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Abstract 

Advances in science and technology have led to the generation of data that require storage, processing, and 
interpretation. Predictive microbiology is a valuable tool that merges microbiology, mathematics, and 
statistics to improve food safety and quality from microbial growth, survival, or inactivation parameters. 
Predictive models seek to understand the effect of environmental conditions (pH, temperature, aw, etc.) on 
microbial responses by mathematical models. The predictive models are developed by laboratory tests 
combined with software to predict the microbial kinetic parameters under different conditions. Indeed, the 
models do not replace microbial controls but are an additional device for decision-making supported by 
data-driven. Thus, this chapter aims to provide an overview of predictive microbiology, covering funda-
mental concepts, methodologies, types of models, and applications. Moreover, this chapter highlights basic 
concepts that need to be considered while performing predictive modeling and the limitations of this tool. 
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1 Introduction 

In recent decades, food quality and safety concerns have been 
growing. There are physical, chemical, and biological risks, which 
can affect food integrity and safety [1]. Foods are subject to food 
contamination by microorganisms, pathogenic or spoilage bacteria, 
which can cause food batch recall and foodborne diseases and 
impact the consumer’s safety [1]. Due to the expansion of the 
food trade, it is possible to notice a relative difficulty in managing 
risks and ensuring the protection of consumers’ health [2]. 

The unit operations in the food chain can affect microorganism 
viability leading to inactivation. Thereby, it becomes crucial to 
know the microbial behavior parameters to understand microbial 
growth dynamics [3] and the responses of microorganisms to spe-
cific environmental conditions [3, 4]. Data collection in different 
environmental conditions enables assessing microbial kinetics and 
can predict responses in other similar environments through
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mathematical models [5]. Predictive microbiology uses mathemat-
ical models to quantify the effect of intrinsic and extrinsic factors 
(i.e., temperature, pH, water activity, autochthonous microbiota, 
and natural antimicrobial compounds) on microbial behavior. Pre-
dictive models can predict growth, inactivation parameters, and 
toxin production [6, 7]. The responses provided by the models 
can support food processors and regulatory agencies in data-driven 
decision-making.
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The first description using a model was done by Bigelow and 
Esty [8], Bigelow [9], and Esty and Meyer [10]. Although the 
concept of “predictive microbiology” was first proposed in 1937, 
it was not thoroughly applied until the early 1980s, when the 
response to large food poisoning outbreaks spurred efforts to 
apply mathematical models. These efforts were used in pathogen 
inactivation (for instance, for Clostridium botulinum and Staphylo-
coccus aureus) and measuring the spoilage bacteria growth [11]. In 
the 1960s and 1970s, studies applied mathematical models aimed 
toward the inactivation of bacteria and fungi. The predictive micro-
biology field was raised in the 1980s and 1990s. This intensification 
was attributed to accessibility to computational tools and software, 
which allowed the use of more complex and more accurate 
models [12]. 

Predictive microbiology aims to mathematically represent a 
microbiological process’s reality and quantify its intrinsic and 
extrinsic effects [13]. Predictive microbiology has emerged at the 
interface of different areas of knowledge, including microbiology, 
statistics, mathematics, and computation. It has become an essen-
tial tool for data-driven decision-making [14]. Due to the impor-
tance of individual factors for each food type, data collection for 
predictive microbiological models is mainly based on laboratory 
data. However, there is also an increasing amount of research 
focused on purposely contaminated food to generate data for pre-
dictive microbiology [6]. 

The US Department of Agriculture-Agricultural Research 
Service (USDA-ARC) and the UK Ministry of Agriculture, Fish-
eries and Food proposed the first predictive microbiology soft-
ware’s approach in the 1990s [15]. The systems were called 
Pathogen Modeling Program and Food Micromodel, respectively. 
Both tools have a database and mathematical models to describe 
growth responses to environmental factors of foodborne pathogens 
[4]. Afterward, other tools emerged for predictive microbiology, 
such as Seafood Spoilage Predictor (currently called Food 
Safety Spoilage Predictor) [16], Dmfit, Ginafit [17], Microbial 
Responses Viewer [18], MicroHibro [19], Combase [20], and 
Bioinactivation [21]. 

The guarantee of food safety and quality can be impacted by the 
emergence of innovative food products such as new preserving 
food technologies. Thus, investigations that evaluate possible



complications that may affect the quality of products are necessary. 
Also, current knowledge that are already available, the effects of 
processing new products, and other factors are of great importance 
to consider when developing predictive models [14]. 
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Additionally in the food industry, authorities are seeking solu-
tions and tools to mitigate or solve problems related to food safety. 
Considering the challenges to maintain the food quality and safety 
throughout the food chain, it is feasible to apply predictive model-
ing in the food industry [11]. Therefore, it is essential to plan the 
entire process and collect microbiological data that adequately 
reproduce the behavior of the microorganism in that specific 
study environment as well as choosing the appropriate model 
which relies the studies [22]. 

This book will cover the particularities of food matrices, the 
relationship between foods and microorganisms, and data collec-
tion for predictive models. Therefore, understanding microbial 
behavior and the influence of environmental conditions is funda-
mental for properly developing studies based on predictive food 
modeling. 

2 Application of Predictive Models 

The application of predictive models serves as a science-based tool 
that can aid shelf life studies and help design or reformulate food 
products based on a safety and quality perspective, meeting ongo-
ing needs for quality and food safety [23]. The predictive microbi-
ology applications are shown in Fig. 1. 

Predictive models provide a quantitative view of the effect of 
intrinsic (see Note 1) and extrinsic factors (see Note 2) on the 
quality and safety of food [14]. For instance, in quantitative micro-
bial risk assessment (QMRA), predictive models can estimate the 
impact of unit operation along the food chain on microbial behav-
ior and quantify the risks associated with contaminated food con-
sumption [24]. Furthermore, the predictions by the models can 
support decision-making processes, highlighting its integration 
into self-control systems, such as hazard analysis and critical control 
points (HACCP), to determine process criteria and control limits 
[25]. Predictive microbiology can also optimize and validate new 
thermal and nonthermal food processing technologies due to its 
ability to assess the process impact against microbial inactivation 
and describe the response of microorganisms if there is any envi-
ronmental change [26]. Therefore, predictive microbiology is a 
valuable tool for food quality and safety decision-making.
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Fig. 1 Application of predictive microbiology 

3 Concepts for Predictive Microbiology and Mathematical Modeling 

An appropriate understanding of mathematical and microbiological 
concepts is essential for developing sound foundations for predic-
tive microbiology. This understanding is necessary for creating 
realistic models and exploring various mathematical tools and 
methods in this field. For instance, to determine whether a pro-
posed inactivation technology can be used, it is crucial to have an 
essential understanding of the characteristics of microorganisms 
and other relevant concepts in microbiology. 

3.1 Microbiological 

Concepts 

The logarithmic scale is commonly used to represent microbial 
growth and express populations graphically. It allows for better 
visualization and understanding of growth stages on a curve. 
Within an analytical scenario, various techniques serve to enumer-
ate microorganism purposes and can be divided into two major 
groups: quantitative and qualitative analysis methods. Quantitative 
analysis involves numerically measuring a compound, group of 
compounds, or parameters (see Note 3), such as calculating colony 
forming units (CFU) per gram or milliliter, most probable number 
(MPN) [27]  (see Chapter 3), or number of cells by microscopy [28] 
(see Chapter 7). In contrast, the qualitative analysis does not mea-
sure the specific amount of a compound or the value of an analysis 
parameter. Instead, it aims to indicate the presence or absence of

https://doi.org/10.1007/978-1-0716-3413-4_3
https://doi.org/10.1007/978-1-0716-3413-4_7


the analyzed parameter or boundaries for microbial growth (see 
Chapter 6). 
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Fig. 2 Microbial growth curve 

Microbial growth involves increasing the number of individuals 
(cells) through processes such as binary fission, budding, spore 
formation, or fragmentation. This growth is characterized by a 
“generation time,” which is required for a cell to divide (see 
Chapter 7) (assuming binary fission as the most common process) 
or for a population to duplicate itself. The generation time may vary 
depending on the microorganism or medium temperature 
[29]. Understanding the relationship between generation time 
and microbial growth phases is crucial, including the comparison 
between phases [30]. Microbial growth occurs in four stages, as 
Peleg and Corradini [31] showed in Fig. 2. 

Lag phase: This phase can last for an hour or even several days, 
during which cells are in a state of latency growth and adjusting the 
metabolism before starting exponential growth. There is little or no 
cell division during this phase, resulting in no significant increase in 
the number of cells.

https://doi.org/10.1007/978-1-0716-3413-4_6
https://doi.org/10.1007/978-1-0716-3413-4_7
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Log phase or exponential growth phase: Following the end 
of the latency state, a phase of increased metabolic activity begins. 
During this phase, cells undergo logarithmic cell division, and the 
generation time becomes constant. The environmental conditions 
influence this phase. 

Stationary phase: This phase corresponds to a period of equi-
librium in which the number of cell death equals the number of 
new cells, and metabolic activity decreases. Decline phase or cell 
death: In this phase, the number of dead cells exceeds the number 
of new cells, and this trend may continue until only a small fraction 
of cells remains, or no cells are present. 

It is important to observe the different microbial growth phases 
when analyzing processes for developing new products or assessing 
the effectiveness of microbial control methods. This can help use 
predictive models to estimate the impact of environmental factors 
and process conditions on microbial behavior [13]. 

3.2 Mathematical 

Concepts 

Predictive microbiology approaches are based on operational 
research applications and mathematical modeling [32]. Operational 
research term, also known as management science, is a scientific 
approach to solving complex problems, aiming to make the best 
possible decision, usually in a scenario with limitations, such as the 
scarcity of resources in a system [33]. 

Mathematical modeling is an operational research tool to elab-
orate the decision-making system or to understand a complex and 
real problem logically and integrally. These models are represented 
mathematically by equations [34]. Usually, it is an empirically 
elaborated model (Fig. 3) based on laboratory result observation 
in a controlled environment, and it aims to predict the behavior of a 
system to guide decision-making about a problem situation. 

For this, it is necessary to understand deeply the variables (see 
Note 4) involved in the problem and the nonmathematical issues 
surrounding it, for example, the reasons for the limitations imposed

Fig. 3 Schematic representation for model development



on the model, either because of the search for low-cost production 
or the impossibility of having a variable with a negative value. Then, 
it must analyze which resources of reality will be used in construct-
ing the model and which ones should be ignored, aiming at 
optimizing the system, with a good fit (or with low bias) and its 
accuracy compared to reality [35]. Modeling helps us understand 
biological systems better and can help us make predictions about 
their behavior. A model refers to a mathematical equation or set of 
equations that represent a biological process, system, or relation-
ship. Such models usually involve several random variables and a 
combination of variables, constants, or parameters. A model that 
doesn’t include random variables is referred to as deterministic.
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Different types of modeling are available, such as descriptive, 
prescriptive, optimized, static or dynamic, linear or nonlinear, 
complete or incomplete, deterministic or stochastic, and network 
models, each of which can be suitable for different problems and 
scenarios [34]. A predictive model aims to describe the behavior of 
a natural phenomenon, raising its variables and how they relate to 
the process in a deterministic way [13]. Some examples of mathe-
matical models within the microbiological context are inactivation 
curves, growth of a given microorganism, and heat penetration 
curves, among others [36]. Table 1 shows the different types of

Table 1 
Description of terminology used for model in predictive microbiology 

Model Description 

Static model A static mathematical model is designed to perform decision-making in a fixed period, 
where there is no sequence of decisions to be taken in the long term 

Dynamic model This model is used when the objective is to find decisions over some time. Thus, a 
series of decisions are to be taken in this interval, where the variables can be changed 
over time 

Linear model Based on the multiplication and addition of constants to the decision variables of the 
objective function and its restrictions 

Nonlinear 
model 

A nonlinear model occurs when an optimization model is not linear, which usually 
involves a higher degree of complexity, and can form a convex, concave function, 
non-convex nor concave function, or a convex and concave function 

Deterministic 
model 

One that has a known number of inputs and outputs. In this way, it does not present 
random variables as it represents the evolution of the system in a certain period of 
time 

Stochastic 
model 

The stochastic model, as well as the deterministic one, evaluates the evolution of the 
system in a certain period of time. However, this model, unlike the previous one, 
presents random variables. Due to uncertain variables of the system, the 
measurement of time in the system can be continuous or in intervals 

Network models Network models are a way of optimizing mathematical models using programming 
techniques or graphical techniques 

Adapted from Winston and Goldberg [34]



mathematical models that can be applied in predictive 
microbiology.
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Linear mathematical models are characterized by presenting a 
linear function, called an objective function, with independent 
variables (x1;x2;xn . . .) related to linear constants (an. xn) that 
can be both equalities (=) and inequalities (≥ or ≤). Constraint 
elements are also involved in this system, applied under the condi-
tions of the decision variables. For example, they are determining 
whether a variable can or cannot have a negative value. Meanwhile, 
nonlinear models can form a convex, concave function, and others. 
Also included in this group of mathematical models are functions of 
zero order, first order, second order, and others, leading to differ-
ent ways of optimizing and solving the model [37]. 

System resolution can use various techniques, including sim-
plifying the model, dividing it into subproblems, and simplifying 
the equations without considering the system’s restrictions. 
Another critical point inside nonlinear models is the polynomial 
model. A group is also known as the response surface model 
(Fig. 4) [38]. The characteristic is that its objective function and 
constraints are well-defined functions, nonlinear in polynomial 
format, which does not always occur in all nonlinear mathematical 
models. One of the defining features of this type of model is that its 
objective function and constraints are well-defined, nonlinear poly-
nomial functions. This is not always the case with other nonlinear 
mathematical models. These models can handle problems involving 
sine, radicals, and logarithmic functions, making them useful in 
predictive microbiology, where multiple determinations must be 
made simultaneously [39]. They are classified as secondary and 
empirical models, often called “black box” models. By using 
terms of the first, second, third, and fourth-order (quadratic func-
tion), it is possible to simultaneously evaluate the effect of multiple 
variables on the system being researched in the polynomial form 
[40–42]. However, it’s important to note that the function may 
demonstrate exponential growth as the number of variables 
increases. 

Another type of model is the stochastic model, which can be 
used in consumer brand choice research or microorganism growth 
studies, taking into account multiple random behavior variables, 
such as temperature, pH, and storage temperature variability. In 
addition, it seeks to describe the uncertainty and variability of the 
microbial response in the system [43]. 

Finally, network models can form artificial neural networks, 
representing the interdependence between the factors involved in 
the system. They are a type of artificial intelligence that has been 
emerging as a promising tool in treating biological data, for exam-
ple, developing models to describe microbial growth in specific 
culture media. After all, artificial neural networks (ANN) can iden-
tify multiple parameters of a model (linear or nonlinear) in a



Basic Concepts for Predictive Microbiology 9

Fig. 4 The 3D surface plots of growth rate (GR) of Clostridium sporogenes spores 
affected by (a) temperature (T) and pH, (b) temperature (T) and NaCl, and (c)  pH  
and NaCl of RS models. (Reuse with permission. Dong et al. [38])



discriminative way, organizing them logically for analysis, even 
coming directly from laboratory results (black box models), which 
makes decision-making of the problem situation more complete 
and increasingly data-driven, along with more minor estimated 
errors [44].
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These networks can perform parallel calculations of several 
functions of the developed model. For this to happen, it is neces-
sary to draw the neural layers and the mathematical tasks between 
them (whether linear or nonlinear, simple or polynomial) and 
determine the level of connectivity between one vertex and another 
[45]. In order to fully comprehend predictive modeling, mathe-
matical and statistical concepts are essential. These concepts 
encompass variables, optimal and suboptimal solutions, objective 
function, model constraints, sensitivity analysis, regression analysis, 
prediction, parameters, and simulation. 

Different mathematical models can describe and predict micro-
bial behavior in food systems in predictive microbiology. White box 
or mechanistic models are based on the underlying mechanisms and 
physical processes that govern microbial growth and survival, such 
as nutrient uptake, metabolism, and environmental conditions. 
These models are typically more complex and require more detailed 
information about the system. Still, they can provide a deeper 
understanding of the underlying biological processes and be used 
to design more effective control strategies. On the other hand, 
black box models are generated purely from experimental data 
and do not necessarily rely on a deep understanding of the under-
lying mechanisms [47]. These models are often more straightfor-
ward but may not provide as much insight into the underlying 
biological processes. 

Finally, some intermediate models combine both white box 
and black box approaches. These models may incorporate some 
mechanistic knowledge to improve the accuracy and robustness of 
the model while still relying on experimental data for parameter 
estimation and validation. Overall, the choice of model type 
depends on the specific research question, available data, and level 
of understanding of the system [14]. 

3.3 Types of 

Predictive Models 

Predictive models are becoming valuable and fast tools in the search 
for answers to specific problems and can be used for several pur-
poses, i.e., models of growth (see Chapter 4) and microbial death 
(see Chapter 5) as well as boundary conditions such as growth 
versus no-growth (see Chapter 6). Predictive models can be utilized 
to evaluate microbial growth, survival, and inactivation, as well as 
boundary conditions such as growth versus no-growth. These 
models can be classified through primary, secondary, and tertiary 
levels [48].

https://doi.org/10.1007/978-1-0716-3413-4_4
https://doi.org/10.1007/978-1-0716-3413-4_5
https://doi.org/10.1007/978-1-0716-3413-4_6
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3.3.1 Primary Models Primary models measure the microorganism response over time 
for a single set of conditions, allowing growth and decline curves 
to be generated. The responses provided by primary models are 
inactivation and growth rate, delay time, or times of turbidity/ 
toxin formation [49]. 

3.3.1.1 Growth Models Primary growth models are divided into sigmoidal and mechanistic 
functions. Sigmoidal curves describe the effect of biochemical reac-
tions on microbial growth rate [50]. There are two approaches for 
primary growth models: sigmoidal and mechanistic functions. 
Sigmoidal curves are used to depict the impact of biochemical 
reactions on microbial growth rate. The most commonly used 
models for this are the logistic (Eq. 1) [50] and Gompertz modified 
(Eq. 2) [51] models. On the other hand, mechanistic approaches 
reveal that the maximum specific growth rate and the lag depend on 
the environment. Baranyi and Roberts (Eq. 3) [52] came up with a 
mathematical model that demonstrates an inversely proportional 
lag to the maximum specific growth rate: 

Y 0 þ Ymax - ln exp Y 0ð Þ þ  exp Y maxð Þ- exp Y 0ð Þ½ exp - μmaxtðf  
ð1Þ 

Þ=Y 0 þ Ymax -Y 0ð Þ exp - exp 
2:71μmax t lag- t 

Ymax -Y 0 
þ 1 ð2Þ 

þ μmaxA tð Þ- ln 1þ exp μmaxA tð Þ-1ð 
exp Ymax -Y 0ð Þ  

1 
μmax 

ln exp - μmaxtð Þ þ  exp - μmaxt lag - exp - μmaxt - μmaxt lag 

ð3Þ 
where Ymax is maximum population; Y0 is initial population; μmax is 
maximum growth rate; and tlag is the lag time. 

3.3.1.2 Inactivation 

Models 

Predictive models can be used to describe microbial kinetics inacti-
vation resulting from thermal or nonthermal processes. Microbial 
populations are typically measured at discrete time points to con-
struct an inactivation curve. The resulting survival curve may show 
linear or nonlinear behavior. 

Primary inactivation models allow us to estimate inactivation 
parameters such as inactivation rate (kmax), shoulder length (SI), 
and tail formation (residual population) (yres). Regarding describ-
ing inactivation behavior, several authors developed equations for 
this purpose. The linear model [8] (Eq. 4) was the first inactivation 
model to apply fit inactivation kinetics. Nonlinear models with 
shoulder and tail [53] (Eq. 5) describe a lag time before the inacti-
vation and a residual population after the treatment, tail region. 
Further, the concave and convex curves, due to biological



variations in inactivation, may be expressed as a statistical model 
of the distribution of inactivation times, Weibull model [41] 
(Eq. 6): 
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y tð Þ= y0 -
t 
D

ð4Þ 
where y0 is initial population and D is decimal reduction time. 

y tð Þ= yres þ log 10y0 - yres -1ð Þ  exp kmaxS lð Þ  
exp kmaxtð Þ þ  exp kmaxS lð Þ-1

þ 1 ð5Þ 

where yres is residual population, y0 is initial population, kmax is 
inactivation rate, and Sl is shoulder length. 

y tð Þ= y0 -
t 
δ 

p 
ð6Þ 

where y0 is initial population, δ is time for first decimal reduction, 
and p is curvature parameter. 

3.3.2 Secondary Models Secondary models describe the effects of multiple variables on 
microbial behavior in food. These models are based on the primary 
models, which describe microbial growth, survival, or inactivation 
as a function of environmental factors such as temperature, pH, and 
water activity. Secondary models consider additional factors influ-
encing microbial behavior, such as other microorganisms, food 
components, and chemical or physical treatments. Examples of 
secondary models include competitive growth models, which 
describe the growth of multiple microorganisms in a food matrix, 
and hurdle models, which represent the effect of numerous preser-
vation factors on microbial growth or survival. Other secondary 
models include models for the impact of preservatives, thermal 
processing, and modified atmosphere packaging on microbial 
growth. These models can approach kinetics or probability descrip-
tion for the influence of intrinsic and extrinsic factors on either 
microbial growth, survival, or inactivation [49]. Probability models 
are developed through regression analysis to estimate the effects 
and interactions of independent variables, allowing for the assess-
ment of the probability of toxin production, spore germination, or 
microbial growth boundaries. Meanwhile, kinetic models use 
mathematical functions, such as linear or nonlinear regressions 
and polynomial regressions, to assess the impact of environmental 
conditions on microbial kinetic parameters, i.e., inactivation or 
growth rate, lag phase duration, and maximum population density. 
Polynomial functions (Eq. 7) are widely employed in predictive 
microbiology to model the effects of environmental factors simul-
taneously [54]. This approach is commonly utilized to develop the 
increasingly popular square root [55] (Eq. 8) and cardinal 
parameter-type models [56] (Eq. 9). These models individually
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CMn Xð Þ=
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X opt-Xmin
n-1

0

consider each environmental factor and then create a general model 
that describes their combined effects: 
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y = β0 þ 
k 

j =1 

βjX j þ 
k 

j =1 

βjjX
2 
j þ 

k 

j ≠1 

βjlX jX l þ ε ð7Þ 

where β0, βj, βjj, βjl are the estimated coefficient regression, Xj 

and Xl are independent variables, and ε is error. 

μmax 

p
= b T -Tminð Þ 8Þ 

where Tmin is the minimum temperature below which the maxi-
mum growth rate is equal to 0 and obtained through a linear 
regression of the square root of the maximum growth rate 
temperature. 

X ≤Xmin 

X-Xmaxð Þ  X-Xminð Þ  
X opt-Xmin X-X opt - X opt-Xmax n-1ð ÞX optþXmin-nX 

, Xmin<X <Xmax 

X ≥Xmax 

ð9Þ 
where X is temperature, pH, or aw; Xmin and Xmax are values of 
X below and above which no-growth occurs, respectively; Xopt is 
the value X at which microbial growth is optimum; and n is a shape 
parameter. In optimal condition de CMn(Xopt), the value is equal 
1 and for Xmin and Xmax the CMn is equal to 0 [57]. 

3.3.3 Tertiary Models Finally, the tertiary level refers to computational tools that integrate 
primary and secondary models in friendly interfaces [58]. The 
tertiary level of predictive microbiology involves the integration 
of primary and secondary models into computational tools that 
provide user-friendly interfaces for predicting microbial responses. 
One of the primary challenges in predictive microbiology is man-
aging large amounts of data and retrieving specific information 
efficiently. Decision-support tools, such as computer software pro-
grams, can help to address these challenges by providing users with 
a simplified visualization of model inputs and outputs through 
graphical interfaces. However, the development and application of 
information management systems in predictive microbiology have 
been limited compared to other scientific fields. This highlights the 
need for continued investment and development to ensure the 
predictive models are accurate and up-to-date. Overall, the tertiary 
level of predictive microbiology plays a critical role in advancing our 
understanding of microbial behavior and improving food safety. 
The development and integration of advanced computational 
tools may lead to play a critical role in improving our ability to 
predict and manage the behavior of microorganisms in a wide range 
of applications [59].
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3.3.3.1 Types of 

Programing Languages, 

Tools, and Software 

Available to Predictive 

Microbiology 

Tertiary models have become an important, if not indispensable, 
tool for elaborating and resolving complex problems related to 
assessing microbial behavior. Considering this context, software 
are becoming more common and enable more robust data analysis 
by considering a greater number of variables. It is also possible to 
use more comprehensive tools for modeling, such as Microsoft 
Excel and programming languages like VBA, R, and Python. How-
ever, providing a user-friendly interface for estimating microbial 
parameters is more beneficial for food processors, regulators, and 
the general public [14]. Regarding food safety management and 
assistance in decision-making, tertiary models provide insights into 
achieving food safety management measures in a short timeframe. 
Thus, different databases, software, and add-ins have been devel-
oped for predictive microbiology in the last 20 years. Table 2 pre-
sents a survey of characteristics and applications of some devices 
used in predictive microbiology. 

4 How to Design to Predictive Microbiology: Collect Data and Design Experiment 

Developing a predictive model requires careful planning and exe-
cution of the experimental design for evaluating the effect of intrin-
sic and extrinsic factors. A good experimental design ensures high-
quality and reliable results from the data gathering. In addition, 
adequate planning and the organization of the experiment are 
crucial for ensuring the collected data has the necessary quality 
and microbial behavior to be studied [75]. 

During planning stage, the model should be designed to con-
sider several parameters such as the central hypothesis of the study, 
the food matrix and its particularities, the target microorganism 
behavior in this matrix, the adequate volume of data to support the 
model, and the necessary resources [76]. 

Environmental factors that affect microbial behavior and how 
their interaction occurs should also be considered during the design 
process. Thus, it may lead to increase the chances of extracting the 
desired information and reduce the probability of excessive experi-
mental work due to failure at the end of the process [77]. 

The experimental design should control and adapt the factors 
according to the design objectives and the hypothesis it aims to test. 
The physiological state of inoculum cells, substrate or culture 
medium needed, dependent variables proposed for the model, 
combinations of factors that may be included in the model, and 
how collected data are carried out are all important factors to 
consider during the designing process [76, 78]. 

The factors that must be controlled must be planned and 
adapted according to the experimental design objectives and the 
hypothesis being tested. Within the design process, it is essential to



Ta
bl
e
2

Te
rt
ia
ry

m
od
el
s
fo
r
pr
ed
ic
ti
ve

m
ic
ro
bi
ol
og
y

(c
o
n
ti
n
u
ed

)

Basic Concepts for Predictive Microbiology 15

S
of
tw
ar
e/
to
ol

C
ha
ra
ct
er
is
ti
cs
 a
nd

 a
pp

lic
at
io
ns

A
va
ila
bl
e 
in

R
ef
er
en
ce
s 

B
io
g
ro
w
th

B
io
g
ro
w
th
 i
s 
an
o
th
er
 R
 p
ac
ka
g
e 
u
se
d
 i
n
 p
re
d
ic
ti
ve
 m

ic
ro
b
io
lo
g
y.
 

U
se
d
 t
o
 b
u
il
d
 p
ri
m
ar
y 
an
d
 s
ec
o
n
d
ar
y 
m
o
d
el
s 
u
n
d
er
 s
ta
ti
st
ic
al
 a
n
d
 

d
yn

am
ic
 c
o
n
d
it
io
n
s 
b
as
ed

 o
n
 g
ro
w
th
 d
at
a 
to
 g
en

er
at
e 
g
ro
w
th
 

cu
rv
es
. 
It
 i
s 
p
o
ss
ib
le
 t
o
 m

ak
e 
p
re
d
ic
ti
o
n
s 
w
it
h
 i
t 
u
n
d
er
 i
so
th
er
m
al
 

an
d
 d
yn

am
ic
 c
o
n
d
it
io
n
s 
an
d
 g
en

er
at
e 
p
re
d
ic
ti
ve
 i
n
te
rv
al
s 

h
tt
p
s:
//

cr
an
.r
-p
ro
je
ct
.o
rg
/
w
eb

/
p
ac
ka
g
es
/
b
io
g
ro
w
th
/
 

vi
g
n
et
te
s/
v0

2
_g

ro
w
th
_fi

tt
in
g
.h
tm

l 
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0
] 

B
io
in
ac
ti
va
ti
o
n

T
h
e 
B
io
in
ac
ti
va
ti
o
n
 i
s 
av
ai
la
b
le
 a
s 
an
 R
 p
ac
ka
g
e,
 a
s 
a 
S
h
in
y 
ap
p
, 
an
d
 

al
lo
w
s 
th
e 
b
u
il
d
in
g
 o
f 
in
ac
ti
va
ti
o
n
 c
u
rv
es
 u
n
d
er
 d
if
fe
re
n
t 

co
n
d
it
io
n
s.
 F
o
r 
ex
am

p
le
, 
it
 i
s 
p
o
ss
ib
le
 t
o
 c
re
at
e 
an
 i
n
ac
ti
va
ti
o
n
 

cu
rv
e 
u
n
d
er
 u
n
ce
rt
ai
n
 p
ar
am

et
er
s 
u
si
n
g
 s
to
ch
as
ti
c 
m
o
d
el
s 
o
r 

m
o
d
el
 p
re
d
ic
ti
o
n
s 
u
si
n
g
 d
yn

am
ic
 c
o
n
d
it
io
n
s.
 T
h
e 
S
h
in
y 
ap
p
 

al
lo
w
s 
th
e 
p
ro
g
ra
m
m
er
 t
o
 i
m
p
o
rt
 d
at
a 
fr
o
m
 M

ic
ro
so
ft
 E
xc
el
 t
o
o
 

h
tt
p
s:
//

fo
o
d
la
b
-u
p
ct
.s
h
in
ya
p
p
s.
io
/
b
io
in
ac
ti
va
ti
o
n
F
E
/

[2
1
] 

B
io
O
E
D

B
io
O
E
D
 i
s 
a 
p
ac
ka
g
e 
fo
r 
R
 p
ro
g
ra
m
m
in
g
 l
an
g
u
ag
e 
sp
ec
ifi
c 
to
 

p
re
d
ic
ti
ve
 m

ic
ro
b
io
lo
g
y.
 I
t 
is
 u
se
d
 f
o
r 
in
ac
ti
vi
ty
 c
h
ar
ac
te
ri
za
ti
o
n
 

th
ro
u
g
h
 s
en

si
ti
vi
ty
 a
n
al
ys
is
 a
n
d
 o
p
ti
m
u
m
 e
xp

er
im

en
t 
d
es
ig
n
 

h
tt
p
s:
//

cr
an
.r
-p
ro
je
ct
.o
rg
/
w
eb

/
p
ac
ka
g
es
/
b
io
O
E
D
/
vi
g
n
et
te
s/
 

vi
g
n
et
te
_b

io
O
E
D
.h
tm

l 
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1
] 

C
o
m
b
as
e

O
n
li
n
e 
d
at
ab
as
e 
fo
cu
se
d
 o
n
 d
es
cr
ib
in
g
 m

ic
ro
o
rg
an
is
m
s’
 s
u
rv
iv
al
 a
n
d
 

g
ro
w
th
 u
n
d
er
 v
ar
io
u
s 
fo
o
d
 m

at
ri
ce
s.
 C

o
m
b
as
e 
ca
n
 b
e 
u
se
d
 t
o
 

d
ev
el
o
p
 n
ew

 f
o
o
d
 p
ro
d
u
ct
s,
 r
ef
o
rm

u
la
te
 f
o
o
d
s,
 d
es
ig
n
 c
h
al
le
n
g
e 

te
st
 p
ro
to
co
ls
, 
p
ro
d
u
ce
 f
o
o
d
 s
af
et
y 
p
la
n
s,
 a
n
d
 h
el
p
 p
u
b
li
c 
h
ea
lt
h
 

o
rg
an
iz
at
io
n
s 
d
ev
el
o
p
 s
ci
en

ce
-b
as
ed

 f
o
o
d
 p
o
li
ci
es
 t
h
ro
u
g
h
 

q
u
an
ti
ta
ti
ve
 r
is
k 
as
se
ss
m
en

t.
 I
t 
is
 a
 f
ri
en

d
ly
 i
n
te
rf
ac
e 
an
d
 m

ay
 b
e 

ac
ce
ss
ed

 o
n
 a
n
y 
p
la
tf
o
rm

, 
in
cl
u
d
in
g
 m

o
b
il
e 
d
ev
ic
es
 

w
w
w
.c
o
m
b
as
e.
cc

[2
0
] 

D
-d
at
ab
as
e

D
at
ab
as
e 
w
it
h
 5
0
0
0
 r
ec
o
rd
s 
fo
r 
m
ic
ro
b
ia
l 
in
ac
ti
va
ti
o
n
 p
ar
am

et
er
s.
 

T
h
is
 p
la
tf
o
rm

 p
ro
vi
d
es
 i
n
fo
rm

at
io
n
 t
o
 d
ev
el
o
p
 i
n
ac
ti
va
ti
o
n
 

m
o
d
el
s,
 i
n
cl
u
d
in
g
 m

et
ar
eg
re
ss
io
n
 

h
tt
p
s:
//

fo
o
d
m
ic
ro
w
u
r.
sh
in
ya
p
p
s.
io
/
D
d
at
ab
as
e/

[6
2
] 

D
M
F
it

It
 i
s 
u
se
d
 t
o
 d
et
er
m
in
e 
th
e 
m
ic
ro
b
ia
l 
g
ro
w
th
 c
u
rv
es
 b
as
ed

 o
n
 t
h
e 

B
ar
an
yi
 m

o
d
el
 (
th
re
e 
ve
rs
io
n
s)
, 
th
re
e-
p
h
as
e 
li
n
ea
r 
m
o
d
el
, 

tw
o
-p
h
as
e 
li
n
ea
r 
m
o
d
el
 (
tw

o
 v
er
si
o
n
s)
, 
an
d
 t
h
e 
li
n
ea
r 
m
o
d
el
. 
It
 i
s 

av
ai
la
b
le
 a
s 
an
 o
n
li
n
e 
ve
rs
io
n
 in

si
d
e 
C
o
m
b
as
e 
an
d
 a
s 
an
 E
xc
el
 a
d
d
-

in
 o
ffl
in
e 
ve
rs
io
n
 

h
tt
p
:/
/
w
w
w
.c
o
m
b
as
e.
cc
/
in
d
ex
.p
h
p
/
en

/
to
o
ls

[2
0
]

https://cran.r-project.org/web/packages/biogrowth/vignettes/v02_growth_fitting.html
https://cran.r-project.org/web/packages/biogrowth/vignettes/v02_growth_fitting.html
https://foodlab-upct.shinyapps.io/bioinactivationFE/
https://cran.r-project.org/web/packages/bioOED/vignettes/vignette_bioOED.html
https://cran.r-project.org/web/packages/bioOED/vignettes/vignette_bioOED.html
http://www.combase.cc
https://foodmicrowur.shinyapps.io/Ddatabase/
http://www.combase.cc/index.php/en/tools


Ta
bl
e
2

(c
on
ti
nu
ed
)

S
of
tw
ar
e/
to
ol

C
ha
ra
ct
er
is
ti
cs

an
d
ap
pl
ic
at
io
ns

A
va
ila
bl
e
in

R
ef
er
en
ce
s

F
D
A
-i
R
is
k

O
n
li
n
e 
sy
st
em

 d
es
ig
n
ed

 t
o
 a
n
al
yz
e 
d
at
a 
re
la
te
d
 t
o
 m

ic
ro
b
ia
l 
an
d
 

ch
em

ic
al
 r
is
ks
 i
n
 f
o
o
d
. 
T
o
 e
va
lu
at
e 
ri
sk
 o
n
 t
h
is
 p
la
tf
o
rm

, 
it
 i
s 

n
ec
es
sa
ry
 t
o
 i
n
cl
u
d
e 
fo
o
d
 c
o
n
su
m
p
ti
o
n
, 
p
ro
ce
ss
in
g
, 
an
d
 

p
re
p
ar
at
io
n
 d
at
a.
 W

it
h
 t
h
is
 i
n
fo
rm

at
io
n
, 
es
ti
m
at
in
g
 t
h
e 
ri
sk
 

as
so
ci
at
ed

 w
it
h
 f
o
o
d
 c
o
n
su
m
p
ti
o
n
 i
s 
p
o
ss
ib
le
 

h
tt
p
s:
//

ir
is
k.
fo
o
d
ri
sk
.o
rg

[6
3
] 

F
S
K
-L
ab
 (
F
o
o
d
 S
af
et
y 

K
n
o
w
le
d
g
e 
L
ab
) 

It
 i
s 
an
 o
p
en

-s
o
u
rc
e 
ri
sk
 a
ss
es
sm

en
t 
ex
te
n
si
o
n
 d
er
iv
ed

 f
ro
m
 t
h
e 
d
at
a 

an
al
yt
ic
s 
p
la
tf
o
rm

, 
g
ra
p
h
ic
al
 p
ro
g
ra
m
m
in
g
 f
ra
m
ew

o
rk
, 
an
d
 

K
o
n
st
an
z 
In
fo
rm

at
io
n
 M

in
er
 (
K
N
IM

E
) 
o
f 
th
e 
R
is
k 
A
ss
es
sm

en
t 

M
o
d
el
in
g
 a
n
d
 K
n
o
w
le
d
g
e 
In
te
g
ra
ti
o
n
 P
la
tf
o
rm

 i
n
it
ia
ti
ve
. 
T
h
er
e,
 

it
 i
s 
p
o
ss
ib
le
 t
o
 e
d
it
, 
cr
ea
te
, 
an
d
 e
xe
cu
te
 m

o
d
el
s.
 T
h
e 
m
o
d
el
s 

cr
ea
te
d
 o
r 
ed

it
ed

 o
n
 t
h
is
 e
xt
en

si
o
n
 a
re
 in

te
rc
h
an
g
ea
b
le
 w
it
h
 o
th
er
 

so
ft
w
ar
e 

h
tt
p
s:
//

fo
o
d
ri
sk
la
b
s.
b
fr
.b
u
n
d
.d
e/

fs
k-
la
b
/

[6
4
] 

F
o
o
d
R
is
k

F
o
o
d
R
is
k 
is
 a
 m

et
ad
at
ab
as
e 
o
f 
to
o
ls
 a
n
d
 m

o
d
el
s 
th
at
 c
an
 g
en

er
at
e 

in
fo
rm

at
io
n
 f
o
r 
ri
sk
 a
n
al
ys
is
 a
s 
it
 p
er
ta
in
s 
to
 t
h
e 
sa
fe
ty
 o
f 
fo
o
d
. 

C
an
 b
e 
u
se
d
 i
n
 p
re
d
ic
ti
ve
 m

ic
ro
b
io
lo
g
y 
st
u
d
ie
s.
 T
h
is
 s
it
e 
is
 

o
p
er
at
ed

 b
y 
Jo
in
t 
In
st
it
u
te
 f
o
r 
F
o
o
d
 S
af
et
y 
an
d
 A
p
p
li
ed

 N
u
tr
it
io
n
 

(J
IF
S
A
N
) 
in
 c
o
ll
ab
o
ra
ti
o
n
 w
it
h
 t
h
e 
C
en

te
r 
fo
r 
F
o
o
d
 S
af
et
y 
an
d
 

A
p
p
li
ed

 N
u
tr
it
io
n
 f
ro
m
 t
h
e 
U
S
 F
o
o
d
 a
n
d
 D

ru
g
 A
d
m
in
is
tr
at
io
n
 

(C
F
S
A
N
/
F
D
A
) 
an
d
 t
h
e 
F
o
o
d
 S
af
et
y 
an
d
 I
n
sp
ec
ti
o
n
 S
er
vi
ce
s 
fr
o
m
 

th
e 
U
S
 D

ep
ar
tm

en
t 
o
f 
A
g
ri
cu
lt
u
re
 (
F
S
IS
/
U
S
D
A
) 

h
tt
p
s:
//

w
w
w
.f
o
o
d
ri
sk
.o
rg
/
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3
] 

F
o
o
d
 S
p
o
il
ag
e 
an
d
 

S
af
et
y 
P
re
d
ic
to
r 

(F
S
S
P
) 

T
h
e 
F
o
o
d
 S
p
o
il
ag
e 
an
d
 S
af
et
y 
P
re
d
ic
to
r 
so
ft
w
ar
e 
co
n
ta
in
s 
va
ri
o
u
s 

m
o
d
el
s 
to
 p
re
d
ic
t 
th
e 
ef
fe
ct
 o
f 
p
ro
d
u
ct
 c
h
ar
ac
te
ri
st
ic
s 
an
d
 s
to
ra
g
e 

co
n
d
it
io
n
s 
o
n
 f
o
o
d
’s
 s
h
el
f 
li
fe
 a
n
d
 s
af
et
y.
 T
h
is
 s
o
ft
w
ar
e 
ca
n
 

si
m
u
la
te
 a
 c
o
o
li
n
g
 c
h
ai
n
 t
o
 e
st
im

at
e 
th
e 
n
u
m
b
er
 o
f 
d
ay
s 
th
e 

su
p
er
m
ar
ke
t 
ca
n
 s
el
l 
th
e 
p
ro
d
u
ct
 a
n
d
 t
h
e 
sh
el
f 
li
fe
. 
A
ls
o
, 
it
 c
an
 

ev
al
u
at
e 
th
e 
im

p
ac
t 
o
f 
n
ew

 f
o
rm

u
la
ti
o
n
 o
n
 s
h
el
f 
li
fe
 p
ro
d
u
ct
 a
n
d
 

as
se
ss
 t
h
e 
ef
fe
ct
 o
f 
te
m
p
er
at
u
re
 c
h
an
g
es
 o
n
 f
o
o
d
 s
af
et
y 
fo
r 

d
if
fe
re
n
t 
fo
o
d
 m

at
ri
ce
s 

h
tt
p
:/
/
fs
sp
.f
o
o
d
.d
tu
.d
k

[6
5
]
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G
in
aF

it
ca
l

re ed th

co
n
ve
x
sh
ap
e

h
tt
p
s:
//

ci
t.
ku

le
u
ve
n
.b
e/

b
io
te
c/

so
ft
w
ar
e/

G
in
aF

it
[1
7
]

G
ro
w
th

ra
te
s

er

tr
ia
ls

vi
g
n
et
te
s/
In
tr
o
d
u
ct
io
n
.h
tm

l

[6
6
]

IP
M
P
G
lo
b
al
F
it

er
,

co
n
d
it
io
n
s
o
r
to

fi
t
m
o
d
el
s
u
si
n
g
th
e
tw

o
-s
te
p
ap
p
ro
ac
h

ea
st
er
n
-r
eg
io
n
al
-r
es
ea
rc
h
-c
en

te
r/
d
o
cs
/
ip
m
p
-g
lo
b
al
-fi
t/

[6
7
]

L
is
te
ri
a
ca
rd
in
al
m
o
d
e

an
al
yt
ic
al
d
at
a

h
tt
p
s:
//

vc
ad
av
ez
.s
h
in
ya
p
p
s.
io
/
L
is
te
ri
aC

ar
d
in
al
M
o
d
el
/

[6
8
]

M
ic
ro
H
ib
ro

o
r

h
is se to n
g o
r

th
e
va
li
d
at
io
n
o
f
m
ic
ro
b
io
lo
g
ic
al
m
o
d
el
s

h
tt
p
s:
//

m
ic
ro
h
ib
ro
.c
o
m
/
en

/
as
se
ss
m
en

t
[1
9
]

(c
o
n
ti
n
u
ed

)

E
xc
el
 a
d
d
-i
n
 f
o
r 
in
ac
ti
va
ti
o
n
 c
u
rv
es
 w
it
h
 t
en

 m
o
d
el
 t
yp
es
: (
i)
 c
la
ss
i 

lo
g
-l
in
ea
r 
cu
rv
es
, 
(i
i)
 c
u
rv
es
 d
is
p
la
yi
n
g
 a
 s
o
-c
al
le
d
 s
h
o
u
ld
er
 b
ef
o
 

a 
lo
g
-l
in
ea
r 
d
ec
re
as
e 
is
 a
p
p
ar
en

t,
 (
ii
i)
 c
u
rv
es
 d
is
p
la
yi
n
g
 a
 s
o
-c
al
l 

ta
il
 a
ft
er
 a
 l
o
g
-l
in
ea
r 
d
ec
re
as
e,
 (
iv
) 
su
rv
iv
al
 c
u
rv
es
 d
is
p
la
yi
n
g
 b
o
 

sh
o
u
ld
er
 a
n
d
 t
ai
li
n
g
 b
eh

av
io
r,
 (
v)
 c
o
n
ca
ve
 c
u
rv
es
, 
(v
i)
 c
o
n
ve
x 

cu
rv
es
, 
(v
ii
) 
co
n
ve
x/

co
n
ca
ve
 c
u
rv
es
 f
o
ll
o
w
ed

 b
y 
ta
il
in
g
, 
(v
ii
i)
 

b
ip
h
as
ic
 i
n
ac
ti
va
ti
o
n
 k
in
et
ic
s,
 (
ix
) 
b
ip
h
as
ic
 i
n
ac
ti
va
ti
o
n
 k
in
et
ic
s 

p
re
ce
d
ed

 b
y 
a 
sh
o
u
ld
er
, 
an
d
 (
x)
 c
u
rv
es
 w
it
h
 a
 d
o
u
b
le
 c
o
n
ca
ve
/
 

G
ro
w
th
 r
at
es
 i
s 
an
 R
 p
ac
ka
g
e 
th
at
 b
ri
n
g
s 
m
et
h
o
d
s 
to
 d
et
er
m
in
e 

m
ic
ro
b
io
lo
g
ic
al
 g
ro
w
th
 r
at
es
 u
si
n
g
 e
xp

er
im

en
ta
l 
d
at
a.
 T
h
is
 

p
ac
ka
g
e 
fo
cu
se
s 
p
ar
ti
cu
la
rl
y 
o
n
 b
at
ch
 e
xp

er
im

en
ts
 a
n
d
 p
la
te
 r
ea
d
 

h
tt
p
s:
//

cr
an
.r
-p
ro
je
ct
.o
rg
/
w
eb

/
p
ac
ka
g
es
/
g
ro
w
th
ra
te
s/
 

T
h
is
 is
 a
 s
o
ft
w
ar
e 
to
o
l f
o
r 
W
in
d
o
w
s 
th
at
 c
an
 b
e 
u
se
d
 t
o
 fi
t 
a 
va
ri
et
y 

in
ac
ti
va
ti
o
n
 m

o
d
el
s 
to
 d
at
a 
u
si
n
g
 a
 o
n
e-
st
ep
 a
p
p
ro
ac
h
. 
H
o
w
ev
 

it
 d
o
es
 n
o
t 
in
cl
u
d
e 
fe
at
u
re
s 
to
 fi
t 
d
at
a 
g
at
h
er
ed

 u
n
d
er
 d
yn

am
ic
 o
f 

h
tt
p
s:
//

w
w
w
.a
rs
.u
sd
a.
g
o
v/

n
o
rt
h
ea
st
-a
re
a/

w
yn

d
m
o
o
r-
p
a/

 

ls
 
T
h
e 
d
ev
ic
e 
si
m
u
la
te
s 
L
is
te
ri
a
 m

on
oc
yt
og
en
es
 b
eh

av
io
r 
u
si
n
g
 m

et
a-

It
 m

ak
es
 p
re
d
ic
ti
o
n
s 
fr
o
m
 d
if
fe
re
n
t 
fo
o
d
 m

at
ri
ce
s/
cu
lt
u
re
 m

ed
ia
 

d
is
ti
n
ct
 m

ic
ro
o
rg
an
is
m
s.
 I
t 
is
 s
o
ft
w
ar
e 
an
d
 d
at
a-
b
as
ed

, 
d
iv
id
ed

 

in
to
 t
w
o
 m

o
d
u
le
s.
 T
h
e 
fi
rs
t 
o
n
e 
is
 u
se
d
 t
o
 b
u
il
d
 p
re
d
ic
ti
o
n
s/
 

si
m
u
la
ti
o
n
s 
u
n
d
er
 s
p
ec
ifi
c 
co
n
d
it
io
n
s 
st
an
d
ar
d
 b
y 
th
e 
au
th
o
r.
 T
 

is
 p
o
ss
ib
le
 u
si
n
g
 m

at
h
em

at
ic
al
 m

o
d
el
s 
in
 t
h
ei
r 
re
p
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consider other specific details such as the physiological state of 
inoculum cells, the substrate or coculture medium required, the 
dependent variables proposed for the model, combinations of fac-
tors to be included in the model, and the method of data collection. 
The factors to be considered are shown in Fig. 5 [77].
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Fig. 5 Stepwise to develop a predictive model 

For the experimental design, a procedure containing two stages 
can be applied, as suggested by [14] (i) performing screening 
experiments in a wide range of factors and (ii) conducting a data 
collection study within the region of interest, including additional 
levels of factors that result in a more refined model and more 
accurate forecasts. Thus, experimental designs are used in predictive 
modeling to “reduce the number of experiments,” making it an 
important stage for the development of models. 

The collected data and the number of points needed to repre-
sent microbial behavior are crucial to reducing the uncertainties 
related to this behavior. Thus, the distribution of the collected



points within the experimental design becomes fundamental for 
estimating the dependent variables. As a result, the representative-
ness of the model increases, and there is a reduction in the variance 
of the estimated parameters. 
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Experimental designs are used to model microbial responses in 
foods. The advantages of using practical methods correspond to the 
“ease of implementation together with its data processing.” In 
addition, all combinations are explored, as all information will be 
obtained from the experiment, making it an easy tool to handle 
statistically. It is possible to develop the experimental design 
through complete factorial designs, fractional factorial designs, or 
central composite designs, depending on the number of variables in 
the experiment [77]. 

4.1 Design 

Experiment 

The complete factorial design allows a complete investigation of all 
combinations of different variables, enabling direct modeling of 
interactions, in which it becomes possible to evaluate the environ-
mental factors that influence the growth and inactivation of micro-
organisms. The complete factorial design has significant 
advantages, as it is easy to implement and process your data, as all 
combinations are explored. Nevertheless, this design has the disad-
vantage that a new factor/level is added to the experiment. There 
will be a significant increase in the number of experiments, which 
can become laborious and expensive [79]. The number of experi-
ments that will be performed can be calculated as 2k , where 
k corresponds to the number of independent variables in the 
experiment [80]. 

4.1.1 Complete Factorial 

Design 

4.1.2 Fractional Factorial 

Design 

Fractional factorial designs are commonly used in situations where 
there are a large number of independent variables, as they help to 
reduce the number of experiments required. These designs are 
based on prior knowledge or assumptions about the most impor-
tant factors or expected interactions. However, they can be more 
complex to develop than complete factorial designs, as the different 
parameters that should be included in the experimental plan must 
be carefully considered [81]. 

In order to define the matrix of a combination of levels of 
independent variables, statistical software is often necessary. One 
type of fractional factorial experiment is the Box-Behnken design, 
which combines two-level factorial experiments with balanced 
incomplete blocks and includes additional experiments in the cen-
tral points of the design to test the repeatability of the adopted 
model design. Another type of fractional factorial experiment is the 
factorial Latin square design, which corresponds to a Latin square 
of order x, an arrangement of x letters in an x by x matrix. In this 
design, each letter appears once in each line and column inside a 
square block or field [81, 82].



ð
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For experiments in predictive microbiology, the Latin square 
design typically corresponds to a primary factor known as “treat-
ment,” represented by randomly distributed letters appearing only 
once in a row or column. This design is useful when several block-
ing factors, called “annoyances,” need to be controlled, even 
though the approach is not limited to the main factor of interest. 
The Latin square design corresponds to an example of an incom-
plete block. It can be extended to more individual factors, used as 
the Greco-Latin square or the Hyper Graeco-Latin designs 
[82, 83]. 

4.1.3 Central Composite 

Design 

The central composite design is commonly used for predictive food 
modeling experiments and involves a complete factorial experiment 
with a limited number of levels per environmental factor, making it 
suitable for studying simpler model structures. This design includes 
a complete factorial experiment with a set of central points and two 
axial points on the axis of each design variable at a distance of a from 
the design center, as described by Eq. 10. The number of experi-
ments for k variables can be determined using the equation, with n0 
representing the number of experiments at the central point. Addi-
tionally, a set of “star points” is included to estimate curvature and 
enhance the central points [84]: 

2k þ 2k þ n0, n0 ≥1ð Þ 10Þ 
where k is the number of independent variables and n0 is the 
number of experiments of central point. 

4.1.4 Doehlert Matrix The Doehlert matrix is a type of experimental design that is char-
acterized by points that are uniformly spaced on concentric spheri-
cal shells. This design is also known as a uniform shell design, and it 
aims to fill the experimental space uniformly [85]. The number of 
designs is determined by the number of variables, k, and the num-
ber of center points, n0, according to the formula k2 + k + n0. For 
instance, if n0 = 1 and k = 4, there will be 21 experiments. The 
center experiment can be repeated multiple times to estimate the 
observed variance, which can be used for model validation. One of 
the advantages of the Doehlert matrix is that it can be easily 
expanded by adding new variables or increasing the range of the 
tested parameters, providing flexibility for the experimental 
design [86]. 

4.2 Growth Matrices 

and Microbial Strain 

Predictive modeling in microbiology requires an understanding of 
the unique characteristics of the matrix that provides conditions for 
microbial growth. The behavior of microorganisms can be 
explained through significant environmental factors such as tem-
perature, pH, and water activity but also by structural compositions 
of the matrix. This fact is essential to consider in the development of



predictive models. For example, microbial growth occurs more 
rapidly in a liquid medium than in food media [87]. Thus, when 
comparing predictions generated from liquid matrices with obser-
vations for food ones, it is necessary to consider the potential 
factors that may result in divergences. These factors may include 
the presence of native microbiota or additional environmental fac-
tors in food matrices that were not included in the models. For 
detailed information, see Chapter 3. 
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An appropriate microbial strain is critical in developing a reli-
able and accurate predictive model. Firstly, the chosen strain should 
be representative of the microbial population of interest in the food 
matrix and be relevant to the food matrix and its storage condi-
tions. The selection encompasses the origin, including different 
strains of foodborne pathogens, physiology, and growth character-
istics of the strain. Depending on the study purpose, strains or 
cocktails can be used. This allows the assessment of the variability 
related to resistance to stress, behaviors, and the influence of line-
age variability given to changes in the environment between differ-
ent lineages of the same species, thus increasing the 
representativeness of the situation found in the analyzed food 
[88]. Alternatively, surrogate microorganisms can be used instead 
of specific pathogens when the pathogen is not indicated. The 
surrogate should have similar behavior and kinetics characteristics, 
except for virulence, similar to the target pathogens [89]. 

The microorganisms, vegetative cells, or spores selected for the 
study must be incubated in standardized conditions, preferably 
similar to those found in food. Also, inoculum preparation is a 
crucial step for predictive model development. For more informa-
tion about the selection and inoculum preparation and method of 
inoculation, refer to Chapter 2. 

4.3 Goodness Index 

Fit and Model 

Validation 

After elaborating and refining the mathematical model, it is neces-
sary to test it to verify its accuracy in the face of reality, being the last 
step of the modeling cycle [90]. 

Validation methods can be divided into graphical and mathe-
matical methods. The first one allows quick visualization and inter-
pretation of the objective data and is characterized by creating a 
graph where the expected values according to the model and the 
values acquired in a laboratory way are plotted [91, 92]. Mathemat-
ical validation implies the calculation of statistical factors, for exam-
ple, mean squared error, accuracy factors, and bias, among others 
[13, 93, 94]. 

After performing the curve fitting, the model must be validated 
using statistical indexes, constantly evaluating which indexes best 
apply to each type of model, taking into account its characteristics, 
such as whether the predictive model is a linear function or not 
[95]. For more information, see Chapter 10 for model validation.

https://doi.org/10.1007/978-1-0716-3413-4_3
https://doi.org/10.1007/978-1-0716-3413-4_2
https://doi.org/10.1007/978-1-0716-3413-4_10
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4.3.1 Goodness Fit Index The goodness fit indexes are used to evaluate the fit of a model. 
Some metrics, such as R2 , RSS, and RSME, can provide different 
information about the accuracy and precision of the model’s 
predictions [96]. 

4.3.1.1 R-Squared R-squared (R2 ) is a statistical measure that indicates how well the 
model fits the data, that is, it evaluates the performance of a security 
or fund (dependent variable) in relation to a given reference index 
(independent variable) (Eq. 11). R2 adjusted (Eq. 12) determines 
the extent of variance in the dependent variable that can be 
explained by the separate variable: 

R2 = 

n 

i =1 

yi -
1 
n 

n 

i =1 

yi 

2 

n 

i =1 

yi -
1 
n 

n 

i =1 

yi 

2
ð11Þ 

R2 
adj =1- 1-R2 n-1 

n- k-1
ð12Þ 

where n is the number of observations, yi is the observed value for 
sample i, yi is the value of the prediction for sample i, k is the 
number of parameters, and n is the number of sample data. 

4.3.1.2 RSS Residual sum of squares (RSS), also referred to as the sum of 
squared errors (SSE), is a statistical method that indicates whether 
the regression model fits the actual dataset well or not. It measures 
the variance of the value of the observed data when compared to its 
value predicted by the regression model (Eq. 13): 

RSS= 
n 

i =1 

yi - y 
2 ð13Þ 

where yi is the observed variable value and y is the value estimated 
by regression line. 

4.3.1.3 RMSE RMSE (root mean squared error) is a measure of absolute error that 
squares the deviations to prevent positive and negative deviations 
from canceling out. This measure also tends to overestimate large 
errors, which can help weed out methods with these errors 
(Eq. 14): 

RMSE= 
RSS 
n- k

ð14Þ 

where n is the number of samples and k is the number of 
parameters.
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5 Limitation 

Although microbial predictive models have brought significant 
advancements to food safety, addressing some limitations asso-
ciated with their development and application is essential. Adequate 
knowledge of the initial conditions, understanding the challenges 
encountered during the study of food matrices and production 
processes, and considering the variability of the outcomes are cru-
cial for developing reliable predictive models. It is essential to assess 
the relevance of the model system for the specific food of interest 
and the potential limitations during data acquisition and the mod-
eling process. Failure to address these limitations can render the 
execution of the modeling unfeasible and result in unsatisfactory 
results [97]. 

6 Notes 

1. Extrinsic Factors: These factors are related to the environmen-
tal conditions around the analyzed sample, also known as envi-
ronmental limitation factors. Some examples are the relative 
humidity, temperature, and gaseous composition of the envi-
ronment in which this sample is inserted. 

2. Intrinsic Factors: Intrinsic factors are those related to the sam-
ple in which the microorganism is found, thus called substrate 
limitations. Some examples of this type of factor are composi-
tion and availability of nutrients in the medium, pH, redox 
potential (Eh), barriers and components with antimicrobial 
action, as well as the water activity of the substrate. 

3. Parameters: They can be either a value related to a quantity 
(as the flow and volume parameters are related to the magni-
tude of a liquid, or the average parameter, which is related to 
the population quantity) or a variable that can take different 
values and, as a consequence, change other values of an 
equation. 

4. Variables: Variables are generally represented by a letter, which 
differs from the preestablished values of an equation. They can 
be divided into dependent (where there are also interdepen-
dent) and nondependent (independent). The first group is 
related to some independent variable, and this second group 
can also be called a factor. Dependent variables, also known as 
decision variables, are under the system modeler’s control and 
influence.
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