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Microencapsulation of Probiotics
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Abstract

Probiotics are susceptible to factors such as stomach acid, enzymes, and bile salts. Also, when incorporated
into food matrices, intrinsic or processing factors like low pH, high water activity, or high cooking
temperatures can negatively affect the viability of microorganisms. Encapsulation technology can ensure
the safe delivery of probiotics to the gut and better survival during processing and storage. Several
techniques are used to protect probiotics, for example, emulsion, extrusion, spray-drying, freeze-drying,
liposome, electrospinning, and others. Here, we describe in detail the main methods of encapsulation of
probiotics, including emulsion, extrusion, and spray-drying techniques.
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1 Introduction

The consumption of probiotic products has increased exponentially
due to the range of benefits these microorganisms can offer to
human health. However, it is still a challenge to ensure the viability
of probiotics to the consumer, as they have a noticeable loss of
viability after passing through the digestive tract. In addition, when
incorporated into commercial products, intrinsic or processing
factors such as low pH, high water activity, or high cooking tem-
peratures can negatively affect the viability of microorganisms [1].

Microencapsulation emerges as an alternative to circumvent
these limitations. This technique is based on trapping probiotics
within an encapsulating matrix, ensuring safe delivery to the intes-
tine at appropriate therapeutic levels to provide human health
benefits [2]. Several microencapsulation techniques can be used
to encapsulate probiotics (Table 1). However, emulsion, extrusion,
and spray-drying techniques occupy a prominent place, considering
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Table 1
Encapsulation techniques used to microencapsulate probiotics

Encapsulation
technique

Encapsulation
yield (%)

Emulsion Lactiplantibacillus
plantarum (MT,
ZH593)

Alginate 27–82 [7]

Extrusion Limosilactobacillus reuteri
(DSM 20016)

Alginate and (tamarind gum
or mutamba mucilage or
cassia tora gum or
psyllium mucilage or
konjac gum)

93–97 [8]

Spray-drying Bifidobacterium animalis
subsp. lactis BB-12

Full-fat goat’s milk and/or
prebiotics (inulin and/or
oligofructose)

94–97 [9]

Freeze-drying Lactobacillus acidophilus
(La-05),
Lacticaseibacillus casei
(Lc-01)

Microalgae Spirulina
platensis, Chlorella
vulgaris, Scenedesmus
quadricauda, and
Lagerheimia longiseta

80–92 [10]

Supercritical Bifidobacterium animalis
subsp. lactis BB-12,
Bifidobacterium
longum BB-46

Poly-(vinylpyrrolidone)-
poly-(vinylacetate-co-
crotonic acid)

Not shown [11]

Liposome Lacticaseibacillus
rhamnosus (ATCC
10754)

Lecithin and (chitosan or
gelatin)

81–87 [12]

Electrospinning Lacticaseibacillus
rhamnosus 1.0320

Pectin and poly (vinyl
alcohol)

Not shown [13]

Microfluidics Saccharomyces cerevisiae
(PDC1-GFP)

Alginate Not shown [14]

Layer-by-layer Ligilactobacillus
salivarius Li01 (Li01)

Chitosan and alginate Not shown [15]

Fluidized bed Lactobacillus acidophilus
(PTCC 1643)

Xanthan, alginate, chitosan,
and gellan

35–78 [16]

3D printing Bifidobacterium lactis
(HOWARU®
Bifidous) Lactobacillus
acidophilus
(HOWARU®
Dophilus)

Alginate and gelatin Not shown [17]



their low cost, simplicity of handling, and the possibility of produc-
ing large-scale microcapsules. Thus, throughout this chapter, we
will address only these most used techniques.
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The encapsulating matrix can be formed using different wall
materials, also known as carriers. Sodium alginate has been widely
used due to its low cost, biocompatibility, food grade, and targeted
delivery of probiotics (soluble in basic medium, for example, in the
intestine) [3]. Wall materials such as chitosan, gelatin, milk pro-
teins, pectin, carrageenan, prebiotics, and different types of starch
have also occupied a prominent place for the microencapsulation of
probiotic strains. The criteria for choosing a suitable encapsulating
agent are mainly based on its physicochemical properties (molecu-
lar mass, solubility, glass transition temperatures, crystallinity, film
formation, and emulsifying properties). A good wall material must
also be easy to handle during the encapsulation process. In addi-
tion, it cannot react or injure the probiotic strain during the encap-
sulation and storage process and, finally, it must meet the solubility
properties of the microcapsule by releasing the probiotics at the site
of action [1]. To describe the methodology of this chapter, we will
consider alginate (ALG) and whey proteins (WPI) as encapsulating
agents and the strain of Lacticaseibacillus rhamnosus GG as active
material. Alginate was chosen because it is necessary to use a
hydrocolloid for the crosslinking process in the emulsion and
extrusion methods. In addition, it is considered GRAS (Generally
Recognized as Safe) and low cost. However, other wall materials
have been widely used [4–6].

2 Material

For the production of microcapsules, the following materials are
needed:

• Freeze-dried probiotic cells;

• De Man Rogosa and Sharpe (MRS) broth;

• Glycerol.

• Bacteriological oven;

• Centrifuge;

• Saline solution;

• Soybean oil;

• Alginate (ALG);

• Whey proteins (WPI);

• Calcium carbonate;
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• Acid organic;

• Span 80;

• Calcium chloride;

• Spray-drier.

3 Methods

3.1 Preparation of

Probiotic Suspension

To obtain the stock solution, freeze-dried probiotic cells can be
rehydrated in sterile skim milk (25 g L�1) or with De Man Rogosa
and Sharpe (MRS) broth added with glycerol (20 g L�1) and stored
in sterile Falcon vials at �20 � 2 �C [18] (see Note 1). Then, the
stock solution is added to sterile MRS broth and incubated
(37 � 1 �C for 48 h) to reach the stationary phase (see Note 2).
After the incubation time, the probiotic cells are harvested by
centrifugation (1000 � g) for 10 min at a temperature of
25 � 1 �C and washed twice with saline solution (0.9 g
100 mL�1). Cell pellets should be kept at 4 � 1 �C until encapsu-
lation procedure.

3.2 Encapsulation of

Probiotics by Emulsion

The emulsion technique consists of mixing two immiscible phases,
called the dispersed or discontinuous phase, and the oily or contin-
uous phase [1]. In this method, ALG gelation can be performed
internally or externally (Fig. 1). In internal gelation, the alginate is
previously solubilized with calcium carbonate, and then an aliquot
of organic acid is added to the mixture after emulsification to
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Fig. 1. Extrusion and emulsion technologies [19]. (Adapted from [19])



promote gelation. As the organic acid enters the aqueous phase, it
interacts with calcium carbonate, releasing calcium ions and car-
bonic acid. The calcium ions react with the alginate through com-
plexation with the carboxylic groups of the polymer, forming the
“egg box model” structure [19]. On the other hand, in external
gelation, the complexation reaction of the carboxylic groups of
ALG occurs through contact with a solution of calcium chloride.
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1. Preparing the dispersed phase: Mix 5% (w/v) of WPI in
100 mL of sterile distilled water under stirring at 400 rpm.
Then, gently add 1% (w/v) of ALG (see Note 3), and leave
under stirring until the alginate is entirely homogenized.

2. Addition of cell biomass: Aseptically, an aliquot (~ 9 log CFU
mL�1) of the probiotic biomass should be added to the dis-
persed phase and then homogenized at 400 rpm for 5 min. It is
recommended to add a biomass content that reaches a viable
cell count of around 9 to 10 log CFU g�1 (see Note 4).

3. Preparing the continuous phase: Add 300 mL of soybean oil to
a beaker. Add 3% (v/v) of an emulsifying agent (Span 80) in the
same container and leave it under stirring at 400 rpm until
complete homogenization (see Note 5).

4. Mixing the two phases: In a beaker, mix the dispersed and
continuous phases and leave under stirring at 400 rpm for
20 min or until the complete formation of the emulsion (see
Note 6).

5. ALG cross-linking process: While stirring, add an aliquot of a
1.5% (w/v) calcium chloride solution to form the gelled micro-
capsules (see Note 7). Then, turn off the agitation and add
200 mL of sterile distilled water to attract the microcapsules to
the aqueous phase.

6. Collecting the microcapsules: Discard the emulsion superna-
tant, collect the microcapsules by vacuum filtration, and keep
them at 4 �C until drying.

7. Drying of microcapsules: Gelled microcapsules can be dried in
a spray-dryer, freeze-dryer, or fluidized bed dryer (seeNote 8).
After drying, the microcapsules can be packed in airtight pack-
aging and kept at room temperature until use (see Note 9).

3.3 Encapsulation of

Probiotics by Extrusion

The extrusion technique (Fig. 1) involves mixing the cellular bio-
mass of the probiotic with the polymeric solution (ALG and WPI)
and then forming droplets by passing the solution through a nozzle
or atomizing nozzle [20].

1. Preparing the dispersed phase: Mix 5% (w/v) f WPI in 100 mL
of sterile distilled water under stirring at 400 rpm. Then, gently
add 1% (w/v) of ALG (see Note 3), and leave under stirring
until the alginate is entirely homogenized.
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2. Addition of cell biomass: Aseptically, an aliquot (~ 9 log CFU
mL�1) of the probiotic biomass should be added to the dis-
persed phase and then homogenized at 400 rpm for 5 min. It is
recommended to add an aliquot with a viable cell count of
around 8 to 9 log CFU g�1 (seeNote 4). It is worth emphasiz-
ing that the dispersed phase containing the hydrocolloid must
be prepared just before use.

3. Forming the gelled microcapsules: Once the feed solution
(FS) (polymer solution + probiotic) is prepared, the FS is
dripped into a 1.5% (w/v) calcium chloride (seeNote 7) gelling
solution under stirring at 200 rpm. The dripping of the FS into
the gelling solution is carried out using an atomizing nozzle. In
this case, the FS is pumped by a peristaltic pump, and the
droplets are quickly transformed into solid particles through
the complexation of ALG with calcium ions. Another simpli-
fied form can be used, for example, using a syringe to perform
the drip (see Note 10). After the dripping step, it is interesting
to leave the microcapsules to rest (~20 to 30 min) in the CaCl2
solution to solidify the microcapsules completely. The forma-
tion of large particles and the low production rate are the main
disadvantages of this technique for use in the food industry.
However, to overcome this, the extrusion process can be com-
bined with ultrasound, jet cutting, electrostatic field, and rotat-
ing disk (Fig. 1).

4. Collecting the gelled microcapsules: Collect the microcapsules
by vacuum filtration and keep them at 4 �C until drying.

5. Drying of microcapsules: Gelled microcapsules can be dried in
a spray-dryer, freeze-dryer, or fluidized bed dryer (seeNote 8).
After drying, the microcapsules can be packed in airtight pack-
aging and kept at room temperature until use (see Note 9).

3.4 Encapsulation of

Probiotics by Spray-

Drying

The spray-drying encapsulation technique (Fig. 2) is well estab-
lished for large-scale industrial applications and is considered an
economically viable technique. In this technique, the suspension
containing the wall materials and probiotics is atomized in a drying
chamber with concurrent hot air, which instantly removes water
from the atomized solution [21]. Microcapsules are removed from
the drying chamber by a negative pressure cyclone system and can
be collected on the drying chamber bottom or in the collection
flask (see Note 11).

1. Preparing the feed solution: Mix 5% (w/v) of WPI in 100 mL
of sterile distilled water under stirring at 400 rpm. Then, gently
add 1 (w/v) of ALG (seeNote 3), and leave under stirring until
the alginate is entirely homogenized (see Note 12).

2. Addition of cell biomass: Aseptically, an aliquot of the probiotic
biomass should be added to the dispersed phase and then
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Fig. 2 Spray drying process schematic diagram [22]. (Adapted from [22])

homogenized at 400 rpm for 5 min. It is recommended to add
an aliquot with a viable cell count of around 8 to 9 log CFU
g�1 (see Note 4).

3. Encapsulation process: Turn on the spray-dryer equipment and
operate it with the concurrent flow (see Note 13) with an inlet
temperature of 150 �C and an outlet temperature of 50 �C (see
Note 14). Program the drying airflow of 35 m3 h�1, and
compressor air pressure of 0.7 MPa [23].

4. Then, turn on the peristaltic pump to pump the FS and pro-
gram supply flow to 20 mL min�1. It was found that slow
drying kinetics leads to significant inactivation of the dehydra-
tion of Lactiplantibacillus plantarum, while a rapid drying rate
could instantly stabilize the cells and thereby prevent this inac-
tivation [24]. In addition, a high drying rate during the first
stage of drying, when facilitated by hydraulic membrane per-
meability, may limit bacterial adaptation because of exposure
for too short a time to the gradual withdrawal of moisture. It is
recommended that the FS be kept under magnetic stirring at
room temperature during the encapsulation process (see Note
15).

5. Before FS entry, sterile distilled water at room temperature
must be pumping until stabilization of the inlet temperature.
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6. Collecting the dry microcapsules: After complete evaporation
of the water, collect the microcapsules from the collector
located at the bottom of the equipment, store them in hermetic
packages and keep them at room temperature until use (see
Note 9).

The analysis of microcapsules is an important step in the micro-
encapsulation process. Microcapsules must be characterized before
use to observe their physical, chemical, and biological properties.
Table 2 shows the characteristics of the probiotic microcapsules
obtained by the emulsion, extrusion, and spray-drying techniques
and the main characterization analyses.

4 Notes

1. You can use other cryoprotectants. MRS for LAB only, if strains
from other species (E. coli, Bacillus, Saccharomyces), other
broths should be used.

2. Cells in the stationary phase are more resistant and have a
higher encapsulation yield than cells in the log phase [33].

3. Alginate should be added gently to not form lumps. You can
place it on a foil film and spray it on the solution. Another way
to avoid the formation of lumps is to homogenize them in
warm water (40–50 �C).

4. Adding an aliquot of L. rhamnosus GG with a low viable cell
count may compromise delivery to the gut at levels suitable for
promoting human health.

5. Any oil can be used. The emulsifying agent is chosen according
to the lipophilic hydrophilic balance (LHB); generally, the
most used are Tween 80 and Span 80.

6. Using slow agitation rates (400–500 rpm) is recommended.
High agitation rates can damage the probiotics‘cell wall.

7. Other types of salt can be used for ALG crosslinking, such as
calcium citrate. However, it is desirable to use low concentra-
tions. High salt concentrations have a detergent effect, which
dissolves bacterial membranes and even causes cell death.

8. Another drying method can be used. However, those are more
commonly used. The drying of microcapsules is important
both from a microbiological and technological point of view,
as it increases the lifespan of microorganisms. In addition,
drying the microcapsules makes it possible to incorporate pro-
biotics into low-moisture food matrices.

9. These microcapsules can be used in the products described in
other chapters of this edition to improve survivability in pro-
cessing, storage, and TGI.
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10. The formation of large particles and the slow production rate
are the main disadvantages of this technique for use in the food
industry.

11. For probiotic microcapsules, the ideal in bench spray-dryers or
pilots is to collect only the product from the collector due to
the greater control of the exit temperature of the process.

12. During the process, encapsulated microorganisms can undergo
several stresses, including heat stress and dehydration. Encap-
sulating agents such as gelatin, gum arabic, and cellulose ace-
tate phthalate has been reported as protective agents capable of
forming a physical barrier resistant to hot air [21]. In addition,
disaccharides are encouraged as they can preserve the structure
of probiotic cell proteins andmembranes through a connection
at sites that previously interacted with water [34].

13. Spray flow can be applied in three ways (concurrent, counter-
current, or mixed flow). However, the choice of spray flow will
depend on the direction in which air and liquid (e.g., feed
solution) enter the drying chamber. In the first case (concur-
rent), the product is in contact with the colder air, preferable
for drying thermosensitive materials, such as probiotics.

14. The lower the Toutlet, the higher the post-drying viability.
Toutlet is therefore considered to be the principal drying param-
eter that affects the viability of spray-dried LAB, and any lack of
monitoring and control of the latter may be markedly
detrimental [21].

15. Agitation prevents materials in solution from settling.
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