable abelian groups! His question “Why 
do people attend conferences?” – I answered quite traditionally, “To show their latest results, 
to learn about achievements of others, and to socialize.” “None of this makes any sense,” 
Saharon replied, and added “People should attend conferences in order to solve together 
problems they could not solve on their own.” And so, I missed many talks, was not allowed 
by my new coauthor to drink wine (and that is in Italy!), but by the end of the week, we solved 
all my problems and proved all my conjectures – this became the subject of our two joint 
papers in the Journal of Algebra, recommended for publication by the wonderful gentleman 
and mathematician David Buchsbaum of Brandeis University. (David was one of my first 
American references in 1978–79, and we met at Brandeis and also in my Boston apartment.) It 
was a special, inspirational experience to work with Saharon. It also required a full concen-
tration, for he was an amazingly quick learner and thinker. I was impressed by his 
ca. 400 publication; however, Saharon observed that it was a far cry from Paul Erdős’ 1500 
works. On the conference’s excursion day, I was sharing a bench on the bus with László 
Fuchs, the honoree of the conference. “I am working with Saharon, and he is a genius,” I told 
László. “But of course,” replied he, as if it was something obvious. 

A good fortune preserves the photo of the Honoree Laszlo Fuchs with Saharon Shelah 
and me.
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From the left: Alexander Soifer, Laszlo Fuchs, and Saharon Shelah, Udine, Italy, April 
12, 1984 

Nine years later. The night before the opening of Paul Erdős’ 80th birthday conference in 
the summer of 1993, Saharon arrived very late in Keszthely on Lake Balaton, Hungary, and 
invited me to join him right away for an 11 p.m. supper. During the meal, I told Sharon all I 
knew about the chromatic number of the plane problem. He was excited and after supper left 
to sleep on it. The next morning Saharon simply said, “I have not seen the light.” He has a 
philosophical view on choosing his battles, which he shared once with me: “Nobody cares 
how many problems I cannot solve – people care only how many I can.” 

Nine years later. In September 2002, for the first time, we met in the United States. 
Saharon invited me to his Rutgers University in Piscataway, New Jersey, for a week of fun of 
the mathematical kind. This was a productive week. To our own surprise, we showed that the 
chromatic number of the plane may depend upon the system of axioms we choose for set 
theory. We constructed a distance graph on the line, whose chromatic number was 2 in the 
standard ZFC system of axioms for set theory, and uncountable in ZFS. I will share with you 
what ZFS stands for and many details and results of this meeting and its results in one of the 
last chapters of this book. Saharon worked in such a complete concentration that I noticed him 
wearing one blue and one brown sock. The next day the color coordination remained



unchanged. On the third day (like in fairytales), he wore a matching pair of brown socks. This 
is how I was able to conjecture that his wife Yael arrived from Israel and joined Saharon in 
New Jersey – she did. We met again in the fall 2003 and extended our construction from the 
line to the plane. 
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Saharon Shelah was born in Jerusalem, Israel, on 3 July 1945. He is the Abraham Robinson 
Professor of Mathematical Logic at the Einstein Institute of Mathematics of the Hebrew 
University, Jerusalem, and the Distinguished Visiting Professor at Rutgers University, 
Piscataway, New Jersey, where he spends every September and October. He is one of the 
great problem solvers of all time, who has won numerous awards, including the first Erdős 
Prize (1977), Karp Prize of the Association for Symbolic Logic (1983), George Pólya Prize 
(1992), Israel Prize for Mathematics (1998), János Bolyai Prize (2000), Wolf Prize (2001), 
The EMET Prize for Art, Science and Culture (2011), Leroy P. Steele Prize for Seminal 
Contribution to Research (2013), Hausdorff Medal of the European Set Theory Society 
(2017), Schock Prize in Logic and Philosophy of the Royal Swedish Academy of Sciences 
(2018), and the Honorary Doctorate from the Technische Universität Wien (2019). The count 
of his papers has now surpassed 1300. Saharon has also authored 9 major books. Since he has 
had over 200 coauthors, we can initiate the Shelah number not unlike the Erdős number. 

38.9 Timothy Gowers 

William Timothy Gowers, born on November 20, 1963 in Wiltshire, received his doctorate at 
the University of Cambridge under the famed Hungarian combinatorialist Béla Bollobás. 
Following productive years 1991–1995 at the University College London, he has been a 
Fellow of Trinity College and the Rouse Ball Professor of Mathematics at the University of 
Cambridge. 

In 1998, Gowers won the Fields Medal and a year later was elected Fellow of the Royal 
Society. Having attended his talks at Princeton-Math, I can attest to the elegance and lucidity 
of Tim’s presentations of his great combinatorial results. He is an expositor of mathematics as 
well, with Mathematics: A Very Short Introduction to his credit, and a much-much longer 
“introduction” to mathematics: The Princeton Companion to Mathematics, 2008.
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Chapter 39 
In Search of Van der Waerden: The Early ife 

I can tell you that I am very much impressed with the 
thoroughness and integrity whereby it is written. I was also 
amazed that you have been able to collect so many facts, letters 
and data from that period. So much work! Your description is 
very objective but humane and it is most interesting how out of 
all these facts slowly one gets an image of a real person of flesh 
and blood behind these facts. 

– Dorith van der Waerden 

Thank you for sending me your triptych, which I read with great 
interest! This history is so complex, but you got so much 
information, I was astounded. Reading was very compelling – 
my greatest compliment for the study you made. 

– Theo van der Waerden 

39.1 What You Will Find in This and the Following Three Chapters 

My distinguished colleagues John J. Watkins and Robin J. Wilson called The Mathematical 
Coloring Book, 2009 [Soi44] “labor of love.” However, in a friendly way, they opined that I 
wrote too much about Van der Waerden, too much labor or too much love. Their remark is 
well taken, but . . .  What am I to do? To simply state that my 20-year-long archival research 
proved that Van der Waerden was not “a Nazi collaborator” nor “a strong anti-Nazi”? and 
instead of proof declare Trump’s “believe me”? In my entire life, I’ve never asked anyone to 
believe me – this is your choice. So, I have to present as rigorous a proof as the historical 
genre allows in this complicated case. Moreover, that is not my only goal here. 

I believe that moral principles lie not outside of the profession, but rather are a critical part 
of its foundation. And my research into the life of Van der Waerden and to a degree his friend 
Werner Heisenberg is a rich lesson on the moral foundations of mathematics and science and 
on the value of human life on our planet. So, if you are not too curious about these problems, 
you could just read the sections “Van der Waerden and Van der Corput: A Dialog in Letters,” 
Heisenberg’s “On Active and Passive Opposition in the Third Reich,” “The Het Parool 
Affair,” and “From Rolf Nevanlinna Prize to Abacus Medal: A Noteworthy History of an 
IMU Prize.” 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_39&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_39#DOI
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This and the following three chapters are not the same that appeared in the first 2009 
edition of The Mathematical Coloring Book [Soi44]. Instead, they are a very condensed 
version of my 2015 definitive 500-page foliant The Scholar and the State: In Search of Van 
der Waerden [Soi47]. Here, I will omit almost all footnotes and references to archival 
documents – this would make your reading “smoother” and perhaps more enjoyable. I am 
omitting revealing pages of secret recordings of the ten distinguished German physicists 
during their 1945 detention in Farm Hall near Cambridge, England, and the Swiss years 
1952–1996 of Van der Waerden. If you are interested in a complete report of my 20+ year 
historical research, with many hundreds of supporting documents and many rare photographs, 
you would benefit from reading the complete book [Soi47]. On the other hand, I am adding 
here an important new material that has surfaced after The Scholar and the State was 
published in 2015: the renaming by the International Mathematics Union of the Rolf 
Nevanlinna Prize after its 40-year-long existence, an unwritten agreement in post-World 
War II Germany to forget everything and forgive almost everyone; the Russian war on 
Ukraine that started in 2014 with the support of many Russian cultural celebrities, including 
some mathematicians, etc. The Past repeating itself in the Present comprises three new 
sections of this book: Today I, Today II, and Today III. 

39.2 Why Van der Waerden and Why Me? 

Good ‘history’ is possible when historians take the ini-
tiative to undertake their own investigations of what has 
been accepted as ‘fact.’ 

– Harriet Sepinwall 

It is hard to be a historian. It is difficult if you have not 
lived in the time you write about, and if you have, it is 
even worse. 

– Nicolaas G. de Bruijn 
e-mail to A. Soifer, 6/1/2004 

In 1990, I started research for the first edition of The Mathematical Coloring Book 
[Soi44]. In addition to presenting mathematics of coloring as an evolution of ideas, I chose 
to include biographies of major creators of these ideas. Van der Waerden proved a critical 
theorem about monochromatic arithmetic progressions in finitely colored integers; thus, I had 
to include his biography. I first thought that I could simply quote biographies, if not from 
Encyclopedia Britannica, at least from scholarly books and articles. I immediately ran into 
irreconcilable contradictions in published texts. For example, many authors stated that Van 
der Waerden was a strong anti-Nazi, while others alleged him to be a Nazi collaborator. It 
soon became clear that I had to do my own historical research if I wanted to present the truth. 
Of my many biographies in this book, Van der Waerden’s was the most complex and 
controversial. Consequently, it took the longest – over 20 years – to research his life in 
many archives of Germany, Holland, Switzerland, and the United States, and interview 
senior, reliable informants.
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Bartel Leendert van der Waerden was a distinguished mathematician and historian of 
science. In 1927, he published the theorem on monochromatic arithmetic progressions in 
finitely colored integers [Wae2] that later became a classic. Together with the 1916 Schur 
Theorem on monochromatic solutions of the equation x + y  = z in finitely colored integers 
[Sch], the Baudet–Schur–Van der Waerden Theorem gave birth to Ramsey Theory, before 
Ramsey’s posthumous 1930 publication [Ram2]. 

Van der Waerden made major contributions to algebraic geometry, abstract algebra, group 
theory, number theory, combinatorics, analysis, and statistics. In addition to mathematics, he 
contributed to quantum mechanics, wrote on the psychology of discovery, and published 
liberally on the history of mathematics, astronomy, and natural sciences in antiquity. Among 
the many books, Van der Waerden wrote the two-volume Moderne Algebra [Wae3], one of 
the most influential mathematical books ever written. This 1930–1931 book is still in print 
today, nearly a century later! 

Clearly, Van der Waerden deserved a book-length biography. It is surprising that when I 
commenced my research in 1990, no such book existed. “Why is that?” I asked N.G. de 
Bruijn, who in 1952 accepted Van der Waerden’s chair at the University of Amsterdam. In his 
reply, De Bruijn shared with me what I would call “Theory of Matters Biographical” [Bru7]: 

My advice to scientists who would like to have books about them after their death is 
(apart from obvious things like doing important work and having lots of students): 

1. Stay in your country. 
2. Stay in a single subject. 
3. Don’t get old. 
4. And, if you do happen to get old: try to write an autobiography. 

Van der Waerden missed points 1, 2, and 3 and was too modest to write an 
autobiography. 

I discovered an enormous volume of documents – ca. several thousand – many not 
introduced earlier in historical scholarship, for example, Princeton and John Hopkins univer-
sities’ job offers to Van der Waerden, the latter one accepted by him. I dug up contempora-
neous newspapers not used before, which provided me with vivid snapshots of the day of their 
issue. I discovered that most witnesses of the Nazi era were reluctant to recollect those painful 
times. Some of my informants possessed vital information, and for the first time conveyed it 
to me. This book would not penetrate the subject as deeply without input from such 
eyewitnesses as N.G. de Bruijn, H.J.A. Duparc, Beno Eckmann, Paul Erdős, Bartel’s niece 
Dorith van der Waerden and nephew Theo van der Waerden, and Bartel’s son Hans van der 
Waerden. 

While none of his three homelands, Holland, Germany, and Switzerland produced any 
books on the life of Van der Waerden – there were numerous biographical articles that missed 
or ignored the Dutch and American sources. Most authors penned celebratory articles aimed 
to fabricate Van der Waerden’s image as a hero, moreover, a German hero. An anonymous 
referee of my 2015 biography [Soi47] complained about my “scratching at the star’s brilliant 
image, creating thus a portrait full of antipodes. The reasons for this kind of portrait are hard 
to understand.” I can only answer, c’est la vie, that’s life, life is full of contradictions, and Van 
der Waerden had his share of them. Whoever says the truth shall die! 

The Biblical wisdom agrees with me, “The waters wear the stones” (Job 14:19). 
Stonewalling the truth will sooner or later collapse. The truth like water will find its way



out. Yes, my anonymous referee, I know that many of my colleagues believe that a scholar 
should be evaluated based on scholarly achievements alone, with no regard to moral bearings. 
However, I am with Albert Einstein, who on November 20, 1950, wrote, in English: 
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The most important human endeavor is the striving for morality in our actions. Our inner 
balance and even our very existence depend on it. Only morality in our actions can give 
beauty and dignity to life. 

Many of my predecessors apparently believed that a personal acquaintance with Van der 
Waerden automatically made them experts on his life. Their repetition of Van der Waerden’s 
own words, such as “everyone knew . . .  that he was a strong anti-Nazi,” uncritical copying 
from each other, mixed with “cheerleading,” hardly added up to history. 

Professor Miles Reid’s approach in his 1988 Cambridge (!) University Press book [Rei] did 
not contribute to history either when he wrote: 

Rigorous foundations of algebraic geometry were laid in the 1920s and 1930s by Van 
der Waerden, Zariski and Weil (Van der Waerden’s contribution is often suppressed 
because a number of mathematicians of the immediate post-war period, including some 
of the leading algebraic geometers, considered him a Nazi collaborator). 

Even if “leading algebraic geometers,” presumably Oscar Zariski and André Weil, had 
such an opinion, their fine mathematical achievements did not automatically make them 
custodians of the historical truth. It was very unfortunate that such a heavy accusation was 
leveled against Van der Waerden without any substantiation at all. In fact, Van der Waerden 
publicly criticized the Nazi regime from its inception until May 1935, at which time he was 
warned by the Leipzig University administrators that meddling in German political affairs 
could cost him his German professorship. 

In these four chapters, I choose to write not about Van der Waerden’s mathematics – we 
have looked at some of it already –but about the life and fate of a scholar, a fine person from a 
distinguished Socialist family, who finds himself in the Nazi tyranny and accepts certain 
compromises that in my opinion erode his moral grounds. 

Van der Waerden was important to Holland. He was one of the two best Dutch mathema-
ticians of the XX century (together with Brouwer). Bartel belonged to the family of the 
beloved Congressman Dr. Theo van der Waerden. Why was Van der Waerden so important to 
Germany that some German authors tried to make a German hero out of him? He was one of 
the most brilliant young mathematicians of Europe and authored the famous Moderne 
Algebra [Wae3]. Most of all, German authors adored Van der Waerden for sticking with 
Germany to the bitter end. 

My approach to historical writing differs from most of the historical research literature in a 
number of essential ways. I unapologetically open my “kitchen” to you so that you can join 
me in my research, ride with me on the trains of thought, and feel the adrenalin of Dr. Watson 
when he joins Sherlock Holmes. I try to use the present tense as much as possible so that you 
and I can “live with” the personages of my narrative and not merely read about them. I often 
quote long documents generously to give you a flavor of the person and the epoch and to give 
the players in my drama greater roles while reserving a lesser part for myself. I try to stay 
close to documents and eyewitnesses, not going further than one step away from the evidence. 
I may disagree with the personages of my book and on occasion argue with them, but I 
treasure the life and work of B.L. van der Waerden, Johannes G. van der Corput, Werner



Heisenberg, Carl Friedrich von Weizsäcker, Peter Debye, Niels Bohr, Max Planck, Albert 
Einstein, Erich Hecke, Issai Schur, P.J.H. Baudet, Henry Baudet II, N.G. de Bruijn, Beno 
Eckmann, and others. I realize that in writing about them I open my own integrity to your 
judgment, and that is fair. 
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Little did I know when I commenced this research how passionately people feel still today 
about the Third Reich and World War II, European suffering, and the Holocaust. In a sense, 
writing a book on these topics is akin to crossing a mine field: one wrong word – and you are 
history. As an illustration, it suffices to recall overzealous attacks on Dr. Daniel Goldhagen 
for his book “Hitler’s Willing Executioners: Ordinary Germans and the Holocaust.” 

I view history – as I do written word in any field, mathematics included – to be a genre of 
literary art. A book ought to be written by one human for another human, yet it often feels as if 
scholarly books, including history, are written by a robot for another robot. History is 
inevitably subjective. In fact, I believe that everything in this world is subjective, that a 
claim of objectivity is a lie, or at best a noble but unachievable goal. Even in writing my 
documentary prose, I must choose hundreds of documents out of thousands that I have 
assembled. My book is a means of my self-expression, and so I feel compelled to express 
my views on some important issues that the personages of my book are facing. While trying to 
be fair, I realize that some of you may disagree with my views and lessons I have learned from 
history. I hope they will publish their views, documents, and arguments, for in a substantive 
constructive debate we get closer to the ever-elusive truth. 

I am most interested in history when observations of the past elucidate problems of the 
present and help us solve them. Analyzing Van der Waerden’s life under the Nazis allows us 
an insight into problems of a scholar in a totalitarian state. You will readily realize that 
problems touched on here are with us today and merit our discussion here, not elsewhere. This 
super-objective of keeping in mind problems of today should not in any way affect the 
thoroughness of research into Van der Waerden’s life. I pledge to be a historian first and a 
scholar concerned about current affairs second. 

39.3 The Family 

Those of us fortunate to grow up in an inspiring family know how profound the family’s 
influence is. It may not be clear in the early years, but with age, this influence becomes more 
apparent. Mark Twain put it best: 

When I was a boy of 14, my father was so ignorant I could hardly stand to have the old 
man around. But when I got to be 21, I was astonished at how much the old man had 
learned in seven years. 

Bart’s father, Dr. Theo van der Waerden, and his younger brother Jan studied civil 
engineering at the Delft Technical University, where they joined first student-socialists of 
Holland. Upon graduation c. 1910, Theo taught mathematics and mechanics in Leeuwarden, 
Dordrecht, and finally for 20 years, 1902–1922, in Amsterdam. In 1911, he earned the degree 
of Doctor of Technical Sciences by defending his thesis entitled Education and Technology 
(Geschooldheid en Techniek). 

A year earlier, on June 28, 1910, Dr. Theo was elected a representative of SDAP (Sociaal-
Democratische Arbeiderspartij) to the Provincial government of North Holland, where he



remained until 1919. Theo was editor of The Socialist Guide (De Socialistische Gids), where 
after 1916 he started publishing articles on economic issues. From September 17, 1918, and 
until his passing on June 12, 1940, he was a SDAP’s universally admired member of the 
House of Representatives (Tweede Kamer) of the Dutch Parliament. Theo-the-grandson 
informs: 
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[Dr. Theo van der Waerden] was beloved and important in Dutch history. In 1939, he 
was to be the first Socialist Cabinet minister, but he was already ill. 

Published on the day of his passing, Dr. Theo’s moving eulogy1 was entitled “A worker 
with a warm heart and a sober mind” (“Een werker met een warm hart en een nuchtere 
geest”): 

The working class loses in him one of the pioneers of the socialism in the Netherlands, 
who has not saved himself, a man, who always gave the best he can offer to the people. 

We remember him in gratitude and respect. 

Bart’s mother, Dorothea van der Waerden, was very much loved by her three sons. Let me 
share with you two amazing family photos, taken in 1916 and 1925. The room is the same, all 
family members occupy the same seats, and so we could virtually feel the passage of the 
9 years. 

Dr. Theo, Bart, Dorothea, Ben and Coen van der Waerden, 1916. (Courtesy of Dorith van der 
Waerden) 

1 Het Volk, June 12, 1940.
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Dr. Theo, Bart, Dorothea, Ben and Coen van der Waerden, 1925. (Courtesy of Dorith van der 
Waerden) 

When the sons left the family house in the latter 1920s, Dr. Theo and Dorothea built a 
magnificent house “Breidablik” at Verlengde Engweg 10, in Laren. 

Bart’s middle brother Coen van der Waerden (December 29, 1904–December 24, 1982), 
became a member of the Senate (Eerste Kamer) of the Dutch Parliament from PvdA (Partij 
van de Arbeid), for the total of 10 years (1957–1966 and 1970–1971) and was one of the 
leaders of his party. Coen was a spokesman on economic issues and a member of the union 
wing of PvdA. 

I learned much about Bart’s youngest brother Benno (Ben) van der Waerden and his heroic 
conduct during the Nazi occupation of the Netherlands from his daughter Dorith van der 
Waerden, a psychologist: 

My father, Benno, born 2 October 1909, died 9 of May 1987. My mother’s name was 
Rosa Eva Louise Weijl – here comes the Jewish root – born 26 July 1909. She died 
4 years ago. They met in 1939 and married 4 months later in the same year. . .  He studied 
law [University of Amsterdam, 1927–1932] and became a lawyer. He became appointed 
in 1949 [to a judge of the City of Amsterdam]. . .  

The fact that my father married a Jewish woman was no coincidence I believe. In the 
thirties my father was active in helping German Jews to escape from Germany to 
Holland. During the occupation, he made false identity cards for Jews and helped
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them to change identity. I do not know much more about it as this period was never 
spoken about in our family as in most families. 

I am the only one who is again politically active in local politics for a green leftish 
party GroenLinks. 

The Netherlands was overrun by the German invaders over the course of five short days of 
1940: May 10–15. The Socialist-Democrat Dr. Theo van der Waerden would have likely been 
on an early list of the Dutch sent to a concentration camp. Records show that he denied the 
German invaders that pleasure by succumbing to cancer at 8 in the morning on June 12, 1940. 
After Dr. Theo’s passing, his wife Dorothea lived in the Laren house together with her sister. 
Unable to cope with depression caused by the German occupation, Dorothea drowned herself 
in a nearby lake on November 14, 1942. 

Bartel was understandably proud to belong to this distinguished family of public servants. 
In the difficult postwar times, he will invoke his father and brothers as high arbiters of his 
character and integrity. 

From the left: Camilla, Bartel, Theodorus, Coenraad, Dorothea and Benno van der Waerden; 
30th Anniversary of Theo & Do’s marriage, Circa August 28, 1931, Freudenstadt, Southern 
Germany. (Courtesy of Coenraad’s son Theo van der Waerden)
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39.4 Van der Waerden at Amsterdam 

In 1919, Bartel entered the University of Amsterdam very early – he was 16 (as was 
L. E. J. Brouwer before him when the latter started at Amsterdam). Following doctoral 
examination at Amsterdam, Van der Waerden is awarded a Rockefeller fellowship at 
Göttingen University for 7 months (1925–1926) for studying abstract algebra under Emmy 
Noether. Bartel impresses not only Noether but also Göttingen’s leaders David Hilbert and 
Richard Courant, who will write letters of recommendation for the young Dutchman. Van der 
Waerden defends his doctorate at Amsterdam under Hendrick de Vries. 

39.5 Van der Waerden at Hamburg 

In 1975, Van der Waerden commences to tell the Story of Hamburg [Wae20]: 

[In 1926] I went to Hamburg as a Rockefeller fellow to study with Hecke, Artin and 
Schreier. 

He confirms it to the interviewer on May 4, 1993 [Dol1]: 

After one semester at Göttingen, Courant started to take notice of me. He procured for 
me, on the recommendation of Emmy Noether, a Rockefeller grant for one year. With 
this I studied another semester at Göttingen and one semester at Hamburg with Artin. 

In his 1930 Moderne Algebra [Wae3], Van der Waerden enumerates his Hamburg studies 
when he lists the sources of this book: 

A lecture [course] by E. Artin on Algebra (Hamburg, Summer session 1926). 
A seminar on Theory of Ideals, conducted by E. Artin, W. Blaschke, O. Schreier, and 

the author [i.e., Van der Waerden] (Hamburg, Winter 1926/27). 

Van der Waerden is engaged with Hamburg leaders of algebra; the time there is one of the 
most important in Bartel’s mathematical life [Wae20]: 

I met Artin and Schreier nearly every day for two or three semesters. 

The Hamburg time also allows an insight into the views and personality of Van der 
Waerden. During the January 15, 1927, interview with Van der Waerden, the Rockefeller 
official Wilbur Earle Tisdale, the assistant to Augustus Trowbridge, the head of the Paris 
Office of the International Education Board, Tisdale notes Van der Waerden’s predilection for 
categorical opinions: 

While he [Van der Waerden] is young, he has very clear and definite opinions – perhaps 
too much so. I talked to him concerning Kloosterman and, in his frank way, he told me 
he considered Kloosterman to be lazy, an average straight forward worker, but temper-
amental and requiring conditions to be just right before he can work. . .  His feeling is 
that [Edmund] Landau, at Göttingen, is a man without particular vision. 

In spite of being too critical of his colleagues, Van der Waerden leaves a positive overall 
impression on Tisdale:
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Van der Waerden appeals to me as a very intense, gifted and enthusiastic individual. He 
has the unfortunate defect of stammering, especially in his more intense moments, but 
he is so agreeable to talk to that the defect is rather minimized. I explained to him how 
the seriousness of such fellows as himself might be influential in justifying the appoint-
ment of future fellows, to which he reacted most enthusiastically and agreeably. 

39.6 The Story of the Book 

Emil Artin (1898–1962), a framer of abstract algebra, promised Richard Courant to write a 
book on abstract algebra for the Courant-edited Yellow Series of Springer-Verlag. During the 
summer of 1926, he gave a course on abstract algebra attended by Van der Waerden who took 
meticulous notes. Artin agreed to share the writing of his book, based on his lectures, with the 
23-year-young Dutchman. However, as we all know, The Book appeared a few years later 
under one name, that of the Student and without the Master. 

What happened is a question of enormous importance, for The Book became one of the 
most famous books in the history of mathematics. Yet, I found no research published on this 
subject. Van der Waerden told his Story of The Book, his interviewers and his former Ph.D. 
students repeated it, and most historians and mathematicians uncritically accepted thus 
invented fairytale. I invite you to join me in taking a close look at the documents. It is most 
appropriate first to give the podium to Professor Van der Waerden, who in 1975, after Artin’s 
passing, tells us how enormous Artin’s contributions to The Book really were [Wae20]: 

Artin gave a course on algebra in the summer of 1926. He had promised to write a book 
on algebra for the “Yellow Series” of Springer. We decided that I should take lecture 
notes and that we should write the book together. Courant, the editor of the series, 
agreed. Artin’s lectures were marvelous. I worked out my notes and showed Artin one 
chapter after another. He was perfectly satisfied and said, “Why don’t you write the 
whole book?” 

The main subjects in Artin’s lectures were fields and Galois Theory. In the theory of 
fields Artin mainly followed Steinitz, and I just worked out my notes. Just so in Galois 
Theory: the presentation given in my book is Artin’s. 

Of course, Artin had to explain, right at the beginning of his course, fundamental 
notions such as group, normal divisor, factor group, ring, ideal, field, and polynomial, 
and to prove theorems such as the Homomorphiesatz and the unique factorization 
theorems for integers and polynomials. These things were generally known. In most 
cases I just reproduced Artin’s proofs from my notes. 

I met Artin and Schreier nearly every day for two or three semesters. I had the great 
pleasure of seeing how they discovered the theory of “real fields,” and how Artin proved 
his famous theorem on the representation of definite functions as sums of squares. I 
included all this in my book (Chapter 10). My sources were, of course, the two papers of 
Artin and Schreier in Abhandlungen aus dem mathematischen Seminar Hamburg5 
(1926), p. 83 and 100. 

Van der Waerden gives further credits to Artin (ibid.):
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In chapter 5 (Körpertheorie) I mainly followed Artin and Steiniz. . .  
Chapter 7 on Galois Theory was based on Artin’s course of lectures. . .  
In chapter 10 . . .  (a) the Artin–Schreier theory of real fields and representation of 

positive rational functions as sums of squares . . .  In treating subject (a) I closely 
followed the papers of Artin and Schreier. 

Van der Waerden repeats his story during the 1993 interview, and the interviewer-
historian, Professor Dold-Samplonius publishes it [Dol1]: 

Artin was supposed to write a book and wanted to write it with me. Having finished the 
first chapter, I showed it to Artin. Then I sent him the second and asked him about the 
progress of his part of the book. He hadn’t yet done anything. Then he gave up the idea 
of writing the book with me. Nevertheless, the book is based on lectures of Artin and 
Noether. 

The idyllic picture is further embellished by Dold-Samplonius in her 1997 eulogy of Van 
der Waerden [Dol2]: 

Artin gave a course on algebra that summer, and, based on Van der Waerden’s lecture 
notes, the two planned to coauthor a book on algebra for Springer-Verlag’s“Yellow 
Series.” As Van der Waerden worked out his notes and showed Artin one chapter after 
another, Artin was so satisfied that he said “Why don’t you write the whole book?” 

“Artin was so satisfied,” Van der Waerden and Dold-Samplonius lead us to believe. In fact, 
Artin was so dissatisfied that he obviously refused to write the book together with Van der 
Waerden. I read – in disbelief – the revealing Richard Courant’s August 6, [192]7, letter to 
Van der Waerden: 

Dear Herr v.d. Waerden! 
Herr Artin has sent me a copy of the enclosed letter about which I am somewhat 

astonished and concerned. Do you understand Artin’s attitude? I don’t. Is there any 
personal sensitivity behind this or are these differences of an objective nature? In any 
case, one cannot force Artin. But I would like to hear your opinion before I answer him. 

Hopefully, you haven’t become angry. – I wish you a good recovery and a good 
vacation, and remain with friendly greetings 
Your [Courant] 

Clearly, Artin refused to write The Book with Van der Waerden, and thus “astonished” 
Courant. Artin must have felt offended by Van der Waerden, but how? 

Let us look at the surviving shreds of evidence. The skies are cloudless on November 
29, 1926, as we glance at Courant’s letter to Van der Waerden: 

Dear Herr Van der Waerden! 
What about this admission of your Habilitation. It would be very good to get this 

thing moving. 
How are you doing otherwise? How is the book by Artin and you coming along? 

We see the first clouds in Van der Waerden’s December 2, 1926 reply to Courant: 

The Yellow Book is making progress; I have finished writing a large part; I have half-
finished other parts, and the plan for the whole is becoming more precise in details
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through the conversations with Artin, the only thing is that Artin himself writes very 
little. 

So, Artin has given his course on which the book is to be based, Artin is making his 
material “more precise in details through the conversations,” but “Artin himself writes very 
little,” or – as Rudyard Kipling would have put it (see “How the Camel Got His Hump” in Just 
So Stories [Kip]) – Artin does not “fetch and carry like the rest of us.” Two months later, on 
February 2, 1927, we observe the skies becoming overcast as the Student is dissatisfied with 
the Master: 

My coexistence with Artin is still very fruitful. He forever digs up nice things that will 
also have to come into the book, and from our conversations many details emerge by 
which the proofs are simplified or new contexts are uncovered. Even if he does not work 
on the book directly, it is still coming forward. 

So, Artin has not only provided a well-thought-out lecture course, ready for notetaking, but 
he further contributes to the joint book: “he forever digs up nice things,” “many details 
emerge by which the proofs are simplified or new contexts are uncovered.” But Artin won’t 
“plough like the rest of us” (Kipling again), and the Student is upset that the Master “does not 
work on the book directly” and, just as in his letters to Courant, probably accuses the Master 
to his face of not writing down his fair share of “nice things.” As Van der Waerden recalls, 
“He [Artin] hadn’t yet done anything [sic].” That would explain Artin’s explosion and refusal 
to write his book with this Student. Now we can better understand the quoted above 1993 
interview [Dol1]. In fact, Van der Waerden tells us the truth, but not all the truth and without 
the context behind it, the context that would have allowed us to understand what happened. 
Let us revisit it, now that we have established the context and thus are able to understand Van 
der Waerden’s words: 

[I] asked him [Artin] about the progress of his part of the book. He hadn’t yet done 
anything [!]. Then he gave up the idea of writing the book with me. 

But never mind the Master: the Student has gotten everything he needs, and can now 
publish The Book by himself, with the blessing of his mentor and the “Yellow Series” founder 
and editor Richard Courant. 

I have coauthored works with others. It never mattered to us who would write down joint 
ideas and proofs. Such great mathematicians as Israel M. Gelfand, Paul Erdős, and Saharon 
Shelah often left the writing of joint works to their coauthors. I know that first-hand, for Erdős 
and Shelah have been my co-authors. I am surprised by Van der Waerden’s narrow view of 
coauthorship. Producing a book requires not merely writing it down, but first of all discov-
ering and assembling numerous ideas, theorems, proofs, trains of thought, giving the whole 
material a structure and style. In all these tasks Artin’s contributions were overwhelming, and 
to publish The Book of Artin’s ideas and proofs without Artin at least as a coauthor was 
unfair, in my opinion. 

On the title page of The Book – what an unusual place for acknowledgments – Van der 
Waerden gives credit to Artin’s lectures (and Noether’s lectures) as being “used” in the 
book – but is that enough? Numerous theorems, proofs, and ideas contributed by Artin are not 
credited to Artin.
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Van der Waerden publishes the two volumes in 1930 and 1931 in the Yellow Series. The 
great book has a great success. It excites and inspires generations of mathematicians 
(me included) and brings B. L. van der Waerden worldwide fame. 

Unquestionably, Van der Waerden deserves credit for writing down and editing the book. 
How much credit depends upon how close the book is to Artin’s lectures and how publishable 
Artin’s lectures were. Those who attended Artin’s summer 1926 lectures are no longer with us 
and thus cannot help us answer this question. But during my long 2002–2004 and 2006–2007 
work at Princeton University, I found among the present Princeton professors a good number 
of Artin’s students from his Princeton’s 1946–1958 years: Gerard Washnitzer (who took all of 
Artin’s courses 1947–1952), Harold W. Kuhn, Robert C. Gunning, Hale F. Trotter, Joseph 
J. Kohn, and Simon B. Kochen. Independently interviewed, they were amazingly unanimous 
in their assessments of Artin’s lectures, unanimous even in epithets they used to describe the 
lectures. Tall, slender, handsome, with a cigarette in one hand and chalk in the other, without 
ever any notes (except, sometimes a small piece of paper extracted for a second from a jacket 
pocket), Artin delivered elegant, smooth, well-thought-out lectures, so much so, that notes, 
carefully taken, could be quite close to a finished book. Harold W. Kuhn, who took Artin’s 
1947 course, recalls: 

Artin’s lectures were composed like a piece of music, with introduction, exposition, 
development, recapitulation, and coda. 

Van der Waerden took notes of Artin lectures in his generation; Serge Lang did so in his. In 
his book [Lan1, p. vi], Lang calls Van der Waerden’s book “Artin–Noether–Van der 
Waerden” – fair enough – but then he should have called his own book “Artin–Lang,” 
n’est-ce pas? 

There was another way to credit and honor the teacher. Van der Waerden gave a noble 
example of it when he had not “nostrified” somebody else’s lecture notes. But of course, this 
was a special case of his admired mentor, Fräulein Emmy Noether [Wae20]: 

I took notes of the latter [Emmy Noether’s] course, and these notes formed the basis of 
Emmy Noether’s [!] publication in Mathematische Zeitschrift 30 (1929) p. 641. 

The Book is prominently mentioned by Van der Waerden in his 1982 Oxford, England, 
talk, in which he quotes Hermann Weyl’s Memorial Address for Emmy Noether: 

A large part of what is contained in the second volume of Van der Waerden’s “Modern 
Algebra” must be considered her [i.e., Noether’s] property. 

Van der Waerden then responds to Weyl’s remark with modesty and admiration for 
Noether: 

I gladly admit that this is perfectly true. 

39.7 The Theorem on Arithmetic Progressions 

Now again about the respectability of combina-
torics. Even in 1926, when Van der Waerden 
proved the conjecture, the subject was not 
mainstream. 

– Nicolaas G. de Bruijn



464 39 In Search of Van der Waerden: The Early Life

At the Bad Kissingen September 1927 annual meeting of the Deutsche Mathematiker-
Vereinigung (DMV for short, the German Mathematical Society), Bartel L. van der Waerden 
announced a proof of the following theorem [Wae2]: 

For any k, l, there is N = N(k,l) such that the set of positive integers 1, 2, . . .  , N, 
partitioned into k classes, contains an arithmetic progression of length l in one of the 
classes. 

The Dutch Professor Wouter Peremans, Ph.D. 1949 under Van der Waerden, writes [Per, 
p. 135] that this “result . . .  made him [Van der Waerden] at one stroke famous in the 
mathematical world.” I love this result, this is why I became interested in Van der Waerden’s 
life in the first place. However, the original appearance of this result could not have possibly 
made Van der Waerden “famous.” It took time for this theorem to be noticed and taste for 
such new Ramsey-type ideas to develop. Initially, Van der Waerden himself must not have 
thought highly of the value of this result and did not expect others to appreciate it, for he 
published it in “a second order” Dutch journal Nieuw Archief voor Wiskunde, whereas his 
algebraic geometry papers that he considered important, he published in the prestigious 
journal Mathematische Annalen. Nicolaas G. de Bruijn, who knows best, explains [Bru3, 
p. 116]: 

Old and respectable as the “Wiskundig Genootschap” may be, it has never been more 
than a small country’s mathematical society. Accordingly, it is not surprising that the 
society’s home journal, the “Nieuw Archief voor Wiskunde,” has a relatively small 
circulation, and, as a second order effect, the Nieuw Archief does not get more than a 
small part of the more important contributions of the Dutch to mathematics. 

De Bruijn elaborates on Van der Waerden’s paper and the obscurity of combinatorics at the 
time in his January 15, 2004, e-mail to me [Bru5]: 

Now again about the respectability of combinatorics. Even in 1926, when Van der 
Waerden proved the conjecture, the subject was not mainstream. Van der Waerden did 
not send his paper to one of the leading mathematical journals, like the Mathematische 
Zeitschrift, but to the Nieuw Archief, home journal of the Dutch Mathematical Society, a 
journal that was unavailable in many libraries. 

From Van der Waerden’s captivating reminiscences of How the Proof of Baudet’s Con-
jecture Was Found [Wae13, Wae14, Wae18, Wae26], we learn that the proof was obtained as 
the result of collaboration of three mathematicians, Emil Artin, Otto Schreier, and Bartel 
L. van der Waerden. 

As you already know, Van der Waerden in fact proved the conjecture created indepen-
dently by Pierre Joseph Henry Baudet and Issai Schur. As Van der Waerden informed me, he 
had never met either of his coauthors of what I equitably named [Soi3] the Baudet–Schur– 
Van der Waerden Theorem.
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39.8 From Göttingen to Groningen 

In the waning days of February 1927, Van der Waerden passes his Habilitation at Göttingen 
University under Richard Courant and soon becomes Courant’s Assistent and Privatdozent at 
Göttingen. The following year Professor J. A. Barrau decides to vacate his Groningen 
position and move to Utrecht and recommends Van der Waerden for his place. Following 
several exchanges between the Curators and the Cabinet, on August 7, 1928, Queen Wilhel-
mina of the Netherlands assents to the appointment. And thus, Professor Bartel Leendert van 
der Waerden is born at the tender age of 25! 

In the middle of his Groningen years, in 1929,Van der Waerden accepts a particularly 
productive visiting appointment at Göttingen: in July, he meets there his future wife. 
Beautiful Austrian Camilla Rellich, two years Bartel junior (born September 10, 1905), is 
the sister of Franz Rellich, who in the same year (1929) defends his PhD dissertation under 
Richard Courant. Already on September 27, 1929, Bartel and Camilla unite in a marriage that 
will last a lifetime. Their first child, Helga, is born in Groningen on July 26, 1930. Their other 
two children will be born in Germany: Ilse on October 16, 1934, and Hans Erik on December 
7, 1937. 

Groningen seems to have been a stepping stone for a number of fine mathematicians. Van 
der Corput was there too, and Van der Waerden recalls learning much of mathematics from 
him. At Groningen, Van der Waerden finished The Book. 

39.9 Transformations of the Book 

The Book was the main outcome of Van der Waerden’s years at Groningen. Everyone who 
has written a book would agree that Van der Waerden proved to be a great expositor of the 
new abstract view of algebra. He writes in the preface of the 1930 first edition of volume 1 that 
The Book, started as Artin’s lecture notes, has substantially changed, and by the time of its 
release, it was difficult to find Artin’s lectures in it. I know of no way to verify this statement 
today. Granted, Van der Waerden’s contribution must have grown significantly from 1927 to 
1930. However, it is also clear that an unusually large contribution of the non-author Artin 
remained insufficiently credited in The Book, as we have seen when we cited Van der 
Waerden’s own 1975 words. The Book became an instant classic, enjoyed by generations 
of mathematicians. I remember reading during my freshman university year (1966–1967) the 
early Russian translation (Vol. 1, 1934; Vol. 2, 1937) with delight and profit. The book was so 
rare that I was not allowed to take it home and had to read it in my university library. 

Unlike his mentors Brouwer and Hilbert, Van der Waerden apparently did not have firm 
principles related to the foundations of mathematics that he was willing to fight for, as the 
story of changing – and changing back – his Moderne Algebra book shows. It is surprising 
that the quick learner Van der Waerden has seemingly failed to see the importance of the 
“Battle over the Foundations” that raged for decades and to take a firm position on it. The 
leading historian of the Axiom of Choice Gregory Moore writes in his wonderful book [Moo]: 

In 1930, Van der Waerden published his Modern Algebra, detailing the exciting new 
applications of the axiom [of choice]... Van der Waerden’s Dutch colleagues persuaded
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him to abandon the axiom in the second edition of 1937. He did so . . .  [which] brought 
such a strong protest from his fellow algebraists that he was moved to reinstate the 
axiom [of choice] and all its consequences in the third edition of 1950. 

Indeed, in January 1937, in the Preface to the second edition of volume 1, Van der 
Waerden discloses the surprising transformation of The Book [Wae6]: 

I have tried to avoid as much as possible any questionable [sic] set-theoretical reasoning 
in algebra. Unfortunately, a completely finite presentation of algebra, avoiding all 
non-constructive existence proofs, is not possible without great sacrifices. Essential 
parts of algebra would have to be eliminated, or the theorems would have to be 
formulated with so many restrictions that the text would become unpalatable and 
certainly useless for a beginner. . .  

With the abovementioned aim in mind, I completely omitted those parts of the field 
theory which rest on the axiom of choice and the well-ordering theorem. Other reasons 
for this omission were the fact that, by the well-ordering principle, an extraneous [sic] 
element is introduced into algebra and, furthermore the consideration that in virtually all 
applications the special case of countable fields, in which the counting replaces the well-
ordering, is wholly sufficient. The beauty of the basic ideas of Steinitz’ classical treatise 
on the algebraic theory of fields is plainly exhibited in the countable case. 

By omitting the well-ordering principle, it was possible to retain nearly the original 
size of the book. 

Then, in the July 1, 1950, Preface to the third edition of volume 1, I read with puzzlement 
Van der Waerden’s justification of the reversal [Wae11]: 

In response to many requests, I once again included sections about well-ordering and 
transfinite induction, which were omitted in the second edition, and on this foundation, I 
presented the theory of fields developed by Steinitz in all its generality. 

It appears as if the victory of Brouwer’s intuitionism, which manifested itself in the second 
edition, was short lived. In the end, Hilbert’s set theoretic foundation of mathematics 
triumphed in The Book. 

On March 15, 1977, Dirk van Dalen, the biographer of L.E.J. Brouwer, interviewed Van 
der Waerden and has kindly shared with me that never completely published interview, and so 
we can “hear” Van der Waerden himself commenting on the transformations of The Book, on 
his commitment to good pedagogy, and his “always philosophically. . .  fluctuating” views: 

Van Dalen: In your book on algebra, you took different positions on constructivism, 
where at one time the well-ordering theorem was included and another time not. You 
have a paper on effective factorization of polynomials. Was that under the influence 
of Brouwer? 

Van der Waerden: Yes, of course. That varying position in different editions was not a 
change of fundamental position, philosophically I have always been fluctuating, but 
that was for pedagogical reasons. 
If you look at the factorization in two factors, then I think it may be good pedagogy to 

show it constructively. Later I thought to do it as I used to.
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39.10 On to Germany 

Ever since his student years, Van der Waerden aspired to a job in Germany, perhaps the place-
to-be at the time. The leading German mathematicians had a very high opinion of him: it 
suffices to observe that Van der Waerden was ranked 3rd on the list of the all-important David 
Hilbert’s succession at Göttingen. Documents in the National Archive of the Netherlands 
show that on June 27, 1930, Leipzig University became officially interested in considering 
Van der Waerden for a position of ordinarius, the approximate German equivalent of an 
American full professor. The attempts to keep Van der Waerden in Holland failed, and he 
succeeds Otto Hölder at Leipzig. On May 1, 1931, twenty-eight years of age, Van der 
Waerden starts as an ordinarius at the Universität Leipzig. 

Germany in 1931 was the center of the mathematical world, and Leipzig, although not a 
match to Göttingen and Berlin, was a very fine university, with a world-class program in 
physics. Once at Leipzig, Van der Waerden joins the seminar conducted by the physicists 
Werner Heisenberg, who will soon win the Nobel Prize “for the creation of quantum 
mechanics. . .”, and Friedrich Hund. Heisenberg held fond memories of Niels Bohr’s famous 
seminar in Copenhagen which he attended in the 1920s. He tried to reconstruct the spirit of 
that seminar at Leipzig. Heisenberg’s seminar was the powerhouse of thinkers on matters 
physical. His assistants and guests included Felix Bloch (Nobel Prize 1952), the Russian 
genius Lev Landau (Nobel Prize 1962), the future American hydrogen bomb’s leading creator 
Edward Teller, the future member of the Manhattan project Victor F. Weisskopf, the 
Heisenberg–Hund–Bohr student Carl-Friedrich Baron von Weizsäcker, the future Princeton 
professor Ariel Wintner, and many other outstanding minds. 

Van der Waerden was an extremely quick learner. He picked up physics from them as he 
had earlier learned algebra from Noether and Artin. Already the following year, in 1932, Van 
der Waerden publishes a book on applications of group theory to quantum mechanics in the 
Springer Yellow Series [Wae4]. 

Van der Waerden becomes a friend of young Carl-Friedrich von Weizsäcker. On February 
12, 2011, Carl-Friedrich’s son, Professor Ernst Ulrich von Weizsäcker, shared with me a story 
he heard from his father: 

Dear Alexander, 
It so happened that I was in touch with Thomas Goernitz [one of the closest 

colleagues of Carl-Friedrich von Weizsäcker] recently who brought back to my memory 
that my father was extremely thankful to Bartel Leendert van der Waerden after the 
latter had served as the examiner in physics at the Ph.D. exams. My father was 
extremely young at the time, 21 years old only, and felt he was very inexperienced in 
experimental physics. But Van der Waerden was fascinated, so it seems, with what my 
father knew and explained in theoretical physics, so he let him speak and speak and the 
time was over before they could turn to experimental physics. And the whole thing 
ended in a top rating for my father. That was in 1933, one of the darkest years for 
Germany and the world, as you know.
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For Heisenberg, his former student and colleague Carl Friedrich von Weizsäcker became 
the closest confidant. In October 1934, he writes to his mother: 

Only the friendship with Carl Friedrich, who struggles in his own serious way with the 
world around us, leaves open to me a small entry into that otherwise foreign territory. 

Hitler’s ascent to power at the dawn of 1933 found Bartel van der Waerden contemplating 
his second Rockefeller (IEB) fellowship.
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Chapter 40 
In Search of Van der Waerden: The Nazi 
Leipzig, 1933–1945 

40.1 The Dawn of the Nazi Era 

From 1933 till 1940 I considered it my most 
important duty to help defend the European cul-
ture, and most especially science, against the 
culture-destroying National Socialism. 

– Bartel L. van der Waerden 

The compromises you will have to make will later 
be held against you, and quite rightly so. . .  But in 
the ghastly situation in which Germany now finds 
herself, no one can act decently. 

– Max Planck to Werner Heisenberg 

The Russian thinker and exiled revolutionary Leon Trotsky insightfully describes the 
situation in Germany and points out the complacency of academics in his early, June 
10, 1933, article [Tro]: 

The immense poverty of National Socialist philosophy did not, of course, hinder the 
academic sciences from entering Hitler’s wake with all sails unfurled, once his victory 
was sufficiently plain. For the majority of the professorial rabble, the years of the 
Weimar regime were periods of riot and alarm. Historians, economists, jurists, and 
philosophers were lost in guesswork as to which of the contending criteria of truth was 
right, that is, which of the camps would turn out in the end the master of the situation. 
The fascist dictatorship eliminates the doubts of the Fausts and the vacillations of the 
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Hamlets of the university rostrums. Coming out of the twilight of parliamentary 
relativity, knowledge once again enters into the kingdom of absolutes. Einstein has 
been obligated to pitch his tent outside of the boundaries of Germany. 

On the plane of politics, racism is a vapid and bombastic variety of chauvinism in 
alliance with phrenology. As the ruined nobility sought solace in the gentility of its 
blood, so the pauperized petty bourgeoisie befuddled itself with fairy tales concerning 
the special superiorities of its race. 

The April 7, 1933, “Law for the Restoration of the Professional Civil Service” (Gesetz zur 
Wiederherstellung des Berufsbeamtentums) was signed and put into an immediate effect by 
Reich Chancellor Adolf Hitler, Reich Minister of the Interior Wilhelm Frick, and Reich 
Minister of Finance Johann Ludwig (Lutz) Graf Schwerin von Krosigk. The law rid German 
universities of all Jewish (by Nazi definition) professors, except civil servants in office prior to 
August 1, 1914, those who fought at the Front for the German Reich or its Allies in the World 
War, and those whose fathers or sons fell in the World War. 

Dekan Weickmann of Leipzig’s Philosophical Faculty did not wish to fall behind the 
swiftly rolling Nazi avalanche and immediately expressed his limitless support for “the efforts 
of the government directed at the limitation of Jewish influence at German universities” and 
inquired from Dresden what they should do with the foreigner Van der Waerden and the Jew 
Felix Bloch. 

By some accounts, Leipzig University alone lost 35 academics to dismissal, resignation, 
forced retirement, and death. Heisenberg’s Ph.D. 1928, brilliant assistant and a companion in 
hiking and skiing outings, Felix Bloch was among those dismissed for being Jewish. Bloch 
asked for and received help from Heisenberg’s mentor, coauthor, and friend, Physics Nobel 
Prize Laureate 1922 Niels Bohr. In June 30, 1933, letter to Bohr, Heisenberg is grateful “for 
. . .  your efforts on behalf of our young physicists, whose well-being lies in all our hearts” and 
apologizes for the new Third Reich, “for all of that which is now happening in this country.” 
A year later Bloch will accept a job at Stanford University and, in 1952, win the Nobel Prize. 

The 1933 firings include Van der Waerden’s teachers and mentors at Göttingen, Emmy 
Noether and Richard Courant. These perturbations briefly affect Van der Waerden, who is 
alleged to be a foreigner (correctly) and a Jew (incorrectly). Friedrich, the leader of the 
mathematics students’ organization (Führer der mathematischen Fachschaft), argues that as a 
foreigner Van der Waerden is not fit to be the Director of the Mathematics Institute. In his 
defense against Friedrich’s accusations, Van der Waerden writes the following letter to Dekan 
Ludwig Weickmann on May 18, 1933 [see facsimile]: 

Your Magnificence! 
I have just learned from you that the Ministry possesses a letter in which it is claimed 

that I am of a non-Aryan descent. I declare that I do not know how that conclusion was 
reached and who could have written this to the Ministry. I am a full-blooded Aryan and I 
can prove that if necessary, because my ancestry can be tracked for three generations. 

With loyal regards, 
Yours 

B. L. v. d. Waerden
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B. L. van der Waerden claims his “full-blooded” Aryanness. (Courtesy of Leipzig University) 

The number of Aryan generations in Van der Waerden’s ancestry quickly grows, for the 
next day, on May 19, 1933, Leipzig’s Rektor Achelis informs Minister Hartnacke of Saxony 
that the accusation of Van der Waerden being non-Aryan is incorrect, that Vander Waerden 
has a proof that five [sic] generations of his ancestors have been Christians, and thus Van der 
Waerden should be able to retain his directorship. 

Meanwhile, even those Jews, who were exempted from firing under the April 7, 1933, law, 
found themselves under an immense pressure to resign. Nazi students boycotted and 
disrupted classes of Jewish professors, one of whom was the Göttingen number theorist 
Edmund Landau. Van der Waerden mentions his actions against Landau’s boycott in “The 
Defense,” a document he will write for the de-Nazification Boards of Utrecht and Amsterdam 
Universities after the war: “In 1933 I traveled to Berlin and Göttingen to protest the boycott of 
[Edmund] Landau’s classes by Göttingen Nazi students.” In June 1933, the great physicists 
Max Planck and Werner Heisenberg, the latter by now Van der Waerden’s close friend, 
circulate a petition in support of Van der Waerden’s Göttingen mentor Richard Courant, who 
fights his unlawful dismissal as a veteran of World War I. 

Not everyone immediately understood how dangerous the Nazi regime promised to be. The 
United States’ official early posture was to order a cup of coffee and view the confrontation



between Nazism and Socialism. Some Americans, e.g., members of the Emergency Commit-
tee in Aid of Displaced Foreign Scholars, the U.S. Emergency Rescue Committee, and the 
Unitarian Service Committee, were rescuing children and great minds of Europe, such as 
Albert Einstein, Emmy Noether, Marc Chagall, Max Ernst, Erich Maria Remarque, Lion 
Feuchtwanger, Thomas Mann, Heinrich Mann, and Berthold Brecht. Others, such as FBI 
Director J. Edgar Hoover and his agents, were spying on the rescued refugees and even trying 
to get some of them, the famous writer Lion Feuchtwanger included, deported out of the 
United States (read more in Alexander Stephan’s excellent monograph Communazis [Ste]). 
To my disbelief, I learned that even the founder and first director of the Institute for Advanced 
Study, Princeton, Abraham Flexner, with full support of one of the leading Princeton-Math 
professors and future chair Solomon Lefschetz, ridiculed Einstein for being an outspoken 
anti-Nazi, as you can see from Flexner’s September 28, 1933, letter to Felix M. Warburg of 
New York City:1 
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Dear Mr. Warburg: 
In reply to Miss Emanuel’s note containing the cables from you and Lockar Lampson 

I am writing to you as follows: 
“Suggest you cable Lockar Lampson as follows signing your name opinion here in 

academic and official circles strongly to effect that Professor Einstein should not 
participate in Albert Hall meeting regardless of subject of his discussion Please give 
him my former telegram as well as this Unquote Am writing you.” 

I may add that last night Professor Lefschetz, who holds the highest professorship in 
mathematics in Princeton University and is himself a Russian Jew, came to see me and 
asked me if I could not in some way shut Einstein up, that he was doing the Jewish cause 
in Germany nothing but harm and that he is also seriously damaging his own reputation 
as a scientist and doing the Jewish situation in America no good. 

I may add for your private information that I am seriously concerned as to whether it 
is going to be possible to keep him and his wife in this country. I have been pleading 
with them all summer to show the elements of common sense, and their replies have 
been vain and foolish beyond belief. You have doubtless noticed in the morning paper 
that the German government has retracted in part its attitude toward Jewish merchants. 
Einstein is simply making it as hard as possible for the German government to climb 
down. Scores of individuals in New York and in Princeton have spoken to me about 
him, his wife, and their conduct, and without a single exception in thorough condem-
nation, despite the fact they are all bitterly opposed to the present German regime. 
Though he is of course not a Communist, he is now only partially a Pacifist. The 
clipping, which Miss Emanuel sends, is correct in maintaining that his presence on the 
platform will do no good to anybody. The case is very different with a man like Austen 
Chamberlain, who has been Foreign Secretary and is a Christian gentleman, and in his 
hands it ought to be left. 

To cap the climax, Einstein has made practically no sacrifice whatsoever. He and his 
wife are better taken care of today than they have ever been in their life if they will only 

1 I am grateful to the Shelby White and Leon Levy Archives Center, Historical Studies-Social 
Science Library Archive of the Institute for Advanced Study Princeton for this letter and 
permission to reproduce it. A good part of this letter was first quoted in [Sie3].
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behave themselves. Other German Jewish scholars like Frank and Haber, both Nobel 
Prize medalists, have actually given up their posts either voluntarily or through sup-
pression and allowed the world to judge, with the result that they are more highly 
esteemed than ever and their dignity has hurt the German Government a good deal more 
than Einstein’s everlasting publicity. 
With all good wishes, 
Sincerely yours, 
Abraham Flexner 

Bringing Albert Einstein to the Institute for Advanced Study was the greatest luck of 
Abraham Flexner’s life. How many people would know today of the Institute for Advanced 
Study if Einstein did not work there? And yet, like the worst kind of appeasers of Nazi 
Germany, Flexner and Lefschetz are looking for “some way to shut Einstein up,” to prevent 
him from speaking against Nazism! Perhaps, Flexner and Lefschetz merit a little break: after 
all they are American Jews, removed by the Atlantic Ocean from the horrors of Nazi 
Germany, and not wise enough to comprehend Nazism at its early stage. Surely Richard 
Courant, himself a Jewish refugee from Nazi Germany, appreciates Einstein using his acclaim 
and reputation to warn the world about the dangers of Nazism? Sadly, Shakespeare comes 
to mind: “Et tu, Brute? You too, Brutus?” Constance Reid reports: 

Einstein, who had been in America for the past few months, had been making a number 
of widely publicized statements deploring “brutal acts of violence and oppression 
against persons of liberal opinion and Jews . . .  in Germany [which] have aroused the 
conscience of all countries remaining faithful to ideals of humanity and political 
liberties.” On March 29 [1933] . . .  the government in Berlin had announced that 
Einstein had inquired about taking steps to renounce his Prussian citizenship. 

“Even though Einstein does not consider himself a German,” Courant wrote, “he has 
received so many benefits from Germany that it is no more than his duty to help dispel 
the disturbance he has caused . . .  What hurts me particularly is that the renewed wave of 
anti-Semitism is . . .  directed indiscriminately against every person of Jewish ancestry, 
no matter how truly German he may feel within himself, no matter how he and his 
family have bled during the war and how much he himself has contributed to the general 
community. I can’t believe that such injustice can prevail much longer – in particular, 
since it depends so much on the leaders, especially Hitler, whose last speech made quite 
a positive impression on me.” 

So much for the acclaimed cleverness of Courant: Einstein is ungrateful, and Hitler leaves 
“quite a positive impression” on Courant! Even the well-known anti-Nazi, Physics Nobel 
Laureate and Einstein’s friend Max von Laue urges Einstein to abstain from politics: 

Here they are making nearly the entirety of German academics responsible when you do 
something political. 

It sounds as if the German academics do not wish to do or say much and be responsible for 
anything. Einstein sums up his position in his reply to von Laue. His words call on scholars to 
leave the ivory tower and assume responsibility for world affairs, to be counted in the struggle 
for truth and justice:
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I do not share your view that the scientist should observe silence in political matters, i.e., 
human affairs in the broader sense . . .  Does not such restraint signify a lack of 
responsibility? Where would we be had men like Giordano Bruno, Spinoza, Voltaire, 
and Humboldt thought and behaved in such a fashion? I do not regret one word of what I 
have said and am of the belief that my actions have served mankind. 

What about the great old man of physics Max Planck? Surely, he could understand 
Einstein’s sacrifice in service of the world? Not so. Dominic Bonfiglio observes: 

Later that May[1933], as Nazis and their sympathizers were preparing to burn 20,000 
books in Berlin, Max Planck was recorded in the Academy’s minutes as saying that 
“through his political behavior himself [Einstein] rendered his continued membership in 
the Academy impossible.” There were few things that surprised Einstein more about 
Hitler’s rise to power than the way the majority of German academics responded to it. In 
August, Einstein told a colleague that he probably wouldn’t see his country of birth 
again. 

Einstein never did. The prominent Einstein’s critics should recall words of the XVIII 
century French playwright Molière and own the responsibility for their inaction: 

It is not only what we do, but also what we do not do, for which we are accountable. 

The 1930s American government’s official policy of appeasement toward Nazi Germany is 
regrettable, to put it mildly. However, it reflects the position of the majority of the American 
population. The leading wire service Associated Press (AP) allows us to clearly see this. On 
March 7, 1934, AP reports from New York City: 

Twenty-two speakers presented the “Case of Civilization against Hitler” at a mass 
meeting in Madison Square Garden, New York, March 7. Edward J. Neary, Executive 
Committee member of the American Legion, is shown [this text was accompanied by a 
photo of E.J. Neary, for which I do not have copyrights] as he presented the case of war 
veterans against Hitler. The audience was composed of liberals, Jews, and other anti-
Nazis. [I own this AP photo, but do not have copyrights to share it with you.] 

I am shocked to read the last sentence of this AP report. Hitler has been in power for over 
14 months, yet AP and the American people do not get it. The report insinuates that only 
fringe elements of the American society are against Nazi Germany’s crimes: “liberals, Jews, 
and other anti-Nazis”! However, closer to the start of the World War II, the American public 
opinion will slowly shift against Nazi Germany. Mass demonstrations will follow. One such 
very large “Stop Hitler Parade” will take place in Manhattan on March 25, 1939 [I own this 
AP photo, but do not have copyrights to share with you this human river flowing along a 
major street]. 

40.2 The Princeton Job Offer 

For 20 months, 2003–2004, I worked at Princeton University as a “Visiting Fellow.” It does 
not mean “Visiting Dude” or “Guy” – in translation from the British, this title means a 
“Visiting Researcher.” And so, I researched math and history, sometimes alone, other times



jointly with John H. Conway or with the Israeli genius Saharon Shelah at Rutgers University. 
I was constantly thinking about Van der Waerden and his fate and discussed my findings with 
the grateful and valuable audience of Princeton Math colleagues during the daily coffee hours. 
From the grapevine I heard that once upon a time Van der Waerden was offered a job here, but 
no evidence has ever been published. In the spring of 2003, I asked the departmental 
administrator Scott Kinney for any relevant documents. He checked in the secretive file 
room and told me there was no record, “maybe because he never actually came to work here.” 
My 2003 inquiries into the Princeton University Archive and the Institute for Advanced Study 
Archive penned nothing. There are countless dead ends in the maze of historical research; was 
I at one? 
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A year later, when I was about to leave Princeton and go back to my gorgeous Colorado 
mountains, I decided to try and see whether there existed any trace of a Princeton faculty 
discussion about inviting Van der Waerden. In my June 3, 2004, e-mail I queried the 
Mathematics Department Chair, Nick Katz: 

As you probably know, I am writing a book on Ramsey Theory together with the history 
of its early creators. You will provide my historical research a very essential help if you 
allow me to read minutes/notes of Princeton math department faculty meetings for 
1933–1934 (or better yet 1933–1945). Best wishes! Alexander 

Imagine my delight when the following day I received Nick’s reply: 

I have left both the minutes you requested, and also the minutes of what seems to have 
been a university-wide “research committee,” with Scott, for you to look at. We only ask 
that these materials, which are irreplaceable, stay in the building. Good luck with your 
book. Best, Nick 

Irreplaceable? You bet! This was a treasure trove, unclaimed and unread by anyone in 
three-quarters of a century! Chairs at Princeton Math usually rotate every three years, and 
these two old priceless folders, holding the concise documentary history of Princeton, quietly 
sat in a drawer of the chair’s desk. One of the two old-fashioned folders was entitled 
“Department of Mathematics, Minutes of Department Meetings, September 29, 1931– 
March 29, 1949.” The other untitled folder contained Minutes of the Research Committee, 
later called Scientific Research Committee of Princeton University, together with various 
financial documents, dating from January 23, 1926, to 1949. 

The minutes of the Mathematics Department did not mention Van der Waerden. However, 
the minutes of the Research Committee recorded an official job offer Princeton University 
made to him! 

Princeton University was offering Bartel to get out of the ugly young Nazi state and come 
to Princeton as a visiting professor. I read the yellowed pages with the greatest interest: 

A meeting of the Research Committee was held on Tuesday, May 9, 1933, in Dean 
[of the Faculty Luther Pfahler] Eisenhart’s office, Fine Hall, at 12:00 noon. Present: 
Dean Eisenhart, Professors [Edwin Grant] Conklin [Biology], [Rudolph] Ladenburg 
[Physics], [Solomon] Lefschetz [Mathematics], [Henry Norris] Russell [Astronomy] 
and [Sir Hugh] Taylor [Chemistry].” 

Section 2 of these minutes is of our prime interest:
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Dean Eisenhart reported the desire of the Department of Mathematics to secure Profes-
sor van der Waerden of Leipzig on the Mathematics funds for the first term of 
1933–34 at a salary of $3500. Dean Eisenhart reported that in this case also there 
would be a delay on account of uncertain conditions in Germany. 

By this “also” Dean Eisenhart referred to section 1 of these minutes, which is important to 
us as well and reads as follows: 

Dean Eisenhart reported the inability of Professor Heisenberg to give a definite answer 
to the offer of an eight weeks engagement at a salary of $3000 at the present time owing 
to the conditions in Germany. Professor Heisenberg suggested that he might be able to 
give a definite reply at the end of the year. Dean Eisenhart has written to Heisenberg on 
the assumption that his letter meant the end of the academic year and suggested that 
decision by July would be acceptable. 

Section 7 of the minutes is relevant too: 

Professor Lefschetz raised the question of alternatives to Professor Heisenberg in case it 
was found impossible to secure his services. After discussion, it was decided that the 
matter be left in abeyance until further reports were available concerning the German 
situation. 

The Princeton Research Committee choices are good predictors of Nobel Prize winners. At 
another 1933 meeting, the Committee identifies Erwin Schrödinger, who would win a Nobel 
Prize in Physics for 1933, as a backup for Heisenberg, the soon to be the Nobel Prize winner 
for 1932. 

Let us return to the Third Reich, year 1933. Heisenberg wants to wait and see how the 
German situation develops. He does not like to lose best Jewish German physicists, including 
his assistant Felix Bloch, because it will be bad for physics in Germany. But he is excited 
about the Nazi promise of the German national revival. On October 6, 1933, unbelievably, 
Heisenberg writes to his mother about “much good” in the Nazi intentions: 

Much that is good is now also being tried, and one should recognize good intentions. 

As the XI century abbot Saint Bernard of Clairvaux observed, “The road to hell is paved 
with good intentions.” And Nazi Germany has certainly been en route to that destination. 

Following the wishes of the Research Committee and Mathematics Department, Princeton 
University offers Professor Van der Waerden a Visiting Professorship for the September 
15, 1933–February 15, 1934, semester. On June 27, 1933, Van der Waerden asks Dekan 
Weickmann for the approval of his Princeton visit: 

To His Magnificence Dekan of the Philosophical Facultät at Leipzig. 
I would like to inform Your Magnificence that I received a prestigious invitation to 

give invited lectures at the University of Princeton (America) in the winter term 1933/ 
34. As it becomes clear from the attached letters, Princeton offers optimal conditions for 
scientific research and inspiration by interaction with other mathematicians. For that 
reason I intend to accept the invitation if a leave of absence is approved for September 
15 to February 15, and an appropriate replacement can be found.
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I therefore ask the Facultät to forward my application for the leave of absence to the 
Government. The directors of the Mathematics Institute will contact you with sugges-
tions regarding my replacement. 
Respectfully submitted, 
B.L. v.d. Waerden 

The wheels of the young Nazi bureaucracy move surprisingly swiftly in this case. The 
following day, on June 28, 1933, a letter supporting the leave, is sent to the Facultät by the 
three codirectors of the Mathematics Institute: Professors Van der Waerden, Paul Koebe, and 
Leon Lichtenstein. On June 30, 1933, Dekan Weickmann throws his support in a letter to the 
Saxon Ministry of People’s Education in Dresden. On July 15, 1933, Van der Waerden sends 
a letter to Dekan Weickmann inquiring whether the Dekan has any news from the Ministry, 
and on the very same day Dekanin turn sends his inquiry to Councilor Seydewitz of the 
Ministry. On July 18, 1933, Seydewitz sends two letters: one to Dekan Weickmann, approv-
ing the leave without pay (as is requested by Van der Waerden, who is to be paid well by 
Princeton); and to Privatdozent Dr. Friedrich Karl Schmidt of Erlangen University, inquiring 
whether the latter would accept a replacement position at Leipzig. On July 24, 1933, Schmidt 
accepts the replacement job. Thus, everything – all approvals and the replacement – is ready 
for the cross-Atlantic voyage of the Van der Waerden family, when five days later, on July 
29, 1933, Van der Waerden’s letter shocks everyone (even me as I read these documents): 

To the Saxon Ministry of People’s Education 
Attention Councilor Seydewitz 

Since in my opinion (and also in the opinion of the directors of Mathematics Institute) 
my presence at the Mathematics Institute this coming winter is urgently necessary, I 
respectfully ask the Ministry to revoke the leave that has already been approved. I will 
inform my replacement Dr. F. K. Schmidt as well as the Philosophical Facultät about 
my decision. 
Yours respectfully, 
B.L.v.d. Waerden 

Thus, Van der Waerden has jumped through all bureaucratic Nazi hoops but in the end 
rejects the Princeton job! The Bard would have summarized the Princeton story as Much Ado 
about Nothing. 

This was the first major junction in the life of Van der Waerden: had he come to Princeton, 
as a fine and young mathematician Van der Waerden would have most likely received further, 
more permanent offers from Princeton University or from the recently founded Institute for 
Advanced Study. His life – and the history of algebraic geometry – would have been different. 
But Van der Waerden chooses to remain in Nazi Germany, as does his friend Werner 
Heisenberg, who during several prewar years has not accepted job offers from Princeton, 
Harvard, Yale, Columbia, University of Michigan, and other fine American universities. 
Heisenberg’s devotion to doing physics in Germany and his nationalism as reasons for 
staying in the Third Reich have been well established. Van der Waerden’s Princeton



opportunity has not been known, let alone explained, until my unearthing of the old dusty 
Princeton folder. 
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Van der Waerden’s most surprising rejection of the Princeton offer begs a natural question: 
why did he do it? He explains it in the August 12, 1933, letter to Oswald Veblen, the first 
permanent mathematics professor at the Institute for Advanced Study Princeton: 

Like you, I am very sorry that we will not meet in Princeton next winter, but it was really 
impossible for me to leave Leipzig at this time. 

As we have learned from the Leipzig University archive, all permissions have been 
granted. It therefore appears that Van der Waerden chooses courtesy over the truth in his 
letter to Veblen. But what is the truth? 

Van der Waerden asks his mentor Richard Courant to help him receive a second Rocke-
feller (IEB) Fellowship, this time for work on algebraic geometry in Italy, primarily under 
Federigo Enriques and Francesco Severi in Rome. On March 2, 1933, Courant, still at 
Göttingen, pays Van der Waerden the highest praise and “informally and personally” asks 
Dr. W. E. Tisdale, the Rockefeller Official in Paris, whether support for Van der Waerden is 
possible. 

Tisdale receives the letter on March 6, 1933, and the same day replies to Courant, asking to 
have Van der Waerden provide more details, which Van der Waerden does in his March 
12, 1933, two-page letter (received in Paris on March 31, 1933). This letter, written in 
English, provides an insight into Van der Waerden’s view of the state of algebraic geometry: 

Algebraic geometry, originated in Germany in the work of Clebsch, [Emmy Noether’s 
father Max] Noether and others, has been continued during the last 30 years nearly 
exclusively by Italian mathematicians: Enriques, Castelnuovo, Severi, and others. They 
have developed methods and theorems, which are of extremely high interest both for 
algebra and geometry, but which are still awaiting an exact algebraic foundation: The 
contact between Italian geometry and German algebra is missing. I think this is a typical 
case in which your Foundation can help. I know the algebraic methods which can serve 
as a base for algebraic geometry very well, perhaps best of all German mathematicians. 

Thus, Van der Waerden considers himself to be the best German mathematician for the job 
of putting algebraic geometry on the foundation of abstract algebra, and he may be correct. 
Moreover, for the first time in written records that I have unearthed, Van der Waerden casts 
himself here as a German mathematician. A successful Rockefeller (IEB) fellow the first time 
around, Van der Waerden expects an easy approval of his second fellowship. So, has Van der 
Waerden simply preferred Rome over Princeton? Indeed, I found a proof of it in his own 
words – even before he jumped through the Leipzig bureaucratic hoops – in an (undated, but 
definitely written in May or else June of 1933) letter to Richard Courant: 

I still thank you many times for your efforts at Rockefeller. I only got a reply from 
Tisdale that now there are sufficient documents to discuss the case with his colleagues in 
Paris . . .  

I have an offer from Princeton University, with a stipend, to spend the coming winter 
semester (Sept.–Jan.) there. This offer came already at the beginning of April [1933].
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But it does not tempt me as much as the Rome trip; I also do not know whether the 
regime will allow this much of a leave of absence. 

As we know, at some point – more precisely, on July 24, 1933 – Van der Waerden has 
learned that “the regime will allow this much of a leave of absence.” He may have hoped even 
as late as in late July 1933 to get the Rockefeller money for Rome. Is this why Van der 
Waerden cancels the visit to Princeton? Perhaps, but there could have been another important 
reason for not going to Princeton or to Rome: Van der Waerden does not really wish to leave 
Germany for the first winter of the Third Reich (ibid.): 

I cannot judge yet whether it is not smarter [sic] to spend this winter in Leipzig. 

What is so smart about staying in Nazi Germany during the winter of 1933–1934? We will 
never know for sure, but a plausible question is in order: Did Van der Waerden not wish to 
raise suspicion of the young and already cruel Nazi regime? Now that Van der Waerden is not 
going to go to Princeton anyway, it is easy for him to be conscientious (ibid.): 

I believe I will suggest to the Americans that this time they could spend their money 
better than to get me out because I still have a position that I can keep. 

It appears likely that the Rockefeller people, once they learned of the Princeton offer to 
Van der Waerden, have chosen to use their funds to support those mathematicians who 
depended solely upon Rockefeller money and thus decided not to fund Van der Waerden’s 
second fellowship. In fact, already on March 29, 1933, the Rockefeller official Dr. W. E. 
Tisdale shows a complete knowledge of Van der Waerden’s situation in his diary: 

Van der Waerden, past fellow now at Leipzig is excellent. As a matter of fact, Princeton 
wants to get him in the faculty to replace shifts due to Flexner’s activity [i.e., the 
creation of the Institute for Advanced Study]. They will probably ask him to come for a 
semester in which they could have a mutual exchange of views. 

Yes, the Princeton position would have likely become permanent for Van der Waerden. It 
seems clear that Princeton mathematicians were unhappy with Van der Waerden’s “smart” 
choice to stay in Nazi Germany when they offered him a great opportunity to get out. As we 
will see later, they will remember this rejection after the war, when Van der Waerden will 
become eager to come to Princeton from war-devastated Holland.
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40.3 Eulogy for the Beloved Teacher 

Fired from Göttingen University for being Jewish, Emmy Noether got a job at Bryn Mawr 
College near Philadelphia in the United States. This was not a good match for research-
oriented Noether, but it was a job in a safe place at the difficult time of emerging Nazism. On 
April 14, 1935, she passed away. World-renown scholars wrote touching eulogies: Albert 
Einstein and Hermann Weyl in the USA; Pavel Aleksandrov in the Soviet Union, where 
Noether was planning to visit later that same year. Nazi Germany was another matter. A 
eulogy for a Jew and a liberal would not be appreciated by the Nazi authorities. Nevertheless, 
this is exactly what Van der Waerden did. He published in the Mathematische Annalen a 
heartfelt Obituary of Emmy Noether ([Wae5], translated into English in [Dick]). Let us pause 
in our narrative and pay homage to Emmy Noether and her favorite pupil Bartel L. van der 
Waerden’s bravery: 

Our science has suffered a tragic loss. On April 14, 1935, Emmy Noether, our devoted 
collaborator at the Mathematische Annalen for many years, a highly unique person, and 
a scientist of great importance, died following a surgical operation. . .  

The maxim by which Emmy Noether was guided throughout her work might be 
formulated as follows: “Any relationships between numbers, functions, and operations 
only become transparent, generally applicable, and fully productive after they have been 
isolated from their particular objects and been formulated as universally valid concepts” 
. . .  

During her last eight years in Göttingen, prominent mathematicians from all over 
Germany as well as abroad came to consult with her and attend her lectures. In 1932, 
together with E. Artin, she received the Ackermann-Teubner memorial award for 
arithmetic and algebra. And today, carried by the strength of her thought, modern 
algebra appears to be well on its way to victory in every part of the civilized world. 

40.4 One Faculty Meeting at Leipzig 

In Germany itself this situation was aggra-
vated by the isolation of the individual. Com-
munication became increasingly difficult – 
only the most intimate friends dared to speak 
their minds to one another. 

– Werner Heisenberg
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Leipzig Faculty, including some major players of the May 8, 1935, Faculty Meeting. From the 
left, first row: Friedrich Klinger, Werner Heisenberg; second row: Bernhard Schweitzer, 
Joachim Wach; third row: Hermann Heimpel, Theodor Hetzer, Konstantin Reichardt, and 
Dekan Helmut Berve. April 1935. (Courtesy of Leipzig University)
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May 1935 commenced with the Governor (Reichsstatthalter) of Saxony Martin 
Mutschmann dismissing five remaining Jewish professors from Leipzig University – Dr. of 
Medicine Bettmann, and four Philosophical Facultät professors: Joachim Wach (theology), 
Benno Landsberger (Semitic and Eastern philology), Friedrich Wilhelm Daniel Levi (math-
ematics), and Fritz Weigert (photo chemistry), all veterans of World War I, and as such 
exempted from the dismissal under the April 7, 1933 Law. On Friday, May 2, 1935, Leipzig’s 
new Rektor, the psychologist Felix Emil Krueger (1874–1948), appointed just in April 1935, 
discussed these firings with the Staatssekretär Theodor Vahlen (coincidentally a mathema-
tician), who was in charge of the Third Reich’s university appointments in the 
Reichserziehungsministerium and reported directly to the Reichsminister Bernhard Rust. 

Rektor Krueger announced these firings on Wednesday, May 8, 1935, in the afternoon at 
the faculty meeting of the Philosophical Facultät. He wanted to merely test the faculty’s 
sentiments and not have a full-blown discussion. However, five professors bravely questioned 
the legality and morality of the firings and forcefully spoke in support of their fired Jewish 
colleagues. They were Bartel L. van der Waerden, who led the fight; physicists Werner 
Heisenberg and Friedrich Hund, whom you have already met in this book, classical 
archeologist Bernhard Schweitzer (1892–1966), who later earned the honor of being the 
first post-World War II Rektor of Leipzig University (May 1945–December 1945), and 
Russian-born German and Nordic philologist Konstantin Reinhardt (1904, St. Petersburg, 
Russia–1976, New Haven, USA), who in three years would leave Germany for the United 
States where in 1947 will become a professor of German philology at Yale University. 

The discussion during this faculty meeting was passionate. News about it outraged the 
Ministry. Short-tempered (as is often the case with bureaucrats in tyranny) Nazi officials 
demanded an “immediate report.” The Saxon Ministry of People’s Education issued an urgent 
demand (“tomorrow by 1 P.M.”) for the “precise” stenography of the meeting. The recording 
secretary Junker reconstructed the meeting’s stenography on May 21, 1935, based on the 
detailed notes he had taken during the meeting. 

Let me translate for you the entire reconstructed stenography, which is so cinematographic 
that we can “hear” voices of the participants and “see” their actions. In the first edition of The 
Mathematical Coloring Book, I presented a good part of it, leaving Van der Waerden’s son 
Hans van der Waerden not satisfied. I agree with him, and now present here the complete text. 

Transcript. 
Ministry of People’s Education Dresden-N 6, May 17, 1935 
To the Rektor of the University Leipzig. 

It has been alleged that the following happened at the faculty meeting of the 
Philosophical Fakultät on Wednesday afternoon: It has been asserted that Professor 
v.d. Waerden openly protested against the actions of the Governor (Reichsstatthalter). 
He pointed out that Wach had been a combatant in the war and the law explicitly stated 
that veterans of non-Aryan descent were exempt from the dismissal. So this would be 
abuse of the law and he himself [Van der Waerden] would feel ashamed if a man who 
gave his blood for him were now treated in such a way. He asked the Fakultät to make a 
unanimous resolution opposing the [dismissal] decision.
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It is asserted that nobody objected, but Professor Golf2 forbade v.d. Waerden to speak 
in the tone he was using and emphasized that insults of this kind were not usual at 
German universities. I stated that Professor Hund had not exactly approved of the 
actions of the Governor (Reichsstatthalter). 

The Ministry asks for a detailed report. 
/Signed for/ Geyer

- - - -
Leipzig, [May] 20, [19]35 
The Rektor asks Herr Dekan Berve3 for an immediate report. 
In Leipzig 
Signed Krueger 
Rektor. 
Transcript 
5.21.1935 

Dear Herr Dekan! 
Herr Rosenberg has just informed me that you wish to see the exact transcript of the 

meeting of 5. 8.1935 by tomorrow at 1 P.M. 
I assume that you do not care about the whole transcript but rather only the account of 

the Discussion of the Dismissal of the four colleagues. 
From here on I write for you what I took down as a stenographer. I noted word for 

word the phrases that the particular gentlemen used. In the transcript of the Facultät 
[meeting] I used these phrases only as the basis of my formulations. The statement by 
Herr v.d. Waerden drew the warning from Herr Golf, a statement which I wanted to 
hand you at the time when Golf burst out (I enclose the note), and which I have omitted 
from the official transcript, as something regarded as irrelevant and “resolved” by Herr 
Golf and because it does not accord with conventions of the Facultät to record 
distractions.

- - - - - - -
The Dekan said that the Governor (Reichsstatthalter) [of Saxony], upon the request 

of the [Saxon] Ministry [of Science and Culture], dismissed 4 people. They are Mr.’s 
Wach, Landsberger, Levi, and Weigert. (Regarding this, it is noticed in the stenographic 
original: “§6. Teaching arrangements withdrawn—put in retirement.”) Professor von 
Weigert is kw, and his position cannot be refilled.4 

(Afterwards there were other issues and finally: The issue of the withdrawal of their 
titles of doctors). 

2 Professor of Agriculture Arthur Golf (1877–1941), Rektor of Leipzig University (October 1933– 
March 1935, and again October 1936–March 1937), member of NSDAP (Nationalsozialistische 
Deutsche Arbeiterpartei, known as the Nazi Party) since 1932, the author of Nationalsozialismus 
und Universität. Rektoratsrede (Leipzig, 1933). 
3 Helmut Berve (1896–1979), classicist and historian, member of the Nazi Party since 1933. 
4 Siegmund-Schultze advises me that “kw” likely means “kann wegfallen”= can disappear, which 
is a note that even today is attached to positions which the administration intends to eliminate.
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Herr Reichardt asks: The dismissals are based on §6 of the law. Would it be possible 
to learn something about legal issues related to this question? After all, they fought at the 
front and were combatants in the war. And among the students this caused a consider-
able uproar. 

Dekan called upon the Rektor who was present. 
Rektor: I cannot tell you everything I discussed in Berlin. Everything is still in flux. 

When I returned from Berlin, I called the Ministry. The next day I was asked over the 
phone to submit a report. Now the report is before me. I want to tell you the significant 
things in it. I have reported to the Deputy Secretary Vahlen who directly reports to the 
Reichsminister [Rust], about the current situation in Leipzig and the recent dismissals. 
That happened on May 2. At that time the Dekan only informed me that 4 Dozenten 
[app. associate professors] at the Philosophical Fakultät were affected by the dismissals. 
Meanwhile I have learned that Dr. of Medicine Bettmann was also affected. He has also 
been dismissed. I was asked in the presence of the General Counsel, Count Rantzau, to 
characterize the instructors affected by this action, and their military service. In addition 
to which I suggested to discuss their relations abroad and depict the consequences of 
their dismissal. I did it as well as I could. I mentioned the reputation of the professors. I 
emphasized that Mr. Landsberger was regarded as a leader in his field, that he had 
relations to England. Levi had an offer from Tehran. Wach, whom I have known since 
his habilitation at Leipzig, had just received a one-year leave for a visiting position in 
America. Weigert had severe problems with his ears. And he had participated in 
war-related scientific investigations during the war. 

Regarding the consequences in Leipzig, there is a certain uproar among the students 
of those affected, which I discussed in more details. Among the instructors too. Mainly 
because dismissals were based on the §6. Several instructors had asked me whether this 
paragraph can be used in their own fields and whether the Fakultät that is responsible for 
the completeness of the course offerings, had been consulted. Most of the colleagues 
had expressed the opinion that §6 could not be applied to veterans of the war. The 
opinion of the lawyers was that there was inconsistency between these actions and the 
prerogatives of the Minister, who alone has the right to dismiss. Also in the case of 
Landsberger suggestions should be made for an immediate successor. But a position that 
was canceled based on §6 cannot be re-occupied. This is a contradiction but the people 
in Berlin told me that it is not an obstacle that could not be overcome. In many other 
cases a similar procedure has been followed against non-Aryan professors. They filled 
the position some months later. In that case the position must be included in the budget 
again. It has turned out that the position is indispensable. 

The Rektor has summarized his thoughts as follows: I am not familiar enough with 
the legal situation to respond appropriately and therefore I have asked for a full 
clarification of the legal situation. 

Dekan: I will be in Dresden tomorrow and I feel it is my duty to point out to the 
Ministry that the Facultät has not been consulted. [I] have also received letters from 
foreign students. 

v.d. Waerden: Can’t the Rektor say anything about the official reasons? 
Rektor: I can’t. In Berlin they did not even know the names of these people. 
v.d. Waerden: And how about Dresden? After all, it is natural to suspect that it is 

against the Jews and there are no [other] official reasons.
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Dekan: The dismissals were done “in the interest of the service” (“im Interesse des 
Dienstes”). It is not our responsibility to go further into that. 

Heisenberg: This action has caused dismay among many of us because they [we] felt 
that it did not satisfy the meaning of the law. This is: combatants belong to the people’s 
community! It is our duty to help them in every respect, especially because their 
students have already stood up for them. It is necessary that the Facultät says that it is 
about people who have put their life at risk for us. 

Golf: These are concerns that are justified. But please do not continue the discussion 
and do not ask questions. The report has now been sent to Dresden. The reply will come. 
The Dekan travels to Dresden tomorrow. Any further discussion today is therefore 
superfluous. We hope that we will be informed about the reply. 

Hund: I believe that I cannot refrain from expressing the sentiment among the group 
of colleagues. If these actions become a fact, this would show that a meaning of the 
exemption in the law, that men who have fought on the frontlines could not be expelled, 
would be violated. For us that would be a serious disappointment in the Government. 
Many of us, who have not been to the frontlines, including myself, would have to be 
ashamed before these men. 

v.d. Waerden: It would be useful if an unambiguous decision could be reached 
regarding the rights of the combatants and the meaning of the law, which is obviously 
disregarded. 

Dekan: I may remark that I allow this discussion only so that I can report in Dresden 
about the sentiment among the Facultät committees. 

Golf: I feel satisfied with what the Rektor has told us. But I want to advise (in a louder 
voice) Herr v.d. Waerden to be more cautious. He said: a paragraph of the law has been 
violated. He obviously did not keep in mind that this amounts to saying that the 
Governor has violated the law. We don’t know his reasons and it is not up to us to 
make a judgment. So, please, be more careful, be more cautious with your comments. 

v.d. Waerden: (in a loud whisper directed at Golf) Thank you! 
Golf: (across the table, loudly): The matter is thus closed! 
Schweitzer: We have learned in part about the legal basis of the matter, and in part we 

have been promised a complete clarification. But there is also an aspect of decency to the 
matter. Among the non-tenured faculty members the revocation of the teaching permits 
is tantamount to an indefinite dismissal. Under the law this is only possible in case of a 
disciplinary action. Maybe it is possible to inquire in Dresden whether or not an 
indefinite dismissal is justified in this case. Even the most junior assistants are protected 
against such a dismissal. 

Rektor: I haven’t restricted myself in Berlin to the legal side of the matter, but I have 
also mentioned its extraordinary severity. 

Dekan: We now discuss point 4 on the agenda. . .
- - - - - -
These are my notes of the debate. I still have the original stenography. I did not make 

any further notes, but I accept responsibility for the correctness of what I have noted. 
I greet you with Heil Hitler! 
Yours, 
Signed Hch. Junker
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As we can see from this incredible stenography, the five protesting professors use moral 
and legal arguments in opposing the dismissals of their Jewish colleagues, the draconian 
dismissals for cause (§6) without the right to ever work in the profession. Van der Waerden 
makes a legal argument based on the exemption for Jewish veterans of World War I provided 
in the April 7, 1933, law. Of course, he knows that Nazi Germany lives not by the law but by 
the latest word of the Nazi leaders. Yet Van der Waerden demands from the Nazi State to live 
by its own laws: 

It would be useful if an unambiguous decision could be reached regarding the rights of 
the combatants and the meaning of the law, which is obviously disregarded. 

Van der Waerden’s son, Hans van der Waerden, observes [WaH2]: 

He [B.L. van der Waerden] decided, whatever happened, to stay aloof of German 
politics, put a bridle on his personal anti-fascist feelings (without denying them), and 
never to speak overtly neither in opposition to Nazi ideology nor in favor of it. 

Yes, I agree, in general. However, during this faculty meeting, Van der Waerden goes 
beyond his typical judicial approach to the Nazi regime and attacks one of the pillars of Nazi 
ideology, its anti-Semitism: 

It is natural to suspect that it is against the Jews and there are no [other] official reasons. 

Heisenberg and Hund too address both legal and moral aspects of the dismissal: 

This action has caused dismay among many of us because they [we] felt that it did not 
satisfy the meaning of the law . . .  It is necessary that the Facultät says that it is about 
people who have put their life at risk for us. (Heisenberg) 

If these actions become a fact, this would show that a meaning of the exemption in the 
law, that men who have fought on the frontlines could not be expelled, would be 
violated. For us that would be a serious disappointment in the Government. Many of 
us, who have not been to the frontlines, including myself, would have to be ashamed 
before these men. (Hund) 

A public protest against the firing of Jewish professors in 1935 was a rare and brave act. As 
I reported in 2004 [Soi4], the stenography of the meeting left on me an impression that 
Heisenberg, Hund, and Van der Waerden, the three professors who protested the strongest, 
were co-conspirators, who discussed between themselves not only physics but also politics. 
Having now read Heisenberg’s 1971 memoirs [Hei2], I find there a confirmation of my 
conjecture. Thirty-six years later, Heisenberg remembers affairs of year 1935 and shares them 
with us: 

Political interference in university life became more and more intolerable. One of my 
faculty colleagues, the mathematician Levy, who, by law, should have enjoyed immu-
nity because of his distinguished war record, was suddenly relieved of his post. The 
indignation of some of the younger members of the staff – I am thinking particularly of 
Friedrich Hund, Karl Friedrich Bonhoeffer, and the mathematician B. L. van der 
Waerden – was so great that we thought of tendering our resignations and of persuading 
other colleagues to follow suit.
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In 1935, a mass resignation of some of the leading professors, including the Nobel 
Laureate Heisenberg, could have shaken up even the unshakeable Nazi state – if it were to 
become widely known. This was an incredibly daring plan, which would have cost all the 
participants their professorships and careers in the Third Reich, and possibly more. But the 
plan has not been implemented. Heisenberg explains (ibid.): 

Before taking this grave step, I decided to discuss the whole question with an older man, 
who enjoyed our full confidence. I accordingly asked Max Planck for an interview and 
then paid a visit to his home in the Grünewald section of Berlin . . .  

I told him about the latest developments in Leipzig and about the plan of some of the 
younger staff members to resign. But Planck was convinced that all such protests had 
become utterly futile. 

“I am glad to see that you are still optimistic enough to believe you can stop the rot by 
such actions. Unfortunately, you greatly overestimate the influence of the university or 
of academicians. The public would hear next to nothing about your resignation. The 
papers would either fail to report it or else treat your protests as the actions of misguided 
and unpatriotic cranks . . .  

In these circumstances, your resignation would have no effect at the present time 
other than to ruin your career – I know you are prepared to pay that price. But as far as 
Germany is concerned, your actions will only begin to matter again after the end of the 
present catastrophic phase. It is to the future that all of us must now look. If you resign, 
then, at best, you may be able to get a job abroad. What might happen at worst, I would 
rather not say. But abroad you will be one of countless emigrants in need of a job, and 
who knows but that you would deprive another, in much greater need than yourself? No 
doubt, you would be able to work in peace, you would be out of danger, and after the 
catastrophe you could always return to Germany – with a clear conscience and the 
happy knowledge that you never compromised with Germany’s gravedigger . . .  

If you do not resign and stay on, you will have the task of quite a different kind. You 
cannot stop the catastrophe, and in order to survive you will be forced to make 
compromise after compromise . . .  I think that all of us who have a job to do and who 
are not absolutely forced to emigrate for racial or other reasons must try to stay on and 
lay the foundation for a better life once the present nightmare is over. To do so will 
certainly be extremely difficult and dangerous, and the compromises you will have to 
make will later be held against you, and quite rightly so. I cannot blame anyone who 
decides differently, who finds life in Germany intolerable, who cannot remain while 
injustices are committed that he can do nothing to prevent. But in the ghastly situation in 
which Germany now finds herself, no one can act decently. Every decision we make 
involves us in injustices of one kind or another. In the final analysis, all of us are left to 
our own devices . . .” 

And that is how we left it. On the train journey back to Leipzig, the conversation kept 
going round and round in my head. I almost envied those of my friends whose life in 
Germany had been made so impossible that they simply had to leave. They had been the 
victims of injustice and would have to suffer great material hardship, but at least they 
had been spared the agonizing choice of whether or not they ought to stay on . . .  And 
what precisely were the compromises Planck had hinted at? At the beginning of each 
lecture, you had to raise your hand and give the Nazi salute. But hadn’t I raised my hand
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to wave at acquaintances even before the advent of Hitler? Was that really a dishonor-
able compromise? And then you had to sign all official letters with “Heil Hitler.” That 
was much less pleasant, but luckily I, for one, didn’t have to write all that many official 
letters, and when I did, the new salutation invariably meant “I don’t want to have close 
contact with you.” We were expected to attend celebrations and marches, but I felt it 
ought to be possible to get out of quite a few. A compromise here, a compromise there, 
and where did you draw the line? Had William Tell been right to refuse homage to 
Gessler’s hat, thus endangering the life of his own child? Ought he to have 
compromised? And if the answer was no, ought we to compromise with our own 
Gesslers? 

Conversely, if one decided to emigrate . . .  might you not be simply leaving the field 
to those madmen, those spiritually unhinged creatures whose demented plans were 
driving Germany headlong into disaster? 

Observe that these are 1971 Heisenberg’s recollections of his 1935 thoughts. By 1971, he 
knows that the Third Reich ended up killing tens of millions of innocent people; some 
6,000,000 million of Jews alone. How could he reduce his compromises with the Nazi state 
to merely the salutation “Heil Hitler”? What about lending the prestige of one of the world 
leading physicists to the Third Reich? Worse yet, what about working on an atomic bomb and 
an atomic reactor under Hitler, for Hitler? Heisenberg continues (ibid.): 

Planck had said that we might be faced with alternatives that would be equally unjust. 
Were such situations possible? I tried to think up an extreme situation which, though it 
had not occurred in reality, was not too far-fetched, not quite obviously beyond a 
humane solution. This was the example I finally hit upon: A dictatorial government 
has jailed ten of its opponents and has decided to kill at least the most important of the 
prisoners. At the same time, the government is terribly anxious to justify this murder 
before the rest of the world. Accordingly, it makes an offer to another of its opponents, 
say, a jurist who has been left at liberty because of his high international renown: if he 
can produce and sign a legal justification for the murder of the most important prisoner, 
then the other nine will be released and allowed to emigrate. If he refuses, all ten 
prisoners will be killed. The jurist is left in no doubt that the dictator is in earnest. What 
is he to do? Is it clear conscience, a “white waistcoat,” as we used to call it cynically, 
worth more than the lives of nine friends? Even his suicide would be no solution; it 
would merely lead to the immediate slaying of the innocent ten. 

Thinking along these lines, I remembered a conversation with Niels Bohr, during 
which he referred to the fact that justice and love were complementary concepts. 
Although both are essential components of our behavior toward others, they are, in 
fact, mutually exclusive. Justice would force the juror to withhold his signature, the 
more so as the political consequences of his signing might be such as to destroy more 
innocent people than the nine friends. But would love refuse the cry for help sent by the 
desperate families of the nine friends? 

After a while, I realized how extremely childish it was to go on playing such absurd 
mental games. What mattered was to decide here and now whether I ought to emigrate 
or to stay in Germany. “Think of the time after the catastrophe,” Planck had said, and I 
felt he was right. We would have to form islands, gather young people round us and help 
them to live through it all, to build a new and better world after the holocaust



40.4 One Faculty Meeting at Leipzig 489

[Heisenberg uses a small “h”]. And this was bound to involve compromises, for which 
we would rightly be held to account – and perhaps even worse . . .  By the time the train 
pulled into Leipzig, I had made up my mind: I would stay on in Germany, at least for a 
time, continue working at the university, and, for the rest, do my bit as best as I possibly 
could. 

I am compelled to reply to these three great physicists. 
“Absurd mental games,” you say, Professor Heisenberg? How often does one remember 

the 1935 thoughts in 1971 – and prominently insert them in his book? Clearly, this train of 
thought mattered a great deal to you. Moreover, between 1935 and 1971, you included a very 
similar kill-one-save-ten situation in your unpublished 1947 document “On Active and 
Passive Opposition in the Third Reich” [Hei1]. I wish to test your morality theory by my 
experiment: 

Dr. Heisenberg, would you sign a death sentence for “the most important” innocent person 
in order to save others? Would you sign a death sentence for “the most important” protester of 
the May 1935 faculty meeting, Bartel van der Waerden, in order to save Carl-Friedrich von 
Weizsäcker and Friedrich Hund? I believe that you were the most loyal friend of people in 
your close circle, and thus you would have never signed such a death sentence. Thus, your 
clever theory, praising the morality of collaboration with the Nazi regime in killing an 
innocent person, does not pass the ultimate test by experiment. 

Signing a death warrant to an innocent would make you an accomplice of the criminal Nazi 
regime. 

Dr. Niels Bohr, I deeply admire you as a scholar and man. Do you really believe, as 
Heisenberg reports, that “justice and love were complementary concepts”? I’d say that the 
complement of love is indifference, while justice is synonymous with impartiality (recall the 
image of Lady Justice, a blindfolded woman holding a scale). So, by your logic indifference 
and impartiality are synonyms – and I submit, they are not. The indifferent juror would sign a 
death verdict for the innocent person – what does he care – while the impartial juror will not. 

Dr. Max Planck, I share some of your views, which I learned only on November 12, 2010, 
when I read them quoted in Heisenberg’s book [Hei2]. You warned Werner: “If you do not 
resign and stay on . . .  in order to survive you will be forced to make compromise after 
compromise . . .  and the compromises you will have to make will later be held against you, 
and quite rightly so.” I agree with you, and for this very reason, I would have advised 
Heisenberg to leave Nazi Germany rather than stay on and thus support the criminal state by 
his nuclear research and by his high worldwide reputation. 

In the summer of 1939, just before the start of World War II, physicist (Nobel Prize 1938) 
Enrico Fermi warns his friend Heisenberg about inevitable compromises and responsibility 
for them, very much like Max Planck. However, while Planck drew a conclusion of staying in 
Nazi Germany, Fermi urges his friend to leave: 

Whatever makes you stay on in Germany? You can’t possibly prevent the war, and you 
will have to do, and take the responsibility for, things which you will hate to do or to be 
responsible for. 

There was no shortage of advice. In Heisenberg’s May 12, 1935, letter, he briefs his mother 
that the Leipzig University Rektor pressures Heisenberg to enter the German Army as a 
reserve officer in order to remedy his part in the faculty meeting protest and to demonstrate his



loyalty to the Third Reich. Heisenberg does follow RektorKrueger’s advice and serves as a 
reserve officer in the Army of Nazi Germany. 
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Ever since the late 1920s, Philipp Lenard (Nobel Laureate 1905) and Johannes Stark 
(Nobel Laureate 1919) had promoted the notorious notion of “Aryan Physics” contrasted 
with “Jewish Physics” of Einstein and others. On July 15, 1937, Stark called Werner 
Heisenberg a “White Jew” in the SS newspaper Das Schwarze Korps (The Black Corps). 
Heisenberg was outraged, as Van der Waerden would remember even a decade later. And so 
just two years after the heroics of the May 1935 faculty meeting and pledge to “do my bit as 
best as I possibly could,” Heisenberg allows himself a shocking compromise with the Nazi 
regime by entering in a “contract with the devil.” An old proverb warns, be careful what you 
wish for: you just might get it. Just six days after Stark’s article, in the July 21, 1937, letter, 
Heisenberg asks none other than the SS Reichsführer Heinrich Himmler for protection. 

In one year to the day (!), the desired protection is granted by Himmler, who on July 
21, 1938 writes about it to his subordinate, Gestapo chief, SS-Lt. General Reinhard Heydrich, 
SS-Obergruppenführer, Chief of the Reich Main Security Office, including the SD, Gestapo 
and Kripo (Heydrich was the one who presided over the January 20, 1942, Wannsee 
Conference, dedicated to the “Final Solution,” plans for the deportation and extermination 
of all Jews in German-occupied territories) [Gou, 116–119]: 

Dear Heydrich, 
I have received the good and very objective report on Professor Werner Heisenberg, 

Leipzig. I enclose herewith a very proper letter of Professor Prandtl, Göttingen, with 
which I agree. I also enclose a copy of my letter to Heisenberg for your information . . .  

I believe that Heisenberg is a decent person and that we cannot afford to lose or to 
silence this man, who is still young and can still produce a rising generation in science. 

One would think that “a decent person” is a high compliment. However, here it comes from 
one of the Nazis’ top mass murderers, someone whose taste in morality we must question. The 
same day Himmler promises protection in a letter to Heisenberg personally (see a photocopy 
of the letter in this chapter) [ibid]: 

Only today can I answer your letter of July 21, 1937, in which you direct yourself to me 
because of the article of Professor Stark in “Das Schwarze Korps.” 

Because you were recommended by my family, I have had your case investigated 
with special care and precision. 

I am glad that I can now inform you that I do not approve of the attack in “Das 
Schwarze Korps” and that I have taken measures against any further attack against you. 

I hope that I shall see you in Berlin in the fall, in November or December, so that we 
may talk things over thoroughly man to man. 
With friendly greetings. 

Heil Hitler! 
Your, 
H. Himmler 

P.S. However, I consider it best if in the future you make a distinction for your 
audience between the results of scientific research and the personal and political attitude 
of the scientists involved.
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Copy of Himmler’s Letter to Heisenberg, July 21, 1938. (Courtesy of Leipzig University)
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And thus, Heisenberg receives Himmler’s high approval to speak about relativity theory, 
under the condition that he makes no mention of its creator Albert Einstein. It is hard to 
believe that such a brilliant mind, Werner Heisenberg, would ask one of the most brutal Nazi 
murderers, Heinrich Himmler, for favors. However, Goudsmit leaves no doubts about it by 
including facsimiles of both Himmler’s letters, to Heydrich and Heisenberg, in his book Alsos 
([Gou], pp. 116 and 119). 

In the midst of the Nazi regime crimes against humanity, Heisenberg’s defense of a 
theory – the relativity theory as it were – seems insignificant, while his demand for restoring 
his personal “honor” appears petty. In my eyes, Heisenberg’s appeal to Himmler and 
Himmler’s grant of protection fare among the darkest stains on Werner Heisenberg’s repu-
tation. The contract that Leipzig’s Dr. Heisenberg reached with SS Reichsführer Himmler 
eerily reminds me Johann Wolfgang von Goethe’s classic book about another scientist, 
Dr. Faust, entering in a contract with the Devil. In fact, Goethe spent his early years in 
Leipzig, studying at Leipzig University. Leipzig’s 15th century Auerbachs Keller restaurant 
with its legend of Dr. Johann Georg Faust’s barrel ride became the only real location in Part 
One of Goethe’s “Faust.” 

Heisenberg paid a high price for his high SS protection. This protection ended forever the 
days when Heisenberg could publicly criticize any actions of the Nazi regime, even if he were 
so inclined, for Heisenberg became a highly protected asset of this criminal regime. Heisen-
berg had countless opportunities to emigrate, for right before the war commenced, he was in 
the United States and received offers from a number of leading American universities. 
However, Heisenberg chose to stay in and to serve Germany – Nazi Germany, as was 
the case. 

Let us return to the Third Reich, year 1935. Shortly after the Leipzig faculty meeting, the 
entire Van der Waerden family, Bartel, Camilla, and their daughters Helga and Ilse are 
spending their summer vacation in Bartel parent’s magnificent house in Laren, near Amster-
dam. On August 10, 1935, Bartel writes a letter to Richard Courant, who is already living in 
New York: 

Personally, we are all doing very well. Our oldest daughter Helga had her appendix 
removed yesterday. The operation seems to have been successful. We are here in 
Holland for two months and rest up our souls from the constant tensions, hostilities, 
orders and paperwork . . .  Ministries examine who has not yet been completely forced 
into line [of National Socialism], who is a friend of Jews, who has a Jewish wife, etc., as 
long as they themselves are not torn apart by their fight for power. 

This paragraph truly opened my eyes to Van der Waerden’s mid-1935 perception of his 
situation. He is not a prisoner of the “Ivory Tower”: he is acutely aware of life around him. 
But Van der Waerden views life in the Nazi state not as a tragedy but as a farce and writes 
about it with amusement. The entire family is abroad in Bart’s Homeland, Holland, yet he 
does not seem to give any thought about the whole family remaining in Holland!
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German thunder . . .  will come and when you hear 
crushing, as it has never crashed before in all of 
world history, you will know, German thunder has 
finally reached its goal. With this sound, eagles will 
fall dead from the sky, and lions in the most distant 
desert in Africa will put their tails between their 
legs and crawl into their royal caves . . .  And the 
hour will come. 

– Heinrich Heine, 1834 

What I should explain to the Dutch people is, 
however, not my actions before 1940, but those 
after the Netherlands had been attacked by Ger-
many . . .  I have never given a class or worked on 
things that could be used for military purposes. 

– Bartel L. van der Waerden 

The Netherlands safely lived in neutrality through World War I. It hoped to repeat it in 
World War II. However, the Dutch plan of neutrality crumbles when on May 10, 1940, 
Germany treacherously attacks the Netherlands, as well as Luxembourg, Belgium, and France 
(Norway and Denmark were attacked earlier, on April 9, 1940). Queen Wilhelmina of the 
Netherlands and her government flee to London. Her daughter, the future Queen Juliana, and 
her family go into exile in Canada. 

Destruction of Rotterdam, May 14, 1940; Bundesarchiv_Bild_146-2005-0003, Rotterdam, 
Zerstörungen. (Wikipedia)
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The Dutch fight against the overwhelming advantage of the Third Reich Navy and Air 
Force. German bombers set the entire inner city of Rotterdam ablaze. The devastation of 
Rotterdam, serving as a threat to do the same to Utrecht and Helder, Amsterdam and Den 
Haag, forces the Netherlands to surrender the following day, May 15, 1940. 

Dutch Ship being torpedoed by a German submarine, October 1945. (Photo ANEFO; Archive 
of Alexander Soifer) 

Right on its first page, The New York Times reports the reaction of President Franklin 
Delano Roosevelt, who “condemns” the invasion but is determined to keep American 
“neutrality” [sic] toward Hitler: 

WASHINGTON, May 10--President Roosevelt twice today condemned Germany’s 
invasion of Belgium, Holland and Luxembourg as an unwarranted aggression on neutral 
countries and as threatening the cultural and scientific civilization of the world. . .  

On both occasions the President impressed his determination to keep America at 
peace and safeguard the nation’s neutrality. 

Some condemnation! Roosevelt is prepared to pay for his “neutrality” by throwing 
Holland, Belgium, and Luxembourg to the hungry Nazis! As to Hitler, if he cherished the 
plans to create Großgermanisches Reich Deutscher Nation (Greater Germanic Reich of the 
German Nation) that would include the Netherlands, Flemish Belgium, Luxembourg, Nor-
way, and Denmark, the brutal invasion was a ridiculous way to go about it.
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The main personage of our story Van der Waerden finds himself in an awkward situation: 
he is a professor and civil servant of Nazi Germany that has waged the brutal unprovoked war 
against his Homeland, Holland. How is he affected by this course of events? What is his take 
on the matter? Upon Nazi Germany’s invasion of the Netherlands, many Dutch citizens inside 
Germany are at first treated as enemies and interned. In fact, right on May 15, 1940, the day 
Holland capitulated, Van der Waerden is suspended by the Rektor from teaching at Leipzig 
University: 

I already asked you yesterday over the phone to refrain from any teaching activity until 
further notice. I herewith repeat this order in writing and ask you to discontinue your 
administrative activity as Director of Mathematical Seminars and Mathematical 
Institute. 

Meanwhile I have asked the Ministry for a decision whether in view of you being an 
official and your oath to the Führer my order regarding your activity as a Professor and 
Director of the Institute should continue. 

Van der Waerden was detained but soon released. Permission to lecture again was granted 
to him via telephone by the senior servant Dames on 11 June 1940. His reaction to this brief 
suspension allows us an unexpected insight into his views of Germany and Holland. He 
understands from the beginning that the suspension is likely to be short-lived, but that as a 
condition for reinstatement as a professor at Leipzig he may be asked to accept Nazi 
Germany’s citizenship. The day following the suspension, on May 16, 1940, Van der 
Waerden writes about his dilemma to a trusted friend, Editor of the Mathematische Annalen 
Erich Hecke [Wae8]: 

For the time being I am not allowed to teach courses. But the Rektor has already written 
to Berlin and asked for an authorization to allow me to carry on my office. The Dekan 
predicts that this would be smoothly approved; maybe I would be asked to become a 
German citizen. You will understand that I would be uncomfortable with that at this 
time. In principle I have no objections against German citizenship, but at this moment 
when Germany has occupied my homeland, I really do not want to abandon my 
neutrality and take the German side. 

Thus, “in principle“ Van der Waerden has “no objections against German citizenship.” He 
merely “does not want to abandon his neutrality” between the brutal invader, Nazi Germany, 
and his victimized Homeland. How does one explain such insensitivity toward the Home-
land? Could it be that Van der Waerden by now believes that he belongs to Germany, German 
culture in general, and to German science and mathematics in particular? If so, this would 
explain his neutrality and reluctance to leave Germany when in the middle of the war he 
receives a job offer from Utrecht University. 

40.6 A Dream of Göttingen 

Before Hitler’s ascent to power, Germany arguably occupied the highest mathematical 
ground in the world, and Göttingen University was its greatest peak. From Felix Klein to 
David Hilbert, the Göttingen mathematicians created an unparalleled school. In 1928, Richard 
Courant and the Rockefeller Foundation created in Göttingen the Mathematical Institute



populated by some of the finest scholars. At this time, even young brilliant Americans, such as 
Saunders Mac Lane, were attracted by Göttingen. Mac Lane recollects [Mac]: 
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The Mathematical Institute in Göttingen in 1931 had an outstanding tradition: Gauss, 
Riemann, Dirichlet, Felix Klein, Minkowski and Hilbert. It was located in a new and 
ample building (thanks to the Rockefeller Foundation, which had also provided such a 
building for mathematics at Paris). 

Van der Waerden spent his happy young years at Göttingen. He was the favorite student of 
Emmy Noether, habilitated under Richard Courant, served at Göttingen as Courant’s 
Assistent and Privatdozent. Fond memories of the great Göttingen must have inspired a 
dream to work there again. It is only natural that in late 1943–early 1944, Van der Waerden 
tries to convert his Dream of Göttingen into reality. The choice of people he asks for help in 
obtaining a Göttingen professorship is surprising for someone who thought of himself as a 
“strong opponent of the Nazi regime.” There is an Old Russian proverb, “Tell me who your 
friends are, and I will tell you who you are.”5 As all universal declarations, it does not fit all 
cases. And yet, there is a grain of truth in this folk wisdom. Let me introduce to you the two 
Van der Waerden’s helpers (more information about them can be found in [Rem], [Sie3], 
[Seg], [Geo], and other sources). 

The first helper, Wilhelm Süss, a professor of mathematics and Rektor of Albert Ludwig 
University of Freiburg, a 1934–1937 member of the SA (Storm Troopers), joined the Nazi 
Party (NSDAP) in 1937, and the Nationalsozialistischer Deutscher Dozentenbund (Nazi 
Lecturers Confederation) in 1938. During 1937–1945, Süss was the Führer of the Deutsche 
Mathematiker-Vereinigung (DMV). He distinguished himself by enthusiastically initiating the 
expulsion of Jews from the DMV membership rolls right after becoming its president, even 
before he was ordered to do so by his Nazi patrons. “Jews were not merely excluded from 
DMV; the Nazis attempted to eliminate them from the history of the DMV, as if they had never 
existed” [Seg]. In 1938, Süss also initiated the expulsion of Jews from editorial boards. 
Consequently, he got such a clout with high Nazi officials that on August 3, 1944, Hermann 
Göring himself approved the creation of the Mathematisches Forschungsinstitut Oberwolfach 
on the hills of the Black Forest. Naturally, Süss served as Oberwolfach’s first director. Van 
der Waerden was friendly with Süss, gave a talk at Süss’ invitation at Freiburg University in 
1944, and corresponded with Süss until the latter’s passing away in 1958. 

In August 1985, I spent a delightful week at Oberwolfach. Then I was not a historian and 
did not know that this scenic mathematical retreat was authorized by Hermann Göring and 
paid for by Nazi money. The Mathematisches Forschungsinstitut Oberwolfach has been 
providing a valuable service to the international mathematical community. And yet, it would 
be hard for me now to stay there again, for ghosts of the past would spoil the serenity of the 
rolling hills and the delight of scientific exchange. 

I hear you asking me: What can Mathematisches Forschungsinstitut Oberwolfach do today 
about its Nazi past? To begin with, Oberwolfach must stop lying about its history. 
Oberwolfach Director, 2002–2013, Prof. Dr. Dr. h.c. Gert-Martin Greuel certainly knows 
the history of the institution he has led for 11 years. Yet, Greuel conceals the Nazi roots and

5 In 2014, a new version of this proverb was born in light of the Russian annexation of Ukrainian 
Crimea: “Tell me whose Crimea is, and I will tell you who you are.”



starts the Oberwolfach Institute history in 1946 in his chapter “Mathematics Between 
Research, Application, and Communication” in the book Raising Public Awareness of 
Mathematics, Behrends, E., et al. (eds), Springer, ISBN 978-3-642-25710-0.6
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I feel affinity to the refugee from Nazi Germany Professor Max Dehn, who as a Jew was 
expelled from the DMV in 1935. When invited to rejoin it in 1948, Dehn replies [Sie3, p. 393]: 

I cannot rejoin the Deutsche Mathematiker-Vereinigung, I have lost confidence that 
such an association would act differently in the future than in 1935 . . .  I am not afraid 
that the new DMV will again expel Jews, but maybe next time it will be so-called 
communists, anarchists or “colored people.” 

The second helper, Helmut Hasse, “a good German and National Socialist” as Van der 
Waerden describes him in his June 13, 1942, letter, was an excellent algebraist, a major 
contributor to class field theory. He was a member of the anti-Semitic Deutschnationale 
Volkpartei, led from 1928 by the eventual member of Hitler’s first cabinet Alfred Hugenberg. 
Segal argues [Seg] that “Hasse was no anti-Semite, and, for example [sic], remained friendly 
with [Hasse’s 1921 Ph.D. thesis advisor Kurt] Hensel until his death in 1941.” How can one 
example – or two, Hasse was friendly with his coauthor Emmy Noether – prove that Hasse 
was not an anti-Semite? Isn’t it typical for an anti-Semite to hate all Jews except for a few 
personal friends? 

Princeton Mathematics Professor Willy Feller told then young Gerard Washnitzer (Pro-
fessor Emeritus during my years at Princeton University) that Feller was present at Hasse’s 
lecture at the Oslo International Congress of Mathematicians (July 13–17, 1936). While 
giving a lecture on number theory and emphasizing great significance of class field theory, 
Hasse mimicked a Yiddish accent while uttering “Satz – beweis – satz – beweis.”7 

Hasse viewed “Hitler as a national hero” and on October 29, 1937, applied for membership 
in the Nazi Party [Seg, 124–167]. The fanatical Nazis required from its members not to have a 
“full-Jewish” ancestor living after 1800, whereas Hasse was a “1/16 Jew as a consequence of 
a baptized great-great-grandmother” (ibid.). Hasse appealed the rejection to Hitler himself 
(who did grant a few exceptions). As Hasse was a Korvet-Kapitän (Corvette Captain, 
equivalent to the US Lieutenant-Commander) serving in Nazi Germany’s War Navy starting 
in 1939 (and through the end of the war in 1945), the decision on his Nazi Party membership 
was postponed until after the war (ibid.). This put Hasse in a most opportune situation, and he 
took a full advantage of it: he was a card-carrying member of the Nazi Party during the Nazi 
era and claimed not being a Nazi after Nazi Germany lost the war. “Normal heroes” love to 
always be on top! 

Hasse expressed the most hateful attitudes toward people of other races and ethnicities. Let 
me share with you several vivid examples, some of which I published for the first time in 
[Soi47] and others appear for the first time here. 

Jacopo Barsotti told Princeton’s Gerard Washnitzer, that as a graduate student, Barsotti 
attended Hasse’s talk in Pisa after the start of World War II and before Italy’s collapse. During

6 https://www.researchgate.net/publication/301171280_Mathematics_Between_Research_Appli 
cation_and_Communication 
7 Recorded interview with Professor Gerard Washnitzer, Commons Room, Fine Hall, Princeton 
University, March 2004.

https://www.researchgate.net/publication/301171280_Mathematics_Between_Research_Application_and_Communication
https://www.researchgate.net/publication/301171280_Mathematics_Between_Research_Application_and_Communication


the talk, Leonida Tonelli asked Hasse about the fate of the Polish mathematicians, and in 
particular about Juliusz Schauder. Hasse replied,
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Poles should not do mathematics. They should work in coal mines and agricultural 
labor.8 

This event was independently confirmed to Washnitzer by other Italian mathematicians 
during the 1950 Cambridge (USA) International Congress of Mathematicians.9 

In March 15, 1939, letter to Harvard Professor Marshall Stone, Hasse urged the exclusion 
of the German refugees to the United States from serving as reviewers for the Zentralblatt für 
Mathematik: 

Looking at the situation from a practical point of view, one must submit that there is a 
state of war between the Germans and the Jews . . .  

“The state of war,” Herr Hasse? The state of war between armed to the teeth Nazis and 
unarmed innocent victims? Fortunately, there were American mathematicians (far from all) 
who understood the nature of the real war. As C. R. Adams reports (ibid.): 

Mr. Veblen insists that there is a war by the Germans against civilization. 

It is amazing that even many years after the war ended, during which the world learned so 
much about the crimes of Nazism, Hasse did not change his racist views. Segal, who presents 
much material on Hasse [Seg], describes how in the 1960s at Ohio State University, USA, 
Hasse claimed that “slavery in America had been a good institution for blacks.” 

I must quote here a letter [Lan2] published in Germany and the USA by Serge Lang, which 
graphically portrays Hasse’s views and behavior during the war and the Nazi occupation of 
France and Norway: 

I take this opportunity to put in the record some information concerning Hasse’s 
behavior after France’s defeat in 1940. In the fall of 1940, Hasse went to meet Elie 
Cartan at his home in Paris. Hasse was dressed in a German uniform. The only other 
person present was Elie Cartan’s son, Henri Cartan, whom I heard personally report the 

8 Hasse is here in a complete accord with the Nazi policies toward the Polish population. Richard 
C. Lukas writes [Luka]: “The German campaign against the Poles focused largely but not 
exclusively upon the elimination of anyone with the least political or cultural prominence. 
Years before their invasion of Poland, the Germans drew up lists of prominent Poles slated for 
execution or imprisonment . . .  The Nazi determination to obliterate the Polish intelligentsia 
resulted in wiping out forty-five percent of Polish physicians and dentists, forty percent of 
professors, fifty-seven percent of attorneys, thirty percent of technicians, and a majority of leading 
journalists.” [Let us add the Katyn Massacre, where the Soviet NKVD murdered ca. 21,000 Polish 
officers and intellectuals.] 
The famous French mathematician Jean Dieudonné [Die, p. 16] addresses specifically the fate 

of mathematicians: “In Poland the mathematical schools were physically annihilated, since half 
the mathematicians were massacred by the Nazis. They did not recover their standing until after 
1970.” 
9 Recorded interview with Professor Gerard Washnitzer, March 26, 2004; 3:30–5:30 P.M., 
Commons Room, Fine Hall, Princeton University. Confirmed by Washnitzer during Sunday, 
December 3, 2006, 12:45–2:30 interview, Commons Room, Fine Hall, Princeton University.
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encounter publicly in the late fifties, as follows. Hasse acted in a very friendly way, and 
proposed to Elie Cartan that French and German mathematicians should cooperate, 
independently of the circumstances which were otherwise occurring. Elie Cartan 
answered in an equally friendly fashion that it was an excellent idea, but that the 
Poles should also take part. Hasse then answered no, that the Polish people were a 
separate people with whom it was not possible to collaborate. Elie Cartan then answered 
that under these conditions, it was impossible to start a French–German mathematical 
cooperation. 

Some 40 years later, in 2000–2001, at the Max-Planck Institut in Bonn, I heard for the 
first time an account from the Norwegian mathematician Arnfinn Laudal, of a similar 
visit that Hasse made to Thoralf Skolem in Oslo. Laudal got the story from Skolem 
himself, and the story was confirmed recently by Skolem’s children. Hasse had shown 
up at Skolem’s home dressed in a German Navy [Korvette Kapitän] uniform, but was 
refused entrance by Skolem, on the doorsteps. Hasse had come with a proposition like 
the one he had made to Elie Cartan. 

There occurred a vigorous and high-voiced exchange between Skolem and Hasse. 
Thus, Hasse’s visit to Elie Cartan was not an isolated event. 

Helmut Hasse was not content to merely do mathematics in the Ivory Tower and believe in 
“Mathematik über alles.” No, Hasse took a full advantage of his status of a distinguished 
mathematician to spread the racist venom for decades, from the Congress of 1936 to the 
American visit in the 1960s. 

Yet, Peter J. Roquette (Ph.D. under Hasse, 1951) and Günther Frei (Ph.D. under Van der 
Waerden, 1968) portray Hasse as a man of the highest moral standing. How can one believe 
Roquette–Frei when they contradict the accounts by such universally admired scholars as 
Cartan, Skolem, Veblen, and Siegel? The examples of Hasse’s behavior and his bigotry I 
introduced here have been omitted by Roquette and Frei. Moreover, I read in Frei in disbelief 
[Fre, p. 65]: 

Fighting against politically-minded and fanatical students and striving for the conser-
vation of the scientific importance of the famous institute took most of Hasse’s time and 
energy . . .  In Hasse’s seminar with the young and gifted studentsWitt and Teichmüller – 
Siegel did participate later on – important articles on congruence function fields were 
written. 

“Fighting against politically-minded and fanatical students,” you allege? Fanatics were 
precisely the students Hasse and obviously Frei favor. Gifted as they may have been, Ernst 
Witt and Oswald Teichmüller were storm troopers, members of the notorious Sturmabteilung, 
the Assault Division, “Brownshirts.” 

With no disagreement from me, Frei calls Carl Ludwig Siegel “the most eminent mathe-
matician in Germany” [Fre, p. 65]. But then Frei omits or is ignorant of Siegel’s assessment of 
Hasse. Let me help my colleague Frei. On March 22, 1939, Siegel, having returned to 
Germany from the Institute for Advanced Study Princeton, wrote to Oswald Veblen [Seg, 
p. 165]: 

After the November pogrom, when I returned from a trip to Frankfurt, full of nausea and 
anger at the bestialities in the name of the higher honor of Germany, I saw Hasse for the 
first time wearing Nazi-party insignia! It is incomprehensible to me how an intelligent
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and conscientious man can do such a thing. I then learned that the foreign-policy 
occurrences of recent years had made Hasse into a convinced follower of Hitler. He 
really believes that these acts of violence will result in a blessing for the German people. 

Frei and Roquette with the collaboration of Franz Lemmermeyer edited in 2014 a new 
edition in English [FLR] of the correspondence between Artin and Hasse which they first 
published in 2008 in German [FR]. They did a fine job of mathematical commentary. 
However, an Old Russian proverb warns, “A spoon of tar can spoil a barrel of honey,” and 
the authors added a spoonful of tar to their commentary. Have Frei and Roquette addressed 
Hasse’s application to the membership in the Nazi Party, his strong support for Hitler, service 
as a Korvette Kapitän in the Obercomando der Kriegsmarine (The Supreme Command of the 
War Navy), instances of Hasse’s racism and anti-Semitism, etc.? Nothing of the kind is 
mentioned in the 2014 book. 

Frei apparently thinks that the best defense of Hasse accused of anti-Semitism is to flash a 
positive quote from a Jew. And so, he does precisely that, in the quote that refers to very early 
pre-Nazi times [FLR, p. 29]: 

Abraham Adolf Fraenkel, who like Hasse received his Ph.D. in Marburg under the 
supervision of Hensel, who was Hasse’s colleague in Kiel, and who later was rector of 
the Hebraic University in Jerusalem, writes in his book [Fra67, p. 153]: 

Personally, my experiences with Hasse were positive throughout, and I always found 
him to have a flawless character. 

This “persönlich” in Frei’s quote, by all logic of style begs “aber” (“however”) in the next 
sentence. And so, I order Fraenkel’s memoirs [Fra67] to check my conjecture, and voila: 
“aber” does open the very next sentence, and the paragraph ends in Fraenkel’s “dismay” (!) 
over Hasse’s Nazi period conduct: 

However, some years later, after he [Hasse] had become a professor at Göttingen, a 
crisis shook his life: one of his opponents found out that he had a Jewish [great-] great-
grandfather. Although the German racial laws only reached as far as the grandparents 
and besides, in his appearance and bearing he made a completely “Aryan” impression, 
he felt he was in an unbearable situation. He appealed to Hitler, who named him an 
honorary full Aryan along with some other outstanding, not purely Aryan scholars. 
Then, he joined the National Socialist Party, but after the war did not crave an alibi, in 
contrast to the majority of opportunistic careerists. In June 1946, when I met the most 
important British mathematician, G.H. Hardy and to my dismay heard these details 
about Hasse, Hardy was busy writing a letter to the British occupation authorities in 
Göttingen, demanding that he be restored to his position in view of his scholarly 
importance, after he had been dismissed from the University due to his party 
membership. 

So, why do Frei and Roquette go to such a great extent in fabricating a myth of loveable 
Hasse? Is it because for them Mathematik über alles and all moral concerns are negligible? Or 
is it because there was a severe shortage of heroic mathematicians in Nazi Germany? You 
want a hero, write about Erich Hecke. There is an eternal dispute whether mathematics is 
discovered or invented. There is no dispute – history ought not to be invented, gentlemen!
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Now that I have introduced the helpers, whose Nazi affiliation Van der Waerden knew 
well, we are ready to return to Van der Waerden himself. In his March 14, 1944, letter, Van 
der Waerden asks the DMV President Süss whether he should accept Utrecht’s offer. The 
Utrecht offer is apparently used in this letter by Van der Waerden as leverage for obtaining 
another position. Van der Waerden really longs for a professorship at Göttingen: 

Dear Herr Colleague! 
Please, allow me the liberty to approach you with the following personal matter. In 

the last few years I have repeatedly been subjected to difficulties that hurt me very much. 
I have repeatedly been invited to give many presentations abroad, the first time already 
before this war, but permission has every time been denied to me. I have been 
considered for an appointment in Munich, but the appointment did not come off. Now 
the Facultät in Göttingen has nominated me; but the actual appointment seems to 
miscarry again. I have just [sic]10 received an offer from Utrecht. Faced with the 
necessity to decide for or against accepting this call, the question arises whether the 
described above opposition is not an indication of the fact that from the authorities’ side 
my work in Germany is not wanted or at least not a great deal of worth is placed in it. 

I would certainly personally strongly regret that, because I spent my best energies for 
Germany, which I applied to the German Science [die deutsche Wissenschaft]. I have 
written practically all my works and books in the German language, I have learned and 
also taught a major portion of my mathematics in Germany; I have a German wife, and 
my children were raised pure Germans [see facsimile]. 

As a sign that I should not give in to my fear, I hope that I would really receive a call 
to Göttingen, on which I personally place a great deal of value. 

If you in your position as a head of the DMV, can take a stand in my question, I would 
ask you to get in contact with Herr Hasse (Blu-Wannsee, Am Sandwerder 7), with whom 
I have spoken about this call to Göttingen and to whom I am also sending a copy of this 
letter. 
With my best greetings and thanks 
Your very devoted 
B.L.v.d. Waerden 

10 Van der Waerden puts a smokescreen here. He informed his Dekan and Rektor about the 
Utrecht offer on January 4, 1943, i.e., over 14 months earlier. Moreover, on February 25, 1944, 
or18 days prior to this letter, Van der Waerden informed his Dekan, Rektor, and the Minister of his 
final decision not to accept the Utrecht offer and stay in Nazi Germany until the end of the war.
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B. L. van der Waerden’s “Germanness,” a facsimile of a fragment of the letter to Süss. 
(Courtesy of ETH) 

This letter suggests that perhaps Van der Waerden does not perceive himself as Dutch any 
more but instead belongs to the German culture with all his heart and soul, with his “best 
energies for Germany” applied “to the German Science,” with writing practically all his 
“works and books in the German language,” with teaching “a major portion” of his “math-
ematics in Germany,” with “a German wife,” and with “children raised pure Germans.” 

His son, Hans van der Waerden, shows a great insight in his comments about this 
transformation in his September 10, 2010, letter to me [WaH2]: 

Another of your key documents is my father’s declaration of his attachment to Germany 
(German mathematics, German culture, Germany as a whole). Indeed, by this time, it 
seems that my father, without becoming a nationalist like Heisenberg, had come to feel 
like a German citizen, losing much of his attachment to his Dutch origin. Becoming 
something like an average non-fascist German, his feelings in the years 1943/44, when 
the outcome of the war was uncertain – and he was pondering over the Utrecht offer – 
might be summarized as follows: “Let us be patient, things will change, the war will be 
over some day, maybe by some treaty acceptable to both sides, when they are suffi-
ciently exhausted and disgusted by mutual mass-murdering; and probably after some 
serious defeats this horrible Nazi regime will be overthrown and Germany – my 
Germany – can become again a decent member of the international community.” 
This, at least, was what thousands of intellectuals were silently hoping [for], as can be 
proved by numerous documents produced after the war. No reason to believe that my 
father differed from them.
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Back to the letter; Van der Waerden asks Süss to use his influence with the Nazi authorities 
to help Van der Waerden materialize his Göttingen dream and in particular to contact the other 
helper Helmut Hasse at Göttingen, to whom Van der Waerden has already written. On March 
31, 1944, Rektor Süss promises help “not only in a personal, human sense, but as Führer of 
the DMV”: 

Very esteemed Colleague, 
Your letter from 14 March, which I found waiting here yesterday after two weeks’ 

absence, in the meantime is forcing me continually to reflect a good deal and is giving 
me a lot to think about. At least I would like to express this right away, so you do not 
believe that I have little regard for your concerns or do not feel them myself. Funda-
mentally I can assure you now that I will try to help you in the limited way that is 
possible for me to do so, not only in a personal, human sense, but as Führer of the DMV. 
Mr. Hasse has just written to me too about the entire matter after he spoke with you. I 
will need a few days to find a quiet moment I need to think through the situation before I 
dare to say anything more precise. 

Five weeks later, on May 19, 1944, Süss comes again: 

Very esteemed, dear colleague, 
Weeks ago I gave a brief answer to your letter from the middle of March. In the 

meantime I have repeatedly thought things over and, also prompted by a letter from 
Mr. Hasse and other considerations, have had a cause to reflect about that. It would 
likely be best if we could speak about all the issues. This is one reason why I would like 
to be permitted to invite you to a lecture in our little colloquium in Freiburg. Then 
afterwards we could find time to consult with one another, as I have in mind. 

Thus, Süss leaves specifics of his help to a personal meeting with Van der Waerden, and 
thus out of our historical reach. From his next letter we only learn that on Monday, July 
10, 1944, Van der Waerden is to give a talk “Babylonian and Greek Algebra” at Süss’ Albert 
Ludwig University of Freiburg. 

What about Helmut Hasse, who corresponded with both Van der Waerden and Süss 
regarding the Dream of Göttingen? I have been able to find two of his letters to Van der 
Waerden. In the letters, the sender is stamped as “Korv-Kap (Korvette Kapitän) Prof. 
Dr. Hasse, Obercomando der Kriegsmarine (The Supreme Command of the War Navy), 
Berlin-Wannsee.”11 During 1939–1945, Hasse has been the Commander of the department 
FEP III of the German Navy Ordnance (Marinewaffenamt). On June 23, 1944, Hasse writes to 
Van der Waerden on the Military Postcard with a round seal of Obercomando der 
Kriegsmarine, in a handwritten beautiful Gothic style, known as “Sütterlin.” He offers Van 
der Waerden to “harness” himself in Nazi Germany’s war research and has already arranged 
such a war research position with the people who can make it happen for Van der Waerden 
(underlines are Hasse’s): 

Dear Herr van der Waerden, 
I am  very happy that you have had such a tremendous success. Right away I let 

Dr. Fränz know by word of mouth and arranged with him that you should be given an 

11 Somebody must look into Hasse’s active work on torpedoes for the Nazi War Navy.
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official research commission from the office in charge (BHF = Bevollmächtigter der 
Hochfrequenzforschung) [The Command of High Frequency Research]. I hope that is 
all right with you. To me it seems in other regards favorable for you to let yourself be 
“harnessed” in this way into the current research projects. I was also a while ago in 
Freiburg and spoke with Süss among others about you. You will hear from him how 
things are in G. [Göttingen]. A decisive change in the situation there has not happened 
since our last conversation. 
With fond regards and best wishes, 
Your H. Hasse 

Thus, Nazi War Navy Captain Hasse from the Supreme Command of the War Navy has 
arranged a Nazi military research position for Van der Waerden. In his “Defense” after the 
war, Van der Waerden will write that he has never taken part in military research – and I trust 
him. However, a Nazi war-related job has been created for him by his Nazi helper Hasse. “A 
strong opponent of the Nazi regime” ought not to ask the Nazis for favors. 

Van der Waerden deserved a professorship at Göttingen, but his Dream of Göttingen never 
materialized. His friend Werner Heisenberg, who did not particularly dream of Göttingen, 
easily landed there after the war and the six-month Farm Hall detention. Nobel Prize has its 
privileges. 

The end of the war finds the Van der Waerden family – Bartel, Camilla, and their children – 
in the Austrian countryside at Tauplitz, near Graz, in the house of Camilla’s mother 
[Dol1]. Bartel does not wish to return to Leipzig; we will discover his reason later. He and 
his family allow the American liberators to transport them, as displaced persons, from Austria 
to Holland, where Bartel thinks he still has that job offer from Utrecht University. After all, in 
the two and a half years of Utrecht’s courting him, he has never said “no” – to them! Let us 
follow Van der Waerden and his family to Holland.



-1_41
505

Chapter 41 
In Search of Van der Waerden: Amsterdam 
Year 1945 

, 

41.1 Home, Bittersweet Home 

Following the war’s last “three months, distant from all culture and barbarism”
1 in the 

Austrian Alps, the Van der Waerdens are liberated by the American Armed Forces. Bartel 
is not thrilled about the hardships of their liberation, as he describes it on July 1, 1945, in a 
letter to Otto Neugebauer2 from the camp for displaced persons at the town of Sittard in the 
southernmost Dutch province of Limburg3 : 

When the Americans had liberated us, we were like cows pushed together in cattle 
wagons and transported to Holland, my wife, 3 children and I. The transport lasted 
16 days, it was horrible. The children were of course sick but then recovered here in 
the camp. 

Months later, in November 1945, Van der Waerden is still angry at the Americans, whose 
“friendly offer” turned into a distasteful experience, as he writes to Richard Courant of 
New York4 : 

When the Americans came, and we were given a friendly offer to get a direct trip to 
Holland, the misery began. Three weeks we spent in hard freight cars [G€uterwagen] and 
in dirty unsanitary camps with poorly prepared and hard to digest food.5 

1 Van der Waerden, July 1, 1945, letter in German to Otto Neugebauer; Library of Congress, 
Manuscript Division; possibly from the Veblen Papers. 
2 Otto E. Neugebauer (1899–1990), a historian of mathematics, an anti-Nazi, the founder of 
Zentralblatt für Mathematik (1931) and of Mathematical Reviews (1940). 
3 Van der Waerden, July 1, 1945, letter to Otto Neugebauer; Library of Congress, Manuscript 
Division; possibly from the Veblen Papers. 
4 November 11, 1945, Van der Waerden’s letter in German to Richard Courant; ETH, Hs 652: 
10649 (unfinished and unsent, 2 pages survive). The complete 3-page letter was sent on November 
20, 1945; New York University Archives, Courant Papers. 
5 Throughout the book, strikethrough text represents words lightly crossed out in the original as if 
for the purpose to remain easily readable by Van der Waerden and consequently by us. 
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Van der Waerden knows, however, that by comparison with many other survivors, he has 
done all right, or perhaps, he does not wish to appear as a whiner to his friend Richard 
Courant, and so he crosses out the above description and replaces it with a moderated one: 

The repatriation was less than attractive. Three weeks in freight wagons and camps, but 
of course one can survive that. 

On July 1, 1945, Bartel van der Waerden is about to become a free man. He expects to get a 
ride from the camp to Laren very soon, for in writing on that day from the Sittard camp to his 
American colleagues Lefschetz, Veblen, and Neugebauer, he gives the Breidablik return 
address. Indeed, Breidablik is ready to provide the roof over the heads of Bartel and Camilla 
and their children. In a few days, the Van der Waerdens make it to this magnificent house. 
Now they need to find bread for their table. 

The Van der Waerdens have had it much easier in Germany during the war than the people 
of the occupied Netherlands. After the five years of occupation and a devastating last winter, 
the so-called Hongerwinter (“The Hunger Winter”), when some 30,000 people died of 
starvation and malnutrition, life in the Netherlands immediately after the war is no bed of 
roses. Bartel assesses it on July 1, 1945: 

Holland is freed from oppression, but it is – like Germany and Austria – in a desolate 
state. Food supply is sufficient, but all other necessities of life are lacking. 

Postwar life in Holland must have been even harsher on the Van der Waerdens, who 
arrived in Holland with practically nothing. Even half a year later, they are so short of bare 
necessities that Bartel has to step on his (considerable) pride and on December 29, 1945, ask 
Richard Courant in New York for help: 

I thank you very much for sending me the two volumes of Courant–Hilbert. Your 
kindness gives me courage to utter another wish. We are so short of underwear and 
warm clothes for the children. Helga is 15, Ilse 11, Hans 8 years old. My father’s house 
is extremely cold. Perhaps your wife has got some wool or things the children don’t 
wear anymore? They can be as old and ugly as they may: my wife can change nearly 
anything into anything. And further: Would it be possible to send a sheet (for a bed)? 
We have only 4 sheets for 5 beds, and it is quite impossible to get any here. 

I hope that you and your wife will not be angry with me for asking so much. If it is 
difficult for you, or if your people need the things more than I, please don’t send 
anything. 

Bartel gets help from his large family. His numerous aunts send him apples and things. On 
December 29, 1945, the younger brother of Bart’s father, Uncle Herman van der Waerden, 
offers to make shoes for Bart’s son Hans, who without shoes cannot even go out. Hans van 
der Waerden responds to my question about his postwar years in Holland [WaH1]: 

Concerning my life as a boy in Laren, which is within the period you are interested in, is 
the only time I clearly remember. For me, far away from the burden of political past, it 
was a wonderful time, that makes me feel homesick ever since, as soon as I cross the 
border to the Netherlands or hear someone talk my beloved childhood language.
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41.2 The New World or Old? 

I do not mind his remaining a German Professor 
until the end – 
I do mind his remaining a German Professor at 
the beginning! 

– Otto Neugebauer 

After the war, Van der Waerden could have returned to Leipzig University. There he would 
have been given a hero’s welcome, for he stayed with Germany to the end of the war. Why did 
he not return to Leipzig? 

This question occupied me for many years, until unexpectedly I found the answer in Van 
der Waerden’s letter to the new Princeton mathematics chair Solomon Lefschetz. Even 
Lefschetz never learned the answer, for it was contained only in the handwritten copy Van 
der Waerden kept to himself, in which the answer was written and then lightly crossed out so 
that Van der Waerden – and consequently I – can read it! I learn here – and nowhere else – that 
Van der Waerden does not wish to go back to Leipzig because Leipzig is now in the Soviet 
zone of occupation, and he has no desire to live under the Russian rule. As someone who has 
lived under the Soviet rule, revoked Soviet citizenship, and started life all over as a refugee in 
America, I can relate to Van der Waerden’s – and his friend Heisenberg’s – distaste for the 
Russian tyranny. However, was the Nazi tyranny, which they both accepted, any better? 

Van der Waerden does not wish to stay in Holland, Austria, or Germany due to their 
“desolate state.” He believes he could get a position in Holland, likely referring to his old 
never accepted Utrecht’s offer but prefers to come to America. Unlike in 1933, Van der 
Waerden is now very interested in Princeton, for he writes this letter in English to Lefschetz 
right upon his return to Holland, while still in the Sittard camp for displaced persons, on July 
1, 19456 : 

Dear Professor Lefschetz! 
Peace at last, thank God! By the help of our mighty allies, Holland is freed from 

oppression, but it is – like Germany and Austria – in a desolate state. Food supply is 
sufficient, but all other necessities of life are lacking: not even railways are going. 
Scientific work and international contact are practically impossible. 

In March, my home in Leipzig being destroyed by bombs, I could escape with my 
family from the bomb hell to Austria. From there we have just been repatriated to 
Holland. Returning to Leipzig, which belongs now to the Russian zone of occupation, 
seems impossible and, even if possible, not advisable. I can get a position in Holland 
probably but Holland is in a heavy political and economic crisis, as I said before. For all 
these reasons I should like to go temporarily or definitively to America. 

In particular, Van der Waerden wishes to be invited to Princeton again: 

Several years ago, you encouraged me to write to you if I wanted to be invited to 
America. In the year 1939 [actually in 1933] I was invited to come to Princeton as a 
guest for half a year. Do you think that this invitation could be repeated? I should enjoy 

6 Van der Waerden to Lefschetz, July 1, 1945; handwritten letter in English; ETH, Hs 652:11346.
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very much getting into contact with the American mathematicians again, especially with 
those of Princeton. I shall accept with joy any invitation of this kind. . .  

With best greetings to Veblen, [von] Neumann and the other Princetonians. 
Yours very sincerely 
B.L.v.d. Waerden 

The same day, July 1, 1945, Van der Waerden writes a nearly identical letter to Oswald 
Veblen at the Institute for Advanced Study Princeton. The only difference is in the justifica-
tion for the desire to come to America: in addition to “a desolate state” of Holland, Germany, 
and Austria, Van der Waerden pays a high praise to mathematics in the United States: 

I have been cut off from international mathematics, whose heart pulses in America, for 
five years, and I want to regain contact as soon as possible. 

The third July 1, 1945, letter Van der Waerden sends to Otto Neugebauer. The first reply, 
the August 20, 1945, letter from Lefschetz, is not promising: 

Dear Dr. van der Waerden: 
Your letter of July 1st reached me in due time. I was very sorry to hear about your 

losing your home in Leipzig and can well understand your desire to come to the United 
States (who does not feel the same way in Europe just now?). However, we are in a 
complete state of flux here and the time does not seem very propitious for bringing in 
scientists from the outside, especially professors in former German universities. I have 
transmitted copies of your letter to some mathematicians that know you, in particular to 
the members of the Institute for Advanced Study, for the pre-war invitation that you 
mention can only have come from them. They have informed me that there is nothing 
available at the present time. One of them did express the hope that you would accept the 
position at Utrecht since, no doubt, you are very badly needed there. I confess that I 
agree a little bit with him. 
Yours sincerely, 
S. Lefschetz 

Van der Waerden could not have found Lefschetz’s letter encouraging. No doubt he senses 
a thinly concealed irony behind Lefschetz’s rhetorical question: “Who does not feel the same 
way in Europe just now?” Lefschetz is even blunter when he acknowledges that the time is not 
“very propitious for bringing in scientists from the outside, especially professors in former 
German universities.” Lefschetz seems to imply that Van der Waerden made a wrong choice 
by staying in Nazi Germany and now has to pay the price for being on the wrong side of the 
divide during the war. In Lefschetz’s “defense,” one should note that he treated sarcastically 
the vast majority of humans around him. 

I must add that in his reply Lefschetz is factually wrong: not only did the 1933 invitation 
come from Princeton University and not from the Institute for Advanced Study, but Lefschetz 
himself attended the meeting of the Princeton’s Research Committee that decided to invite 
Van der Waerden. 

A few months later Princeton starts looking for an algebraist, but Lefschetz does not even 
inform Van der Waerden, for he has someone else in mind; he is willing to even curb his usual



sarcasm and charm that someone. On Wednesday, October 17, 1945, Lefschetz writes to the 
algebraist of his choice, who at that time is at Indiana University, Bloomington7 : 
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Dear Artin, 
Owing to recent losses in our department, to which now must be added Wedderburn’s 

retirement (soon to be official), I feel very strongly that we should add a major scientist 
to our staff. You are the first person of whom I thought in this connection and, if 
possible, I would just as soon not go further in my search. Your achievements as a 
mathematician, together with your well-known sympathetic influence on the younger 
men, do indeed make you the man of the hour. 

Two days later, on October 21, 1945, Emil Artin happily responds8 : 

Dear Lefschetz: 
It is with very great joy that I received your letter and I feel deeply honored that you 

are thinking of me. I would not be a mathematician if I would not feel greatly interested 
and attracted by a chance to go to Princeton. Princeton is now after all the center of all 
mathematics. 

As if especially for the sake of my book, Artin then asks: 

How did the case of Van der Waerden go on after his letter? I am here so isolated that I 
get the news only after long detours. I[s] something specific known of the German 
mathematicians? 

Artin’s question shows that Lefschetz widely circulated Van der Waerden’s July 1, 1945, 
letter asking for a Princeton job, likely together with Lefschetz’s sarcastic reply. On October 
27, 1945, Lefschetz informs Artin that Van der Waerden has not been invited to Princeton9 : 

Nothing has been done regarding Van der Waerden – nothing, at least from this side. 

Surprisingly, Lefschetz then shows knowledge of the secret detention in Farm Hall, 
England, of Heisenberg and other leading German physicists, who during the war were 
involved in research on atomic bomb and reactor: 

We have no information about German mathematicians whatsoever. I did learn two days 
ago that Heisenberg and all the nuclear physicists are being detained though well 
treated. Some more of “maladie du siècle” [disease of the century]. 

Before replies from America could arrive, Van der Waerden writes two letters to his good 
friend Heinz Hopf, a (Jewish) German mathematician, now a Swiss citizen and professor at 
the ETH in Zurich. I have been unable to locate these letters, but according to Hopf’s August 
3, 1945, reply, they were written on July 19 and 21, 1945. Hopf opens his letter with praising 
Switzerland and its neutrality: 

Here in Switzerland one is of course less fanatical, exactly this in my opinion, a 
particularly important and fortunate consequence of our neutrality. . .  

7 Typed letter in English; Personnel File of Emil Artin, Princeton University. 
8 Handwritten letter in English; Personnel File of Emil Artin, Princeton University. 
9 Typed letter in English, Personnel File of Emil Artin, Princeton University.
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At the end of the letter, Hopf adds his personal tribute to Switzerland: 

My wife and I are doing fine. . .  we are happy that we are Swiss. 

It is plausible that this praise of the Swiss neutrality and Hopf’s happiness with Swiss 
citizenship plant in Van der Waerden a seed of interest in living in Switzerland. Hopf is 
unhappy that the Swiss consider – as they should in my opinion – “Hitlerism” to be a part of 
the German culture: 

I beg you, by the way, not to misunderstand the above comment about neutrality, the 
open opinions here are completely unified against Germany, the bitterness about the 
Nazis is gigantic, but the boundaries between Hitlerism and the German culture are not 
always observed here either. 

As the author of this narrative, I am compelled to ask: Professor Hopf, and what are the 
alleged boundaries? Wasn’t Nazism (to a great regret of many) a product and part of the 
German culture every bit as Marxism or music of J.S. Bach and Beethoven were? Of course, 
there is high culture and low culture, but both of them are parts of culture in a broader sense of 
the word, and who can – or should – split them apart? 

Hopf understands the liability of Van der Waerden’s spending the entire Nazi era in 
Germany and offers Van der Waerden a line of defense: 

One would perhaps argue this way: he has worked as a professor in Germany even 
during a period of abuse of his homeland by Germany because he believed that he could 
thus contribute somewhat to the saving of the culture in Europe; we respect that; but he 
must be consistent and extend this attempt to salvaging culture in Germany. I believe it 
would be very difficult to argue against this argument. 

Finally, Hopf scolds the Dutch for not immediately jumping on the opportunity to hire Van 
der Waerden: 

When the Dutch, whom you can approach with clean conscience and offer them your 
services, do not want you, then in my opinion they hurt themselves, and that is their 
business. I consider it certain that in a few years, when the waves calm down a bit, 
somewhere in the world you will work again in the profession – assuming naturally that 
you with your family can economically survive until then, which I am not sure about. 

Van der Waerden will quote these lines to the Dutch almost immediately. In 1945, 
Switzerland did not allow even a brief visit to the former Nazi Germany Professor Van der 
Waerden. As we will see, the Swiss will drop their “neutrality façade” the very next year. 

Sometime in July–August 1945, Hopf writes about Van der Waerden’s plight to his friend 
and famous German historian of mathematics Otto Neugebauer, who now lives in the United 
States and edits Mathematical Reviews that he created in 1940 after Springer-Verlag put 
pressure on Neugebauer to Nazify Zentralblatt für Mathematik. On August 15, 1945, 
Neugebauer replies to Heinz Hopf in English as follows: 

I have heard directly from Van der Waerden. I do not mind his remaining a German 
Professor until the end – I do mind his remaining a German Professor at the beginning! 
However, I feel very differently than the Lord and [thus] I do not intend to do anything 
positive or negative.
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On November 11, 1945, Van der Waerden writes to his mentor and friend Richard Courant 
in New York about the bombings of the late months of the war, his tough repatriation, and his 
new job at Royal Dutch Oil, also known as Royal Dutch Shell, or simply Shell. On December 
13, 1945, Courant sends a guarded reply in English. Before deciding whether to renew their 
old friendship, Courant desires to know why Van der Waerden has chosen to stay in Nazi 
Germany: 

I wish very much that there were an opportunity of talking to you personally and for that 
matter to other old friends who have been in Germany during the war. Of course, so 
much has happened in the meantime that in many cases much will have to be explained 
before one can resume where one left off. Your friends in America, for example, could 
not understand why you as a Dutchman chose to stay with the Nazis. 

Moreover, Courant makes his request for an explanation public: at the top of the letter, I see 
a handwritten inscription: 

cc. sent to: Reinhold Baer, U. of Ill. Urbana 
Herman Weyl – Inst. for Advanced Study Princeton 
Veblen 

Courant’s papers include both Van der Waerden’s November 20, 1945, handwritten letter 
and its typewritten copy, which suggests that Courant had it typed and copies sent to the same 
addresses as his reply. As Lefschetz before him, Courant too apparently believes that Van der 
Waerden made the wrong choice. On December 20, 2004, I had an opportunity to ask over the 
phone Ernest Courant, the elder son of Richard Courant and a prominent nuclear physicist in 
his own rights, a natural question: “What did your father think about Van der Waerden?” He 
replied as follows, as I jotted down his words: 

He [Richard Courant] considered him [Van der Waerden] a great mathematician and 
was a bit critical of him for being perhaps too comfortable in Nazi Germany. 

Thus, America and Switzerland have to wait. Beggars could not be choosers, and so 
Dr. Van der Waerden is now – finally – willing to seriously entertain a professorship in his 
“desolate” (his word) Homeland. Van der Waerden is up for big surprises, as we will see in 
the next few sections. He has returned to his homeland as if an alien, not understanding the 
psyche and the mood of the Dutch people, who experienced horrific five years of occupation. 
As the historian Louis de Jong sums up [Jon], 

The Germans succeeded by and large in exploiting the economic potential of the 
Netherlands, and they succeeded in deporting most of the country’s Jews. 

I should add, some 80% of the Dutch Jews did not survive the war and the Holocaust. De 
Jong continues, 

Their [Germans’] attempt at Nazification, however, failed miserably,10 and they were 
totally unable to prevent the growth of a flourishing underground movement, whose 

10 De Jong specifies elsewhere in his book (p. 33), “The Dutch Nazi movement never won the 
support of more than 1.5 percent of the Dutch population.”
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three main achievements were to keep up people’s morale (principally through the 
underground press); to care for some hundreds of thousands [!] of people who were 
living in hiding; and to provide the Allies with vital military information . . .  

Nations of heroes do not exist. But there were among the Dutch tens of thousands of 
ordinary human beings, men and women, who did save the country’s soul. 

41.3 “The Defense” 

Some of the stories are difficult to believe. Part of 
all this is the way people always talk about their 
past. The reasons they give for their behaviour in 
the past may be just inventions, colored by how 
history took its course. 

– Nicolaas G. de Bruijn 

Van der Waerden expects that the Utrecht chair, first offered to him in December of 1942, 
is still waiting for him. He also does not mind a chair at Amsterdam. However, following the 
liberation, the Militair Gezag (Military Authority) installed Commissie van Herstel at each of 
the five Dutch universities, which gradually became known as College van Herstel (Recovery 
Board, or Restoration Board), formed to advise the Military Authority on how to act against 
collaborators and other pro-German professors and staff members, and when the university 
could be reopened. It was expected that all suspect staff would be removed in a few months’ 
time. In fact, the removal took much longer. I am grateful to Dr. Peter Jan Knegtmans, The 
University Historian at the University of Amsterdam, for the information on College van 
Herstel and the workings of the City of Amsterdam, contained in his e-mails [Kne4] and 
[Kne5] to me. The Dutch postwar educational and governmental systems were a “jungle,” and 
it has been invaluable to have such a uniquely qualified jungle guide. 

Utrecht University’s College van Herstel en Zuivering (Board of Recovery and Purifica-
tion), as it was called there, was installed on 18 June 1945, while the University of 
Amsterdam’s College van Herstel (Board of Recovery) was installed on June 8th, 1945. At 
the time the University of Amsterdam belonged to the City. Yet B. en W., the Executive, 
consisting of the Burgemeester en Wethouders (mayor and at the time 6 aldermen), could not 
appoint professors; only the city council that numbered 45 could appoint them. Moreover, an 
appointment of a professor needed a Royal assent. The Queen could not give her assent if the 
government did not submit to her a request for assent. On the other hand, the government 
would not submit a request for assent if there was even a slight chance that the Queen would 
refuse it, as she had a few times during those postwar years. 

Originally Dutch, Professor of History of Mathematics at the Massachusetts Institute of 
Technology Dirk J. Struik (1894–2000) maintained close ties with the leading Dutch col-
leagues and based the following 1995 statement to me [Str] on a letter he had received from 
Jan A. Schouten in 1945–46:
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Though he [Van der Waerden] stayed at Leipzig University during the Hitler days, he 
was able to protect Jewish and left wing students.11 This was brought out after the war 
when his behavior in Leipzig was scrutinized by a commission of his peers in the 
Netherlands. He was entirely exonerated. 

On April 12, 1995, I quoted this statement in my letter to Professor Van der Waerden and 
asked him to describe for me in detail this “commission of his peers,” its membership and 
charge. On April 24, 1995, Van der Waerden mailed his reply [Wae26] (see the facsimile of 
his letter in this section): 

Before your letter came, I did not know that a commission was formed to investigate my 
behaviour during the Nazi times. 

B.L. van der Waerden, April 24, 1995, letter to Alexander Soifer 

11 As we have seen, Van der Waerden spoke against firing of Leipzig’s Jewish professors in May 
1935 and published papers of Jewish authors in the Annalen until 1940. I have found no evidence 
of him protecting “Jewish and left wing students,” and Van der Waerden never claimed it himself.
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Many years later I discovered that the University of Amsterdam’s College van Herstel 
(CvH) did investigate Van der Waerden, and the City executive board, B.&W., wrote about 
Van der Waerden to CvH, a de-Nazification board.12 Van der Waerden knew about the 
investigations, for on July 20, 1945, just a few weeks after he returned to Holland, he 
wrote in his own hand his “Defense” and forwarded it to the Amsterdam’s College van 
Herstel, and also to the Utrecht’s College van Herstel en Zuivering. This Van der Waerden’s 
defense of his reasons for staying in Nazi Germany and his activities in the Third Reich is a 
most important testimony, never discussed in historical scholarship before 2004 [Soi6]. I feel 
compelled to include the translation of this Dutch handwritten document in its entirety, with 
my commentaries. You can see its facsimile in my 2015 book [Soi47]. 

41.3.1 Defense 

Since 1931 I have been a Professor at Leipzig University. The following serves as an 
explanation as to why I stayed there until 1945: 

1) From 1933 till 1940 I considered it to be my most important duty to help defend 
the European culture, and most especially science, against the culture-destroying 
National Socialism. That is why in 1933 I traveled to Berlin and Göttingen to protest 
the boycott of Landau’s classes by Göttingen Nazi students. In 1934[1935] Heisenberg 
and I strongly protested against the dismissal of 4 Jews in a faculty meeting at Leipzig. 
Because of that I got a reprimand from the Saxon Government (Untschmann) and an 
admonition that as a foreigner I should not interfere in German politics. What my wife 
and I have personally done to help Jewish friends with their emigration is not relevant 
here, but what is, is that as [an] editor of the Math. Annalen I accepted until 1942 articles 
of Jews and “Jüdische Mischlinge” (Nazi term for people of Jewish and Aryan mixed 
blood), furthermore that in the Gelbe Sammlung [Yellow Series] of Springer which I 
was partially responsible for, an important work by a Jewish author appeared in 1937 
(Courant-Hilbert, Methoden der Mathematischen Physik II), and that in 1941 I was the 
Ph.D. advisor of a non-Aryan. In 1936 [1935], when my esteemed teacher Emmy 
Noether died, I pointed out the great merits of this Jewish woman. 

I could not have known in advance that all this would be like “punching a brick wall” 
[vechten tegen de bierkaai] and that the Nazis would drag the entire German culture 
with them into their destruction. I still hoped that the German people would finally see 
reason and would put an end to the gangster regime. Meanwhile my work was not 
altogether for nothing because my students, such as [Herbert] Seifert, Hans Richter, 
Wei-Liang Chow, Li En-Po, Wintgen, etc., whose dissertations were accepted in the 
Math. Annalen, have done an excellent work at Leipzig. If I had not been in Germany, 
these [students] would likely not have encountered the problems that I have given them. 

12 Dr Knegtmans [Kne2] refers to the April 17, 1946, letter from B. en W. of Amsterdam to CvH, 
Archief Curatoren nr 369, which says that “the [Van der Waerden’s] appointment did not go 
through also because the Minister had told the City Council beforehand that he would not ratify 
it.”
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As Hopf advised, Van der Waerden justifies his staying in Nazi Germany by stating that it 
was his “most important duty to help defend the European culture, and most especially 
science, against the culture destroying National Socialism.” However, as is evident from 
Hopf’s reflection, many of Van der Waerden’s contemporaries found it difficult to separate 
“German culture” from “Hitlerism.” Given Van der Waerden’s scruples regarding “the 
gangster-regime” (his words), his fellow scientists – then and now – considered his willing-
ness to serve that regime naïve at best and hypocritical at worst. Van der Waerden continues 
his “Defense” with part 2, dedicated to the five years of the German occupation of Holland: 

This all may serve for closer understanding of my attitude towards the Nazis. What I 
should explain to the Dutch people is, however, not my actions before 1940, but those 
after the Netherlands had been attacked by Germany. 

2) From 1940 to 1945. After the breakout of the war with the Netherlands, I was first 
locked up and then released on the condition that I do not leave Germany. So I was 
practically in the same position as those who were forced laborers in Germany. 

If I had given up my position, then I would have probably been forced to work in an 
ammunition factory. 

To say that a university full professor was “in the same position as those who were forced 
laborers in Germany,” was a dramatic exaggeration, and it likely appeared as such to the 
Dutch who read the Defense. 

I have never worked for the Wehrmacht [the German Army], I have never given a class 
or worked on things that could be used for military purposes. 

While we have already learned from the June 23, 1944, postcard, that German War Navy 
Korvette Kapitän Prof. Dr. Helmut Hasse had arranged a war-related job for Van der Waerden 
in the Command of High Frequency Research, I have no reason to think that Van der Waerden 
accepted that war-related job. 

However, Van der Waerden has taught students, many of whom may have served the 
Wehrmacht and some definitely “worked on things that could be used for military purposes.” 
For example, Professor of History of Mathematics at Frankfurt University Moritz Epple 
informs us in his report on my manuscript of [Soi47] that Herbert Seifert, Ph.D. 1932 under 
Van der Waerden, volunteered for war work at the Institut für Gasdynamik, which was “a part 
of Luftfahrtforschungsanstalt Hermann Göring at Braunschweig, one of the major facilities 
of aviation research in Nazi Germany, built between 1936 and 1938 ... It was one of the most 
important places in Nazi Germany for developing knowledge about supersonic aircraft.” 

Besides, by working in Nazi Germany’s Civil Service, Van der Waerden contributed to 
“the gangster regime” and lent his credibility and acclaim as a distinguished scientist to that of 
the Third Reich. 

In 1943[December 1942] the Faculteit of Physics and Mathematics at Utrecht asked me 
whether I would accept an appointment as a Professor there. I asked them to postpone 
the matter if possible until after the war, because I did not want to be appointed by the 
Van Dam department. 

It suffices to point out here that coming home at the Utrecht Faculty request, even with the 
approval by the Nazi-collaborating Minister Jan van Dam, would have been much better for



Van der Waerden’s reputation in his Homeland than continuing to serve the Third Reich to 
the end. 
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I do not need to add to this that I have never been a member of any NS [National 
Socialist] organization or have sympathized with them, because that is self-evident for a 
decent thinking human being. It was commonly known in Germany that I was not a Nazi 
and because of that the government distrusted me and did not give me permission to go 
to the Volta Congress in Rome in 1939, and to give lectures in Hungary or to French 
prisoners of war, or to partake in the Congress of Mathematicians in Rome. 

This is true, however, the Nazi government did allow Professor Van der Waerden to travel 
inside and outside Germany: for example, to travel to Holland in 1933, 1935, 1938, 1939, 
1940, 1942, and possibly in 1944. Moreover, on some of these trips, for example in 1935 and 
1939, he was accompanied by his entire family and could have remained in Holland. 

The Faculty at Munich suggested me as a successor to Carathéodory, but the party 
authorities declared me “untragbar” [intolerable], and the appointment did not happen. 

Also, my wife, who is Austrian, has been strongly opposed to the Nazi regime from 
the very beginning. 

Laren, N-H [North-Holland], 20 July 1945 B.L.v.d. Waerden 

Indeed, in the Munich deliberations Van der Waerden was perceived as a philo-Semite, and 
this must have cost him the Munich job. We will attempt to gain some insight into Mrs. 
Camilla van der Waerden’s views in the next section. 

With the “Defense” submitted, Van der Waerden hoped to get a professorship at Utrecht or 
Amsterdam. Van der Corput was the key man to this end. 

41.4 Van der Waerden and Van der Corput: A Dialog in Letters 

Why would I go to Holland where the oppres-
sion became so intolerable and where every 
fruitful scientific research was impossible? 

– Bartel L. van der Waerden 

It was not at all fitting for a Dutchman to 
make mathematics in Germany flourish in 
those years when Germany was preparing 
for war and was kicking Jews from every 
position and place. 

– Johannes G. van der Corput 

Johannes Gualtherus van der Corput (1890–1975) was a professor of mathematics at 
Groningen (1923–1946) and Amsterdam (1946–1954). During the war and the German 
occupation of Holland, he took an active part in the Dutch underground and in 1945 spent 
a week in a Nazi jail for hiding people from the occupiers in his house. According to 
Dr. Knegtmans (June 10, 2004, e-mail to me, [Kne7]), “Van der Corput belonged to a 
small group of Groningen professors that had developed some ideas about the post-war 
university in the sense that it had to become a moral [!] community that would be able to



withstand any authoritarian threat or defiance. Van der Leeuw, the first post-war Minister of 
Education, had belonged to the same group.” 
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Prof. Dr. Gerardus J. van der Leeuw, Minister (1945–1946) of Education, Culture and 
Sciences (Onderwijs, Kunsten en Wetenschappen) appointed Van der Corput to be the Chair 
of the Committee for the Coordination and Reorganization of Higher Education in Mathe-
matics in The Netherlands (De Commissie tot Coördinatie van het Hooger Onderwijs in de 
Wiskunde in Nederland). The Committee became known as “The Van der Corput Commit-
tee.” In 1946, Van der Corput will become one of the founders and the first director of the 
Mathematisch Centrum (Mathematics Center) in Amsterdam. 

Van der Corput knew Van der Waerden from their 1928–1931 years working together at 
Groningen, where young Bartel learned quite a bit of mathematics from him [Dol1]. Van der 
Corput hosted Van der Waerden’s October 10–14, 1938, visit for giving talks at Groningen 
University. The colleagues corresponded even during the war and the German occupation of 
Holland. In early 1944, Van der Corput recommended the book about the history of sciences 
in antiquity, which Van der Waerden had been writing, to the Dutch publisher J. Noorduijn en 
Zoon N.V. – Gorinchem. Eventually, in 1954, this book was published in Dutch and in 1961 
in English in an expanded beautiful edition as Science Awakening [Wae15]. 

Right after the war, the friends lived in an absolute sense not far from each other, Van der 
Corput in Groningen, and Van der Waerden in Laren near Amsterdam, but on the Dutch scale 
the trip from Laren (Amsterdam) to Groningen was a major journey. And so, to our good 
historical fortune, their preferred means of communication were letters. Van der Waerden 
saved handwritten copies of his own letters (the first plain paper copier, Xerox 914, was 
invented only in 1959!) and Van der Corput’s original letters; they are now preserved at the 
ETH Archive in Zurich. 

A voluminous file of their 1945 correspondence, lying in front of me as I am writing these 
lines, is an invaluable resource for understanding their views on moral standards of scholars 
during the Nazi era and the occupation of Holland, and, more generally, eternal moral 
dilemmas posed by the war and its aftermath. I will let the correspondents do most of the 
talking. A number of different handwritten versions of some of these letters exists. Some 
copies were sent to third parties, such as Van der Waerden’s close friend and fellow 
mathematician Hans Freudenthal (1905–1990). All this indicates that Van der Waerden 
took this exchange extremely seriously, as did Van der Corput. 

On July 29, 1945, Van der Corput sends Van der Waerden a letter in which he conveys his 
new leading role in the mathematical higher education of the Netherlands: 

I have been appointed chairman of a commission to reorganize higher education in 
mathematics in the Netherlands, which will have as its primary duty to offer advice for 
the filling of vacancies in mathematics. 

Van der Corput realizes that his new authority to advise Minister van der Leeuw, calls for a 
new responsibility, and so he continues with probing questions: 

Your letter made me do a lot of thinking. I never understood why you stayed in 
Germany between 1933 and 1940, and also why after 10 May 1940 [the day Nazi 
Germany attacked the Netherlands] you did not return to the Netherlands as so many 
succeeded in doing, if need be to go into hiding here [“some hundreds of thousands of 
people . . .  were living in hiding”[Jon]]. Rumors went around about you that you were
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not on our side anymore, at least not entirely. That could have been slander. I would find 
it important if you could explain to me the situation completely and in all honesty. 

Van der Corput concludes by sharing his own resistance activities: 

People were in hiding in my house throughout the entire war, 23 in total, of which 
5 were Jews; I was a representative at Groningen of the Professors Resistance Group. 
When I was arrested in February 1945, they found two people in hiding in my house, of 
which one was Jewish. I was suffering from angina and was released from prison after a 
week. My house and all my furniture were impounded [by the authorities] but we moved 
back on the day of liberation . . .  I was on the Board of Vrij-Nederland [Free Nether-
lands]13 and was arrested for disseminating illegal literature. 

Van der Waerden replies on July 31, 1945. He expresses delight with his friend being in 
charge of all Dutch university appointments in mathematics, including Van der Waerden’s 
own appointment – perhaps, too much of a delight – but then, understandably, carefully 
crosses most of the delight out: 

I am very happy to be able to direct my defense to the right address against the things 
that have been blamed on me completely unexpectedly from all sides. So you are 
chairman of the commission which will decide on the future occupation of the pro-
fessorships of mathematics, perfect! An illegal work of the highest order and what is 
more, benefitting me. Delightful! 

From the following lines, we discover how the writing of the “Defense” has come about. 
We also learn that Van der Waerden has attached a copy of the “Defense” to this letter: 

When I spoke with Freudenthal about it [professorship at Amsterdam] and told him that 
I was looking forward to possible collaboration with him, he firstly pointed out the 
difficulties, especially from students’ circles, that could be expected, and for the 
aspersions that would be cast upon me because of my stay in Germany after 1933. He 
advised me to write down my defense [!], which I had presented to him verbally. I have 
done it, and after conversations with others, I have added a few more things . . .  In this 
situation you now come forward and ask for my justification. Voila! I hereby include a 
copy of the piece. 

Van der Waerden then explains why he did not return to the Netherlands when Nazi 
Germany waged an unprovoked war against his Homeland: 

I truly did not come to the idea of returning to the Netherlands after 1940 and going into 
hiding here. At the end of 1942 I had come to Holland and spoke with all sorts of people 
(honestly no NSB-ers14 because those do not belong to my circle of friends) but there 
was nobody who gave me [such] advice; the concept of going into hiding, furthermore, 
did not exist at that time. 

13 Vrij Nederland, an underground newspaper. 
14 Het Nationaal Socialistische Beweging (National Socialist Movement, a Nazi party in the 
Netherlands).
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Van der Waerden is incorrect when he alleges that he “truly did not come to the idea to 
return to the Netherlands.” Starting in December 1942, he had discussed the idea of coming 
back to a professorship at Utrecht with Barrau and Carathéodory. However, most troubling is 
the next statement: “the concept of going into hiding, furthermore, did not exist at that time 
[end of 1942].” In fact, hiding commenced immediately after the invasion of Holland in May 
1940, and hundreds of thousands Dutch people, wanted by the Nazis, went into hiding. Van 
der Waerden knew about it very well at least since his late 1942 visit of Holland and wrote 
about it to Hecke on 6 April 1943: “Maybe he [Blumenthal] is in hiding like thousands of 
others.” Van der Waerden then spells out what could be the real reason why he did not wish to 
come home to Holland during the war: 

Why would I go to Holland where the oppression became so intolerable and where 
every fruitful scientific research was impossible? 

These words make me think that Van der Waerden has never seriously considered going 
back to Holland during the German occupation of his Homeland. It seems to me that Van der 
Waerden feels no responsibility for the “intolerable oppression” that his new country, Nazi 
Germany, imposed on his Homeland. In a statement that Van der Corput must have found 
particularly disingenuous, Van der Waerden claims that his “struggle” for the German culture 
and science has been as noble as Van der Corput’s underground activities in Holland, and it is 
the people in Holland who are guilty of not understanding his “struggle” “against the Nazis”: 

For your struggle of which I have heard with great delay and only in part, I had great 
admiration and undivided sympathy, but I could not partake in it from that distance, 
because I did not have enough contact with you. Since 1933, I waged another struggle, 
together with other reasonable people such as Hecke, Cara[théodory], and Perron 
against the Nazis and for the defense of culture and sciences. That I was on the good 
side of that struggle was, as I thought, universally known. I did not expect that people 
here in Holland would have so little understanding of it. 

Van der Corput is unhappy with some of the answers, He shows Van der Waerden’s letter 
to some of his trusted colleagues, Marcel Gilles Jozef Minnaert (1893–1970), Professor of 
Astronomy at Utrecht University, and Balthasar van der Pol (1889–1959), Professor of 
Theoretical Electricity at the Technical University of Delft. Finally, on August 20, 1945, 
Van der Corput makes his displeasure known to Van der Waerden and asks him a key 
question, whether Van der Waerden is demanding a full and unconditional exoneration or is 
pleading difficult circumstances: 

Your letter has not completely satisfied me. You complain that we here in Holland lack 
sufficient understanding of your troubles, but after reading your letter I wonder whether 
you have a sufficient understanding of troubles which we had to deal with here and of 
what was to be expected of a Dutchman in these years. It is not clear to me from your 
letter whether you consider your attitude in the past faultless or whether you plead 
mitigating circumstances. 

Van der Corput refuses to condone Van der Waerden’s actions during the war, comparing 
them unfavorably to his own unambiguous rejection of Nazism from the beginning of 
Hitler’s rein:
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Concerning me personally, in January 1939, I turned down [Erich] Hecke’s invitation, 
passed on to me by [Harald] Bohr, to give one or more lectures, because I refused to 
come to Germany as long as Hitler was in power. Consequently, I have not been in 
Germany after 1932. In connection with this position of mine that was shared by many 
of us, I do not understand how you can so easily gloss over those years between 1933 
and 1939. Indeed, it was not at all fitting for a Dutchman to make mathematics in 
Germany flourish in those years when Germany was preparing for war and was kicking 
Jews from every position and place. 

These are powerful words, let us read them again: “It was not at all fitting for a Dutchman 
to make mathematics in Germany flourish in those years when Germany was preparing for 
war and was kicking Jews from every position and place.” Van der Corput then cites the 1939 
incident that, apparently, still bothers him and directly asks whether Van der Waerden and his 
wife were Nazi sympathizers: 

Furthermore, I remember that after a lecture at Groningen, in the Doelenkelder15 you 
spoke with appreciation of the regime in Germany, and more especially of Göring,16 

upon which I advised you better to stop this because this was not well received by the 
students of Groningen. I have to add that I do not know whether or not you were being 
serious at that time, but it made a strange impression on us, who considered Hitler a 
grave danger for humanity. Furthermore, I was informed from various sides that your 
wife was pro-Hitler, and that when she was supposed to come to stay in Holland, she 
even stated as a condition that no bad could be spoken about Adolf. I say this because 
you write that your wife was always against the regime. It is better that these things are 
discussed in the open, because then you can defend yourself. 

In spite of his serious reservations, Van der Corput clearly wants to help Van der Waerden 
and by doing so help Dutch mathematics: 

I myself think that the Netherlands should care for its intellect and especially one like 
yours. I have always regretted that you went to Germany, and I will look forward to it if 
you can be won back completely for the Netherlands . . .  

I would want nothing better than for everything to be all right. Because there isno 
Dutch mathematician with whom I would like working more than with you. I would find 
it fantastic if we could work on mathematics at the same university again. Then, I think, 
we could found a mathematical center. 

Van der Corput holds significant power and appropriately assumes a commensurate 
responsibility, and this is the reason for his asking these tough questions: 

I hope that you will not just excuse me for these questions but understand them. Before 
the government can appoint someone, it will conduct a very detailed investigation, and it 
is to be expected that it will also ask for my advice. It is therefore necessary for me to be 
well informed. 

15 The steakhouse De Doelenkelder still exists in Groningen: call 050-3189586 for reservations! 
16 Hermann Göring, Commander-in-Chief of Luftwaffe (German Air Force), President of the 
Reichstag, Prime Minister of Prussia, and Hitler’s designated successor.
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Perhaps to Van der Corput’s surprise, Van der Waerden remains nonchalant in his 
immediate four-page reply. He proudly asserts his complete innocence and “demands a 
complete exoneration.” Van der Waerden then quotes the letter he received from Hopf just 
about two weeks prior, in which Hopf blames the Dutch for conducting the de-Nazification of 
the Netherlands: 

You ask whether I want to plead mitigating circumstances. Absolutely not! I demand a 
complete exoneration because I do not think that I can be blamed for anything. And I am 
also convinced that when my case now or after a few years when the understandable 
commotion and confusion caused by the German terror has calmed down is looked at 
objectively, that this exoneration will be given me. This conviction I shared with Hopf at 
Zurich who (following a conversation with Kloosterman about me) writes: “When the 
Dutch, whom you can approach with clean conscience and offer them your services, do 
not want you, then in my opinion they hurt themselves, and that is their business. I 
consider it certain that in a few years, when the waves have calmed down a bit, 
somewhere in the world you will work again in the profession.” 

Also the English and the Americans, and above all the Russians, make a distinction 
between the Nazis, whom they want to destroy, and the German culture, which they 
want to help resuscitate. Should we not try to make this objective way of judgment 
acceptable also in the Netherlands again?17 

Van der Waerden continues by presenting, again, his (and Hopf’s) opinion that one must 
differentiate between “the Hitler regime” and “the German culture”: 

Your most important accusation, I assume, is the words “It was not at all fitting for a 
Dutchman to make mathematics in Germany flourish in those years when Germany was 
preparing for war and was kicking Jews from every position and place.” 

In this sentence two things are identified with each other that I see as the strongest 
opposites: the Hitler regime and the German culture. What was preparing for the war 
and was throwing out the Jews was the Hitler regime; what I was trying to make flourish 
or rather to protect against annihilation was the German culture. I considered and still 
consider this culture to be a thing of value, something that must be protected against 
destruction as much as possible, and Hitler to be the worst enemy of that culture. 
Science is international, but there are such things as nerve cells and cell nuclei in 
science from which impulses are emitted, that cannot be cut out without damage to 
the whole. And I mean that this standpoint is principally defensible even for a Dutch-
man, and I should not be in the least ashamed for having taken this position. 

Of course, it is understandable that people here in Holland today do not want to 
know, to see a difference between the Nazis and Germany or the German culture. 
Germany attacked the Netherlands and shamefully abused it, and the whole German 
people are also responsible for that. For the duration of the war this position is 
completely true, but one must not use this as measure to assess events that happened 
before the war. 

17 This paragraph is thinly crossed out in this version but was not crossed out in another, 
unfinished version in my possession.
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By the way, nobody at the time thought to condemn my actions. In 1934 or 1935 the 
Dutch Government itself officially allowed me to continue my activities in Leipzig. The 
student organization invited me in 1938 for a series of talks, among other places at 
Groningen, a certain Van der Corput asked me in 1943 to write a book for his 
“Wetenschappelijke Reeks” [Scientific Series], and I could name a lot of other things 
like that. 

As we know, the lives and fates of the two Dutch scholars, Debye and Van der Waerden, 
have diverged. In January 1940, Debye leaves Germany for the United States, while Van der 
Waerden stays in Germany to the end of the Nazi era. Van der Waerden explains to Van der 
Corput: 

Debye too stayed in Germany until the end of 1939, when the Germans gave him a 
choice: either leave or assume the leadership of war research (Kriegsforschungen). Had 
they given me this choice I would have left. 

Would Van der Waerden have left? Why would a Nazi ultimatum be necessary for a Dutch 
citizen, Van der Waerden, to leave the Third Reich? Couldn’t he have simply accepted the 
Utrecht job when it was first offered or not returned back to Nazi Germany from one of his 
many visits of Holland, including 1935 and 1939 visits with his whole family? Van der 
Waerden then explains his complimentary statement about Herman Göring made during his 
1939 visit of the Netherlands: 

This is what concerns the official part of the affair. Now the personal part. You seem to 
remember that I spoke appreciatively in the Doelenkelder about the regime in Germany 
and more specifically about Göring. You must therefore consider me as somebody 
without an elementary sense of right and wrong; because Göring is, as everybody 
knows, a clever crook, whose henchmen burned the Reichstag and who used that to 
abolish socialist parties. An unprecedented deception of the people that was used to 
destroy the democracy and the parties to which I, because of tradition, friendship, and 
because of my own father, was connected. And I would have defended that criminal? 
And moreover, the Hitler regime? And now I would twist around like a weathervane and 
contend that I was always against Hitler? In other words, that makes me a deceiver, a 
cunning liar! Nevertheless, you always willingly offer me your mediation, not only with 
words but also with deeds, with Noordhoff, present my defense to Minnaert, and write 
that you do not like to work with anybody more than with me. I do not understand that 
attitude. Or rather I can only give one explanation to it, namely that deep in your 
innermost a voice tells you: no, I know that man from before as decent and truth-loving, 
let me give him an opportunity to defend himself. 

Well, I can guarantee you that what you write about the Doelenkelder must be a 
misunderstanding. I have never uttered a word of defense of the Nazi regime to 
anybody. The question which we spoke about in the Doelenkelder was, if I am not 
mistaken, not whether this regime was defensible, but how can people cope in Germany 
in spite of this regime. How is science under these circumstances possible? Then I may 
have mentioned a few facts from which it was apparent that at Leipzig especially and 
more importantly in mathematics, the pressure from above was not as claustrophobic as 
people imagined it here. I may have mentioned in connection with something or other 
that Göring was not an anti-Semite and even appointed Jews in his ministry, or I have
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told how popular he was with the people and with his subordinates or something like 
that. But to defend Hitler or Göring? Impossible! 

I take Van der Waerden at his word; he himself was not an anti-Semite and not a Nazi 
sympathizer. However, he is now asserting that the Nazi pressure at Leipzig was not too bad, 
no big deal, only all Jewish professors fired, the Jewish professors he had unsuccessfully tried 
to defend in 1935. He then declares that the second man of Nazi Germany, Herman Göring, 
was not an anti-Semite. Really? Van der Waerden then goes on to explain his wife Camilla’s 
demand that no criticism of Germans be made in her presence should she visit the 
Netherlands: 

Now about my wife supposedly being a Nazi. Would you believe that this is the third 
time that I hear this spiteful slander? I cannot figure out where this slander is coming 
from. We, my wife and I, have avoided any contact with the Nazis in Leipzig like the 
black plague. Our acquaintances were only people who shared our horror for the Nazi 
regime. And then, when she stayed in Holland, she asked that nothing bad be said about 
Adolf? Do you honestly believe that my father, when we stayed with him in 1939, 
would have accepted such a condition, or whether my brothers would have been content 
with it? The truth is that my wife could not tolerate it when bad was spoken about the 
Germans. Indeed, German is her mother’s tongue, and she knew so many kind people in 
Germany. If you do not want to believe all of this [based] on my word, then please write 
a letter to Frau Lotte Schoenheim, Hotel Stadt Elberfeld, Amsterdam. From 1932 up 
until her emigration to the Netherlands in 1938, she has been frequently in conversation 
with my wife and me, and after that in Holland has stayed in contact with my family. She 
knows our opinion not only from words but also from deeds. 

Again, I take Van der Waerden at his word. According to him, Camilla “could not tolerate it 
when bad was spoken about the Germans.” Were all Germans in Nazi Germany above 
criticism in 1939? Did not Van der Waerden himself write above in this very letter that 
“Germany attacked the Netherlands and shamefully abused it, and the whole [!] German 
people are also responsible for that”? 

And one more question: doesn’t Van der Waerden feel some personal responsibility for 
German crimes against humanity? Does he really imagine that being off the German 
citizenship rolls frees him from any responsibility for the horrific actions of the country he 
has lived in and worked in Civil Service for 14 long Nazi years? 

This handwritten letter is particularly important to Van der Waerden: he encloses a large 
handwritten part of it, entitled “From a letter to Prof. J. G. van der Corput,” in his January 
22, 1946, letter to Hans Freudenthal together with “The Defense,” which has earlier been 
submitted to the Amsterdam’s College van Herstel and Utrecht’s College van Herstelen 
Zuivering. 

In his immediate, August 28, 1945, reply, Van der Corput soft pedals on his probing 
questions and assures Van der Waerden of his support: 

Am I mistaken if I have an impression that you wrote your letter in a somewhat irritated 
state? I believe that I have consistently acted in your interest; also during a conversation 
with the Minister I pointed out that the Netherlands should be very careful not to lose a 
man like you. I even said that the Netherlands should rejoice if we get you back for



524 41 In Search of Van der Waerden: Amsterdam, Year 1945

good. But there are general rules, and it needs to be determined how much those apply 
to you. 

I have always considered it impossible that you are a “weathervane, a hypocrite, and a 
cunning liar,” and I still consider it impossible. With my remark I wanted to show that 
you in my opinion did not sufficiently realize how we thought of the Hitler regime even 
then. It was all joking, and I never attached much significance to it, but when afterwards 
remarks were made indicating doubt, I thought it was important for you that I mention 
this in my letter. I would be very sorry if I hurt you by it, but it is still better to bring these 
things out in the open and to give you an opportunity to rebut them. To my great 
pleasure I found out today that it was said that at the Mathematical Congress in Oslo 
[1936] you were known as a strong anti-National Socialist. 

Immediately after receiving your letter, I made sure that this week Friday night or 
Saturday morning there will be a meeting between me and the Minister of Education 
about this matter. The Minister has already told me in the first conversation that the 
cabinet has spoken about general rules concerning the persons who were in German 
service during the war. Those rules were to be finalized then. Whether or not this has 
happened since then I will find out this week. 

Van der Corput leaves the last two points of Van der Waerden’s letter (presumably Bartel’s 
praise of Herman Göring and Camilla’s defense of all Germans in the Third Reich) to a 
confidential in-person conversation, and thus, to my regret, out of reach of historical schol-
arship. These points are so important that Van der Corput is willing to travel early in the 
morning from Groningen to Laren for a person-to-person discussion: 

About the various other points of your letter, I would like to speak with you in person 
next week. Tuesday September 4, I hope to get to Laren for this before 9 o’clock in the 
morning. 

But not to worry anyway: 

Be assured that it is my sincere desire to keep you for the Fatherland and for higher 
education. 

Soon success seems to be around the corner. Van der Corput communicates the first 
hopeful signs on September 11, 1945: 

I have discussed your case with Oranje and Borst, leaders of the Professors’ Resistance. 
After my explanation neither one of them saw any problem with your appointment at 
one of the Dutch universities. They of course cannot decide anything, but as is evident to 
me, it is much easier for the minister and his department if they know that there is no 
opposition from that particular side. I have the impression that things will be all right 
and that after a few months we will be able to collaborate again ... 

P.S.: . . .  During my absence Van der Leeuw has called to tell me that both parts of my 
most recent letter were “good.” One of the parts concerned my statement that we do not 
need to fear any opposition from Borst and Oranje . . .  It will all work out, that is my 
opinion. 

Five days later Van der Corput is ready to celebrate ‘mission accomplished’ (the phrase 
made famous by the US President George W. Bush):
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I have just received a written confirmation from Van der Leeuw . . .  He writes: “As far as 
van der Waerden is concerned, we will just count on it that it is all right.” 

This means that he is prepared to appoint you. 
I am very much pleased with this, both personally and in the interest of the country. 
P.S.: I am passing the message on to Utrecht right now. 

On September 22, 1945, Van der Waerden optimistically describes the state of his job 
hunting to his confidant Hans Freudenthal: 

Minister Van der Leeuw told Van der Corput that now that Van der Corput and Borst 
and Oranje of the Professors Resistance Group consider me as sufficiently “pure,” he 
also considers the affair “OK.” My appointment at Utrecht is therefore very close. 

On September 29, 1945, Van der Corput informs Van der Waerden by a telegram that 
College van Herstel en Zuivering of Utrecht University got on Van der Waerden’s board 
as well: 

Minnaert18 signals College van Herstel considers Van der Waerden sufficiently polit-
ically reliable and desires appointment at Utrecht 

Van der Corput 

However, about a month later, unexpectedly, skies over the two friends become cloudy. 
Van der Corput informs Van der Waerden about it in his October 24, 1945, letter: 

Indeed, difficulties concerning your appointments arise now again. As there is someone 
in higher education, who works against you and among other things maintains that you 
had to use – and did regularly use – the Hitler salute at the inception of your classes in 
Germany. Be so kind to give very clear answer to this question, so that I can contradict it 
if this slander comes about again. 

. . .  This week I received an invitation from the Faculty of Natural Sciences at 
Amsterdam to become Weitzenböck’s replacement. This shows that the opposition 
against your nomination in Amsterdam is too strong. I do not know what I am going 
to do. Personally, I like Utrecht better, but maybe I can do more for mathematics in 
Amsterdam . . .  

I am not happy about the turn that the problems in mathematics [appointments] have 
taken. I would be particularly sorry if certain illegal circles [illegale kringen – he 
probably means former underground circles] will successfully delay your appointment 
at a Dutch university. 

Van der Waerden answers right away, on October 26, 1945. He does not give a “very clear 
answer to this question” of the Hitler salute, or any answer for that matter. He shares Van der 
Corput’s pessimism about his academic prospects in the immediate future and blames the 
students and Minister of Education Van der Leeuw for it: 

18 Marcel Gilles Jozef Minnaert, a member of the “Van der Corput Committee.” Documents in the 
archive of Utrecht University show that Minnaert – in a sense – represented Van der Waerden to 
the Utrecht’s College van Herstel en Zuivering, which most likely had never met with Van der 
Waerden in person. This was a very beneficial representation for Van der Waerden, because as an 
outspoken critic of Nazism Minnaert spent nearly two years in a Nazi prison, from May 1942 to 
April 1944.



19

526 41 In Search of Van der Waerden: Amsterdam, Year 1945

After what I have read in the Vrij Katholiek about the radical demands of the students 
and the willingness of Van der Leeuw to listen [to them], I think it will take some time 
before I can get a position at Utrecht. I have something else now, as of October 1, 1945, I 
am working for Bataafsche.20 

Van der Corput’s reply comes a full month later, on November 26, 1945. He opens his 
letter with the good news: 

I very much want you to have a position in higher education. The Committee for 
Mathematics [Wiskundecommissie] intends to create the Center for Pure and Applied 
Mathematics, most likely in A’dam [Amsterdam], and if the Center comes into being, I 
want you to work there. 

Then there come the bad news: 

Butthere are problems, and I hate time and again asking you these questions and asking 
you for clarifications, but I have to do this. In order to support you I need the answers to 
these questions. 

It now centers around three clearly indicated points. 
The first. Your father and your uncle repeatedly and with a lot of emphasis insisted 

before [!] the war that you should leave Germany. They felt it was your duty to leave but 
you refused, and they considered it as neglect of your duties. 

The second: some people are certain that your wife is an anti-Semite, others believe 
that this is too strong a statement, but she did not want to have anything to do with Jews. 

The third. During the war there was an opportunity for you to go to America, but you 
refused, for you [argued that you] needed to stay because you could do a good work for 
your students, some of whom were Jews. If this is true that even during the war, when 
you had a chance to go to the United States, you still did not want to leave, this will 
create definite difficulties for you. 

Apparently, without receiving a reply for twelve days, Van der Corput writes again on 
December 8, 1945, this time quite apologetically: 

I am not asking you these things for myself . . .  I want to collaborate [with you] as much 
as I can . . .  It would be very unpleasant if these questions would somehow cause the 
deterioration of my relations with you or your wife. Please, understand I only need it for 
the government. 

Now Van der Waerden replies immediately, on December 10, 1945. He first reassures Van 
der Corput of their friendship: 

It would be a pity if our cordial relationship should become the victim of our corre-
spondence. But I see no risk of that. 

When there was now and then a ring of annoyance, this was in fact directed against 
the people who disseminate such gossip against me, but not against you, of whom I 
know that you are tirelessly active in my interest and that of the Dutch science! 

19 DeVrij Katholiek (The Free Catholic) monthly of the Free Catholic Church in the Netherlands. 
20 Bataafsche Petroleum Maatschappij (B.P.M.), today known as the Royal Dutch Shell.
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Van der Waerden then spells out his fundamental “democratic” principles: 

On the other hand, I also cannot imagine that you are incensed by the fundamental 
democratic anti-Fascist position that I have adopted in my letter. My viewpoint is that 
where appointments are concerned, only capacities of the appointee should be taken into 
account, and not – as is usual with Fascist regimes – the person’s character, past, and 
political trustworthiness. 

“Only capacities”? As the author of this narration, I am compelled to ask: Bartel, don’t you 
agree that mathematicians do not live in a vacuum, and thus their “character,” their “past,” and 
their moral fabric matter? Would you, for example, hire Bieberbach, a decent mathematician 
and indecent man, an anti-Semite and the leader of the notorious race-based Deutsche 
Mathematik? Haven’t you seen enough examples of the Nazis using “capacities” of their 
scientists, and “the power of German engineering” (as today’s Volkswagen commercials 
delight in stating) to evil ends? How about the uses of U-boat submarines, Messerschmitt 
aircraft, Wernher von Braun rockets, gas chambers and crematoria for an efficient extermi-
nation of human beings, medical experiments on prisoners in the camps? Mathematik über 
alles? Mathematics above all? Mathematics above morality? 

Van der Waerden then invokes his father Dr. Theo as the influence of his life: 

I have been raised under the apprenticeship of my father who was a man of democratic 
principles; subsequently I have been under Hitler’s control, and I have seen to which 
terrible consequences the opposite view leads. 

You too [sic] have actively opposed Nazism and fought for democracy and freedom 
of our nation. Therefore, I cannot imagine that you would hold my viewpoint against 
me, even though you do not share it in every respect. 

This dialog in letters is so vivid and so passionate that once again, as the author of this 
book, I feel drawn to enter into it and say: Bartel, you invoke “a man of democratic 
principles,” your father as your important influence. However, you have not listened to 
your father in the most important matter of your life, when he “repeatedly and with a lot of 
emphasis insisted before the war that you should leave Germany.” I agree with your father 
Theo and Uncle Jan: the “gangster-regime” (your words) occupying and terrorizing your 
Dutch people and other peoples of Europe was not the right place for a decent person like you. 
Some members of your family felt that it was “not done” by a good Dutchman like you to 
remain in Nazi Germany.21 

Van der Waerden ends the letter with the major good news, promising an Amsterdam 
professorship to him very soon: 

21 Bartel’s first Cousin Annemarie van der Waerden recalls the extended Van der Waerden family 
reaction to his decision to stay in Nazi Germany: “Definitely it was considered ‘not done’ that Bart 
stayed in Germany. Though he was excused probably by this committee – this must be the case 
considering the fact that he got a respectable job in Holland again – he stayed a disputed man. In 
the family some forgave him, some not. The ones that forgave him, that was also because he was 
such a sweet, innocent man.” [WaD2].
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Revesz informed me yesterday that the Amsterdam has recommended me for the 
appointment as a full professor to B. en W. Thus, things start moving now! 

On December 22, 1945, Van der Waerden writes again. This four-page letter is full of 
technical negotiations. Van der Waerden discusses these details because in his mind his 
appointment at Amsterdam is a done deal. 

In the end, Van der Corput is not completely satisfied with some positions of Van der 
Waerden the man. But Van der Corput has a great respect for Van der Waerden the 
mathematician, and he believes that he ought to help Van der Waerden get a position at 
Amsterdam. Van der Waerden would then spend his career there and thus would greatly 
benefit their Homeland. 

It is worthwhile to note here that Van der Waerden is much more open and harsh in his 
criticism of the Dutch people in his November 20, 1945, letter to Richard Courant – who is far 
away in New York – than in his entire correspondence with Van der Corput: 

The Dutch are completely crazy. They have no concept in their heads except “cleansing” 
(“Sauberung”): they punish all those who had worked together with the Germans. There 
are managers, bosses who would not employ any workers who were forced to work in 
Germany.23 There are more political prisoners in Holland than in all of France, even 
though the Dutch showed much more character in the war than the French did. So is my 
appointment to Utrecht, which ran into great difficulties, even though it was a done deal 
with the faculty for years. I am very happy that I currently have a pleasant job in industry 
and can await the return to normal circumstances. 

And while Van der Waerden demands “a complete exoneration” from Van der Corput, he 
sounds much more conciliatory in his December 29, 1945, letter (in English) to Courant: 

I am much pleased that you have the intention to resume the old friendship with me and 
other old friends as far as possible, and that old Göttingen will keep a warm place in a 
corner of your heart. And just for that reason, I am convinced that you at least will 
understand a little bit what my other friends in America could not grasp, namely “why I 
as a Dutchman chose to stay with the Nazis.” 

Look here, I considered myself in some sense as your representative in Germany. 
You had brought me into the redaction [editorial board] of the Yellow Series and Math. 
Annalen, I thought, in order to watch that these publications were not Nazified and that 
they might maintain their international character and niveau [standard] as far as possible. 
This I considered to be my task, and together with Hecke and Cara[théodory] I have 
done my best to fulfill it, which I could do only by staying in Germany. [It] is not that 
plain and easy to understand, apart from other sentimental and familiar [familial] links 
attaching me to Germany. I have made some mistakes perhaps, but I have never pacified 
the Nazis. 

Indeed, in the mid-1933 and 1934, Courant envisaged Van der Waerden as his represen-
tative in the Mathematische Annalen and the Yellow Series. However, on August 20, 1935, 
Courant hinted to Van der Waerden to leave Germany: 

22 Geza Révèsz (1878–1955), the founding psychology professor at the University of Amsterdam. 
23 Van der Waerden refers here to Arbeitseinsatz, the Nazi forced labor program.
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I wish everybody could get out of this stuffy atmosphere. I must admit I cannot 
understand those who remain in Germany, unless they do it out of conviction or strong 
patriotism or from a willingness to fight. It seems to me more and more that remaining 
there as a civil servant is impossible without compromises. 

With “other sentimental and familiar [Van der Waerden means familial] links” to Ger-
many, Van der Waerden no doubt refers to his “German wife” and raising his children “pure 
German,” and possibly to his sense of belonging to the German culture in general, and the 
German mathematics in particular. For the first time, Van der Waerden admits making “some 
mistakes.” 

The Dialog in Letters presented here is undoubtedly an important collection of documents 
for the history of the de-Nazification and for the reflection of the post-World War II search for 
moral standards. Furthermore, I hope it will prompt you, my reader, to define your positions 
on a number of fundamental moral issues, such as the relationship between the scholar and the 
state, in particular the place of a scientist in tyranny, duty to profession, 
patriotism vs. nationalism, etc. We will come back to these contemporary issues later in 
this book.
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Chapter 42 
In Search of Van der Waerden: The Unsettl 
Years, 1946–1951 

ing 

42.1 The Het Parool Affair 

When in May 1940 the Germans conquered our 
country, Mr. Van der Waerden was still standing 
behind his lectern at Leipzig. 

– Het Parool, January 16, 1946 

I find it surprising that the early press records have been completely overlooked and never 
mentioned by earlier biographers of Van der Waerden. Did they view the news reports to be 
too much off the cuff and not carrying lasting truths? Yes, the shelf life of a newspaper is one 
day, but it captures – and preserves – the zeitgeist, the spirit of the day, better than anything 
else available to a historian. Moreover, in our Drama of Van der Waerden, a newspaper was 
also an important player. I will therefore use newspapers liberally and unapologetically. 

After the war, both East and West Germanies were quite soft even on Nazi collaborators, 
which Van der Waerden certainly was not. In addition, Van der Waerden’s loyalty to 
Germany and German mathematics was unquestionably great. Holland was another matter. 
Its standards of “good behavior” during the Nazi occupation of Holland were much higher, 
especially when judged by the editors of a publication like Het Parool, a newspaper that had 
been heroically published underground ever since July 19401 and paid for it by lives and 
freedom of many of its workers. After the war and the occupation, at the circulation of 
50,000–100,000 in Amsterdam alone and local editions appearing in more than ten cities 
[Kei], Het Parool had an enormous moral authority. 

In early January 1946, everything was in place for appointing Dr. Van der Waerden to a 
professorship at the University of Amsterdam. The City Council’s meeting with his appoint-
ment on the agenda was about to begin the afternoon of January 16, 1946, when just hours 
earlier a “bomb” exploded on page 3 of Het Parool [Het1]:2 

1 It was started by Frans Johannes Goedhart under the title Nieuwsbrief van Pieter ‘t Hoen on July 
25, 1940, and became Het Parool on February 10, 1941 [Kei]. 
2 In search for greater expressiveness, the editors included in this Dutch article some passages in 
German. I am leaving them in German and add translation in brackets. I also include in 
parentheses some Dutch expressions that are particularly hard to adequately translate into English. 
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Him?? 
No, not him! 

The proposal to appoint Dr B C [sic] van der Waerden as professor in the faculty of 
mathematics and physics at the University of Amsterdam should surprise all those who 
know that Mr. Van der Waerden served the enemy throughout the entire war. His 
“collaboration” is not today’s or yesterday’s news. When the war broke out in 
September 1939, and the Netherlands, fearing invasion, mobilized, Mr. Van der 
Waerden was standing behind his lectern at Leipzig University. He had stood there 
for years. And he continued to stand there. He saw the storm coming as well, but he did 
not think about coming back to his Fatherland. When in May 1940 the Germans 
conquered our country Mr. Van der Waerden was still standing behind his lectern at 
. . .  Leipzig. And he continued to stand there. For five years the Netherlands fought 
Germany and for all those five years Mr. Van der Waerden kept the light of science 
shining in . . .  Leipzig. He raised Hitler followers. His total ability – a very great one – 
and all his talent – a very great one – were at the service of the enemy. Not because 
Mr. Van der Waerden had been gang-pressed (geronseld) to the forced Arbeitseinsatz 
[labor service], not because it was impossible for Mr. Van der Waerden to go into 
hiding; no, Mr. Van der Waerden served the enemy, because he liked it at Leipzig; he 
was completely voluntary a helper of the enemy, which – and this could not have 
remained unknown to Mr. Van der Waerden – made all of higher education plus all 
results of all scientific work serve the enemy’s “totale Krieg” [total war]. 

When asked, Mr. Van der Waerden cannot answer what an average German answers 
when he hears of the boundless horrors done in the country: “Ich habe es nicht gewusst” 
[I did not know]. In the middle of the war years Mr. Van der Waerden came back to the 
forgotten land of his birth and he heard and saw how disgracefully his patrons 
(broodheeren) were acting here. Did he not care at all? (Liet het hem Siberisch koud?) 
A few weeks later Mr. Van der Waerden was standing behind his lectern at . . .  Leipzig 
again. In the Netherlands, firing squads shot hundreds. In the concentration camps, 
erected as signs of Kultur (culture) by the Germans in Mr. Van der Waerden’s second 
Fatherland, many of the best of us died; as did a few Dutch colleagues of Mr. Van der 
Waerden. Did that do anything to him? The story is becoming monotonous: Mr. Van der 
Waerden raised the German youth from behind his lectern at . . .  Leipzig. 

However, that is where the house of cards collapsed. Germany, including Leipzig, 
surrendered. The Third Reich, which Mr. Van der Waerden had hoped would last, if not 
a thousand years, then at least for the duration of his life, became one great ruin. And at 
that very moment Mr. Van der Waerden remembered that there existed something like 
the Netherlands and that he had a personal connection to it. He looked at his passport: 
yes, it was a Dutch passport. He packed his bags. He traveled to “the Fatherland.” Now 
Leipzig was not that nice anymore. All those ruins and all those occupying forces – yuk 
(bah). After five years of diligent service to the mortal enemy of his people, Mr. Van der 
Waerden was now prepared for the other camp. 

There are more like him. But what is worse, the University of Amsterdam seems 
willing to give this Mr. Van der Waerden another lectern immediately. Mathematics has 
no Fatherland, you say? Yes, sir (tot uw dienst), but in the Netherlands in the year 1946 
it should be desired of a professor of mathematics to have one, and to remember it more 
timely than on the day on which his lectern in the land of the enemy became too hot 
under his shoes.
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This passionate article, circulated throughout the whole country, with “Mr. Van der Waerden 
was standing behind his lectern at Leipzig” repeating over and over like a refrain in a song, must 
have made the Amsterdam City Council concerned, if not embarrassed. While people who 
served in the German labor service (Arbeitseinsatz) among the faculty, staff, and students were to 
be removed from the university, the City Council was planning to approve the appointment of a 
professor who voluntarily served Germany the entire Nazi period, including the five years of the 
German occupation of Holland. The approval of Van der Waerden’s appointment was post-
poned. The following day, on January 17, 1946, Het Parool reports the outcome [Het2]: 

Prof. VAN DER WAERDEN NOT YET APPOINTED 
Appointment halted 

After the Amsterdam City Council convened yesterday afternoon in the Committee 
General (Comité Generaal), Mayor de Boer announced that the nomination to appoint 
Professor Dr. B. L. van der Waerden, Professor of Mathematics at Leipzig, as Extra-
Ordinarius (Buitengewoon Hoogleeraar) at the University of Amsterdam has been put 
on hold. 

Because of the publication inHetParool about ProfessorVan derWaerden, theCouncil 
suggested that there should not be a rush action. Further information was demanded. 

On behalf of B. en W., City Alderman (Wethouder) Mr. De Roos responded that 
Professor Van der Waerden had good papers. Leipzig was a mathematical center. 
Beforehand many authorities were asked for information; among others also the Com-
mission of Learned People (Gestudeerden) in Germany. The College van Herstel 
(College for Restoration) of the university and also the faculty supported the appoint-
ment. For now, however, the appointment has been halted; B. en W. will consult later 
with the College van Herstel. 

Van der Waerden is outraged not only by the City Council’s refusal to approve his 
appointment but also by such heavy and public accusations by the newspaper that was read 
and respected practically by everyone in the postwar Netherlands. On January 22, 1946, he 
briefs his friend Freudenthal on the state of events: 

Amice, 
Thank you for your kind letter. It did us a lot of good to have at least one loyal friend 

in the midst of this enemy world. 
I have sent the enclosed rebuttal toHet Parool and toPropriaCures. Already before that I 

supplied Clay with the necessary data for the Alderman’s3 defense of [Van der Waerden]. I 
have the impression from the report of the council meeting in Het Parool that the Alderman 
is fighting for me like a lion. 

The attitude of the students gives me great joy. As soon as I am there, I will win them 
for me completely. I am convinced of that. 

I am not sure why Van der Waerden has gotten “a great joy” from the students’ attitude. As 
we will soon see, students have presented a vocal opposition to his appointment. Please also 
notice Van der Waerden’s line “I supplied Clay with the necessary data for the Alderman’s 
defense”: we will soon learn the contents of this data from a Het Parool’s article. 

3 Here, Van der Waerden refers to one particular Alderman (there were six): Mr. Albertus de Roos 
(1900–1978), the Alderman (1945–1962) for Education and Arts.
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With this letter to Freudenthal, Van der Waerden encloses two documents – the “Defense” 
and “From a letter to Prof. J. G. van der Corput” that we have discussed in great detail in the 
previous sections, as well as the following handwritten letter to the editor, which he sent to 
both papers, Het Parool4 and Propria Cures, even though the latter paper did not run any 
commentary on Dr. Van der Waerden’s impending appointment: 

Correction [Rechtzetting] 

In the ‘Het Parool’ dated Jan 16, my person was sharply attacked. I do not wish to go 
into this at great length. The question of whether or not I acted wrongly is being 
carefully researched by the concerned services.5 But I have to correct two untruths. It 
is said that I hoped that the Third Reich would last for as long as I would. This is slander. 
I was known in Germany and outside as a strong opponent of the Nazi regime; I can 
prove this with witnesses. 

It furthermore says that I returned because my lectern became too hot under my feet. 
This is also not true. I returned because the Faculteit of Mathematics and Physics of the 
State University of Utrecht asked me to take up a professorship in mathematics. 
B. L. van der Waerden 

There existed words – words about patriotism, love of the Fatherland, contributions of the 
Van der Waerden family to Holland, desire to return home, raise a new generation of scholars 
in the Netherlands – which could have touched the readers’ and editors’ hearts and made a 
strong case for Van der Waerden’s acceptance. Van der Waerden’s dry and proud prose about 
returning because of a job offer could not have possibly made things better for him. 

The self-assessment as a “strong opponent of the Nazi regime” in Van der Waerden’s letter 
to Het Parool also did not help, for it was certainly viewed as an exaggeration by the editors 
of an underground newspaper, who for five years daily risked their lives. Understandably, 
Van der Waerden’s letter backfired. 

Both Het Parool (“Prof. Van der Waerden defends himself,” [Wae9]) and Propria Cures6 

(“Correction,” [Wae10]) publish the complete text of Van der Waerden’s “Correction” on 
February 1, 1946. Het Parool adds the following editorial response [Het4]: 

We are pleased to give Mr. Van der Waerden the opportunity to defend himself. Has he 
made his case stronger with this? No, not quite. Unless there are Dutchmen who truly 
believe that the Germans from 1940 to 1945 allowed “strong” (!) opponents to occupy 
professorships. Which acts show this strong anti-Nazism of Mr. Van der Waerden? And 
the timing of his return to the Fatherland in 1945 is then one of those rare coincidences 
that one should believe as such. . .  or not. Mr. Van der Waerden – and this is the heart of 
the matter – from the first until the last day of the war served science in the land of the 
enemy and this was compensated by the enemy’s money. He who has voluntarily served 
the enemy from May ’40 to May ’45 is a bad Dutchman. Those who unleash him 

4 Van der Waerden’s letter to Het Parool was dated January 21, 1945, as seen from Het Parool’s 
January 23, 1945, acknowledgement sent to Van der Waerden and signed by Secretary 
Hoofdredactie: see ETH, Hs 652: 11631. 
5 Van der Waerden likely refers to the de-Nazification boards, College van Herstel of Amsterdam 
and Utrecht. 
6 University of Amsterdam students’ weekly.
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afterwards on the Dutch youth do not understand the demands of this time. And if the 
appointment of Van der Waerden is approved, then one should immediately stop 
objecting to workers and students who volunteered for De Arbeitseinsatz [the German 
Labor Service],7 etc., for the De Arbeitseinsatz of Van der Waerden was more complete 
than that of any other Dutchman. “Rewarding” (“Belooning”) that with a professorship 
would mean that all the others who worked for the enemy voluntarily deserve a feather 
and a bonus. 
– Red (Editors) Het Parool 

Earlier, on January 25, 1946, Het Parool has already reported the postponement of the 
approval of Van der Waerden’s appointment [Het3]: 

Prof. Dr. B. L. van der Waerden 

The nomination of B. en W. to appoint Prof. Dr. B. L. van der Waerden, which was 
put on hold at the previous session of the city council, because of the article in “Het 
Parool,” does not appear on the agenda for January 30th. It was put there initially, but it 
has been scrapped off by B. en W., from which it can be deduced that further consul-
tation has not yet ended. 

On February 13, 1946, Het Parool publishes its last commentary on the Van der Waerden 
affair [Het5]. From it we can understand what data Van der Waerden supplied to Professor 
Clay for Alderman Albertus de Roos’ defense of Van der Waerden: 

Concerning Van der Waerden 

The city council has circulated a little piece of advertising for the benefit of Prof. Van 
der Waerden, of which the main points are that he protested against the firing of the Jews 
in 1934 (even though he himself continued teaching classes) and that during the war, 
with the exception of a family visit in November 1942, he was not allowed to leave 
Leipzig, while, the little piece says, at that moment “going into hiding was out of the 
question,” so that it could not be expected of Van der Waerden to “go under,” even less 
so because he would have had to leave [his] wife and children in Germany. 

7 Under the Arbeitseinsatz program, the Dutch (and other) peoples were sent to work in Germany 
(or “Greater” Germany). Those who went were punished after the war. In a 2004 email to me, 
Dr. Knegtmans comments as follows [Kne8]: “As far as I know, only very few people actually 
volunteered for the Arbeitseinsatz. Most (several hundreds of thousands) did so under pressure 
and among them were three thousand students of all Dutch universities and a few staff members. 
After the war, however, there was some criticism of these men. Could they not have evaded 
conscription, some asked publicly. I think they could not, because their names and addresses were 
known and most needed the income for their families. This was of course not the case with the 
students, but in fact most students fled from the Arbeitseinsatz in Germany back to Holland, while 
others did not return to Germany from their holidays. I think that none of the students, staff 
members, or professors of the University of Amsterdam was punished for voluntarily joining the 
Arbeitseinsatz. Probably no one did join voluntarily. But some of the Nazis among the students 
and staff joined the German army (or the Dutch Volunteer Corps) or para-military German 
organizations. The staff members among them were removed from the university, the students 
simply did not return to the universities.”
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This writing makes us slightly nauseous. November 1942! Pieter ‘t Hoen8 has been in 
prison for eleven months, Wiardi Beckman9 is in prison, Koos Vorrink10 is in hiding, 
indeed all Parool people are in hiding; the O.D.11 trial is over [resulting in] 70 people 
shot. The entire O.D. leadership is in hiding. All Vrij-Nederland people and those of De 
Geus, and Je Maintiendrai, and Trouw, and De Waarheid are in hiding.12 In hiding, 
leaving behind wives and children! No, the little piece of advertising says “going into 
hiding was out of the question.” And then the explosion comes: “. . .  and there was also 
no clear resistance yet”!!! See above, reader! November 1942. Hundreds have been shot 
for the resistance. Thousands are in camps. Other thousands have gone under. The 
illegal press flourishes (Parool 15,000 copies!). “No, there was no clear resistance yet,” 
the writer of the little piece of advertising says. 

There was such a clear resistance that Van der Waerden was advised by his imme-
diate environs not to return [to Germany]. He went anyway. For three more years he 
taught in the enemy’s country for the enemy’s money. Who could stomach to suspend 
an art student from the university for a few years while at the same time make Van der 
Waerden a professor? 

Clearly, Van der Waerden’s statement conveyed to the Dutch people via Alderman de 
Roos that in November 1942 “there was also no clear resistance yet,” was untruth. Moreover, 
it must have been received in postwar Holland as the worst kind of slander of the Fatherland, 
which prompted such a powerful rebuttal from Het Parool editors. 

Now that Van der Waerden has also initiated a discussion on the pages of the students’ 
weekly Propria Cures, he receives a published reply from P. Peters, apparently a student, in 
the next, February 8, 1946, issue of this weekly [Pete]: 

8 Pieter ’t Hoen was the pseudonym of the Amsterdam journalist Frans Johannes Goedhart 
(1904–1990), the founder of Het Parool, who was arrested in January 1942. Madelon deKeizer 
[Kei] reports that “Goedhart was one of the twenty-three suspects to be brought to trial before the 
German magistrate in the first Parool trial in December 1942. Seventeen death sentences were 
pronounced and thirteen Parool workers were executed by firing squad in February 1943. 
Goedhart managed to obtain a reprieve. He escaped in September 1943 and resumed his position 
on the editorial board.” 
9 Herman Bernard Wiardi Beckman, (1904–Dachau, March 15, 1945), a member of the Editorial 
Board of Het Parool, one of the intellectuals of the SDAP (De Sociaal-Democratische Arbeiders 
Partij), arrested in January 1942, he ended his life in the Nazi concentration camp Dachau. 
10 Jacobus Jan (Koos) Vorrink (1891–1955), a member of the Editorial Board of Het Parool, 
chairman of SDAP (De Sociaal-Democratische Arbeiders Partij) and later of PvdA (De Partij van 
de Arbeid, labor party), was arrested on April 1, 1943, and later sent to the Nazi Concentration 
Camp Sachsenhausen, from which he was liberated by the Soviet Army in 1945. 
11 
“O.D.” stands for Orde Dienst, a national resistance organization. 

12 Vrij-Nederland, De Geus, Je Maintiendrai, Trouw, and De Waarheid were Dutch underground 
publications of the occupation period. Recall, Van der Corput served on the Board of Vrij-
Nederland.
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To Mr. Editor 

During the last weeks there has been repeated mention in the press of the appointment 
of Prof. B. L. van der Waerden to a professor in group theory of algebra at our 
University. Still cloaked in the clouds of dust blown up by the return of other professors 
one should be surprised by the fact that no attention has been devoted by P. C. (Propria 
Cures) to the discussion of Prof. Van der Waerden. 

Prof. Van der Waerden, as is well known, taught during the entire war at Leipzig 
University. 

In “Het Parool” he recently declared having been anti-Nazi. Be it as it may, it is not 
entirely clear how to square this with his collaborative attitude, most tellingly illustrated 
by the fact that after the defeat of the Netherlands, he grew used to what he had been 
doing before that time, every single day he gave Heil Hitler salute (Heil Hitlergroet) in  
public at the start of his lectures to the enemy. Given the circumstances, it is hard to 
accept that he continued to fulfill his function in Germany under duress; even more so 
because, as was said, he was offered a professorship in the Netherlands. Subsequently, 
in his defense he does not discuss the voluntariness of his collaboration. 

How tedious the subject of purification might have become, let there be no double 
standard. 

Would it be therefore more tactful if the [City] Council, which is still contemplating 
his appointment, avoids the provocation here, and that Prof. Van der Waerden remains 
content with his present job [with B.P.M.] for now? 
P. Peters 

I do not know how reliable P. Peters’ allegation was of Van der Waerden’s daily use of the 
Heil Hitler salute at the start of his lectures. Van der Waerden did not send his rebuttal to 
Propria Cures as he did to Het Parool to refute its accusations he thought were false. He did 
not respond to the same allegation of using the Heil Hitler salute passed on to him by Van der 
Corput. I do know for a fact that Van der Waerden did use the Heil Hitler salute at the close of 
his official letters. Perhapshe did not think it was a serious enough accusation to merit a 
response? Van der Waerden’s famous friend Werner Heisenberg did not think much of using 
the Heil Hitler salute. We have already read his nonchalant view. 

P. Peters is correct in observing that “it is hard to accept that he [Van der Waerden] 
continued to fulfill his function in Germany under duress.” And this is not an opinion of just 
one student: Peter J. Knegtmans in his monograph [Kne2] reports about the protest of the 
major students’ organization Algemene Studenten Vereniging Amsterdam (ASVA): 

The ASVA13 protested heavily against the coming of the mathematician Professor Van 
der Waerden to the University of Amsterdam because he had taught throughout the 
entire war at a German university. 

Moreover, Knegtmans writes in an email to me [Kne3] that on February 5, 1946, ASVA 
wrote a letter to B. en W, the Executive Committee of the City of Amsterdam. According to 
Dr. Knegtmans notes (kindly translated by him for me from Dutch), the letter said: 

13 According to Dr. Knegtmans [Kne3], ASVA, a new general student union that had emerged from 
the circles in the Amsterdam student resistance. During the first postwar years, it was very keen on 
matters involving the behavior of old and new professors during the war.
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Word has reached the ASVA that Burgemeester & Wethouders have proposed Prof. 
Dr. B. L. van der Waerden as professor at the University of Amsterdam. This proposal 
has surprised the ASVA, considering the fact that during the war Prof. Van der Waerden 
has been professor at a German university. 

The ASVA is under the impression that the College van Herstel also had had some 
doubts before it eventually advised Burgemeester & Wethouders to go ahead with this 
proposal. However, the facts that have surfaced about Van der Waerden’s behaviour 
during the war are so serious that his appointment would be unacceptable for the 
students, as long as the results of the investigations by the College van Herstel remain 
unknown. 

Therefore, the ASVA requests to reveal the grounds on which Burgemeester & 
Wethouders think Van der Waerden is qualified for a position of professor at a Dutch 
university.14 

On February 15, 1946, Netherlands’ Minister of Education, Culture and Science Van der 
Leeuw telephones Mayor of Amsterdam Feike de Boer and asks for information about Van 
der Waerden. The very same day, Mayor de Boer sends Minister Van de Leeuw a two-page 
glowing report, prepared by Van der Corput based on Van der Waerden’s draft and signed by 
the Mayor. Mayor De Boer also sends the same report to Netherlands’ Prime Minister 
Schermerhorn:15 

15 February 1946. 
Report on the actions of Prof. Van der Waerden. 
Confidential. 

With respect to the request by telephone by your Excellency for information related 
to a possible position for Professor Dr. B. L. v/d Waerden as Professor at the University 
of Amsterdam, we have the honor to give you the following abstract of the results of our 
investigation by Professor Van der Corput and the Chair of the Mathematics and Physics 
Faculty of the University, who investigated the actions of Professor Van der Waerden 
from the beginning of the Nazi Government of Germany. The statements of Professor 
Van der Waerden are also partially included in this abstract. 

In 1934 Professor Van der Waerden spoke against dismissal of Jewish people openly 
during a faculty meeting in Leipzig. For this he received a reprimand from the Govern-
ment of Saxony, and he was told that as a foreigner he should not meddle in the politics 
of Germany. 

In 1935 or 1936 Van der Waerden wrote a very nicely formulated eulogy for the 
Jewish professor Emmy Noether who left for the USA. 

The German Government considered Van der Waerden as not trustworthy and in 
1939 did not allow him to visit Volta Congress, and give lectures for prisoners of war, 
and to participate in the Mathematical Congress in Rome. An invitation to the faculty at 
Munich University had not occurred because the party leaders found Van der Waerden 
“untrustworthy.” 

14 Archives of the ASVA in the International Institute for Social History in Amsterdam. 
15 Het Nationaal Archief, Den Haag, finding aid number 2.14.17, record number 73 – dossier 
B.L. van der Waerden (Archive of the Ministry of Education).
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When in 1940 the occupation of the Netherlands began, Van der Waerden was first 
interned and after that Germany banned him from leaving until the end of the war. Only 
after the death of his mother in November 1942 he was given permission to visit 
Netherlands for 6 days. 

In 1941, Van der Waerden was still graduating “non-Aryan” [students]. Until 1942 
he was accepting articles of Jewish people and people of mixed race to the 
Mathematische Annalen in his position as an editor. 

Before the war Van der Waerden did not leave Germany because he believed that in 
his position of a scientist he would be able to defend culture against the culture 
destroying National Socialism; and only much later he came to an opinion that he was 
not able to do it. 

During the short stay in the Netherlands [November 1942], he did not use this stay to 
go underground because not many people at that time did that, and also because his wife 
and children were in Germany and would not know what would happen to him. 

In 1943 he did not accept the invitation by the faculty at Utrecht University because 
he did not want to accept a position from the government of the time. 

Mrs. Van der Waerden is from Austria, and right from the beginning was very much 
against the Nazi regime. 

Professor [Samuel] Goudsmit, who is chair of the American Bureau in Paris, had a 
task of investigating political activities of professors in Germany, has told Professor 
Clay and Professor Michels that his investigation did not show anything against 
Professor Van der Waerden. And a telegram was received by Clay from Goudsmit 
that said “Preliminary information favorable.” 

We would like to know based on the above what the Government position is with 
respect to granting professorship to Mr. Van der Waerden. 
Mayor and Aldermen of Amsterdam 
De Boer (stamped) 
Secretary 
Van Lier (stamped) 

This two-page document was accompanied by a cover letter, which is of great interest to 
us, due to several consequent handwritten comments written on it. Let us start with the 
typed text: 

To his Excellency the Minister of Education, Culture and Science. 
15 February 1946 
Result of the inquiry into the behavior of Prof. van der Waerden. 
Confidential. 
We have the honor to hereby forward Your Excellency a copy of a letter with informa-
tion on Professor Van der Waerden, which our City Council sent to the Prime Minister 
in response to today’s request for information. 
Mayor and the Aldermen of Amsterdam 
(signed) De Boer [Feike de Boer, the Mayor] 
Secretary 
(signed)
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Five days later, on February 20, 1946, Mayor De Boer adds a note handwritten in pencil in 
the lower right corner of this letter (I am grateful to Dr. Peter Knegtmans for its translation). 
Mayor De Boer is concerned but still optimistic about approving Van der Waerden’s 
professorship: 

Considering the report, it seems to me that objection against the appointment in 
Amsterdam cannot be maintained, albeit that the sentiment regarding v.d.W. [Van der 
Waerden] will at first not be favorable. If needed, a further reinforcing report by 
[Samuel] Goudsmit can be requested. (signed) De Boer 20.2 

In the upper right corner, I see a short handwritten note in ink added on February 
26, 1946: 

Register as received (signed) De Boer 26.2 

Why would one register on February 26, 1946, a letter written eleven days earlier? The 
answer comes from another document from the Nationaal Archief. This document, also dated 
February 26, 1946, arranged in landscape (horizontally), consists of two critically important 
letters written by the Netherlands’ Prime Minister, Professor Willem Schermerhorn 
(1894–1977), who was also the Minister of War:16 

[Left Side] 
To the Minister of Education, Culture and Science 
February 26, 1946 
SECRET (stamp) 
Very Confidential 

With this I am sending you a copy of my letter that I have sent to the Mayor and the 
Aldermen of the City of Amsterdam with respect to a possible position for Mr. Van der 
Waerden as professor at the University of Amsterdam. 
Prime Minister 
(signature) W. Schermerhorn 

______________________________________________________ 
[Right Side] 
To the Mayor and Aldermen of the City of Amsterdam 
February 26, 1946 
Very Confidential 

In answer to your letter of 15 February [1946] regarding Case 0 nr. 13/I with respect 
to a possible position of Mr. Van der Waerden as professor at the University of 
Amsterdam, I can let you know that this kind of position will not be signed off. 
Prime Minister 
(signature) W. Schermerhorn 

I am convinced that Van der Waerden’s professorship was on the January 16, 1946, agenda 
of the City Council only because Mayor de Boer received an approval from the Minister of 
Education, Culture and Sciences Van der Leeuw. The fact that the Prime 
MinisterSchermerhorn overruled Minister Van der Leeuw’s decision shows how powerful

16 Het Nationaal Archief, Den Haag, finding aid number 2.14.17, record number 73 – dossier 
B.L. van der Waerden (Archive of the Ministry of Education).
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Accordingly, on April 17, 1946, the Burgemeester & Wethouders advise the College van 
Herstel of Amsterdam, which served a dual duty of a de-Nazification Committee and the 
Board of Curators, of the withdrawal of Van der Waerden’s nomination [Kne3]: 

Burgemeester & Wethouders inform the College van Herstel that they felt obliged to 
withdraw the nomination to appoint Dr. B. L. van der Waerden as extra-ordinary 
professor in group theory and algebra that they submitted to the city council on 
4-January-1946, as it turned out that the government would withhold its assent in the 
event of an appointment of Dr. Van der Waerden. 

This document demonstrates that Royal Assent was required for a professorial appointment 
at any Dutch university, including the municipal University of Amsterdam. Professor Van der 
Waerden, as well as, apparently, his colleagues Van der Corput and Clay, never understood 
this point, for even in 1993 Van der Waerden tells his interviewer Dold-Samplonius [Dol1] 
that “Amsterdam is a city university, and there the queen was unable to interfere.” In fact, The 
University Historian of the University of Amsterdam Dr. Knegtmans, who knows best, 
advises me as follows [Kne5]: 

If Clay and Van der Corput really thought that an appointment as professor at the 
University of Amsterdam by the city council did not need approval by the queen, they 
were mistaken. It did so by law of 1876 and this procedure was not changed until 
sometime around 1980. However, approval by the queen did and does in fact mean 
approval of the minister (of Education, in this case). The queen was and is not supposed 
to have an opinion of her own. This [is] the minister’s responsibility. It is the minister 
who advises the queen what to do: to give or not to give her approval. In Van der 
Waerden’s case this meant that the then Minister of Education, Professor Gerardus van 
der Leeuw, Professor of Theology [as well as Religions and Egyptology] at the 
Groningen University, who was minister in the first postwar year, withheld his approval 
of Van der Waerden’s appointment as professor in Utrecht as well as in Amsterdam. 
Van der Waerden was probably not appointed in Utrecht at all, because it was Van der 
Leeuw who had to appoint him. He was probably only proposed as professor by the 
College van Herstel in Utrecht. 

Years later, I received documents of College van Herstel en Zuivering, the de-Nazification 
Committee of Utrecht, which specifically dealt with Van der Waerden’s case among other 
matters. Thus, both de-Nazification Boards, those of Amsterdam and Utrecht, have investi-
gated Professor Van der Waerden’s behavior during the Nazi era. In the end, we see that the 
press and students held the feet of the academics and the governments to such a hot fire that 
the latter, convinced or not of the validity of the arguments, were so scared to err in the public 
eye on the serious issues raised by the press and students, that they gave up on trying to place 
Dr. Van der Waerden in any Dutch university. 

On March 13, 1946, this was formalized in a letter from Dr. Gerardus J. van der Leeuw, 
Minister of Education, Culture, and Sciences to College van Herstelen Zuivering of Utrecht 
University:
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I am notifying you that the Council of Ministers has decided that persons, who during 
the occupation years have continuously worked in Germany out of their free will, cannot 
now be considered for government appointments. 

The reason for the decision was the discussion of a possible appointment of Dr. B. L. 
van der Waerden to professor in Amsterdam. 

It will be clear to you that the appointment of Dr. Van der Waerden either in 
Amsterdam or in Utrecht cannot take place. 
The Minister of Education, Culture and Sciences 
Signed for the Minister by Secretary-General H. J. Reinink 

Astonishingly, Van der Waerden’s individual case prompted the Government of the 
Netherlands to pass a new law, banning all “persons, who during the occupation years have 
continuously worked in Germany out of their free will” from all government jobs! 

I have been unable to find Van der Corput’s reaction to the Het Parool Affair, but I have 
found the next best thing: the opinion of the second major supporter of Van der Waerden at 
Amsterdam, Professor Jacob Clay. On March 19, 1946, just six days after the Minister’s 
decision, Clay writes to Van der Waerden as follows: 

Dear v d Waerden, 
To my great regret our plan has not materialized at the last moment. The City 

government had already been convinced that the appointment was appropriate when 
the decision from the Minister came that nobody who has worked in Germany during 
the war, without any exceptions, for the time being would receive an appointment in 
public service. The response that I had prepared was not looked at, and in retrospect I am 
sorry that I have allowed the Alderman to keep me from responding to Het Parool. 
When so much time has passed, it seems better not to bring these things up again. I now 
hope very strongly that we will receive a better collaboration for the Mathematical 
Centre and that in time this matter will still work out OK, and I do not doubt that this is 
going to happen in time. 

Nicolaas de Bruijn and my dear friend and coauthor Paul Erdős allow us an additional 
glimpse of Holland, year 1948. De Bruijn recalls [email to me of February 3, 2004]: 

You wanted to know more about my early contacts with Paul Erdős . . .  We met in 
person on several occasions, for the first time in 1948. I first saw him at his arrival in the 
harbor of Rotterdam, and took him to Delft, where he stayed a few days at our house. 

Paul Erdős conveys a relevant detail of this 1948 visit: 

Once at the dinner table, when the conversation turned to Van der Waerden, Nicolaas’ 
wife, Elizabeth “Bep” de Groot said, 

If Van der Waerden were not such a fine mathematician, things would have been 
much worse for him [in the postwar Netherlands].
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42.2 Job History 1945–1947 

Upon his return to Holland in late June 1945, Dr. Van der Waerden needed a job as soon as 
possible. Hans Freudenthal introduced Van der Waerden to Bataafsche Petroleum 
Maatschappij (B.P.M.), today known as Royal Dutch Shell, and on October 1, 1945, Van 
der Waerden got his first post-World War II job as an analyst for B.P.M. 

On July 30, 1946, Van der Waerden sends a letter to Leipzig Professor of Physical 
Chemistry Karl Friedrich Bonhoeffer, whose younger brother, the famous theologian Dietrich 
Bonhoeffer, was hung days before the end of World War II for his part in a conspiracy to 
assassinate Hitler. Van der Waerden expresses his condolences, criticism of the Nazi regime, 
criticism of the post-Nazi regime, difficulty of retrieving his bicycle from Leipzig, and 
difficulty convincing the world, a year after the horrific German brutalities, that there are 
still some decent Germans: 

Dear Mr. Bonhoeffer, 
We were very pleased to hear from you. But we were devastated by the fate of your 

four brothers and brothers-in-law murdered by the Nazis. That is terrible! The entire 
hopeless time that speaks from your letter and some other letters from Germany is very 
painful for us. How differently we imagined it when this hated gang would have gone 
away. And we would all work joyfully for the reconstruction of Germany of scholarship 
and of a better world. Now one year later I cannot even get permission to go to Leipzig 
in order to retrieve my bicycle and some papers and everyday things and to settle my 
relationship with the university. Everywhere there are walls of division, mistrust, and 
hate, and not much constructive work. Indeed, as you write, it is very difficult to make it 
clear to people everywhere that there are still decent Germans. Every individual half-
way reasonable person admits it, but the general population does not want to see it. 

From this letter, we also learn that Van der Waerden is happy with his industrial job and is 
offered an academic job in Graz, Austria (which did not work out). In 1946, a group of 
mathematicians led by Van der Corput establishes the Mathematisch Centrum (Mathematics 
Center), MC  for short, in Amsterdam. As MC’s first director, Van der Corput hires Dr. Van 
der Waerden to a part-time (one-day a week) position as the applied mathematics director of 
the MC. 

At this point, Zurich enters the stage in our narrative. The lifelong ETH Professor Beno 
Eckmann (March 31, 1917, Bern–November 25, 2008, Zurich) kindly recollects for me 
[Eck1]: 

In 1944 the chair of applied mathematics became vacant. Lars Ahlfors was appointed in 
1945, but he left after 3 semesters. 

Olli Lehto writes [Leh1]: “Ahlfors did not stay long in Zurich; later he confessed that he 
did not have a good time there.” Ahlfors explains (ibid.):
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I cannot honestly say that I was happy in Zurich. The post-war era was not a good time 
for a stranger to take root in Switzerland . . .  My wife and I did not feel welcome outside 
the circle of our immediate colleagues.17 

Consequently, Ahlfors gladly accepts an offer to return to Harvard University – where he 
worked 1935–1938 – and remains there for decades (1946–1977, plus afterward as an active 
Professor Emeritus). The University of Zurich upgrades Ahlfors’ position (who was an 
extraordinary professor) to a full ordinarius and starts the new search. 

Dr. Heinzpeter Stucki, Universitätsarchivar at Zurich, has found for me only one docu-
ment directly related to this search, which, however, proved to be of a great significance: the 
6-page July 15, 1946, report by Dekan Hans Steiner to Executive Authority (Regierungsrat) 
Dr. R. Briner of the Education Directorate (Erziehungsdirection) of the Zurich Canton. 
Steiner chooses two foreign mathematicians and recommends grabbing them as soon as 
possible, never minding the controversies surrounding these candidates: 

Prominent mathematicians are available today for a short time, and the two world-
famous mathematicians in question are: Rolf Nevanlinna18 (Finland) and Prof. Van der 
Waerden (Holland). 

Steiner assesses the candidacy of Professor Nevanlinna first. After praising his mathemat-
ical achievements, Dekan addresses the personality of the candidate: 

He was born on October 22, 1895, in Joenuu (Finland) and for many years was Rektor 
of the University of Helsinki. He had to leave this position as a consequence of the 
political circumstances after the end of the war. Consequently, as he has briefly 
communicated, he is ready for an appointment at Zurich. 

This is a rather short assessment: born-rektored-forced to resign. Looking at the 15-page 
summary [Ster] of the 317-page biography of Rolf Nevanlinna, written by his student (Ph.D., 
1949) and advocate Olli Lehto, one is compelled to quote at least some information, which 
should have been relevant to the neutral Switzerland just one year after World War II: 

In 1933 Hitler became the German Reichskanzler. Up to the year 1943 Nevanlinna was 
of the opinion that Hitler [!] in German history could be compared to Friedrich the Great 
and Bismarck . . .  He and other members of his family regarded the cause of Nazi 
Germany as their own cause. Germany was Nevanlinna’s motherland (his mother was 
German) . . .  This contributed to . . .  his Nazi-friendly convictions in particular, which he 
expressed in a series of speeches and publications. Nevanlinna, however, has never been 
a member of a National Socialist party and did not hold anti-Semitic positions. 

17 Earlier, on September 18, 1938, Einstein expressed his distaste for the Swiss government: “I 
haven’t forgotten that the Swiss authorities didn’t stand by me in any way when Hitler stole all of 
my savings, even those designated for my children.” (Letter to Heinrich Zangger [Ein1, p. 128]. In 
recent years, the cultivated for decades belief in Swiss neutrality during the war has been 
questioned. 
18 Rolf Herman Nevanlinna (1895–1980), a professor of mathematics (1926–1946) and Rektor 
(1941–1944) at Helsinki University; professor of applied mathematics at the University of Zurich 
(1946–1963, Honorary Professor starting in 1949).
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When in Finland as well as in Germany the thought arose to establish a Finnish 
Volunteers Battalion, Nevanlinna welcomed this idea and agreed to the deployment of 
volunteers unreservedly. On the demand of [Reichsführer SS] Himmler there was 
developed the SS Battalion, and in the summer of 1942 Nevanlinna became the 
Chairman of the SS Volunteers Committee of this [Waffen-SS] Battalion! 

Elsewhere [Leh2] Olli Lehto addresses the Nazi leadership role of his teacher Rolf 
Nevanlinna again: 

In 1942, at the request of the Foreign Minister, Nevanlinna made himself available as 
chairman of the SS Volunteer Committee, which handled the recruitment of Finnish SS 
troops. After the war, Nevanlinna came in for especial condemnation [!] for his 
involvement in these activities. 

My young readers may benefit from a very brief information about SS. The Schutzstaffel 
(Protection Squadron), abbreviated SS was a major paramilitary organization under Hitler 
and the Nazi Party. Under Himmler’s leadership (1929–45), it grew to one of the most 
powerful organizations in the Third Reich. SS was responsible for many crimes against 
humanity during World War II. SS, along with the Nazi Party, was banned in Germany as a 
criminal organization after 1945. According to the Nuremberg Trials and many war trials 
conducted since then, SS was responsible for the vast majority of Nazi war crimes. SS was the 
primary organization that carried out the Holocaust. 

I cringe while reading the Internet home pages of the International Mathematics Union 
(IMU), the highest organization of my profession:19 

The Rolf Nevanlinna Prize in mathematical aspects of information science was 
established by the Executive Committee of the International Mathematical Union in 
April 1981. It was decided that the prize should consist of a gold medal and a cash prize 
similar to the ones associated with the Fields Medal and that one prize should be given at 
each International Congress of Mathematicians. The prize was named the Rolf 
Nevanlinna Prize in honor of Rolf Nevanlinna (1895–1980), who had been Rector of 
the University of Helsinki and President of the IMU and who in the 1950s had taken the 
initiative to the computer organization at Finnish universities. 

I am compelled to ask the IMU executives: How can you ignore or minimize Nevanlinna’s 
willing and eager service as the Chairman of the Finnish SS Troops Committee, his speeches 
in support of Nazi Germany, and on March 25, 1941, still claiming that Hitler saved European 
culture? Professor Nevanlinna was an excellent analyst with no relationship to “Information 
Theory,” once IMU President (1959–1962), and the Finns offered to pay for the prize, but 
mustn’t we take into account the public deeds and moral bearings of the person whose profile 
we etch on our medals, let me repeat, etch on our medals? Or for the IMU executives, 
mathematics is above all moral concerns, Mathematik über alles? Didn’t you understand that 
by “naming the prize in honor Rolf Nevanlinna” you are dishonoring Mathematics? 

The talk, however, is cheap, and so I took upon myself to educate the Executive Committee 
of IMU on their own prize. What came out of it, I will convey in Section 42.10. 

19 http://www.mathunion.org/general/prizes/nevanlinna/details/

http://www.mathunion.org/general/prizes/nevanlinna/details/
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Let us roll back to the Swiss search, year 1946. Professor Nevanlinna is the first choice. 
Dekan Steiner then moves on to the second choice, Dr. Van der Waerden. Steiner admits that 
since he [Van der Waerden] became politically strongly disputed in Holland, the real state of 
affairs had to be clarified. Steiner then quotes a clarification supplied by the Dutch mathe-
matician Jan A. Schouten,20 who at that time lives in seclusion in Epe, Holland: 

Herr van der Waerden [. . .] remained during the war in Germany, to which he was, 
being exempt from [the Dutch] military service, fully entitled, and he always behaved 
there as an enemy of Nazism and in particular did much good for the Jews. The State 
Commission for Coordination of Higher Education [The Van der Corrput Commission], 
which has been established here after the war, and of which I have the honor to be a 
member, would have liked to have Herr van der Waerden in Amsterdam or Utrecht. The 
‘Purging Commission’ that was installed after the liberation, with the task to test the 
heart and kidneys21 of all Dutchmen, had declared him ‘clean,’ and the Minister of 
Education was ready to appoint him. Then a Jewish brother-in-law of Herr v. d. 
Waerden, who had already for years made enemies of him and particularly his (German) 
wife, unleashed a terribly dirty (hundsgemeine) agitation in the press. The Minister, who 
is no strong personality and who already had grave unpleasantness with other similar 
agitations, has thereupon given in to intimidation. You cannot at all imagine what sick 
conditions prevail here, dirty malicious agitation with self-interest and political pur-
poses, often born from desire of revenge are the order of the day. . .  

Our main purpose was to keep Herr v. d. Waerden for Holland for the time being, and 
as soon as the wave of hatred and suspicion has subsided, he will get the Ordinarius 
Professor position, which he deserves as a great mathematician. 

These harsh words of Schouten, directed at his recently liberated Motherland, were 
intended to make Van der Waerden appear as a victim of extremism. It must be said that 
Dr. Schouten peddled gossip to the Swiss: Van der Waerden had no sisters [!] and thus could 
not have had any brother-in-law, Jewish or otherwise. Regardless, so many Jews so recently 
had been killed, including circa 80% of the Dutch Jews, that it was in poor taste to blame a 
Jew for Van der Waerden’s employment difficulties. But to claim that one ordinary person, 
Jewish or not, was able to “unleash a terribly dirty agitation in the press” meant to take Zurich 
Faculty for fools. Unbelievably, Dekan Steiner takes Schouten’s shameless fabrication for 
truth and concludes Van der Waerden’s political evaluation with. 

No reason is thus present to refrain from a possible appointment of Herr v. d. Waerden in 
Zurich. 

Thus, two top choices, two world-class mathematicians, two individuals, whose political 
and moral choices have been questioned during the immediate post-World War II period, end 
up at the top of the Swiss wish list. Nevanlinna is chosen for the position, approved by the

20 Jan Arnoldus Schouten (1883–1971), from a well-known wealthy family of shipbuilders, a 
professor of mathematics and mechanics at Delft Technical University (1914–1943), extraordi-
nary professor (without teaching) of mathematics at the University of Amsterdam (1948–1953). 
Schouten was President of the 1954 International Congress of Mathematicians in Amsterdam. 
21 A biblical expression.



Government of the Canton Zurich and still in 1946 begins his Zurich professorship. However, 
on December 23, 1946, a member of Züricher Kantonsrat (Zurich Cantonal Council, a 
legislative body), Alfred White submits the following interpellation to Regierungsrat (Exec-
utive Authority):
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According to newspaper reports and letters from Finnish journalists, the newly-elected 
professor of mathematics at the University of Zurich Rolf Nevanlinna has operated as a 
recruiter for the sworn to Hitler Finnish Waffen-SS. 

The Canton Government takes its time. Eventually, on March 14, 1947, the Directorate of 
Education (Erziehungsdirection) sends an inquiry to Dekan Steiner of Zurich University. 
Now they desire to receive the defense of Nevanlinna – and themselves – “as soon as 
possible.” Dekan Steiner quotes Professor Fueter who assumes “full responsibility” (whatever 
this means) for Professor Nevanlinna’s character, alleges that Nevanlinna’s acceptance of 
Zurich job is a proof of the latter’s interest in scholarship [sic], and minimizes Nevanlinna’s 
sympathies toward and support of Nazi Germany. Fueter does not seem to understand the 
difference between patriotism and Aryan-kind of nationalism: 

“With Prof. Rolf Nevanlinna, both Prof. Speiser (former Ordinarius in Zurich, now 
Basel) and I have been friends for many years. We know him well and can assume full 
responsibility regarding his importance and his character . . .  

He has dedicated his entire life to scholarship; his acceptance of the Zurich offer 
confirms this once again, because he believes himself better able at this point to pursue 
his scholarly work here . . .  

The current Rektor [in Helsinki] was appointed to this position under the current 
government, which is strongly influenced by communists22 . . .  

That Prof. Nevanlinna is in addition a great Finnish patriot will not be held against 
him in Switzerland. As such of course he tried to support his people with all [sic] 
available means in their struggle for existence. Obviously that was his duty. From the 
communist side in Finland, that is being held against him today. Any sympathies for 
National Socialist Germany played no role and were non-existent.23 

As for the precise accusations in the interpellation, we have no exact information 
about these things. It is certain that the selected Finnish soldiers were brought to 
Germany for further training (certainly not before the war, but mostly between the 
wars). Among them there were students. These soldiers were later integrated into the 
army and are supposed to have proven themselves as good soldiers. It seems doubtful 
[that we should] make use of the fact that they swore an oath to Hitler. There would need 
to be a proof of that. These soldiers were thus non-German SS, but were possibly only 
trained by such [German SS]. According to statements by Prof. Nevanlinna, he had 
simply nothing to do with this whole thing except that he was obligated as Rektor of the 

22 Repeatedly blaming “communists” could hardly fly. Wikipedia informs: “Parliamentary elec-
tions” were held in Finland on 17 and 18 March 1945. The broad-based center-left government of 
Prime Minister Juho Kusti Paasikivi (National Coalition/Independent) remained in office after the 
elections. 
23 This plainly contradicts Olli Lehto’s writings that we have read earlier in this chapter.
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university to place his name under a call to provide food for these people under orders to 
leave . . .  

That today, after a lost war, political suspicions and pretensions are the order of the 
day is not surprising. It is clear that we in Switzerland should put an end to it. Above all 
we should steer clear of this foreign loose talk.” 

Thus, Rektor Nevanlinna “only” lent his name to the recruitment of “non-German SS” 
troops, presided over SS recruitment committee, gave speeches in support Nazi Germany, and 
praised Hitler as Friedrich the Great of his time. “After a lost [sic] war” as Steiner–Fueter put 
it, there were great mathematicians to be picked up by Switzerland, who were not wanted by 
the United States, Great Britain, etc., due to their questioned conduct. And so, we see in this 
letter facts bent to fit the desired goal of recruiting top mathematicians. 

On May 14, 1947, based on the Steiner–Fueter letter, the Canton Government issues a self-
serving, self-clearing response to the Alfred Weiss Interpellation (Protokoll des 
Regierungsrates 1947; 1631 Interpellation. Am 23. Dezember 1946 reichte Kantonsrat 
A. Weiss-Zürich). Thus, nearly a year after his hiring, the Nevanlinna Case is finally closed 
in Zurich. 

I must have awakened Professor Beno Eckman’s thoughts about the times past. In his email 
to me [Eck3], he volunteers a view of Zurich postwar hiring from his present standpoint: 

If I may make a remark as I see it today [in 2004]: Politically Nevanlinna and vdW [Van 
der Waerden] were not easy cases for Switzerland one year after the war. But Univer-
sities tried to forget the past and look into the future. The decision for Nevanlinna must 
have been mathematical: he was absolutely world famous and at that time many 
mathematicians still considered analysis to be the most important part of mathematics – 
this has changed soon; algebra and topology became more and more important. 

This affair shows that the famed Swiss neutrality was a pragmatic rather than a moral 
choice, façade rather than substance. Four years later, the new Dekan Boesch will write about 
this search as follows: 

It is explicit from the Faculty proposal for filling a new position of Professor of Applied 
Mathematics dated July 15, 1946, that Prof. Van der Waerden was thoroughly 
considered. 

Indeed, Prof. Van der Waerden was thoroughly considered, and the interest in hiring him 
was high. In four years, this 1946 consideration would bear fruit. Meanwhile, Van der 
Waerden continues his full-time work at Bataafsche Petroleum Maatschappij and part-time 
work at the Mathematisch Centrum in Amsterdam. 

42.3 “America! America! God Shed His Grace on Thee”24 

After the war, Van der Waerden desired a university professorship – he had held one ever 
since the tender age of 25 years. As we know from his letters to Lefschetz, Veblen, 
Neugebauer, and Courant, his first choice was an academic job in the United States. In

24 From America the Beautiful, a song by Katharine Lee Bates, written on Pikes Peak, Colorado.



early 1947, Dr. Van der Waerden receives a letter from Baltimore, Maryland, that offers 
him both: a university professorship and an opportunity to live in America. Frank 
Murnaghan,25 Johns Hopkins University’s chair of mathematics, offers Van der Waerden 
the position of a Visiting Professor. In his May 5, 1947, letter, Van der Waerden informs 
Johns Hopkins’ President Isaiah Bowman of his acceptance “with much pleasure.”26 Coin-
cidentally, on the same day, May 5, 1947, the Board of Trustees of Johns Hopkins University 
approves the appointment. From their minutes, we learn that the appointment was effective 
from July 1, 1947, to June 30, 1948 (ibid). On May 13, 1947, Provost Stewart Macaulay 
specifies Professor Van der Waerden’s salary at $6,500 for the year (ibid). The Van der 
Waerdens – Bartel, Camilla, Helga, Ilse, and Hans – board the ship called Veendam, which 
arrives in the Port of New York on September 29 or 30, 1947 (ibid).
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At Johns Hopkins University, Van der Waerden is well respected and is offered a 
permanent professorship. This offer is made suddenly and is the result of an unspecified 
“emergency,” as it is called in a number of documents,27 which happened at Johns Hopkins 
University in the early February 1948. Naturally, I have tried to find out what the emergency 
was and came up with a conjecture. J. J. O’Connor and E. F. Robertson write as follows in 
The MacTutor History of Mathematics archive:28 

He [Murnaghan] held this post until 1948 when he retired after a disagreement with the 
President of Johns Hopkins University [Bowman], and went to Sao Paulo, Brazil. 

The sudden departure of the chair of mathematics (chair did depart) is a serious loss for 
Johns Hopkins University. It creates a senior-level vacancy and most likely is the “emer-
gency” that prompts President Bowman, a party to the disagreement, to rush and remedy the 
loss by making Professor Van der Waerden an offer of a permanent position. Let us take part 
in the emergency proceedings. 

On February 6, 1948, President Bowman swiftly forms a special committee and writes to 
its members the following letter: 

An emergency has arisen in the Department of Mathematics that calls for early action on 
an appointment recommended by both Dr. Murnaghan and Dr. Wintner.29 The candi-
date is Dr. Van der Waerden . . .  You have received telephone notice of an Academic 
Council meeting at 8:30 a.m. on Monday, February 9, in Room 315 Gilman Hall. You 
will want to study the enclosed material on Professor van der Waerden before the 
meeting. 

This is a short notice indeed. The next day (!), on February 7, 1948, the special committee, 
chaired by the chemist Alsoph H. Corwin, unanimously approves the mathematics depart-
ment’s recommendation without the usual in academia external letters of reference. The

25 Francis Dominic Murnaghan (1893–1976), mathematics chair at Johns Hopkins University 
(1928–1948). 
26 Johns Hopkins University (JHU), The Milton S. Eisenhower Library, Record Group 01.001 
Board of Trustees, Series 2, Minutes, May 5, 1947. 
27 JHU, Record Group 01.001 Board of Trustees, Series 2, Minutes, 2/9/1948. 
28 http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Murnaghan.html 
29 Aurel Friedrich Wintner (Budapest, 1903–Baltimore, 1958), one of the leading mathematics 
professors at Johns Hopkins University (1930–1958).

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Murnaghan.html


following morning the Academic Council, also chaired by Professor Corwin, at its special 
20-min meeting (8:30 A.M. to 8:50 A.M.) “Voted to suspend its hold-over rule and unani-
mously recommend to the president the appointment of Dr. Van der Waerden.” The same day 
(!) the Board of Trustees approves the appointment of Professor Van der Waerden to a Full 
Professorship that pays “$8,000 first year; $9,000 second year; and $10,000 third year.”30
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Surprisingly, Van der Waerden turns this offer down and chooses to return to Holland. 
Instead of himself he recommends for the position Wei-Liang Chow, his former Leipzig 
doctoral student (Ph.D., 1936) and coauthor of several of his algebraic geometry papers. 
Chow will indeed be hired the following year and will serve as a professor at Johns Hopkins 
University for nearly three decades (1949–1977), including over ten years as the chair. 

In 1945, Van der Waerden wanted badly to come to America. He has gotten his wish in 
1947. Why then in 1948 does he decide to reject a prestigious, well-paying professorship at 
Johns Hopkins and leave America? He chooses to return to Amsterdam, where, rightly or 
wrongly, he has not been treated particularly warmly during 1945–1947. Has his treatment in 
the United States been worse? I tried – and failed – to find answers in the Archives of Johns 
Hopkins University. My investigative thread seems to have run into a dead end. 

Time passed. One day in my University of Colorado office I glanced at my many books on 
the shelves and picked one to read at home. It happened to be Heisenberg’s War: The Secret 
History of the German Bomb by the Pulitzer Prize winner Thomas Powers [Pow]. It was a 
great read; moreover, Van der Waerden makes a cameo appearance on the pages of the book. 
So far, there are no surprises, for we already know that Van der Waerden was a close friend of 
Heisenberg at Leipzig. However, in this book, Van der Waerden appears as Heisenberg’s 
American pen pal in 1947–1948! The letters are quoted from the 1987 Princeton History Ph. 
D. thesis of Mark Walker, defended under the supervision of my dear late friend and the 
founder of Princeton’s History of Science Program Charles Coulston Gillispie (1918–2015). I 
was intrigued, and so I googled and then telephoned Thomas Powers at his Vermont country 
home. Powers leads me to Walker; Walker sends me copies of the Heisenberg–Van der 
Waerden correspondence. The surprising answers are hidden in the Werner Heisenberg 
Archive in Munich, in the unpublished December 22, 1947, letter from Van der Waerden, 
who is in Baltimore, to his friend Heisenberg at Göttingen. I read in excitement and 
disbelief:31 

Dear Herr Heisenberg, 
On the 9th of October I sent you a care package, write to me please if it has arrived 

and how you are doing with groceries. I would be very glad to send you more next year. 
I am still in your debt: in the past when I was arrested, you helped me to something 
much greater, and that is freedom. 

30 JHU, Record Group 01.001 Board of Trustees, Series 2, Minutes, February 9, 1948. 
31 Van der Waerden, letter to Heisenberg, December 22, 1947, Private Papers of Werner Heisen-
berg, Max Planck Gesellschaft, Berlin-Dahlem. I am grateful to Prof. Mark Walker for sharing 
with me the 1947–1948 correspondence between Van der Waerden and Heisenberg, and Van der 
Waerden and Goudsmit. I also thank Dr. Helmut Rechenberg, Heisenberg’s last Ph.D. student and 
former Director of the Werner Heisenberg Archive, for the permission to reproduce these 
materials.
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I need your advice: you are a reasonable man and at the beginning of this war, you 
predicted who in the end would be the victor. I think I will receive an offer to be a 
professor in Baltimore, and then I must decide either in favor of Baltimore Johns 
Hopkins or Holland. In Holland, I would do for the most part applied mathematics 
and I would train applied mathematicians at the newly founded Math Centrum and at my 
oil company. I like this work very well and my work at Johns Hopkins I like too, so this 
[aspect] is equal. The people here are unbelievably nice and helpful: you know that. 
Nevertheless, I would rather stay in Europe: I love Old Europe and so does my wife. 

Thus, Van der Waerden likes his job at Johns Hopkins and considers American people to 
be “unbelievably nice and helpful.” Yet, Bartel and Camilla prefer good “Old Europe.” Fair 
enough, one can relate to that. However, his surprising main concern about living in 
Baltimore pops up in the next paragraph: 

Now my question: how do you judge the prospects for war, and how do you judge the 
question whether one could better safeguard one’s family in America or Holland if the 
insanity would break out? The people here and in Europe are telling us that it is crazy, 
that it is insanity, and that if you have a possibility to stay in America, it is insanity to go 
back to Holland. Personally, I do not believe there will be a war, but if it nonetheless 
should come, then a big American city does not seem to me to be the most secure place 
in the world, but in the past I have been very mistaken in similar cases and do not want to 
have a responsibility on my shoulders for leading my wife and children to ruin. You 
understand more about nuclear physics than I do; what do you think about this? 

Here I have spoken with different people and gotten a definite impression that 
America would never start a war on its own, which has set me to rest. 

Van der Waerden is afraid that in a large American city – Baltimore – his wife and children 
could be in a real danger of a Russian atomic attack! This may sound irrational to us looking 
from today at the year 1947. However, I recall similar fears experienced by Van der 
Waerden’s successor at the University of Amsterdam N.G. de Bruijn, who wrote to me 
about it in his June 1, 2004, email [Bru8]: 

In 1952 I got a professorship in Amsterdam and . . .  I preferred not to live in town but in 
a village 20 kilometers to the east of it. Nobody would believe now that one reason I had 
at that time was that in a Russian atomic attack my family would be pretty safe at that 
distance. A few years later atomic bombs would be hundred times as strong as the 
Hiroshima type, so the whole argument became utterly silly. 

Van der Waerden concludes his Dec 22, 1947, letter to Heisenberg with the hope that 
Germany will be rebuilt, and they will once again work there together: 

They [Americans] even see in all seriousness a desire to support the reconstruction of 
Germany, which I am very happy about. Courant thinks that because of the Marshall 
plan, in some years Germany would once again reach the heights. Maybe we will get 
together again! 

In the March 18, 1948, letter, Van der Waerden informs Heisenberg of his employment 
choice: 

In principle, I have accepted the job offer from [the University of] Amsterdam.
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42.4 Werner Heisenberg’s Unpublished Work “On Active and Passive 
Opposition in the Third Reich” 

At about the same time as the letters exchange with Van der Waerden begins, Werner 
Heisenberg authors but does not publish a document that makes moral principles of this 
enigmatic man clearer than almost anything else. We have already discussed Werner 
Heisenberg’s morality theory of Kill-One-Save-Ten, which he included in his 1971 book 
[Hei2]. In fact, that was not the first time he had written about it. Mark Walker was the first to 
discover it in Heisenberg’s Munich archive and discuss [Wal1, pp. 335–338] the November 
12, 1947, Heisenberg’s unpublished 4-page paper Die aktive und die passive Opposition im 
Dritten Reich, with the subtitle “Written in the context of newspaper reports on the war crime 
trials in Nuremberg” [Hei1].32 The paper is attached to the November 11, 1947, cover letter 
addressed to Fräulein Dr. H. [Hildegard] Brücher, a science editor of Neuen Zeitung in 
Munich. To the best of my knowledge, this cover letter has not appeared in print. I wish to 
present it here in its entirety: 

Dear Fräulein Dr. Brücher, 
Since you are taking the trouble in such a friendly manner to produce a fair report on 

the physicists, and since you so readily gave me information on the telephone regarding 
colleague Dölger, I would like once again to convey to you a wish that this time 
concerns a political problem. 

As you know, a war crimes trial is taking place at this time in Nuremberg against 
members of the Foreign Office. One of the main defendants is former Secretary of State 
Baron von Weizsäcker. Since I know Herr von Weizsäcker personally and believe I 
know his exact political views and know with what intensity he worked over many years 
to preserve the peace, I am completely convinced that the Nuremberg trial will end with 
his acquittal after even von Papen and Schacht have been acquitted. (I would like to 
mention here that back in 1937, when I had been rudely abused by the SS newspaper 
“Das Schwarze Korps,” I received all the possible support from Herr von Weizsäcker.) 
For this reason I regret when the press is given one-sided information by the prosecu-
tion, and when reports about atrocities committed by the defendants, who have not been 
verified by any court, are already being published, before the defense has had a chance 
to say a word. I would be very grateful if in your newspaper you could bring about some 
moderation. Perhaps it would be more pleasant for the paper not to have published all 
the charges of the prosecution and then afterwards have to report the news of acquittal. 
Of course, I cannot foresee the result of the trial with certainty more than anyone else, 
but for that exact reason I would find it more correct if the newspaper reports were as 
neutral as possible. If you share this view, I would be very grateful for your support. 
Best regards, also to our common Munich acquaintances, 
Your, 
[signed] H 

32 Private Papers of Werner Heisenberg, Max Planck Gesellschaft, Berlin-Dahlem. I thank Prof. 
Walker for sharing with me this document, and Dr. Helmut Rechenberg and the Werner Heisen-
berg Archive he used to direct, for the permission to reproduce it here.
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In the attached to this letter four-page essay, Heisenberg defends the Third Reich Secretary 
of State Ernst Baron von Weizsäcker, who was facing a Nuremberg Trial. As you recall, the 
physicist Carl Friedrich von Weizsäcker was Heisenberg’s closest friend and a fellow 
researcher in Uranverein (“Uranium Club,” a project trying to create atomic bomb and atomic 
reactor in Nazi Germany). While on the surface Heisenberg refers to “active opposition” of 
Ernst von Weizsäcker, he seems to count himself among the active oppositionists to the Third 
Reich too. In his commentary Professor Walker uses a few quotes from this essay. This is an 
established practice of scholars in history. However, I wish to share with you this entire 
document so that you can digest it thoroughly and gain your own insight into the fundamental 
moral positions of mysterious Heisenberg. I will share my view as well. Let us listen to 
Werner Heisenberg, one of the great minds of the XX century. To begin with, he defines his 
terms of active and passive opposition. 

If the overwhelming majority of the German people had turned away from the National 
Socialism immediately in 1933 and had refused every compliance, then a good deal of 
misfortune would have been prevented. In fact, this reaction did not take place. Rather, 
the system that in the most clever form knew how to blame its opponents for all of the 
misfortunes of past years, the system did not find it difficult to win the masses who for 
the most part lacked judgment. After this happened and after the power lay in Hitler’s 
hands, there was a relatively thin stratum of people, to whom their sure instinct spoke, 
informing them that the new system was basically bad. 

This relatively thin stratum of people only had an opportunity of passive or active 
opposition. In other words, these people could either say that Hitler’s system is basically 
bad and will lead to a huge catastrophe for Germany and Europe, but I see no way to 
change anything from inside Germany. So, I am going to exile or in any case I withdraw 
from all responsibility in Germany and wait until by means of war the system is 
overcome from outside (overcome by means of war and by means of unheard of 
war-related sacrifices of goods and blood). I would like to designate this way as the 
attitude of passive opposition.33 The most extreme part of this group later decided to 
take part in the war on the side of the allies. Many were simply satisfied to enjoy safety 
from prosecution in a foreign country. 

Another group of people viewed things in the following way. A war, even when its 
subject is to overcome National Socialism, is such a terrible catastrophe and would cost 
so many millions of people their life, that I myself must do absolutely everything that is 
in my power to hinder this catastrophe, or if it has already taken place, to shorten it and 
to restrict it and to help the people who are suffering as a result of it. Many people who 
thought this way but did not know the stability of a modern dictatorship, tried in the 
early years the way of open immediate resistance and ended up in a concentration 
camp.34 For others, who recognized the hopelessness of a direct attack on the dictator-
ship, to help suffering people, many of the people who thought this way but did not 
know the stability of a modern dictatorship, tried in the early years the way of open 
immediate resistance, and ended up in a concentration camp. For others who recognized 

33 Throughout this letter, the emphasis in bold is added by me for better clarity. 
34 In the next sentence Heisenberg repeats himself, but I am not here to copy-edit his text, and thus 
I am keeping his repetition.



554 42 In Search of Van der Waerden: The Unsettling Years, 1946–1951

the hopelessness of this way, there remained another way, the attainment of a certain 
degree of influence, i.e., the attitude that had to appear on the outside like collaboration. 
It is important to be clear that this was in fact the only way to really change anything. 
This attitude that alone had contained the prospect of replacing National Socialism with 
something better but without enormous sacrifices, I would like to designate as the 
attitude of active opposition. 

On the outside the position of these people was much more difficult than that of the 
others. Remember, the active opposition had to repeatedly make concessions to the 
system on unimportant points in order to possess the influence to improve things on 
important points. In a certain sense he had to play a double game. 

Dr. Heisenberg, you must have needed all your brilliant ingenuity to present collaboration 
with the Nazis as “active resistance” against the Nazis. Those who were forced out of Nazi 
Germany, you label as being in “passive [read: worthless] opposition,” passive even those 
who took “part in the war on the side of the allies”! You even insinuate that they chose the 
exile. By 1947 you surely knew, if you did not know much earlier, that the Third Reich threw 
Jews and socialists out of their jobs denied them basic human rights, condoned pogroms, and 
let them leave without almost any property. Many of these exiles would have chosen to stay in 
Germany and fight the regime, but why would they risk their lives and freedom for the 
German masses who viewed these eventual exiles not as fellow-Germans but as alien-Jews or 
enemies-socialists? And you call this forced emigration a choice? Do you believe that 
Germany was any less theirs than yours? Do you believe the refugees from Germany chose 
to give up their country, their language, culture, friends, relatives and go to foreign lands that 
owed them nothing at all, and a professional job least of all? As once a refugee myself, I 
understand how unfair your view really is. And later there was no choice, for Germany closed 
the emigration and opened death and labor camps. Even the lucky survivors were scarred for a 
lifetime. Ralph Phillips recalls a faculty fired from your Leipzig University, who was lucky to 
survive and be accepted as a professor of mathematics at Princeton: 

I remember [Salomon] Bochner as a kind and friendly man, still [1939–1940] troubled 
by scars inflicted by Nazi anti-Semitism. 

Those, who actively fought the regime, in your opinion “did not understand the stability of 
a modern dictatorship, tried the path of open immediate resistance during the first years and 
ended up in a concentration camp [read: worthless].” The President of West Germany Richard 
von Weizsäcker, a brother of your closest friend Carl Friedrich von Weizsäcker, disagrees 
with you. In his moving May 8, 1985, speech in the Bundestag during the Ceremony 
Commemorating the 40th Anniversary of the End of the War in Europe and of National 
Socialist tyranny, he says: 

As Germans, we pay homage to the victims of the German resistance among the public, 
the military, the churches, the workers and trade unions, and the Communists. We 
commemorate those who did not actively resist but preferred to die instead of violating 
their consciences. 

Dr. Heisenberg, you praise “active opposition” as the behavior of the highest morality and 
ascribe to it collaboration with the Nazi regime, participation in the Nazi capital crimes in 
order to gain the Nazi trust, and then use it for “replacing National Socialism with something 
better but without enormous sacrifices.” How unbelievably hypocritical it is to term a
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collaboration with the criminal regime as “active resistance” and put it on a pedestal of high 
morality! Yours must have been “active opposition” when you collaborated with the Nazi 
regime in creating an atomic bomb and atomic reactor, in order to achieve, may I ask, 
exactly what? Create the bomb and thus win trust of and influence on the Nazi government? 
However, let us return to your essay. You continue: 
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One can understand the unavoidable difficult moral problem that was put before the 
member of the active opposition by means of the following constructed case, to which 
the reality may well have come close sometimes. 

Let us assume that a man wishing to save human life comes into a position where he 
can really decide about the life and death of other people. And further let us assume – 
and this is thoroughly conceivable in a really evil system such as National Socialism – 
that he can prevent the execution of ten innocent people only by means of signing a 
death sentence for another innocent person. He knows that the ten others will be 
executed through the action of someone else who will be put in his place if he does 
not sign the death sentence. The fate of the one is in any case sealed, no matter whether 
he signs or not, nothing is changed. So how should he act? Personally, I believe upon a 
conscientious reflection that in such a case signing a death sentence is demanded of us 
[sic], which entails of course our readiness to bear the consequences of that personally. 
Measuring this by the ultimate moral standards, it seems to me that a person who acts 
and thinks in this manner stands higher than the one who simply says, I do not want 
anything to do with all of this. Similar problems have occurred in the Third Reich if not 
always with this intensity. 

All right, Dr. Heisenberg, you illustrate your idea of a high moral position by a hypothet-
ical example. You find it acceptable – moreover, highly moral – to prove loyalty to the Nazi 
criminal regime by signing a death sentence to an innocent person, for this may allow to save 
other lives. It seems as if you are a theoretical arithmetician, for you justify collaboration with 
the Nazi regime and complicity in a murder of an innocent person by a simple arithmetic 
calculation 10 – 1 = 9. Human life, in my opinion, carries infinite value, and if you were to 
understand that your arithmetic would have given an undetermined result: 10 × – 1 × . 

How could such a brilliant intellectual as you not understand that murdering one innocent 
man constitutes a capital crime and the ultimate collaboration with the Nazis in committing it? 
How could such a devout Christian man like you play God, even hypothetically, and decide 
which innocent man is to die and which to live? Indeed, Dr. Heisenberg, you seem to compete 
with God for employment! How can a conscientious man like you ignore the teaching of the 
Babylonian Talmud (Sanhedrin 37a): 

For this reason was man created alone, to teach thee that whosoever destroys a single 
soul . . .  scripture imputes to him as if he had destroyed an entire world; and whosoever 
preserves a single soul . . ., scripture ascribes to him as if he had preserved a whole 
world. 

Re-reading recently Time within Time: The Diaries by the great Russian film director 
Andrei Tarkovsky, I discover that he completely agrees with me. Pondering on the life and 
fate of Shakespeare’s Hamlet, Tarkovsky addresses this very issue, as if he has heard your 
argument, Dr. Heisenberg, and replies to you [Tar]:
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Can a man judge another, can one man shed another’s blood? I do not consider that he 
can, that he has the right . . .  One drop of blood shed is equal to an ocean. I do not 
consider that a man has the right to kill another for the sake of the welfare of ten [!] 
people. If I am told – “Kill that man, and lots of people will be better off!” – I do not 
consider that I have the right to do so, and I would do better to kill myself, as one of our 
writers did at a particular moment of his life, after being obliged to sign death warrants. 
In the end he killed himself. Why . . .  ? No one knows, but it seems to me that it was his 
inevitable end. The only pity is that he didn’t come to that same decision at the moment 
when he had to sign the first death warrant. 

In 1937 you, Dr. Heisenberg, sought – and in 1938 received – protection personally from 
the SS Reichsführer Himmler. Having attracted the high personal attention and patronage of 
Himmler, you could have hardly allowed yourself as much as a whisper of an opposition 
during the Nazi rein. But here, after the war, you insinuate in the following paragraph that 
you – and Ernst Baron von Weizsäcker – were heroes of “active resistance”: 

In Germany there was a small stratum of people in high positions who from the 
beginning belonged to the active opposition and who for a certain amount of time really 
thought that they could turn the steering wheel of Hitler’s policy of war. One of the best 
known of them is former Secretary of State Ernest von Weizsäcker who already in 1938 
used his entire influence to prevent war, but also after the collapse of his political effort 
in the year 1939, it was self-evident for the small circle of people who “belonged to it” 
that one could turn to v.Weizsäcker with any good cause and he would listen and that he 
would help if there was a possibility of success. In many cases he actually became 
involved and successfully saved and helped people. For this reason it seems to me that it 
is based on a deep misunderstanding that now v.Weizsäcker as one of the accused for 
war crimes, stands in front of the Nuremberg Court, while there are so few people on 
earth who undertook as much as he did to prevent the war. 

To make the difficulty of the problem that I am describing clear, it may be permitted 
to recall a real issue of current politics. Everyone knows that there is a certain danger 
that the conflicts that have arisen between the East and the West will not be cleared up 
peacefully and that they could lead to armed confrontation. Everyone knows too that 
this would mean a terrible catastrophe for humanity. Are people in Russia now doing 
anything to prevent this catastrophe? Some of those who have openly acknowledged 
themselves as opponents of the Soviet system and who are now in Russian concentra-
tion camps, are completely disengaged, no matter how great our respect for their attitude 
and our concern for their suffering may be. They don’t have the slightest influence on 
the policies of Russia. 

The only ones who can help are people who officially are regarded as Communists 
and make some concessions to the party line, but in their hearts possess moral standings 
of the Christian world and secretly do everything to hinder armed confrontation and to 
make possible a moderation of Soviet policy. We don’t know if there are such people on 
the Russian side. In fact, it is part of the essence of what they are trying to do is not to let 
anyone know anything certain about them, and they apparently are playing a double 
game. Nothing would be more damaging to their intention than to have it openly 
acknowledged that they possess such moral principles.
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In Germany we now know in retrospect that there were such people. If there are such 
people in Russia and if they are successful in their efforts, paradoxically one day they 
would be regarded as the real Communists as the representatives of policy of interna-
tional cooperation that was always demanded of Communism. In reality they helped the 
good to victory and successfully protected the world from a huge catastrophe. But when 
they fail in their political initiative, should they then be put in front of a court as war 
criminals because they could maintain their influence on Soviet policy only by means of 
concessions? I have written these thoughts because the way that the problem of war 
crimes is being diverted in Nuremberg from the moral plane onto the political plane, fills 
me with a great deal of worry. One should not discourage the people who perhaps are 
now conducting in Russia the same desperate battle that in the past von Weizsäcker, von 
Hassell, Beck and others conducted in Germany. 
Göttingen, 12 November 1947 
W. Heisenberg 

At the end of your essay, Dr. Heisenberg, you applaud smart Stalin’s hatchet men. 
Collaborators and accomplices of the criminal regime are heroes, “active resisters;” dissi-
dents, although merit respect, are stupid and worthless for they do not understand the stability 
of the regime; and the emigrants and refugees (like I) are worthless passive resisters. These 
views are not new; I have heard that before from the loyalists of the Soviet totalitarian regime 
as I was departing the Land of Soviet Promise. 

I have got to quote here a passionate letter that the codiscoverer of nuclear fission, unfairly 
non-Nobeled Lise Meitner, wrote in late June 1945 to her coauthor Nobeled Otto Hahn. She 
addresses here Hahn, Heisenberg, and other scientists who worked for the Third Reich, and 
without even reading this Heisenberg’s “Opposition” manuscript (as Heisenberg would write 
it two years later) she powerfully rebuts Heisenberg’s pretense of any resistance, even a 
passive one [LS, p. 310]: 

You all worked for Nazi Germany and you did not even try passive [!] resistance. 
Granted, to absolve your consciences you helped some oppressed person here and there, 
but millions of innocent people were murdered and there was no protest. I must write 
this to you, as so much depends upon your understanding of what you have permitted to 
take place. Here in neutral Sweden, long before the end of the war, there was discussion 
of what should be done with German scholars when the war was over. What then must 
the English and the Americans be thinking? I and many others are of the opinion that 
one path for you would be to deliver an open statement that you are aware that through 
your passivity you share responsibility for what has happened, and that you have the 
need to work for whatever can be done to make amends. But many think it is too late for 
that. These people say that you first betrayed your friends, then your men and your 
children in that you let them give their lives in a criminal war, and finally you betrayed 
Germany itself, because even when the war was completely hopeless, you never once 
spoke out against the meaningless destruction of Germany. That sounds pitiless, but 
nevertheless I believe that the reason that I write this to you is true friendship. You 
cannot really expect that the rest of the world feels sympathy for Germany. In the last 
few days one has heard of the unbelievably gruesome things in the concentration camps; 
it overwhelms everything one previously feared. When I heard on English radio a very 
detailed report by the English and Americans about Belsen and Buchenwald, I began to
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cry out loud and lay awake all night. And if you had seen all those people who were 
brought here from the camps. One should take a man like Heisenberg and millions like 
him, and force them to look at these camps and the martyred people. 

Indeed, how could these brilliant scholars, by their silence and their work support the Nazi 
brutes gloating with cynicism, erecting “Arbeit macht frei” above the gates of Auschwitz and 
Dachau, Gross-Rosen and Sachsenhausen, Fort Breendonk and Theresienstadt? “Works 
makes one free”? Free in the slave labor of the Nazi concentration camps? Did these great 
minds approve of Buchenwald’s “Jedem das Seine”? Everyone gets what one deserves? Do 
the innocents deserve torture and death, Professor Heisenberg? 

I wish to note here, that, to my regret, the high moral authority of the Nazi years’ Germany, 
Nobel Laureate and Einstein’s friend Max von Laue, added his insult of exclusion and 
mistrust to the Nazi injury of Samuel Goudsmit when in 1948 he wrote a response to 
Goudsmit’s book Alsos and its December 1947 review [Mor1] by Professor Philip Morrison 
of Cornell University [Lau]: 

We do know that Goudsmit lost not only father and mother, but many near relatives as 
well, in Auschwitz and other concentration camps. We realize fully what unutterable 
pain the mere word Auschwitz must always evoke in him. But for that very reason one 
can recognize neither him, nor his reviewer Morrison, as capable of an unbiased 
judgment of the particular circumstances of the present case. 

Earlier Heisenberg expressed the same opinion as von Laue that victims of Nazism, such as 
Goudsmit, have no right to be arbiters of the Nazi regime:35 

Goudsmit’s position can be explained only by the fact that he lost his two parents in 
Auschwitz and naturally is embittered toward Germany. It is at least understandable and 
pardonable that he finds it difficult in his bitterness to make a distinction between the 
different people of our country. 

In my opinion, Morrison is absolutely correct in his powerful rebuttal of von Laue 
[Mor2]:36 

I am of the opinion that it is not Professor Goudsmit who cannot be unbiased, not he, 
who most surely should feel an unutterable pain when the word Auschwitz is men-
tioned, but many a famous German physicist in Göttingen today [i.e., Heisenberg], 
many a man of insight and responsibility, who could live for a decade in the Third 
Reich, and never once risk his position of comfort and authority in real opposition to the 
men who could build that infamous place of death. 

As to Heisenberg’s concept of moral superiority of the German physicists over the Allied 
scientists, it is best refuted by Philip Morrison in his December 1947 review [Mor1] of 
Goudsmit’s Alsos: 

The documents cited in Alsos prove amply that, no different from their Allied counter-
parts, the German scientists worked for the military as best their circumstances allowed. 
But the difference, which it will never be possible to forgive, it that they worked for the 

35 Quoted from [Wal1], p. 340. 
36 Rebuttal, which was not published in Germany [Wal1, p. 360].
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cause of Himmler and Auschwitz, for the burners of books, and the takers of hostages. 
The community of science will be long delayed in welcoming the armorers of the Nazis, 
even if their work was not successful. 

Regretfully, Morrison’s prediction is not materialized. Very soon, in 1950 – and again in 
1954 – Werner Heisenberg is invited for a VIP lecture tours of the United States. On May 
14, 1958, he is made a Foreign Honorary Member of the American Academy of Arts and 
Sciences. Heisenberg is offered a number of jobs in the United States, as are many Third 
Reich scientists and engineers. America is acquiring ammunition for the Cold War and paying 
for it a high moral price. 

The clearest example of American hypocrisy is secretly bringing in the leading German 
rocket scientist Wernher von Braun (1912–1977), a member of the Nazi party and an officer 
in the SS, and his associates. They are brought in not for trial – but for building American 
rockets. Von Braun titles his autobiography “I Aim for the Stars,” but he should have added 
“But Sometimes I Hit London,” as is suggested by the American mathematician, pianist, and 
songwriter Tom Lehrer, who wrote a satirical song “Wernher von Braun”: 

Gather round while I sing you of Wernher von Braun, 
A man whose allegiance is ruled by expedience. 
Call him a Nazi, he won’t even frown, 
“Ha, Nazi schmazi,” says Wernher von Braun. 

Don’t say that he is hypocritical, 
Say rather that he’s apolitical. 
“Once the rockets are up, who cares where they come down, 
That’s not my department,” says Wernher von Braun. 

Some have harsh words for this man of renown. 
But some think our attitude should be one of gratitude, 
Like the widows and cripples in old London town, 
Who owe their large pensions to Wernher von Braun. 

You too may be a big hero 
Once you’ve learned to count backwards to zero 
“In German oder English I know how to count down 
Und I’m learning Chinese,” says Wernher von Braun. 

Now that you have read the lyrics, enjoy Tom Lehrer performing his song; I found it 
for you: https://www.youtube.com/watch?v=TjDEsGZLbio 

During the prewar visits of the United States, Heisenberg stayed at Goudsmit’s home; they 
were old friends and shared many common friends in the world of leading physicists. Yet, the 
friendship between Heisenberg and Goudsmit was never quite renewed after the war. Yes, 
Heisenberg was upset over Goudsmit’s criticism, especially unfair criticism of his war time 
physics efforts. But after giving it much thought, I see elsewhere the major reason for 
Heisenberg’s displeasure. Goudsmit unearthed Heisenberg’s pleas for help to Heinrich 
Himmler. The two of the most notorious Nazi murderers, Himmler and Heydrich, granted 
their cover to Heisenberg, and this had to be extremely embarrassing for Heisenberg when 
these letters appeared in Goudsmit’s book Alsos.

https://www.youtube.com/watch?v=TjDEsGZLbio
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Elisabeth Heisenberg in her memoirs [HeiE, p. 112] states that “Goudsmit later regretted 
having written the book, and apologized to Heisenberg for it; nevertheless, the book is one of 
the reasons for Heisenberg’s character falling into such ill repute.” Goudsmit had regrets but 
not due to writing the book. Werner and Elizabeth Heisenberg’s son, Physics Professor 
Emeritus at the University of New Hampshire, Jochen Heisenberg writes to me on February 
4, 2011: 

Dear Alexander Soifer, 
During the time my mother wrote her book I was already living and teaching here in 

the US. Thus, I do not know the details of that apology. However, at a meeting of the 
APS [American Physical Society] in Washington D.C. that I attended, Goudsmit had 
asked to meet me. At that meeting he apologized to me for the difficulties he had caused 
to my father, his family, and also to me. This, however, had been a different incident, 
and in this conversation the book Alsos was not mentioned in a particular way. 

As the scientific head of Alsos Missions, Goudsmit was instrumental in identifying the ten 
German scientists, who were held in the Farm Hall (a manor) near Cambridge, England, for 
exactly six months, and then released to live anywhere in Germany, except the Russian and 
French zones of occupation. Goudsmit must have felt responsibility for denying Heisenberg’s 
and other families their bread providers and causing them separation and hardship, and for 
that he apologized. 

The ten distinguished scientists, including Werner Heisenberg, Carl Friedrich von 
Weizsäcker, Max von Laue, and Otto Hahn, were kept in captivity, in fine conditions, without 
being charged with any crime. The captives could have demanded to be charged or else 
released, but they probably realized that they just might get what they would ask for and be 
charged and tried at Nuremberg trials for their contribution to the German war efforts. And so, 
they did not object (except Heisenberg appropriately demanding that his wife and six children 
be taken care of). The British wanted to prevent these leading German scientists and their 
atomic bomb and reactor research from falling into the Russian hands – the Cold War has 
begun – or even the French hands. And this is how, in my opinion, this strange compromise of 
detention came about. 

Heisenberg’s 1948 New York Times interview (in English) reveals his surprising to me 
interpretationof patriotism:37 

German sciences sank to a low ebb. I think I am safe in saying that, because of their 
sense of decency most leading scientists [in Nazi Germany] disliked the totalitarian 
system. Yet as patriots who loved their country they could not refuse to work for the 
Government when called upon. 

These words explain the rationale of Heisenberg life’s choices. When his government – 
even the criminal Nazi government! – calls upon him, Heisenberg and “most leading 
scientists,” out of “their sense of decency” – decency! – “could not refuse to work for the 
Government”! He subscribes to the widely shared but false notion of patriotism, according to

37 Kaempffert, W., “Nazis Spurned Idea of an Atomic Bomb,” New York Times, Dec. 
28, 1948, p. 10.
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As a civilized writer from a civilized country, I am expected to spare you discomfort, my 
reader. Yet, I have got to give you – and Werner Heisenberg – the taste of what blind love of 
the country and “patriotic” obedience can produce, an opportunity to touch the evil, to quote 
however briefly from the 1946 voluminous ca. 500-page document, The Black Book: The 
Nazi Crime against the Jewish People [BB]. 

The following quote is short but extremely disturbing, and so I will let you decide 
whether to read or skip it. It describes some of the countless German atrocities in the 
Majdanek Concentration Camp, which became known as Vernichtungslager (extermination 
camp), where people were murdered on an industrial scale [BB, p. 384]:38 

Heinz Stalbe, of the German Kampfpolizei, stated at a plenary session of the Commis-
sion39 that he himself saw the director of the crematorium, Oberscharfürer Mussfeld, tie 
a Polish woman hand and foot and throw her alive into the furnace. Witnesses Jelinski 
and Oleh, who worked in the camp, also tell of the burning of living people in the 
crematorium furnaces. 

“They took a baby from its mother’s breast and killed it before her eyes by smashing 
it against the barrack wall,” said witness Atrokhov. 

“I myself,” said witness Edward Baran, “saw babies taken from their mothers and 
killed before their eyes: they would take a baby by one foot and step on the other, and so 
tear the baby apart.” 

Dr. Heisenberg, in the waning hours of 1948, when the German crimes against humanity 
have been thoroughly established at Nuremberg trials and other courts and documented in 
many books and reports, you are telling the New York Times that as a decent [sic] and loving 
patriot you “could not refuse to work for the Government.” Could you refuse your share of 
responsibility for what your government has done on behalf of all Germans, on your behalf, 
Dr. Heisenberg? 

42.5 Professorship at Amsterdam 

By 1948, the de-Nazification of the Netherlands was over, and the institutions College van 
Herstel were gone. In addition, the American acceptance improved Van der Waerden’s 
standing in Europe. However, L. E. J. Brouwer eloquently objects to Van der Waerden’s 
appointment in his April 15, 1948, letter to the Minister of Education, Culture and Science Jos 
Gielen; moreover, Dirk van Dalen observes that “the feelings expressed in this passage 
perfectly reflected the general opinion of the Dutch, and in particular the students, in the 
matter”: 

38 The quoted material was included in The Black Book [BB] from the statement of the Polish-
Soviet Extraordinary Commission for the Investigation of Crimes Committed by the Germans in 
the Extermination Camp of Majdanek in the Town of Lublin. 
39 See the previous footnote for the description of the Commission.
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From a researcher like Professor Van der Waerden, who is only theoretically, but not 
experimentally active, the scientific influence is almost independent of personal pres-
ence. Thus, as soon as a materially and scientifically favorable position has been 
secured, the question of his presence here in the country loses all scientific and national 
importance, and it becomes almost exclusively a matter of national prestige. From a 
viewpoint of national prestige, the motivation of his appointment here in the country 
seems, however, extremely weak to the undersigned. For if it is claimed that by the 
presence of Professor Van der Waerden in Amsterdam the strength of our nation is 
enhanced, the reply is forced upon us that in that case the national strength of the 
German empire has been enhanced during the whole period of the Hitler regime by the 
presence of Professor Van der Waerden in Leipzig. And if it is argued that if Professor 
Van der Waerden is not offered a suitable position in the Netherlands, this will be done 
by America, the reply is forced upon us that if at the moment there are positions open to 
Professor Van der Waerden in America, this should not have been less the case between 
1933 and 1940, when many prominent and right-minded German scholars and artists 
were welcomed with open arms in America, and that therefore one has to assume that 
Professor Van der Waerden had not felt the desire to turn his back on the Hitler regime. 

The Dutch Professor Herman Johan Arie Duparc (1918–2002) wrote down for me the 
following recollections of the year 1948 during our September 1996 meetings in his apart-
ment in Delft [Dup]: 

Van der Corput and others feared again difficulties. He said to me: “Tomorrow vd 
Waerden gives his first lecture; interesting; let us go there.” So, we went there. There 
were no difficulties . . .  

Then Van der Corput and vd Waerden had a common room in Amsterdam Univer-
sity. When vd Corput went to the US in September 1950, I had to take over his work and 
met vd Waerden regularly there. 

According to Duparc, in 1948 Van der Waerden was appointed a bijzonder (special) 
professor of applied mathematics at the University of Amsterdam. This part-time (“one day 
a week,” according to Duparc) position was paid by the Foundation, and thus did not require 
an approval by the Queen. This was a far cry from a tenured full professorship at Johns 
Hopkins University that Van der Waerden turned down, but this was a start. Plus, this time 
Van der Corput hired Van der Waerden as a full-time director of applied mathematics at 
Amsterdam’s Mathematisch Centrum, where Van der Waerden worked part-time in 
1946–1947. 

How good a professor was Bartel L. van der Waerden at the University of Amsterdam? 
This is a hard question for us to answer in 2023, except by good luck or providence. Dirk van 
Dalen, my good luck, was Van der Waerden’s student at Amsterdam during the fall 1950 
semester, and so he could answer this question for you and me. In his January 14, 2011, email, 
Dirk recollects: 

My own memories of Van der Waerden are rather limited. I took his analysis course as a 
freshman, and the next year he was in Zurich. He was a gifted teacher, if you heard his 
lecture the material became quite clear. His style was, if I may compare it, like that of the 
[analysis] book of Courant. I guess that this was the general continental style. One thing 
was rather unusual: when a new edition of his Modern Algebra came out, he offered
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students a copy for a reduced price. Later he told me that he had made this a condition 
with the publisher. So that is when I got my copy. 

Yes, we can all relate to the gift of clarity in Van der Waerden’s expositions from reading 
his many books. We also learn here that Van der Waerden cared about his students and even 
arranged for a student discount with Springer. 

Then there came a prestigious membership in the Royal Dutch Academy of Arts and 
Sciences, which had to be – and was – approved by the Queen. This, however, was not the 
same Queen Wilhelmina, who in 1946 rejected civil service appointments for Van der 
Waerden and others who voluntarily worked for the German occupiers. Her daughter 
Queen Juliana, who took over in 1948, presided over less principled and less emotional 
times. In 1949, Dr. van der Waerden became a member of the Royal Dutch Academy of 
Sciences. 

On January 31, 1950, Minister Rutten informed Van der Corput that he would have no 
objections to a “real” university professorship. Nearly four months later, on May 16, 1950, the 
Mayor and Aldermen of the City of Amsterdam appointed Van der Waerden to a professor-
ship, contingent on the Royal assent, which came on June 19, 1950. And so, five years after 
the war’s end, Van der Waerden is finally appointed to a full professorship at the University of 
Amsterdam, effective October 1, 1950. It appears that the relationship between Holland and 
her prodigal son Bartel has been restored and would likely grow closer with time. Van der 
Waerden has a fine job and talented and very supportive colleagues. Yet, he chooses to leave 
his Homeland and accept a chair at the University of Zurich. 

Van der Waerden de facto includes his notice of resignation in his inaugural [sic] speech 
“Concerning the Space” [Wae12], given on Monday, December 4, 1950, at 4 o’clock in the 
afternoon at the University Auditorium: 

Eminent Clay and Van der Corput, 
With undaunted energy you both have organizationally prepared my appointment to a 

Professor regardless of all difficulties and you have finally reached your goal. I 
appreciate this very much and will remain grateful to you forever for it. Even though 
now I will soon be going to Zurich, I trust that someone else would take over my job on 
this faculty, which was organized by your ideas. 

On March 21, 1951, Professor Van der Waerden formally asks for his resignation from the 
University of Amsterdam, which is granted effective May 1, 1951. 

Van der Corput has been proven wrong: he did all he could to support Van der Waerden in 
academia and in government; he closed his eyes on his disagreements with some of Van der 
Waerden’s moral positions and life’s choices; and yet, in the end he has not won Van der 
Waerden for Holland. Nicolaas G. de Bruijn, who in 1952 became that “someone else 
[to] take over [Van der Waerden’s] job on this faculty,” writes to me about the understandable 
disappointment of Van der Waerden’s mathematical colleagues in the Netherlands [Bru7]: 

I had regular contact with some mathematicians who knew him [Van der Waerden] 
better than I did, like Kloosterman, Koksma, Van Dantzig, Freudenthal, Van der Corput, 
who were disappointed by his leave after they had gone into so much trouble to help him 
with jobs in the Netherlands. 

De Bruijn continues [Bru8]:
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Actually, I do not remember anything from my own experience. I only remember that 
people like Koksma, Van Dantzig, Schouten confidentially complained that Van der 
Waerden disappointed them after all the trouble they had taken. I suppose they had to 
fight unwilling authorities in order to let them forget the objections from the past. Step-
by-step they got him a position with the Shell Company, a part-time professorship at the 
University of Amsterdam, the membership of the Royal Dutch Academy of Arts and 
Sciences (which had to be signed by the queen) and finally the full professorship. The 
people who all went through this trouble of course felt they lost their face with respect to 
all those authorities when Van der Waerden unexpectedly left them in the lurch . . .  

As a part-time professor Van der Waerden taught applied mathematics, maybe 
mainly from a pure mathematician’s perspective. As a full professor he had not even 
started; around that time he decided to leave for Zurich. So there was hardly a Van der 
Waerden tradition of courses in Amsterdam. 

Amsterdam appears to have been used by Professor Van der Waerden merely as a 
steppingstone in his career. 

During the Dutch years of Bartel L. van der Waerden, 1945–1947 and 1948–1951, the 
brothers Bart, Coen, and Ben and their families were close. Bartel’s family was given the 
gorgeous parents’ house Breidablik to live in – until the time came to sell it. Ben as a brother 
and a lawyer stepped in to help Bart when the latter had difficulties with obtaining a visa from 
the United States Consulate due to Bart’s attempt to conceal his years of living in Nazi 
Germany. We witness a noble, brotherly defense, and Ben’s desire to explain away Bartel’s 
incorrect information given to the American Consulate. We also see how bitter Bartel van der 
Waerden still is in 1949, four years after his return home, and three years after a very public 
debate of his life’s choices on the pages of Het Parool. “My brother doesn’t wish to hear 
anything more about this issue or to discuss it,” writes Benno van der Waerden. Bartel would 
rather not go to Seattle than discuss his life in Nazi Germany. 

Another Beno, Professor Beno Eckmann of ETH and Bartel’s Zurich friend for nearly half 
a century, 1951–1996, writes to me that Bartel and Camilla van der Waerden always avoided 
any mention of their time in the Third Reich [Eck0]: 

We never really talked about his time in Leipzig, in any case not about politics. He and 
his wife seemed to avoid these themes. 

Bartel’s persistent decades-long silence about his Nazi years seems to convey his regrets or 
embarrassment louder than any words could. As to Seattle, Bartel and Camilla were granted 
American visas; we see their happy faces on the photo taken in Seattle in 1949 in 
[Dol1]. Their son, Hans van der Waerden, kindly contributes his view of his father’s Dutch 
postwar years [WaH1]: 

It would have been impossible for a Nazi collaborator to get a professorship in 
Amsterdam at any time after 1945. 

Of course, this could not be done without doubts and hesitations. The resistance 
against my father’s appointment was a very natural and logical one: my father could not 
expect Dutch authorities to act as if nothing at all happened! The mere fact that he had 
served, though indirectly, a government that suppressed his compatriots, could not but 
arouse a wave of suspicion. But the fact that – after not more than five years – he was 
again trusted [with] a responsible public position, shows that the suspicions obviously 
could not be verified in any detail.
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42.6 Escape to Neutrality 

Mathematics has no Fatherland, you say? 
– Het Parool Editors, 1946 

On my request, Professor Beno Eckmann recollects the Universität Zürich 1950 succes-
sion [Eck1]: 

In 1950 Fueter retired. Shortly before I was offered that position (and to be “director”). 
Then the position was offered to vdW [Van der Waerden] who accepted but his 
appointment was finalized only in 1951 (I vaguely remember that there were discussions 
among Zurich authorities whether it would be appropriate to appoint a man who had 
remained in Nazi Germany during the war). 

In fact, Eckmann is the early first choice [Eck2]: 

I was asked either in 1949 or early in 1950 whether I would accept (I really cannot 
remember when this happened – Rolf Nevanlinna talked to me personally, had I said 
yes, I would have received that position). 

I am holding in my hands a voluminous file of Rudolf Fueter’s succession. It opens with 
Dekan of Philosophical Facultät II Hans Boesch’s May 5, 1950, letter calling the meeting of 
the Mathematics Commission for Monday, May 8, 1950, at 1400 hours in Dekanat room 13. 
Next there comes a mysterious page containing only names and numbers, the handwritten in 
pencil super-concise stenography of this meeting that would delight any professional or 
amateur paleographer – let me try my hand on it. The Commission considers young Swiss 
mathematicians, such as Nef, Häfeli, and others, but only three candidates are numbered, 
clearly in the order of ranking: 

1. Van der Waerden (03), Ord. Leipzig, Hollander 
2. Pólya (62) [should be 1887], Stanford University 
3. Eckmann (17), ETH 

References, which are to be asked to evaluate the above candidates, are also listed on 
this page: 

Fueter, Speiser, Hopf, Ahlfors, Erhard Schmidt, Schouten 

At the bottom of the page the final list appears again, without the stricken Erhard Schmidt 
of Germany. Schouten’s name is separated by a line from the other four names, with an arrow 
going from Finsler to Schouten, for the latter is to be asked by Finsler only about the current 
political opinion about Van der Waerden in Holland. 

The following day Dekan Boesch sends identical letters to Professors Van der Waerden 
and Pólya, inquiring whether they would like to be considered for professor and director of 
the mathematics institute in succession to the retiring Professor Fueter. What the file is 
missing, is telling as well: it does not contain a similar letter to Professor Eckmann 
of ETH: he has already turned down this position, for he has been quite happy at the ETH, 
where he will later found Forschungsinstitut für Mathematik. 

On the same day Dekan Boesch also sends letters to the four official references. The long-
term Van der Waerden pen pal on matters of algebraic geometry (at least since 1936),



Professor Paul Finsler, and not the Dekan, writes to the fifth, personal reference, Jan 
A. Schouten of the Netherlands. 
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Shortly, letters of reference pour in. ETH Professor Heinz Hopf recommends considering 
only the top three candidates, Pólya, Van der Waerden, Eckmann. He showers all three with 
high praise. Lars V. Ahlfors, Chairman of Mathematics at Harvard University, expresses an 
opinion similar to Hopf’s. Professor R. Fueter, whose seat is the object of this search and 
whose influence as the past Rektor is very strong, shockingly, has nothing positive to say 
about George Pólya. Reading his letter, I wonder why on earth they invited Pólya to apply: 

Prof. Dr. Pólya, during his first years in a Zurich position [at the ETH] attempted to work 
together with us, but then in many situations worked against Speiser and myself and 
fought with our students. In this situation I would also like to point out some of Prof. 
Speiser’s views regarding this. 

Fueter much prefers Van der Waerden or else one of his own former doctoral students. 
Fueter knows that Eckmann has already refused the position, and so he writes nothing about 
Eckmann in his letter. Andreas Speiser praises Van der Waerden and the young Swiss 
candidates and shockingly and unfairly puts down Pólya as a mathematician: 

Of the foreigners Pólya does not even come into view. He has dealt with an enormous 
amount of small problems but has never seriously worked in a serious area and would 
rapidly sink the level of mathematics at the University. Opposite to this, Van der 
Waerden is an apt (trefflicher) mathematician, whom one would have to recommend. 

Evaluating Pólya unfairly is not the only deplorable aspect of Speiser’s letter. Following 
praise for the (Jewish) mathematician Richard Brauer, Speiser uses – in the year 1950! – the 
Nazi Deutsch to describe Brauer as “not Aryan (nicht arisch)”. Truly, old habits die hard! 

Summing up, Professor Van der Waerden is the unanimous choice of the four references. 
Only one question remains: has Van der Waerden been sufficiently “purified”? It is to be  
answered by Professor Schouten. The latter sends his handwritten reply to Professor Finsler 
on May 12, 1950. It deals exclusively with Van der Waerden the person, and not at all with his 
mathematical work. The following is its complete text: 

Dear Herr Colleague! 
I have received your friendly letter of May 9. A few weeks ago Herr Van der 

Waerden has been named Ordinarius in Amsterdam. Political reservations do not 
apply here [in the Netherlands] against him. I should actually say that they do not 
apply anymore, because certain circles had earlier tried completely without justification 
to raise their voice against him. But that has all now passed and he is also now a Member 
of the Royal Amsterdam Academy. 

Even though I hope that you will not snap this man away from us, I must absolutely 
tell you my opinion that he is completely politically harmless (unbedenklich). 

With friendly greeting to the entire Zurich circle, 
Yours most respectfully 
J. Schouten 

Thus, Professor Van der Waerden is cleared for the Swiss employment again. The 
Mathematics Commission consists of Professors Paul Karrer, Paul Niggli, Paul Finsler, 
Rolf Nevanlinna, and Walter Heitler. They meet on June 3, 1950, and end up with exactly



the same slate and order of the three candidates they started with. On June 9, 1950, Dekan 
Boesch reports the faculty findings to the Education Directorate (Erziehungedirection) of the 
Canton of Zurich in a 5-page letter. He reserves the highest compliments for “Herren Van der 
Waerden, Pólya and Eckmann [who] would be the candidates for this Mathematics Professor 
position, whereby Herr Van der Waerden would be in first place, (Herr Pólya in second 
place).” Professor Van der Waerdengets a clean bill of political health from Dekan Boesch 
(ibid): 
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Certain problems found in Herr Van der Waerden’s working at Leipzig University 
during the war which were focused on by Holland are no longer applicable according to 
the communication that Prof. Schouten has forwarded. On the contrary, it is explicit 
from the [Zurich University] Faculty proposal for filling a new position of Professor of 
Applied Mathematics dated July 15, 1946, that Prof. Van der Waerden was thoroughly 
considered. 

As we know, Eckmann turns down the offer before the search began; Pólya is rejected by 
Fueter and Speiser, who certainly knew in advance that they did not wish Pólya back in 
Zurich. From day one of the search, Van der Waerden has been listed as number one 
candidate. Thus, the elaborate smokescreen of a search seems to have been invented to satisfy 
the rules but has had only one goal from the beginning – to hire Van der Waerden. He is 
offered the job on September 20 and accepts it with “heartfelt gratitude” on September 
24, 1950. 

Van der Waerden could realize his Swiss dream right away, without spending another year 
at the University Amsterdam. Apparently, he does not agree to an early Zurich start. I can 
venture a conjecture: Van der Waerden desires a vindication for the Het Paroolean humili-
ation, and the Amsterdam full professorship with its Inaugural Lecture ceremonies in 
December 1950 provides such an opportunity. Van der Waerden wants to leave his Homeland 
but leave it as a winner, by willingly giving up Holland’s highest academic credentials he has 
finally earned. 

For a decade I have been absorbed with the following question: why did Van der Waerden 
leave Holland for good in 1951? Was the University of Zurich (which, in my opinion, was no 
match to its famed neighbor ETH) a better place than the University of Amsterdam? This was 
not at all obvious to me, and so I asked N.G. de Bruijn, who replied as follows [Bru8]: 

We were looking at the U.S. and Switzerland as a kind of paradise. Whether in the long 
run Zurich would be much better than Amsterdam may be open to discussion. In 1950 
Amsterdam had lost the glory of Brouwer’s days of the 1920’s . . .  

By the way, I really do not know the order of the events. The offer from Zurich may 
have come at a time when the procedures for getting him the full professorship at 
Amsterdam had hardly started. He may have kept the Zurich offer secret for a time, in 
order to keep both possibilities open. If it had happened to me, I would have felt a moral 
pressure against letting Amsterdam down. 

Yes, Nicolaas de Bruijn would not have let Amsterdam down. Why didn’t Van der 
Waerden feel “a moral pressure against letting Amsterdam down”? H. J. A. Duparc recalls 
and writes it down for me [Dup]: 

Van der Waerden’s wife, Rellich, was German and had many difficulties in normal life 
in Holland because of her speaking the German language (Holland was occupied 5 years 
by the Germans).
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N. G. de Bruijn [Bru9] adds: 

Justified or not justified, those anti-German feelings were very strong indeed. I can 
understand that Camilla was treated as an outcast, and that she therefore disliked living 
in Holland. 

Hans van der Waerden, the son of Bartel and Camilla, gives us a most thoughtful, 
psychological, and convincing explanation [WaH1]: 

Why did my parents leave Holland for Switzerland? The reason my mother told me was 
that she could not stand the rainy, windy Dutch weather. I don’t think that was all. I 
imagine, my mother did not feel at home for language reasons as well: she had to learn 
to speak Dutch, and by her accent everyone could instantly recognize her German 
(or Austrian) origin, which after 1945 was compromising and made her feel uneasy. 

Furthermore, Switzerland at that time had a reputation as almost a paradise: sound 
landscape, sound towns, a sound politics (so it seemed to be), sound economy. . .  This, I 
suppose, was extremely tempting. I imagine – please take this as my imagination, not 
more – that my parents longed to live in a new society, where they were no longer 
confronted with this perpetually underlying question: “Have you been, or have you not 
been a Nazi collaborator?” 

This most probably applies to my mother, but also, in some deeper sense, to my 
father, who was extremely vulnerable to accusations of this kind. For him, living life in 
honor and moral integrity was the most important thing on earth, more important than 
material comfort, relations, or even scientific research. He was a dogmatic about that. 
That is why suspicions of the kind mentioned above – that he could ever have 
“collaborated” or at least “contributed” to such a horrible thing as the Third Reich – 
not only saddened or infuriated him: they shook him to the roots of his personality. 

This very vulnerability, besides, probably made him react in a somewhat naïve or 
helpless way to the feelings of his countrymen after 1945. He could not allow himself to 
admit that perhaps there were good reasons for negative feelings against him because of 
his behavior, because of moral. 

Bartel van der Waerden’s niece, Dorith van der Waerden, conveys family memories and 
impressions, so intangible and yet so helpful for our psychological insight [WaD1]: 

After the war Bart wanted to come back to Holland when this was possible again. He 
moved into the house of his parents in Laren. During these few years that they lived here 
we stayed there during the holidays and were in good relations with them as far as I 
remember. 

But he and his family must have had a very hard time. In the first place he was 
suspected because of coming from Germany. I never heard about it that he was 
scrutinized by a committee, but this is very likely because that is what happened to 
everybody about whom there were doubts about their behaviour during the war. The 
ones that had actually helped the Germans went to prison and camps and so on, and 
suffered for many years because they and their families were not accepted. 

I believe that they found that absolutely nothing was wrong. I know my father 
[Benno] was convinced of that, and he did everything he could to help him [Bartel] 
and clear him of accusations. I have one letter proving that. And I happen to know my 
father, he was so very honest, he would never have helped Bart if he had any doubts.
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But still Bart had a German wife, and children that came here and went to school but 
spoke with a German accent. In the years after the German occupation this was not 
accepted in Holland, and they all suffered a great deal. And probably the period of 
doubts about him took a long time too. 

So, the whole family must have been very hurt. Finally, they could escape from Nazi 
Germany and now people here thought about them as Nazis. Though his brothers 
supported him, there were other family members, cousins, who did not forgive him 
for staying there. 

In this marriage of Bart and Camilla she was the practical one, she took care of 
everything, so he could do his work. She protected him also against the outside world, I 
think. 

So, I believe that they were so unhappy in Holland that they looked for another 
country again, not Germany of course, and found Switzerland where the spoken 
language was also German. This of course was easy for Camilla and the children, and 
there no one would think they were not okay for speaking German. 

I believe that for Camilla the period in Holland must have been so painful that she 
never wanted to have anything to do with Holland and even with Bart’s family. She 
wanted it to be over and forget about what to her seemed utterly unfair toward her 
husband, herself, and her children. 

While the role of Camilla in the decision to leave Holland must have been very significant, 
such an important step was ultimately Bartel’s to make – he was the one who almost 
simultaneously accepted two job offers, from Amsterdam and from Zurich. 

At all times he desired to be at the best place for doing mathematics, which according to 
him has now moved to Switzerland and the United States. Which one should he claim? He 
aspired to belong to the German culture; it was important – perhaps too important – to him. 
The decision to move to Switzerland was the last key decision of Van der Waerden’s life and 
career. He chose to leave the Motherland of Suffering for the Land of Neutrality, the Land of 
the German Language but not Germany. 

42.7 Zurück nach Zürich 

Van der Waerden aspired to be part of the German culture, live in a land of German language, 
and his desire is granted. He arrives in Zurich with his wife Camilla and children Ilse 
and Hans. 

In search for information, I approach Van der Waerden’s close personal and professional 
friend of his forty-five Zurich years, ETH Professor Beno Eckmann, who on December 
7, 2004, generously shares information with us [Eck0]: 

Yes, I knew vdW [Van der Waerden] very well, until his death. But I met him only after 
he came to Zurich. I and my wife saw him and his wife at various occasions, mathe-
matical and private. . .  His interests moved later from Algebraic Geometry to Probability 
and then to History. 

During the May 4, 1993, interview [Dol1], Camilla van der Waerden told the interviewer 
and her husband: “I have always preferred that he were more involved in mathematics. He 
didn’t do it. I have always said he spends too much time on history and truly too little on



mathematics.” Camilla is correct: mathematically the Third Reich years were more productive 
for Van der Waerden. 
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Van der Waerden writes with an impressive breadth and fine detail series of historical 
books, Science Awakening II: The Birth of Astronomy, 1974; Geometry and Algebra in 
Ancient Civilizations, 1983, [Wae22]; and A History of Algebra, 1985, [Wae23]. While in 
Zurich, Van der Waerden was in touch with great physicists while editing the important 1967 
source book of quantum mechanics. In 1973, van der Waerden retires from his chair at Zurich 
at the mandatory retirement age of 70 years. 

On my request, Bartel’s son, Hans van der Waerden contributes a valuable perspective in 
his June 20, 2004, letter from Switzerland [WaH1]: 

There can be no doubt about my father’s unshakable anti-fascist convictions – I think, in 
this we agree. I remember him, till the end of his life, becoming furious, when anybody 
dared to compare irresponsible political activities of whatever kind with Nazi crimes. I 
further remember that – sometime about 1980 – he declined an invitation to Leipzig 
University, saying: “I have lived long enough under dictatorship, I need not see any 
more of it.” From his father, who at his time was a socialist rejecting bolshevism, he had 
inherited a strong conviction that one-party-government is the worst kind of government 
at all – he used to quote an article of his father on this issue, and my mother recalled that 
when she and her mother had been listening to Hitler speeches on the radio, and the two 
of them got into doubts, asking “Couldn’t there be perhaps some truth in it, anyway?” – 
my father vividly explained to them that Hitler was wrong in every respect.
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Bartel Leendert van der Waerden, ca. 1980, Courtesy of Leipzig University 

In 2010, Hans van der Waerden adds [WaH2]: 

I remember him as a perfectly honest man with a high, sometimes almost fanatical sense 
of duty and moral integrity; and as an extremely modest man, never jealous of other 
people’s achievements or liable to exaggerate his own.



572 42 In Search of Van der Waerden: The Unsettling Years, 1946–1951

Indeed, Bartel van der Waerden strives to be a highly moral individual, a fitting member of 
his great family of Dutch public servants. Later, after 1935, we witness his compromises with 
the Nazi authorities, instances of insensitivity, declared desire to save the German culture and 
little effort to contribute to the culture of his Motherland that has been served with such a high 
distinction by the rest of the Van der Waerden family. 

He clearly sees Nazi Germany for what it is. In the early years of Nazism, he criticizes the 
regime. But the regime easily finds Van der Waerden’s soft spot: his clinging to a German 
professorship. Once warned not to interfere in the German “internal” affairs or lose his 
professorship, Van der Waerden no longer speaks out publicly in Germany. 

Van der Waerden writes to Van der Corput, “Germany attacked the Netherlands and 
shamefully abused it, and the whole German people are also responsible for that.” Exactly 
right, Bartel. However, you too lived in that Nazi Germany the entire 12+ years of the Third 
Reich, and retaining Dutch citizenship is a lame excuse. You ought to accept your small share 
of responsibility for what your Germany did on your behalf, with your silent approval, to the 
German people and the peoples of your beloved Europe. 

I faced a similar Hamletian question in the Soviet tyranny: to leave or not to leave, to go to 
barricades or to the airport? It was unbearable to see in August 1968 how on my behalf my 
country drove tanks through the heart of Czechoslovakia. I started to openly criticize the 
regime for not living by its constitution. However, sometimes strangers on the street told me, 
“this is not your country, you are not Russian, go to your Israel.” And so I decided not to pay 
with my life and freedom for the freedom of those who did not consider me an equal citizen. I 
terminated my Soviet citizenship, scientific degree, career, and left as a refugee protesting 
tyranny, left without any job (let alone Princeton or Utrecht), money, connections, and 
language. How did you feel, Bartel, when your Germany drove through the lives of tens of 
millions of peoples of Europe, good “old Europe” you said you so much loved? Is German 
professorship worth the price of responsibility for Europe’s suffering? 

I was asked on a number of occasions, what could have Bartel done alone? This reminds 
me a play I saw in the spring 1969 in the Moscow State University theater.40 A man comes on 
stage and thinks aloud: “There were times when writing was a dangerous profession. Fyodor 
Dostoyevsky was sent to four years of hard labor in Siberia; Alexander Herzenwas forced to 
live life in exile. And now? But what can I do alone?” The second man appears on stage, and 
the two walk around as if not seeing or hearing each other, each exclaiming, “What can I do 
alone?” The third, fourth, etc., people appear onstage. Soon we witness some thirty men and 
women walking randomly and randomly complaining “What can I do alone!” The whole 
scene is full of random motion of people exclaiming “What can I do alone!” Slowly, 
unnoticeably they form rows and columns, marching and chanting together, “What can I do 
alone! What can I do alone!” Half of the audience sat in grave silence, while the other half

40 I was an undergraduate student when Mathematics Professor Abram Khaimovich Livshitz 
invited me to see his performance at the Moscow State University’s (MGU) student theater 
Nash Dom (Our Home). This theater-studio was founded by Mark Rozovsky in 1958 when he 
was still a student of journalism. The theater was shut down by the Soviet totalitarian authorities 
on December 23, 1969, a few months after my visit. By the spring 1969 all previous plays were 
banned, leaving measly scenes collected under the title “Take Old Staff and Show.” The scene I 
describe was originally written by Novosibirsk student theater’s authors Evgeny Vishnevsky and 
Vadim Sukhoverkhov.



loudly applauded. Millions of good Germans were righteously exclaiming, just like the actors 
in this production, “What can I do alone!”

42.7 Zurück nach Zürich 573

Van der Waerden chooses to stay, because he believes that even during the Nazi era 
Germany is the best place for doing mathematics. “Why would I go to Holland where 
oppression became so intolerable and where every fruitful scientific research was impossi-
ble?” he writes to Van der Corput without realizing that the intolerable oppression of his 
Homeland was inflicted by the very country he served! 

The great anthropologist and my dear friend James W. Fernandez, upon reading the early 
version of this book, summarized my findings concisely during our “Fang Summit” in early 
August 2007: “Frailty of Brilliance!” 

In the Story of Van der Waerden, I confirmed one lesson of my own life: Silence in the face 
of a tyranny makes one a slave, an accomplice, and an executioner. I have thought about the 
following simple formula for a very long time. It has evolved, and it has inspired, to my 
satisfaction, an ongoing debate: 

One’s response to living under tyranny without willingly supporting it can only be to 
leave, to engage in resistance, or to compromise.41 

41 Bartel’s son, Hans van der Waerden contributes his view [WaH1]: Let us turn to the underlying 
general question, whether it was right or wrong for my father to stay in Germany after 1933, and 
even more so after 1940. I am glad to hear you pronounce your personal opinion on the subject 
(a moderate and carefully deliberated opinion indeed). Allow me to add some of my personal 
reflection too. 
Judging the behavior, decision, “Life choices” of other people can only be done by applying 

general principles, which must be true not only in one place, but in every place on earth at any 
time. How, which could have been the general principle stating as a moral imperative for my 
father to leave Germany after 1933? Could it be this: “When the government of a country is turned 
into cruel and criminal tyranny, all intellectuals serving that government are obligated to emigrate, 
otherwise they become guilty of ‘contributing’ (as you put it) to the dictatorship”? Is this really a 
general principle, applied all over the world and at any epoch? I only heard it being pronounced 
for Germany, and only after 1945 in retrospection, and even that not to everybody, and not applied 
to everybody. I never heard the principle being applied to the USSR under Stalin (whose 
dictatorship was as horrible as Hitler’s, if comparing the devil to satana is possible at all). 
Under Stalin, some intellectuals emigrated (as a personal choice) or were forced to do so. But 
never has anybody been blamed for not emigrating and so “contributing” to the Staling tyranny. 
Allow me to add yet another, even more general consideration. In a wider sense, every 

intellectual in a public position “contributes” to the government he is working for. If this 
government – even without mutating into open tyranny – commits criminal actions on a larger 
scale, the intellectual gets involved and makes himself responsible, unless he “acts bravely” by 
openly protesting (or emigrating, if protesting seems too dangerous). This applies, for instance, to 
the actual US government. 
In 2010, Hans van der Waerden returns to this topic [WaH2]: As a crude approximation, your 

three-cross-road theory may be of some use; it is inadequate when it comes to really understand 
day-to-day life in a totalitarian system. Because there is a fourth way, chosen by many who wished 
to preserve both life and soul. It says: “Stay in the country, avoid great gestures of opposition, but 
quietly and persistently show by small signs that you disagree, and so give hope and comfort to 
others.” Under a perfectly organized surveillance system as Stalin established in the USSR, this 
sideway too apparently was barred; in Hitler’s Germany, however, thousands of anti-fascists have 
followed it, thus surviving and uniting in an invisible network of free thinking and breathing.
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Van der Waerden chose the compromise between his high moral aspirations and his desire 
to do mathematics in Nazi Germany. The struggle between these two conflicting goals 
produced the drama – perhaps, the tragedy – of the life of Bartel Leendert van der Waerden, 
one of the great mathematicians of the XX century, the century marked by merciless tyrannies 
and brutal wars. 

42.8 Today I: The Scholar and the State 

Our history will be what we make it. If we go on as 
we are, then history will take its revenge, and 
retribution will not limp in catching up with us. 

– Edward R. Murrow 

Unless the direction of science is guided by a con-
sciously ethical motivation, especially compassion, 
its effects may fail to bring benefit. They may indeed 
cause great harm. 

– Dalai Lama 

I write my books and essays with the assumption that mathematicians are human beings 
and as such ought not to be entitled to Ivory Towers, but to be involved with the world. As 
you have seen, Van der Waerden’s four chapters have not only been about his personal life 
and the life of his friend Werner Heisenberg, but moreover about moral obligations of a 
scholar in the world. Similarities between the past and the present are so striking that I have 
got to address here the most important time, the time we live in. If not here, where? If 
not I, who? 

And so, this and the following two sections are my wake-up call for solving what I consider 
to be the hardest open problem of mathematics: establishing and maintaining high moral 
grounds of the profession – victims of which were, for example, Grigory Perelman and a 
person you have met on the pages of this book, Dmitry Raiskii. 

Most people desire to be with the winners. It is, perhaps, a self-preservation instinct of 
Homo sapiens. As soon as Hitler’s ascent to power became assured, most German professors, 
lawyers, doctors, and writers – the intellectual elite – jumped on Hitler’s bandwagon. I was 
reminded about it when in March 2014 Russian President Putin invaded Eastern Ukraine’s 
region of Donbass and annexed Crimea, both parts of sovereign Ukraine. I hoped cultural 
icons, pride and joy of Russia, would oppose the war, at least in word. Most of them, instead, 
supported criminal actions of their president, just as the German elites supported Hitler. 

On March 12, 2014, the Russian Ministry of Culture, on its official Internet site published a 
group letter “Russian cultural figures – in support of the position of the President [Putin] on 
Ukraine and Crimea,” signed within two days by 511 [!] prominent creative people, including 
celebrated and beloved movie stars, film directors, and presidents of major museums and 
theaters, including Oleg Tabakov, Alexej Batalov, Pavel Lungin, Alexej Uchitel, Vladimir 
Khotinenko, Karen Shakhnazarov, Valery Gergiev, and Yuri Bashmet. The letter proclaimed 
(I am translating from Russian):42 

42 https://www.bbc.com/russian/russia/2014/03/140312_russian_artists_letter

https://www.bbc.com/russian/russia/2014/03/140312_russian_artists_letter
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In the days when the fate of Crimea and our compatriots is decided, Russian cultural 
figures cannot be indifferent observers with a cold heart. [. . .] That is why we firmly 
reiterate support for the position of President of the Russian Federation on Ukraine and 
Crimea. 

Minister of Culture V.P. Medinsky could not hide his delight in his interview entitled 
“There will be no war [!], don’t fantasize”:43 

The workers of culture – public opinion leaders, enjoyed considerable moral weight and 
influence. [. . .] The more intense the political moment is, the more tangible is the need 
[of their support of the President]. “A poet in Russia is more than a poet.” 

I am compelled to respond to Medinsky: Evgeny Evtushenko, whom you quote without 
credit, meant that a poet in Russia is a prophet – not a conformist! 

Kiril Serebrennikov is a fine theater and film director. On his Facebook timeline, he 
defended Oleg Tabakov, director of the prestigious Moscow МХАТ Theater, who publicly 
and continuously supported Putin and cosigned the letter of 511. Serebrennikov argued that it 
was all right for Tabakov to support Putin and thus get government money to fund the theater 
and feed the troupe. A heated discussion erupted, which prompted my response: 

Dear Viktor Balabanov, you write: “Theater directors and the like leaders of Centers for 
the Arts, worry about preserving the culture, their nest, and fear that the Usurper [Putin] 
will deprive them of this opportunity.” And what of it? Is it seemly to support people’s 
tyranny in order to carry culture to those same people? Is culture worth tyranny? I 
dedicated my life to culture and education, but I do not support corruption with good 
intentions. It may pave the road to hell, as is well-known. Praise those who did not 
sell out: Yuri Shevchuk, Andrey Zvyagintsev, Boris Akunin, etc., and not the artists 
with a price tag sewn to them. 

On March 14, 2014, a group of ca. 150 celebrated members of Russian intelligentsia 
responded to Putin’s war and the letter of 511 Putin’s supporters:44 

“Intelligentsia of the Russian Federation: 
Do not bend, do not succumb to a lie” 

Not for the first time in Russian history, people who disagree with the aggressive 
imperial policy of the state are declared defeatists and enemies of the people. It is not the 
first time that loyalty is valued above citizenship. Events in Crimea are developing 
rapidly and are fraught, if not with bloodshed, then with disgrace for Russia and troubles 
for the peoples of the two countries. Hopes to stop what is happening with the arguments 
of the mind are becoming less and less. But it is all the more shameful to be silent and 
passively stand aside. We, who do not call ourselves “workers” of culture or science, but 
simply Russian intellectuals, each working in his own field, declare: 

We are against the invasion of the territory of another state. 
We are against war with Ukraine and enmity with the world community. 
We are in solidarity with everyone who does not bend and does not succumb to lies. 

43 www.gazeta.ru/culture/2014/03/14/a_5949581.shtml 
44 https://blogs.pravda.com.ua/authors/haran/532456382c4fc/

http://www.gazeta.ru/culture/2014/03/14/a_5949581.shtml
https://blogs.pravda.com.ua/authors/haran/532456382c4fc/
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I was happy to see among the 150 signatures of song-writers-performers Yuri Shevchuk 
and Boris Grebenshchikov, Nobel Laureate Lyudmila Ulitskaya, writer Boris Akunin, and my 
Moscow friend and great film director Andrey Zvyagintsev. 

You may think that in the Free World of the United States and Canada, the opposition to 
the Russian annexation of parts of Ukraine will be met with a unanimous support, especially 
in intellectual circles that include mathematics professors, right? Wrong. In 2017, when the 
dust of invasion settled, Congressus Numerantium, a  US–Canada mathematical journal, 
insisted that Putin did not invade Crimea in 2014! Permit me to put a mirror in front of my 
colleagues. 

In April 2017, I submitted to the journal Congressus Numerantium my talk “Pontryagin-
Kuratowski-Zykov-Harary, Kantorovich, Shafarevich, et al” given in March 2017 to a 
receptive audience at the Southeastern International Conference on Combinatorics, Graph 
Theory, and Computing, Florida Atlantic University, Boca Raton. In it, I conveyed ethical 
indiscretions in Russian mathematics, such as anti-Semitism, plagiarism, public scandals, and 
backroom stabbing. On September 18, 2017, I received an email from Professor David 
Allston, Managing Editor of the Congressus Numerantium containing a referee’s report: 

Comments: This is a mixture of personal reminiscence and “fake news.” It could 
nevertheless be published for its interest once section 11 has been removed. I would 
like to see the paper again before acceptance. 

Editorial Decision: not accepted yet. 
Would you please send me a revised pdf file and I will send it to the referee. 

It was the first time anyone – and that includes Donald Trump – accused me of reporting 
“fake news.” I asked for clarification. On September 19, 2017, I received it: 

Professor Soifer 
I received the following from the referee: 
Section 11. It is stated as fact that Russia invaded Crimea. However, there is no 

evidence that there is any truth to this. The journal should not publish dubious or 
incorrect statements as facts. Mathematics does not work like that. 
David Allston 

You will find more examples of present-day censorship in our own Western World in 
Geombinatorics [Soi54]. 

A timid response of the United States and Europe to the Russian 2008 military “excursion” 
into Georgia (which continues still today) and the 2014 annexation of parts of Ukraine must 
have assured Putin that the West is weak, the West is scared of Russian nuclear arsenal, and 
Putin will get away with anything. And so, in the wee hours of February 24, 2022, Putin 
waged an all-out criminal war on Ukraine. 

In early March 2022, just a week after the start of the war, I received an email from a 
talented Russian mathematician, inquiring whether I will now ban him from publishing in 
Geombinatorics. “Write to me that you support Putin’s war on Ukraine, and I will ban you,” 
was my reply. Instead, he sent me another fine paper for the April 2022 issue of the journal. 
However, his question showed me the need for Geombinatorics to have Editorial Policy, 
addressing authors’ positions on the criminal war, which I published in April 2022 issue, 
entitled “Taking Sides: Geombinatorics’ Response to the War and Boycotts”



[Soi53]. Welcome to read my 8-page statement in Geombinatorics. Here, I am including what 
in bureaucratic jargon is called “executive summary”: 
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Rector [President in American terminology] of Moscow State University Viktor 
Sadovnichiy, who happens to be a Professor of Mathematics, is perhaps the most 
politically influential mathematician of Russia. He is also President of the Russian 
Union of Rectors, which on March 4, 2022, published a letter signed by 184 [!] 
university rectors supporting Putin’s criminal war on Ukraine. 

On the other hand, On March 7, 2022, the Ukrainian Film Academy started a petition 
calling on Film Institutions (including film festivals) and Film Professionals to ban all 
Russian films (as of March 20, 2022, the number of signatures reaches 10,192). 

The most famous Ukrainian film director Sergei Loznitsa disagreed with a blanket 
boycott: “Among Russian filmmakers, there are people who have condemned the war, 
who oppose the regime and openly expressed their condemnation. And in a way they’re 
victims of this whole conflict like the rest of us. I was hoping that society these days is 
more intelligent, more sophisticated, than to apply this collective guilt to an entire 
community.” 

I too am against an indiscriminate boycott of all Russian mathematicians based solely 
on their citizenship. I agree with Sergei Loznitsa, and will decide the Hamletian 
question, to ban or not to ban, based not on the author’s passport, but on the author’s 
words and deeds. Starting immediately, Geombinatorics will not knowingly publish 
authors who in the past did or presently support the Russian wars on Ukraine or Georgia, 
or unprovoked wars on other countries that Russia could wage in the future. 

The great sage Dalai Lama warns that without “consciously ethical motivation, especially 
compassion” science “may indeed cause great harm.” Exactly right. We have seen throughout 
history, time and again, how evil usage of science and technology can be if it is not built on a 
foundation of high morality. Atrocities of Nazi Germany alone provide countless examples of 
science, technology, and even arts and literature used for ill deeds. I value education, 
however, I must admit that 

Fine education does not guarantee high culture, 
And high culture does not guarantee humanity.45 

We ought to be principled, for there is no appreciation of the good without recognition of 
the evil. And the principled scholars cannot afford to be silent. We ought to never be silent 
accomplices of injustice, as the Holocaust survivor and Peace Nobel Laureate Elie Wiesel so 
eloquently argues:46 

I swore never to be silent whenever and wherever 
human beings endure suffering and humiliation. 
We must always take sides. 
Neutrality helps the oppressor, never the victim. 
Silence encourages the tormentor, never the tormented. 

45 A. Soifer, Charge to the Winners, The 30th Colorado Mathematical Olympiad, May 3, 2013. 
46 Elie Wiesel, The Nobel Peace Prize Acceptance Speech, December 10, 1986.
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42.9 Today II: “The Silent Agreement”47 

False opinions are like false money, struck 
first of all by guilty men and thereafter circu-
lated by honest people who perpetuate the 
crime without knowing what they are doing. 

– Joseph-Marie, Comte de Maistre 

If faith can move mountains, disbelief can 
deny their existence. And faith is impotent 
against such impotence. 

– Arnold Schoenberg, June 1924, [Scho] 

I was born in 1960 into a country in which 
virtually everyone of the older generation was 
declared free of any serious guilt, except the 
few obvious villains. 

– Moritz Epple48 

The Fool’s Gold of Silence 

Yes, I know, I’ve heard this wisdom in Russia, “Silence is Golden,” and in America, “A 
closed mouth catches no flies.” However, my heroes Edward R. Murrow, Elie Wiesel, and 
Albert Camus rejected this fool’s gold. Camus eloquently conveys his vision of creator’s 
duties in the society in his Uppsala University lecture on December 14, 1957, just 4 days after 
his acceptance of the Nobel Prize [Cam2]: 

The writer can no longer hope to stand aside and pursue reflections and images dear to 
him. Until now, for better or worse, abstention was always possible in history. The 
person who did not approve could often remain silent or speak of something else. Today 
everything has changed, and even silence takes on a daunting significance. From the 
moment when abstention itself is considered as a choice, punished or praised as such, 
the artist is conscripted whether he wants it or not. “Conscripted” strikes me as more 
accurate here than “committed” . . .  

To tell the truth, this is not easy, and I understand that artists may regret [losing] their 
former comfort . . .To create today is to create dangerously. Every publication is an act, 
and this act exposes you to the passions of a century which forgives nothing. 

All true, Cher Monsieur, and if not us, who? If not now, when? 

47 The title is a quote from [Epp]. 
48 [Epp].
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G.M. Ziegler, An Important Operative 

The first edition of The Mathematical Coloring Book [Soi44] became a standard text, beloved 
by numerous colleagues around the world. The Ramsey theory leader Ronald L. Graham told 
me he bought three copies in order to have it handy in each of his three offices. Legendary 
Helge Tverberg sent his high praise from Norway. Peter Mihók writes in Mathematical 
Reviews of the American Mathematical Society [MR 2458293]: 

The beautiful and unique Mathematical coloring book of Alexander Soifer is another 
case of “good mathematics,” containing a lot of similar examples (it is not by chance 
that Szemerédi’s Theorem story is included as well) and presenting mathematics as both 
a science and an art. It is easy to find a lot of information about this book, including the 
three excellent forewords of B. Grünbaum, P. D. Johnson and C. Rousseau on the 
Internet (see www.springerlink.com/content/m615m7/front-matter.pdf). Let us mention 
here, in the words of the author, that “this book includes not just mathematics, but also 
the process of investigation and psychology of mathematical invention, . . .  it presents 
mathematics as a human endeavor, . . .  it explores the birth of ideas, . . .  and moral 
dilemmas of the times between and during the two World Wars.” 

Springer was so pleased with the book’s resonance that they signed me to a contract for this 
much expanded edition. There was, however, one man in Germany who almost 6 (!) years 
after my book’s appearance, on September 18, 2014, published in English an untruthful 
personal attack on me under a disguise of a “book review” [Zieg]. I have never before 
responded to reviews of my books. This time, I had to reply because this operative from 
mathematics held a high position of the President of the Deutsche Mathematiker-Vereinigung 
(DMV, German Mathematical Society) three times, 2006–2008, is a member of the Executive 
Committee of the International Mathematics Union, has been President of Freie Universität 
Berlin 2018–2022 and again 2022–2026, and held many other important appointments. His 
high positions may influence some of our lower-information colleagues to take his word 
without verifying it. His name is Günter M. Ziegler. Ziegler wrote a review of my book in 
English and blocked my response by publishing it in Jahresbericht der Deutschen 
Mathematiker-Vereinigung, whose Editor Hans-Christoph Grunau refused to publish my 
response or even my Letter to the Editor. Grunau copied his rejection to Ziegler and declared 
that all I can do is to ask (read: beg) Ziegler to correct his mistakes. Thus, my reply had to be 
published elsewhere; it appeared in Geombinatorics in print and online [Soi52]. 

You would expect math professor Ziegler to point out math mistakes, right? Wrong. “After 
struggling with the book for 2 1/2 years” (his words) he found none in the book of 640 pages. 
What then were his “struggles” with? Ziegler alleges: “This book has many faults, starting 
with the title [sic], the dedication [sic] and the many prefaces [sic], but more seriously with 
the selection of the material.” Ziegler criticizes the title! He criticizes the dedication of the 
book to my late father – how dare he!! Ziegler can’t stand three detailed forewords written by 
much more competent mathematicians than he is. He expresses his dislike of “the material” – 
as if someone forced Ziegler to read my book. 

Having grown up in a totalitarian state, I am not surprised by Ziegler’s untruths, but neither 
am I going to be silent. Having sacrificed everything for freedom on the other side of the 
Atlantic, I will never give up my hard-earned freedom of speech. Let us take a closer look at 
Ziegler’s so-called “review.”

http://www.springerlink.com/content/m615m7/front-matter.pdf
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Four-Color Problem 

Ziegler alleges that the Four-Color Problem (4CP) is not good enough a problem for the 
inclusion in my book. Yet he himself admits how important and influential it has been for a 
century and a half (p. 263): “Was this a good problem? Certainly it was important, as it has 
driven the development of graph theory to a large extent. Nevertheless, it has made little 
connections to other parts of Mathematics.” 4CT has “connections” to topology, graph 
theory, and other branches of discrete mathematics, and this is plenty, as much as most 
mathematical results have. Moreover, this is my book and thus my choice of what to include. 

Ziegler then complains that Heinrich Heesch did not get a grant to work on 4CC, and thus 
Heesch “couldn’t complete his proof, and the fame for solving the problem instead [sic] went 
to Hermann [sic] Haken and his team.” How can Ziegler be certain that with a grant Heesch 
would have found a proof? Does he think money guarantee proofs in mathematics? Isn’t 
Ziegler’s “instead” hints to a stolen credit? Didn’t Wolfgang Haken and Kenneth Appel 
deserve the highest honors for conquering the problem that had withstood all assaults for 
124 years? They did give generous credit to Heesch. It must be embarrassing for president of a 
German university Ziegler and his German publisher Hans-Christoph Grunau not to know the 
name of a German American celebrity Wolfgang Haken and list instead his cousin physicist 
Hermann Haken. 

Ziegler mentions in passing, “the [Appel–Haken] proof was reworked [sic] later by 
Robertson et al.” While we do not have in mathematics a definition of a “different proof,” 
Ziegler’s remark is a scandalous understatement. The 1997 Robertson–Sanders–Seymour– 
Thomas proof was dramatically better than that of Appel–Haken. Instead of 486 secondary 
discharging rules (those unfamiliar with the terminology can think of these rules as “ideas”), 
the new proof used just 20. When 13 years later, in 1989, Appel–Haken’s proof finally 
appeared in print, it filled 741 oversized book pages, whereas the new proof comprised a very 
readable journal article of 43 pages. Moreover, the new proof was verifiable, for the authors 
achieved a clean separation of what they did by hand (better said, by mind) and what their 
computer did and placed their software on an anonymous ftp for anyone to verify. 

In the premier 1981 issue of Combinatorica, Paul Erdős gives the highest praise to 4CC: 
“The most famous conjecture of graph theory or perhaps of the whole mathematics, the four-
colour conjecture, became recently the theorem of Appel and Haken.” 

On August 14, 1991, Erdős wrote to me “I would be much happier with a computer-free 
proof of the four-color problem, but I am willing to accept Appel–Haken proof – beggars 
cannot be choosers.” Ziegler appears to be a choosy beggar, who dismisses as no good this 
major, influential, celebrated, classic problem of mathematics. 

Chromatic Number of the Plane 

Ziegler believes that finding the chromatic number of the plane (CNP) is also a bad problem 
(p. 265): “The chromatic number of the plane: Is this a good problem? Again this is a question 
of taste. In my view the fact that there is so little progress on the original problem in so many 
years, and progress only on variations, and that the answer might depend on set theory all 
indicate that it is not a productive, helpful problem.”
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Ziegler’s logic is absurd. The indication that the problem is hard and consequently takes a 
long time to be conquered, he uses as a “proof” of “not a productive, helpful problem”! If  “the 
fact that there is so little progress on the original problem in so many years” were to mean the 
problem is bad, then all the great classic problems of mathematics are bad, from Fermat’s Last 
Theorem, which required ca. 360 years, to the Goldbach Conjecture, Riemann Hypothesis, 
Poincare Conjecture, etc., etc., etc. 

Yes, it is a matter of taste: Ziegler’s taste puts him, perhaps, in a minority of one, when he 
suggests that CNP problem is bad. The greatest problem creator of all time Paul Erdős liked 
the CNP problem so much that he included it in his numerous problem papers and talks, and 
so did the leader of Ramsey Theory Ronald L. Graham. The CNP problem was selected for 
the inclusion in the well-known problem books “Unsolved Problems in Geometry” by Croft– 
Falconer–Guy, Springer, 1991, and “Old and New Unsolved Problems in Plane Geometry 
and Number Theory” by Klee–Wagon, Mathematical Association of America, 1991. I was 
invited to write Chapter 8 for the book “Topics in Chromatic Graph Theory,” Cambridge 
University Press, 2015, edited by Lowell W. Beineke and Robin J. Wilson. The Nobel Prize 
(1994) and Abel Prize (2015) laureate John F. Nash, Jr. liked CNP problem so much that he 
invited me to write a chapter on it [Soi50] for the 2016 Springer book edited by Nash and 
Michael Th. Rassias on most famous “Open Problems of Mathematics,” where other chapters 
are dedicated to such celebrated classic unsolved problems as the Riemann Hypothesis, the 
Goldbach Conjecture, the P versus NP Problem, the Hadwiger Conjecture, etc. In March 
2021, Alfred Rényi Institute of Mathematics of the Hungarian Academy of Sciences invited 
me to give a “Public Lecture” on CNP and related problems for a worldwide audience 
[Soi56]. 

Ziegler complains that “the answer [to CNP] might depend on set theory” to dismiss CNP 
as a bad problem. The opposite is true. Shelah–Soifer papers reawakened the mathematical 
world that ever since the 1930s mostly fell asleep on ZFC as the foundation of set theory and 
showed that by using other axioms for sets, we could build many exciting buildings of 
mathematics, free from counterintuitive paradoxes caused by ZFC. The prominent French 
mathematician Jean-Paul Delahaye published a deep, long review of Shelah–Soifer work; he 
views Shelah–Soifer papers as highly important mathematically and philosophically [Del]: 

When Gödel and Cohen proved independence of AC from the rest of the axioms ZF of 
set theory, they created a parallel, so to speak, between AC and the parallels postulate. 
As so, when Shelah–Soifer came out, it showed that various buildings of mathematics 
can be constructed. 

Sorry to disappoint you, Dr. Ziegler: your complaint about the lack of CNP results in 
general case is no longer true. In 2018, Aubrey de Grey achieved a major breakthrough by 
constructing a 5-chromatic unit-distance graph, thus reducing the range of possibilities to 5, 6, 
or 7. He was followed by a stream of 5-chromatic constructions by Marijn Heule, Jaan Parts, 
Geoff Exoo, and Dan Ismailescu, and a number of other scholars. Read about it later in this 
book and in Polymath Project.
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In 2 ½ Years of “Struggling,” Ziegler Found No Mathematical 
and No Historical Mistakes 

Poor Dr. Ziegler: after “struggling with the book for 2 ½ years (!) on the way to this review” 
(p. 262), he found no mathematical and no historical errors in the book. He had to criticize 
something, and so he objected to the title, the dedication, the choice of problems, etc. 

Ignoramus in History, Ziegler Attempts to “Correct” My History and Fails 
on All Counts 

Ziegler quotes me and then alleges to refute my statements, (pp. 266–267): 

Soifer reports that Bartel Leendert van der Waerden [. . .] proved this pioneering result 
while at Hamburg University and presented it the following year at the meeting of D.M. 
V., Deutsche Mathematiker-Vereinigung (German Mathematical Society) in Berlin. The 
result became popular in Göttingen, as the 1928 Russian visitor of Göttingen A. Y. 
Khinchin noticed and later reported [Khi1], but its publication [Wae2] in an obscure 
Dutch journal hardly helped its popularity. [. . .] 

This report gets a number of facts wrong. For example, the DMV meeting 1928 was 
held in Hamburg, and Aleksandr Khinchin writes that the result was obtained in 
Göttingen. The “obscure Dutch journal” was Nieuw Archief voor Wiskunde. 

Not Soifer – Van der Waerden himself wrote the Story of Creation of this proof in 1926 in 
Hamburg with the aid of Emil Artin and Otto Schreier. Did Ziegler read my book that he is 
reviewing? 

Not Soifer, and not 1928 – Alfred Brauer wrote that Van der Waerden found his proof in 1926 
and presented it “the following year at the meeting of D.M.V.” The following year here 
obviously meant 1927, thus Ziegler’s statement that the 1928 meeting was held in 
Hamburg is totally irrelevant, as Ziegler tried to correct incorrectly. 

Not Soifer – Khinchin incorrectly stated that the result was obtained in Göttingen – Ziegler 
should send his complaints to Khinchin’s heirs. 

Not Soifer – the Dutch Nicolaas G. de Bruijn called Nieuw Archief voor Wiskunde an “obscure 
Dutch journal,” and he certainly knew that journal much better than Ziegler. 

How Important Is the Authorship of a Conjecture? 

Ziegler rhetorically asks (pp. 266–267), “Why this urge to prove Van der Waerden wrong 
about the origin of the conjecture, if he apparently heard it from Baudet?” 

If Ziegler read my book attentively “for 2 ½ years,” he must have learned that 
P.J.H. Baudet passed away in 1921, while Van der Waerden heard the conjecture in 1926. 
Therefore, Van der Waerden did not hear the conjecture from Baudet and moreover wrote to 
me about it. 

Ziegler then (ibid) declares a rhetorical question, “Does it really make sense to talk about 
the ‘authorship of the conjecture’?” 

Yes, it most certainly does. What would a prover be proving if someone did not create a 
good conjecture? I generally view creation of a good conjecture as important as proving it and



hence systematically give a joint credit for a theorem to the author of the conjecture and its 
prover. Shouldn’t we give credit where credit is due? 
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Good conjectures inspire and direct research, and at times it is very hard to envision the 
future, i.e., to create a good conjecture. If it is always easy, as Ziegler insinuates, why 
wouldn’t he, for example, conjecture for us criteria for a graph to be Hamiltonian? 

Francis Bacon points out to Ziegler [Pet, p. 494]: 

A prudent question is one-half of wisdom. 

Ziegler Slanderously Accuses Van der Waerden of Anti-Semitism 

Ziegler pleads impartiality toward Van der Waerden (p. 267): “I have no stakes in Van der 
Waerden, I have never met him, and I cannot (and dare not) judge him, neither his contribu-
tions to Mathematics, nor what he did or didn’t do for example as a professor in Leipzig 
1931–1945.” Yet, Ziegler then falsely accuses Van der Waerden of anti-Semitism (!) without 
any substantiation when he claims (p. 267) that “Some of his [Van der Waerden’s] actions 
seem to have harmed Jewish colleagues (but I don’t know and can’t judge whether any of this 
was intentional or even done knowingly).” 

Where are the facts to back such a horrible slander? I spent over 20 years researching Van 
der Waerden’s life with the assistance of thousands of documents, members of his family, and 
eyewitnesses and showed clearly in my two books [Soi44, 47] that Van der Waerden had 
never been an anti-Semite. Moreover, he was prevented from succeeding Constantine 
Carathéodory at Munich precisely because he was perceived as a philo-Semite. In 1935, 
Van der Waerden bravely published a eulogy for his beloved Jewish teacher Emmy Noether 
in Mathematische Annalen. In my two books I describe at a great length the May 1935 Faculty 
Meeting at Leipzig, where Van der Waerden, Werner Heisenberg, and three more scholars 
publicly (!) protested the firing of five Jewish professors from Leipzig University. When their 
protest did not succeed, they even contemplated a group resignation. Ziegler owes a profuse 
apology to the Van der Waerden family and all of us! 

Ziegler Then Groundlessly and Redundantly Blames Soifer 

Ziegler apparently attempts an old trick: he repeats false accusations many times, in hopes it 
will become “truth” to the less informed. It-will-not, Mr. Ziegler! Ziegler, who slandered Van 
der Waerden by the accusation of anti-Semitism (!), now baselessly and with a great 
redundancy accuses Soifer of “badly disliking” Van der Waerden: 

“The only plausible reason I can see for Soifer’s passion and persistence in his 
investigations and his attempts to find fault with Van der Waerden is that he badly 
dislikes him.” (p. 267) 

“He [Soifer] badly tries to find fault in his stay at Leipzig University during Nazi 
times, and so on.” (p. 267) 

“It cannot be good if a historian has an ax to grind, if from the outset he wants to 
prove things about his subject of study, since this will color his judgement.” (p. 267) 

“The impression remains of a personal war.” (pp. 267–268)
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“This passion and scornfulness against Van der Waerden.” (p. 268) 
“Soifer’s persistent personal campaign against Van der Waerden.” (p. 268) 

A historian, Mr. Ziegler, is not in the business of liking or disliking the subject of his 
research. As a historian, I paid the ultimate, highest respect to B.L. van der Waerden by telling 
the truth, grounded in facts, revealed by decades of archival research and eyewitness 
testimonies, including memoires of his son, his niece, and his nephew. 

Concerns about Van der Waerden’s presence in Nazi Germany for the entire duration of the 
Third Reich were raised contemporaneously by Otto Neugebauer, Richard Courant, Johannes 
G. van der Corput, editors of Het Parool, and others. I communicated their concerns in my 
two books [Soi44, Soi47]. I also included instances of brave and honorable conduct exhibited 
by Van der Waerden during those horrific Nazi times. 

Ziegler Admits He Is Not a Historian and Has Never Been to Archives 

Ziegler admits (p. 267): “At this point, I must say that I am not a historian, I have not read all 
materials and I have not been to the archives, so I can’t (!) really judge this.” 

However, judging Van der Waerden and Soifer is what Ziegler is doing! We witness the 
case of an unapologetic judgmental ignoramus of history, elected to the presidency of DMV 
and Freie Universität Berlin. I urge his better educated subordinates to stress upon him that 
history deserves respect and rigor every bit as much as mathematics. 

Since It Is Not Math and Not History, What Is the Goal of Ziegler’s 
6-Year-Late 9-Page-Long Review? 

Ziegler found no grounds to correct mathematics or history presented in my book. What is 
then the goal of Ziegler’s criticism of The Mathematical Coloring Book [Soi44] and my 2015 
book The Scholar and the State: In Search of Van der Waerden [Soi47], which Ziegler 
mentions in his review? 

Is it my opinion that too many potentially good Germans – including the majority of 
professors – joined the Nazis or remained silent and thus made Nazism in Germany possible? 

Is it my questioning the International Mathematics Union (IMU), which ever since 1981 
had been etching on its prestigious gold medals the profile of the Finnish Waffen SS Volunteer 
(Recruitment) Committee Chairman Rolf Nevanlinna, that same Nevanlinna who in his 
speeches and articles praised Adolf Hitler as the Savior of Europe? 

Is it my concern with the 2002–2013 Director of the Mathematisches Forschungsinstitut 
Oberwolfach Prof. Dr. Dr. h.c. Gert-Martin Greuel starting the history of the Institute in 1946 
(http://link.springer.com/chapter/10.1007%2F978-3-642-25710-0_26), thus concealing (!) its 
start in 1944 by the Nazi Wilhelm Süss, with the approval and funding by the high Nazi 
authority Hermann Göring? 

Is it my 2014 book review where I objected to Roquette–Frei–Lemmermeyer fabricating a 
hero out of Nazi-collaborating anti-Semite and racist Hasse? Do the readers know that this 
review was published on June 21, 2014 https://zbmath.org/?q=an:06214484, censored and 
removed off the zbMATH website on July 9, 2014, and published again by the Editor-in-
Chief Greuel on September 4, 2014 Zbl 1294.01004? (In the end, Greuel republished my

http://link.springer.com/chapter/10.1007/978-3-642-25710-0_26
https://zbmath.org/?q=an:06214484
https://zbmath.org/?q=an:1294.01004


49review and “thanked” me by expulsion from the reviewers of zbMATH ). Ziegler published 
his review days after, on September 18, 2014. 
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What was Ziegler’s goal in waging such an all-out attack, consisting of fabrications, 
untruths, and irrelevancies? Was it his hope that if to throw enough accusations, no matter 
how false, something will stick? This is an old “counterfeiters” trick, described centuries ago 
by Joseph-Marie, Comte de Maistre (1753–1821) in Les soirées de Saint-Pétersbourg, Ch. I: 

False opinions are like false money, struck first of all by guilty men and thereafter 
circulated by honest people who perpetuate the crime without knowing what they are 
doing. 

Ziegler is not alone. He quotes the German historian Reinhard Siegmund-Schultze (hence-
forth S-S) while suspiciously S-S quotes Ziegler. S-S wrote in his emails to me numerous high 
compliments for my four articles about Van der Waerden50 that were the foundation of my 
book [Soi47], but in his 2015 AMS Notices review insinuates that I could not possibly 
understand Germany and Germans because I did not live there. By this (il)logic, we may not 
research Ancient Greece and Rome, for none of us lived there. He essentially demands a 
monopoly for the German authors in researching German history. Monopoly does not breed 
trust; moreover, monopoly allows cover-up of the truth. The American Mathematical Society 
Publisher Sergei Gelfand called me when S-S review came out and said: 

While writing a book like this, you shouldn’t be surprised; he [S-S] followed “party” 
orders. 

Ziegler’s malicious failed attempt to silence me is symptomatic of serious problems of 
Germany dealing with its past, even now, 90+ years after Hitler’s assent to power. On April 
23, 2014, I received an email [Epp] from the well-known German scholar Moritz Epple, 
Professor of History, specializing in the History of Mathematics at Goethe University 
Frankfurt. I did not communicate with him before Springer Birkhäuser invited Prof. Epple 
to be the official referee of my book The Scholar and the State: In Search of Van der Waerden 
[Soi47], and Epple asked Springer to share with me his name and email. Epple raises the veil 
off the “Secret Life of the Postwar Germany” and allows us to understand many actions 
(including Ziegler, Siegmund-Schultze, Greuel, Roquette, Frei, etc.) that before I could only 
guess about: 

I was born in 1960 into a country in which virtually everyone of the older generation 
was declared free of any serious guilt, except the few obvious villains whose involve-
ment in atrocious and – for me as a young person – completely unfathomable crimes was 
so obvious that no one could get around it. But all the others, the van der Waerdens, own 
family members, older teachers and later even some professors: What about them? 

. . .  well, to put a long story short: To NOT talk about the moral problems that their 
earlier lives involved seemed to be the silent agreement that kept (and to some extent 
still keeps) this society going. 

49 On March 16, 2021, the new Editor-in-Chief Klaus Hulek reversed the expulsion: “I confirm 
that your reviewer account is now active and I have informed the relevant editors of this fact.” 
50 https://geombina.uccs.edu/siegmund-schultze

https://geombina.uccs.edu/siegmund-schultze
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Ever since I understood this (if I really understood – who can be sure) I felt the need 
to join those who addressed these issues with careful, but sharp judgement, and to break, 
rather than to prolong, the silent agreement of suspending judgement. Conflicts were the 
unavoidable consequence for all of us. 

After the first few chapters of your book I understood that your challenge to the 
reader was exactly this: To provoke her or his moral judgement, on the basis of a wealth 
of relevant information. 

The more I read, the more I enjoyed reading your text. You do make a strong case. 
I think the need to make such cases about life in Nazi Germany, and in the occupied 

countries, still is and remains great. Of course at some point in history other aspects of 
our complicated present and recent past may require similar attention – keeping the 
borders of the richer countries of our world shut for refugees comes to mind – but the 
Nazi past still haunts us in so many ways. And especially us who were born into families 
who in some non-zero degree were involved in, and responsible for, the reality or at least 
the possibility of the crimes of this period. 

It is apparently not enough for the Zieglers to keep silent about the German past and its 
manifestations today – they want to silence the Soifers. Surely, at times my books deliver 
truths, inconvenient for some and treasured by others. I learned that there is no such thing as a 
free free speech, and thus I am now less surprised when an invoice for my exercise of free 
speech arrives. Ziegler’s review vividly illustrates how important and timely my two books 
are for Germany in particular and the world in general. The treatment of the German past 
affects the integrity of all aspects of Germany today, including German scholarship. I deeply 
appreciate the brave honest paths paved by Herbert Mehrtens, Moritz Epple, and some other 
German scholars. 

One of the main reasons I researched archival documents for over 20 years was to learn 
important lessons of history and apply them to today’s world, where the 2014 Russian 
annexation of Ukrainian Crimea eerily reminds me the 1938 Nazi Germany’s annexation of 
Czechoslovakian Sudetenland; and the 2022 Russian war on Ukraine resembles the 1939 
Nazi and Soviet war on Poland. Sadly, in both periods, the majority of the intellectual elites, 
artists and scholars, supported their criminal leaders. Both times the world hoped to satisfy the 
insatiable appetites of the tyrants by throwing Poland to Hitler and Stalin then, while some 
willing to throw Ukraine to Putin now, in the years 2022–2023. Complicity and conformism 
will not pave a path to a brighter future. We ought to look the past straight in the eyes, learn 
from it, and strive not to repeat mistakes of the past. The German unwritten agreement to 
conceal its tragic past will not work. Truth, like water, will find its way out. 

I am leaving you here with a few lines from a genius long 1970 poem “KADDISH, 
Dedicated to Janusz Korczak” by Alexander Galich, a dissident poet, songwriter, performer, 
screenwriter, and playwright. In 1974, he was forced to leave the Soviet Union. In 1977, 
Galich was found dead in his Paris apartment under suspicious circumstances. I am translating 
for you from the Russian original. 

“It’s time,” one day said noble prince, 
“To overpaint this dirt.” 
The painter said: “It’s time, my prince, 
Long overdue, my lord.”



And dirt became all dirty-white, 
And dirt became all dirty-green, 
And dirt became all dirty-blue 
Under the painter’s brush. 
It all because the dirt is dirt, 
Whatever color you insert. 
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42.10 Today III: From Rolf Nevanlinna Prize to Abacus Medal: 
A Noteworthy History of an IMU Prize51 

The past is never dead. It’s not even past. 
– William Faulkner 

Requiem for a Nun, 1951 

The world is a dangerous place to live; not 
because of the people who are evil, but 
because of the people who look on and don’t 
do anything about it. 

– Albert Einstein 

Movement 1: Why I Objected to the Rolf Nevanlinna Prize’s Name 

Yes, Faulkner is correct, the past is always alive. It continues to live within the present. No 
matter how many times we pledge “never again,” we are predisposed to repeat mistakes of the 
past as poor students of history. You met Rolf Nevanlinna in this book during the 1946 job 
search at Zurich University. Now I will tell you the present Tale of Rolf Nevanlinna and the 
IMU Prize named in his honor. 

Sometimes moments occur when I feel the need to act, I just cannot let a problem be, 
especially when no one else does anything about a moral issue of high importance to me. This 
is what I felt when I discovered a great honor bestowed on Rolf Nevanlinna by the 
International Mathematics Union (IMU) by establishing in 1981 the prize and gold medal 
in his name. People often pour cold water on their impulse to act by repeating the old 
rhetorical question “What can I do alone?” I prefer an alternative principle: I will do all I 
can and let the chips fall where they may. 

To give you a taste of Nevanlinna’s flavor, let me quote his March 25, 1941, letter to 
Helmut Hasse, where he praises Hitler and Nazism. Enjoy the sing-along duet of the two 
active Nazi supporters: 

You know, dear Herr Hasse, your remarks about the hypocritical and stupid “moral 
indignation of Western politicians, who try to hide their hate against Germany under the 
mantle of nice phrases,” correspond completely to what we feel here and say to 

51 This section has concurrently appeared in Geombinatorics in July 2023 [Soi57].
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ourselves daily. You know those deeply rooted sympathies which connect us Finns with 
Germany, these bonds are today stronger than ever now that the easily understandable 
irritation caused by our difficult time a year ago has died down . . .  

It is absolutely clear to us that only a strong and powerful Germany, the heart of 
Europe, is capable of forming the fate of European community in the way, which the 
interest of all European nations of culture demands. Personally, I am firmly convinced 
thereof and I believe to see a total justification of this conviction in European history, 
namely that Germany is today summoned not only to save European culture, which 
already happened in 1933, but to lead it to an undreamt-of blooming. The world-historic 
significance of the present hour is immense. 

And this active Hitler supporter was chosen by International Mathematics Union (IMU) to 
be etched on its Gold Medal, awarded to the best theoretical computer scientists! 

Movement 2: Rolf Nevanlinna and His Prize: A Brief Excursion in History 

As you know, in 1981 IMU Executive Committee decided to create the Rolf Nevanlinna Prize 
for “Mathematical Aspects of Information Sciences,” i.e., Mathematical Aspects of Computer 
Science, even though Nevanlinna made no contributions to theoretical computer science. 
Helsinki University, Finland, offered to pay for the prize in honor of a Finn (a gold medal with 
Nevanlinna’s profile, and cash to match the Fields Medal, ca. $15,000). The IMU Executive 
Committee (EC) accepted the Finnish offer, allowed the Helsinki University seal to appear on 
this international medal, and has been awarding the Rolf Nevanlinna Prize once every four 
years at the International Congress of Mathematicians (ICM), most recently on August 
1, 2018, in Rio de Janeiro. 

The IMU Executive Committee was duty bound to consider the moral bearings of the 
person they chose for a high prize – and they failed. Have the Executive members knowingly 
chosen a willing Nazi collaborator for the IMU Prize, or is their ignorance is the defense of 
their integrity? Let us be charitable and presume Executive members’ ignorance of history 
in 1981. 

I wrote all this and more about Nevanlinna in my 2015 book [Soi47; pp. 189 and 286–288] 
and urged the IMU Executive Committee to change the name on the prize. But whoever reads 
500-page books, and furthermore, remembers a few pages after reading such a substantial 
dense volume! 

Movement 3: IMU President Shigefumi Mori 

Meanwhile, I was elected President of the World Federation of National Mathematics 
Competitions (WFNMC) in 2012 and as such was asked in July 2016 to give my organiza-
tion’s report to the General Assembly of the International Commission on Mathematical 
Instruction (ICMI) during its Hamburg quadrennial Congress. Right before my report, I had a 
brief exchange with the IMU President Shigefumi Mori: 

– Mr. President, may I have your address, I would like to mail you a letter? 
– What about? 
– About one of your prizes. 
– Which one?
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– Rolf Nevanlinna Prize. 
– You know, I cannot do anything by myself, but I will present your letter to the Executive 

Committee. 

I had a feeling that President Mori knew what I was going to write about, for otherwise how 
would he know – without asking me – that I will complain about the name of the prize and the 
face on the medal? You will see in this section that Mori acknowledged his and IMU’s 
Executive Committee prior knowledge and years of silence. 

I presented the WFNMC report and then told the roomful of the delegates about the Nazi 
collaboration of Rolf Nevanlinna. I ended with my personal impassioned call to change the 
name of the Rolf Nevanlinna Prize. A long silence fell on the room, followed by enthusiastic 
applause and private remarks “I did not know” from some delegates to me. 

Mori acknowledged the receipt of the letter [Soi37] I sent on behalf of the Executive 
Committee of WFNMC and promised to put it on the agenda of the next IMU Executive 
Committee meeting, 8 months later, in April 2017. 

I sent my second letter [Soi38], this time a personal one to Mori and his EC with two 
essential points. I offered to personally pay $15,000 to IMU every four years to eliminate 
IMU’s dependence upon Finnish funding. For someone, who started his American life from 
scratch as a refugee, this was a substantial expense, which, as the saying goes, put my money 
where my mouth was. I also observed that while the 1981 EC that established the prize could 
have pleaded ignorance, now EC could not do so, for I informed them of the Nazi collabo-
ration of Rolf Nevanlinna. 

I stressed to Mori and his EC that there is a popular misconception that one who does 
nothing, does nothing wrong. “In fact, now that you know the truth,” I continued my letter to 
Mori, “doing nothing would transform an innocent mistake of 1981 into an intentional stain 
on IMU and on all mathematicians.” Remember Grigory Perelman’s refusal to accept the 
Field’s Medal and the Millennium Prize, and his exodus from mathematics? Now you 
understand why this great mind did not wish to be a “poster boy” for mathematics, where 
the majority condones immorality of the minority. Keeping the Nevanlinna name on an IMU 
prize would stain mathematics forever, I concluded in my letter. 

Imagine, EC keeps dates and locations of its meetings in secret. Only in late April 2017, did 
I learn that EC meeting took place on April 1–2, 2017, in London and asked President Mori to 
share with me their decision. His April 24, 2017, reply was a riddle. On the one hand, he 
wrote, 

We did discuss the issue regarding the Nevanlinna Prize at our recent EC meeting, and 
we made a decision. 

On the other hand, he was not going to disclose that decision to me: 

But, as I am sure you understand, we need to discuss this with the partners involved. 
Before we have reached an agreement with them, we will not go public. We ask for your 
understanding of this way to proceed. 

I met this part without understanding. “What if you do not reach an agreement with 
partners?” I asked Mori, who went non-communicado for what felt like eternity.
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Movement 4: Open Letter to the Nine Winners of Rolf Nevanlinna Prize 

In view of a long Mori silence, on September 28, 2017, I sent “An Open Letter to All Nine Rolf 
Nevanlinna’s Prize Laureates” Robert Tarjan, Leslie Valiant, Alexander Razborov, Avi 
Wigderson, Peter Shor, Madhu Sudan, Jon Kleinberg, Daniel Spielman, and Subhash Khot 
[Soi41]. I hoped they would join me in opposing Hitler supporter’s profile on their medals and 
his name of their prizes: 

Ever since 2010, I wanted to write to you. I decided to first do everything I could on my 
own and see whether I would succeed without becoming your messenger of negative 
information. The time has come to share with you my concerns about The Rolf 
Nevanlinna Prize, one of your highest awards. 

In the 20 years of my writing “The Mathematical Coloring Book” (Springer, 2009) 
and “The Scholar and the State: In Search of Van der Waerden” (Birkhäuser, 2015), I 
looked into the life of Professor Nevanlinna. 

I then quoted for the nine laureates a passage from “The Scholar and the State” [Soi47] 
about Nevanlinna’s admiration of Hitler and his recruitment of Finnish SS troops demanded 
by Himmler. I ended my letter observing that the greatest moral authority in this matter rests 
with the laureates. I urged them to join in and be counted, for the integrity of our profession 
was on the line. 

The first reply came from Peter Shor of MIT: 

Dear Alexander Soifer: 
Finland was in a rather terrible position during World War II. It was caught between 

the Soviet Union (headed by Stalin, who was responsible for the deaths of tens of 
millions of people, including the deliberate decision to let around 7 million Ukrainians 
starve to death in the Holodomor in 1933) and Nazi Germany. For Finland, the Soviet 
Union was by far the more serious and immediate threat. 

Does this excuse Nevanlinna’s actions? I don’t know. However, without evidence 
that Nevanlinna supported the anti-Semitic [sic] aspects of the German fascist govern-
ment, I don’t believe that I feel warranted in taking any action at this time. 

From Wikipedia: 
“Neither the unit [The Finnish Waffen-SS] nor any of its members were ever accused 

of any war crimes.”52 

Peter Shor 

On the same day, I responded to Professor Shor with copies to all laureates: 

Dear Peter Shor, 
I appreciate your prompt and thoughtful reply. Permit me to comment on your two 

arguments. 

52 Shortly after, Wikipedia replaced its statement by this one: A 2019 report by the National 
Archives of Finland concluded that “at least some of the cases show that Finnish volunteers did 
participate in carrying out atrocities against Jews and civilians.” International sources say that the 
Finnish soldiers were likely involved in atrocities.
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Yes, Stalin was a major criminal as was Hitler. Stalin caused Holodomor and also 
deaths of tens of millions in concentration camps of the GULAG, murder of ca. 21,000 
prominent Polish people in Katyn and elsewhere, etc., etc. However, is being against 
one mass murderer justifies collaborating with another mass murderer, deserves a profile 
etched on our medals? 

Anti-Semitism was one of the Third Reich’s main policies, which resulted in 
ca. 6 million Jewish deaths. I will stipulate that Professor Nevanlinna was not anti-
Semitic. However, he recruited for those who were guilty of Jewish deaths. Moreover, 
Nazi Germany is responsible not only for taking lives of 6 million Jews, but for tens of 
millions of Jewish, Polish, Russian, Dutch, Danish, Norwegian, Belgian, French, 
Czechoslovakians, African, etc., deaths. 

Finally, we are not facing a binary choice between such compromised persons as, say, 
a Hitler’s collaborator Nevanlinna and a Soviet anti-Semite Pontryagin. We do not need 
a stain on our profession of either kind. We can select for our medal a profile of a person 
we will all be proud of, such as Alan Turing, Claude Shannon, John von Neumann, 
Norbert Wiener, and a good number of other noble human beings and great scholars. 
Best wishes, 
Alexander Soifer 

On September 30, 2017, Avi Wigderson of the Institute for Advance Study, Princeton, 
entered the discussion: 

Dear Alexander, 
I was approached about this issue about 10 years ago by someone I never knew, who 

told me more or less the story you tell, and asking how could I, as a Jew, accept this 
medal. I looked into the matter then, read some more, and basically got to essentially the 
same conclusion Peter did. 

Let me summarize how I view it. I have no idea what I would have done in 
Nevanlinna’s shoes as a Finn during Nazi rule of Finland. E.g., I cannot tell what 
pressures on his family he may have felt in that terrible time, which caused him to 
support in the way you carefully describe (like many Finns) Nazi Germany, indirectly 
helping their terrible deeds. I also cannot tell what else he did with his position during 
that time. 

E.g., I recently learned that he is solely responsible to saving the life of Andre Weil 
from execution by the Nazis in Finland and arranging his return to France. I have no idea 
if he did other similar things. What mattered to me (and both my parents lost all their 
families to the Nazis) is that outside unbelievable unimaginable times of WWII and 
occupation of his country53 , what I know of Nevanlinna’s life shows no sign of 
problematic opinions or behavior in my eyes. I cannot say that he is not overall “stained” 
by his actions during the war, but I can’t say it is a part of his personality, and I can’t say 
either that good people would behave otherwise then. Clearly, it would be nicer for the 
prize and for his memory in general if this part of his history was not there. 

53 This is incorrect: Finland was not occupied during WWII; in 1940, Soviet Union annexed part 
of the Finnish territory, while Finland remained a sovereign country.
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Anyway, this is my personal view, and I completely understand and respect others, in 
particular your view and actions regarding it. Of course, there are many *professional* 
reasons why some mathematicians (as the ones you suggest) are better suited, to name a 
medal for work on the theory of computing. 
Best, 
Avi 

About three hours later, Alexander Razborov of the University of Chicago, joined the 
conversation: 

I would also throw in here imminent threats to the “professional family”: students, 
colleagues etc. Most likely, the Weil story (of which I did not know before) is only a tip 
of an iceberg consisting of largely undocumented things. 

Peter and Avi said most of what I thought of saying. The most important point in my 
view is that it is not fair to draw comparisons between “stained” people and stellar 
scientists whose nobility was simply never tempted on such an unprecedented level. 

Let me perhaps also add my personal “credentials”: I never knew my grandfathers, 
both of them died during the war. But I do not have any issues with this Finnish battalion 
fighting in [the] Soviet Union as long as they did not commit any war crimes54 . Judging 
from what I saw on the Wikipedia, the Nazis used them mostly as a cannon feeder, and 
they never were a part of any occupation force. Perhaps, for a good reason: 

I feel that the civil population would have been much better off under Finnish 
occupation (and sorry Alexander I do not mean abstract principles, just saying that 
more people would have survived). 
Sasha 

So, Alexander Razborov believed that Russia would have been better off under the Finnish 
occupation than under Stalin; not a very patriotic proposition. While this could be true, there 
had never been as much as a whisper that tiny Finland would invade the giant Soviet Union. 
There was a realistic chance of Adolf Hitler’s rule in Russia, and this would have meant tens 
of millions more of dead Russians and a brutal slavery for the rest. 

Summing up, the laureates believed that Rolf Nevanlinna was not bad enough to justify the 
renaming of the medal and the prize. It seems that if Nevanlinna were an anti-Semite, the 
laureates would be in favor of the prize’s name change. Even though the Soviet authorities 
labeled me “Jewish” in my passport, and in spite of the horrors of the Holocaust, I for one do 
not consider anti-Semitism (contrasted to the “Final Solution”) to be the main disqualification 
in choosing the prize’s name. Evil wears many clothes. 

In the end, the laureates were content having an active Nazi supporter on their medals and 
prizes. 

Movement 5: Executive Committee and General Assembly of IMU 

On August 10, 2018 (yes, over a year later), IMU President Mori reappeared: 

Dear Professor Soifer, 

54 We know now that they did.
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This is to let you know of the decision that IMU has finally [!] made at GA [General 
Assembly of IMU, July 30–31, 2018]. 

It is the Resolution 7 of the attached “RESOL2018.pdf,” which you can also find 
under the item Resolutions of “18th GA in São Paulo, Brazil” in the URL https://www. 
mathunion.org/organization/general-assembly 
Best regards, 
Shigefumi Mori 
President of the International Mathematical Union 

Let me reproduce for you Resolution 7 approved by the IMU’s General Assembly: 

Resolutions of the IMU General Assembly 2018 
Resolution 7 

The General Assembly requests the 2019–2022 IMU Executive Committee, giving 
due consideration to all the issues involved, to determine and set up statutes for a prize 
continuing and with the same purpose and scope as the Nevanlinna Prize but with a new 
name and appropriate funding to be secured. The statutes of the new prize will be sent to 
the Adhering Organizations for approval by a postal ballot. 

In 2018 it looked as if the Executive Committee recommended the General Assembly 
(GA) to replace Nevanlinna’s name with something decent, and GA agreed. It proved to 
be not true. In fact, the sailing to this destination was very stormy. A year and a half later 
(!), on January 10, 2020, we learn troubling details “As approved by the IMU Executive 
Committee Report of the 18th General Assembly of the International Mathematical 
Union (IMU) São Paulo, Brazil July 29, 2018” [IMU1]. Let me quote only the relevant 
part of the Report, emphasis in bold is mine: 

Report of the 18th General Assembly of the International Mathematical Union (IMU) 
São Paulo, Brazil July 29, 2018. (09:00–18:15 hrs) July 30, 2018. (09:30–17:00 hrs)55

• Adjustment of the Nevanlinna Prize, Presented by Shigefumi Mori, IMU President. 
The IMU President read the following statement. It was decided at the 88th meeting of 
the IMU Executive Committee (EC) in March 2018 in Montreal that 2018 would be 
the last year at which a Rolf Nevanlinna Prize be awarded by the IMU. The 
unanimous vote of the EC [after all, I got through to every member of EC!] on the 
matter was made after consulting with and under the agreement of IMU’s Adhering 
Organization in Finland which was and will be responsible for funding the prize until 
the ICM 2018. 

Background and rationale for the decision: The history of the prize is that in 1981 
the Executive Committee of the IMU decided to establish a prize in information 
sciences and in 1982 accepted an offer from the University of Helsinki to finance 
it. Consequently [who would believe that Helsinki offered to fund the prize not 
knowing that it honored Finn Nevanlinna?], it was named after a former President of 
the IMU, Rolf Nevanlinna (1895–1980), who had been Rector of the University of 

55 chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://www.mathunion.org/fileadmin/ 
IMU/Organization/GA/GA_2018/18%20GA%20Report%20Final%20180729%20Sao%20 
Paulo.pdf

https://www.mathunion.org/organization/general-assembly
https://www.mathunion.org/organization/general-assembly
https://www.mathunion.org/fileadmin/IMU/Organization/GA/GA_2018/18%20GA%20Report%20Final%20180729%20Sao%20Paulo.pdf
https://www.mathunion.org/fileadmin/IMU/Organization/GA/GA_2018/18%20GA%20Report%20Final%20180729%20Sao%20Paulo.pdf
https://www.mathunion.org/fileadmin/IMU/Organization/GA/GA_2018/18%20GA%20Report%20Final%20180729%20Sao%20Paulo.pdf
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Helsinki and who had taken various initiatives to organize computer science in 
Finnish universities. Since its inception the prize laureates have all been individuals 
of outstanding ability who have made ground-breaking contributions to theoretical 
computer science and the IMU is extremely grateful to the Finnish community for its 
generous sponsorship of this initiative. However, the IMU has been approached 
over a long period and by several individuals regarding the naming of this Prize. 
These individuals found it unacceptable that the IMU should award a prize that 
carries the name of Rolf Nevanlinna, due to allegations regarding his behavior 
during World War II. [What an admission! “IMU has been approached over a long 
period and by several individuals” and IMU did noting, kept Hitler lover Nevanlinna 
on the prize and gold medal!] While the IMU is in no position to pass judgement in 
this matter, the IMU EC decided that the matter could not be ignored as it could 
tarnish the reputation of the IMU and the Nevanlinna prize recipients. 

The Executive Committee asks the General Assembly to consider the question on 
the type of future involvement of the IMU in a prize in this area. Background for the 
question: After careful consideration, and in view of the need to emphasize the unity 
of mathematics that it stands for, the IMU EC felt that it is no longer appropriate for 
IMU to single out for recognition and encouragement of this particular and important 
area of mathematics only, in the same way as the Nevanlinna Prize had been set up to 
do. The EC felt that this prize has successfully served its purpose, to foster and 
encourage research in this direction, that has now become a core part of contempo-
rary mathematics and that extraordinary work in this field can naturally be recognized 
by a Fields medal. The current rules for instance mean that a Nevanlinna Prize winner 
(say at the age of 35) becomes ineligible for a Fields Medal four years later, but there 
is no procedure in place to handle the case where the Fields and Nevanlinna 
committees choose the same name. Furthermore, the Nevanlinna Prize identifies 
two areas within Mathematical Aspects of Information Sciences, namely “mathemat-
ical computer science” and “computational mathematics.” To date the Nevanlinna 
Prize has only been awarded in the first area. On the other hand, the Nevanlinna Prize 
is an established important prize for the theoretical computer science community, and 
it would be natural that some new prize in this area should be set up. IMU bears a 
responsibility for this important prize and to its past Nevanlinna prize laureates. In 
any case, setting up such a new prize is a delicate issue. Name, choice of funding and 
institutional partners, role of IMU and all the implications of these choices would 
need to be carefully thought through. The IMU is involved with some prizes that are 
not IMU prizes per se, but carry the IMU approval, e.g., the Ramanujan prize for 
young mathematicians from developing countries, which is awarded jointly by the 
Abdus Salam International Centre for Theoretical Physics (ICTP) in Trieste, Italy, the 
Department of Science and Technology of the Government of India (DST), and the 
IMU. The IMU EC therefore asks the Adhering Organizations of the IMU to decide 
between the following three alternatives: 

Alternative 1: The IMU takes no further action. A possible successor of the 
Nevanlinna Prize would be without formal IMU involvement. 

Alternative 2: The 2019–2022 IMU EC is asked to participate in the creation of a 
new prize in collaboration with another institutional partner. The scope of this prize 
and the IMU involvement would mean that this prize might be recognized as a natural
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successor of the Nevanlinna Prize. The statutes for this new prize would avoid the 
unwanted risk that work on Nevanlinna Prize themes might de facto be excluded 
from consideration for Fields Medals. 

Alternative 3: The 2019–2022 IMU EC is asked, after it has given careful 
consideration to all the issues involved, to set up a prize with a new name and 
funding yet to be determined, with the same purpose and scope as the Nevanlinna 
Prize. The only difference would be the name and funding. The side effect that work 
on Nevanlinna Prize themes might de facto be excluded from consideration for Fields 
Medals, would persist. In case Alternative 2 or 3 is selected, the statutes of the new 
prize will be sent to the Adhering Organizations for approval by a postal ballot. 
[It is clear that EC prefers the Alternative 1: to shut down the Rolf Nevanlinna prize 
and walk away.] 

After discussion of the issue [that, according to Avi Wigderson’s email to me, 
included a passionate address by László Babai and letters from the former 
Nevanlinna Prize winners in favor of Alternative 3] a vote was made in order to 
choose the favored Alternative to be put to vote afterwards. 
VOTE (by show of hands) in order to select between Alternative 1, 2, or 3: 

IN FAVOR of Alternative 1= 10; IN FAVOR of Alternative 2= 4; IN FAVOR of 
Alternative 3 = Majority [ca. 136]. 

The GA proceeded to vote on Alternative 3: 
The General Assembly approved that the 2019–2022 IMU EC is asked, after it has 

given careful consideration to all the issues involved, to set up a prize with a new 
name and funding yet to be determined, with the same purpose and scope as the 
Nevanlinna Prize. The only difference would be the name and funding. The side 
effect that work on Nevanlinna Prize themes might de facto be excluded from 
consideration for Fields Medals, would persist. 
VOTE (by show of hands): IN FAVOR = 140, OPPOSED = 2, ABSTENTIONS = 8. 

Thus, we know now that “the IMU has been approached over a long period and by several 
individuals regarding the naming of this Prize.” IMU and its EC did nothing, just ignored 
complainers like annoying flies. It took my commitment, with letters and emails, public 
speaking, and several articles published in Geombinatorics and posted on the Internet to make 
IMU EC realize that they finally must act. 

Movement 6: IMU Abacus Medal56 

So, the General Assembly of IMU finally voted to change the name of the Rolf Nevanlinna 
Prize and Rolf Nevanlinna Medal. However, the new name of the award puzzled many, me 
included. From now on, IMU will grant four Prizes for mathematical achievement: Fields 
Medal, Carl Friedrich Gauss Prize, Chern Medal Award, and . . .  IMU Abacus Medal. 
Imagine, “Abacus” is all that the 12 EC members were able to come up with! 

Here is how EC explains its “abacuous” decision, reached during its March 1–3, 2019, 
Berlin meeting [IMU2]: 

56 See my first reaction to Abacus here [Soi42].
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The naming of the prize. 
There are many constraints to be considered, and the EC spent considerable time 

discussing various options. The name must not refer to commercial companies, any 
country, or any living persons. The name should be concise, comparable to other IMU 
awards. [Is “Abacus” really comparable to “Gauss,” “Chern,” Fields”?] An aspect to be 
considered is that if we name the award after a person, we should be convinced that the 
person has an unblemished reputation [sic]. We should avoid the name of any existing 
international prizes in related areas, both out of respect to other organizations and to 
escape misunderstandings. Also, generic names like IMU Prize in the Mathematics of 
Computation or IMU Prize on the Mathematical Aspects of Information Sciences were 
discussed but they were found to be too long. 

The name IMU Abacus Medal relates to the abacus, an ancient device that was used 
for numerical computations, and it underscores the importance of calculations already in 
early mathematics. The exact place and time of origin of the abacus is unknown, and it 
can be considered a truly global artifact associated with mathematics and computation. 

It seems that my public revelations about the Nevanlinna past scared IMU Executives so 
much that they walked away from a tradition of having a person’s name and profile on the 
medal, as they and others had almost always done, and came up with a very safe and very 
lame name “IMU Abacus Medal.” Even being scared of using a person’s name, any name, 
they could have chosen “Mathematical Computing Medal,” which is not longer than “Rolf 
Nevanlinna Prize” or “Carl Friedrich Gauss Prize.” Imagine, a scholar receiving Abacus for a 
major theoretical computer science achievement! Why not an even older one, a bone with 
markings, or a pile of pebbles? The dozen Executives must have loved ambiguity, for they 
proudly point out that “the exact place and time of origin of the abacus is unknown.” 

By the way, IMU’s new name for its prize is not new: a simple Internet search shows that 
Upsilon Pi Epsilon, International Honor Society for the Computing and Information Disci-
plines had Abacus Award for a while [UPE]. 

IMU did the right thing in disassociating itself from a Nazi-supporter. However, IMU had 
an obligation to explain to the world the reasons for their rare and decisive correction of their 
old error. Yet, the fearful IMU failed to do it, as failed Heidelberg Laureate Forum. On May 
14, 2019, The London Mathematical Society did not explain the reasons either, but at least 
included a hint in its announcement of IMU Abacus Medal, as if leaving a historical research 
to the homework of the readers: 

In 2018, the IMU Executive Committee took the decision to discontinue this prize 
because of historical issues arising from its name. 

Not all hid behind the trees from responsibility. Wikipedia [Wiki] gets the Nevanlinna 
Prize story right. William Gasarch in Computational Convexity [Gas] presents very good 
arguments, using even mathematical constructions in the process. 

Meanwhile, Rolf Nevanlinna is departing from the public domain, and this is good for the 
integrity of Mathematics. On July 3, 2022, Avi Wigderson wrote to me “I am glad the name 
was changed.” 

Ron Graham shared with me his opinion that while in my call for the name change, I was 
“making some good points, the chances of IMU changing anything are very slim.” I thought so 
too. However, we ought to do all we can and let the chips fall where they may. Anything less 
would compromise our integrity and guarantee the victory of the status quo in this world that 
needs so much change. One person empowered by truth and glasnost, can affect a major change.
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Chapter 43 
How the Monochromatic AP Theorem Beca 
Classic: Khinchin and Lukomskaya 

me 

What amazes us today is, of course, that no one in Hamburg 
(including Schreier and Artin) had known about Schur’s work 
[1916]. In that connection we must realize that the kind of 
mathematics involved in the [Baudet–Schur] conjecture was not 
mainstream, and that combinatorics was not a recognized field 
of mathematics at all. 
– Nicolaas G. de Bruijn (E-mail to A. Soifer, January 5, 2004.) 

Is it possible to find a needle in a haystack? Yes, it is, with good fortune and great 
perseverance. We discussed the birth of this monochromatic AP theorem earlier in the 
book, so by now, it should be “old news” to you. In fact, it has taken 20 years and a 
Russian aid for this theorem to become classic. As you recall, its 1927 publication [Wae1] 
in a small-circulation Dutch journal hardly helped its popularity. Only two Japanese mathe-
maticians [KM] and Issai Schur with his two students Alfred Brauer and Richard Rado 
realized its importance and improved upon Van der Waerden’s result almost immediately; 
and later, in 1936, Paul Erdős and Paul Turán commenced density considerations related to 
Van der Waerden’s result [ET]. 

In 1928, a Russian visitor to Göttingen and a fine analyst Alexander Yakovlevich 
Khinchin1 (1894–1959) heard about Van der Waerden’s proof and became very impressed 
by it. All right, so one Russian liked it. You may be wondering, what is a big deal? A very 
long time had passed, 19 years and a horrific war to be exact, but Khinchin remembered his 
Göttingen excitement and after World War II, in 1947, included Van der Waerden’s proof in 
his little book Three Pearls of Number Theory as one of the pearls [Khi1]. The booklet was an 
instant success, and the second edition came out in Russian in 1948 [Khi2]. It included a new 
“much simpler and transparent” proof, in the opinion of Khinchin, found by the Russian 
mathematician M. A. Lukomskaya. Do you know who Lukomskaya was? No? You are not

1 My wonderful high school mathematics teacher Tatiana Nikolaevna Fideli was an 
M.S. Khinchin’s student at Moscow State University. It is a small world! 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_43&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_43#DOI


alone: I knew nothing about her and did not expect to ever find out when Google informed me 
that the biography of Van der Waerden in The Mathematical Coloring Book [Soi44] inspired 
a discussion on the Russian Scientific Forum http://dxdy.ru/topic19166.html. On January 
14, 2009, someone named “Geomath” wrote (in Russian):
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In this translated into Russian [Soi39] biography of Van der Waerden, which is a part of 
the [English language] book [Soi44], its author, a mathematician-Jew, our former 
compatriot, researches in a most meticulous way and gives a moral assessment of the 
fact that Van der Waerden, while remaining a Dutch citizen, taught mathematics in Nazi 
Leipzig, even during the five years when Germany occupied the Netherlands. 

The following day, Geomath continued: 

The “new and much simpler and transparent proof” of Van der Waerden’s theorem was 
found by M. A. Lukomskaya and published in UMN in 1948 [Luk]. Who is 
Lukomskaya? What has happened with her? If she was young, then, with time, she 
had a good chance to develop into a famous mathematician . . .  However, I was unable to 
find anything about her on the Internet. Perhaps, she changed her last name? 

By the way, the mentioned by me book The Mathematical Coloring Book: Mathe-
matics of Coloring and the Colorful Life of Its Creators by Alexander Soifer (together 
with a biography of Van der Waerden in it) can be downloaded free, I have already 
done so. 

I inquired from Geomath and the forum why he chose to characterize me as a “mathema-
tician-Jew,” but did not get an answer. A year later (!), on January 12, 2010, a surprising reply 
was posted by someone nicknamed Elena31. It was her first and only appearance in the 
Forum: 

Lukomskaya Mira Abramovna (my mother) was born on May 1, 1900, and passed away 
on October 30, 1976. She graduated from Leningrad [State] University, phys-math 
[faculty], and for many years worked as a docent (equivalent to an associate professor) 
at the Belarus State University. Her works were primarily on differential equations. I 
remember well how she solved the problem you mentioned. 
Sincerely, E. N. Lambina 

Sherlock Holmes was reawakened in me. The same day, I sent a private e-mail to Elena: 

Dear Lena, 
Tell me please in detail about your mother and even in greater detail about when and 

how she worked on a solution of the problem. 
Among other things, I am a biographer of Van der Waerden and the author of “The 

Mathematical Coloring Book,” mentioned in the discussion. 
All the best, 
Alexander 

Two days later, on January 14, 2010, I learned from Elena about her mother, the author of 
the second proof of the Baudet–Schur–Van der Waerden Theorem (I am translating for you 
from her Russian original): 

Dear Alexander!

http://dxdy.ru/topic19166.html
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), 

Thank you for your interest. I will try to answer your questions. My parents, Mira 
Abramovna Lukomskaya and Nikolay Venediktovich Lambin were both mathemati-
cians. Mama was born in Bykhov of the Mogilev region [What a coincidence: Issai 
Schur was born in Mogilev!], in 1917 graduated from Mogilev Gymnasium for Women, 
and during 1920–1925 studied at the Petrograd University, renamed into Leningrad 
[State] University. There she met my papa, a native of Petersburg. Upon graduation 
from the university, they both worked at Pulkovo Observatory and in the Meteorological 
Institute. In 1930 they both moved to Minsk, where they worked at Belarus State 
University at phys-math [faculty] (renamed into math-fac, and then mech-math). During 
the war they worked in Kazan, at the Defense Institute of the USSR Academy of 
Sciences. (First war winter, mama and I lived in the village Kulaevo, 35 km from 
Kazan; Mama taught there almost all disciplines – from Minsk we were able to walk 
away on our own feet [Minsk was severely bombed on day one of the German invasion 
of Russia, June 22, 1941, and occupied four days later]. In the fall 1944, we returned to 
Minsk together with the university, where mama worked as a docent through 
mid-1960s, and papa until the early 1970s. 

Now about the theorem. When mama was solving it, my brother and I were 16 years 
old each (the end of 1947) and therefore I can share with you only the following. In the 
first edition of Khinchin’s book, mama read a proof of this theorem and right away said 
that one can prove it simpler . . .  (Mama was interested in number theory, and in her 
youth even spent a week trying to prove Fermat’s Last Theorem but her publica-
tions, except the one of your interest, belong to differential equations . . .  Mama used to 
say that the essence of the theorem is this: “Any chaos contains its own order.”2 She 
jokingly applied it to some chaos in our apartment (although, our apartment consisted 
then of only one room in the former kindergarten, where the returning to Minsk 
university employees were housed). Having proved the theorem fairly quickly (in ten 
days or so, as I recall), mama wrote to Khinchin at his MGU [Moscow State University] 
address; and got a reply where Khinchin approved her solution and offered some 
improvements. He asked for a permission to publish it in the new edition of his book 
(which is what he did), and also offered to publish it in [the journal] UMN (Uspekhi 
Matematicheskih Nauk), which is what mama did . . .  

Respectfully, Elena Nikolaevna Lambina (I graduated from MGU in 1954, and 
several decades worked as a docent in the department of theoretical mechanics of 
Belarus Polytechnic Institute). 

I asked Elena for copies of her mother’s publication and her correspondence with 
Khinchin. On May 24, 2010, Elena kindly sent me the journal publication [Luk] of her 
mother’s proof of the Baudet–Schur–Van der Waerden Theorem, and copies of the letters her 
mother exchanged with Khinchin. Now I can convey the rest of the story. As you already 
know, in late 1947–early 1948, Mira Lukomskaya sent her proof to Moscow State University 
Professor Alexander Khinchin, who replied on February 9, 1948 (I am translating from 
Russian): 

2 What a wonderful description of Ramsey Theory! Clearly independent, it reminds the famous 
description attributed to Theodore Motzkin: “Complete disorder is impossible.”
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Much Honored Mira Abramovna, 
Your proof of Van der Waerden’s Theorem, which was forwarded to me, is incred-

ibly interesting. Based on the same idea as the original author’s proof, it uses a much 
simpler and more transparent construction, whereby the proof is reduced to at most half 
the length and is much more accessible. I only think that your resorting to infinite 
fractions is unnecessary and only complicates the matter, and even raises some doubts 
(which probably are easily resolvable). I think that it is much more convenient to realize 
your construction directly on a finite segment and, so to speak, in reverse order (i.e., 
from large segments to small ones). I am mailing to you the corresponding presentation 
in its complete form on two pages. Of course, you will see right away that in spite of a 
different setup, it is not a new but exactly your construction. I am interested in knowing 
your opinion about my editing. 

Are you going to publish your proof? At the moment, I have a favor to ask you. My 
“Three Pearls” will soon be published in the second edition, and I ask for your 
permission to allow me to include your proof in the first chapter, your proof instead 
of the old one (of course, with a clear indication of your authorship). 
With sincere respect, 
Khinchin 

On June 30, 1948, Mira Abramovna replied to Khinchin: 

Much respected Alexander Yakovlevich, 
In accordance with your advice, I am sending you my work on the Theorem of Van 

der Waerden. I chose your method of presentation, as it is preferred over mine in its 
conciseness and clarity. If this work can be published in “Uspekhi [Matematicheskih 
Nauk”] [“Successes in the Mathematical Sciences”] or another journal, would you be so 
kind to forward it for publication. For this case, I am sending you two copies . . .  

I am reading this short 3 ¼-page article [Luk]. It actually contains a generalization of Van 
der Waerden’s result, which I would call The One-Dimensional Gallai Theorem, obtained in 
1947 and published in 1948 independently from Tibor Gallai! Let me translate the theorem 
and give it a well-deserved title: 

The Lukomskaya Theorem 43.1 [Luk]. Given an infinite sequence of positive integers t1, 
t2, . . ., tq, . . .  Then for any pair of positive integers k, l there is a positive integer n(k, l) such 
that if any array of consecutive positive integers of length n(k, l) is partitioned into k classes, 
there are in at least one class l numbers c1, c2, . . ., cl, satisfying the condition 

c2 - c1ð Þ  : c3 - c2ð Þ  : . . . :  cl- cl- 1ð Þ= t1 : t2 : . . . :  tl- 1: 

As you can readily see, Van der Waerden’s result is but a particular case of Lukomskaya’s 
Theorem for t1 = t2 = . . .  = tl = 1. 

Khinchin should have included Lukomskaya’s Theorem in the new edition of his book, 
regretfully he did not. In the second 1948 edition [Khi2] of his Three Pearls of Number 
Theory, Khinchin chooses to include Lukomskaya’s proof just for this particular Van der 
Waerden’s case. 

The success of this little booklet is hard to overestimate. In 1951, this second Russian 
edition of the book was translated into German [Khi3] and in 1952 into English [Khi4]. The



English edition becomes so popular that in 1956, the publisher issued the second printing. 
These translations prove instrumental in creating excitement about Ramseyan ideas all over 
the world. They even encourage the emergence of two more independent proofs of the Gallai 
Theorem, i.e., generalizations of Van der Waerden’s result. The 1951 German translation 
inspires Ernst Witt, a former Emmy Noether student, to discover his proof ([Wit], submitted 
on September 21, 1951, and published in 1952). The 1952 English translation stimulates 
Adriano Garsia in finding his proof [Gar] in 1958. Khinchin writes [Khi2]: 
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It is not out of the question that Van der Waerden’s theorem allows an even simpler 
proof, and all efforts in this direction can only be applauded. 

Witt [Wit] quotes this Khinchin’s call to arms in his paper and happily reports: 

This was the occasion to strive for a new order of proof that then led directly to a more 
general grasp of the problem. 

The great success of this booklet not only makes the Baudet–Schur–Van der Waerden 
Theorem famous – it heralds to the mathematical world the arrival of the new Ramseyan 
ideas. 

Van der Waerden published his proof in an obscure little read Dutch journal. Now 
Khinchin’s book and its popularity prompt Van der Waerden to reassess the value of his 
old theorem. He reconstructs the whole process of finding the proof in “How the proof of a 
Baudet’s conjecture was found” by him with Emil Artin and Otto Schreier. Van der Waerden 
also speaks about the process of discovery at his inaugural lecture at Zurich University. He 
then publishes this fascinating story several times in two languages ([Wae13], [Wae14], 
[Wae16], and [Wae18]). I too love this story, and, with Professor Van der Waerden’s and 
Academic Press London’s permissions, included the complete story in this book (Chapter 35). 

On November 10, 1953, Van der Waerden sends the proofs of the series of three articles 
tracing the processes of mathematical discoveries to a witness and coauthor of one discovery 
Emil Artin at Princeton University, accompanied by the following letter: 

Dear Herr Artin, 
My three articles “Einfall und Ueberlegung in der Mathematik” [“Sudden Insight and 

Reflection”] will be published in the Swiss journal “Elemente der Mathematik.” The first 
one was my inaugural speech [at Zurich University]; I am sending you its proof. The 
second and third articles give two more examples, for which I give short descriptions, in 
particular, the second one is measuring a ball by Archimedes; the third is the Baudet 
Conjecture, for which the three of us found a solution. From the proof that I published in 
Nieuw Archief, no one can see how I came to it, and what role you and Schreier had in 
finding the solution. For the psychology of mathematical thought this case is particularly 
promising because all of our thoughts were immediately communicated to both of the 
others and thereby were held better in memory, as usual. 

I hope you will read it and tell me if everything is exactly in agreement with your 
memory. 

Heartfelt regards and to your wife as well, 
Your 
B.L. van der Waerden 

Artin replies with an undated handwritten letter on the Princeton University stationary:
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Dear Herr van der Waerden, 
You have a better memory than I. I could have never reconstructed our conversation. 

Now that I have read your analysis, I remember it again. I have the impression that it is 
by and large correct. But you certainly know it best. 

With many greetings, 
Your 
Artin 

At this point in time, Van der Waerden realizes that in his young years he proved a 
beautiful theorem that has now become a classic, a “pearl of number theory.” By now, he has 
also become a historian of mathematics. So, of all people, he is in the best position to research 
and present the history of mathematics of coloring, now known as Ramsey Theory. He has not 
done that. In fact, as he writes to me, he did not even know about Issai Schur’s 1916 theorem, 
the first influential coloring result in history. And so, the job of researching and preserving the 
history of mathematics of coloring fell on me and materialized in the first 2009 edition of 
this book. 

On May 27, 2009, during the international workshop “Ramsey Theory Yesterday, Today, 
and Tomorrow” that I organized on the request of Director Fred Roberts and DIMACS’ 
Executive Committee, I got an additional confirmation of the influence of Khinchin’s book. 
Leaders of Ramsey Theory Ronald L. Graham and Joel H. Spencer told me that this 
Khinchin’s book introduced them both, for the first time, to the name of Van der Waerden, 
his theorem, and Ramseyan ideas!



Part VIII 
Colored Polygons: Euclidean Ramsey Theory 

There is a running discussion between Dieudonné 
and Branko Grünbaum. Dieudonné sort of says that 
geometry is dead and of course Branko Grünbaum 
disagrees with him. I think I am on the side of 
Branko Grünbaum and I hope that I will convince 
you that at least combinatorial geometry is not 
dead. 

– Paul Erdős1 

1 [E83.03].
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Chapter 44 
Monochromatic Polygons in a 2-Colored Pl ne 

We have already met briefly a 2-colored plane in Problem 2.1, which can be restated as 
follows: 

Problem 44.1. For any positive d, any 2-colored plane contains a monochromatic segment of 
length d. 

The next exercise is a homework. :) 

Problem 44.2 For any positive d, any 2-colored plane contains a nonmonochromatic 
segment of length d if each of the two colors is present in the plane. 

Let me remind you that in our discussions, a triangle stands simply for a 3-element set. 
When these three points are on a line, we will call the triangle degenerate. Accordingly, a set 
of n points in the plane will be called an n-gon. An  n-gon with all n vertices in points of the 
same color is called monochromatic. 

You may wonder why after discussing a multicolored plane should we now talk about a 
mere 2-colored plane? Would it not be more logical to put this chapter first in this book? Yes, 
it would. But this logical approach creates, as Cecil Rousseau put it ([Soi1], introduction), 
“books written in a relentless Theorem-Proof style.” This logical approach ignores a higher 
logic of mathematical discovery. 

For me, personally, a fascination with the chromatic number of the plane problem came 
first. Then I looked at a 2-colored plane. Why? If we can prove the existence of certain 
monochromatic configurations in any 2-colored plane, we will have tools to study a 3-colored 
plane. And some configurations present in any 3-colored plane may provide tools to attack a 
4-colored plane. And it is a 4-colored plane where we ‘only’ need to find out whether a 
monochromatic segment of length 1 is necessarily present.1 Then a 5-colored plane will 
hopefully appear in our field of vision. 

With this rationale in mind, in 1989–1990 I proved some results, formulated conjectures, 
and thus rediscovered Euclidean Ramsey Theory. I published a problem essay [Soi2] about it

1 Of course, others may have had different reasons for looking at 2-colored planes. Erdős at al. in 
their trilogy [EGMRSS] were pursuing expansion of Ramsey Theory to Euclidean Ramsey 
Theory. 
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in the first issue of volume I of the newly founded research quarterly Geombinatorics, when 
on July 5, 1991, Ron Graham sent me a copy of the series of 3 papers by 6 authors, which 
broke the news to me: I was 15–17 years too late: Paul Erdős et al. were first to discover what 
they named Euclidean Ramsey Theory! Fortunately, some of my results remained new, and 
you will see them in this chapter (Problems 44.7, 44.14, 44.19), which is chiefly dedicated to 
Erdős et al. series of papers [EGMRSS]. Paul Erdős referred to the authors as “us”, or  “the 
six.” The distinguished 6 authors deserve to be all listed here. They are Paul Erdős, Ronald 
L. Graham, P. Montgomery, Bruce L. Rothschild, Joel H. Spencer, and Ernst G. Strauss.
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When three of these six coauthors wrote Ramsey Theory monograph (1st edition [GRS1] in 
1980; 2nd edition [GRS2] in 1990), they did not include much of the trilogy [EGMRSS] 
results in their book. Perhaps, they viewed these results to be too ‘elementary’ for their dense 
monograph. On the other hand, they realized how difficult these ‘elementary’ problems can 
be, for Paul Erdős and Ron Graham included open problems of Euclidean Ramsey Theory in 
many of their (open) problem talks and papers. It seems that most of these results of “the six” 
and other results of Euclidean Ramsey have appeared in a book form for the first time in the 
first edition [Soi44] of this book. 

Problem 44.3. (Erdős et al. [EGMRSS]). Two-color the plane to forbid a monochromatic 
equilateral triangle of side d. 

Solution Divide the plane into parallel stripes, each 3
p 
2 d wide ( 

3
p 
2 d is the altitude of the 

equilateral triangle of side d), then color them alternatively black and white (Fig. 44.1). 
Include in each stripe region its left boundary line, and do not include its right boundary line, 
and we are done. ■ 

Fig. 44.1 Striped 2-coloring of the plane 

Problem 44.4 (Erdős et al. [EGMRSS]). Find a 2-coloring of the plane, different from the 
one in the solution of Problem 44.3, that does not contain a monochromatic equilateral 
triangle of side d.
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Solution Start with the coloring described in the solution of Problem 44.3 (Fig. 44.1). Draw a 
line making, say, a 60° angle with the boundary lines of the stripes (Fig. 44.2), and change the 
colors of the points of their intersections. It is easy to verify that, as before, the plane does not 
contain a monochromatic equilateral triangle of side 1. ■ 

Fig. 44.2 Alternative striped 2-coloring of the plane 

If you solved Problem 44.4 on your own, you have probably noticed that your and my 
solutions did not differ much from each other and from the solution for Problem 44.3. In fact, 
Paul Erdős et al. thought that the solutions cannot differ much. 

Conjecture 44.5 ([EGMRSS], Conjecture 1 of Part III). The only 2-colorings of the plane for 
which there are no monochromatic equilateral triangles of side 1 are the colorings in alternate 

strips of width 3
p 
2 , as in the solution of Problem 44.3, except for some freedom in coloring the 

boundaries between the strips. 

Decades had passed; Ronald L. Graham and Paul Erdős repeated problems and conjectures 
of the Euclidean Ramsey Theory, including 44.5, in their talks and papers (see, for example 
[E8303]), but no proof was found to these easy-looking, hard-to-settle triangular conjectures. 
However, in March 2006 a group of four young Czech mathematicians from Charles 
University located on Malostranské plaza (in 1996 I spent two months at this historic place 
as a guest of Jaroslav Nešetřil) Vít Jelínek, Jan Kyncl, Rudolf Stolar, and Tomás Valla 
[JKSV] disproved this 33-year-old conjecture! 

Counterexample 44.6 ([JKSV, theorem 3.19]) Every zebra-like 2-coloring of the plane has 
a twin 2-coloring that forbids monochromatic unit equilateral triangles. 

For definitions of “zebra-like” 2-coloring of the plane and of “twin” coloring, I refer you to 
the original work, which after over 3.5 years from the March-2006 submission was finally 
published in Combinatorica in November-2009. Fortunately, the authors made their paper 
available in arXiv in January-2007. Here I would like to show an example of a zebra-coloring, 
kindly provided to me by one of the authors, Jan Kyncl (Fig. 44.3).
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z
→ 

x
→ 

Fig. 44.3 Zebra 2-coloring of the plane 

I congratulate the authors with introducing into the field a totally new rich class of 
2-colorings of the plane, and with solving, in the negative, the old-standing conjecture by 
Erdős et al. 

Any equilateral triangle can be excluded from appearing monochromatically by choosing 
an appropriate 2-coloring of the plane. Some triangles, however, exist monochromatically in 
any 2-colored plane. The first such example was found by Paul Erdős et al. [EGMRSS]. 

Problem 44.7. ([EGMRSS]). Any 2-colored plane contains a monochromatic triangle with a 
small side 1 and angles in the ratio 1:2:3. 

My Solution [Soi9]. Pick a monochromatic segment AB of length 2 (Problem 44.1 
guarantees its existence) and construct a regular hexagon H on AB as on the diameter 
(Fig. 44.4). If at least one more vertex of H is of the same color as A and B, we are done. If 
not, we are done too! ■ 

Fig. 44.4 2-coloring of the vertices of a regular hexagon
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I offered Problems 44.7 and 44.8 to middle and high school students during the Colorado 
Mathematical Olympiad in 1990. The first was solved by several young Olympians. Nobody 
solved the second one: 

Problem 44.8. ([Soi2]). Any 2-colored plane contains a monochromatic triangle with small 
side 1 and angles in the ratio 1:2:4. 

Solution [Soi9] Assume that such a triangle does not exist in a 2-colored red and blue plane. 
Toss a regular 7-gon of unit side in the plane (Fig. 44.5). Since 7 is odd, two of its consecutive 
vertices will be of the same color. Say, A and B are blue. Then D and F must be red. Therefore, 
C and G are blue. We got a blue triangle CAG in contradiction to our assumption. ■ 

Fig. 44.5 2-coloring of the vertices of a regular heptagon 

Problem 44.9 ([Soi2]). For any positive integer n, any 2-colored plane contains a mono-
chromatic triangle with a small side 1 and angles in the ratio: 

(a) n : (n + 1) : (2n + 1); 
(b) 1 : 2n :  (2n + 1). 

Proof Assume that a 2-colored plane P (red and blue) does not contain a monochromatic 
triangle with small side 1 and angles in the ratio 1 : 2n :  (2n+1). Let the length of the main 
diagonals of a regular (4n+2)-gon of side 1 be d. Due to Problem 44.1, we can find in the 
plane P a monochromatic (say, red) segment S of length d. We construct on S as on a 
diameter, a regular (4n+2)-gon K. We then number the vertices of K starting with an endpoint 
of red diameter S (Fig. 44.6).
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Fig. 44.6 The rotational argument 

Now we start a rotational argument. The points 1 and 2n + 2 are red, therefore the points 
2 and 2n + 3 are blue. Thus, the points 3 and 2n + 4 are red, etc. Finally, the points 2n + 2 and 
1 are blue, which is a contradiction. 

The existence of a monochromatic triangle with angles in the ratio n : (n+1) : (2n+1) can be 
proved by a similar rotational argument. (Instead of adding 1 to the endpoint numbers of the 
diameter, we just add n + 1.) ■ 

Leslie Shader from the University of Wyoming proved the following result. 

Problem 44.10 (L. Shader, [Sha]). For any right triangle T, any 2-colored plane contains a 
monochromatic triangle congruent to T. 

As you can see, we have lots of examples of triangles that exist monochromatically in any 
2-colored plane, and one example of a triangle (equilateral) that may not. Having realized this, 
I posed the following $25 problem to my university and high school students in 1989 
(published in [Soi2]). 

Open $25 Problem 44.11 [Soi2]) Find all triangles T such that any 2-colored plane contains 
a monochromatic triangle congruent to T. 

Paul Erdős et al. tried to solve this very problem earlier. Moreover, they posed the 
following conjecture in 1973. 

Conjecture 44.12 ([EGMRSS], Conjecture 3 of Part III). For any non-equilateral triangle T, 
any 2-colored plane contains a monochromatic triangle congruent to T. 

This problem appears surprisingly difficult, and in 1979 Paul Erdős offered a prize for its 
first solution [E79.04]: 

Many special cases have been proved by us (i.e., the authors of [EGMRSS]) and others 
but the general case is still open, and I offer 100 dollars for the proof or disproof. 

In 1985 Erdős increased the payoff [E85.01]: 

Is it true that every non-equilateral triangle is 2-Ramsey in the plane (i.e., Conjecture 
44.12)? I offer $250 for a proof or disproof. 

Let me formally attach Erdős’ price tag to the above conjecture: 

Paul Erdős’ $250 Conjecture 44.13 Is it true that any 2-colored plane contains any 
non-equilateral triangle monochromatically?
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Paul Erdős et al. also conjectured that any 2-coloring of the plane may not contain 
monochromatically at most an equilateral triangle of one size. 

Conjecture 44.14 ([EGMRSS]). If a 2-colored plane P does not contain a monochromatic 
equilateral triangle of side d, then P contains a monochromatic equilateral triangle of side d′ 
for any d′ ≠ d. 

In 2003 Ron Graham [Gra5] offered $100 for the proof: 

Ronald L. Graham’s $100 Conjecture 44.15 Every 2-coloring of the plane contains a 
monochromatic copy of every triangle, except possibly for a single equilateral triangle. 

My intuition regarding the above conjectures agrees with the authors of [EGMRSS], 
except I am not sure about degenerate triangles. 

Open Problem 44.16 Is it true that any 2-colored plane contains a degenerate isosceles 
triangle of small side 1 (Fig. 44.7)? 

Fig. 44.7 A degenerate isosceles triangle 

In order to solve the above open problems, you need tools. Here are two for you. 
Let T be a triangle. Then Tm will stand for the triangle whose sides are twice as long as the 

corresponding medians of T (the medians of any triangle are themselves the sides of a 
triangle – prove this nice elementary fact on your own). 

Tool 44.17 ([Soi2]). For any triangle T, any 2-colored plane contains a monochromatic 
triangle congruent to T or to Tm. 

Proof Let the side lengths of T be a, b, and c, and P be a plane colored red and blue. If both 
colors are not present in P, we are done. Otherwise, by Problem 44.2, P contains a segment 
AE of length 2a with blue A and red E. The midpoint C of AE has the same color as A or E, let 
it be blue as A. 

We pick B and D such that ABCD is a parallelogram with side lengths b and c (Fig. 44.8). If 
at least one of the points B, D is blue, we get an all-blue triangle ABC or ADC. Otherwise, 
BED is an all-red triangle with side lengths twice as long as the corresponding medians of 
T (prove this nice geometric fact on your own). ■ 

Fig. 44.8 The existence of a monochromatic triangle congruent to T or to Tm
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Prove the following corollary of Tool 44.17. 

Problem 44.18 Any 2-colored plane contains a monochromatic equilateral triangle of side 
1 or  3

p 
. 

Out of the many nice tools contained in [EGMRSS], I would like to share here with you my 
favorite. Erdős et al. prove it in a true Olympiad style, and so I am not changing a thing in 
it. However, I am adding an additional diagram showing that the statement is true for the case 
when the triangle K is degenerate as well. 

Tool 44.19 ([EGMRSS] Theorem 1 of Part III). Let K be a triangle with sides a, b, and c, and 
let Ka, Kb, and Kc be equilateral triangles with sides a, b, and c respectively. Then a 2-colored 
plane contains a monochromatic triangle congruent to K if and only if it contains a mono-
chromatic triangle congruent to at least one of the triangles Ka, Kb, Kc. 

Proof Consider the configuration in Fig. 44.9. The six triangles HBC, ABD, CDE, EFH, 
DFG, AHG all have sides a, b, and c. The triangles ABH, DFE, BCD, FGH, HEC, ADG are 
equilateral with sides a, a, b, b, c, c, respectively. We see that if one of the second six triangles 
is monochromatic, one of the first six must be monochromatic as well. The converse is true by 
a symmetric argument. 

Fig. 44.9 Monochromatic triangles, non-degenerate case
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If the triangle K is degenerate (this is one case the authors of [EGMRSS] did not explicitly 
address), look at the configuration in Fig. 44.10 that I added for you. No changes in the text of 
the proof are necessary while using Fig. 44.10 to prove a degenerate case. ■ 

Fig. 44.10 Monochromatic triangles, degenerate case 

The following problem is a good test of your skills: try it on your own before reading a 
solution. 

Problem 44.20 (László Lovász, [Lov2]). Prove that any 2-colored plane contains a mono-
chromatic triangle with side lengths 2

p 
, 6
p 

, and π. 

Proof Given a 2-colored plane P. Due to Tool 44.18, P contains a monochromatic equilateral 
triangle of side 2

p 
or 6

p 
(just use as T an equilateral triangle of side 2

p 
; the sides of Tm will 

be equal to 6
p 

). In either case, due to Tool 44.19, the plane P contains a monochromatic 
triangle with sides 2

p 
, 6
p 

, π. ■ 

You may think that we are only concerned with triangles. We aren’t. The following 
problem is a new form (and new solution) of a problem that the famous American problem 
solver and a long-term coach of the American team for the International Mathematics 
Olympiad, Cecil Rousseau, once created for the 1976 USA Mathematics Olympiad 
(USAMO). 

Problem 44.21 (Cecil Rousseau; USAMO, 1976). Any 2-colored plane contains a m × 
n monochromatic rectangle such that m = 1 or 2, and n is a positive integer not greater 
than 6. 

Proof Toss on a 2-colored plane (red and blue) a 2 × 6 square lattice (Fig. 44.11).
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Fig. 44.11 The Rousseau argument 1 

By the Pigeonhole Principle, out of 7 vertices (i.e., intersections of the lattice lines) in the 
top row AB, at least four must be of the same color, say, blue. We keep the corresponding 
4 columns and throw away the rest (Fig. 44.12). 

Fig. 44.12 The Rousseau argument 2 

If the second or third row in Fig. 44.12 contains more than one blue vertex, we get a 
monochromatic blue rectangle, and the problem is solved. 

If the second and third rows contain at most one blue vertex each, then we throw away the 
columns corresponding to these blue vertices. We are left with a monochromatic red rectangle 
located in the second and third rows. ■ 

I was able to strengthen this result in 1990 and offered it at the 1991 Colorado Mathemat-
ical Olympiad (CMO). Try to solve it on your own first. 

Problem 44.22 (CMO 1990, [Soi9]). Prove the statement of Problem 44.21 with n not 
exceeding 5. 

Proof Given a 2-colored plane. If one color is not present at all we are done. Otherwise, due 
to Problem 44.2, there are two points A and B of opposite colors distance 6 apart. Construct on 
AB a 2  × 6 square lattice like in Fig. 44.11 and repeat word by word the solution of 
Problem 44.21. ■ 

This train of thought naturally runs into the following open problems. 

Open Problem 44.23 [Soi9]. Is the statement of Problem 44.21 true with n not exceeding 4? 

Open Problem 44.24 Find the lowest upper bound for n, such that the statement of Problem 
44.21 is true. 

It is easy to prove the statement of open Problem 44.23 conditionally. 

Problem 44.25. If a 2-colored plane P contains a monochromatic degenerate isosceles 
triangle of side 1 (Fig. 44.6), then P contains a m × n monochromatic rectangle such that 
m = 1 or 2, and n is a positive integer not exceeding 4.
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Proof Let a 2-colored plane P (red and blue) contains a monochromatic, say blue, degenerate 
isosceles triangle T of side 1. We construct on T a 2  × 4 square lattice with T comprising the 
first column from the left (Fig. 44.13). 

Fig. 44.13 A conditional reduction 

If any of the other four columns contain at least two blue vertices, we get an all-blue 
rectangle. Otherwise, each of these four columns has at least two red vertices. But there are 
only 3 

2 = 3 distinct ways to have two red vertices in a column. Therefore, at least two of the 
four columns have two red vertices in the same rows, i.e., we obtain an all-red rectangle. 

The image of a Figure F under translation is naturally called a translate of F. Erdős et al. 
found a cute use of the Mosers Spindle. 

Problem 44.26. ([EGMRSS] Theorem 3 of Part II). Given a 2-colored plane P (red and blue) 
and a triangle T in it. Then P contains a pair of red points distance d apart for every d, or a blue 
monochromatic translate of T. ■ 

Proof Let A, B, C be the vertices of T. Assume that for a positive d there is no pair 
of red points d apart. We drop the Mosers Spindle S (Fig. 2.2) of side d on the plane and 

denote by S1 = t1(S) and S2 = t2(S) the images of S under translations through AB
! 

and 

AC , respectively. 

Due to observation after Problem 2.2, any three vertices of the Mosers Spindle S contain a 
pair distance d apart. Therefore, each seven-point set S, S1, and S2 contains at most two red 
points. 2 + 2 + 2  aint equal to 7. :) Thus, there is a vertex, say A, of  S such that all three vertices 
A, t1(A) and t2(S) are blue. They form a translate of T. ■ 

Problem 44.27 ([EGMRSS], Theorem 1’ of Part II). Any 2-colored plane (red and blue) 
contains a red pair distance 1 apart, or 4 blue points on a line spaced by distance 1. 

Proof Assume a 2-colored plane P does not have either a red pair of points distance 1 apart 
nor a four blue points on a line distance 1 apart. P must have a red point p. The circle C1 of 
radius 1 and center at p must be entirely blue. 

Add a concentric circle C2 of radius 3 and an equilateral triangle a, b, c inscribed in C2 

(Fig. 44.14). Denote by d and e the points of intersection of C2 and ab. 
It is easy to confirm (please do) that ad = de = eb = 1. 
Since both d and e are blue (they are on C1), not both a and b are blue. This is similarly true 

for a and c and for b and c. Therefore, at most one of a, b, c is blue. Suppose a and b are red. 
Now we rotate ab about p to its new position fg, such that jafj = 1. Then jbgj = 1. 

Therefore, f and g are both blue. So are h and i (they are on C1). Thus, we get a blue quartet f, 
h, i, g distance 1 apart, in contradiction to our initial assumption. ■
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Fig. 44.14 A conditional result 

Having proved 44.27, Erdős et al. [EGMRSS, part II, p. 535] formulate but could not 
decide the following question: 

Is it true that any 2-colored plane (red and blue) contains a red unit length segment or a 
blue unit square? 

On March 25, 1977, the Hungarian mathematician Rozália Juhász submitted (and in 1979 
published) an impressive paper [Juh], where in one stroke she proved a powerful generaliza-
tion of Problem 44.27, and more than answered the above question by Erdős et al. in the 
positive: 

Problem 44.28 ([Juh], Theorem 1). For any 4-gon Q, any 2-colored plane (red and blue) 
contains a pair of red points distance 1 apart, or a monochromatic blue 4-gon congruent to Q. 

In the same paper, Juhász showed that the result of Problem 44.28 is not true for an n-gon 
where n ≥ 12. 

Counterexample 44.29 ([Juh], Theorem 2). There is a 12-gon K and a 2-colored plane P (red 
and blue) such that P does not have either a monochromatic unit-distant red segment or a blue 
monochromatic 12-gon congruent to K. 

Construction First let us describe the 2-coloring of the plane that does the job. We start with 
a regular triangular lattice with distance 2 between nearest vertices (Fig. 44.15).
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Fig. 44.15 The triangular lattice 

We make every vertex of the lattice to be the center of a red circular disk of radius ½. With 
every disk we also color red half of its boundary under its horizontal diameter and the left 
vertex of that diameter. The rest of the plane we color blue (Fig. 44.16). You can easily verify 
that our 2-colored plane P has no red monochromatic segment of length 1. You can also show 
(do) that any closed disk (i.e., disk including its boundary circle) of radius 2 

3
p þ 1 

2 (a large 

circular disk shown in Fig. 44.16) in  P must contain at least one of the red disks together with 
its boundary. 

Fig. 44.16 The Juhász construction 1 

Let us now define our 12-gon K. We draw a regular triangular lattice just like the one in 

Fig. 44.14, but with side 3
p 
2 , and a circle C of radius 

2 
3

p þ 1 
2 with its center in the center of one 

of the triangles (Fig. 44.17). Inside C we have exactly 12 vertices of the lattice, they form our 
12-gon K.
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Fig. 44.17 The Juhász construction 2 

All there is left to show is that the plane P does not contain a blue monochromatic 
congruent copy of K. 

Place a congruent copy K1 of K anywhere in the plane P, together with a surrounding circle 
C1 congruent to C. As we noticed above, C1 will contain completely at least one of the red 
disks C2. Disk C2 (with its red half-boundary) in turn will contain at least one of the vertices of 
K1. Thus, at least one of the vertices of K1 will be red! ■ 

About 15 years later, Rozália Juhász’ 12-point counterexample was improved by two other 
Hungarian mathematicians, György Csizmadia and Géza Tóth. On January 15, 1991, they 
submitted, and in 1994 published [CT] an 8-point counterexample, thus “almost” closing 
the gap. 

Counterexample 44.30 (Csizmadia and Tóth, [CT]). There is an 8-point set K in the plane 
(namely, a regular 7-gon and its center) and a 2-colored plane P (red and blue) such that 
P does not have either a monochromatic unit-distant red segment nor a blue monochromatic 
set congruent to K. 

Problems 44.28 and 44.30 deliver the state of the art in this direction. Can we guarantee a 
monochromatic blue pentagon of at least one given shape and size in a 2-colored plane 
without a red monochromatic segment of unit length? Nobody knows! (So far pentagons have 
been slow to enter Euclidean Ramsey Theory.) A 3-number gap remains: 

Open Problem 44.31 For which n in the interval 5 ≤ n ≤ 7 is the following statement true: 
For any n-gon K, any 2-colored plane (red and blue) contains a pair of red points distance 
1 apart, or a monochromatic blue n-gon congruent to K?
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Chapter 45 
3-Colored Plane, 2-Colored Space, and Ramsey S 

In 1991 [Soi3] I named an n-gon K in a n-colored plane representative if all n colors are 
represented among its vertices. (Paul Erdős and Ron Graham preferred the term rainbow.) 

Problem 45.1 [Soi3]. Any 3-colored plane contains a monochromatic or representative 
triangle T with small side 1 and angles in the ratio 1: 2: 4. 

Proof. Assume that a 3-colored plane P (red, white, and blue) does not contain a 
monochromatic congruent copy of T. Toss a regular heptagon H of side 1 on the plane P. 

H can have at most 3 vertices of the same color, because any 4 vertices of H contain a 
triangle congruent to T (prove it on your own). On the other hand, by the Pigeonhole 
Principle, H must contain at least 3 vertices of the same color. Hence, 3 it is: H contains, 
say, three red vertices. 

There are only three ways to have 3 red vertices on H without red monochromatic copy 
of T (Fig. 45.1). Numbers of white and blue vertices must be 3–1 or 2–2 respectively. It is now 
easy to verify (do) that every completion of three colorings in Fig. 45.1, subject to the above 
constraints, contains a representative copy of T. ■ 

We probably cannot expect a guaranteed monochromatic copy of any triangle in a 
3-colored plane. I would like to know which ones we can guarantee: 

Open Problem 45.2 Find all triangles T, such that any 3-colored plane in which all three 
colors are present, contains a monochromatic or representative triangle congruent to T. 

Ronald L. Graham believes that we can exclude any triangle by an appropriate 3-coloring. 
He formulated the following conjecture during our July 10, 1991, phone conversation 
(it appeared in 1991 in [Soi3]). Now [Gra7], [Gra8] Graham is offering $25 for it. 

Graham’s $25 Conjecture 45.3 (R. L. Graham). For any triangle T there exists a 3-colored 
plane that does not contain a monochromatic triangle congruent to T. 

And now, as promised in the title of this section, let us peek at 2-colorings of the space E3 . 
Unlike the case in the plane E2 , we do get a unit monochromatic equilateral triangle in any 2-
coloring of E3 . 
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Fig. 45.1 Three possible positions of 3 red vertices 

Problem 45.4 ([EGMRSS], Theorem 6 of Part I). Any 2-colored space E3 contains a unit 
monochromatic equilateral triangle. 

Proof. Let the space E3 be 2-colored, red and blue. We pick two points A and B of the same 
color, say red, distance 1 apart (we can pick such A and B in any plane of E3 ). If there is a third 
red point C at distance 1 from both A and B, we are done. Otherwise, we get a whole circle S1 
of blue points that lies in the plane perpendicular to AB through the midpoint O1 of AB 
(Fig. 45.2). 

Fig. 45.2 Blue circle 

The radius of this circle S1 is 
3

p 
2 . Now we pick a chord MN of S1 of length 1. If there is a 

third blue point K at distance 1 from both M and N, we are done. Assume such a blue point 
K is not present, then there is a whole circle S2 of red points in the plane perpendicular to the 
plane of S1 (Fig. 45.3). The radius of S2 is, of course, the same as the radius of S1 (because we 
really used the same construction for both circles). 

Fig. 45.3 Red circle S2
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We rotate the chord MN about O1, the red circle S2 will rotate about O1 accordingly and 
will create a degenerate torus T (a torus without a hole in the middle due to self-intersection). 
Thus, we get a whole red torus T. 

The largest horizontal circle (equator) S3 on the torus T has diameter d= 2
p þ 3

p 
2 (verify 

that). We can inscribe in S3 an equilateral triangle X of side 
3

p 
2 d= 6

p þ3 
4 > 1. Moving 

symmetrically the vertices of X along the surface of the torus T toward the middle of 
T (so that the plane determined by X remains horizontal), due to continuity, we will get an 
equilateral triangle X1 of side 1 on T. Since X1 is on T and the whole torus T is red, X1 is the 
desired monochromatic triangle. ■ 

Paul Erdős et al. used a clever method similar to their solution of Problem 45.4, to prove 
the following stronger result. Try to prove it on your own. 

Problem 45.5 ([EGMRSS]), Theorem 24 of part III). For any 2-colored space E3 , there is 
one color such that equilateral triangles of all sizes occur in that color. 

This result, of course, makes one wonder whether a similar success can be guaranteed in 
the plane. This, however, is an open question: 

Open Problem 45.6 [EGMRSS, part III, p. 579]. Is it true that for any 2-colored plane E2 

there is one color such that all triangles which occur monochromatically occur monochro-
matically in that color? 

Now we can prove for the space what is still an open problem for the plane. 

Problem 45.7 For any triangle T, any 2-colored space E3 contains a monochromatic triangle 
T1 congruent to T. 

Proof Let T be a triangle with sides a, b, and c and the 3-space be 2-colored. By Problem 
45.5, the space contains a monochromatic equilateral triangle Ka of side a. Since the plane 
P that contains Ka is 2-colored, due to Tool 44.19, we have in P a monochromatic triangle T1 
with sides a, b, and c, which is congruent to T. ■ 

For right triangles this result can be proved even for a 3-colored space, as Miklós Bóna and 
Géza Tóth showed in 1996 [BT]: 

Problem 45.8 (M. Bóna and G. Tóth). For any right triangle T, any 3-colored space E3 

contains a monochromatic triangle T1 congruent to T.
1 

In 2017, Andrii Arman and Sergei Tsaturian, both from Manitoba University, uploaded to 
arXiv the following result [AT]: 

Problem 45.9 (A. Arman and S. Tsaturian). Any 2-colored, red and blue, space E3 contains a 
red unit segment or six collinear blue points with unit distance between any two consecutive 
points. 

In conclusion I would like to present here, without proofs, two main results and the main 
open problem of the Erdős at al. trilogy [EGMRSS] and related results by P. Frankl and 
V. Rödl, and I. Kříž. 

1 Compare this result to Shader’s problem 44.10.
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Generalizing the line E1 , the plane E2 and the space E3 , we define the n-dimensional space 
Rn for any positive integer n as the set of all n-tuples (x1, x2, . . ., xn), where x1, x2, . . ., xn are 
real numbers. When the distance between two points (x1, x2, . . ., xn) and (y1, y2, . . ., yn) of  R

n 

is defined by the equality 

d= x1- y1ð Þ2 þ x2 - y2ð Þ2 þ . . .þ xn - ynð Þ2 �ð  

we get the Euclidean n-dimensional space En . In other words, En is the set Rn together with 
the distance d defined by (*). 

Many notions are generalized from E2 and E3 straight forward to En . The sphere of radius 
r and center O in En is the set of all points of distance r from O. A 4-point set P in the plane is 
called a d1 × d2 rectangle if it is congruent to the set {(0, 0), (d1, 0), (0, d2), (d1, d2)}. 
Similarly, a 2n –point set in En is called a d1 × d2 × ... × dn rectangular parallelepiped if it is 
congruent to the set 

x1, x2, . . . , xnð Þ j x1 = 0 or  d1; x2 = 0 or d2; . . . ; xn = 0 or  dnf : 

A finite subset C of En is called r-Ramsey for En if for any r-colorings of En there is a 
monochromatic subset C1 congruent to C. If for every r there is n such that C is r-Ramsey for 
En , then the set C is called Ramsey. 

We are now ready for two main results by Paul Erdős at al. 

Necessary Condition 45.10 ([EGMRSS], theorem 13 of part I). If a set C is Ramsey, then 
C must lie on an n-dimensional sphere for some integer n. 

Sufficient Condition 45.11 ([EGMRSS], corollary 22 of part I). Any subset of a rectangular 
parallelepiped is Ramsey. 

There is obviously a gap between the necessary and sufficient conditions for a finite set to 
be Ramsey. In fact, in 1986 Peter Frankl from France and Vojtěch Rödl from Czechoslovakia 
proved that the sufficient Condition 45.10 is not necessary by showing that even obtuse 
triangles (which cannot be embedded as subsets in a rectangular parallelepiped) are Ramsey: 

Problem 45.12 (P. Frankl and V. Rödl, [FR1]). All nondegenerate triangles are Ramsey. 

In their consequent paper, they generalized this result to n-dimensional Euclidean spaces. 

Problem 45.13 (P. Frankl and V. Rödl [FR3]). Any nondegenerate simplex (i.e., n+1 points 
generating the whole n-dimensional Euclidean space) is Ramsey. 

In 1991, Igor Kříž [Kri1], then from the University of Chicago (and later at the University 
of Michigan), published powerful results that imply the following: 

Problem 45.14 (I. Kříž). Any regular polygon is Ramsey. 

Thus, we finally got the first Ramsey pentagon: the regular one. Kříž‘s results also imply a 
similar statement in 3 dimensions:
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Problem 45.15 (I. Kříž). Any regular polyhedron is Ramsey. 

In 2007, this result was generalized by Kristal Cantwell [Can2] to all regular n-dimensional 
polytopes. 

Problem 45.16 (K. Cantwell). All regular polytopes are Ramsey. 

In his next, 1992 paper [Kri2], Igor improved Frankl–Rödl Result 45.11: 

Problem 45.17 (I. Kříž). Any trapezoid is Ramsey. 

As no criterion for a set to be Ramsey appeared, Paul Erdős attempted to speed up the 
process in 1985 [E85.01]: 

We (i.e., the authors of [EGMRSS]) do not know which (if any) of these alternatives 
characterize Ramsey sets, and I offer $500 for an answer to this question. 

Paul Erdős’ $500 Problem 45.18 Find a criterion for a set to be Ramsey. 

Ever since 1993, if not before [Gra3], [Gra7], [Gra8], Ron Graham expressed his $1000 
belief that the necessary Condition 45.9 is also sufficient: 

Ronald L. Graham’s $1000 Open Problem 45.19 Prove that all spherical sets are Ramsey. 

He also offered a consolation prize for a partial result [Gra7], [Gra8]: 

Ronald L. Graham’s $100 Open Problem 45.20 Prove that any 4-point subset of a circle is 
Ramsey.
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Chapter 46 
The Gallai Theorem 

46.1 Tibor Gallai and His Theorem 

The Gallai Theorem is one of my favorite results in all of mathematics. Surprisingly, it is not 
widely known even among mathematicians. Its creator was Tibor Gallai, born Tibor 
Grünwald, a member of the Hungarian Academy of Sciences, who passed away on January 
2, 1992, at the age of 79. His lifelong close friend and co-author Paul Erdős was staying me in 
Colorado Springs1 when Professor Vera T. Sós called from Budapest to give Paul the sad 
news of Gallai’s passing. Right then I asked Paul to write about Gallai for Geombinatorics. 
Here is Paul’s Obituary of My Friend and Coauthor Tibor Gallai [E92.14] in its entirety, 
including the sketch for the Sylvester–Gallai result that Paul drew on the margin of his 
manuscript. 

I met Tibor Gallai in 1929 when we were both in high school. We knew of each other’s 
existence since we both worked at the Kozépiskolai Matematikai Lapok, a journal for 
high school students which appeared every month and published problems and their 
solutions by students. This periodical had an immense influence on Hungarian mathe-
matics; many children before the age of 15 realized that they wanted to be mathema-
ticians, and many of the well-known mathematicians as young people worked in this 
journal. Gallai and I worked together on mathematics since 1930 and had many joint 
papers (for details, see my forthcoming obituary of Gallai in Combinatorica and also the 
article of Lovász and myself in Combinatorica, Vol. 2, 1982 written for Gallai’s 70th 
birthday). 

Here I just want to state some of the elementary results of Gallai which can be easily 
understood by beginners. In 1933 I conjectured that if x1, x2, . . ., xn are n points in the 
plane, not all on a line, then there is always a line which goes through precisely two of 
our points. I thought that I will prove this in a few minutes but, in fact, I could not prove 
it. I told my conjecture to Gallai who found a very nice proof of it which goes as follows: 

1 We were working on our join project, a book of Paul’s open problems: Problems of pgom Erdős, 
which I hope to finish in the not too distant future. 

© Alexander Soifer 2024 
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Project one of the points to infinity and join it to all the other points. If my conjecture 
would be wrong, we would get a set of parallel lines each of which contains at least 
2 finite points. Consider now the oblique lines, each of them contains at least three 
points. Take the line which has the smallest angle (Fig. 46.1). 

Fig. 46.1 Paul Erdős’s drawing 

On the line in the middle there must be another point besides x2, say y and the one of the 
lines x1y or yx3, clearly gives a smaller angle. This contradiction proves the conjecture. 
A few years later, L. M. Kelly found that my conjecture is not really mine. It was 
conjectured in 1893 by Sylvester, but as far as we know, Gallai was the first who proved 
it. The simplest proof is due to L. M. Kelly. By the way, I observed that Gallai’s theorem 
implies that n points not all on a line determine at least n distinct lines. There is a very 
nice related conjecture of Gabriel Dirac. Let x1, x2, . . ., xn be n points not all on a line. 
Join every two of them. Then at least one of the points has n 2 - c lines incident to 
it. Beck, Szemerédi, and Trotter proved that there is a point with at least c1n lines 
incident to it; their c1 is positive, but it is very small. 

Gallai was very modest – I would almost say abnormally so. Many of his beautiful 
results he published only with great delay. Often he did not publish them at all, and they 
were later discovered by others. He felt sorry for this only once. Dilworth in 1950 in the 
Annals of Mathematics proved the following classical theorem: Let ϑ be a partially 
ordered set. Assume that the maximal number of non-comparable elements is d, then ϑ 
is the union of d chains. In fact, Gallai and Milgram had a complete proof of this 
beautiful theorem in 1942. Milgram was a topologist who did not realize the importance 
of this result. Gallai wrote their joint paper in German. Milgram wanted to have it 
published in English and promised to rewrite it but delayed it until it was too late. I 
promised Gallai never to mention this in his lifetime since the theorem should clearly be 
known as Dilworth Theorem. 

Hilbert, in his beautiful obituary of Minkowski in Math Annalen 1909 wrote “I can 
only be grateful that I had a friend and co-worker for such a long time.” This is what I 
have to say about Gallai and “May his theorems live forever.”
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Paul Erdős added [E92.15]: 

A few years before his death he [Gallai] finally accepted the degree of Doctor of the 
Academy and two years ago, much against his will, he was even granted the member-
ship in the Academy. 

Tibor Gallai, 1935–1936. Courtesy of Alice Bogdán 

Indeed, Gallai discovered a number of fabulous results, some of which were named after 
other mathematicians: he preferred not to publish even his greatest results. Why? I learned the 
answer during Paul Erdős’ 80th Birthday Conference that took place in the beautiful town 
Keszthely, Hungary, on Lake Balaton. On July 20, 1993, my (then) wife Maya, our baby 
Isabelle (in a stroller) and I took a stroll in the center of Keszthely when we were unexpect-
edly invited to join a couple for dinner at an outdoor section of a restaurant. Imagine, the



couple that invited us was George Szekeres and Esther Klein, the legendary couple from the 
legendary circle of young Jewish mathematicians, who assembled in the early 1930s in 
Budapest! I was able to ask them about the friend of their youth. 
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“Gallai was so terribly modest,” explained George Szekeres. “He did not want to publish 
because it would show the world that he was clever, and he would be restless because of it.” 

“But he was very clever indeed,” added Esther Klein-Szekeres. Esther continued: “Once I 
came to him and found him in bed. He said that he could not decide which foot to put down 
first.” 

“Gallai was Paul Erdős’ best, closest friend,” continued George. “I was very close with 
Turán. It was later that Paul Erdős and I became friends.” At this moment, the waiter served 
the four of us complimentary vodka. Silently, everyone moved vodka toward me, and so I got 
to consume four shots “to health” of our unforgettable company. 

I always thought, as probably everyone, that hypergraphs were invented by the great 
French graph theorist Claude Berge. Amazingly, Gallai was first here too: at the age of 
18–19 (Gallai was born on July 15, 1912), he introduced hypergraphs. Paul Erdős mentioned 
it in passing in his 1991 talk at Visegrád (Hungary) Conference, published 3 years later 
[E94.22]: 

As far as I know, the subject of hypergraphs was first mentioned by T. Gallai in 
conversation with me in 1931; he remarked that hypergraphs should be studied as a 
generalization of graphs. The subject really came to life only with the work of Berge. 

Paul Erdős told me that Tibor Gallai discovered the theorem of our prime interest in the late 
1930’s. He did not publish it either. It first appeared in the paper [Rad2] by Richard Rado with 
a credit to “Dr. G. Grünwald,” which was Gallai’s name then; the initial “G” should have 
been “T” and must be Rado’s typo. Rado submitted this paper on September 16, 1939; it is 
listed in bibliographies as a 1943 publication, but in fact came out only 6 years later, in 1945 – 
World War II affected all facets of life and made no exception for the great Gallai result. I 
hope you will enjoy it as much as I have and try your wit and creativity in proving this 
beautiful and extremely general, classic result. If you are unfamiliar with n-dimensional 
Euclidean space, look up the definition in the previous chapter or assume n = 2: plenty of 
fun is to be found in the plane. 

The Gallai Theorem 46.1 ([Rad2]). Let m, n, k be arbitrary positive integers. If the lattice 
points Zn (i.e., the points with integer coordinates) of the Euclidean space En are colored in 
k colors, and A is a m-element subset of Zn , then there is a monochromatic subset A’ in Zn that 
is homothetic (i.e., similar and parallel) to A. 

In fact, with not too much effort the Gallai Theorem can be strengthened as follows: 

The Gallai Theorem, a Strong Version 46.2 ([GRS2]). Let m, n, k be arbitrary positive 
integers. If the Euclidean space En is colored in k colors and A is a m-element subset of En , 
then there is a monochromatic subset A’ in En that is homothetic to A. 

As we have already observed in this book, the Russian mathematician Mira A. Lukomskaja 
from Minsk proved in 1947 what I named the Lukomskaya Theorem 43.1. It was precisely a 
one-dimensional version of the Gallai Theorem and was also published in an article form in 
1948 [Luk] and in the 1948 Khinchin’s book [Khi2], much earlier than Witt’s 1952 
publication presenting a two-dimensional Gallai Theorem [Wit] and Garsia’s 1958

https://doi.org/10.1007/978-1-0716-3597-1_43#FPar1


manuscript, where the n-dimensional Gallai Theorem is proved. So, four mathematicians 
made contributions related to this theorem, in chronologic order: Gallai, Lukomskaya, Witt, 
and Garsia. 

46.2 Ernst Witt 629

How should we attribute credit for this classic result? Graham, Rothschild, and Spencer 
call it “Gallai’s Theorem” ([GRS2]. Hans Jürgen Prömel with his coauthors Vojtěch Rödl and 
Bernd Voigt call it “Gallai–Witt’s Theorem” [PR], [PV]. Prömel continues to seemingly insist 
on the coauthorship of Witt in 2005 [Pr1] and in the 2013 book [Pr2]. Let us take a look 
together at this 2013 book. Section 4.2.2 is called “Gallai–Witt’s Theorem.” It opens as 
follows: 

A multidimensional version of van der Waerden’s theorem was proved independently 
by Gallai (=Grünwald), sf. Rado (1943) and Witt (1952). 

Does Prömel not see the 9-year gap between the dates? Moreover, since he cites Rado-
1943, he knows that Rado’s paper [Rad2] with Gallai inside was submitted on 16 September 
1939, when Nazi Germany’s waged war delayed its publication for several years. Under 
bombardments, London was not up to publishing mathematics. When Rado’s paper finally 
appeared in a prominent and well-read Proceedings of the London Mathematical Society. Witt 
had many years after the war when he could read it. It begs a question: is the reason to insist 
on including Witt of non-mathematical kind? Witt wrote his paper well, but in my opinion 
way too late for claiming authorship. 

It is not a deciding factor for me that Gallai did not publish his proof – he shared it with the 
most reliable informants Erdős and Rado in the 1930s, and Rado included Gallai’s proof in his 
paper submitted it in 1939 with credit to Gallai. It is not a deciding factor for me that Garsia 
did not publish his proof – he provided me with an old blue line, faded from age, copy of his 
1958 proof and a contemporaneous communication of his proof to Van der Waerden. 
Lukomskaya, Witt, and Garsia appear to have discovered their proofs independently from 
Gallai, and their proofs constitute contributions to the field. However, a very significant time 
that lapsed between the 1930s and the late 1940s and 1950s, and the public availability of 
Gallai’s published proof ever since 1945 must convince every fair person to give credit for the 
discovery of this all-important classic theorem to one person, and one person alone, and call it 
accordingly The Gallai Theorem. 

46.2 Ernst Witt 

Ernst Witt was born on the island of Alsen in 1911. Alsen, together with the rest of North 
Schleswig became part of Germany in 1864. The island was returned to Denmark in 1920. 
Two-year-old Witt went to China with his missionary parents. At 9 he was sent back to 
Germany to live with his uncle. Witt studied at the universities of Freiburg and Göttingen. His 
doctoral work at Göttingen was supervised by Emmy Noether. That was the dawn of Hitler’s 
rein. Witt’s former Ph.D. student at Hamburg (and presently Professor Emerita at Göttingen 
University) Ina Kersten writes in his biography [Ker] that on May 1, 1933, Witt joined the 
Nazi party and the storm troopers SA – observe, he did it days after his teacher Noether was 
fired by the Nazi regime. In his defense after the war, as a proof of how little the Nazi and SA



memberships meant to him, Witt claimed that his family did not know about it [Ker]. He was 
not as considered toward his Jewish mentor Emmy Noether, fired from Göttingen [Bert]: 
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Storm trooper Ernst Witt, resplendent in the Brownshirt uniform of Hitler’s paramili-
tary, knocked on a Jew’s apartment door in 1934. A short, rotund woman opened the 
door. Emmy Noether smiled, welcomed the young Nazi into her home, and started her 
underground math class. The Brownshirt was one of her favorite pupils. 

Indeed, Witt must have been Noether’s second most favorite student after Van der 
Waerden. Since Emmy Noether was forced out as Jewish and liberal, Witt defended his 
doctorate under Gustav Herglotz in July 1933 and joined Helmut Hasse’s seminar, when the 
latter entered Göttingen in 1934 as the director of Mathematics Institute and professor. 

Kersten [Ker] informs that in 1934 Witt became Hasse’s Assistant at Göttingen. In 1937, 
Emil Artin left Hamburg for the United States. In 1939, Witt was appointed to the 
downgraded to an associate professor Artin’s chair at Hamburg and worked there until his 
dismissal by the British Military Authority in fall 1945. However, the Brits could not keep 
long grudges against the Nazis in Germany: in 1947, Witt was reinstated in his position, in 
1957 promoted to an Ordinarius, and remained on the job until his retirement in 1979. 

Kersten describes Witt’s 1960–1961 visit of the Institute for Advanced Study Princeton, 
and his “astonishment” at the negative reaction when Witt disclosed his Nazi past: 

One day during a discussion about a member of the National Socialist party, he [Witt] 
felt obligated to declare that he had also been a member of that party. To behave 
otherwise would have seemed insincere to him. He found, to his utter astonishment, 
that his contacts with his colleagues were suddenly severed. 

Couldn’t Witt comprehend that people at the Institute, some of whom escaped from the 
Nazis and had family and colleagues murdered by the German criminal regime, were 
“sincerely” shocked to find a former Nazi and moreover a Storm Trooper in their midst? I 
am utterly astonished that Witt was “utterly astonished.” 

In 1978, Ernst Witt was honored with membership in the Göttingen Academy of Sciences. 
He died in Hamburg on July 3, 1991 – of natural causes. 

46.3 Adriano Garsia 

Let us now turn our attention to Professor Adriano Garsia. The story of his discovery that he 
told me in the February 28, 1995, e-mail [Gars2], is almost as intriguing as the story Van der 
Waerden told us in Chapter 35: 

I discovered the result in the fall of 1958. I was then a Moore Instructor at MIT. We used 
to have fun at the time tossing each other problems at the common room. A student had 
asked the following question: 

If we color the points of the plane in two colors, can we always find a square with 
vertices all of the same color?
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This problem frustrated everybody. . .  including me. . .  until Paul Cohen2 solved it. I 
didn’t want to know the solution since I wanted to solve it myself. . .  After a few days of 
unsuccessful attempts, I finally asked somebody who knew Paul’s solution how he did 
it! 

I learned that he had used Van der Waerden’s theorem on arithmetic progressions. I 
did not know of Van der Waerden’s result at the time, so I was at disadvantage on this 
one. So. I got hold of Khinchin’s book Three Pearls of Number Theory and studied Van 
der Waerden’s proof very carefully. 

I noticed then that the theorem could be generalized to higher dimensions to show 
that we could find any finite set of lattice points (up to scaling) with all elements of the 
same color. 

I wrote up the proof and sent it to Van der Waerden who liked it and offered to 
publish it in the Mathematische Annalen. However, a few weeks later, I got another 
letter from Van der Waerden who had been doing some search on the literature on the 
subject and discovered that precisely the same generalization had already [been] 
published by T. [R.] Rado’ . . .  Under those circumstances he felt that although my 
proof was much neater . . .  he didn’t think it was worth publishing. 

In the meantime, I had asked myself “what about a regular pentagon? . . .” In fact, 
what if we are given any geometric figure consisting of a finite set of points, can we find 
a stretch and translate of the figure with all elements of the same color? . . .  Now it 
showed that my proof could be used under this more general situation as well. In fact, 
contrarily to P. Cohen or Rado who derived their result by applying Van der Waerden’s 
theorem, I had obtained mine by extending Van der Waerden’s mechanism of proof. 

Basically, I showed that a sufficiently high “power” of the figure had to contain a 
monochromatic stretch and translate of the figure. (Power here means that we construct 
a figure of the form F + a1, F + a2, . . .  F + an; with A+B representing the vector sum of 
every point of A with every point of B.) 

Although the version I had sent to Van der Waerden did not specifically address itself 
to this more general situation, very little needed to be added to include this. Neverthe-
less, after Van der Waerden’s second letter I gave up on the idea of publishing the result. 
I have still some duplicates of seminar notes in which the more general result is 
presented. In fact, the summer of 1959 I did give a lecture at Bell Labs on it. I believe 
G. Rodemich who is now at JPL [Jet Propulsion Laboratory], perhaps Henry Pollack 
was also at that lecture . . .  I don’t quite remember others. Jurgen Moser was at MIT at 
that time, and I remember discussing my result with him in great detail. 

2 In 1963, the American mathematician Paul Joseph Cohen (April 2, 1934 – March 23, 2007) 
invented a technique called forcing and used it to prove that neither the continuum hypothesis nor 
the axiom of choice can be proved from the standard Zermelo–Fraenkel system of axioms (ZF) for 
set theory. In the summer 1966, he won Fields Medal for this great achievement at the Interna-
tional Congress of Mathematicians in Moscow. Cohen will appear again in a later chapter of 
this book. 
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This is the story. I am presently visiting UQAM and University of Montreal and it is 
difficult from here to locate those notes. I will get back to San Diego at the end of March. 
Send me your address and I will mail you a copy. 

The idea of the proof is noticing that the same pigeonhole argument of the original 
proof of Van der Waerden can be used in this more general situation. Inductively, we 
consider “colored” powers of the figure as “colors” assigned to say the center of the 
power. Then having proved the result for any number of colors and all figures with n – 
1 points, we construct in a sufficiently high power of that power a monochromatic 
configuration of centers that is similar to the given figure minus a point. However, 
monochromatic centers now mean that the corresponding powers centered at those 
points are all colored the same way! . . .  

At this point we then use the Van der Waerden idea . . .  which is well explained in 
Khinchin’s book. Incidentally, Khinchin states that he is presenting a simpler proof but 
Van der Waerden himself assured me that his proof was identical . . .  I never did see Van 
der Waerden’s original proof. 

That is the story as I can remember it . . .  
Best wishes on your book, 
Garsia 

PS: I am surprised that you call this Gallai’s theorem . . .  I was under the impression 
that a formal language version of the result which could be easily translated into mine 
(by sending letters into vectors) was due to Graham and Rothschild and a 3rd author I 
can’t remember [Joel Spencer – A.S.]. 

To complement this fabulous story, Adriano Garsia sent me the original, faded with age, 
10 mimeographed blue-lettered pages of his notes, as he wrote on April 20, 1995, in another 
e-mail: 

I finally found the notes from which the paper I sent to Van der Waerden was written. I 
don’t seem to have any copy of that paper. The notes are a bit faded but still readable. I 
am mailing them today. Best of luck in deciphering them. 
– Garsia 

Adriano Maria Garsia was born in Tunisia on August 20, 1928. He received his secondary 
and college education in Rome, Italy, and Ph.D. from Stanford University in 1957. He was a 
professor at the California Institute of Technology (1964 –1966), and since 1966 has been a 
professor at the University of California San Diego. In 2012, he became a Fellow of the 
American Mathematical Society. 

46.4 An Application of Gallai 

A beautiful application of the Gallai Theorem was found by Alexej Kanel-Belov (listed as just 
Belov in this article) and S.V. Okhitin in 1992 [BO]. 

Theorem 46.3 ([BO]). Each cell of an [infinite] square grid contains an integer. For any 
given nonzero integer n, there is a square with sides parallel to the lines of the grid, such that 
the sum of all integers inside it is divisible by n.
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Proof Affix x and y axes along the lines of the grid. Now we “color” each unit cell (x, y) of the 
grid in one of n colors by assigning to it the remainder S(x, y) upon division by n of the sum of 
numbers located in all cells with coordinates (a, b) such that 0 ≤ a ≤ x; 0  ≤ b ≤ y. 

The first quadrant of the grid is now colored in n colors. By the Gallai Theorem, there is a 
monochromatic square, whose vertices have coordinates, say, (x, y), (x + k, y), (x, y + k), 
(x + k, y + k). But this is all we need to prove the result, for it is easy to notice that the sum of 
all numbers inside this square is 

S x, yð Þ- S x  þ k, yð Þ- S x, yþ kð Þ þ  S xþ k, yþ kð Þ, 

and this sum is congruent to zero modulo n. ■ 

The authors generalize this theorem on two counts at once: 

Theorem 46.4 ([BO]). Each cell of an [infinite] k-dimensional square grid contains an 
integer. For any given non-zero integer n and a positive integer m there is a positive integer 
L= L(k, m, n) such that the grid contains a k-dimensional cube of side Lm with all edges 
parallel to the lines of the grid, which is partitioned into mk 

“little” cubes of side L, such that 
the sum of all integers inside each “little” cube is divisible by n. 

Hint Instead of claiming a monochromatic square, as we did in the proof of 46.3, 
we can now use the Gallai Theorem to claim the existence a monochromatic subgrid 
homothetic to the k-dimensional square grid of side L (which consists, of course, 
of mk cells of the same color). ■ 

Theorem 46.5 ([BO]). Each cell of an [infinite] k-dimensional square grid contains a real 
number. For any given positive integer m and a (small) positive ε, there is a positive integer 
L = L(k,m, ε) such that the grid contains a k-dimensional cube of side Lm with all edges 
parallel to the lines of the grid, which is partitioned into mk 

“little” cubes of side L, with the 
sum of all numbers inside each “little” cube differing from an integer by less than ε. 

Hint This proof repeats the proof of the previous result with the more delicate interpretation 
of coloring. We partition a unit segment [0,1] into N > 2k mk ε equal “little” segments – they 
are our “colors” – and determine the color of a cell of the grid with coordinates (x1, . . ., xk) by  
the “little” segment into which the fractional part falls of the sum of numbers in the grid’s cells 
with coordinates (a1, . . ., ak), where 0 ≤ ai ≤ xi for 1 ≤ i ≤ k. ■ 

Of course, the Gallai Theorem allows us to generalize Theorems 46.3, 46.4, and 46.5 
further and use k-dimensional parallelepipeds of the given in advance ratio of sides. I leave 
this development to you. 

In 2000, Mark Walters [Wal] published combinatorial proofs of polynomial versions of 
several important theorems. Here is one of them. 

Define a D-dimensional integral polynomial p(n) to be a polynomial in n with coefficients 
in ZD , which is zero at zero. (As usual, Z stands for the set of integers, and N for its positive 
part.) 

The Polynomial Gallai Theorem 46.6 ([Wal]). Let p1, p2, . . ., pm be D-dimensional integral 
polynomials and ND be finitely colored. Then there exists a E ND and d E N such that the set of 
points {a} {a+pi(d): 1 ≤ i ≤ m} is monochromatic.
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Of course, Theorem 46.6 implies the polynomial generalization of the Baudet–Schur–Van 
der Warden theorem. 

The Polynomial Baudet–Schur–Van der Waerden Theorem 46.7 ([Wal]). Let p1, p2, . . ., 
pm be integral polynomials and N be finitely colored. Then there exist positive integers a and 
d such that the set of points {a} {a+pi(d): 1 ≤ i ≤ m} is monochromatic. 

46.5 Hales–Jewett’s Tic-Tac-Toe 

Surely, you played Tic-Tac-Toe in your tender years (Fig. 46.2). The goal is to mark a line of 
cells with your sign. In the “normal” Tic-Tac-Toe, the line can be horizontal, vertical, and 
diagonal (there are two diagonals). In fact, we can represent the cells by nodes, and replace 
X’s and O’s by two colors. The game then asks two players to color the nodes in turn. The 
winner is the one who creates a monochromatic line in his color. We will accept all the usual 
lines except one of the diagonals, going from the upper left to the lower right corner 
(Fig. 46.3). 

In 1963, two young mathematicians, Alfred Washington Hales and Robert Israel Jewett, 
published the result that raised the game of Tic-Tac-Toe to the level of a mathematical result 
of Ramsey Theory, the result of great importance. Informally speaking, they proved that the 
n-dimensional, r-player generalization of Tic-Tac-Toe cannot end in a draw, no matter how 
large n is, and no matter how many people r play so long as the playing board has a

Fig. 46.2 Tic-Tac-Toe 

Fig. 46.3 Tic-Tac-Toe without one diagonal



sufficiently high dimension. (In fact, the first player has a winning strategy due to the strategy-
stealing argument.) As is often the case in mathematics, this is an existence result: no 
algorithm is known for a winning strategy.
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In order to present the theorem formally, we need to define an n-dimensional cube and a 
combinatorial line, or simply a line in it. Given a fixed finite set, often called alphabet, 
A = {a1, a2, . . ., am}, the n-dimensional cube on the alphabet A is, expectedly, the set 
An = {(x1, x2, . . ., xn) :  xi 2 A}. Given a set S of coordinates, ∅ ≠  S ⊆ {1, 2, . . ., n}, a line 
L is a set of the form 

L= x1, x2, . . . , xnð Þ  : xi = xj for i, j 2 S; and xl = al 2 A for l=2S : 

We are ready to formulate the Hales–Jewett Theorem. 

The Hales–Jewett Theorem 46.8 [HJ]. For any finite set A and positive integer k, there 
exists an integer N(A, k) such that for n ≥ , N(A, k) any k-coloring of An contains a 
monochromatic line. 

A very clear “sketch of proof” can be found in [Gra1]. 
This result – as is often the case in mathematics, was obtained by young mathematicians: 

Alfred W. Hales was 23 and Robert I. Jewett 24. In the January 3, 2007, email to me, Alfred 
recalls how it all came about: 

Bob and I were undergraduates at Caltech3 together – he was a year ahead of me. We 
had common interests in both math and volleyball. We also both worked in Sol 
Golomb’s4 coding theory group at the Jet Propulsion Laboratory (JPL, affiliated with 
Caltech) during summers, and we continued doing this when we were in graduate 
school – he at the University of Oregon and I at Caltech. 

The strong connection between error correcting codes and combinatorics led Sol to 
steer us in various combinatorial directions and this led (eventually) to our joint paper 
written at JPL in 1961. 

In the December 17, 2007, email, Al adds: 

I did ask Sol [Golomb] about this – You recall that he was our supervisor in the Jet 
Propulsion Laboratory’s coding theory group. He seems to remember that a problem in 
Martin Gardner’s column suggested to him the possibility of generalizing van der 
Waerden’s theorem in some way, with applications to games and to coding in mind. 
He thinks he discussed this with us, and we proceeded to formulate and prove the 
eventual result. 

3 California Institute of Technology. 
4 We have already met Solomon Golomb in Chapter 2 of the book. 
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Robert I. Jewett (left) and Alfred W. Hales in 1991, Courtesy of Al Hales 

In their standard text on Ramsey Theory [GRS2], Graham, Rothschild, and Spencer give a 
very high praise to the Hales–Jewett Theorem: 

In its essence, van der Waerden’s theorem should be regarded, not as a result dealing 
with integers, but rather as a theorem about finite sequences formed from finite sets. The 
Hales-Jewett theorem strips van der Waerden’s theorem of its unessential elements and 
reveals the heart of Ramsey theory. It provides a focal point from which many results 
can be derived and acts as a cornerstone for much of the more advanced work. Without 
this result, Ramsey theory would more properly be called Ramseyan theorems. 

In 1971, the Hales–Jewett Theorem earned the authors the George Polya Prize, which they 
shared with Ronald L. Graham, Klaus Leeb and Bruce L. Rothschild, the authors of the Affine 
Ramsey Theorem, which is a vast generalization of the Hales–Jewett Theorem. 

I met Al Hales in the fall 1978 in his beautiful Pacific Palisades home, shortly after my 
arrival in the United States as a “parolee refugee.” It was clearly Al’s recommendation that 
prompted UCLA mathematics chair to offer me my first American professorial job at UCLA. 
Unfortunately, my romanticism took over, and I chose the mountains of Colorado over the 
fine Los Angeles campus, decorated by original bronzes of the great British sculptor Henry 
Moore. 

There is a noteworthy connection between two celebrated results (see proof in [GRS2, 
pp. 40–41]):
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Connection 46.9 The Hales–Jewett Theorem implies the Gallai Theorem. 

Gian Carlo Rota conjectured what can be called the Affine Ramsey Theorem Conjecture 
(for this Coloring Book, I replaced “partitioning” by “coloring”). 

Rota’s Conjecture 46.10 Let l, k, r be nonnegative integers and F a field of q elements. Then 
there is a number N = N(q, r, l, k) depending only on q, r, l, k with the following property: If 
V is a vector space over F of dimension at least N, and all the k-dimensional subspaces of V are 
r-colored, then there is some l-dimensional subspace with all of its k-dimensional subspaces 
in the same color. 

In 1971, this conjecture (and more) was proved by Ronald L. Graham and Bruce 
L. Rothschild [GR0]. Consistently with my convention of crediting authors of essential 
conjectures and its provers, we get the following theorem. 

The Graham–Rothschild–Rota Theorem 46.11 Let l, k, r be nonnegative integers and F a 
field of q elements. Then there is a number N =N(q, r, l, k) depending only on q, r, l, k with the 
following property: If V is a vector space over F of dimension at least N, and all the 
k-dimensional subspaces of V are r-colored, then there is some l-dimensional subspace with 
all of its k-dimensional subspaces in the same color.



Part IX 
Colored Integers in Service of the 
Chromatic Number of the Plane: 

How O’Donnell Unified Ramsey Theory 
and No One Noticed 

An interesting recent result of O’Donnell 
[Odo4,5], perhaps giving a small amount of 
evidence that χ(E2 ) > 4. 

–Ronald L. Graham1 

O for God’s sake 
they are connected 
underneath 

They look at each other 
across the glittering sea 
some keep a low profile 

Some are cliffs 
The bathers think 
islands are separate like them. 

–Muriel Rukeyser2 

1 [Gra6] 
2 Islands; in the book The Gates, 1976
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Chapter 47 
O’Donnell Earns His Doctorate 

I agree with Ron Graham, Paul O’Donnell proved sensational results, showing that there are 
unit distance 4-chromatic graphs of girth 9, girth 12, and even of an arbitrarily high girth. 
These results did give some evidence that, perhaps, the search for a 5-chromatic unit-distance 
graph may celebrate its victory one day – this is the result O’Donnell was ultimately after but 
had not succeeded, no one had until 2018 (later about it). 

The epigraph shows, of course, that Ron Graham appreciated the result, as did Paul Erdős, 
when I introduced Paul to Paul. What no one noticed, however, is how great Paul O’Donnell’s 
proofs were. Just imagine, you create a huge 4-chromatic graph without cycles of size up to, 
say, 100. Now you need to embed it in the plane, so that every edge is a unit segment and 
coincidences are avoided. Wouldn’t you feel that this is extremely hard, and messy, and you 
would likely waste much time, and possibly end up with nothing? Paul showed bravery and 
imagination when he plunged into unit distance embeddings, which we studied in Chapter 14. 

He has also set world records of embedding smallest known unit distance graphs without 
small cycles, jointly with his friend and one-time roommate Rob Hochberg – we have seen 
those in Chapter 15. Decades later, Geoffrey Exoo and Dan Ismailescu broke one important 
record, as you have seen in the brand-new Chapter 16 of this expanded edition, dedicated to 
their results. 

I appreciate O’Donnell’s constructions presented in this chapter. Paul uses the power of 
classic results of integer coloring, such as the Baudet–Schur–Van der Waerden Theorem, 
great results related to the attempts to find a proof of Fermat’s Last Theorem from Number 
Theory and Ergodic Ramsey Theory, such as the Mordell–Faltings Theorem and the 
Bergelson–Leibman Theorem. He applies this powerhouse of integer colorings and number 
theory sophistication to the problem of coloring the plane, the chromatic number of the plane 
problem. And by doing so, O’Donnell is unifying Ramsey Theory as nothing else could. This 
is what brought to my mind the second epigraph of this chapter, a beautiful poem by the 
American poet Muriel Rureyser Islands, islands that look separated by waters but in fact “they 
are connected underneath.” 

I followed Paul’s research ever since February 1992 at Florida Atlantic University, where 
my talk inspired a number of young colleagues to join in researching the chromatic number of 
the plane. In particular, it inspired Paul to write his doctoral thesis on these problems. He 
visited me in Colorado Springs, and that visit, apparently, had exciting consequences. 

© Alexander Soifer 2024 
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On May 25, 1999, Paul O’Donnell defended his doctorate at Rutgers University. It appears 
that my furniture had something to do with Paul O’Donnell’s remarkable dissertation, for in 
the dissertation’s Acknowledgements he writes: 

Thanks to Alex. It all came to me as I drifted off to sleep on your couch. 

I was a member of Paul O’Donnell’s Ph.D. Defense Committee at Rutgers University, 
together with János Komlos, Michael Saks, and Endre Szemerédi. As soon as Paul finished 
his presentation and left the room, members of the Committee asked me with a touch of 
tension, “What do you think?” They considered me to be an informal supervisor of Paul’s 
dissertation (the formal one was János Komlos) – perhaps, I was. I replied, “Paul exceeded all 
possible expectation of a doctoral dissertation.” Even though I knew this dissertation well and 
followed it through many revisions, it took me time and writing the first edition of this book to 
fully appreciate how great Paul’s methods were. Enjoy! 

From the left: Paul O’Donnell, Alexander Soifer, Endre Szemerédi, János Komlos, and 
Michael Saks, May 25, 1999



den

Here the symbol stands for the set of all k-element subsets of the |n|-element set.
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Chapter 48 
Applications of the Baudet–Schur–Van der Waer 

At the end of Chapter 14, I left you with the embedding in the plane of the 352,735-vertex 
Blanche Descartes graph by Paul O’Donnell. One may ask, would attaching longer k-cycles (k 
> 7) to the foundation vertices increase the graph’s girth while keeping the chromatic number 
at 4? The answer is no – not if k-cycles were attached to all k-element subsets of the 
foundation set – because some k-cycles would have two or more vertex intersection that 
could cut down the girth of the graph. We would get a chance to succeed at this construction if 
we were to dramatically limit the number of attached k-cycles, by, say, allowing at most a 
single point intersection for the k-subsets of the foundation, to which k-cycles are allowed to 
be attached. This is exactly what O’Donnell implemented. 

We met hypergraphs at the end of Chapter 27; let us meet a special type of them here. A 
k-uniform hypergraph H is a family of k-element subsets of an n-element set S. The vertices of 
H are the elements of S. The edges (or hyperedges) of  H are the k-element subsets. A cycle of 
length k > 2 in  H is a sequence of distinct vertices and edges of H, 

v1,E1, v2,E2, . . . , vk,Ek, 

such that vi + 1 2 Ei \ Ei + 1  for 1 ≤ i ≤ k (where the addition in the indices is done modulo k). 
The girth of a hypergraph is the length of its shortest cycle. The chromatic number of a 
hypergraph is the minimum number of colors needed to color the vertices so that no edge 
contains vertices, which are all colored the same color. 

Let n be a positive integer, H a graph on k vertices (k ≤ n), and S⊆ nj j  
k 

a k–uniform 

hypergraph.1 Then Gn,H,S would denote the Blanche Descartes graph
2 built on the foundation 

vertex set F= u*1, u
*
2, . . . , u

*
n by attaching3 copies of H to those subsets of F that are in S. 

1 nj j  
k 

2 Defined in Construction 12.10; see also examples of use 12.8 and 12.9. 
3 Defined in Section 14.1. 
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In this notation, the 112-vertex graph constructed in Problem 12.8 can be recorded as 
G 

7,3- cycle, 
7j j  
3 

. The 6448-vertex graph, first embedded by Wormald (Section 12.3), can be 

recorded as G 
13,5- cycle, 

13j j  
5 

. The girth of 6,352,735-vertex Blanche Descartes graph 

embedded in the plane by Paul O’Donnell (see the end of Chapter 14) is encoded as 
G . 

O’Donnell came up with a brilliant idea of attaching cycles only to certain arithmetic 
progressions (AP’s) of the foundation set and to restrict AP’s in the following two ways:

• The set D of allowable constant differences is chosen so that arithmetic progressions with 
distinct constant differences overlap by at most one element (overlaps by two or more 
vertices may create small cycles).

• Given D, the set S is constructed so that arithmetic progressions with the same constant 
difference do not overlap. 

The distance between any two points in a k-term AP is ad, where a< k and d is the constant 
difference. To prevent, two AP’s from intersecting in two points, it suffices to ensure that adl 
≠bd2 for all a,b less than k and distinct constant differences dl , d2 from D. Formally, let Dj 

denote the set of allowable constant differences less than or equal to j. We define Dj 

recursively: 

Dj = 
Dj- 1 [ jf g, if for all d 2 Dj- 1 and positive integers 

a, b 2 k- 1½ ], ad ≠ bj; 

Dj- 1 otherwise: 

Then the allowable set of constant differences is D= 1 
j= 1Dj. 

How dense is D? If too many numbers are in D, then the graph may have short cycles. If 
too few numbers are in D, then the graph may not be 4-chromatic. So, we need to perform a 
balancing act. The following tool gives an idea of the density of D. 

Tool 48.1 For all d, at least one of {d, 2d, 3d, ..., k!d} is in  D. 

Proof If k!d 2 D, then we are done. If not, then there exist positive integers a, b 2[k- 1] and 
d1 2 D with d1 < k!d such that ad1 = bk!d. Solving for dl, we get d1 = bk!d a . Since a < k, a 
divides k!, and thus d1 is a multiple of d, as desired. ■ 

Once we get D, we can construct the set S of APs. Let us formally define S: 

S= S n, k,Dð Þ= a, aþ d, . . . , aþ k- 1ð Þdf g : d 2 D,f 
a ≡ 1, 2, . . ., d mod kdð Þ, a þ k- 1ð Þd≤ ng: 

For example, if D = {1, 3, 4, 5, ...} then S(17,3, D) is:

https://doi.org/10.1007/978-1-0716-3597-1_12#FPar10
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{1,2,3} {1,4,7} {1,5,9} {1, 6,11} 
{4,5,6} {2,5,8} {2, 6,10} {2, 7,12} 
{7,8, 9} {3,6,9} {3,7,11} {3, 8,13} 
{10,11,12} {10,13,16} {4,8,12} {4,9,14} 
{13,14,15} {11,14,17} {5,10,15} 

Now we need to check the chromatic number and the girth of the graph Gn,k-cycle,S for 
appropriate k and n and verify that Gn,k-cycle,S is a unit-distance graph. 

It is a delight to see how Paul O’Donnell uses the Baudet–Schur–Van der Waerden 
Theorem to show that for some n, Gn,k-cycle,S is 4-chromatic. 

Theorem 48.2 There exists n such that χ (Gn,k-cycle,S) = 4. 

Proof By the Baudet–Schur–Van der Waerden Theorem, there exists n such that any 
3-coloring of the integers from 1 to n contains a monochromatic AP of length (2k –1)k!. 

Let d be the constant difference of this AP. By Tool 48.1, there exists d’2 D, such that d’ is 
a multiple of d such that d’≤k!d. Hence, there is a (2k–1)-term monochromatic AP of the 
foundation vertices with d’ 2 D 

ua, uaþd ′ , . . . , uaþ 2k- 2ð Þd ′ : 

One of the first k of these indices is congruent to some element in {1, 2, ..., k}(mod kd). The 
vertex with this index and the k–1 vertices after it (in the AP with the constant difference d’) 
form a set in S. This set has a k-cycle attached. But if all of these foundation vertices are of the 
same color, there are only 2 colors remaining to color the odd cycle. This is not enough. Thus, 
at least 4 colors are necessary to color Gn,k-cycle,S. ■ 

Theorem 48.3 For odd k ≥ 9, girth(Gn,k-cycle,S )≥ 9. 

Proof A cycle containing no foundation vertices is a k-cycle. All other cycles consist of the 
foundation vertices separated by at least 2 vertices of an attached cycle. It is, therefore, 
impossible to have a cycle with only one foundation vertex. 

A cycle has only two foundation vertices if the APs of the two attached cycles intersect in 
two places. However, our choices for D and S prevent this. 

A cycle with at least 3 foundation vertices has at least 9 vertices. Therefore, the girth of our 
graph is at least min{9, k}. ■ 

Observation Just like the Blanche Descartes construction, this method generalizes to the 
arbitrary chromatic number. By attaching girth 9, (l–1)-chromatic graphs to appropriate APs 
of the foundation vertices, we obtain girth 9, l-chromatic graphs. However, we need to embed 
our graphs in the plane as unit-distance graphs, and the 4-chromatic graphs seem to be the 
only reasonable candidates for it. 

Theorem 48.4 There exists a girth 9, 4-chromatic unit-distance graph. 

Proof As we have established above, for appropriate choices of k and n, the graph Gn,k-cycle,S 

is 4-chromatic of girth at least 9. Given odd k ≥ 9, let n0 be the smallest such n. We show that 
Gn,k-cycle,S is a unit-distance graph using an embedding procedure similar to that used for the 
Blanche Descartes graphs in Chapter 14.
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By the choice of n0, there is a 3-coloring of the foundation vertices labeled from 1 to n0 – 
1 such that no monochromatic set has an odd cycle attached. We place all the foundation 
vertices with color i in the δ-ball around Ci for 1 ≤ i ≤ 3. We place vertex n0 in the δ-ball 
around C4. Since the vertices with a k-cycle attached are always in at least 2 δ-balls, the 
embedding tools of Chapter 14 allow the attachments of all cycles and removal of any 
coincidences. (Technically, if the girth is more than 9, we add a 9-cycle to get a girth 
9 graph.) ■
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Chapter 49 
Applications of the Bergelson–Leibman 
and the Mordell–Faltings Theorems 

To achieve a girth 12 unit-distance graph, Paul O’Donnell alters the set D of allowable 
constant differences. This changes which sets are in S (i.e., which sets of the foundation 
vertices get odd cycles attached). It is no longer enough for the sets in S to have intersection of 
size at most one, as we required in Chapter 48. In addition, O’Donnell requires now that no 
three sets in S intersect pairwise. How does one achieve this? 

Unexpectedly, O’Donnell uses sophisticated results from Number Theory and Ergodic 
Ramsey Theory. He attaches k-cycles only to specified APs whose constant difference is an 
mth power, for he wants to make use of BLT’s Corollary 38.10 of the Bergelson–Leibman 
Theorem! 

As was done in Chapter 48, we will again use the Blanche Descartes Gn,k-cycle,S construc-
tion. We will then establish that the constructed graph is indeed 4-chromatic, girth at least 
12 unit-distance graph. 

However, before we dive into “O’Donnellia,” we need to take a tour of number theory 
related to . . .  Fermat’s Last Theorem. As is customary in this book, we will include at least a 
brief history of this field in our excursion. 

In 1922, Louis Joel Mordell (Philadelphia, 1888–Cambridge, 1972) conjectured [Mor] and 
in 1983 the 29-year-old German mathematician Gerd Faltings proved (and in 1986 was 
awarded the Fields Medal primarily for his proof) this very important result (in a more 
contemporary formulation than Mordell could have had). This result, among other conse-
quences, was, of course, a major step in the ascent on Fermat’s Last Theorem. In consistently 
following my view that creating a good conjecture is important (every theorem is preceded by 
a conjecture, and sometimes the conjecture is brought up by someone other than the one who 
proves it), I will call it the Mordell–Faltings Theorem. We need here precisely the conse-
quence of this theorem that is relevant to Fermat’s Last Theorem when we construct the set of 
allowable constant differences. It deals with (integer) solutions of Diophantine equations of 
the form 

axm þ bym þ czm = 0: �ð  

Before we state the theorem, we need to introduce some preliminaries. A solution (x0, y0, 
z0) of (*) is called primitive if gcd{x0, y0, z0} = 1; and trivial if x0, y0, z0 2{- 1, 0, 1}. Notice 
that if {x0, y0, z0} is a solution, then any integer multiple of this triple is also a solution. Thus,
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if an equation (*) has one solution it has infinitely many. However, for an appropriate choice 
of m, it has only a finite number of primitive solutions. For a better choice of m all primitive 
solutions are also trivial. For the final choice of m, all equations (*) with a, b, c 2{-k, ..., k} 
not all zero, have no nontrivial primitive solutions. This allows us to construct the set of 
allowable constant differences and the set of arithmetic progressions to which odd cycles are 
attached.
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The Mordell–Faltings Theorem 49.1 A nonsingular projective curve of genus at least two 
over a number field has at most finitely many points with coordinates in the number field. 

I refer you to contemporary number theory texts for definitions of terms used in 49.1. What 
we need here is the following corollary, obviously relevant to the assault on Fermat’s Last 
Theorem: 

Mordell–Faltings’ Corollary 49.2 Given a, b, c 2 Z not all zero; for m ≥ 4, the equation 
axm + bym + czm = 0 has at most finitely many primitive solutions. 

Tool 49.3 Given a, b, c 2 Z, not all zero; there exists m such that the equation 
axm + bym + czm = 0 has no nontrivial primitive solutions. 

Proof The Mordell–Faltings Corollary 49.2 states that for m ≥ 4, axm + bym + czm = 0 has 
finitely many primitive solutions. Given a, b, c, let w be the integer of the largest absolute 
value in any primitive solution of ax4 + by4 + cz4 = 0. Choose l = l(a, b, c) such that 2l > w. 
We need the following claim to complete the proof: 

Claim 49.4 The equation ax4l + by4l + cz4l = 0 has no primitive solutions except possibly 
trivial ones, in which x, y, z 2{- 1, 0, 1}. 

Proof of 49.4 Assume ax4l 0 þ by4l 0 þ cz4l 0 = 0 with gcd{x0, y0, z0} = 1. Then the equality 

a xl 0 
4 þ b yl 0 

4 þ c zl 0 
4 = 0shows that xl 0, y

l 
0, z

l 
0 is a primitive solution of ax4 + by4 + cz4 = 0. 

By the definition of w, 

max xl 0 , y
l 
0 , z

l 
0 ≤ wj j< 2l , 

therefore, x0, y0, z0 2{- 1, 0, 1}. 
All there is left to complete the proof of the tool 49.3, is to choose m(a, b, c) = 4 l, which in 

view of 49.4 satisfies the statement of tool 49.3. ■ 

Corollary 49.5 Given a positive integer k, there exists a positive integer m’ such that none of 
the equations axm’ + bym’ + czm’ = 0 with a, b, c2{-k, ..., k} not all zero has nontrivial 
primitive solutions. 

Proof Given a, b, c, by tool 49.3, there exists m = m(a, b, c) such that axm + bym + czm = 0 
has no nontrivial primitive solutions. The same holds for any exponent which is a multiple 
of m. Hence, 

m0 = 
a,b,cf g:a,b,c2 –k,...,kf g,not all 0f g  

m a, b, c:ð Þ  

suffices. ■
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Everything is now ready for our construction. Given m’ = m’(k), we define 
D = {xm′ : x 2 N}.This is the set of allowable constant differences needed to construct the 
set S of arithmetic progressions. Each arithmetic progression in S corresponds to a set of 
foundation vertices with an attached cycle. 

Theorem 49.6 For odd k ≥ 13, girth(Gn,k-cycle,S) ≥ 12. 

Proof A few cases need to be addressed, depending upon the number of the foundation 
vertices in a k-cycle. 

A cycle containing no foundation vertices is a k-cycle. All other cycles consist of 
foundation vertices separated by at least 2 vertices of an attached cycle. So, a cycle with at 
least 4 foundation vertices has at least 12 vertices. 

A cycle has 3 foundation vertices if the APs of the three attached cycles intersect pairwise. 
Let ai be the starting point and di be the constant difference, 1 ≤ i ≤ 3, for the three APs. The 
pairwise intersections of the APs imply the existence of constants cl, c2, ..., c6 between 0 and 
k – 1 such that 

al þ c1d1 = a2 þ c2d2 
a2 þ c3d2 = a3 þ c4d3 
a3 þ c5d3 = al þ c6d1 

Thus, 

a1 þ a2 þ a3 þ c1d1 þ c3d2 þ c5d3 = a1 þ a2 þ a3 þ c6d1 þ c2d2 þ c4d3 

or, 

c1 - c6ð Þd1 þ c3- c2ð Þd2 þ c5- c4ð Þd3 = 0: 

Since the constant differences are all m’-th powers and the three foundation vertices are 
distinct, this is an equation of the form axm’ + bym’ + czm’ = 0 with integral coefficients a, b, c 
2{-k, ..., k} not all zero. By corollary 49.5, it has only trivial primitive solutions. Thus, any 
solution has all the di equal, yet in the construction of S, APs with the same constant 
difference do not intersect. 

A cycle has only 2 foundation vertices if the arithmetic progressions of the two attached 
cycles intersect in two places. Let ai be the starting point and di be the constant difference, 1 ≤ 
i ≤ 2, for the two arithmetic progressions. The intersection of the APs implies the existence of 
constants cl, c2, c3, c4 between 0 and k - 1 such that 

a1 þ c1d1 = a2 þ c2d2 
a1 þ c3d1 = a2 þ c4d2 

By adding up the respective sides of these equalities, we get 

c1 - c3ð Þd1 þ c4 - c2ð Þd2 = 0:
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Since the constant differences are all m’-th powers and the two foundation vertices are 
distinct, this is an equation of the form axm’ + bym’ = 0, with nonzero integer coefficients 
between –k and k. As in the previous case, there are no nontrivial primitive solutions. The di 
must be equal, yet in the construction of S, arithmetic progressions with the same constant 
differences do not intersect. 

A cycle with only one foundation vertex is not possible. Therefore, the girth is at least min 
{12, k}.■ 

Observation Just like Blanche Descartes’s girth 9 construction of Chapter 48, this method 
generalizes to arbitrary chromatic number. By attaching girth 12, (l - 1)-chromatic graphs to 
appropriate arithmetic progressions of the foundation vertices, we get girth 12, l-chromatic 
graphs. Again, the only reasonable candidates for embedding in the plane as unit-distance 
graphs seem to be the 4-colorable graphs. 

Theorem 49.7 There exists n such that χ(Gn,k-cycle,S) = 4. 

Proof By the BLT’ Corollary 38.10 of the Bergelson–Leibman Theorem 38.9 (Chapter 38), 
there exists n such that any 3-coloring of the integers from 1 to n contains a (2 k - 1)-term 
monochromatic arithmetic progression of the foundation vertices 

ua, uaþd, . . . , uaþ 2k- 2ð Þd 

where d is a mth power. One of the first k of these indices is congruent to some element in {1, 
2, ..., k} (mod kd). The vertex with this index and the k – 1 vertices that follow it, form a set in 
S. This set has a k-cycle attached. But if all of these foundation vertices are of the same color, 
there are only 2 colors remaining to color the attached odd cycle. This is not enough. Thus, at 
least 4 colors are necessary to color Gn,k-cycle,S. ■ 

We are ready for the embedding. 

Theorem 49.8 There exists a girth 12, 4-chromatic unit-distance graph. 

Proof From the preceding theorems, we know that for appropriate choices of k and n, the 
graph Gn,k-cycle,S is a 4-chromatic graph of girth at least 12. Given odd k ≥ 13, let n’ be the 
smallest such n. We will show that Gn’,k-cycle,S is a unit-distance graph using an embedding 
procedure similar to that used in the previous chapter. By the choice of n’, there is a 3-coloring 
of the foundation vertices labeled from 1 to n’–1 such that no monochromatic set has an odd 
cycle attached. We place all the foundation vertices of color i in the δ-ball around Ci, for 1 ≤ 
i ≤ 3. We place vertex n’ in the δ-ball around C4. Since the vertices with a k-cycle attached are 
always in at least 2 δ-balls, the embedding tools of Chapter 14 allow the attachments of all 
cycles and removal of any coincidences. (Technically, if the girth is more than 12, we add a 
12-cycle to get a girth 12 graph.) ■

https://doi.org/10.1007/978-1-0716-3597-1_38#FPar13
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Chapter 50 
Solution of an Erdős Problem: The O’Donn 
Theorem 

ell 

In a surprising twist, the complete solution of Paul Erdős’ old July 1975 problem about unit 
distance 4-chromatic graphs of arbitrary girth comes out to be simpler than all partial 
solutions, we have discussed in the previous two chapters. In another surprise, Paul 
O’Donnell uses in his solution the 1966 result obtained jointly by Paul Erdős and Andras 
Hajnal, the result that has been known all alone, but no one noticed its connection to the 
problem at hand. You may wish to revisit definitions of uniform hypergraphs in the beginning 
of Chapter 48. 

Theorem 50.1 (Erdős–Hajnal 1966, [EH1]). For all integers k ≥ 2, g ≥ 2, and l ≥ 2, there 
exist a k-uniform, girth g, l-chromatic hypergraphs. 

This theorem gives the desired generalization of the girth 9 and girth 12 constructions. 
Instead of attaching cycles to arithmetic progressions, we attach cycles to the edges 
(hyperedges) of a hypergraph. Given k and g, let H be a k-uniform, girth g, 4-chromatic 
hypergraph. Let n = |V(H)|. Then Gn,k-cycle,H is the desired graph (reread its definition in 
Chapter 48 if need be). 

Theorem 50.2 (O’Donnell). χ(Gn,k-cycle,H) = 4. 

Proof Since H is 4-chromatic, any 3-coloring of the foundation vertices contains a mono-
chromatic hyperedge. In other words, any 3-coloring of the foundation vertices has a 
monochromatic set with an odd cycle attached. That cycle cannot be colored with the 
remaining two colors, so χ(Gn,k-cycle,H) ≥ 4. With four colors, one color can be used for the 
foundation vertices leaving three for the odd cycles. Thus, χ(Gn,k-cycle,H) = 4. ■ 

Theorem 50.3 (O’Donnell). girth(Gn,k-cycle,H) = k. 

Proof The approach is to show that girth(Gn,k-cycle,H) ≥ min{k, 3g} and choose g ≥ k/3. 
The only cycles containing no foundation vertices are the attached k-cycles. All other 

cycles consist of foundation vertices separated by at least two vertices of attached cycles. 
Since any two consecutive foundation vertices are in the shadow of an attached cycle G (i.e., 
appear in a hyperedge of H), the consecutive foundation vertices form a cycle (i.e., 
hypercycle) in H. So if the girth of H is g, the length of the cycle in Gn,k-cycle,H is at least 
3g. Thus, all cycles of Gn,k-cycle,H are either k-cycles or l-cycles for l ≥ 3g. ■ 
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The O’Donnell Theorem 50.4 [Odo3]; [Odo4, Odo5]. For any integer k ≥ 3, there exists a 
girth k, 4-chromatic unit distance graph. 

Proof Assume k is odd. Let H be a k-uniform, 4-chromatic hypergraph with girth ≥ k/3 
having the fewest vertices. Let n’ = |V(H)|, then as we know from the previous theorems, 
Gn’,k-cycle,H is a girth k, 4-chromatic graph. As in the previous two chapters, we use the 
embedding tool chest of Chapter 14. By the choice of n’, there is a 3-coloring of the 
foundation vertices labeled from 1 to n’ –  1 such that no hyperedge is monochromatic, in 
other words, no monochromatic set has an odd cycle attached. We place all the foundation 
vertices with color i in the δ-ball around Ci for 1 ≤ i≤3, and place vertex n’ in the δ-ball 
around C4. Since the vertices with a k-cycle attached are always in at least 2 δ-balls, the 
embedding tools allow the attachments of all cycles and removal of any coincidences. For an 
even k, a  k-cycle is added to the 4-chromatic unit-distance graph of girth > k. ■ 

Would you like to see the embedded O’Donnell graph? Paul offers an illustration 
(Fig. 50.1). 

Fig. 50.1 A girth k 4-chromatic unit-distance graph in the plane. (Note: what looks like a 
vertex is many vertices; what looks like an edge is many almost parallel edges.)
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50.1 Paul O’Donnell 

My old request for a “self-portrait” Paul O’Donnell honored in the March 31, 2007, e-mail: 

I was born in New York City on April 18, 1968. I was adopted in October 1968 and 
grew up in Jackson, New Jersey. I received my undergraduate degree in mathematics 
and computer science from Drew University in 1989 and my Ph.D. in applied mathe-
matics from Rutgers University in 1999. My doctoral thesis was on arbitrary girth 
4-chromatic unit-distance graphs in the plane, from a problem posed by Paul Erdős. 

My interest in unit-distance graphs sprang originally from a Putnam exam problem 
about them, and from undergraduate courses taught by Linda Lesniak. This interest was 
reawakened after attending Alexander Soifer’s 1992 presentation on the interesting 
history of this problem at a conference at Florida Atlantic University in Boca Raton. 
This marked the start of our friendship. 

The main idea for the arbitrary girth unit-distance graph work came a few years later 
while dozing off to sleep on Alexander Soifer’s couch in Colorado Springs after 
watching the Derek Jarman movie “Wittgenstein” with him. 

I have taught at Rutgers University and Drew University. Currently, I am working in 
the Research & Development Equity Department of Bloomberg L.P. In my free time I 
play ultimate frisbee and am a theatre/movie buff (credits include work on the L.A. and 
off-Broadway productions of the musical Reefer Madness, and an appearance as an 
extra in the movie Army of Darkness). My wife Carmelita and I also teach ballroom/ 
Latin dance and are the proud parents of daughter Kimberly. 

In 1998, Paul stayed with me for several days. I let him teach my class and found him a 
wonderful engaging lecturer. We watched together the film “Wittgenstein” by the unique 
British film director Derek Jarman. You have witnessed his excellence and will as a 
researcher. To my regret, Michael Bloomberg lured Paul away from Academia.
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Paul O’Donnell



Part X 
Ask What Your Computer Can Do for You 

The fact that cinéma-vérité directors walk 
around with a Coutant camera under their 
arm or that they can film their researches into 
other people’s lives makes no difference at all. 
They still have to be guided by an idea, an 
attitude, without which their camera would 
remain inert, just as the most powerful com-
puter in the world remains inert, in spite of its 
superhuman memory, so long as it is not sup-
plied with a programme. 

– Michelangelo Antonioni, 1965 [Ant] 

In the 1970s, many humans believed that they made fewer mistakes than computers. Many 
mathematicians and philosophers questioned Appel–Haken proof of the Four-Color Conjec-
ture. Twenty years later, the new proof of 4CC was not questioned, partly because it was a 
better proof, partly because humans realized that computers simply do what humans tell them 
to do. As Paul Kainen amply noticed, computers are simply “computational amplifiers.” 

You would agree that computers do not solve mathematical problems – people armed with 
computers do. This new chapter of The Mathematical Coloring Book presents major break-
throughs achieved – as it happened – with the aid of a computer. 

Computer-free proofs are preferred only because we, humans, are a curious bunch and a 
human-verifiable proof may satisfy our curiosity and shed light on why things are the way 
they are. Some computer-aided proofs can do it to.
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Chapter 51 
Aubrey D.N.J. de Grey’s Breakthrough 

In 68 years of the problem’s life, many fine mathematicians obtained many beautiful results in 
special circumstances. However, no progress occurred in the general case until Aubrey de 
Grey (Ph.D. in Biology, University of Cambridge) succeeded in a joint effort of his imagi-
nation and a clever computer program he wrote for this purpose. On January 16, 2018, de 
Grey sent me the first version, followed by a corrected one [G1] on April 7, 2018, with the 
following introductory note: 

Dear Prof. Soifer, 
I append a copy of an email I sent you in January, which you may have overlooked. 

It’s good that you did, because the graph that I told you about is in fact 4-colorable after 
all, and my failure to discover this was due to a bug in my code. However, I’m pleased to 
report that after fixing the bug I was rapidly able, using the same basic approach, to find 
somewhat larger unit-distance graphs that do indeed have no 4-colourings. My confi-
dence that my code is not still lying to me arises largely from the fact that the 
4-colouring of the earlier graph was found by Dr. Robert Hochberg, to whom I wrote 
at the same time as you; he became interested enough to spend time writing code that 
could test quite large graphs, and he has not found a 4-colouring of the (progressively 
smaller, but still four-digit) graphs I have been discovering since January even though 
his code can 4-colour all his previous attempts at 5-chromaticity in seconds. We 
appreciate that this is not a proof. . .  but it makes us feel good enough about the graphs 
that I have now written up the discovery as a paper. I have just submitted it to the arXiv, 
and it is scheduled to go live on Monday. I still very much hope that you will be inclined 
to consider it for publication in Geombinatorics; I am in absolute awe of your 2008 
book, and I hope that this might serve as some sort of mark of my gratitude. 

I was not surprised by the result that the chromatic number of the plane was at least 5, for I 
conjectured two decades earlier that the chromatic number of the plane was 7. I was surprised 
by Aubrey de Grey’s construction. Practically, all previous pursuits of a 5-chromatic unit-
distance graph (see O’Donnell [O’D], for example) were based on an idea that the hardest part 
of creating a 5-chromatic unit-distance graph was its embedding in the plane. And so, all 
attention was concentrated on unit-distance graphs without 3-cycles, which could be easier to 
bend and embed in the plane. No triangles, of course, means no Mosers Spindles. De Grey 
goes the opposite way: he floods his construction with a high density of interlocking Mosers
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Spindles. His goal is to force a certain coloring of a small number of vertices and then create 
contradictions to those forced colorations.
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He constructs a unit-distance graph on 20,425 vertices. Can one check whether it is 
4-colorable? Normally, one would not even try, especially when you do not have supercom-
puters, but ordinary “household” means: Mathematica 11 on a standard MacBook Air laptop. 
De Grey bravely goes for it, and with a clever use of specific properties of his graph succeeds 
in verifying that this giant graph is indeed not 4-colorable. Hence, we arrive at The de Grey 
Theorem. 

The de Grey Theorem 51.1 χ(E2 ) ≥ 5. 

De Grey then dramatically reduces the size of his 5-chromatic unit-distance graph. 

De Grey’s Example 51.2 There is a 5-chromatic unit-distance graph on 1581 vertices. 

With this size, the verification becomes within the reach of his computer program. What 
does Aubrey do next? I have known colleagues, who would keep their approach in secret, or 
worse, would publish a paper that is hardly comprehensible – in order to position themselves 
ahead of the competition. Aubrey de Grey is a true scholar. He does not wish to compete with 
others, but rather invites others to join in to conquer mathematics herself. He succeeds in 
commencing a Polymath Project where new blood is attracted to try their wits on the problem. 
And try they do. 

Polymath Projects had a precursor. In 1991, I started Geombinatorics, a research quarterly 
dedicated primarily to problem-posing essays in combinatorial geometry, jointly with the 
great geometer Branko Grünbaum, in the style of Paul Erdős’ problem-posing talks and 
essays. I found existing mathematical journals to be like cemeteries for honorable burials of 
finished research. My goal has been to publish research in progress, so that people can join in 
the efforts. Clearly, Geombinatorics was a precursor to Polymath-type blogs. With your 
contributions and enthusiasm, Geombinatorics will continue to be our meeting place, the 
melting pot of ideas it has been for 33 years, 131 issues and counting.
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Chapter 52 
De Grey’s Construction 

I am presenting a slightly edited Aubrey de Grey’s crisp and clear description of his 
construction [G1], translated from the British to the American English. :) 

52.1 The Plan 

Note that the 7-vertex, 12-edge unit-distance graph H consisting of the center and vertices of a 
regular hexagon of side-length 1 can be colored with at most four colors in four essentially 
distinct ways (up to rotation, reflection, and color transposition). The upper two of these 
colorings contain a monochromatic triple of vertices and the lower two do not (Fig. 52.1). 

Fig. 52.1 The 
essentially distinct 
ways to color H with 
at most four colors 

De Grey constructs a unit-distance graph L that contains 52 copies of H and shows that in 
all 4-colorings of L, at least one copy of H contains a monochromatic triple. 

He then constructs a unit-distance graph M that contains a copy of H as a subgraph and 
shows that there is no 4-coloring of M in which that H contains a monochromatic triple. Thus, 
the unit-distance graph N created by arranging 52 copies of M so that their counterparts of
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H form a copy of L is not 4-colorable. This completes the demonstration that the chromatic 
number of N and therefore of the plane is at least 5.
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Finally, de Grey finds smaller non-4-colorable unit-distance graphs, first by identifying 
vertices in N whose deletion preserves the absence of a 4-coloring, and then by more elaborate 
methods. He is now ready for the implementation of the plan, let us follow him. 

52.2 The 4-Colorings of J in Which No Copy of H Contains 
a Monochromatic Triple 

Define the graph J, shown in Fig. 52.2, containing a copy of H in its center, six copies 
centered at distance 1 from its center, and six copies centered at distance 3

p 
from its center. 

Fig. 52.2 The graph J, containing 31 vertices and 13 copies of H 

Figure 52.3 shows six essentially distinct (up to rotation, reflection, and color transposi-
tion) 4-colorings of J in which no copy of H contains a monochromatic triple. The vertices 
colored black in Fig. 52.3 will be of no concern.
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Fig. 52.3 The essentially distinct colorings of J in which no copy of H (including the ones 
containing some black vertices) contains a monochromatic triple. Black vertices can assume 
any color so long as no connected vertices are the same color 

That these are the only such colorings can be checked by grouping the possibilities 
according to whether the central copy of H has two (the top row in Fig. 52.3) or no (bottom 
row) monochromatic pairs of vertices at distance 3

p 
and, in the case where it has none, 

whether all the copies of H centered at distance 1 from the center also have none (bottom left 
coloring) or some have two (last two colorings). The bottom center coloring is the reason we 
need the vertices colored black; though those vertices can be colored in many ways, it turns 
out that if they were deleted then there would be additional 4-colorings of the remaining graph 
in which none of the seven remaining copies of H contained a monochromatic triple, and 
some of those new colorings lack the key property shared by all those in Fig. 52.3. 

The key property of the colorings in Fig. 52.3 that will be the focus henceforward is the 
feature that only three essentially distinct colorings of the vertices at distance 2 from the 
center have, which shall be hereafter called the linking vertices. There are three possibilities: 

(a) The linking vertices are all the same color as the center (left-hand cases in Fig. 52.3), or, 
(b) Four consecutive linking vertices (when enumerated going clockwise around the center) 

are the same color as the center and the other two are a second color (middle cases), or, 
(c) Two opposite linking vertices are the same color as the center and all the other four are a 

second color (right-hand cases). 

Hereafter a pair of linking vertices located in opposite directions from the center, such as 
those labelled A and B in Figs. 52.2 and 52.4, will be called a linking diagonal.
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Fig. 52.4 The graph K, containing 61 vertices and 26 copies of H 

52.3 61-Vertex Graph K Assembled from Two Copies of J 

De Grey then constructs graph K as the union of J with a copy of J rotated clockwise around 
the origin by 2�arcsin(1/4). This rotation causes corresponding linking vertices to lie at 
distance 1 from each other; see Fig. 52.4. This construction is a generalization of Leo and 
Willie Moser’s construction of the Mosers Spindle; it has become known as spindling. Later 
in his book, I will let Exoo and Ismailescu to formally define spindling and prove its property. 

Observe that, in any 4-coloring of K in which none of the 26 copies of H contains a 
monochromatic triple, both copies of J must have their linking vertices colored according to 
option (c) above. This is of interest because in option (c) each of the three linking diagonals of 
J is monochromatic. Thus, in all 4-colorings of K where no copy of H contains a monochro-
matic triple, all six linking diagonals are monochromatic.
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52.4 121-Vertex Graph L Assembled from Two Copies of K 

Finally, de Grey constructs graph L as the union of K with a copy of K rotated around A by 
2�arcsin(1/8). This rotation causes the counterpart of B (denote it B′) to lie at distance 1 from 
B – see Fig. 52.5, in which L has been translated and rotated to give it symmetry about the y-
axis (spindling again). 

Fig. 52.5 The graph L, containing 121 vertices and 52 copies of H 

The property of graph K observed above guarantees that in no 4-coloring of L do all of its 
52 constituent copies of H lack a monochromatic triple. Either B or B′ must be of a different 
color than A, so one of the copies of K must contain a non-monochromatic linking diagonal, 
thus it must contain a copy of H with a monochromatic triple.
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52.5 In Search of Graph M 

In seeking graphs that can serve as M in de Grey’s construction, he focuses on graphs with a 
high density of Mosers Spindles – this is where de Grey departs from the previous attempts to 
construct a 5-chrinatic unit-distance graph. He explains his motivation for exploring such 
graphs by the fact that Mosers Spindle contains two pairs of vertices distance 3

p 
apart, and 

these pairs cannot both be monochromatic. Intuitively, therefore, a graph containing a high 
density of interlocking spindles might be constrained to have its monochromatic 3

p
-apart 

vertex pairs distributed rather uniformly (in some sense) in any 4-colouring. Since such 
graphs typically also contain regular hexagons of side-length 1, one might be optimistic that 
they could contain such hexagon that does not contain a monochromatic triple in any 
4-colouring of the overall graph, since such a triple is always an equilateral triangle of 
edge 3

p 
and thus constitutes a locally high density, i.e. a departure from the mentioned 

earlier uniformity, of monochromatic 3
p

-apart vertex pairs. 

52.6 Graphs with High Edge Density and Spindle Density 

His search for graphs with high spindle density, de Grey begins by noticing two attractive 
features of the 9-vertex unit-distance graph T that is obtained by adding two particular vertices 
to the Mosers Spindle (see Fig. 52.6, left). These added vertices, P and Q are such that they: 

1. Form an equilateral triangle with the tip X of the spindle 
2. Lie on (the extension of) the line forming the base Y Z  of the spindle 

Thus, de Grey can construct a 15-vertex unit-distance graph U (Fig. 52.6, right) that 
contains three Mosers Spindles and possesses rotational and reflectional triangular symme-
tries. These symmetries suggest that graphs formed by combining translations and 60-degree 
rotations of U might have particularly high edge and spindle density. 

Fig. 52.6 The graphs T and U
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Spindles; the graph V (right)

52.7 Construction of a Graph That Serves as M 665

52.7 Construction of a Graph That Serves as M 

The expectation Aubrey de Grey just mentioned turned out to be true. For example, he found 
a 97-vertex graph containing 78 spindles (not shown). And so he writes a custom program 
(outlined in the next section) to test graphs of this form for possession of a 4-coloring in which 
the central H contains a monochromatic triple. However, he did not find a graph of this form 
that enforces sufficient uniformity of the distribution of 3

p
-apart monochromatic vertex pairs 

to deliver the property required for M, even though he reports checking examples with over 
1000 vertices. 

A modification was needed. Graphs arising from the construction described thus far can 
have spindles in only six different orientations, with edges falling into just three equivalence 
classes where equivalence is defined as rotation by a multiple of 60 degrees (Fig. 52.7 left). 
De Grey adds new classes based on the relative orientations of spindles that share a lot of 
vertices, such as in Fig. 52.7 (middle). The maximum possible degree of a vertex in a graph 
constructed from these edges interpreted as vectors increases from 18 to 30; see Fig. 52.7 
(right), which we denote as graph V. The angles of the edges relative to the vector (1,0) are 
i arcsin( 3

p 
/2) + j arcsin(1/ 12

p 
), where i {0 ... 5}, j  {-2 ... 2}. 

Fig. 52.7 The vector classes present in one (left), or three tightly linked (middle), Mosers 

This turns out to suffice. Let W be the 301-vertex graph consisting of all points at distance 
≤ 3
p 

from the origin that are the sum of two edges of V (interpreted as vectors). The 1345-
vertex graph M shown in Fig. 52.8 is the union of W with its six translates, in which the origin 
is mapped to a vertex of H. Aubrey’s program did not find any 4-colouring of this graph M in 
which the central H contains a monochromatic triple, so it indeed can serve as graph M. In 
other words, he can create a non-4-colorable unit-distance graph N as the union of 52 copies 
of M, translated and rotated so that each instance of H in L coincides with the central H of a 
copy of M. After merging coincident vertices arising from different copies of M, this graph 
N has 20,425 vertices. (De Grey does not show a picture of N, because it is visually 
impenetrable, and also because he shortly discovered smaller examples).
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Fig. 52.8 The 1345-vertex Graph M 

52.8 Testing 4-Colorability of Edge-Dense, Spindle-Dense Graphs 

In general, it is computationally challenging to determine the chromatic number of a graph 
with over 1000 vertices by simplistic search methods, let alone one with 20,425 vertices. De 
Grey thus develops a custom program to test graphs for possession of the property required 
for our graph M, taking advantage of certain properties of our candidate graphs. 

Because de Grey is only asking whether a specific number of colors is or is not sufficient, 
and also because of the high density of edges and spindles in his target graphs, the required 
test turns out to be computationally far cheaper than a general determination of chromatic 
number of comparable-sized graphs. It can be performed rapidly by a simple depth-first 
search optimized only slightly, as follows: 

1. Since the question is whether there is any 4-coloring of M in which the central H contains a 
monochromatic triple, de Grey begins by specifying the colorings of the vertices of that 
central H, which he terms the initializing vertices (there are 7 of them). Since M has the
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same symmetries as H, Aubrey only need to check the two essentially distinct triple-
containing colorings of those vertices. 

2. He orders the remaining vertices according to a hierarchy (most significant first) of 
parameters (all decreasing): how many Mosers Spindles they are part of, their degree, 
and how many unit triangles they are part of. 

3. He colors the next not-yet-colored vertex (initially vertex 8, the first non-initializing 
vertex) with the first color that he has not already tried for it (initially color 1). 

4. He checks each not-yet-colored neighbor (if any) of the just-colored vertex to see how 
many colors are still permissible for it. If any such vertex already has neighbors of all four 
colors, he will need to backtrack (see step 6 below). If any has neighbors of exactly three 
colors, he assigns the remaining (forced) color to it. 

5. If he does not need to backtrack, but he did color some vertices in step 4, he repeats step 
4 for each such vertex. 

6. If he needs to backtrack, he uncolors everything that he just colored in the most recent 
iteration of steps 3 and (any resulting iterations of) 4. 

7. If he just did an uncoloring and the just-uncolored vertex that was colored at step 3 has no 
colors that have not yet been tried, he repeats step 6 for the next-most-recent iteration of 
steps 3 and 4 unless he has already backtracked all the way to the vertices of H. Otherwise, 
if there are still some uncolored vertices Aubrey returns to step 3. 

8. He terminates when he gets here, i.e., when either all vertices are colored or he has 
backtracked all the way down to the vertices of H. 

Aubrey implemented this algorithm in Mathematica 11 on a standard MacBook Air; it 
terminated in only a few minutes for de Grey’s candidate M, without finding a 4-coloring 
starting from either of the triple-containing colorings of its central H. Essentially, the speed 
increases because the fixing of only 20 or so vertex’s colors at step 3 typically lets almost all 
remaining colors be forced at step 4. 

52.9 Identification of Smaller Solutions 

No one knows the order of the smallest non-4-colourable unit-distance graph. The smaller the 
size the better are the chances to use standard algorithms (SAT solvers for example) instead of 
inventing custom software. [We can dream of a hand-verification if the order of a graph 
shrinks substantially and symmetries provide further aid – A.S.] 

The most direct way to find smaller graphs is to seek a succession of small simplifications 
of N. Many approaches to this are evident, some much more computationally tractable than 
others. Aubrey employed only a small range of strategies that take advantage of the stepwise 
method by which N was constructed: he identified vertices of subgraphs such as M, whose 
removal preserves the property required of them in the construction and thus also the 
chromatic number of N, and then he sought new vertices, one at a time, whose addition 
allowed the removal of more than one pre-existing vertex.
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52.10 Status of Shrinking the Graph N 

De Grey has shrunk N by a factor of nearly 13, to the 1581-vertex graph G that (more for 
artistic than expository reasons) is shown in Fig. 52.9. It can be constructed as follows: 

1. Let S be the following set of points: 
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2. Let Sa be the unit-distance graph whose vertices consist of all points obtained by rotating 
the points in S around the origin by multiples of 60 degrees and/or by negating their y-
coordinates. Sa has 397 vertices. 

3. Let Sb be Sa rotated counterclockwise about the origin by 2 arcsin(1/4). 
4. Let Y be the union of Sa and Sb with the vertices (1/3, 0) and (-1/3, 0) deleted. 
5. Rotate Y counterclockwise about (-2,0) by π/2 + arcsin(1/8) to produce Ya. 
6. Rotate Y counterclockwise about (-2,0) by π/2 - arcsin(1/8) to produce Yb. 
7. Let G be the union of Ya and Yb. 

The graph G has turned out to be within the reach of standard SAT solvers, with which 
others have now confirmed its chromatic number to be 5 without the need to resort to using 
custom code or checking weaker properties of subgraphs. 

De Grey believed it was highly likely that examples smaller than G existed. Indeed, a 
Polymath project [DHJP] has been created to seek such graphs, as well as to seek ones whose 
lack of a 4-coloring can be shown without a computer. Concise and explicit descriptions of 
certain 5-chromatic unit-distance graphs would seem to be a promising way to attack the 
question of whether 6-chromatic examples exist.



52.11 Reception of de Grey’s Breakthrough 669

Fig. 52.9 The 1581-vertex 5-chromatic unit-distance De Grey Graph G 

52.11 Reception of de Grey’s Breakthrough 

Aubrey de Grey’s result answered in the negative May 4, 2002, $1000 problem of Ronald 
L. Graham, who asked whether it was possible to 4-color the plane to forbid a monochromatic 
unit distance [Soi44]. 

In 2018, the British gerontologist Aubrey de Grey achieved the first in 68 years break-
through in the chromatic number of the plane problem in general case, the problem that 
essentially goes through this entire book. In July 2018, Aubrey asked Ron Graham whether he 
won a prize. Ron in turn asked me how much to pay Aubrey. I proposed a $1000 prize and 
asked them both for a photo of Aubrey receiving a check from Ron, to be published in the new 
expanded edition of The Mathematical Coloring Book. On September 9, 2018, Ron replied:
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Hi Sasha, 
I think your suggestion is good. As a matter of fact, I live in Berkeley some of the 

time, so it would not be difficult to have a photo of me presenting Aubrey with a check. 
This might take a month or two before I am in Berkeley again. 

What do you think? 
Ron 

The problem creator and the problem solver met in San Diego, where Aubrey de Grey 
received the $1000 prize from the hands of Ronald L. Graham. On my request, they captured 
this landmark event, and thus you can, in a sense, participate in it. Both Ron and Aubrey sent 
me the photos of the check presentation. 

Ronald L. Graham presents Aubrey D.N.J. de Grey the Prize: $1000, San Diego, September 
22, 2018 

“I will certainly be adhering to the convention of framing the check rather than cashing it,” 
wrote Aubrey to Ron and me. 

Aubrey de Grey was awarded the David Robbins Prize by the Mathematical Association of 
America, at its January 2020 meeting in Denver, Colorado, for
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“The Chromatic Number of the Plane is at least 5” 
“Geombinatorics, XXVIII(1), (2018), 18–31” 

Having received the prize on January 16, 2020, Aubrey left the meeting before the banquet – 
he headed to Colorado Springs to spend a couple of days with me to discuss the composition 
of this new edition of The Mathematical Coloring Book. During our productive meeting, I 
seemed to recall that Aubrey used an electronic copy of the original Mathematical Coloring 
Book. And so, I presented Aubrey the prize of the inscribed for him hard copy of “The 
Mathematical Coloring Book.” As you can see, it took place in the Italian pizzeria Il Vicino. 
The pizza was quite good too. 

Aubrey de Grey and Alexander Soifer, Il Vicino, January 18, 2020
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52.12 Aubrey D.N.J. de Grey 

Aubrey David Nicholas Jasper de Grey 

My request to write his life story, Aubrey de Grey fulfilled on August 22, 2018. The rest of 
this section is his. 

Growing up in London, I was always reasonably good at mathematics but never excep-
tional. My journey to graph theory can be said to have begun in 1978, at the age of 15, when I 
was introduced to the board game Othello; My interest in it waned rather soon, but it was 
revived at Cambridge when I became friends with some of the top players in the UK, who 
were mathematicians mostly in the year above me. Two of them, Imre Leader and Graham 
Brightwell, became doctoral students of the distinguished Erdős protege Bela Bollobás, so it 
was inevitable that I would be exposed to graph theory and combinatorics – and it was to my 
and everyone’s surprise that I turned out to be quite good at it, sometimes solving what were 
thought to be really quite hard problems more rapidly than my friends. 

The result has been that I have dabbled with these fields, purely recreationally, through my 
whole adult life. Sometimes I have focused on well-known open problems, but definitely



never with any hope of making real progress on them: my enjoyment derives merely from the 
process of gaining a rudimentary understanding of why they are so hard. 
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It remains a mystery to me why I did not encounter the celebrated question of the chromatic 
number of the plane decades ago. It was certainly known to my friends; I suppose somehow it 
just never came up in conversation. Even more strangely, I am also unable to work out 
precisely how I stumbled upon it in 2017 – or even precisely when, though it was some time 
between July and September. What I do know, however, is what led me to be captivated by 
the problem: as for so many before me, it was the discovery of the first edition of the book 
whose second edition you are now reading. All fields need great expositors if they are to 
attract the interest of a wider community, and as a scientist who successfully switched fields 
mid-career I am well-placed to see the benefit that a field gains from this accessibility. 

For a few months I barely looked at the CNP question, because of pressure of my day job. 
However, I was able to devote much of the Christmas break to it, and was led uncannily 
rapidly to my successful approach by Alexander’s descriptions of the failed attempts of the 
past, especially that of Paul O’Donnell. The idea of making a unit-distance graph non-rigid, 
and thus amenable to deformations to introduce new edges, seemed so attractive - and yet it 
apparently could not succeed. Why? Evidently the flexibility thus introduced was outweighed 
by the competing rise in the number of ways to four-colour such graphs. Well, I reasoned, in 
that case let’s just try going in the opposite direction: accept rigidity, and indeed introduce as 
high a density as possible of rigid 4-chromatic graphs with shared vertices. From there to the 
solution took only a few weeks. I actually put the final pieces together (to construct the 
20,425-vertex graph referred to in my eventual paper) in a pub a few miles from my home, to 
which I had retreated because of a power outage. Someone else at the bar saw some of the 
diagrams I was playing with and asked as to their relevance. . .  I never caught his name, but he 
was the first person to know that this 68-year-old problem had finally seen some progress. 

How soon will we reduce the range of CNP uncertainty further? I will be astonished if the 
next step forward is other than the creation of a 6-chromatic UDG, eliminating the possibility 
that CNP = 5 – but I suspect that it may be some years before this is achieved. Graphs not 
much larger than the 5-chromatic ones discovered by me and others are computationally 
intractable, and I will not be at all surprised if the smallest 6-chromatic UDG contains millions 
of vertices. 

52.13 The Effect of the Breakthrough on Predictions of Many 

“DIMACS” stands for the Center for Discrete Mathematics and Theoretical Computer 
Science. It was founded in 1989 by Princeton and Rutgers Universities, AT&T, and Bellcore, 
with other research institutions joining later. It is located on the Piscataway campus of Rutgers 
University. I spent 3 enjoyable years there as a Long-Term Visiting Scholar, concurrently 
with my research years at Princeton. My sponsors were Saharon Shelah and Fred Roberts. 
After I left both places in 2007, DIMACS’ Executive Director Fred Roberts sent a mass email 
asking for events proposals for DIMACS. I replied concisely: “Ramsey Theory.” Unexpect-
edly, Fred replied “DIMACS Executive Committee is interested in your proposal. Please, 
elaborate. We want a non-generic, original view of the field.”  “Ramsey Theory Yesterday, 
Today, and Tomorrow,” replied I: “Day One ‘Yesterday,’ Day Two ‘Today,’ and Day



3 ‘Tomorrow.’” Fred and his executives called on me to organize and run this 3-day 
international workshop. I accepted, contingent to Ron Graham accepting my invitation to 
be one of the plenary speakers. Ron did, and I was in business. 
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On May 29, 2009, “Day Three: Tomorrow,”1 I got an additional confirmation of the great 
influence of Khinchin’s book. Leaders of Ramsey Theory and my plenary speakers Ronald 
L. Graham and Joel H. Spencer told me that this Khinchin’s little book introduced them both, 
for the first time, to the name of Van der Waerden, his theorem, and Ramseyan ideas! 

On May 28, 2009, “Day Two: Today,” in the middle of my plenary talk on the chromatic 
number of the plane,2 given 11:15–12:15, I asked the distinguished audience of leaders of 
Ramsey Theory and most talented graduate students, 30 participants in all, to determine the 
chromatic number of the plane by democratic means of a vote. The voters possessed a great 
intuition and a formidable wealth of knowledge. They included Ronald L. Graham, Joel 
H. Spencer, Jaroslav Nešetřil, Stanisław P. Radziszowski, Peter D. Johnson, Jr., András 
Gyárfás, William Gasarch, Vera Rosta, Jacob Fox, Dmytro Karabash, Colton Magnant, 
Bert Randerath, Marcia J. Groszek, Andrzej Dudek (joint work with Peter Frankl, and 
Vojtech Rödl), Vadim V. Lozin, Lynn Scow, Brian Hopkins, and others. One young Lady 
(Lynn Scow from the University of California Berkeley, if memory holds) voted for 6; I voted 
for 7; the rest of the workshop participants equally split between 4 (including Peter 
D. Johnson Jr. and Dmytro Karabash) and 5 (including Ronald L. Graham). I was therefore 
able to announce: 

The democratic value of the chromatic number χ of the plane is 4.5. 

Laugh or cry, but these lower values were a dominant expectation of the value of χ. 
In 2018, Aubrey de Grey’s Graph encouraged others to try their hand (or mind). A number 

of people created a number of 5-chromatic unit-distance graphs. This excitement propelled a 
hope and desire to quickly construct a 6-chromatic unit-distance graph. However, soon came 
a realization: not so fast. Many colleagues – perhaps, most – now expect the final answer to be 
7, as I conjectured in 2002. Those who tried, however, do not expect the arrival of a 
7-chromatic unit-distance graph during our lifetimes. So, either Aubrey de Grey will teach 
us how to prolong a meaningful life (Gerontology is his main field) or we will have to rely on 
future generations, who no doubt will have faster computers at their disposal and, perhaps, 
new bright ideas. 

Marijn Heule, a Dutch computer scientist, working in the United States, enters the 
scene next. 

1 Center for Discrete Mathematics and Theoretical Computer Science, a joint project of several 
research institutions, including Princeton and Rutgers Universities. See [Soi49] for the texts of the 
plenary talks of this workshop. 
2 Published in [Soi49].



-1_53
675

Chapter 53 
Marienus Johannes Hendrikus “Marijn” H eule

53.1 The Records 

Marijn Heule, a virtuoso computer scientist, who does not always rely on existing software 
but rather creates his own. We, mathematicians, are fortunate that he became excited about 
CNP problem, for he has produced a series of 7 world records for the smallest (in vertex 
count) known 5-chromatic unit-distance graphs. Let us document the succession of his seven 
5-chromatic unit-distance graph records and then have Marijn present one of them in detail. 

874 vertices and 4461 edges on April 14, 2018 
826 vertices and 4273 edges on April 16, 2018 
803 vertices and 4144 edges on April 30, 2018 
633 vertices and 3166 edges on May 6, 2018 
610 vertices and 3000 edges on May 14, 2018 
553 vertices and 2722 edges on May 18, 2018 

More world records were achieved independently by two researchers between July 2019 
and March 2020 – we will address them later. 

Rolling back in the spring-early summer 2018, I envisioned the Special Issue of 
Geombinatorics XXVIII(1), 2018, dedicated exclusively to the progress in the chromatic 
number of the plane problem. In it, my summary essay is followed by pioneering papers by 
Aubrey de Grey, which you have just seen, then the “553” record paper [Heu3] by Marijn 
Heule (Aubrey and Marijn were very pleased to appear in the same issue), and concluded with 
the paper by Geoffrey Exoo and Dan Ismailescu [EI2]. 

Marijn Heule presents his computer science approach that allows him to reduce the world 
record several times to a 553-vertex 5-chromatic unit-distance graph. It [Heu1] appears here 
in Marijn’s words, slightly abridged. (The record was later reduced several times by Marijn 
Heule and Jaan Parts – more about it later.) 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_53&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_53#DOI


Fig. 53.1 From left to right: illustrations of A, B, A B, and the Moser Spindle. The graphs
shown have chromatic number 2, 2, 3, and 4, respectively
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53.2 The Plan 

Our method exploits two formal methods technologies: the ability of satisfiability (SAT) 
solvers to find a short refutation for unsatisfiable formulas (if they exist) and proof checkers 
that can minimize refutations and unsatisfiable formulas. 

The refutations emitted by SAT solvers are hardly minimal. Depending on the application 
from which the formula originates, typically 10% to 99% of the refutation can be omitted. 
Several techniques have been developed to avoid checking irrelevant parts of a refutation 
[HHW]. These techniques minimize proofs in order to share and revalidate them. For 
example, the proofs of the Boolean Pythagorean Triples [HKM] and Schur Number Five 
[Heu1], [Heu2], problems are enormous, even after minimization: 200 terabytes and 
2 petabytes, respectively. 

Here we use clausal-proof-minimization techniques for a different purpose: shrinking 
graphs. Given a unit-distance graph with chromatic number 5, we first construct a proposi-
tional formula that encodes whether there exists a valid 4-coloring of this graph. This formula 
is unsatisfiable, and we can use a SAT solver to compute a refutation. From the minimized 
refutation, we extract a subgraph that also has chromatic number 5. We then apply this 
process repeatedly to make the graph ever smaller. 

53.3 A Few Definitions 

We will use three operations to construct larger and larger graphs: the Minkowski sum, 
rotation, and merge. Given two sets of points A and B, the Minkowski sum of A and B, denoted 
by A � B, equals {a + b| a 2 A, b 2 B}. 

Given a positive integer i, we denote by θi the rotation around point (0, 0) by the angle 
arccos 2i- 1 

2i and by θk i , which is the application of θi k times. Let p be a point at the distance 
i

p 
from (0, 0), then the points p and θi(p) are exactly distance 1 apart and thus would be 

connected with an edge in a unit-distance graph.
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Consider again the set of points A � B above. The points A � B [ θ3(A � B) form the 
Mosers Spindle. Figure 53.1 shows visualizations of these sets with connected vertices 
colored differently. 

53.4 Propositional Formulas 

We will minimize graphs on the propositional level. We consider propositional formulas in 
conjunctive normal form (CNF), which are defined as follows. A literal is either a variable 
x (a positive literal) or the negation �x of a variable x (a negative literal). The complement�l of 
the literal l is defines as �l=�x if l = x and �l= x if l = �x. For a literal l, var(l) denotes the 
variable of l. A  clause is a disjunction of literals, and a formula is a conjunction of clauses. 

An assignment is a function from a set of variables to the truth values 1 (true) and 0 ( false). 
A literal l is satisfied by an assignment α if l is positive and α(var(l)) = 1 or if it is negative 
and α(var(l)) = 0. A literal is falsified by an assignment if its complement is satisfied by the 
assignment. A close is satisfied by α if it contains a literal that is satisfied by α. Finally, a 
formula is satisfied by an assignment α if all its clauses are satisfied by α. A  formula is 
satisfiable if there exists an assignment that satisfies it and otherwise it is unsatisfiable. Two 
formulas are logically equivalent if they are satisfied by the same assignments; they are 
satisfiability equivalent if they are either both satisfiable or both unsatisfiable. 

53.5 Clausal Proofs 

Here we introduce a formal notion of clause redundancy. A clause C is redundant with 
respect to a formula F if F and F ^ C are satisfiability equivalent. For instance, the clause 
C = x_y is redundant with respect to the formula F = �x _ �yð Þ  since F and F ^ C are 
satisfiability equivalent (although they are not logically equivalent). This redundancy notion 
allows us to add redundant clauses to a formula without affecting its satisfiability. 

Given a formula F = {C1, . . .,Cm}, a clausal derivation of a clause Cn from F is a 
sequence Cm +  1, . . ., Cn of clauses. Such a sequence gives rise to formulas Fm, Fm +  1, . . ., 
Fn, where Fi = {C1, . . .,Ci}. We call Fi the accumulated formula corresponding to the ith 
proof step. A clausal derivation is correct if every clause Ci (i > m) is redundant with respect 
to the formula Fi - 1 and if this redundancy can be checked in polynomial time with respect to 
the size of the proof. A clausal derivation is a proof of a formula F if it derives the 
unsatisfiable empty clause. Clearly, since every clause-addition step preserves satisfiability, 
and since the empty clause is always false, a proof of F certifies the unsatisfiability of F. The 
proofs computed in this paper show that the chromatic number of a given graph is at least 
5. We will also refer to proofs as refutations as they refute the existence of a valid 4-coloring.
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53.6 Clausal Proof Minimization 

SAT solving techniques are not only useful to validate the chromatic number of a graph but 
they can also help reduce the size of the graph while preserving the chromatic number. The 
method works as follows. Given a graph G with chromatic number k, first generate the 
propositional formula F that encodes whether the graph can be colored with k- 1 colors. This 
formula is unsatisfiable. Most SAT solvers can emit a proof of unsatisfiability. There exist 
several checkers for such proofs, even checkers that are formally verified in the theorem 
provers ACL2, Coq, and Isabelle. We used the (unverified) checker DRAT-trim [HHW] that 
allows minimizing the clausal proof as well as extracting an unsatisfiable core, i.e., a 
subformula that is also unsatisfiable. From the unsatisfiable core, one can easily extract a 
subgraph G′ of G such that G′ also has chromatic number k. 

53.7 Encoding 

We can compute the chromatic number of a graph G as follows. Construct two formulas, one 
asking whether G can be colored with k – 1 colors and one whether G can be colored with 
k colors. Now, G has chromatic number k if and only if the former is unsatisfiable while the 
latter is satisfiable. 

The construction of these two formulas can be achieved using the following encoding. 
Given a graph G = (V, E) and a parameter k, the encoding uses k|V | Boolean variables xv,c 
with v 2 V and c 2 {1,..., k}. These variables have the following meaning: xv,c is true if and 
only if vertex v has color c. Now we can encode whether G can be colored with k colors: 

Gk≔ Λ
v2V 

xv,1 _ . . . _ xv,kð Þ ^  Λ 
v,wf g2E 

Λ 
c2 1, ..., kf g  

xv,c _ xw,cð Þ  

The first type of clauses ensures that each vertex has at least one color, while the second 
type of clauses forces that two connected vertices are colored differently. Additionally, we 
could include clauses to require that each vertex has at most one color. However, these clauses 
are redundant and would be eliminated by blocked clause elimination, a SAT preprocessing 
technique. 

We added symmetry-breaking predicates during all experiments to speed-up solving and 
proof minimization. The color symmetries were broken by fixing the vertex at (0, 0) to the 
first color, the vertex at (1, 0) to the second color, and the vertex at 1=2, 3

p 
=2 to the third 

color. These three points are at the distance 1 from each other and occurred in all our graphs. 
The speedup is roughly a factor of 24 (4 � 3 � 2), when trying to find a 4-coloring. 

We did not explore yet whether an encoding based on Alexander A. Zykov’s contraction 
[Zyk1] would allow shorter proofs of unsatisfiability. In essence, such an encoding would add 
variables and clauses that encode for a pair of vertices whether they have the same color. 
Solving graph coloring problems using such an extended encoding has been successful in 
the past.
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53.8 Graph Trimming 

Modern SAT solvers can emit clausal proofs. We used the SAT solver Glucose to produce the 
proofs. The most commonly supported format for clausal proofs is DRAT, which computes 
the redundancy of clauses using the resolution asymmetric tautology check. Some DRAT 
proof checkers can extract from a refutation an unsatisfiable core, i.e., a subformula that is still 
unsatisfiable. When the formula expresses a graph coloring property, the unsatisfiable core 
represents a subgraph with the same coloring property. The absence of the clause (xv, 
1 _ ⋯ _ xv, k) in the core shows that vertex v can be removed, while the absence of all 
clauses �xy,c _ �xw,c with c 2 {1, . . ., k} shows that edge {v, w} can be removed. When trying 
to find a small unit-distance graph with a given chromatic number, we are interested in 
reducing the number of vertices. Although the proof checker can be easily modified to ensure 
that no edges are removed, we achieved larger reductions by allowing edges to be deleted and 
then restoring edges between vertices that survived the shrinking. 

53.9 Randomization 

SAT solvers and clausal-proof-minimization tools are deterministic. To increase the proba-
bility of finding small unit-distance graphs with chromatic number 5, we want to randomize 
the process and minimize many clausal proofs. 

The proofs produced by SAT solvers depend heavily on the ordering of the clauses in the 
input file. The initial heuristic ordering of the variables is based on their occurrence in the 
input file. The earlier a variable occurs in the input file, the higher its place in the ordering. 
Although more sophisticated initialization methods have been proposed, this method is 
effective in practice. The effectiveness is caused by the typical encoding of a problem into 
propositional logic where one starts with the more important variables. However, for our 
application there are no clear important variables. 

Based on these observations, we applied the following lightweight randomization. First, 
we shuffle the input formula and apply graph trimming on the result. When the clausal-proof-
minimization tool is no longer able to remove vertices from the graph, we shuffle the clauses 
of the current formula and produce a new clausal proof. Then we continue graph trimming 
using the new formula and proof. This process is repeated until randomization cannot further 
reduce the size of the graph. 

53.10 Critical Graphs 

A graph is vertex/edge critical with respect to a given property if removing any vertex/edge 
would break that property. Here we are interested in vertex critical graphs with respect to the 
chromatic number. Graph trimming as described above would remove most redundant 
vertices of the graph and the randomization method allows shrinking the graph even further. 
However, in most cases, the reduced graphs are not critical: There still exist some vertices that 
can be removed while preserving the chromatic number.
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Both the SAT solver and the clausal-proof-minimization tool aim to find a relatively short 
argument (i.e., clausal proof) explaining why to imply the fewest number of involved vertices. 
In fact, an argument can frequently be shortened by using redundant (non-critical) vertices. 

In the final step, we therefore make the graph critical by the following procedure. 
Randomly pick a vertex from the graph and determine the chromatic number of the graph 
without it. If the chromatic number is not changed, then the vertex is removed from the graph. 
This process is repeated until all remaining vertices have been determined to be critical. 

Instead of using this naive method to make the graph critical, we could have used more 
sophisticated tools that compute a minimal unsatisfiable core from the propositional formula. 
However, these tools did not improve the performance or the size in an observable way. 

53.11 Validation 

Determining whether a set of points forms a unit-distance graph with chromatic number 
5 requires two checks: (i) whether the corresponding graph has chromatic number 5 and 
(ii) whether the distance between two connected points is exactly 1. The techniques discussed 
in this paper can easily perform the first check. SAT solvers can compute valid 5-coloring for 
the critical graphs in a fraction of a second. The proofs showing that there exists no 4-coloring 
are actually quite small: between 14,000 and 19,000 clause addition steps. Proofs of that size 
can be checked in roughly a second even with formally verified checkers. We used the 
DRAT-trim tool [HHW] to validate them. Proofs of recently solved hard-combinatorial 
problems, such as the Pythagorean Triples and Schur Number Five, are much larger: roughly 
1 trillion and 10 trillion clause addition steps, respectively [HKM], [Heu2]. 

For the second check, we used a tool based on Gröbner basis, available at 
http://fmv.jku.at/dist1sqrtgb/, to validate for every edge in the graph that the 
corresponding points are exactly 1 apart. The tool produces files that can be validated 
using Singular and pactrim. There is no need to check whether all edges are present as 
missing edges can only decrease the chromatic number. Checking only the correctness of 
the edges in the graph is cheap. The total validation time for our smallest critical graphs is 
about a second or two. 

53.12 Results 

In this section, we discuss the various techniques developed to obtain small unit-distance 
graphs with chromatic number 5. The techniques were originally designed for verification 
purposes and applying them to graph minimization is novel and unexpected. The main 
strategy is to start with a large graph and shrink it using clausal proof minimization. We 
minimized several large graphs with various heuristics and most reduced graphs consisted of 
800 to 900 vertices. However, we were able to produce several graphs of 553 vertices using 
three techniques. The first technique (see next Section 53.12.1) enabled producing graphs 
with less than 700 vertices consistently. Second, we obtained graphs with just over

http://fmv.jku.at/dist1sqrtgb/


Fig. 53.2 Left, a 3-coloring of de Grey’s graph V31. Right, a 4-coloring of V151 being
V31 V31 without the vertices more than unit distance apart from the center

600 vertices by shrinking merged copies of graphs with less than 700 vertices (see Section 
53.12.2 below). Finally, we added some points far away from the origin in order to eliminate 
more points close to the origin (Section 53.12.3). The graphs and corresponding proofs 
mentioned in this section are available at https://github.com/marijnheule/CNP-SAT. 
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53.12.1 Finding a Small Symmetric Subgraph 

The main building block of our graphs is de Grey’s V31 [G1]: five 7-wheels with a common 
central vertex. The graph V31 has 31 vertices, 60 edges, is 3-colorable, and all points are in the 
field Q 3

p 
, 11
p 

. These points can be obtained by applying θj 1θ
k 
3 on point (1,0) around (0,0) 

with j 2 {0, 1, 2, 3, 4, 5} and k 2 - 1, - 1 
2, 0,  

1 
2 , 1  . A visualization of this graph is shown in 

Fig. 53.2 (left). During an early stage of the experimentation, we observe that graph 
(V31 � V31 � V31) [ θ4(V31 � V31 � V31) has chromatic number 5. Furthermore, all points 
that are further away than 2 of the center can be removed without affecting the chromatic 
number.

https://github.com/marijnheule/CNP-SAT
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Fig. 53.3 A 4-coloring of V1939, which is the Minkowski sum of V31 and V151 

Instead of removing the points at distance larger than 2 from the center, we constructed the 
following graph. Let V151 be the Minkowski sum of V31 and V31 without the points at distance 
larger than 1 from the center. This graph has 151 vertices and 510 edges and is shown in 
Fig. 53.2 (right). Now let V1939 be the Minkowski sum of V31 and V151. This graph is shown in 
Fig. 53.3. The graph V1939[θ4(V1939) has chromatic number 5 as well. 

We applied clausal proof minimization on the formula that encodes whether the graph 
V1939[θ4(V1939) is 4-colorable. Most random probes of clausal proof minimization produced 
a subgraph of V1939[θ4(V1939) with slightly more than 800 vertices. Occasionally, it produces 
graphs with fewer than 700 vertices, while never producing graphs in the range of 700 to 
800 vertices. 

Closer examination of the minimized graphs with fewer than 700 vertices revealed that 
only a small fraction of the points (always less than 200 vertices) are in the fieldℚ 3

p 
, 11
p 

:



2 3 2 3

These points originate from the subgraph V1939, while the other points originate from the 
subgraph θ4(V1939). Other patterns can be observed in the graphs with fewer than 700 vertices: 
there were at least 12 points in the field ℚ 3

p 
, 11
p 

at distance 2, while the graphs with more 
than 800 vertices had fewer than three such points. Hence, keeping the points at distance 
2 appears crucial to find smaller graphs. Rotation θ4 does not only add edges between points 
at distance 2 (by construction) but also between points at other distances. In fact, half the 
edges between points in V1939 and θ4(V1939) are due to points that are closer to the center: i.e., 

at 33
p þ1p and 33

p
- 1p from the origin. Figure 53.4 shows the newly introduced edges to θ4. 
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Fig. 53.4 A visualization of the edges between S199[θ4(S199) and the involved vertices. 
Vertices originating from S199 and θ4(S199) are colored yellow and blue, respectively 

Visualizing the points in the field Q 3
p 

, 11
p 

reveals that they are highly symmetric: both 
reflection in the horizontal axis and a rotation of θ1 = 60° map the points onto themselves. 
Figure 53.5 shows this visualization. Shown is a 199-vertex graph with 888 edges at unit 
distance, which we call S199. The minimized graphs did not fully produce S199, but always 
yielded a subgraph that missed a handful (up to a dozen) vertices in various locations. There 
exist many 4-colorings of S199, but we observed no clear pattern.
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Fig. 53.5 A 4-coloring of the graph S199, a symmetric subgraph of V1939, that occurred in 
several early records 

Interesting patterns emerge when merging S199 and θ4(S199), as shown in Fig. 53.6. Notice 
that points that are close to each other frequently have the same color. More importantly, 
roughly half of the vertices that are close to distance 2 from the center have the same color as 
the central vertex. In later experiments, we minimized the graph V1939[θ4(S199), which 
allowed us to consistently produce unit-distance graphs with fewer than 700 vertices. We 
suspect that the above-mentioned patterns contribute to the lack of a 4-coloring of 
V1939[θ4(S199). Notice that V1939 has S199 as a subgraph.



two copies of that graph with one copy turned by this rotation

Fig. 53.6 A 4-coloring of the graph S199 [ θ4(S199) 

Fig. 53.7 A rotation by θ1=2 3 connects points at different distances from the origin. Left, a 

subgraph of V31 � V31 consisting of three 7-wheels with radii 1, 
33

p þ3 
6 , and 33

p
- 3 

6 . Right,
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53.12.2 Merging Critical Graphs 

In order to further produce smaller unit-distance graphs with chromatic number 5, we selected 
two critical graphs obtained earlier, merged them, and applied clausal proof minimization 
again. There are a significant number of options to merge two graphs and we experimented 
with a variety of these. The most effective merging strategy in our experiments turned out to 
be rotating the graphs along the central vertex in such a way that a vertex in one graph at unit 
distance from the center is merged with a vertex from the other graph at unit distance. 
Although two different critical graphs can be used for merging, we observed that it is also 
effective to merge two copies of the same critical graph. 

Theminimization procedure frequently produced a graph thatwas larger than both of the critical 
graphs thatweremerged.Only three kinds of rotations occasionally resulted in smaller graphs. The 
first two rotations are θk 1 and θ

k 
3 for a small value of k. These rotations clearly increase the average 

vertex degree by merging vertices and introducing edges between points at distance 1 θk 1 and 
3

p 
θk 3 from the origin. Most other rotations result in little interaction between the two critical 

graphs and thus hardly increase the average vertex degree. The most effective rotations introduce 

edges between the points at distance 1 and the distances 33
p þ3 

6 and 33
p

- 3 
6 from the origin, 

thereby increasing the average degree significantly. Figure 53.7 illustrates this by showing three 

7-wheel graphs with the radii 1, 33
p þ3 

6 , and  33
p

- 3 
6 (left) and two copies of this graph rotated in 

such a way that the points on these distances become connected (right). The graph on the left has 
average vertex degree 36 

19, while the graph of the right has average vertex degree 
120 
37 . A rotation by 

θ1=2 3 for example achieves this and maps point (1,0) onto point 33
p 
6 , 

3
p 
6 . Both points are at unit 

distance from the origin and both are part of V31 and of most other graphs that we used in the 
experiments. 

The combination of merging and minimization only introduced vertices in the field 
Q 3

p 
, 11
p 

. The smallest graphs contained roughly 50 vertices that do not occur in 
(V31 � V31 � V31) and thus not in V1939. 

The smallest graph that we found using the techniques discussed so far contains 610 ver-
tices and 3000 edges. This graph is shown in Fig. 53.8 using a 5-coloring in which only the 
central vertex has the fifth color. Recall that this graph is vertex critical. Hence, our graph 
possesses such a coloring in which any vertex can be the only one with the fifth color.



53.12 Results 687

Fig. 53.8 A visualization of a 610-vertex unit-distance graph with chromatic number 5. Five 
colors are used for the vertices. Only the center uses the fifth color (white) 

53.12.3 Minimizing the Small Part 

The critical graphs found so far can be partitioned into two parts: a subgraph of θ4(S199) and  the  
subgraph induced by the remaining vertices.We refer to the former as the small part, as it consists 
typically of only 187 vertices, and to the latter as the large part. In all statements regarding the 
size of these graphs, we count the central vertex in both parts. All points in the smallest critical 
graphs are at a distance 2 or less from the center. Several approaches have been examined in 
order to find unit-distance graphs with fewer than 600 vertices. Only one approach was effective. 

We focused on adding points that are further away than 2 from the origin in order to 
remove more inner vertices. Adding points from the field Q 3

p 
, 11
p

may allow reducing 
the large part, but none of the experiments were successful. However, we were able to 
substantially reduce the small part using this strategy. The most effective approach was as 
follows. We first constructed the Minkowski sum of θ4(S199) and θ4(S199) and removed all



points that were less or equal than 2 away from the origin. This graph consists of 2028 
vertices. All points were added to the smallest critical graphs that were found in the earlier 
steps, followed by clausal proof minimization. This resulted in a dozen [of unit-distance] 
graphs with 553 vertices and (on average) 2720 edges. Figure 53.9 shows one of these graphs, 
which we refer to as G553. Practically, all vertices that were removed during minimization 
originated from the small part. This part was reduced to 133 or 134 vertices. The 553-vertex 
graphs appear less symmetric compared to the earlier graphs. This is caused by the few 
vertices that are far from the origin. 
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The unit-distance graphs with 553 vertices are vertex critical, but not edge critical. The 
proofs of unsatisfiability show that many of the edge clauses can be removed without 
introducing a 4-coloring. Randomly removing edges until fixpoint eliminates about 
270 edges (close to 10%) of these graphs. 

Remarkably, all critical graphs have a handful of vertices with degree 4. If we removed 
such a vertex from the graph, all its four neighbors would have a different color in all valid 
4-colorings. Graph S199 has even 12 vertices with degree 4. Reducing a 553-vertex graph to

Fig. 53.9 A visualization of a 553-vertex unit-distance graph with chromatic number 5. Five 
colors are used for the vertices. Only the center uses the fifth color (white)



2 3 2 3

become edge critical will increase the number vertices with degree 4 to roughly 12. These 
vertices tend to be evenly distributed between the small and large parts of the graph.
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53.12.4 Analysis 

The sizes of the small and the large parts of the 553-vertex graphs suggest that they play a 
different role in eliminating 4-colorings. We analyzed the 4-colorings of both parts when 
restricted to the key vertices, i.e., the ones that connect the parts. These are the vertices at 

distance 33
p

- 1 
2 3
p , 33

p þ1 
2 3
p and 2 from the origin. Recall that Fig. 53.4 shows the interaction 

between these vertices. The 553-vertex graphs have all 24 vertices occurring in 
S199 [ θ4(S199) at distance 2 from the origin and most of the vertices at distance 
33

p
- 1p , 33

p þ1p from the origin. 

Fig. 53.10 The 420-vertex large part of G553 with the key vertices marked with numbers
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Figure 53.10 shows the large part of G553 in which the central and key vertices are 
numbered. The other vertices in the large part significantly restrict the number of different 
4-colorings of these key vertices. In fact, there are only twenty 4-colorings of these vertices 
such that they either have the same color as the central vertex or a different color. 

53.13 Conclusions 

We demonstrated that clausal proof minimization can be an effective technique to reduce the 
size of graphs with a given property. We used this method to shrink graphs while preserving 
the chromatic number. This resulted in a dozen of unit-distance graphs with chromatic 
number 5 consisting of 553 vertices – a reduction of over 1000 vertices compared to the 
smallest previously known unit-distance graph with chromatic number 5. 

A main goal of this research is to obtain a human-understandable unit-distance graph with 
chromatic number 5. Although that goal has not been reached yet, the experiments produced 

some interesting results. For example, either all vertices at distance 33- 1
p 
2 3
p or all vertices at 

distance 33
p þ1 
2 3
p from the central vertex are forced to the same color as the central vertex by the 

large part of the minimized graphs. Also, our research produced a symmetric graph of 
199 vertices that was vital for the reduction. We will study this graph in more detail to 
determine which properties make it so useful. Moreover, we found two rotations that 
connected points at multiple distances, thus increasing the average vertex degree of unit-
distance graphs. Finding more such rotations may allow us to shrink the graphs even further. 

Applying clausal-proof techniques to provide mathematical insights is an interesting twist 
in the discussion about the usefulness of mechanized mathematics. It has been argued that 
computers are just “ticking off possibilities” [Lam]. In this case, however, they reveal 
important patterns. The techniques described in this paper may actually produce the most 
clean and compact proof that the chromatic number of the plane is at least 5. 

Finally, all graphs used in our experiments could be easily colored with 5 colors, even the 
ones with many thousands of vertices. However, we observed that this does not hold for the 
graph (S199 � S199) [ θ4(S199 � S199). This graph is 5-colorable, even when requiring two 
colors for the central vertex, but computing such a coloring is expensive. Consequently, such 
colorings may be rare and thus may contain certain patterns. This could point to the existence 
of unit-distance graphs with chromatic number 6 with thousands of vertices. 

53.14 Marijn Heule’s Summing-Up 

On September 10, 2020, Marijn Heule shared with me a summary of his views and records 
related to CNP: 

My interest in the chromatic number of the plane started by an email from Scott 
Aaronson on April 10, 2018. We worked both at UT Austin at the time. Scott asked 
whether I could validate the new lower bound by Aubrey de Grey. He also mentioned
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that I was well-placed to improve on the new result due to my expertise with 
satisfiability (SAT) technology. 

It turned out that SAT is indeed effective for this problem. We can determine the 
chromatic number of a graph using two propositional formulas. For example, if we want 
to establish that a graph has chromatic number 5, then we ask whether there exists a 
4-coloring of the graph (the answer should be no) and whether there exists a 5-coloring 
of the graph (the answer must be yes). If there is no 4-coloring, then the proof produced 
by the solver lists all vertices involved in the reasoning. All vertices that were not 
involved, can be removed while preserving the chromatic number. This method can be 
used to iteratively produce smaller and smaller graphs. 

In the days and weeks that followed, I was able to reduce the smallest known unit-
distance graphs with chromatic number 5. First down to 874 vertices (April 14), then 
down to 826 vertices (April 16), followed by 803 (April 30), 633 vertices (May 6), 
610 vertices (May 14), and 553 vertices (May 18). Apart from refining the SAT 
approach, I studied the graphs to look for patterns. I used these patterns to construct 
large graphs as a starting point for the reduction. Over the summer of 2018, I ran the 
approach on the TACC cluster of UT Austin. That resulted in a unit-distance graph of 
529 vertices and 2670 with chromatic number 5. 

The first reduction of that graph took almost a year. Jaan Parts reported the construc-
tion of a unit-distance graph of 529 vertices and 2630 edges with chromatic number 5 on 
July 4, 2019. I found a unit-distance graph with 517 vertices by starting from a new large 
graph in late July [2019]. A week later, both Jaan [Parts] and I got down to 510 although 
with different methods. On March 7 [2020], Jaan was able to get it down to 509 vertices. 
Unit-distance graphs with chromatic number 5 with fewer than 500 vertices may exist 
but constructing them will likely require a different method. 

I expect that the chromatic number of the plane is 7. However, that might be the 
answer that is the hardest to prove. Assuming that unit-distance graphs with chromatic 
number 7 exist, constructing one appears extremely hard. On top of that, even if we can 
construct a graph with chromatic number 7, there may be no technique that can prove 
the chromatic number. 

Probably, the best result we can hope for in the foreseeable future is improving the 
lower bound to 6, which is already an enormous challenge. It is even not known whether 
there exists an odd-distance graph with chromatic number 6. In an odd-distance graph, a 
pair of vertices is connected if they are an odd distance apart from each other. The 
smallest known odd distance graph with chromatic number 5 has 21 vertices, so an order 
of magnitude smaller compared to the smallest known unit-distance graph with chro-
matic number 5. Constructing odd-distance graphs with chromatic number 6 is currently 
an important hurdle we need to overcome to make further progress on this intriguing 
problem.
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Chapter 54 
Can We Reach Chromatic 5 Without Mosers Spin 

Is there a unit-distance 5-chromatic graph (in the plane) without Mosers Spindle? I was sure 
there was. This is a natural question that naturally came to my mind while posing relevant 
open problems. After all, Aubrey de Grey used a dense in spindles construction because it 
worked, not because it would not work otherwise. Without Mosers Spindles, we achieve 
much gain in flexibility of embedding, and thus, possibly, getting a smaller graph. And so, I 
posed the following problem: 

Open Problem 54.1 (Soifer 2018). Find a 5-chromatic unit-distance graph in the plane of the 
smallest order that has no Mosers Spindle subgraph. 

April 2020 issue of Geombinatorics saw the appearance of the new author, 
D. H. J. Polymath, who summarized his/her/their results as follows: 

We present a survey of the state of knowledge concerning the chromatic number of 
regions of R2 bounded by a circle or by two parallel lines. Several of the designs we 
describe are hitherto unpublished and improve on previously known bounds. The 
authorship denotes that this work is a product of the Polymath 16 project. 

Once Aubrey de Grey constructed the first 5-chromatic unit-distance graph, he proposed to 
create a blog, “Polymath 16” where enthusiasts could share their ideas about the problem of 
finding the chromatic number of the plane and many related problems. 

I refer you to the original essay [Poly] in Geombinatorics for a systematic presentation of 
many new results and improvements of prior achievements, all related to circular disks and 
infinite strips in the plane. My interest here is in the authors’ finding a strip thin enough to 
forbid a Mosers Spindle and wide enough to contain a 5-chromatic unit-distance graph 
(Fig. 54.1). 

Let us look at the author(s) construction of a 5-chromatic unit-distance graph in such a 
strip. 

– We start by seeking a 4-chromatic graph with two specific vertices that are colored the 
same in any 4-coloring. Given such a graph that fits into a strip of a given height, we can 
construct a 5-chromatic graph within the same height plus ε. We have identified such a 

graph in a strip of height 11
p þ7 3

p 
12 ≈ 1:286748 constructed as follows: we define 54 unit 
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Fig. 54.1 A 4-chromatic unit-distance graph inside a strip slightly taller than 3
p
2
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vectors emanating from the origin, whose rotations from the (1, 0) are mπ 3 þ n arccos 5 6 ; 
m [0, . . ., 5], n [0, . . ., 4]. 

– We keep all points that are the sum of at most 4 such vectors and construct the graph 
G with those points as vertices and in which an edge joins each pair of points at unit 
distance. We find that the vertices at (0, 0) and (8/3, 0) have the same color in any 
4-coloring of G. 

We discard all vertices whose y-coordinate is outside the range - 11
p þ7 3

p 
12 , 3

p 
2 , thus 

leaving 61,216 vertices. 
We observe that the vertices at (0, 0) and (8/3 , 0) still have the same color in any 

4-coloring of this graph. Clearly, even a high-resolution picture of a graph with that many 
vertices and edges will fill the entire area and thus will not be a good illustration of the 
construction. 

Thus, we get a 5-chromatic unit-distance graph without a Mosers Spindle. ■ 

During 2021–2022, a group of Russian mathematicians, V.A. Voronov, 
A.M. Neopryatnaya, and E.A. Dergachev, constructed a series of 5-chromatic unit-distance 
graphs without a Mosers Spindle on 64,513 vertices [VND]. Their graphs “live” in 
Q 2

p 
, 3
p 

, 5
p 

×Q 2
p 

, 3
p 

, 5
p 

, which guarantees the absence of Mosers Spindles, 
because the appearance of the latter requires 11

p 
. 

In 2021, Marijn Heule enters the field and constructs the first relatively small 5-chromatic 
unit-distance graph without Mosers Spindles of order 1441 that appears in the October 2021 
issue of Geombinatorics [Heu5]. 

In consultations with Vsevolod Voronov, he looks for a reasonably small set of points in 
Q 2

p 
, 3
p 

×Q 2
p 

, 3
p 

(observe, no Mosers Spindles there), such that a pair of points at 
distance 2 is monochromatic in all 4-colorings. Heule then applies SAT solving techniques 
that were described in [Heu3] to further trim the graph. He ends up with a graph on 
721 vertices and 3948 edges. This graph, called T721, is shown in Fig. 54.2. The spindle 
argument turns it into a 5-chromatic unit-distance graph T1441 with 1441 vertices.
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Fig. 54.2 A 4-coloring of UD graph T721 

You may be wondering what is “spindle argument”? It is the idea used by Leo and Willie 
Moser in 1961 to create the Mosers Spindle, used in more sophisticated settings. Take a unit-
distance graph G that includes vertices a and b. Rotate G about a until the distance between 
b and its rotation image b’ becomes 1; call the rotated image G’. The final result is the union of 
G and G’ with all the newly created unit edges, such as bb’. 

On my request, on March 28, 2023, Marijn kindly sent me a visualization of his 1441-
vertex graph T1441 for the inclusion in this book. It was not shown in the original essay [Heu5] 
You can see T1441 in Fig. 54.3. 

Marijn observes: 

This graph is symmetric: a rotation by 60 degrees maps it onto itself. The symmetry is 
not a coincidence, but due to the trimming procedure: Every time a vertex-critical graph 
G was generated, the graph was extended by merging it with five copies of the graph 
rotated by 60, 120, 180, 240, and 300 degrees, respectively. The extended graph was 
used for the next iteration. The extension procedure improved the overall trimming 
effectiveness and produced a symmetric graph.



While the graph T1441 has no Mosers Spindles, it has plenty of unit equilateral triangles.

696 54 Can We Reach Chromatic 5 Without Mosers Spindles?

Fig. 54.3 5-chromatic unit-distance graph on 1441 vertices without Mosers Spindles 

Moreover, its building blocks are 4-chromatic unit-distance graphs on 10 vertices that 
are similar to the Mosers Spindle. Let us give it a name: The Heule Spindle. You can see 
it in Fig. 54.4. This kind of constructions were used before, the special in this graph is 
that it fits in Q 2

p 
, 3
p 

×Q 2
p 

, 3
p 

.
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Fig. 54.4 The Heule Spindle
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Chapter 55 
Triangle-Free 5-Chromatic Unit Distance Graphs 

Of course, I enjoyed constructions of Mosers-Spindle-free 5-chromatic graphs in the previous 
chapter. However, they included numerous unit triangles, and I asked for more in my 2019 
problem paper [Soi46]. 

Construct 5-Chromatic Triangle-Free UDG 55.1 (2019, [Soi46]). Construct a triangle-
free 5-chromatic unit-distance graph. 

Smallest 5-Chromatic Triangle-Free UDG 55.2 (2019, [Soi46]). Find a 5-chromatic 
triangle-free unit-distance graph of the smallest order. 

I do not really expect the smallest order graph to be found, but we ought to take steps in this 
direction. 

Why do I pose these problems when the smallest order 5-chromatic UDG without a 
triangle-free condition is not larger than the graph with this condition? The triangle-free 
condition makes the graph easier to embed. Moreover, the Exoo–Ismailescu result of 
Chapter 16 allows for a relatively small building block: the smallest unit-distance 4-chromatic 
triangle-free graph has only 17 vertices, whereas without a unit-distance requirement, the 
Grötzsch graph is not much smaller at 11 vertices. I, therefore, believe that in triangle-free 
unit-distance 5-chromatic graphs, we may succeed in lowering the order of the 5-chromatic 
unit-distance graph sooner than in the general case. 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597
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Chapter 56 
Jaan Parts’ Current World Record 

56.1 The Record 

In April 2020 issue of Geombinatorics, Dr. Jaan Parts, a microchip designer-engineer from 
Kazan, the capital of Tatarstan, Russia, presented an overview and classification of the state of 
hunting for 5-chromatic unit-distance graphs. I refer you to his 30-page Geombinatorics 
article [Par2] for important details. Parts’ record holder (in terms of the smallest number of 
vertices) is a graph on 509 vertices with 2442 edges (visualized in Fig. 56.1), created using a 
large subgraph on 374 vertices with 1860 edges (visualized in Fig. 56.2), and a small 
subgraph on 136 vertices with 564 edges (visualized in Fig. 56.3). 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_56&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_56#DOI
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Fig. 56.1 5-chromatic unit-distance graph on 509 vertices with 2442 edges



Fig. 56.2 Large subgraph L374 with 374 vertices and 1860 edges 

Fig. 56.3 Small subgraph S136 with 136 vertices and 564 edges. Vertices which can be used 
for connection to a large subgraph, are enlarged
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Parts elaborates [Par3]: 

All calculations were performed in Mathematica 10 on a laptop with processor Intel 
Core i7-2670QM, 2.2GHz, 4 cores/8 threads, 6 GB RAM . . .  

We have introduced a new graph minimization method. This method can be useful in 
various minimization problems, where it is possible to effectively check whether a 
necessary property is preserved or not. 

Initially, our method was conceived as not requiring special programs and large 
computing power, while providing a good local minimum. In this sense, our approach 
can be seen as an alternative to the approach of Heule [Heu3]. With regard to achieving 
record results, both approaches give comparable results after proper tuning. There are 
certain difficulties in comparing their computational efficiency. Heule estimated the 
total costs to compute his 529-vertex graph as 100,000 CPU hours. Later, he rated 1,000 
hours for a 510-vertex graph. We spent on the development of our approach roughly 
1,000 laptop hours, including writing of programs and the study of different graphs. A 
509-vertex graph can be found from scratch in about 100 laptop hours. 

In contrast to the approach of Heule with randomization and extraction of the (first 
available) unsatisfiable core, our reduction method looks through all the solutions and 
finds a global minimum for a given graph (but cannot work with as many vertices). The 
success of reduction is largely determined by the choice of the initial graph. Our 
approach reduces the impact of this choice. This allowed us to find a more efficient 
set of orbits and move a little further. 

As for the numerical results, they were obtained literally at the last minute. Not all 
options have been studied yet, which leaves the possibility of further progress. 

The July 2018 Special Issue of Geombinatorics was dedicated to the chromatic number of 
the plane and related problems. At that time the world record for the smallest 5-chromatic 
unit-distance graph belonged to Marijn Heule and stood at 553. I wrote in that issue “I am sure 
the size of the smallest 5-chromatic unit-distance graph will go down, perhaps to the 
neighborhood of ca. 300 vertices.” We have here a natural open problem, in which any result 
below 509 would be of interest, in number and even more so, in new ideas of achieving it. 

Open Problem 56.1 (Soifer 2018). Find a 5-chromatic unit-distance graph of the smallest 
order.
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56.2 Jaan Parts 

Jaan Parts 

My request for his life story, Jaan Parts honored in 2020 and updated on February 20, 2023.1 

I smeared the map of daily life, 
By splashing paint from a glass. 

– V.V. Mayakovsky 

When you have a blank sheet of paper, you think: well, what is there to write about? A 
work for a few minutes. Will fit in a couple of lines. But then the first words appear, like the 
first drops of rain, thoughts thicken into clouds, and before you have time to blink, puddles of 
colorful memories are already pouring in front of you – neither pass nor drive through. 

I was born exactly in the middle of winter 1976. It happened in the city of Kazan, in the 
best country in the world. My daughter Alice (who lives in the same city) is now one-two-
three-four years old (on the fingers of her right hand). If you ask her where we live, she will 
say, on planet Earth. 

1 The autobiography has been abridged in length while IMHO retaining its main ideas (A.S.)
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Teaching is a special kind of activity, it requires not only deep knowledge but also passion 
for the subject, the ability to look at it from different angles, the ability to constantly find 
something new and unexpected in it. This is the only way to ignite the light of knowledge in a 
student. Otherwise, it will only be a smoke, which will quickly disappear. You cannot teach 
anything by force, maybe only to march. When I entered graduate school at the Faculty of 
Radio Electronics (precisely in order not to march) and had to give lectures as a duty, it was a 
painful task for me. 

When America decided to destroy the education system in Russia (on the wave of success 
after the lucky collapse of the Soviet Union), it proposed: let us introduce our progressive 
system in your educational institutions. Of course, we immediately agreed: after the moun-
tains of gum fell on us and rivers of Coca-Cola flowed, after so many years of thirst, we were 
looking forward to something new and progressive. Now, however, many would like to return 
to the old system. I did my teaching duty for some time, but then I seized the moment and 
ran away. 

From aviation (which our country at that time began to joyfully destroy), I did not get 
much – I studied radio electronics. However, one of our teachers used to say: only beautiful 
planes fly. In my opinion, this statement can be safely extended to everything that is done by a 
person. 

In the first years of study at the university, we enthusiastically assembled ZX Spectrum 
computers from a heap of small logic microcircuits. It was a good school, first of digital 
electronics, and then of programming. From that time, I have retained my passion for 
optimization. Those computers had only a few tens of kilobytes of memory, the clock 
speed was just over a dozen megahertz, but for us these were inexhaustible resources. We 
created complex effects, while we used several tens of bytes of program code, and everything 
worked. Our computers are now millions of times more powerful and have a million times 
more memory. And they barely crawl. Maybe because beauty disappeared somewhere in our 
hurry? Recently, I read in Wikipedia that Aubrey de Grey also worked in the very company 
that produced the good old ZX. 

Now I continue to develop electronics and write programs for microcontrollers. From time 
to time, I find myself wanting to do science again. One time about three years ago, I watched a 
series of popular lectures on mathematics. The lecturer proudly said that mathematicians are 
not concerned with the question of whether it is possible to derive any practical benefit from 
mathematics. Wow, I also want to work on pure mathematics. 

I took up chromatic numbers by accident, inspired by the same lectures. The task was 
formulated quite simply so that one could understand what is required. Of course, not even a 
week had passed since I successfully coped with it and proved that 7 colors are needed. 
Though, by this moment, I was already careful enough to realize that if something worked out 
so quickly, then it must be a consequence of dark ignorance. And so it turned out. Knowl-
edgeable people advised Soifer’s book on coloring and added that one should not chase 
7 colors at once, even 5 colors would be a great achievement. 

Aubrey’s achievement soon happened, and the Polymath project, which immediately 
impressed me with a meaningful and friendly communication. As usual, I did not understand 
much, but I got caught up in a small task to find the maximum fraction of the plane, which can 
be guaranteed to have a proper coloring in five colors. I presented my results in the project, 
not hoping that they would interest someone. Suddenly, they arose a keen interest of Aubrey



himself, the great magician and wizard. Sometime later, I got the courage and asked him to 
teach me how to calculate chromatic numbers. He readily provided me with a working tool. 
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Gradually I got involved in the work on the project, leaving behind heaps of blunders, 
among which sometimes good ideas occurred. By my rough estimate, only one idea in ten 
worked. All the rest was either known for a long time or contained gross miscalculations or 
did not lead anywhere. But, like any novice who is not burdened with knowledge, I had no 
shortage of ideas. At some point, I became so insolent that I tried to compete with another 
great sorcerer, Marijn Heule, the ruler of all computers in the world. The funny thing is, not 
without some success. 

I already thought that it could not be any cooler, when at one point I received a letter from 
another celestial. This time, Alexander Soifer himself suggested me to write an article and 
publish it in the journal. In response spawned a large monster that could not fit in any gate. I 
had a natural assumption that after editorial changes, no more than 10% of the article will 
remain, and the rest will go straight to the trash can. Imagine my surprise when I saw that the 
article was published in full! Since little changed in my mathematical abilities lately, I have 
only one explanation for why this article was published. Apparently, Alexander was con-
quered by my literary talents. 

Some time passed, and I dropped kilobytes of eloquence on Alexander. He does not even 
suspect that I have accelerated and am preparing another epic work for his misfortune. I had 
the idea of going to the other extreme, but then I discovered that the shortest article in the 
world had already been written, and it was done by none other than Alexander himself. 

By now, I have the following evidence of my inordinate audacity: two great people 
translate my articles, catch tons of mistakes in them, and publish them in a journal. I feel 
that I have found myself in a dangerous position of the old woman from Pushkin’s fairy tale 
about the fisherman and the fish. The golden fish regularly builds palaces for me, and my 
appetites grow. It looks like it is not far from the broken trough. But it is already hard to stop. 
And now Alexander wants to insert me into his book. 

P.S.: More than two years have passed since then. A lot has changed. In co-authorship with 
Alexander and Aubrey, we wrote an article so short that it was even refused to be accepted in 
arXiv. Some of my modest achievements in the field of chromatic numbers have already 
become obsolete. The planet has changed. Only our inability to find a construction that brings 
the chromatic number of the plane to at least 6 does not change. What are my predictions? 
Apparently, it will be quite large. 

Aubrey lit the way for us. But this is a way in a dark labyrinth. Therefore, after a couple of 
turns, we have to go by touch again. Have you tried juggling balls? As long as you have three 
balls, this is quite easy because most of the time only one ball is in the air, the other two are in 
your hands. About the same happens with χ≥ 4. Three colors are in your hands immediately, 
and it remains to toss one more. With four balls, you have to keep track of two balls at once, 
which is much more difficult. The first to learn how to toss two colors at once was Aubrey, 
showing χ≥ 5. But now try to manage five balls! 

As experience (of our research) shows, if we limit ourselves to 4 colors, we can add 
vertices sequentially to a small graph in such a way that almost every new vertex will take on 
a strictly defined color, and only sometimes it will be necessary to choose one of two colors. It 
takes only a few dozen such forks and less than 1000 vertices, and we arrive at Aubrey’s 
construction proving χ≥ 5. We now know that a minimal 5-chromatic graph contains from



22 to 509 vertices. Now if we repeat the same approach, limiting ourselves to 5 colors, then 
the forks threaten to form at each of the first 500 steps and not only. But even 2100 coloring 
options are already too many. 
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However, Aubrey de Grey predicts that the χ≥ 6 conjecture will be proved during his 
lifetime. But Aubrey is a biogerontologist and claims that a person can very well extend his 
life to 1000 years, so such conjecture does not sound very promising. So, I’m making a more 
optimistic conjecture: proof of χ≥ 6 will come before I can juggle 5 balls. Although, to be 
honest, I do not force the training too much.



Part XI 
What About Chromatic 6? 

Isn’t 6 a perfect number? 

In this chapter we will look at some of the approaches toward constructing a 6-chromatic 
unit-distance graph. Perhaps, the third edition of this book will present a success in the 
direction of the perfect number 6. The ‘magnificent seven’ construction appears to be out of 
reach of today’s people, even those who are armed with computers and supercomputers.
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Chapter 57 
A Stroke of Brilliance: Matthew Huddleston’s Pro 

In February 2008, I sent the manuscript of The Mathematical Coloring Book to Springer. At 
about the same time, the Problems Section of the American Mathematical Monthly published 
the solution [OTH] of our interest here. I read it and was amazed at the Olympiad-like beauty 
of the short Matthew Huddleston’s solution of the part C of the problem proposed by Jim 
Owings. (It seems, no one else solved part C of the problem, including the proposer.) I have 
got to share it with you, for beauty is a rare commodity on our planet. Note that it appeared 
BG, i.e., Before de Grey, a whole 10 years before. 

It is convenient for me to introduce new natural definitions. Let us call a graph G 
two-distance graph and denote it by G{1, d}, 1 < d, if its vertices are distance 1 or distance 
d apart. You understand, of course, that we do not need to use analogously defined G{c, d} 
because a scaling by c brings the smaller distance to 1. In coloring a two-distance graph, we  
forbid monochromatic pairs of distance 1 and distance d. Chromatic number of a two-distance 
graph G is naturally the minimum number of colors assigned to the vertices of G that forbids 
monochromatic unit and monochromatic d. 

In 2006, Jim Owins asked, among other, the following question, which I am reformulating 
to serve our purposes. 

Problem 57.1 (Proposed by Jim Owins in 2006 [OTH]). Is there a d > 1 and a two-distance 
graph G = G{1, d}, such that χ(G) ≥ 6? 

Solution by Matthew Huddleston (February 2008, [OTH], Washington State University, 
Pullman). American Mathematical Monthly does not report receiving any other solutions. 

Huddleston sets out to prove the existence of the two-distance graph with the vertex set E2 

with the chromatic number at least 6: 

χ E2 1, 
1þ 5

p 
2

≥ 6: 

Note: all pairwise vertex distances in a regular unit pentagon are 1 and 1þ 5
p 
. 

© Alexander Soifer 2024 
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Proof Assume the plane is colored in 5 colors without creating monochromatic pairs of 

distance 1 and 1þ 5
p 
2 . Let S be the set of five points forming the vertices of a regular pentagon 

of side 1. Let Q be the set of ordered quintuples chosen from S, so that Q has 55 elements. 
Color Q by assigning to each of its 5-tuples the color of the sum of its five entries in the 
original coloring of the plane. 

For any 4-tuple of points in S, note that adding the sum of all its entries to each of the five 
points of S produces a regular pentagon of side 1, so these five points have different colors. 
Therefore, each of the five colors is assigned to 54 of the 55 elements of Q. On the other hand, 
permuting an ordered 5-tuple in Q cannot change its color.. The number of permutations of a 
given quintuple is a multinomial coefficient of the form 

5 

a1, a2, a3, a4, a5 

where aj is the number of occurrences in the quintuple of the jth element of S. This 
multinomial coefficient is a multiple of 5 except for the cases in which one of the aj is 
5 and the rest are 0. In order for the sizes of all the color classes in Q to be multiples of 5, these 
5 exceptional cases must all be assigned the same color. Equivalently, the points of 5S all have 
the same color. This shows that in any regular pentagon with side 5, all vertices have the same 
color, so that any two vertices with distance 5 have same color. An isosceles triangle with 
sides of length 5, 5, 1 thus has vertices of the same color, and that is a contradiction. ■
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Chapter 58 
Geoffrey Exoo and Dan Ismailescu, or 2 Me 
2 Forbidden Distances 

n for 

We have a team of a Geombinatorics Editor Geoffrey Exoo and Dan Ismailescu. You may 
recall Chapter 16 of this book dedicated to their construction of unit-distance graphs of 
successive orders 21, 19, and 17 of girth 4 and proving that 17 is best possible, thus settling 
my open problem 15.4 posed in the first edition of this book [Soi44]. You also saw Geoffrey’s 
lower bounds for Ramsey Numbers, the Schur number 5, and many more results. 

Geoffrey tells me – and I absolutely trust him – that he and Dan had their 5-chromatic unit-
distance graph early, but life’s events interfered, delayed the final steps, and they barely 
missed to be first. Having acknowledged – as they ought – de Grey’s priority, they published 
their graph elsewhere [EI3], even though I was willing to publish it in Geombinatorics. In  
Geombinatorics, they are building tools clearly aimed at constructing a 6-chromatic unit-
distance graph. In the 2018 Geombinatorics’ Special Issue XXVIII(1), they first construct 
(fairly) small two-distance graphs in the plane of the chromatic number at least 
5 [EI2]. Summing up their results, they first prove the following theorem, which we have 
informally used earlier in this book. 

58.1 The Spindling Method 

We have already used the spindling method several times in this book. Let the authors of this 
chapter formalize it for us. 

Theorem 58.1 [EI2]. Let G be a finite graph with vertex set V = {1, 2, . . ., n} and edge set E. 
Assume that the chromatic number of G, χ(G) = k and that in every k-coloring of G, vertices 
1 and 2 are colored identically. 

Let G’ be a copy of G such that 1 = 1' and 2 ≠ 2' . Then the chromatic number of the graph 
H with edge set E [ E' [ {{2, 2' }} is ≥ k + 1. 

© Alexander Soifer 2024 
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Proof Assume that H is k-colorable and let c be such a k-coloring. Then c(1) = c(2) by 
assumption. At the same time, since G' is a copy of G, it follows that c(1' ) = c(1) = c(2' ). But 
then vertices 2 and 2' have the same color, which violates the condition that the endpoints of 
the edge {2, 2' } must be colored differently. ■ 

In a word, we rotate the graph G about its vertex 1 until the distance between vertex 2 and 
its image 2' under the rotation reaches the distance we desire. And we often desire the unit 
distance.:) 

58.2 Two-Distance Graphs of Chromatic Number At Least 5 

Result 58.2 [EI2]. χ(E2 {1, d}) ≥ 5 for the following values of d: 

5
p þ 1 

2 
, 3 
p 

, 
6

p þ 2
p 

2 
, 
1 
2 

31=4 . 2 2 
p 

þ 2 3 
p 

þ 2, 3=2þ 33 
p 

=6, 
5

p 

3
p , 2,  2 

3
p 

For each listed above value of d, they construct a graph. I am choosing two of their graphs, 
one small and another beautiful, to let you taste their proofs. 

χ E2 1, 2f g  ≥ 5: 

Proof Consider the 26-vertex {1,2}-graph G whose vertices are given by the following 
coordinates:
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Fig. 58.1 26-vertex graph G with 75 unit edges (shown in blue) and 10 edges of length 
2 (shown in red) 

It can be verified that this graph (Fig. 58.1) has 75 unit edges and only 10 edges of length 
2. Since the mid-point of any edge of length 2 is also a vertex of the graph, these long edges 
are shown in Fig. 58.1 with curved line segments. 

The authors use both Maple and Sage to verify that χ(G{1, 2}) ≥ 5. Given the relatively 
small order of this graph, a computer-free proof is certainly possible. It is a surprising fact that 
only 10 long edges sufficed to raise the chromatic number from 4 to 5. ■ 

χ E2 1, 2= 3 
p 

≥ 5: 

Proof Consider the 103-vertex 1, 2 3
p

-graph shown in Fig. 58.2.
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Fig. 58.2 The 103-vertex 1, 2 3
p

-Exoo–Ismailescu graph with chromatic number 5. Edges 

of length 1 are shown in red; edges of length 2= 3
p 

are shown in blue 

This graph is too large to verify its chromatic number by hand: it has 312-unit edges, 
177 edges of length 2= 3

p 
, and chromatic number of at least 5. Despite its size, Sage takes 

only a couple of minutes to verify this. A list of vertices is available at the URL [EI4]. ■ 

58.3 Two-Distance Graph of Chromatic Number At Least 6 

In January 2020, in Geombinatorics, Geoffrey Exoo and Dan Ismailescu continue their 
direction of studying two-distance graphs. They create the second two-distance graph of 
chromatic number 6 [EI5], thus strengthening their result 56.3. 

Theorem 58.5 χ(E2 {1, 2}) ≥ 6.



]
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Proof I am presenting a slightly edited proof by Exoo and Ismailescu. Let us construct a 
(1,2)-distance graph of the chromatic number at least 6. We build this graph in several stages, 
using vertices with coordinates of the form a 3

p 
=12þ b 11

p 
=12, c=12 þ d 33

p 
=12 where 

a,b,c, and d are integers. We will use the following notation: 

a, b, c, d½ ]≔ 
a 3
p 
12 

þ b 11
p 
12 

, 
c 
12

þ d 33
p 
12 

: 

Step 1 Consider the following set S of 23 points in the plane: 

S≔ 0; 0; 0; 0½ ], 0; 0; 0; - 4½ ], 0; 0; - 6; - 2½ ], 0; 0; - 6; 2½ ], - 6; 0; 0; - 2½ ],
- 4; 0; 0; 0½ ], - 4; 0; - 6; - 2½ ], - 4; 0; - 6; 2½ ], - 2; 0; 0; - 2½ ], - 2; 0; - 6; - 4½ ,

- 2; 0; - 6; 4½ ], 0; - 6; - 6; 0½ ], - 5; - 3; 3; 3½ ], - 5; 3; - 3; 3½ ], - 2; - 6; 0; 0½ ,

- 2; - 6; 0; - 4½ ], - 2; 6; 0; 0½ ], - 2; 6; 0; - 4½ ], - 6; - 6; 0; 0½ ], - 6; 6; 0; 0½ ,

- 4; 0; 0; - 4½ ], 0; 0; - 12; 0½ ], - 8; 0; 0; 0½ ] : 

Next, consider all the points in S together with their reflections across the x-axis and 
across the y-axis, respectively. One obtains a new set T that has 57 points. For k = 0, ..., 
5, let Uk be the image of T under a rotation through the angle kπ/3 about the origin and 
define 

V : U0 [ U1 [ U2 [ U3 [ U4 [ U5: 

It is easy to check that the image of [a,b,c,d] under a rotation through π/3 about [0, 0, 0, 0] 
is [(a- c)/2, (b- 3d)/2, (3a + c)/2, (b + d)/2]. Let G be the {1,2}-graph, whose vertex set are 
the points in V. 

Claim 1 The graph G has 205 vertices, 966 edges of length 1, 423 edges of length 2, and 
exactly 18 5-colorings. 

Step 2 We construct a slightly larger graph H, by including the following nine additional 
vertices to the vertex set of G: 

A≔ - 2, 0, 0, - 6½ ],B ≔ 8, 0, 0, 4½ ], - 4, - 6, - 6, - 4½ ], - 4, 6, 6, - 4½ ], - 3, - 3, - 3, - 5½ ,

- 4, 0, - 12, 4½ ], - 4, 0, 12, 4½ ], 7, - 3, 3, 3½ ], 7, 3, - 3, 3½ ]: 

Claim 2 The graph H defined above has 214 vertices, 1004 edges of length 1, 446 edges of 
length 2, and exactly 35 5-colorings. Moreover, in each of these colorings, vertices A and B 
are of the same color (Fig. 58.3).
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Fig. 58.3 The {1,2}-graph H. Vertices A and B appear in black, the other seven new vertices 
in red 

Note that the distance between A and B is exactly 5. Rotating the vertices of H about vertex 
A by an angle arccos(49/50) = arcsin 3 11

p 
=50 creates a copy of H, which we denote H′ . 

The image of vertex B under this rotation is a point B′ 2 V(H′ ), and the distance between B and 
B′ is exactly 1. 

Let K be the {1,2}-graph whose vertex set is V(H) [ V(H′ ). It can be checked that K has 
426 vertices, 2009 edges of length 1, and 892 edges of length 2. More importantly, every 5-
coloring of K forces vertices A, B, and B′ to receive the same color. Since AB = AB′ = 5 and 
BB′ = 1, it follows that x(K) ≥ 6. This concludes the proof of Theorem 58.5. 

Note 1 The final argument in the proof of Theorem 58.5 involves an isosceles triangle of side 
lengths 5, 5, and 1, exactly the same triangle as Matthew Huddleston used in 2008 [OTH] (see 
Chapter 57).
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Note 2 All vertices of the graph K have coordinates in Q 3
p 

, 11
p

because the smallest 

angle of an isosceles triangle with sides 5,5 and 1 is arccos 49=50ð Þ= arcsin 3 11
p 

=50 .■ 

Computations We have two counting claims to prove. The assertions pertaining to edge 
counts for both of the graphs can be easily obtained by direct computation using the data 
available at [EI6], [EI7]. The assertions that there are exactly 18 5-colorings for graph G, and 
35 5-colorings for graph H require more difficult computations. 

To find all 5-colorings for these graphs, we used a simple recursive exhaustive search 
procedure that allowed us to divide the work across multiple processors. The outline of the 
search procedure is given below. Before the procedure is used, the vertices are ordered as 
follows.

• The vertices are partitioned into orbits based on the dihedral group generated by the 
transformations used in the construction (reflections in the axes and the π/3 rotation).

• Vertices within an orbit are sorted by polar angle: 0 ≤ θ ≤ 2π, and at all stages appear 
consecutively in the vertex ordering.

• Vertex orbits are sorted in descending order by degree.
• In case of ties, vertex orbits adjacent to the largest number of vertices that appear earlier in 

the ordering are listed first. 

Then each vertex is assigned the NC (uncolored) value, and the following search procedure 
is called with vertex 0 and the list of colors as parameters. 

The computations were performed using 48 threads on an AMD EPYC 7551 32-Core 
(64 Virtual Core) Processor and were completed in 3780 seconds of elapsed time and 
81,000 seconds of total processing time for G, and 5120 seconds of elapsed time and 
95,000 seconds of total processing time for H. In each case, all but three of the threads 
were finished halfway through the computation, which was not surprising, given that our 
method for splitting the work was fairly crude. 

Exoo and Ismailescu include their computer program in the Geombinatorics paper [EI2]; 
please, consult it there. ■ 

58.4 Geoffrey Exoo 

On August 31, 2020, Geoffrey Exoo answered my request to write his life story. This section 
is all his. 

I grew up in Cleveland, Ohio, went to the University of Michigan, and landed my first real 
job as a Programmer/Statistician for the Michigan Employment Security Commission. 

I may be the only Combinatorialist whose first publication is in the “Michigan Manpower 
Review Quarterly,” an article on unemployment rates in the automobile industry and how 
they were computed in 1971. 

While in Arizona later that year I tried to get a programmer job at Kitt Peak. The job was 
under Civil Service and one way to gain “points” for Civil Service jobs was to take the GRE 
exam, which I did, and listed Michigan as one of the three places to have the scores sent. 

I did not get the job at Kitt Peak, though I did have a great time interviewing, but ended up 
returning to Michigan as a part-time graduate student and part-time programmer for few 
years.
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Geoffrey Exoo 

During that time, I had a variety of amusing programming jobs, including jobs which 
involved using lasers to make finger holes in bowling balls, making microporous membranes 
to filter Japanese beer, processing TV ratings data, and evaluating water filtration systems, to 
name a few. My grad studies were sort of off and on, but at one point, I learned that Graph 
Theory was a good dissertation topic if one wanted to land a position at Bell Labs, which I 
did, more because it was the center of the Unix world than anything to do with Mathematics. 

When I was a grad student, I saw a few talks on using computers to make progress on 
Graph Theory problems. It appeared to me that the techniques being described were pretty 
elementary. So, I always had it in mind to try to do better. 

Eventually, I took Frank Harary’s Graph Theory class and wrote my dissertation with him 
and did manage to end up at Bell Labs. I left there shortly after the 1982 consent decree that 
broke up AT&T. 

I applied to Indiana State, remembering a close friend who went there, always touted it as a 
warm, friendly, and supportive place, a view I have never questioned. 

I had one brief respite from the academic world in the last few years of the twentieth 
century, working on transportation problems for a large trucking company. Their fundamental 
problem was nearly equivalent to a Traveling Salesman Problem with a sales force of 15,000 
and close to 100,000 places to visit – not as easy as it sounds. Good fun though.
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58.5 Dan Ismailescu 

Dan Ismailescu 

On September 4, 2020, Dan Ismailescu answered my request to write about himself. 

I was born in Romania, two years after Ceausescu rose to power. Both my parents were 
school math teachers; it turned out that the apple did not fall far of the tree. Growing up during 
tough economic and politically oppressive times, I regarded mathematics both as a refuge and 
a source of entertainment. I remember mulling over a hard problem for days on end and 
enjoying doing so. I am grateful to my teachers and to my parents for encouraging and 
supporting my inclinations. 

Quite predictably, I went to college and studied mathematics; after graduation, I taught 
high school for seven years. After the collapse of communism in Eastern Europe, I came to 
the US on a scholarship and completed my graduate degree at Courant Institute under the 
guidance of János Pach. Since 2001, I have been happily employed at Hofstra 
University, NY.
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I always liked problems that are easy to state but difficult to solve. That is why when I 
discovered the Hadwiger-Nelson problem in Soifer’s book, I was instantly hooked. 

I first contacted Geoff in 2013 in connection to a paper of his on ε-unit distance graphs, and 
we started working on chromatic numbers of Euclidean spaces. Several years and joint papers 
later, we still enjoy our collaboration. I do feel we complement each other well mathemati-
cally and we share similar views in regard to the pace of our research. Our relationship may 
appear unusual to many: there are months of inactivity followed by weeks during which we 
may exchange 20+ emails per day. Geoff and I never met, and we spoke live exactly once 
(over Skype). In some sense, we are pioneers of the social distancing practice.
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Chapter 59 
Jaan Parts on Two-Distance 6-Coloring 

The same October 2020 issue of Geombinatorics that carried Exoo-Ismailescu essay on 
6-chromatic two-distance graphs contains Jaan Parts’ paper on the same topic [Par1]. 

This train of thought left the station in October 2019, when Aubrey de Grey explicitly 
defined the Huddleston Graph GHud [G2], as reported in [Par1]: 

GHud =P� P� P� P� P, 

P= rsin 
2πk 
5 

, r cos 
2πk 
5 

; r= 
5þ 5

p 
10 

; k 2 Z , 

where P is a regular pentagon of side 1 and � defines the Minkowski sum. In this case, the 
vertices of the graph GHud are the union of all sums of the vertex coordinates of the summand-
graphs, and edges connect all vertex pairs that are at a forbidden distance apart. The forbidden 

distances, as you recall, are 1 and the golden ratio d= 1þ 5
p 
2 (also known as the diagonal of a 

regular pentagon of side 1). 
The graph GHud is fairly small: its vertices count 126 and edges of lengths 1 or d count 350. 

As Huddleston showed, in any 5-coloring, the farthest vertices from the center of the graph 
GHud form monochromatic pairs with a distance 5; the central vertex must have the same color 
(Fig. 59.1). 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_59&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_59#DOI
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Fig. 59.1 Visualization of the Huddleston Graph with monochromatic vertices shown in 
black 

These observations allow Parts to dramatically reduce the size of the desired graph. The 
graph G16 that he shows on the right side of Fig. 59.2 is a 16-vertex subgraph of GHud; it has a 
symmetry group of order 48 and 28 edges each of length 1 or d. 

Edges of length 1: 

(1,2), (1,3), (2,4), (2,5), (3,4), (3,6), (4,7), (4,8), (5,6), (5,8), (5,9), (6,7), (6,10), (7,9), (7,12), 
(7,13), (8,10), (8,11), (8,13), (9,11), (10,12), (11,14), (12,15), (13,14), (13,15), (14,16), 
(15,16). 

Edges of length d (the golden ratio): 

(1,5), (1,6), (2,3), (2,6), (2,7), (2,9), ((3,5), (3,8), (3,10), (4,9), (4,10), (4,11), (4,12), (5,13), 
(6,13), (7,10), (7,14), (8,9), (8,15), (9,13), (9,14), (10,13), (10,15), (11,15), (11,16), (12,14), 
(12,16), (14,15). 

Now Parts is ready to construct a 6-chromatic two-distance graph G31 on just 31 vertices. 
All he needs to do is to apply spindling (see Theorem 58.1) to his graph G16 (Fig. 59.2 on the 
left). The construction and proof follow.

https://doi.org/10.1007/978-1-0716-3597-1_58#FPar1
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Fig. 59.2 Jaan Parts’ 31-vertex two-distance graph G31 and its building block G16 

Theorem 59.1 (Parts [Par1]). G31 is a 31-vertex two-distance 6-chromatic graph. 

Proof Parts creates the 31-vertex graph G31 (left in Fig. 59.2) by spindling the graph G16, i.e., 
rotating G16 around its vertex 1 by the angle arccos((95 + 5

p 
)/100), which gives an additional 

edge of unit length between the copies of vertex 16. This forces at least one of the two copies 
of vertex 16 to be of a different color than vertex 1. The graph G16 contains 5-clicks (thus 
requiring at least 5 colors), so it suffices to prove that in any 5-coloring of G16 vertices 1 and 
16 are of the same color. 

Partition the vertices of G16 into the following subsets: {1}, {2,3,5,6}, {4,7,8,9,10,13}, 
{11,12,14,15}, and{16}. 

The vertices {1,2,3,5,6} form a 5-clique, thus they must be assigned different colors: 
1-white, 2-green, 3-blue, 5-red, and 6-yellow. 

The set {4,7,8,9,10,13} has three independent subsets (i.e., no edges inside subsets): 
{4,13}, {7,10}, and {8,9}. The colors green, blue, red, and yellow can be used in 
{4,7,8,9,10,13} only once. This means that one of {4,13}, {7,10}, {8,9} must have both of 
its vertices colored white. This forbids all vertices of the set {11,12,14,15} to be white, which 
forces vertex 16 to be white, i.e., the same color as vertex 1. ■ 

Parts’ Theorem and William Gasarch’ remark prompt me to pose the following natural 
open problem: 

Open Problem 59.2 (Soifer 2023). Find the smallest (in the number of vertices) 
two-distance 6-chromatic graph.
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Chapter 60 
Forbidden Odds, Binaries, and Factorials 

60.1 One Odd Problem 

In March 1994, I arrived in Florida Atlantic University for the 25th Southeastern International 
Conference on Combinatorics, Graph Theory, and Computing. My main interest was as 
always to visit with Paul Erdős. This time he introduced me to Moshe Rosenfeld and his 
new problem. Good fortune preserves the image of that day: 

From the left: Moshe Rosenfeld, John H. Conway, and Alexander Soifer, Florida Atlantic 
University, March, 1994 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_60&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_60#DOI
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Definition 60.1 (Rosenfeld [Ros1]). The odd-distance graph Eodd is the graph with vertex-
set E2 in which two vertices are adjacent if and only if the distance between them is an odd 
integer. 

Moshe showed that Eodd contains a subgraph K4, i.e., its chromatic number is at least 4. He 
asked whether the chromatic number χ(Eodd) of  Eodd is finite. In fact, while the problem was 
new, the absence of K4-subgraphs was not. It followed from the much more general 1974 
result of Graham, Rothschild, and Straus [GRSt]. 

Theorem 60.2 In En there exist n + 2 points, the distance between any two of which is an odd 
integer if and only if n 14 (mod 16). 

In the necessary part of the proof, the authors used a very old result about determinants by 
the leading Victorian mathematician Arthur Cayley. A natural problem comes to mind: 

Problem 60.3 Find χ(Eodd). 

In 2009, Ardal, Manuch, Rosenfeld, Shelah, and Stacho [AMRSS] improved the lower 
bound to χ(Eodd) ≥ 5. Their construction started with a set S of points of a unit triangular 
lattice, followed by a spindling method (Theorem 58.1), i.e., rotation of S about one of its 
points until another point becomes distance 1 from its original position and considering the 
union of S and its rotated image – 21 vertices in all. 

They also showed (ibid.) that the chromatic number of the graph with rational plane Q as 
vertex set with forbidden monochromatic odd distances χ(Qodd) is 2, just like in unit-distance 
rational plane. 

Let us denote the (Lebesgue) measurable chromatic number of the odd-distance graph by 
χm(Eodd). In 2009, the MIT undergraduate Jacob Steinhardt [Stein] proved the following 
result using tools of spectral graph theory, which may be beneficial in solving other coloring 
problems. 

Theorem 60.4 (Steinhardt [Stein]). χm(Eodd) ≥ 0א. 

As you know, there are quite a few odd numbers :). This fact and the result in the 
measurable case inspired me to formulate a general case conjecture in 2009. In print it 
appeared in my chapter [Soi50] of the 2015 book Open Problems in Mathematics that John 
F. Nash, Jr. and Michael Th. Rassias invited me to write. 

Conjecture 60.5 (Soifer, 2009). χ(Eodd) ≥ 0 א. 

All Marijn Heule’s emails are insightful and worthy of studying. On October 25, 2018, I 
received an email with “odd/odd-distance graphs” on the subject line: 

I observed something interesting, while trying to find a unit-distance graph with 
chromatic number 6: I had several promising graphs, but computing the chromatic 
number appeared very hard. I was actually able to find 5 colorings of several of these 
graphs by adding lots of non-unit edges. In particular I connected all points that are 
distance (2i+1)/(2j+1) apart with i, j in N. This was somewhat surprising to me as the 
edge density increased significantly, while the chromatic number did not increase at all 
(all graphs have chromatic number 5). 

Let an odd/odd-distance graph be a graph for which two points are connected if and 
only if they are exactly distance (2i+1)/(2j+1) apart with i, j in N. Now the main question 
that I have been thinking of:

https://doi.org/10.1007/978-1-0716-3597-1_58#FPar1
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is there a relatively small odd/odd-distance graph with chromatic number 6. So far I 
was not able to find any odd/odd-distance graph with chromatic number 6. The smallest 
odd/odd-distance graph with chromatic number 5 that I found has 21 vertices. If it is 
already hard to find an odd/odd-distance graph with chromatic number 6, it is not 
surprising that it is hard to find a unit-distance graph with chromatic number 6. 

In October 2021, Marijn Heule publishes an essay in Geombinatorics [Heu5], which starts 
with his own pretty visualization of the 5-chromatic odd-distance graph (ODG) obtained in 
2009 [AMRSS] (Fig. 60.1). 

Fig. 60.1 The smallest known 5-chromatic ODG by Ardal et al. in Marijn Heule visualiza-
tion. The shortest edges have length 1, while bold edges have length 3. Some edges are curved 
to avoid overlap in the picture 

Marijn continues: 

I tried to construct a 6-chromatic OD graph, but this turned out to be a challenge. Recall 
that the smallest known 5-chromatic OD graph has only 21 vertices. However, many 
large and dense OD graphs are 5-colorable. This is somewhat unexpected. Soifer 
conjectures that there are odd-distance graphs in the plane with infinitely large chro-
matic number [Soi50] and Steinhardt showed that there is no finite measurable coloring 
of the OD graph of the plane [Stein]. However, no OD graph with chromatic number 6 is 
known. I would like to pose it as a challenge with a prize. 

The Heule Challenge ($500) 60.6 Construct an odd-distance graph with chromatic number 
6 or prove that none exists. 

In conclusion, Marijn Heule observes: 

What makes OD graphs with chromatic number 6 interesting? As described above, 
some patterns observed in valid 4-colorings of dense UD graphs can also be observed in 
4-colorings of OD graphs with significantly fewer vertices (points). Therefore, knowing
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which points form an OD graph with chromatic number 6 can be a big help in 
constructing UD graphs with chromatic number 6 (if they exist). 

If no OD graph with chromatic number 6 exists, then there is clearly no UD graph 
with chromatic number 6. Hence the chromatic number of the plane would be 5. There 
are several other interesting open questions related to odd-distance graphs. One question 
that is potentially related to the challenge is whether all triangle-free graphs can be 
drawn as an odd-distance graph in the plane. As a possible first step in this direction, one 
could try to show whether the Mycielski graphs [Myc] are odd-distance graphs. A 
positive answer would solve the challenge and even imply the existence of odd-distance 
graphs with infinitely large chromatic number. 

The next, January 2022, issue XXXI(3) of Geombinatorics carried Jaan Parts’ essay 
answering Marijn Heule’s challenge, where Parts constructs a 6-chromatic odd-distance 
graph of a relatively small order and shares his ideas about this “Odd Problem” and its 
relationship to unit-distance graphs [Par4]; see there details of construction and the reduction 
procedures. Parts’ odd-distance 6-chromatic graph is visualized in Fig. 60.2. 

Fig. 60.2 The 6-chromatic 234-vertex odd-distance graph and its 6-coloring. The vertices of 
the core frame are enlarged.
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Parts sums up his essay as follows. 

We confirmed the existence of 6-chromatic ODGs in the plane, determined that it is 
enough to use edges of four lengths {1, 3, 5, 7}, found a simple construction, changing 
the parameters of which we can get an infinite family of 6-chromatic 306-vertex ODGs, 
and even reduced the required number of vertices to 234. 

Parts is waiting for Heule to offer a prize before he dives into constructing a 7-chromatic 
odd-distance graph (ODG): 

One could still dig here. However, for the 7-chromatic ODG, the award has not yet been 
announced, so this is a pointless exercise. (And here we look at Marijn inquiringly.) 

Grapevine brought me news about James Davies, a graduate student at the University of 
Waterloo, Canada, whom I contacted on October 1, 2022. The same day, he sent me his paper 
[Dav], which was to appear two days later in arXiv. In it, Davies proves in the positive my 
Conjecture 60.5: 

Theorem 60.7 ([Dav], 2022.) Every finite coloring of the plane contains a monochromatic 
pair of points at an odd distance from each other. 

To my offer, “Welcome to submit this paper and its sequel to Geombinatorics,” Davies 
replied on October 2, 2022, as follows: 

Thank you! I still need to decide where to submit, but I am certainly considering 
Geombinatorics. 

There is another paper that I do plan to submit to Geombinatorics (although admit-
tedly it may be a while before I have the time to write it properly). It is a construction of 
unit distance graphs in R^d with chromatic number d+2 and arbitrarily large girth, for 
d=2 I think the construction is simpler than O’Donnell’s as the embedding does not 
require the same case work. 

My inquiry about a journal publication of [Dav], James Davies answered on June 5, 2023: 
“I ended up submitting the odd distance paper to Geometric and Functional Analysis back in 
October [2022], I am awaiting reviews still”. 

On December 23, 2023, James Davies informed me that this paper has finally been 
accepted by Geometric and Functional Analysis journal. 

Gil Kalai, a professor emeritus at the Hebrew University of Jerusalem, while reporting 
Davies’ Theorem, posed the following problem, in which he reproduced Fig. 7.2 that appears 
in this book:1 

Challenge 60.8 What is the smallest odd distance between a monochromatic pair in the 
Hoffman–Soifer coloring of Fig. 7.2? 

1 https://gilkalai.wordpress.com/2022/10/19/james-davies-every-finite-colouring-of-the-plane-
contains-a-monochromatic-pair-of-points-at-an-odd-distance-from-each-other/

https://gilkalai.wordpress.com/2022/10/19/james-davies-every-finite-colouring-of-the-plane-contains-a-monochromatic-pair-of-points-at-an-odd-distance-from-each-other/
https://gilkalai.wordpress.com/2022/10/19/james-davies-every-finite-colouring-of-the-plane-contains-a-monochromatic-pair-of-points-at-an-odd-distance-from-each-other/
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In his recent lecture,2 Davies formulated two important extensions of Theorem 60.7, by  
James Davies of Cambridge, Rose McCarty of Princeton, and Michał Pilipczuk of the 
University of Warsaw: 

Theorem 60.9 Let f(x) = anx
n + ⋯ + a0 be a polynomial with integer coefficients and an ⩾ 

1. Then, every finite coloring of the plane contains a monochromatic pair of distinct points at a 
distance of f (x) from each other for some integer x. 

Theorem 60.10 Every finite coloring of the plane contains a monochromatic pair of points 
whose distance from each other is a prime number. 

As you can see, prime numbers make their first appearance in the coloring world on the 
plane! 

On June 5, 2023, James Davies kindly sent me a present draft with these two theorems 
[DMP]. He expects to submit it to arXiv in a few weeks, and then to a journal. 

Indeed, on December 23, 2023, Davies informed me that their trio submitted this paper to 
Israel Journal of Mathematics. 

Dr. James Davies is presently the Gott Research Fellow in Mathematics at Trinity Hall, 
Cambridge. 

60.2 Forbidden Binaries and Factorials3 

The odd-distance graph problem reminded me of a fantastic problem, used in 2010 in the 27th 
Colorado (now called Soifer) Mathematical Olympiad. It was proposed by the 1990 and 1991 
first prize winner and now professor at Ohio State University Matthew Kahle. There is a 
two-way bridge: mathematical research provides a rich source for creating original Olympiad 
problems, and conversely, Olympiad problems often inspire “further explorations,” open 
problems and exciting research work. 

Colorful Integers 60.11 (M. Kahle, 2008, [Soi55], [Soi40]). 

A. What is the minimum number of colors necessary for coloring the set of positive integers 
so that any two integers which differ by any power of 2 are colored in different colors? 
(Observe that 1 is a power of two: 20 = 1). 

B. What is the minimum number of colors necessary for coloring the set of positive integers 
so that any two integers which differ by any factorial are colored in different colors? 

Solution of 60.11.A Clearly 3 colors are necessary, since the numbers 1, 2, 3 pairwise differ 
by powers of 2 and thus require three distinct colors. On the other hand, coloring the positive 
integers cyclically modulo 3 does the trick because under this coloring the difference between 
two numbers of the same color is a multiple of 3, which is never equal to a power of 2. So 
3 colors are also sufficient. ■ 

Solution of 60.11.B The first solution was found by Adam Hesterberg, who was a high 
school student at the time (he is now a lecturer in computer science at Harvard University) and

2 https://video.renyi.hu/video/james-davies-odd-distances-in-colourings-of-the-plane-530 
3 The material of Section 60.2 first appeared in [Soi55].

https://video.renyi.hu/video/james-davies-odd-distances-in-colourings-of-the-plane-530


solved the problem in one day. In order to prove the existence of a mysterious “r”, Adam used 
nesting intervals. In mathematics we often prove existence without discovering the value of 
the existing object. Bob Ewell calculated the value of Adam’s ”r.” However, on October 
11, 2016, Matthew Kahle sent me a solution that explicitly determined the value of one such 
mysterious “r”. I choose to present Kahle’s solution.
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Assume 3 colors suffice. Since 1! = 1 and 2! = 2, any three consecutive integers must be 
colored in 3 distinct colors a, b, c. Numbers 1 through 6 must be colored a, b, c, a, b, c. 
Accordingly, number 7 must be colored a, but this is not allowed because 7 – 1 = 3! – a 
contradiction. Thus, at least four colors are needed. 

Suppose for a moment that there exists a number r, (necessarily irrational), such that n!r is 
in the interval [1, 3] (mod 4), for every positive integer n. We will determine which of the 
4 colors to use on the integer k by looking at kr (mod 4): the color-defining-intervals [0,1) 
[1,2) [2,3) [3,4) (mod 4) determine the 4-coloring of the set of integers Z. 

Thus defined 4-coloring satisfies the conditions of the problem. Indeed, suppose |i – j| = n! 
for some n. By multiplying through by r, we get |ri – rj| = rn!, which is between 1 and 3 (mod 
4). In particular, ri and rj belong to different color-defining-intervals modulo 4, and thus i and 
j received different colors. 

All that is left to prove is the existence of the desired r. The following lemma is useful. 

Lemma 60.12 For k ≥ 1, we have the inequality 

1 
4kð Þ!þ

1 
4 k þ 1ð Þð Þ!þ

1 
4 k þ 2ð Þð Þ!þ . . .  ≤ 1 

4k- 1 
× 

1 
4k- 1ð Þ! 

Proof of Lemma 60.12 Provided that -1 < R < 1, the formula for the sum of an infinite 
geometric series is 

aþ aR þ aR2 þ aR3 þ : . . .  = 
a 

1-R 

Setting a = 1/(4k)!, R = 1/4k, and comparing term-by-term the factorial series in the 
statement of the lemma with the geometric series, the result immediately follows. ■ 

Solution of Problem 60.11.B We claim that the following number r, 

r = 1þ 1 
4!
þ 1 
8!
þ 1 
12!

þ . . .  
= 1:0416914703416917479394211141 . . .  

has the desired property. 
Let n ≥ 1 be an integer. Suppose that k is the smallest integer such that n < 4k. Then 

n!r = n! 1þ 1 
4!
þ 1 
8!
þ 1 
12!

þ . . .  

= n!þ n! 
4!
þ n! 
8! 
þ n! 
12!

þ . . .  

= n!þ n! 
4!
þ . . .  n! 

4 k- 1ð  Þð Þ! 
An 

þ n! 
4kð  Þ!þ

n! 
4 k þ 1ð  Þð Þ!⋯ 

Bn
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Observe that An is a sum of integers. All but the last of these integers is a multiple of 
4. The last integer summand n! /(4(k- 1))! is either 1 or 2 (mod 4), depending on n (mod 4). If 
n� 0 or 1 (mod 4), then n! /(4(k- 1))!� 1 (mod 4), and if n� 2 or 3 (mod 4), then n!/(4(k-
1))! 2 (mod 4). Therefore, An 1 or 2 (mod 4) for every n. 

The Lemma implies that 0 < Bn < 1. Indeed, since n ≤ 4k - 1 we have 

Bn ≤ 4k- 1ð Þ! 1 
4kð Þ!þ

1 
4 k þ 1ð Þð Þ!þ . . .  

≤ 4k- 1ð Þ! × 1 
4k- 1 

× 
1 

4k- 1ð Þ! 
= 

1 
4k- 1 

< 1: 

Summing up, we conclude that n!r [1,3] (mod 4) for every n. ■ 

This problem has a lovely prehistory. In 1987, Paul Erdős posed the following problem to 
the well-known Israeli mathematician Yitzhak Katznelson, a Stanford professor, who recol-
lects 14 years later [Kat]: 

In 1987 Paul Erdős asked me if the Cayley graph defined on Z [the set of integers] by a 
lacunary sequence has necessarily a finite chromatic number. Below is my answer 
[in the positive], delivered to him on the spot but never published [until 2001]. 

As usual in my writings, I am naming this result after both contributors, the author of the 
conjecture and the prover. 

The 1987 Erdős–Katznelson Theorem 60.13 Let ε > 0 be  fixed and suppose that S = 
{n1, n2, . . ., nj, . . .} is a sequence of positive integers such that nj + 1  > (1 + ε)nj for all j ≥1.4 

Define a graph G = G(S) with vertex set Z by letting the pair (n, m) be an edge if and only if 
|n - m| S. The chromatic number χ(G) of  G is finite. 

Katznelson presented the Erdős conjecture and his proof at a 1991 seminar attended by the 
young (at that time) Israeli mathematician Yuval Peres. 

Peres, currently a professor at the University of California Berkley and a researcher at 
Microsoft, jointly with Wilhelm Schlag, presently at the University of Chicago, improved 
[PS] Katznelson’s upper bound for the chromatic number in the Erdős problem. From here, I 
let Matthew Kahle, Professor at Ohio State University and the Colorado Mathematical 
Olympiad 1990 and 1991 winner, tell the rest of the story. Matt writes to me in the October 
12, 2016, e-mail: 

Dear Sasha, 
Here is a brief history of this problem. Feel free to extract whatever is interesting for 

your own creative purposes. :) 

4 Such a sequence is called lacunary.
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I saw an interesting seminar talk by Yuval Peres (about his joint work with Schlag) 
when I was a graduate student at University of Washington. He addressed some 
questions of Erdős about coloring graphs on integers like this. As long as the sequence 
of distances is increasing at least exponentially fast, the chromatic number is finite, and 
they can even get an explicit upper bound on the chromatic number. So I asked at the 
end of his talk about the factorial graph. 

Not sure why this was my first question, but I guess it was the first sequence I thought 
of that grew super-exponentially fast. But the factorial graph is also particularly 
appealing since no periodic coloring will work, and periodic colorings are what you 
want to try. 

Yuval said he didn’t know, but he guessed that their proof would show that it was 
probably less than 10. 

So I asked my office mate at the time, Tristram Bogart, who was also studying 
combinatorics, what is the chromatic number of the factorial graph. We quickly 
established that you need at least 4 colors, and applying what we remembered from 
Peres’s proof, we were able to prove that the chromatic number was at most 5. So we 
knew that chromatic number was either 4 or 5. We bet a beer on the outcome: I bet 4 and 
Tristram bet 5. 

There it stood for a few years, until I asked the question to some bright [high school] 
students at Canada/USA Mathcamp. I just defined the graph and offered $20 for figuring 
out what its chromatic number is. But I did not give them any hint. I did not explain the 
idea of Peres’s proof, or what Tristram and I knew so far. 

Amazingly, Adam Hesterberg came back the next day and claimed the $20, showing 
that the chromatic number is exactly 4. His proof of the existence of such a number was 
very similar to, or the same as Peres’s proof, but he was a high school student, 
rediscovering the methods of the professionals! And he improved on whatever Tristram 
and I had been doing, because we were only able to find a 5-coloring, so he must have 
been a little more efficient! 

I was happy to pay Adam the $20. I did collect on the beer from Tristram sometime 
later, and joked that $20 was expensive for a beer (the net result for me), but I did not 
mind because I was happy that my guess was right. 

When I sat down to remember the proof, for your book, I remember being a little bit 
dissatisfied with the nested intervals. It is a subtle fact of analysis that an infinite 
sequence of nested closed intervals must have a point of intersection. After all, it fails 
if the intervals are open instead of closed! So I wondered if I could instead find an 
explicit r that works, perhaps as an infinite series. Playing around for a few minutes, I 
found the r in the proof I gave you. Somehow this is more satisfying to me, since it is 
slightly more elementary, and because the coloring is more explicit. 

Adam Hesterberg is currently a Ph.D. student in mathematics at MIT. His research 
interests include graph theory, computational geometry, and theoretical computer 
science. 
Warm regards, 
Matt
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The high school student in this story, Adam Hesterberg, soon after won the 2007 USA 
Mathematical Olympiad. He then graduated from Princeton University, was a graduate 
student at the Massachusetts Institute of Technology (MIT), and is now a lecturer in computer 
science at Harvard University. 

Matt created this problems and forwarded it to me for the Colorado Mathematical Olym-
piad. The solution to Problem 60.11.B that you saw was written especially for my book 
[Soi55] by Matthew Kahle. 

Imagine, two days after the Olympiad, I received a remarkable e-mail from the Olympiad 
judge and the first prize winner of the First (!) Colorado Mathematical Olympiad in 1984 
Dr. Russel Schaffer. 

Monday, April 26, 2010 3:22 PM 
To: Alexander Soifer <asoifer@uccs.edu> 
Cc: RWSchaffer@gmail.com 
Subject: Alternate Solution to 5b 
Alexander, 

On the drive back to Wyoming [from Colorado Springs] on Saturday afternoon, I 
thought a bit about problem 5b and came up with an alternate solution. 

Today, I formalized it and wrote it up. 
This isn’t the simple solution that you asked for on Friday. It is less elegant than the 

solution that you presented. It is, however, a workmanlike solution based on more 
straightforward intuition. No flashes of daring brilliance required. The intuition is such 
that a smart high school student could reasonably come up with it in the allotted time. 
Russel 

Let me reproduce for you Russel’s email attachment. 

Russel Schaffer’ Traveling Solution of Problem 60.11.B Define the color for each integer 
x > 0 to be: 

c xð  Þ= 
1 

i= 0 

xþ 
i- 1 

j= 1 
4j- 1ð Þ! 

4ið Þ! mod4ð Þ  

where we use square brackets [ ] to indicate the integer part of a real number. Clearly this 
defines a coloring with four colors. To demonstrate that no two integers have the same color if 
they are separated by n! for some integer n, consider (c(d + n!) – c(d)) (mod 4) for some 
integers d ≥ 0 and n ≥ 0. As a notational convenience, we let k = [n/4].
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c d þ n!ð Þ- c dð Þð Þ �
k- 1 

i= 0 

d þ n!þ 
i- 1 

j= 1 
4j- 1ð Þ! 

4ið Þ! -

d þ 
i- 1 

j= 1 
4j- 1ð Þ! 

4ið Þ! 

þ 
d þ n!þ 

k- 1 

j= 1 
4j- 1ð Þ! 

4kð Þ! -

d þ 
k- 1 

j= 1 
4j- 1ð Þ! 

4kð Þ! 

þ 
1 

i= kþ1 

d þ n!þ 
i- 1 

j= 1 
4j- 1ð Þ! 

4ið Þ! -

d þ 
i- 1 

j= 1 
4j- 1ð Þ! 

4ið Þ! 

The summand on the first line will be congruent to 0 modulo 4 because 

4k j n! 
4ið Þ! for all 0≤ i≤ k- 1: 

Because n! is an integer, the summand on the second line equals: 

1 1(mod 4) if n 0 (mod 4) 
n 1(mod 4) if n 1 (mod 4) 
n(n-1) 2 (mod 4) if n 2 (mod 4) 
n(n-1)(n-2) 2 (mod 4) if n 3 (mod 4) 

Because 0< n! 
4ið Þ! < 1, for all i > k, we know that each term under the summation in the 

third line must be 0 or 1. The entire summand on the third line is thus 0 or 1 because at most 
one term under the summation can be non-zero. Assume to the contrary that there are integers 
a and b, k < a < b, such that: 

d þ n!þ 
a- 1 

j= 1 

4j- 1ð Þ!≥ xa 4að Þ!> d þ 
a- 1 

j= 1 

4j- 1ð Þ! 

d þ n!þ 
b- 1 

j= 1 

4j- 1ð Þ!≥ xb 4 bð Þ!> d þ 
b- 1 

j= 1 

4j- 1ð Þ! 

for some integers xa and xb. Then we would have:
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1þ 
d þ 

a- 1 

j= 1 
4j- 1ð Þ! 

n!
≥ xa 4að Þ! 

n! 
> 

d þ 
a- 1 

j= 1 
4j- 1ð Þ! 

n! 

1þ 
d þ 

a- 1 

j= 1 
4j- 1ð Þ! 

n!
≥ 

xb 4bð Þ!-
b- 1 

j= a 
4j- 1ð Þ! 

n! 
> 

d þ 
a- 1 

j= 1 
4j- 1ð Þ! 

n! 

Now, the center quantities in both inequalities are both integers, and they are both bounded 
by an identical pair of values which differ by 1, therefore, they must be equal. But we cannot 
have 

xa 4að Þ!= xb 4bð Þ!-
b- 1 

j= a 

4j- 1ð Þ! 

because (4a)! divides the left hand side and all terms of the right-hand side except for 
(4a - 1)!. We have thus reached a contradiction and can conclude that at most one term 
under the summation can be nonzero. 

Therefore, in the above expansion of (c(d + n!) – c(d)) (mod 4), we see that the 
first summand will always be 0, the second 1 or 2, and the third 0 or 1. We conclude that 
(c(d + n!) – c(d)) (mod 4) is always nonzero. ■ 

Having finished his solution, Russel continues: 

Believe it or not, there is some intuition behind this solution. Consider the coloring 
where each integer x is assigned the color x (mod 4). This works just fine for pairs of 
numbers whose difference is 1, 2, or 6. In fact, not only does it work for 1, 2, and 6 but it 
also works for 1 + 1, 2 + 1, and 6 + 1. 

This gives us room to squeeze in an adjustment to make things work for pairs of 
numbers that differ by 24. We add 1, modulo 4, to all numbers in the block of 24 integers 
contained in [24, 47]. We add 2, modulo 4, to all numbers in the next block of 
24 integers; add 3, modulo 4, to the following block of 24 integers, and so on. 

As observed above, the adjustment did not cause problems with the coloring for pairs 
whose difference is 1, 2, or 6. And the adjusted coloring also works for pairs whose 
difference is 24, 120, 720, and 5040. We run into trouble again only when we need to 
compare pairs of numbers that differ by 8!. 

We resolve the problems with 8! by doing another adjustment, adding increasing 
increments to successive blocks of 8! integers. We need only be careful that no two 
block boundaries get too close to the block boundaries from the first adjustment. To this 
end, we begin our adjustment 3! before the end of the first block of 8! integers. 

As before, the adjusted coloring works until we reach the next difference of the form 
4i!. This is 12!. Again, we perform an adjustment whose block boundaries are 
guaranteed not to be too close to any previous block boundaries. We continue in this 
manner, making adjustments for all differences of the form 4i!. The coloring given at the 
head of the first page formalizes an infinite sequence of these adjustments.
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Let me repeat one lyrical line from Russel’s solution: 

Believe it or not, there is some intuition behind this solution. 

Indeed, Russel possesses some intuition! 
In fact, I believe that if Russel were not a senior when in 1984 I started the Colorado 

Mathematical Olympiad, he would have won as many Olympiads as he were to enter. My 
fault: I started the Colorado Mathematical Olympiad too late. :) 

When a fabulous Problem 60.8.B gets solved, we are inspired to see better, look further, 
aspire a higher ground. Inspired by his Problem 60.8.B, Matthew Kahle proposes to increase 
the set of forbidden monochromatic distances in the plane from a singleton {1}, as in CNP, to 
all factorials {1!, 2!, . . ., n!, . . .}. 

Open Factorial Coloring Problem in the Plane 60.14 (M. Kahle). Find the minimum 
number of colors χF(E

2 ) required for coloring the Euclidian plane E2 in such a way that no two 
points of the same color are at a factorial distance (n!) apart. 

We do not even know whether χF(E
2 ) is  finite, so you have plenty of enjoyable research to 

undertake! 
Of course, the dimension in this problem can be raised, and thus we find ourselves in space, 

in the Euclidean n-dimensional space En . 

Open Factorial Coloring Problem in n-Space 60.15 Find the minimum number of colors 
χF(E

n ) required for coloring the Euclidian n-space En in such a way that no two points of the 
same color are at a factorial distance (n!) apart. 

Let us not forget Problem 60.11.A simply because it was trivial on the line. 

Open Binary Coloring Problem in the Plane 60.16 Find the minimum number of colors 
χB(E

2 ) required for coloring the Euclidian plane E2 in such a way that no two points of the 
same color are at a binary distance (2n ) apart. 

Open Binary Coloring Problem in n-Space 60.17 Find the minimum number of colors 
χB(E

n ) required for coloring the Euclidian n-space En in such a way that no two points of the 
same color are at a binary distance (2n ) apart. 

These two open problems, perhaps, invite you to have an infinite fun, for the answers to 
them could be not finite but rather infinite cardinal numbers. 

Davies–McCarthy–Pilipczuk [DMP] include, with credit, open Problems 60.14 and 60.16, 
with the following “conjecturous” comment: 

While we conjecture that both of these problems should have negative answers, due to 
exponential growth of the forbidden distances, it appears challenging to extend current 
methods to solve these two problems. Of course, it would be more exciting if either of 
these two problems have a positive answer [i.e., an infinite chromatic number]. 

They also include a promising conjecture by Boris Bukh [Buk]: 

Conjecture 60.18 (Bukh). Let A ⊂ R>0 be algebraically independent. Then there is a finite 
coloring of E2 containing no monochromatic pair of points whose distance is contained in A. 

William Gasarch’s comments inspire me to pose the following two open problems. The 
answers are probably infinity, as in the previous four open problems – the time will tell.
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Open Perfect Square Coloring Problem in the Plane 60.19 (Soifer 2023). Find the 
minimum number of colors χS(E

2 ) required for coloring the Euclidian plane E2 in such a 
way that no two points of the same color are at a perfect square distance apart. 

Open Perfect Square Coloring Problem in n-Space 60.20 (Soifer 2023). Find the mini-
mum number of colors χS(E

n ) required for coloring the Euclidian n-space En in such a way 
that no two points of the same color are at a perfect square distance apart. 

There is a lively thread of research studying chromatic number χ(G[1, d]) of graphs G[1, d] 
with all distances of the segment [1,d] forbidden. A recent April 2023 paper [CJW] by the 
Polish mathematicians Joanna Chybowska-Sokół, Konstanty Junosza-Szaniawski, and 
Krzysztof Węsek provides both new results and a very fine summary of this direction of 
inquiry. Enjoy reading it!
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Chapter 61 
7- and 8-Chromatic Two-Distance Graphs 

This chapter is short as it awaits your research, which I hope to see in the not-too-distant 
future. 

It is easy for me to pose the following conjecture because it is weaker than my old 2002 
conjecture χ(E2 ) = 7. Here, as before, by “the plane” we understand the Euclidean plane. 

Conjecture 61.1 (Soifer, 2022). There is a 7-chromatic two-distance graph in the plane. 

And now two hard open problems: 

Two-Distance Open Problem 61.2 (Soifer, 2022). Construct an 8-chromatic two-distance 
graph in the plane or prove that one does not exist. 

And if the answer to Problem 61.2 is positive, we would like to find the answer to the 
following super hard problem, or obtain partial results: 

Second Two-Distance Open Problem 61.3 (Soifer, 2022). Over all d > 1, find a 
two-distance graph G = G{1, d} in the plane of maximum chromatic number χ(G) = Ψ. 
What are the values of d in graphs that realize Ψ? 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_61&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_61#DOI


Part XII 
Predicting the Future 

I never think of the future – it comes soon enough. 
– Albert Einstein 

Prediction is very difficult, especially about the 
future. 

– Niels Bohr
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Chapter 62 
What If We Had No Choice? 

62.1 Prologue 

On the pages of this book, we have seen a variety of approaches used in attempts to settle the 
chromatic number of the plane problem (CNP). Tools from graph theory (Chapter 17), 
topology (Chapters 8 and 26), measure theory (Chapter 9), abstract algebra (Chapter 11), 
and discrete and combinatorial geometry (Chapters 4, 6, and 7) have been tried – and only 
recently an improvement has been attained in the general case. The range for CNP still 
remains (too) wide: χ = 5, 6, or 7. 

I wrote years ago that such a wide range was an embarrassment for mathematicians. The 
4-color Map-Coloring Problem, for example, from its birth in 1852 (or a bit earlier), had a 
conjecture: 4 colors suffice. Since 1890, thanks to Percy John Heawood [Hea], we knew that 
the answer was 4 or else 5. The CNP problem is an entirely different matter. After 70+ years 
of very active work on the problem, we have not even been able to confidently conjecture the 
answer. Have mathematicians been so bad, or has the problem been so good? Have we been 
missing something in our assault on the CNP? 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_62&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_62#DOI
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Saharon Shelah (left) and Alexander Soifer at Paul Erdős’ 80th Birthday Conference, 
Keszthely, Hungary, July 18, 1993. 

These were the questions that occupied me as I was flying cross country from Colorado 
Springs to the Rutgers University of New Jersey in October 2002 for a week of joint research 
with Saharon Shelah, who in my opinion is a genius of problem solving and a very quick 
learner (I knew that, for we produced two joint papers on Abelian group theory before, in 
1984, when we met in Udine, Italy).1 Per Saharon’s request, I compiled a list of problems we 
could be interested in working on together and numbered them according to set-theorists’ 
taste, from 0 to 12. Problem 0 read as follows: 

0. What if we had no choice? 

This was a natural question for someone who grew up in the Soviet Union with not much 
choice: we voted for one candidate per each office, ate whatever food was sold at the moment, 
and lived wherever we were allowed to live. But of course, I meant here something else that 
made mathematical sense. Saharon understood me. Did you? No? Let me explain. 

Nicolaas G. de Bruijn and Paul Erdős reduced CNP to finite sets in the plane, as we have 
seen in Chapters 5 and 28. Their famous theorem, obtained, in fact, shortly before Ed Nelson 
posed CNP, required the Axiom of Choice. This is the choice I referred to in my problem 0 for 
Saharon and me to ponder: 

1 Ronald L. Graham and Joel H. Spencer [GS2] agree with me: “Shelah is widely regarded as one 
of the most powerful problem solvers in modern mathematics.”
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What if we had no Axiom of Choice? 

In the absence of the Axiom of Choice, we would not have the De Bruijn–Erdős Theorem, 
and so CNP would not necessarily be reduced to finite plane sets. In particular, I was 
interested in the following questions: 

What can and should we use in place of the Axiom of Choice? 
What results can we prove in this alternative Set Theory? 
How would “choiceless” mathematics compare to the mathematics built on choice? 

And so Saharon and I met for a week in the Garden State autumn and broke some new 
ground. Before we look at the outcome of our meeting, I need to offer you an excursion into 
the Land of Choice. 

62.2 The Axiom of Choice and Its Relatives 

To choose one sock from each of infinitely many pairs of socks requires 
the Axiom of Choice, but for shoes the Axiom is not needed. 

– Bertrand Russell 

At present, set theory has lost its relevance. 
– Lev S. Pontryagin2 

The Axiom of Choice was used implicitly throughout the XIX century. A careful observa-
tion would uncover that it was used for proving even such a classic result as the sequential 
Bolzano–Weierstrass Theorem (every infinite bounded subset of reals has a sequential limit 
point). In 1904, while proving theWell-Ordering Principle, Ernst Friedrich Ferdinand Zermelo 
(1871–1953) formalized and for the first time explicitly used the Axiom of Choice [Zer]: 

The Axiom of Choice (AC) Every family Φ of nonempty sets has a choice function, i.e., 
there is a function f such that f(S) 2 S for every S from Φ. 

The newborn axiom prompted a heated debate in the mathematical world. In trying to 
defend the axiom, in a series of 1908–1909 papers, Zermelo developed a system of axioms for 
set theory. It was improved by Adolf Abraham Halevi Fraenkel (1891–1965) in his 1922 
[Fra1], [Fra2], and 1925 [Fra3] papers. Finally, in 1928, John von Neumann named it the 
Zermelo–Fraenkel Set Theory, or  ZF [Neu]. ZF with the addition of the Axiom of Choice was 
naturally denoted by ZFC and named the Zermelo–Fraenkel–Choice system of axioms. 

The historian of the Axiom of Choice, Gregory H. Moore, opens his remarkable book 
about the Axiom of Choice as follows [Moo]: 

David Hilbert once wrote that Zermelo’s Axiom of Choice was the axiom “most attacked 
up to the present [1926] in mathematical literature. . .” To this Abraham Fraenkel later 
[1958] added that “the axiom of choice is probably the most interesting and, in spite of its 

2 [Pon]. L. S. Pontryagin wrote his Life of Lev Semenovich Pontryagin . . .  with the title modeled 
after the autobiography of the famous Italian Renaissance sculptor Benevento Cellini. It contains 
this ridiculous statement that was an attack on A. N. Kolmogorov, who highly valued Set Theory.
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late appearance, themost discussed axiomofmathematics, second only to Euclid’s axiom 
of parallels which was introduced more than two thousand years ago.” 

The Axiom postulated the existence of a choice function, without giving any clue of how to 
find it. It came, therefore, as no surprise that the Axiom was opposed by constructivists, 
intuitionists, and other mathematicians, who viewed nonconstructive existence results with 
great suspicion. Moore [Moo] observes that “Despite this initial widespread distrust, today the 
vast majority of mathematicians accepts the axiom without hesitation and utilize it in algebra, 
analysis, logic, set theory, and topology.” Yes, I agree: vast majority accepts the Axiom of 
Choice, and consequently, ZFC is the standard foundation of set theory – but is it a good 
thing for mathematics? A majority – any majority – political, social, mathematical often loses 
sensitivity that is often so naturally preserved among a minority. We will later look into the 
consequences of the near universal acceptance of the Axiom of Choice as a part of the 
foundation of mathematics. Here I will introduce other axioms, and first of all, some weaker 
versions of the Axiom of Choice. 

Many results in mathematics really need just a countable version of choice: 

The Countable Axiom of Choice (ACℵ0) Every countable family of nonempty sets has a 
choice function. 

Much later, in 1942, Paul Isaac Bernays (1888–1977) introduced the following axiom 
[Bern]: 

The Principle of Dependent Choices (DC) If E is a binary relation on a nonempty set A, and 
for every a 2 A there exists b 2 A with aEb, then there is a sequence a1, a2, . . ., an, . . .  such 
that anEan + 1  for every n < ω. 

AC implies DC (see, for example, Theorem 8.2 in [Jec]), but not conversely. In turn, DC 
implies ACℵ0 , but not conversely. DC is slightly stronger than ACℵ0 , but it is a sufficient 
addition to ZF for creating a foundation for the classical Lebesgue Measure Theory. Observe 
that, in particular, DC is sufficient for Falconer’s Theorem (Theorem 9.1). 

One – unfortunate in my opinion – consequence of the Axiom of Choice is the existence of 
sets on the line that have no length (I mean, no Lebesgue measure). This “regret” must have 
given birth to the following axiom: 

(LM) Every set of real numbers is Lebesgue measurable. 

Assuming the existence of an inaccessible cardinal3 , Robert Martin Solovay (nowadays 
Professor Emeritus at Berkley), using Paul Cohen’s forcing, constructed in 1964 (and 
published in 1970) a model that proved a remarkable theorem [Sol1]. Mitya Karabash and I 
introduced [KS] the following term in honor of Robert M. Solovay. 

The Zermelo–Fraenkel–Solovay System of Axioms for set theory, which we denote by ZFS, 
is defined as follows: 

ZFS=ZFþ ACℵ0 þ LM, 

3 A cardinal κ is called inaccessible if κ > ℵ0, κ is regular, and κ is strong limit. An infinite cardinal 
ℵα is regular,  if  cf  ωα = ωα. A cardinal κ is a strong limit cardinal if for every cardinal λ, λ < κ 
implies 2λ < κ.

https://doi.org/10.1007/978-1-0716-3597-1_8#FPar2
https://doi.org/10.1007/978-1-0716-3597-1_9#FPar1
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and ZFS Plus, or shorter, ZFS+ stands for 

ZFS+ =ZFþ DC þ LM: 

Now the Solovay Theorem formulates very concisely: 

The Solovay Theorem 62.1 ZFS+ is consistent.4 

Solovay reports [Sol1] that “the original problem of showing ZF+LM consistent was 
suggested to the author by Paul Cohen.” Here is how Paul Joseph Cohen (April 2, 1934– 
March 23, 2007), the man who completed Kurt Gödel’s work and won Fields Medal for it in 
1966, described the Solovay Theorem in 1966 [Coh2, p. 142]: 

One of the most interesting results [concerning the relationship of various forms of AC] 
is due to R. Solovay (as yet unpublished) which says that models N can be constructed in 
which the countable AC holds and yet every set of real numbers is Lebesgue 
measurable. 

Indeed, this is a profound result, which in my opinion offers ZFS+ as a viable alternative to 
the classical ZFC. In particular, ZFS+ allows the development of the usual Lebesgue 
Measure Theory. On April 10, 2003, I asked Professor Solovay whether a stronger result is 
possible, i.e., whether ZFS would suffice for building the Lebesgue Measure Theory. The 
following day Solovay replied [Sol2]: 

I thought about this in the early 60s. The only theorem for which I needed DC was the 
Radon–Nykodim theorem. But I don’t know that there isn’t a clever way of getting by 
with just Countable Choice and proving Radon–Nykodim. I just noticed that the usual 
proof [found in Halmos] uses DC. 

The Continuum Hypothesis (CH) states that there is no cardinal κ such that ℵ0 < κ < 2ℵ0 . 

The Generalized Continuum Hypothesis (GCH) states that for any infinite cardinal λ there 
is no cardinal κ such that λ < κ < 2λ. 

The Axiom of Constructibility (V=L) introduced by Gödel in 1940 [Göd2], asserts that 
every set is constructible, i.e., that every set belongs to the constructible universe L. 

Kurt Gödel’s (1906–1978) 1940 results [Göd2] combined with Paul J. Cohen’s 1963–1964 
results [Coh1] prove independence of AC (as well as of the Continuum Hypothesis, CH, and 
the Generalized Continuum Hypothesis, GCH) from the rest of the axioms of ZF set theory. 

Saharon Shelah playfully summarizes these developments in his 2003 “Logical Dreams” 
[She3]: 

In short: The Continuum Problem asks: 
How many real numbers are there? 
G. Cantor proved: There are more reals than rationals. (In a technical sense: 

“uncountable,” “there is no bijection from R into Q”). 
The Continuum Hypothesis (CH) says: yes, more, but barely so. Every set A ⊆ R is  

either countable or equinumerous with R. 

4 Assuming the existence of an inaccessible cardinal.
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K. Gödel proved: Perhaps CH holds. 
P. Cohen proved: Perhaps CH does not hold. 

Kurt Gödel also showed that ZF + V=L implies GCH, while the founder of the famous 
Warsaw school of set theory and topology Wacław Franciszek Sierpiński (1882–1969) 
proved that ZF + GCH implies AC. 

Finally, one can remember Lev S. Pontryagin not only as a fine mathematician and a fine 
anti-Semite but also as a fool, who took his fight against anything Kolmogorov’s to the 
extreme of such a ridiculous statement as this chapter’s tongue-in-cheek epigraph “At present, 
set theory has lost its relevance.” What can be more relevant to mathematics than its very 
foundation, Set Theory! 

62.3 The First Example 

The Axiom of Choice differs from other axioms of ZF by postulating the 
existence of a set . . .  without defining it . . .  Thus it is often interesting to 
know whether a mathematical statement can be proved without using 
the Axiom of Choice. 

– Thomas Jech [Jec] 

Theories come and go; examples live forever. 
– Israel M. Gelfand 

October 2002, Rutgers University. My week-long joint work with Saharon Shelah (enter-
tainment of the mathematical kind, really) results in the first surprising example. We dedicate 
the paper to the memory of our teacher, friend, and coauthor Paul Erdős, on the occasion of 
his 90th birthday. Let us look together at our example. 

Our first task is to expand the definition of the chromatic number.5 How important is to 
select a productive definition? Socrates thought highly of this undertaking: “The beginning of 
wisdom is the definition of terms.”6 And so I took two weeks to “sleep” on the choice of the 
definition and consulted with my coauthors Saharon Shelah and Mitya Karabash before I 
chose the simplest definition, the one that came first to my mind. “Simplest” surely is not a 
detractor – in fact, “simple” and “natural” are attributes of definitions that survive the test 
of time. 

Without the Axiom of Choice, the minimum, and thus the chromatic number of a graph, 
may not exist. In allowing a system of axioms for set theory not to include the Axiom of 
Choice, we need to come up with a much broader definition of the chromatic number of a 
graph than the one we used in Chapter 12 – if we want the chromatic number to exist. In fact, 
instead of the chromatic number, we ought to talk about the chromatic set. There are several 
meaningful ways to define it. I am choosing the following definition. 

5 It is the first task, but we did not think of it then, and so this definition appeared for the first time 
in print in the first 2009 edition [Soi44] of this book. 
6 Quoted from [Pet], p. 494.
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Definition 62.1 Let G be a graph and A a system of axioms for set theory. The set of 
chromatic cardinalities χA (G) of  G is the set of all cardinal numbers τ ≤ |G| such that there is a 
proper coloring of the vertices of G in τ colors and τ is minimum with respect to this property. 

As you can easily see, the set of chromatic cardinalities does not have to have just one 
element as was the case when A = ZFC. It can also be empty. 

The advantage of this definition is its simplicity. Best of all, we can use inequalities on sets 
of chromatic cardinalities as follows. 

The inequality χA (G) > β, where β is a cardinal number, means that for every α2χA (G), 
α > β. The inequalities <, ≤, and ≥ are defined analogously. We also agree that the 
cardinality of the empty set is greater than or equal to the cardinality of any set.7 Finally, 
if β is a cardinal number, χA (G) = β means that χA (G) = {β}. 

I would like to introduce simple generalizations of the notion of unit-distance graph. 
A Distance Graph is a graph with vertex set V ⊆ En for some n, where two vertices 

v1,v2 are adjacent if and only if the distance |v1v2| belongs to a fixed set S of distances. 
In particular, when S = {1}, we get a unit-distance graph. 

A Difference Graph is a graph with vertex set V ⊆ En for some n, with two vertices v1,v2 
adjacent if and only if their difference v1 – v2 belongs to a fixed set S ⊆ En of differences. Of 
course, on the line distance graphs and difference graphs coincide. 

As always, Z, Q, and R stand for the sets of integers, rationals, and reals, respectively. We 
are now ready for the first example, which will demonstrate how dramatically the chromatic 
number of a simple graph we construct depends upon the system of axioms for set theory: it is 
just 2 in ZFC and uncountable in ZFS. Let us construct this surprising example and then 
prove its properties. 

Example 62.2 (Shelah–Soifer 2003, [SS1]). We define a graph G as follows: the set R of real 
numbers serves as the vertex set, and the set of edges is s, tð Þ: s- t- 2

p 2 Q . 

Result 62.3 (Shelah–Soifer 2003, [SS1]). For the distance graph G on the line, χZFC (G) = 
2, while χZFS (G) > ℵ0. 

Claim 1 of 62.3: χZFC (G) = 2. 

Proof Let S= qþ n 2
p 

; q 2 Q, n 2 Z . We  define the equivalence relation E on R as 
follows: sEt , s - t 2 S. 

Let Y be a set of representatives for E (in choosing representatives, we are using the 
Axiom of Choice). For t 2 R let y(t) 2 Y be such that tEy(t). We define a 2-coloring 
c(t) as follows: c(t)=l, l=0,1 if and only if there is n 2 Z such that 
t- y tð Þ- 2n 2

p
- l 2

p 2 Q. ■ 

Without AC the chromatic situation changes dramatically: 

Claim 2 of 62.3: χZFS (G) > ℵ0. 

We will simplify the proof if we acquire a useful tool first. 

7 I know, this convention seems to be counterintuitive, but it is handy, convenient, and allows to 
prove meaningful results, as you will soon see.
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Tool 62.4 If A ⊆ [0, 1) and A contains no pair of adjacent vertices of G, then A is null 
(of Lebesgue measure zero). 

Proof Assume to the contrary that A contains no pair of adjacent vertices of G yet A has a 
positive measure. Then there is an interval I such that8 

μ A \ Ið Þ  
μ Ið Þ  > 

9 
10

ð62:1Þ 

Choose q 2 Q such that 2
p 

< q< 2
p þ μ Ið Þ. 

Let B=A- q- 2
p 

= x- qþ 2
p 

: x 2 A . Then 

μ B \ Ið Þ  
μ Ið Þ  > 

8 
10 

: ð62:2Þ 

Inequalities (62.1) and (62.2) imply that there is x 2 I \ A \ B. Since x 2 B, we have 
y= xþ q- 2

p 2 A. So, both x, y 2 A and x- y- 2
p 

= - q 2 Q. Thus, {x, y} is an edge 
of the graph G with both endpoints in A, which is the desired contradiction. ■ 

Proof of Claim 2 of 62.3 Assume that the vertices of the graph G are properly colored 
in ℵ0 colors (i.e., the adjacent vertices are colored in different colors), and A

1 
1, . . . ,A

1 
n, . . .  

are the corresponding monochromatic sets. Let An =A1 
n \ 0, 1½ Þ  for every n < ω. Since 

μð [
n<ω 

AnÞ= μ 0, 1½ Þð Þ= 1 and Lebesgue measure is a countably additive function in ACℵ0 , 

there is a positive integer n such that An has a positive measure. By tool 62.4, An contains a 
pair of adjacent vertices of G, which contradict the assumption that the graph is properly 
colored. ■ 

Remark This example points out the circumstances in which the presence or the absence of 
AC could dictate the value of the chromatic number of the plane and many other character-
istics of a variety of structures in mathematics (and consequently in physics). 

62.4 Examples in the Plane 

As the main object of our interest has been the good ole Euclidean plane, we aspired to 
construct a difference graph G2 in the plane R

2 , and thus come closer to the setting of the 
chromatic number of the plane problem. The chromatic number of the constructed below 
graph G2 is 4 in ZFC and uncountable in the Zermelo–Fraenkel–Solovay system of 
axioms ZFS. 

Saharon Shelah and I believe the example (and its analog G3, presented here as well) may 
prove to serve as an important illumination and inspiration in this area of research. 

As Thomas Jech [Jec] observes, in the Solovay model, every set of reals differs from a 
Borel set by a set of measure zero. 

8 The (Lebesgue) measure μ(S) of a set S is defined in Chapter 9.
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Example 62.5 (Soifer–Shelah 2003, [SS2]). We define graph G2 as follows: the set R
2 of 

points in the plane serves as the vertex set, and the set of edges is the union of the four sets 
{(s, t) :  s, t 2 R2 ; s - t - ε 2 Q2 } for ε= 2

p 
, 0  , ε= 0, 2

p 
, ε= 2

p 
, 2
p 

, 

and ε= - 2
p 

, 2
p 

respectively.9 

Result 62.6 (Soifer–Shelah 2003, [SS2]). For the difference graph G2 in the plane, 
χZFC (G) = 4, while χZFS (G) > ℵ0. 

Claim 1 of 62.6: χZFC (G) = 4. 

Proof Let S= q1 þ n1 2
p 

, q2 þ n2 2
p 

: qi 2 Q, ni 2 Z . We  define an equivalence rela-
tion E on R2 as follows: sEt , s - t 2 S. 

Let Y be a set of representatives for E (we can choose them due to the Axiom of 
Choice). For t 2 R2 let y(t) 2 Y be such that tEy(t). We define a 4-coloring c(t) as follows: 
c (t) = (l1, l2), li 2 {0, 1} if and only if there is a pair (n1, n2) 2 Z2 such that 
t- y tð Þ- 2 2

p 
n1, n2ð Þ- 2

p 
l1, l2ð Þ 2  Q2. ■ 

Claim 2 of 62.6: χZFS (G) > ℵ0. 

Proof We create a tool similar to tool 62.4 and then prove the claim 2 similarly to its 
counterpart of Result 62.3. ■ 

We can define the edges of the graph differently. 

Example 62.7 (Soifer–Shelah 2003, [SS2]). The set R2 of points in the plane serves as 
the vertex set for G3, and the set of edges is the union of the two sets {(s, t) :  s, t 2 R2 ; 
s - t - ε 2 Q2 } for ε= 2

p 
, 0  and ε= 0, 2

p 
respectively. 

Result 62.8 (Soifer–Shelah 2003, [SS2]). For the difference graph G3 in the plane, 
χZFC (G) = 2, while χZFS (G) > ℵ0. 

Claim 1 of 62.8: χZFC (G) = 2. 

Proof Let S= q1 þ n1 2
p 

, q2 þ n2 2
p 

: qi 2 Q, ni 2 Z . We define an equivalence 
relation E on R2 as follows: sEt , s - t 2 S. 

Let Y be a set of representatives for E. For t 2 R2 let y(t) 2 Y be such that tEy(t). We define 
a 2-coloring c(t) as follows: c(t) = (ε1 + ε2)mod2 if and only if there is a pair (ε1, ε2) 2 Z2 
such that t- y tð Þ- 2

p 
ε1, ε2ð Þ 2 Q2. ■ 

Claim 2 of 62.8: χZFS (G) > ℵ0. 

Proof is similar to the one presented for G in Result 62.3. ■ 

One may wonder what is so special about 2
p 

in our constructions. Well, 2
p 

is the oldest 
known irrational number: a proof of its irrationality, apparently, comes from the Pythagoras 
School. Our reasoning and results would not change if we were to replace 2

p 
everywhere 

with another irrational number. 

9 Q2 , of course, denotes the rational plane.
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62.5 Examples in Space 

Space isn’t remote at all. It’s only an hour’s drive away if your car 
could go straight upwards. 

– Fred Hoyle 

Ideas developed above are extended here to construct difference graphs in the real 
n-dimensional space Rn , whose chromatic number is a positive integer in ZFC, and is 
uncountable in ZFS. 

Example 62.9 (Soifer 2005, [Soi23]). Define a difference graph Gn as follows: the set R
n 

of points of the n-space serves as the vertex set, and the set of edges is 
n 
i= 1 s, tð Þ  : s, t 2 Rn; s- t- 2

p 
εi 2 Qn where εi are the n unit vectors on the coordinate 

axes forming a standard basis of Rn . For example, ε1 = (1, 0, . . ., 0)  – we will use this vector in 
the proof of Claim 2 below.10 

Result 62.10 (Soifer 2005, [Soi23]). For the difference graph Gn, χ
ZFC (Gn) = 2, while 

χZFS (Gn) > ℵ0. 

Claim 1 of 62.10: χZFC (G) = 2. 

Proof Let S= qþ m 2
p 

: q 2 Qn,m 2 Zn . We define an equivalence relation E on Rn as 
follows: sEt , s - t 2 S. 

Let Y be a set of representatives for E. For t 2 Rn let y(t) 2 Ybe such a representative that 
tEy(t). We define a 2-coloring c(t) as follows: c(t) = k kkmod2 iff there is k 2 Zn such that 
t- y tð Þ- 2

p 
k 2 Qn , where kkk denotes the sum of all n coordinates of k. ■ 

Claim 2 of 62.10: χZFS (G) > ℵ0. 

The proof is similar to the one of Result 62.3 – we just need an “n-dimensional tool.” 

Tool 62.11 If A ⊆ [0, 1)n and A contains no pair of adjacent vertices of G, then A is null 
(of Lebesgue measure zero). 

Proof Assume to the contrary that A ⊆ [0, 1)n contains no pair of adjacent vertices of Gn, yet 
A has positive measure. Then there is an n-dimensional parallelepiped I, with a side parallel to 
the first coordinate axis of length, say, a, such that 

μ A \ Ið  Þ  
μ Ið Þ  > 

9 
10

ð62:3Þ 

Choose q 2 Q such that 2
p 

< q< 2
p þ a . Define a translate B of A as follows: 

10 Zn is a set of integral n-tuples and Qn is the rational n-space.
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B=A- q- 2 
p 

ε1 

Then 

μ B \ Ið Þ  
μ Ið Þ  > 

8 
10

ð62:4Þ 

Inequalities (62.3) and (62.4) imply that there is v 2 I \ A \ B. Since v 2 B, we have 
w= vþ q- 2

p 
ε1 2 A. So, we have v, w 2 A and v-w- 2

p 
ε1 = - qε1 2 Qn. Thus, {v, 

w} is an edge of the graph G with both endpoints in A, which is the desired contradiction. ■ 

We can certainly vary the definition of edges to get new graphs. 

Example 62.12 (Soifer 2005, [Soi23]). Define graph G’ as follows: the set Rn of 
points of the n-space still serves as the vertex set, but the set of edges is 

0≤ i≠ j≤ n s, tð Þ  : s, t 2 Rn; s- t- 2
p 

εi- εj 2 Qn where εi , i = 1, . . ., n are the n unit 
vectors on coordinate axes forming the standard basis of Rn , and ε0 = 0 2 Rn . 

Result 62.13 (Soifer 2005, [Soi23]). For the difference graph Gn, χ
ZFC (Gn) = 2n , while 

χZFS (Gn) > ℵ0. 

Claim 1 of 62.13: χZFC (G) = 2n . 

Proof Indeed, the 2n vertices of the n-dimensional unit cube generated by εi, 0  ≤ i ≤ n must 
all be colored in different colors, so 2n colors are obviously needed. 

Let Y be a set of representatives for E. For t 2 Rn let y(t) 2 Y be a representative such that 
tEy(t). We define a 2n-coloring c(t) as follows: c tð Þ= k1 mod 2, k

2 
mod 2, . . . , k

n 
mod 2 iff there is 

k = (k1 , k2 , . . ., kn ) 2 Zn such that t- y tð Þ- 2
p 

k 2 Qn, where ki mod2 2 0, 1f g  is the remainder 
upon division of ki by 2 for i = 1, 2, . . ., n. ■ 

Claim 2 of 62.13: χZFS (G) > ℵ0. 

Proof closely follows the one for claim 2 of Result 62.10. ■ 

Observe It is certainly possible to construct other examples of difference graphs in Rn whose 
chromatic number in ZFC is any integer between 2 and 2n and is uncountable in ZFS. 

These examples illuminate the influence of the system of axioms for set theory on 
combinatorial results. They also suggest that the chromatic number of the Euclidean space 
En may not exist “in the absolute” (i.e., in ZF), but depends upon the system of axioms we 
choose for set theory. The examples we have seen naturally pose the following open problem: 

Open AC Problem 62.14 For which values of n is the chromatic number χ(En ) of the 
n-space En is defined “in the absolute,” i.e., in ZF regardless of the addition of the Axiom of 
Choice or its relative?
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Chapter 63 
AfterMath and the Shelah–Soifer Class of Graphs 

63.1 Shelah–Soifer Graphs 

In 1900s–1930s, the foundations of set theory dominated mathematicians’ interests. Nowa-
days, the interest in the foundations in general, and in the Axiom of Choice in particular, has 
diminished outside set theorists and logicians. Most mathematicians have settled on the ZFC-
based mathematics. Shelah–Soifer papers seemed to “strike the mathematical heart” 
[Del]. They received a remarkable critique [Del] by Jean–Paul Delahaye1 , a complimentary 
mention in Ronald L. Graham’s articles [Gra5], [Gra6], [Gra7], and [Gra8], entered the 
column by Joseph O’Rourke [Oro] and were the subject of the column [Szp] by George 
Szpiro in the newspaper in Zürich, the city where Van der Waerden lived for 45 years. It 
inspired a series of works by various authors. We will look at one such paper in the next 
section. Another example was forwarded to me by Professor Branko Grünbaum in February 
2005: 

From: Janos Pach pach@CIMS.nyu.edu 
Date: February 27, 2005 8:21:56 PM PST 
To: eokoh@gc.cuny.edu, dlazarus@erols.com, sarioz@acm.org, aushakov@mail.ru, 
herr_strangelove@yahoo.com, mlaufer@gc.cuny.edu, tswaine@gc.cuny.edu, 
syuan@gc.cuny.edu, msilva@gc.cuny.edu, dmussa@gc.cuny.edu, jharlacher@gc. 
cuny.edu, Eva@Antonakos.net, mmunn@gc.cuny.edu, raghavan@cs.nyu.edu 
Cc: RLandsman@gc.cuny.edu (Robert Landsman) 
Subject: Combinatorial Comp. Seminar on Wednesday 
SEMINAR ON COMBINATORIAL COMPUTING 
March 2, Wednesday, 6:30pm 
Room 6417, Graduate Center, 365 Fifth Avenue, NY 

1 Jean-Paul Delahaye is a professor of computer science and mathematics, specializing in Com-
plexity Theory, Computational Finance, Computational and Combinatorial Games, Modeling, 
Simulation, etc. He is the winner of the 1998 Prix d’Alembert from the Société mathématique de 
France, the winner of the 2012 Kuhlmann Prize from the Society of Sciences, Agriculture and the 
Arts of Lille, Inspecteur général de l’éducation nationale honoraire, author of several hundred 
articles and a few books. 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_63&domain=pdf
https://en.wikipedia.org/wiki/Soci%C3%A9t%C3%A9_math%C3%A9matique_de_France
https://en.wikipedia.org/wiki/Soci%C3%A9t%C3%A9_math%C3%A9matique_de_France
http://fr.wikipedia.org/wiki/Frederic_Kuhlmann
https://doi.org/10.1007/978-1-0716-3597-1_63#DOI
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INDEPENDENCE IN EUCLIDEAN RAMSEY THEORY 
Jacob Fox, Massachusetts Institute of Technology 

In this talk, I will present several remarkable new developments on independence in 
Euclidean Ramsey theory. S. Shelah and A. Soifer recently constructed a graph on the 
real line with chromatic number 2 in the Zermelo–Fraenkel–Choice (ZFC) system of 
axioms, but with uncountable chromatic number (if it exists) in a consistent system of 
axioms with limited choice, studied by Solovay in 1970. Motivated by these recent 
results, Radoicic and I discovered that the statement ``every 3-coloring of the non-zero 
real numbers contains a monochromatic solution to the equation x_1+2x_2–4x_3=0” is 
independent of the Zermelo–Fraenkel axioms for set theory. A system L: Ax=0 of linear 
homogeneous equations is called a-regular over R if every a-coloring of the real 
numbers contains a monochromatic solution to L in distinct variables. In 1943, Rado 
classified those L that are a-regular over R for all finite a. In ZFC, if a is an infinite 
cardinal, we classify those L that are a-regular. This classification depends on the 
cardinality of the continuum. In the Solovay model, we classify those L that are 
aleph_0-regular over R. We also leave several problems concerning the chromatic 
number of graphs on Euclidean space. 

To the best of my knowledge and literature search, the 1970 fundamental work by Robert 
M. Solovay has been cited in set theoretic works for decades but has not been known to or 
used in combinatorics and Ramsey Theory before [SS1] appeared in 2003. Inspired by our 
surprising results, Solovay’s work and what Mitya Karabash and I named Zermelo–Fraenkel– 
Solovay System of Axioms ZFS, the comparative study of ZFC vs. ZFS has entered a 
number of recent combinatorial works, for example, by Jacob Fox and Rados Radoicic [FR], 
Boris Alexeev, Jacob Fox and Ronald L. Graham [AFG], and Boris Bukh [Buk]. 

In February 2007, I wrote about my excitement to Ron Graham: 

Hi Ron, 
I downloaded and enjoyed your latest paper with Alexeev and Fox. 
It is an added pleasure that apparently Shelah and I motivated you guys to compare 

ZFC and Solovay’s axioms for sets. 
His 1970 work has always been appreciated by logicians, but it seems that Saharon 

and I were first to use it as a tool for study of combinatorics. 
I would also like to read Radoicic-Fox, which you quote in your soon-to-be published 

survey. 

Ron responded on February 12, 2007: 

Hi Sasha, 
I don’t have a copy of the Radoicic–Fox paper, but it should be easy to get since Fox 

is a grad student at Princeton and Radoicic is working in New York. 
Best regards, 

Ron 

Ron [Gra8] summarizes this group’s results as follows: 

An interesting phenomenon has been recently observed by Fox, Radoicic, Alexeev and 
the author [FR], [AFG] which shows how the axioms of set theory can affect the 
outcome of some of these questions. For example, consider the linear equation E: x  +
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y + z  – 4w = 0. This is certainly not partition regular, and in fact, there is a 4-coloring of 
the integers which prevents E from having any (nontrivial) monochromatic solution. 
However, suppose we changed the question and asked whether E has monochromatic 
solutions in reals for every 4-coloring of the reals. It can be shown that in ZFC, there 
exist 4-colorings of the reals for which E has no monochromatic solution. However, if 
we replace the Axiom of Choice (the “C” in ZFC) by LM . . ., then in the system ZF+LM 
(which is consistent if ZFC is), the answer is yes. In other words, in this system every 
4-coloring of the reals always contains a nontrivial monochromatic solution to E. On the 
other hand, this distinction does not occur for the equation x +  y  – z = 0, for example. 

Dmytro (Mitya) Karabash, in 2006, an undergraduate student at Columbia University and a 
fine mathematician, coined the term for the class of graphs Shelah and I stumbled on: 

Definition 63.1 (Dmytro Karabash). The Shelah–Soifer class S of graphs consists of graphs 
G, for which χZFS (G) \ χZFC (G) = ∅. Let Sc stand for the complement, i.e., the class of 
graphs which are not Shelah–Soifer graphs. 

Mitya and I then looked into what causes a graph to belong to this class, and “how many” 
Shelah–Soifer graphs there are. The following results come from our joint 2007 paper [KS]. 

Definition 63.2 ([KS]). Let d be the Euclidian metric in Rn . The distance set between A, B ⊆ 
Rn is defined as follows: d(A, B) = {d(x, y) :  x 2A, y 2 B}. 
Definition 63.3 ([KS]). Let D ⊆ R+ = (0, 1). The symbol Gn 

D stands for the graph with the 
vertex set Rn and the edge set {(x, y) :  d(x, y) 2D}. 

The following result addresses the newly defined in this chapter notion of the set of 
chromatic cardinalities χZFS (Gn 

D) of the graph G
n 
D. 

Theorem 63.4 ([KS]). If for D ⊆ R+ , 0 is a limit point of D in R, then χZFS (Gn 
D) > ℵ0. 

We can prove Theorem 63.4 using an argument analogous to Proof of Claim 2 in Result 
62.3. For the sake of diversifying our tools, we will use instead the old result of Hugo 
Steinhaus (1887–1972): 

The Steinhaus Lemma 63.5 ([Stei]). If A⊆R, is a set of positive Lebesgue measure, then the 
set A - A = {x - y: x, y 2A} contains a ball around 0. 
Proof of Theorem 63.4 Let us argue by contradiction: suppose χZFS (Gn 

D) ≤ ℵ0. Then there 
exists a countable proper coloring c: Rn → N of Gn 

D. Look at the monochromatic sets Ai = {x 
2 Rn | c(x) = i}. Since all sets in Rn are measurable in ZFS, we get n 

i= 1μ Aið Þ=1. Hence, 
there exists i2N such that μ(Ai) > 0. Thus, there exists a set of positive measure A⊆Rn such 
that d(A, A) \ D =∅. We reduce to case n = 1 by observing that there must exist a line L⊆Rn 

such that A\L has positive measure in L by the product measure theorem (see, for example, 
Theorem 2.36 in [Foll]). Now we apply the Steinhaus Lemma 63.5 to see that d(A, A) contains 
some interval [0, ε) and since 0 is a limit point of D, we get d(A,A) \ D ≠∅. ■ 

Definition 63.6 ([KS]). Set D⊆ R is called integrally independent mod 2 if for any n2N , a1, 
a2, ..., an 2 Z and s1, s2, . . ., sn 2 D, the equality n 

i= 1aisi = 0 implies 2| n 
i= 1ai. 

Theorem 63.7 ([KS]). If D ⊆ R+ , |D| ≤ ℵ0, then χ
ZFC (G1 

D) ≤ ℵ0, i.e., for every α2χZFC (G1 
D), 

α ≤ ℵ0 . If in addition D is integrally independent mod 2, then χZFC (G1 
D) = {2}.

https://doi.org/10.1007/978-1-0716-3597-1_62#FPar8
https://doi.org/10.1007/978-1-0716-3597-1_62#FPar8
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Proof For any p2 R, p lies in the connected component C of G1 
D, 

jxi - xiþ1j2 D, x0 = x, xn = pg= 
1 

i= 1 

Ci, 

whereCi=Ci(p)aredefinedinductivelybyC0(p)={p}andCi=Ci-1+D={x+y |x2Ci-1, y2D}. 
Since |D|≤ℵ0, for every i, |Ci|≤ℵ0 and hence |C|≤ℵ0. Thus, we can color the compo-
nent in ℵ0 colors by coloring each point in a different color. The Axiom of Choice 
allows us to similarly color all other components. But the chromatic number of the 
graph is the supremum of the chromatic numbers of its components and hence the first 
statement of the theorem is proved. 

If D is integrally independent mod 2, then Ci\Cj = ∅ if and only if i - j is even. Hence, 
coloring each Ci according to its parity is a well-defined 2-coloring. ■ 

Theorem 63.8 ([KS]). For the set of graphs H = {G1 
D: D⊆ En }, we have |H \ S| = |H \ Sc |, 

where S is the class of Shelah–Soifer graphs and Sc is its complement. 

To prove this theorem, let us first prove two tools: 

Tool 63.9 ([KS]). If D⊆ (ε, 1) for some ε > 0, then χZF (Gn 
D) ≤ ℵ0. 

Proof We obtain a proper ℵ0-coloring of G
n 
D by cutting E

n into n-cubes of side ε 
n

p and 

coloring each cube into a different color. ■ 

Tool 63.10 ([KS]). Let G1, G2 be graphs with the same vertex set V and G = G1[edgeG2 be 
their edge union. Suppose that G1, G2 are countably colorable in an axiomatic system A, i.e., 
χA (Gi) ≤ ℵ0 for i = 1,2. Then, G is countably colorable in A, i.e., χA (G) ≤ ℵ0. 

Proof Let c1, c2 be proper ℵ0-colorings of G1, G2, respectively. Consider the coloring c1�c2 
of G into ℵ2 

0 colors defined by c1�c2(v) = (c1(v), c2(v)). This is clearly a proper coloring of 
G that uses ℵ2 

0= ℵ0 colors. ■ 

Proof of Theorem 63.8 Let HD = {G1 
D[E: E⊆ [1, 1)}. 

1) First consider D⊆ (0, 1) such that |D| ≤ ℵ0 and 0 is a limit point of D. Theorem 63.7 
implies that χZFC (G1 

D) ≤ ℵ0 and Tool 63.9 implies that χZFC (G1 
E) ≤ ℵ0. Hence, by Tool 

63.10, χ(G1 
D[E ) = χ(G1 

D[ edgeG
1 
E ) ≤ ℵ0. On the other hand, for every G

1 
D[E 2 HD, 

χZFS (G1 
D[E) > ℵ0 by Theorem 63.4. Hence, HD ⊆ S. 

2) Since |[1,1)| = |R+ | we get |HD| = 2|[1, 1)| = 2|R+| = |S| and hence |H|= |H\ S|. 
3) Now consider D = (0, 1]. Since each graph G1 

D[E in HD contains a complete subgraph with 
the vertex set of the cardinality of continuum, we get χZFS (G1 

D[E ) = χZFC (G1 
D[E ) = |c|, 

where c is continuum. Hence, HD⊆ Sc and similarly to argument 2) above, |H|=|H\Sc|. ■ 

Theorem 63.8 suggests that the class S is “as big as” the class Sc , whatever “as big” means. 
Let us make it formal.
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Definition 63.11 ([KS]). Let θ be a class of all graphs and α a cardinal number. We define a 
set θα as follows: 

θα = G 2 θ :jV Gð Þj≤ αf g, 

where V(G) is the vertex set of G, i.e., θα be the set of graphs with cardinality of vertex set not 
exceeding α. 

We conjecture: 

Conjecture 63.12 ([KS]). For any cardinal α > ℵ0, |θα\ S| = |θα\ Sc |. 

63.2 A Unit-Distance Shelah–Soifer Graph 

On July 10, 2007, my first day home after the 3-day cross-country rally brought me from 
Princeton to my home in Colorado Springs, I received the following e-mail from Melbourne, 
Australia: 

Dear Professor Soifer, 
I am a student from Monash Uni[versity] in Australia and I have done some work on 

the chromatic number of the plane problem. I found your various publications on the 
topic extremely helpful. I particularly liked your recent work with Saharon Shelah and 
as part of my [Honours] bachelor’s thesis I found another example of a graph with 
‘ambiguous’ chromatic number. This graph is a unit-distance graph so it may be 
considered even further evidence that the plane chromatic number may also be ambig-
uous as you have suggested. It has been submitted for review but you can find a pre-print 
of it here http://arxiv.org/abs/0707.1177 if you are interested. As you will notice, I am 
greatly indebted to your work since my proof is essentially analogous to yours. 

Kind regards, 
Michael Payne 

Indeed, the paper Michael submitted to arXiv the day before his e-mail to me contained a 
fabulous example. He starts with unit-distance graph G1 whose vertex set is the rational plane 
Q2 and, of course, two vertices are adjacent if and only if they are distance 1 apart. 

Example 63.13 (Payne [Pay]). The desired unit-distance graph G on the vertex set R2 is 
obtained by the tiling of the plane by translates of the graph G1, i.e., its edge set is 

p1, p2ð Þ : p1, p2 2 R2 ; p1- p2 2 Q2 ; p1- p2j j= 1 : 

Claim 1: χZFC (G) = 2. 

Proof By Woodall’s result 11.2, the chromatic number of the graph G1 is equal to 2. Since 
the graph G consists of nonconnected components – tiles – each of which is isomorphic to G1, 
the whole graph G is also 2-colorable (the Axiom of Choice is used to select “origin points” 
for 2-coloring of each tile). ■

http://arxiv.org/abs/0707.1177
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Claim 2: 3 ≤ χZFS (G) ≤ 7. 

Michael Payne shows first that any measurable set S of positive (Lebesgue) measure 
contains the endpoints of a path of length 3 in G. Of course, this would rule out 2-coloring 
of S. Payne continues: “We can then proceed in a similar fashion to Shelah and Soifer’s proof 
in [SS1].” Let us look at his proof. 

Tool 63.14 ([Pay]). For any point p 2 R2 and any ε > 0, there is q2Q with |q| < ε such that 
there is a path of length 3 in G starting at p and ending at p + (q,0). 

Proof We use the fact that the rational points are dense on the unit circle to choose an angle α 
such that (cos α, sin α) 2 Q2 and 

cos α-
1 
2 
< 

ε 
3 
: 

The path starting at p and passing through the following 3 points has the desired property: 

p1 = p+ (cosα, sinα), 
p2 = p+ (cosα-1, sinα), 
p3 = p+(2cosα-1, 0). 

From the previous inequality, 

j 2 cos α- 1 j < 
2ε 
3 

< ε, 

and so we can simply choose q = 2cosα -1. ■ 

Tool 63.15 ([Pay]). Any measurable set A ⊂ R2 of positive measure μ(A) > 0 contains a pair 
of vertices of G that are joined by a path of length 3. 

Proof Michael Payne’s proof of this central for the example tool is based on the use of ideas 
from Shelah–Soifer examples discussed in the previous chapters. Assume that μ(A) > 0. Then 
there is a unit square S in R2 with sides parallel to the axes such that 

μ A \ Sð Þ 9 

(Since A has positive measure, it must contain points with density equal to 1. Around any 
such point we can find a square with the desired property.) 

By Tool 63.14, we can choose a rational q such that |q|< 1 10 and two points (x, y) and (x + q,  
y) are joined by a path of length 3. Let A’ be a translate of A: A’ = {(x + q, y) : (x, y) 2 A}. We 
have 

μ A ′ \ Sð Þ  
μ Sð Þ  > 

8 
10 

: 

since the part of A translated out of S has measure at most μ(S)/10= 1 
10. The two inequalities 

above imply that there exists u 2 A\A’\S. Indeed, assume that A\A’\ S = ∅, then A\S and 
A’\S are disjoint, and using additive property of measure, we get:
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μ Sð Þ= μ A \ Sð Þ þ  μ A’ \ S þ μ S∖ A [ A’ : 

Dividing by μ(S) and using the density bounds, we get 

1> 
9 
10

þ 8 
10

þ μ S∖ A [ A0ð Þð Þ  
μ Sð Þ , 

which is a contradiction. Therefore, there exists u 2 A\A’\ S. Since u 2 A’, it has a 
preimage v 2 A such that u = v + (q, 0). So u,v 2 A, and u and v are connected by a path 
of length 3 in G. ■ 

Proof of Claim 2 of Payne’s Example 63.13. Assume that G is 2-colored, with the 
corresponding monochromatic sets A1 and A2 which together cover the plane. At least one 
of the sets, say, A1, has positive measure. Thus, by Tool 63.15, A1 contains a pair of points 
connected by a path of length 3 in G. However, in a 2-coloring of a graph, points connected by 
paths of length 3 must have the opposite colors. Hence, no 2-coloring of G exists. ■
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Chapter 64 
A Glimpse into the Future: Chromatic Num 
of the Plane, Theorems, and Conjectures 

ber 

The importance of particular axioms being used makes a 
surprising difference for the question of determining the 
chromatic number of the plane, as recently shown by Shelah and 
Soifer 

– Ronald L. Graham ([Gra6].) 

64.1 Conditional Chromatic Number of the Plane Theorem 

In the previous chapters, we constructed graphs that highlight the difference between our 
common ZFC Mathematics and mathematics that could be created, such as the ZFS Math-
ematics. But what does it have to do with the main problem of this book, the chromatic 
number of the plane (CNP)? 

Is AC relevant to the problem of the chromatic number χ of the plane? The answer depends 
upon the value of χ which we, of course, do not (yet) know. However, in 2003, Saharon 
Shelah and I published the following conditional result. It was 1 year after I conjectured 7 as 
the chromatic number of the plane and 15 years before Aubrey de Grey constructed a 
5-chromatic unit-distance graph. Today, the following theorem has only a historic, or 
anthropological interest. 

Conditional Chromatic Number of the Plane Theorem 64.11 (Shelah–Soifer 2003 [SS1]). 
Assume that any finite unit distance plane graph has chromatic number not exceeding 
4. Then:

*Þ χZFC E2 = 4; 

χZFSþ E2 ≥ 5: 

1 Due to the use of the Solovay’s Theorem, we assume the existence of an inaccessible cardinal. 

© Alexander Soifer 2024 
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Proof The claim *) is true due to the De Bruijn–Erdős Compactness Theorem 27.1. 

Claim **). In the Solovay’s system of axioms ZFS+ = ZF + DC + LM, every subset S of 
the Euclidean plane E2 is Lebesgue measurable. Indeed, S is measurable if there is a Borel set 
B such that the symmetric difference SΔB is null. Thus, every plane set differs from a Borel set 
by a null set. We can think of a unit segment I = [0,1] as a set of infinite binary fractions and 
observe that the bijection I → I2 defined as 0.a1a2. . .an. . . ↦ (0.a1a3. . .; 0.a2a4. . .) preserves 
null sets. Due to the Falconer Theorem [Fal1], [Fal2] that appeared in Chapter 9, we can now 
conclude that the chromatic number of the plane is at least 5 (and, of course, at most 7). ■ 

This conditional theorem allows for a certain historical insight. Perhaps, the problem of 
finding the chromatic number of the plane has withstood for over 73 years, leaving us still 
with a wide range for χ being 5, 6, or 7 because the answer depends upon the system of 
axioms we choose for set theory? 

In general, the chromatic number of the Euclidean space En may depend upon the system 
of axioms we choose for set theory. 

In the end of his 2007 paper, Michael Payne, the author of the important Example 63.13 in 
the previous chapter, remarks: 

After demonstrating the existence of graphs whose chromatic number depends on the 
axiomatization of set theory, Shelah and Soifer went on to formulate a conditional 
theorem [which essentially showed that the chromatic number of the plane may be 
ambiguous in a similar way to the graphs considered here [SS1]. They showed that the 
chromatic number of the plane may be 4 with AC but 5, 6 or 7 with LM. The fact that 
our new example G (Example 63.13) is a subgraph of P [unit distance plane] makes this 
possibility seem even more likely. 

This begs a question: was the choice of the mathematical standard ZFC inevitable? Was 
this choice “best” possible? 

In fact, I can formulate an unconditional theorem, which is a consequence of the same ideas 
as Theorem 64.1. 

64.2 Unconditional Chromatic Number of the Plane Theorem 

Can we get anything unconditionally, a piece of mathematical “truth-forever” result? Yes, we 
can, but not yet in ZFC. 

Unconditional Chromatic Number of the Plane Theorem 64.2 χZFS+ (E2 ) ≥ 5.

https://doi.org/10.1007/978-1-0716-3597-1_27#FPar1
https://doi.org/10.1007/978-1-0716-3597-1_63#FPar17
https://doi.org/10.1007/978-1-0716-3597-1_63#FPar17
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64.3 The Conjecture 

I trust – all living is related, 
The future is my everyday, 
As heretic, I end by falling 
Into Simplicity, the only way. 

– Boris Pasternak, The Waves, 19312 

The great Russian poet provides us with a fitting epigraph about simplicity. Indeed, much 
of mathematical results are surprisingly simple, as are our conjectures. Just look at Erdős– 
Szekeres’ Happy End Conjecture 31.15! At the end of this section, I will present my very 
simple conjecture for the chromatic number of the Euclidean n-dimensional space. Let us start 
with the plane. In 2002, when I issued this conjecture, the majority view leaned toward values 
4 and 5. Now, I see a good number of researchers joining me with a 7. 

Chromatic Number of the Plane Conjecture 64.3 (A. Soifer, 2002). 

χ E2 = 7: 

“OK,” I hear your reply, “but then a finite unit-distance7-chromatic graph must exist in the 
plane!” This is true, but it would be quite large. In 1998, Dan Pritikin published the lower 
bound for the size of such a graph [Pri]: |G| ≥ 6198. This lower bound stood for 22 years, 
when in 2020 Jaan Parts succeeded in improving it: 

Lower Bound for a Unit-Distance 7-Chromatic Graph 64.4 ([Par3], 2020). Any unit-
distance 7-chromatic graph G satisfies the following inequality: |G| ≥ 6993. 

Parts achieves his result by constructing a tiling of more than 99.985698% of the Euclidean 
plane with 6 colors, thus setting the new record in these indoor competitions. In fact, we all 
expect that the size of the smallest such graph to be much larger than 6993. The best we can 
hope to achieve at the moment is a lower bound of 6. 

2 [Pas]. Translated by Ilya Hoffman and Alexander Soifer. In 1931, Pasternak dedicated this poem 
“To N.I. Bukharin,” a famous politician and philosopher, murdered on March 15, 1938, in Stalin’s 
purges. One would hope that in the contemporary, 2004, 11-volume edition of Boris Pasternak the 
dedication would be restored – it was not. My personal library has the 1934 book [Pas], and it 
seems to be the only place where we can learn about this dedication. The original Russian text is 
this (I am adding four lines that follow): 

В родстве со всем, что есть, уверясь 
И знаясь с будущим в быту, 
Нельзя не впасть к концу, как в ересь, 
В неслыханную простоту. 

Но мы пощажены не будем, 
Когда ее не утаим. 
Она всего нужнее людям, 
Но сложное понятней им.

https://doi.org/10.1007/978-1-0716-3597-1_31#FPar24
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Permit me to repeat here the new $1,000 problem of Ronald L. Graham. Ron Graham 
believed that every talk must include at least one proof; he also always had at least one joke. I 
felt that I knew Ron’s style of problem posing. I also knew that we were friends, and Ron with 
his great sense of humor would not be angry with me for announcing Ron Graham’s New 
$1000 Problem without clearing it with him first. And so, I did it in my March 14, 2019, talk 
at Florida Atlantic University (with a disclaimer “subject to Ron’s approval”). My audience 
filled the room with laughter. Immediately after the conference, on March 16, 2019, I sent 
Ron an email: 

Dear Ron, 
Unfortunately, I did not see you at my talk in Boca, where I presented your new 

$1000 problem, of course, subject to your approval. :) The audience loved it. 
The New Ron Graham’s $1,000 Problem 64.5. Prove or disprove the existence of a 

6-chromatic unit-distance graph. 
So . . .  please, reply with a yes or a no, or your different related open problem(s) – for 

the inclusion in the second expanded edition of The Coloring Book. 
Yours always, 
Sasha 

Ron replied the same day: 

Hi Sasha, 
I had to check out by 11 so unfortunately I couldn’t make your talk! :( 
I approve of the new $1000 problem! 

Ron 

In 2002, I also formulated a conjecture for 3-dimesional Euclidean space E3 : 

Chromatic Number of 3-Space Conjecture 64.6 (A. Soifer, 2002). 

χ E3 = 15: 

On April 16, 2018, Aubrey de Grey emailed me for publication in Geombinatorics an edited 
paper with his breakthrough, the first 5-chromatic unit-distance graph. His email ends with the 
following paragraph: 

I also have some ideas for the upper bound and I suspect that there are ways to falsify 
you conjecture for n = 3. . .  but nothing sufficiently concrete to be worth describing yet. 

This is how I learned on April 16, 2018, that Aubrey attempted to refute my Chromatic 
Number of 3-Space Conjecture 64.6. The conjecture so far has withstood 5+ years since 
Aubrey’s assault commenced. :) 

My expectations for small dimensions led me to my old general conjecture for the 
chromatic number of the Euclidean n-dimensional space En : 

The General Chromatic Number of En Conjecture 64.7 (A. Soifer, 2002). For any 
positive n >1, 

χ Enð Þ= 2nþ1 –1:
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On March 11, 2021, I was giving a Public Lecture “Chromatic Number of the Plane and its 
Relatives, History, Conjectures, Results, and Credits: A Ballad in 12 Movements” at a most 
powerful conference on Euclidean Ramsey Theory, dedicated to the memory of Ron Graham 
at the Alfred Rényi Institute of Mathematics of the Hungarian Academy of Sciences. Jacob 
Fox asked for my rationale in creating this “bold conjecture.” I replied “Simplicity, like in The 
Happy End Erdős–Szekeres Conjecture.” Jacob was likely not satisfied, and for good reason, 
so I sent him a longer answer than simply claiming intuition. In the early 1990s, while 
“playing” with 6-colorings, I “almost” managed to color the plane with 6 colors without 
creating a monochromatic unit. I then began to feel that 7 was the answer to the chromatic 
number of the plane, even in the general case, not merely in special cases of “nice” tilings. 
Next step was David Coulson’s paper, showing 15 as the upper bound for the chromatic 
number of 3-space. I thought then, in 2002, that 15 must be the exact answer for 3-space 
without any special circumstances. Now look at the numbers I conjectured so far: 7, 15 – 
which is next? I’d say 31, and this is how my conjecture was born. Moreover, we know 
axiomatic exponential lower and upper bounds for the chromatic number of n-spaces, and my 
conjectured function is exponential and lies right in the middle between the known exponen-
tial bounds. I do not expect the General Conjecure 64.7 to be proved in my lifetime. 

As Paul Erdős used to say about some of his conjectures, “This conjecture will likely 
withstand centuries, but we shall see!”



Part XIII 
Imagining the Real, Realizing the Imaginary 

“What do you think of the abstract – do you 
believe that one should deduce one’s abstrac-
tion from the forms of nature, or that one 
should create the form, outside of nature?” 
Matisse replied, “There is always a measure 
of reality. The rest, I agree, is imagination.” 

– Henry Matisse1 

For me, the province of art and the province of 
nature thus became more and more widely 
separated, until I was able to experience both 
as completely independent realms. 

– Wassily Kandinsky2 

Reality is unnatural. 
– Pier Paolo Pasolini 

Everything you can imagine is real. 
– Pablo Picasso 

There is an intimate relationship between the 
order of Nature (which constitutes the basis of 
life) and the order of Art (which constitutes the 
basis of civilization). 

– Herbert Read3 

1 Interview with R. W. Howe [Fla], p. 186. 
2 [Kan], 1913. 
3 [Rea].
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Chapter 65 
What Do the Founding Set Theorists Think 
the Foundations? 

Abou 

In the beginning (if there was such a thing) God created 
Newton’s laws of motion together with the necessary masses 
and forces. This is all; everything beyond this follows from the 
development of appropriate mathematical methods by means of 
deduction. 

– Albert Einstein, 1946 ([Ein2, p. 19].) 

Kurt Gödel and Paul J. Cohen believed that we would eventually identify all the axioms of set 
theory and when we have done so, we will no longer be able to choose between CH andØCH 
(or, similarly, between AC and DC + LM) because the additional axioms would exclude one 
of the options. Cohen shares his thoughts on the subject in 1966 [Coh2, pp. 150–151, 
underlining is his]: 

One can feel that our intuition about sets is inexhaustible and that eventually an 
intuitively clear axiom will be presented which decides CH. One possibility is V=L, 
but this is almost universally rejected. . .  A point of view which the author feels may 
eventually come to be accepted is that CH is obviously false. 

While the majority of mathematicians are Platonists, Saharon Shelah does not share their 
Platonist view in his 2003 Logical Dreams [She3], 

Some believe that compelling, additional axioms for set theory which settle problems of 
real interest will be found or even have been found. It is hard to argue with hope and 
problematic to consider arguments which have not yet been suggested. However, I do 
not agree with the pure Platonic view that the interesting problems in set theory can be 
decided, we just have to discover the additional axiom. My mental picture is that we 
have many possible set theories, all conforming to ZFC. 

Before I query the great set theorists about the state of their minds on the foundations of set 
theory, I read their writings on the subject matter. Robert M. Solovay in his pioneering 1970 
paper [Sol1] states: 

Of course, the axiom of choice [AC] is true. 

Saharon Shelah writes in the introduction to his 1994 classic monograph Cardinal 
Arithmetic [She2]: 
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If we interpret “true” by “is provable in ZFC” (the usual axioms of set theory), as I do, 
then a large part of set theory which is done today does not deal directly with true 
theorems – it deals, rather, with a huge machinery for building counterexamples (forcing 
possible universes) or with “thin” universes (inner models). Very often the answer to 
“can this happen?” is “it depends.” Now, I believe that this phenomenon is inevitable, 
and expresses a deep phase of the development of set theory, which resulted in many 
fascinating theorems (and also in quite a few proofs of mine). However, there is still 
some uneasiness about it. A way to express it is to say that if Cantor would have risen 
from his grave today, he would not just have problems with understanding the proofs of 
modern theorems – he would not understand what the theorems actually say. 

And so I endeavor to ask the three of the leading set theorists, great contributors to the 
axiomatics of sets, the following questions:1 

*) Has AC been good for mathematics? 
**) Ought AC to be a part of a ‘standard’ system of axioms for set theory? 
***) What do you think of the Solovay system of axioms (ZFS)? 
****) How do you envision the ‘standard’ system of axioms for set theory? 

“My opinions shift and I have no obvious candidates [for the standard system of axioms],” 
Paul J. Cohen replies to me [Coh3] and adds: “Solovay’s result on LM is very nice, but hardly 
an axiom.” Saharon Shelah in his response to me [She4] sees a certain value in using the 
Solovay system ZFS and systems weaker than ZFC: 

The major question is what is true, i.e., when existence tells you something more if you 
give an explicit construction. Now, working in ZF, ZF+DC, and also ZF+DC+LM and 
many other systems are ways to explicate the word “construct.” 

In Shelah’s opinion [She4], AC has been “definitely” good for mathematics, AC is true and 
“should be in our standard system [of axioms].” Robert Solovay too believes that AC is true 
(and therefore his system, which I admire so much, ZFS+ = ZF+DC+LM is false). He writes 
to me about AC [Sol3]: 

(a) It is true. 
It plays an essential role in all sorts of Theorems, for example, the uniqueness of the 
algebraic closure, existence of maximal ideals, etc. 

This prompts my question: But. . .  what is “true”? Shelah answers it as follows [She5]: 

This is a meta-mathematical question. I will say [true is what] fits our image of set 
theory. 
You may say this is circularly, but this is unavoidable. 
You may be Platonist like Cantor then the meaning is clear. 
You may say [true is] what mathematicians who have not been interested in the question 
will accept. 
You may be a formalist and then this is a definition of ZFC. 

1 June 11–20, 2006, author’s e-mail exchanges with Paul J. Cohen, Saharon Shelah, and Robert 
M. Solovay.
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Shelah is clear on what is not true enough, in his 2003 paper [She3]: 

Generally I do not think that the fact that a statement solves everything really nicely, 
even deeply, even being the best semi-axioms (if there is such a thing, which I doubt) is 
a sufficient reason to say it is a “true axiom.” 

Not surprisingly, there is no rigorous definition of “truth,” this elusive notion is subjective, 
and all we can hope for is to recognize a true axiom when we encounter one. For Shelah, a true 
axiom is “what I feel/think is self-evident.”2 This is a high bar to clear, and only ZFC seems 
to have cleared it for most creators of set theory. Even such serious candidates as CH, ØCH, 
GCH, V=L are termed by Shelah as “semi-axioms” – because they are not sufficiently 
“representative” of all possibilities. Shelah elaborates [She3]: 

Still most mathematicians, even those who have worked with GCH [and with other 
semi-axioms, A. S.] do it because they like to prove theorems and they could not 
otherwise solve their problems (or get a reasonable picture), i.e., they have no alternative 
in the short run. . .  

What are our criterions for semi-axioms? First of all, having many consequences, 
rich, deep beautiful theory is important. Second, it is preferable that it is reasonable and 
“has positive measure.” Third, it is preferred to be sure it leads to no contradiction. . .  

The renown French mathematician Jean-Paul Delahaye [Del] believes that Shelah–Soifer 
results may have put a new emphasis on the task of finding which world of sets we think we 
live in: 

It turns out that knowing if the world of sets satisfies the axiom of choice or a competing 
axiom is a determining factor in the solution of problems that no one had imagined 
depended on them. The questions raised by the new results are tied to the fundamental 
nature of the world of sets. Is it reasonable to believe that the mathematical world of sets 
is real? If it exists, does the true world of sets – the one in which we think we live – allow 
the coloring of S. Shelah and A. Soifer in two colors or does it require an infinity of 
colors? . . .  

A series of results concerning the theory of graphs, published in 2003 and 2004 by 
Alexander Soifer of Princeton University and Saharon Shelah, of the University of 
Jerusalem, should temper our attitude and invite us to greater curiosity for the alterna-
tives offered to the axiom of choice. The observation demonstrated by A. Soifer and 
S. Shelah should force mathematicians to reflect on the problems of foundations: what 
axioms must be retained to form the basis of mathematics for physicists and for 
mathematicians? 

2 [She5].
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Chapter 66 
So, What Does It All Mean? 

I know of mathematicians who hold that the axiom of choice has 
the same character of intuitive self-evidence that belongs to the 
most elementary laws of logic on which mathematics depends. It 
has never seemed so to me. 

– Alonzo Church (Talk at the International Congress of 
Mathematicians in Moscow, 1966 [Chu].) 

Shelah–Soifer’s results we have discussed in this book seem surprising and even strange. 
How can the presence of the Axiom of Choice or its version affect whether we need 2 colors 
or an uncountable infinity of colors for coloring a particular easily understood graph? How 
can the chromatic number of the plane depend upon our choice of the axioms for set theory? 
What do these results mean? 

Jean-Paul Delahaye opens his article about these Shelah–Soifer papers in Pour la Science, 
the French edition of Scientific American, as follows [Del]: 

The axiom of choice, a benign matter for the non-logician, puzzles mathematicians. 
Today, it manifests itself in a strange way: it takes, depending on the axiom’s variants, 
either two or infinity of colors to resolve a coloring problem. 

Just as the parallels postulate seemed obvious, the axiom of choice has often been 
considered true and beyond discussion. The inventor of set theory, Georg Cantor 
(1845–1918), had used it several times without realizing it; Giuseppe Peano 
(1858–1932) used it in 1890, in working to solve a differential equation problem, 
consciously; but it was Ernst Zermelo (1871–1953), at the beginning of the 20th 
century, who identified it clearly and studied it. 

When Gödel and Cohen proved independence of AC from the rest of the axioms ZF 
of set theory, they created a parallel, so to speak, between AC and the parallels 
postulate. As so, when Shelah–Soifer came out, it showed that various buildings of 
mathematics can be constructed. 

Delahaye observes, “These [Shelah–Soifer’s] results mean, as with the parallels postulate, 
that several different universes can be considered,” and continues: 

© Alexander Soifer 2024 
A. Soifer, The New Mathematical Coloring Book, https://doi.org/10.1007/978-1-0716-3597

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3597-1_66&domain=pdf
https://doi.org/10.1007/978-1-0716-3597-1_66#DOI


778 66 So, What Does It All Mean?

In the case of geometry, the independence of the parallels postulate proved that 
non-Euclidian geometries deserved to be studied and that they could even be used in 
physics: Albert Einstein took advantage of these when, between 1907 and 1915, he 
worked out his general theory of relativity. 

Regarding the axiom of choice, a similar logical conclusion was warranted; the 
universes where the axiom of choice is not satisfied must be explored and could be 
useful in physics. 

Jean Alexandre Eugène Dieudonné (1906–1992), one of the founding members of the 
celebrated Nicolas Bourbaki project, describes the state of the foundations in 1976 as follows: 

Beyond classical analysis (based on the Zermelo–Fraenkel axioms supplemented by the 
Denumerable Axiom of Choice), there is an infinity of different possible mathematics, 
and for the time being no definitive reason compels us to choose one of them rather than 
another.1 

The Solovay System of Axioms ZFS+ is stronger than the system referred to by 
Dieudonné. It allows us to build classical analysis, including the complete Lebesgue measure 
theory, and it eliminates such counter-intuitive objects, existing in ZFC, as non-measurable 
sets of reals. 

Using the axiom of choice in their 1924 paper [BT], two celebrated Polish mathematicians 
Stefan Banach (1892–1945) and Alfred Tarski (1902–1983) decomposed the 3-dimensional 
closed unit ball into finitely many pieces and moved those pieces through rotations and 
translations (pieces were allowed to move through one another) in such a way that the pieces 
formed 2 copies of the original ball. Since the measure of the union of two disjoint measurable 
sets is the sum of their measures, and measure is invariant under translations and rotations, we 
can conclude that there is a piece in Banach–Tarski decomposition that has no measure (i.e., 
volume). Having LM in the system of axioms for set theory would eliminate this and a good 
number of other paradoxes. 

ZFC allows us to create imaginary objects – or shall I say, unimagined objects – such as 
sets on the line that have no length, sets in the plane that have no area, etc. Are we not paying a 
high price for the comfort of having a powerful tool? 

Having lived most of my life in ZFC and having enjoyed using transfinite induction in my 
group theory works, in the course of my work with Shelah I came to a realization that I prefer 
ZFS+ = ZF + DC + LM over ZFC: LM assures that every set of reals is measurable (which 
is consistent with my intuition: every point set on the line ought to have length), while DC 
seems to give us as much choice as is consistent with LM. 

Of course, by downgrading AC to DC, we would lose such tools as the transfinite 
induction and the well ordering of uncountable sets, as would consequently lose some 
important theorems, such as the existence of basis for a vector space. However, new theorems 
would be found when mathematicians spend as much time building on the Solovay founda-
tion ZFS+ as they have on ZFC. 

1 Quoted from [Moo, p. 4].
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Chapter 67 
Imagining the Real or Realizing the Imagin 
Platonism Versus Imaginism 

ry: 

As far as the propositions of mathematics refer to reality, they 
are not certain; and as far as they are certain, they do not refer 
to reality. 

– Albert Einstein, 1921 [Ein1] 

Reality is merely an illusion, albeit a very persistent one. 
– Albert Einstein, Annalen der Physik, Sep. 27, 1905 

Physical concepts are free creations of the human mind, and are 
not, however it may seem, uniquely determined by the external 
world. 

– Albert Einstein, The Evolution of Physics 

We all know that Art is not truth. Art is a lie that makes us realize 
the truth. 

– Pablo Picasso, 1923 [Pic] 

The mathematician is an inventor, not a discoverer. 
– Ludwig Wittgenstein, 1937–1944 [Witt, p. 47e] 

Undoubtedly, a vast majority of mathematicians are Platonists.1 They believe that mathemat-
ical objects exist “out there” independently of the human mind, and mathematicians merely 
discover them. The Platonists believe that a mathematical statement, such as AC, is objec-
tively either true or false – we simply do not know which it is, although in a poll of 
mathematicians, “AC is true” would win hands down. Likewise, a question, what is the 
chromatic number of the first Shelah–Soifer graph G, surely, must have a definitive answer; it 
cannot be “2 or uncountable infinity.” Therefore, for the Platonists either ZFC or ZF+DC 
+LM is true, we just do not know which. Platonists imagine the real. 

I find it contradictory that most mathematicians subscribe to Platonism, and at the same 
time believe that mathematics is an art. In my opinion, 

Science reflects what is outside the Man, in Nature, whereas Art reflects what is within. 

1 Jim Holt reminisces [Hol]: “Some years ago, while giving a lecture to an international audience 
of elite mathematicians in Berkeley, I asked how many of them were Platonists. About three-
quarters raised their hands.” 
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Let me ask great thinkers to assess the goals of Art, while keeping in mind that Mathe-
matics is an art. In 1859, the 39-year-old great French poet Charles Pierre Baudelaire (he lived 
sadly only 46 years, 1821–1867) observes: 

In recent years we have heard it said in a thousand and different ways, “Copy nature; just 
copy nature. There is no greater delight, no finer triumph than an excellent copy of 
nature.” And this doctrine (the enemy of art) was alleged to apply not only to painting 
but to all the arts, even to the novel and to poetry. To these doctrinaires, who were so 
completely satisfied by Nature, a man of imagination would certainly have the right to 
reply: “I consider it useless and tedious to represent what exists, because nothing that 
exists satisfies me.” 

The 19-year-old future Nobel Laureate Albert Camus (another tragically short life of 
46 years, 1913–1960) digs deeper in his 1932 Essay on Music [Cam1]: 

According to [realism], Art ought to concern itself exclusively with the imitation of 
Nature and the exact reproduction of Reality. This is a definition that not only demeans 
Art, but, further, destroys it. To reduce Art to a servile imitation of Nature is to condemn 
it to produce only the imperfect. 

The greater part of the aesthetic emotion, in fact, is a product of our personality. The 
beautiful is not in Nature; it is we who put it there. The sense of beauty we feel in front of 
landscape does not come from the landscape’s aesthetics perfection. It comes from the 
fact that the look of things is in perfect agreement with our instincts, our propensities, 
with everything that makes up our unconscious personality. . .  The greater part of an 
aesthetic emotion is therefore produced by ourselves, and Amiel’s saying “A landscape 
is a state of the soul” will always be true. 

Indeed, “The beautiful is not in Nature; it is we who put it there.” How shall we describe 
those who hold Albert Camus’ view, the view dual to that of Plato? I propose to call them – 
us – Imaginists. This name was once used in Russia in the early XX century: there were 
several poets, Sergei Esenin, Vadim Shershenevich, Anatoly Mariengof, and others, who 
valued imagination and called themselves “Imaginists.” I trust they would not object to our 
application of this term to mathematicians and scholars, who view their work essentially as 
Imaginism. By marrying Picasso to Wittgenstein, I arrive at the following proverb: 

Mathematics is an invention that makes us realize reality. 

Mathematics is certain only as an invention, or as Einstein put it, “As far as the laws of 
mathematics refer to reality, they are not certain; and as far as they are certain, they do not 
refer to reality.” 

I believe that mathematicians do not only imagine the real but also realize the imaginary. 
Just like all artists, mathematicians create objects that challenge reality in every aspect: 
beauty, simplicity, intuitiveness, and counter-intuitiveness. I believe that 

Nature is but one of many inspirations for creating mathematics. 

Mathematics of ZFC is the house that Jack built. Has Jack built the only possible house? 
Has he built the best possible house? Must we give up a village for a house, as Richard III 
offered his kingdom for a horse?
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I believe that mathematicians put all their eggs in one ZFC basket, and thus missed out on 
many alternative mathematical universes that can be built on many alternative foundations, 
one of which is Solovay’s ZFS+. Saharon Shelah too thinks that we ought to build on many 
foundations, but he puts his main emphasis on building up from ZFC. It seems, we have been 
too comfortable, too nonchalant about seeing problems with ZFC and doing nothing about 
them. Mathematical results presented in the previous chapter may be not important by 
themselves, but they illuminate the existence of many buildings of mathematics that could 
be built. I hope this is a wake-up call. Delahaye [Del] concludes his analysis of Shelah– 
Soifer’s series of papers with the possibility of the emerging “revolution of set theories”: 

In set theory, as in geometry, all axiomatic systems are not created equal. Thinking 
carefully about their meaning and the consequences of each one of them, and asking 
ourselves (as it is done in geometry) what the particular usefulness of this or that axiom 
is in expressing and addressing issues of mathematical physics, may be relevant once 
again and could lead – why not – to a revolution of set theories, similar to the revolution 
in non-Euclidian geometries. 

You, my reader, and I are engaged in the art of mathematics. We also ought to be citizens of 
our small, endangered planet. Let us leave the Ivory Tower and get involved with the world, 
involved like the Little Flutist in the great French chansonnier Georges Brassens’ song “Le 
Petit joueur de flûtiau.” I am translating for you the lines opening this ballad and those 
concluding it. 

A flutist played in the royal court. 
The sound of his songs was sweeter than words. 
The flutist’s play delighted the court: 
“The noble coat of arms for such a perform!” 
But the musician refused the reward: 
My King, I don’t need your royal award! 
From noble titles and royal feasts 
The sound of my flute will fret a bit. 
In land that so dear and sweet to my heart, 
Each one will say: “The flutist’s corrupt.” 
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . .. 
The flutist paid bow to the King as he stormed 
From the royal castle to the place called home, 
Where everyone ready accepting him 
Without noble titles and royal feasts. 
He went to his family, friends, and his lover, 
To village of his, to his own barrack. 
In land that so dear and sweet to his heart, 
No one will say, “The flutist’s corrupt.”



Part XIV 
Farewell to the Reader
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Chapter 68 
Two Celebrated Problems 

Mathematics, rightly viewed, possesses not only truth, but 
supreme beauty. . .  capable of a stern perfection such as only the 
greatest art can show. 

– Bertrand Russell 

Unfinished, a picture remains alive, dangerous. A finished work 
is a dead work, killed. 

– Pablo Picasso 

Histories of two beautiful coloring problems, The Four-Color Problem (4CP) and The 
Chromatic Number of the Plane Problem (CNP) have been strikingly similar in many ways. 

Both problems are easy to enjoy, easy to formulate, and hard to solve. 
Both problems were created by young students, ages 20 and 18, respectively, born in the 

year ‘32: 

4CC by Francis Guthrie, born in 1832; 
CNP by Edward Nelson, born in 1932. 

4CC inspired and motivated the development of much of graph theory. CNP inspired a lot 
of mathematical work and results in a great variety of fields in which solutions were sought: 
combinatorics, graph theory, topology, measure theory, abstract algebra, geometry, combi-
natorial geometry, etc. 

As we have seen on the pages of this book, CNP and 4CP have an essential nonempty 
intersection: The Townsend-Woodall 5-Color Theorem. 

Each of these two problems had a chief promoter. For 4CP this was Augustus De Morgan, 
who had kept the problem alive for decades. Paul Erdős’ contribution to keeping CNP alive is 
even greater. First of all, as De Morgan did for 4CP, Erdős kept the flaming torch of the 
problem lit. Even though the problem was not his, Paul made CNP well known by posing it in 
his countless problem talks and many publications, for example, we see it in [E61.22], 
[E63.21], [E75.24], [E75.25], [E76.49], [E78.50], [E79.04], [ESi], [E80.38], [E80.41], 
[E81.23], [E81.26], [E85.01], [E91.60], [E92.19], [E92.60], and [E94.60]. Moreover, Paul 
Erdős created a good number of fabulous related problems, some of which we have discussed 
in this book. 
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Both problems required a very long time to be conquered. Victor Klee and Stan Wagon 
[KW], observing that solving 4CP took 124 years, suggested that CNP might require as long 
for its solution: 

If a solution of CNP takes as long as 4CC, then we will have a solution by the year 2084. 

CNP is a classic problem of mathematics. As Ron Graham and Eric Tressler write [GT] in a 
volume I edited [Soi49], 

The unit distance graph in the plane . . .  is simple enough to describe to a 
nonmathematician, and so enigmatic that finding its chromatic number is a new four-
color map problem for graph theorists. 

The interest in CNP is growing. I was invited to write a chapter about CNP for the book 
“[Famous] Open Problems in Mathematics” edited by “A Beautiful Mind” (John F. Nash, Jr.) 
and Michael Th. Rassias [Soi50] for Springer, and another chapter for “Topics in Chromatic 
Graph Theory” edited by Lowell W. Beineke and Robin J. Wilson with academic consultant 
Bjarne Toft [Soi35] for Cambridge University Press. Alfréd Rényi Institute of Mathematics of 
the Hungarian Academy of Sciences invited my “Public Lecture” about CNP and related 
problems [Soi56] at their spectacular 2021 three-day Workshop on Euclidean Ramsey Theory 
dedicated to the memory of our Captain, Ron Graham. As you have witnessed in this book, 
CNP attracted research not only by mathematicians, but also by a gerontologist, a computer 
scientist, and an engineer. 

Will we completely solve CNP by 2084? I would say, partially yes, completely, probably 
not. Paul Erdős would say, “We shall see!” Arnold Schoenberg believes that faith can move 
mountains. Erdős urges us to believe that the transfinite Book of all theorems and their best 
proofs exists. Such belief led Appel and Haken to succeed at the breaking point of available 
computing. Such belief is needed to conquer my favorite open problem of mathematics, the 
chromatic number of the plane. We shall overcome! 

I concluded the first edition of this book quite prophetically: 

Thank you for inviting my book into your home and holding it in your hands, or on your 
screen. Your feedback, problems, conjectures, solutions would be welcome in my 
home. Who knows, maybe they will inspire a new edition in the future, and we will 
meet again! 

Indeed, new brilliant contributions inspired me to write and Springer to publish this new 
much expanded edition. Paul Erdős on some occasions said, “I hope some of my theorems 
will live forever.” I hope the conjecture of my life, prophesying the value of the chromatic 
number of the Euclidean n-space En will not live forever, but will be settled within the next, 
say, 200 years, but, in Erdős’ words, we shall see: 

χ Enð Þ= 2nþ1- 1: 

The time has come to let my book live her own life. I hope she will add colors to your life 
and inspiration to your work. Reach out, share your conjectures, theorems, and ideas about 
things you are passionate about, such as Art, Mathematics, and Freedom!
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