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Omics Analyses: How to Navigate Through a Constant Data
Deluge

Thomas Denecker and Gaëlle Lelandais

Abstract

Omics data are very valuable for researchers in biology, but the work required to develop a solid expertise in
their analysis contrasts with the rapidity with which the omics technologies evolve. Data accumulate in
public databases, and despite significant advances in bioinformatics softwares to integrate them, data
analysis remains a burden for those who perform experiments. Beyond the issue of dealing with a very
large number of results, we believe that working with omics data requires a change in the way scientific
problems are solved. In this chapter, we explain pitfalls and tips we found during our functional genomics
projects in yeasts. Our main lesson is that, if applying a protocol does not guarantee a successful project,
following simple rules can help to become strategic and intentional, thus avoiding an endless drift into an
ocean of possibilities.
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1 Introduction

In 2021, there should be no need to explain that scientists’ daily
routines are challenged by a constant data deluge. Email messages,
conferences, social media, web and smartphone alerts from around
the world all bring information about new articles to read, discov-
eries to understand, datasets to analyze, or hypotheses to evaluate,
all the time. The rapidity with which data acquisition technologies
evolve contrasts with the amount of work required to develop solid
expertise in a domain. Researchers are struggling to find a balance
between the ever-increasing flow of data they receive and the lim-
ited time they have, to process and understand the data.

The terminology “data deluge” first appeared in the literature
over 10 years ago [1]. In biology and life sciences, it has been
tightly coupled to the emergence of multi-omics experimental
methods, i.e., genomics, transcriptomics, proteomics, metabolo-
mics, and more recently epigenomics, glycomics, lipidomics, or
microbiomics [2]. The common element of these disciplines is the
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simultaneous acquisition of experimental measurements for several
thousands of cellular components. Year after year, the number of
technical solutions grows considerably, and the associated
biological data accumulate in public databases. As illustrations,
the website “Enseqlopdia” references more than 350 different
Next-Generation Sequencing (NGS) methods [3], and the scien-
tific journalNucleic Acids Research (NAR) publishes descriptions of
more than 1600 molecular biology databases [4]. And this is very
likely just the tip of the iceberg. How much data has been left
behind on hard drives of scientists’ computers? It is not surprising
that journals like BMC Research Notes have created a new category
called “data notes” to encourage data sharing [5].

Omics data are very valuable for research in biology, providing
incredible opportunities to better understand cell function, and the
underlying genomic regulatory systems, but like any innovative
technology, omics data follows the “hype cycle” [6]. After a peak
of inflated expectations in the 2000s (human genome project),
many researchers experienced the trough of disillusionment
[7]. It became clear that the accumulated omics datasets cannot
speak by themselves and thus, the discipline of “data science”
emerged as the new hype [8]. Ten years later, despite great per-
spectives raised by machine learning and artificial intelligence in
medical fields [9], multi-omics data analysis remains a major bot-
tleneck in most research projects [10].

We define data analysis as the process of inspecting, cleaning,
transforming, and modeling a dataset, with the aim of revealing
new information. In an omics project, full interpretation of the data
that were generated constitutes the major expense [11]. It requires
a multidisciplinary team of bioinformaticians, statisticians, and biol-
ogists to transform the raw data into useful biological knowledge.
With this in mind, many integrated computational tools were
developed to help researchers with no particular informatic skills
to work on their data. The most emblematic is the Galaxy web
platform [12], which is based on a tool shed gathering several
thousand software packages. Clearly, technical resources exist
today, as well as training programs to learn how to use them
[13]. Exhaustive courses in Data Science, Bioinformatics, Statistics,
and Computational Biology are freely available on MOOC plat-
forms like Coursera [14], for both beginners and advanced
researchers. In this context, we may wonder why data analysis
remains such a burden for those who produce the data. We believe
that beyond the issue of dealing with a very large number of
experimental results, working with omics data requires a change
in the way we solve scientific problems.

Most biologists were taught to follow the scientific method,
which consists of (1) making an observation; (2) formulating
hypotheses to explain this observation; (3) designing experiments
to test the hypotheses; (4) performing the experiments; and

458 Thomas Denecker and Gaëlle Lelandais



(5) drawing conclusions from the experiments which support or
reject the hypotheses. This is a difficult process, which can last
several weeks, months, or even years. Therefore, how can we imag-
ine generalizing such a method in the context of omics data? In the
literature, the answer to this question instigates disagreements
between researchers over how science should be properly con-
ducted [15]. More pragmatically, if a researcher does not want to
spend his/her entire scientific career testing the hypotheses which
can be raised after only a single omics experiment, deductive and
inductive logics are both indispensable. And this is a new way of
thinking especially difficult to acquire, because it is not explicitly
described or even understood. In a word, there is no standard
procedure.

In this chapter, our aim is to share pitfalls and tips from our
experience of functional genomics in yeasts, working with multi-
omics datasets [16–19]. Even though our colleagues refer to us as
“bioinformaticians,” we have very different scientific backgrounds
and histories. Fifteen years separate our first contributions to func-
tional genomics projects [20, 21], 15 years during which bioinfor-
matics has changed considerably [22]. From a field essentially
devoted to the study of sequences (genes and proteins), bioinfor-
matics has become a discipline centered around the data (Fig. 1).
We each have a different conception of what “we should be doing”
to improve what “we already do.” Above all, we have learned by
working together that following a protocol does not guarantee a
successful project. More than ever, there is no right or wrong
answer; hence, data analysts must be creative scientists and feel
free to think outside the box. The following text is organized into
three main sections. In the first one, we present three basics for data
analysis. We believe they can provide a foundation for assessment of
the concepts that underlie the challenges of any data analysis. In the
second section, we remind the reader that “cherry picking” and “p-
hacking” are two major issues they must be aware of, especially in
omics data analyses. Finally, in the third section, we recommend
“10 simple rules,” which we have experienced to be helpful in our
daily work.

2 Basics for Data Analysis

2.1 Basics #1:

Differentiate “Data,”

“Information,” and

“Knowledge”

Data analysis is the procedure by which new information and
knowledge are discovered from the data, and hence, it helps make
decisions and highlight conclusions. In this context, the words
“data,” “information,” and “knowledge” are often connected,
but it is worth considering that they refer to very different steps
and aims in a data analysis [23].

Data, by definition, represents the starting point of the whole
story. The term is plural, equivalent to “facts.” Therefore, data are
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the individual facts, which are still out of any context. In biology,
they rely on the raw experimental results or observations. Data can
be of different types, i.e., numerical or textual, but they can also be
images, audio recordings, videos, etc. The diversity of data sources
is certainly one of the biggest challenges for their analysis. At this
stage, it is important to distinguish structured data from unstruc-
tured data (Fig. 2). Structured data are easily organized in databases
and can be efficiently retrieved and manipulated. Unstructured data
are more inconsistent and complicated to use. Preliminary work is

Fig. 1 Word clouds from the titles of articles published in the field of “bioinformatics” between 2000–2005
(left) and 2015–2020 (right). The list of journals from which the articles were taken is: Bioinformatics, BMC
Bioinformatics, Briefings in Bioinformatics, and Journal of Bioinformatics and Computational Biology. Note that
the larger the word, the more frequently it is used. The period 2000–2005 corresponds to the time
G. Lelandais prepared her PhD and 2015–2020 corresponds to the time T. Denecker prepared his PhD

Fig. 2 Illustrations of basics #1 for data analysis. The progression from data to information and knowledge is
illustrated here. Data are individual facts, out of context, and with no meaning. They can be either structured
data or unstructured data (see the main text). Information arises from a set of data, which have been placed in
a context. Information is therefore relevant to several people. In this picture, two lists of genes for which
expression is activated (red color) or repressed (green color) are represented. They are classified around
functional categories. More details for this analysis can be found in [16]. Knowledge is the final stage of any
data analysis. It is the most challenging to achieve
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required to find and/or define their underlying organization, and
for that, manual verification or curation is often necessary. This
makes the process uncertain and time consuming. Whether
structured or unstructured, the key idea behind the concept of
data is that they have no meaning.

This is the exact difference with the term “information.” Con-
sidered to be singular, information can be seen as a set of data
placed in a particular context. Hence, information has a relevance
to one or more people and, for them, means something. Informa-
tion can, for instance, be that a gene is more expressed when cells
are in a particular condition than it is in another condition or that
the overall organization of a network of genes has a particular
topology (Fig. 2). Whatever the signification is (simple or more
complex), an information arises from inspection of the data, apply-
ing procedures decided by the scientist doing the data analysis.
Importantly, this implies that multiple information can arise from
a single dataset, depending on the processes used to inspect the
data. Information therefore represents a great advance in a data
analysis, but it should not be confused with the word “knowledge.”

This last idea is a key concept to understand what data analysis
really is. Indeed, by definition, knowledge represents an informa-
tion which is understood. It means that we know why and how the
information is obtained, and we can often make predictions based
on this understanding. Considering previous examples, the knowl-
edge can be, for instance, the existence of a regulatory protein
which impacts the transcriptional activity of a set of genes in the
studied condition and drives the overall topology of the associated
gene network.

Data analysis is a very lexically challenged discipline. The terms
“data,” “information,” and “knowledge” are often misused or used
interchangeably. To limit misunderstanding among collaborators in
a project, these three terms must be formally defined and consis-
tently used. Indeed, if one person is expecting new knowledge from
an analysis, whereas the other is working on collecting new infor-
mation, it could be difficult to reconcile both their expectations.
Also, it is our experience that trying to obtain new knowledge
without first generating new information is a very risky strategy, a
bit like looking for a needle in a haystack.

2.2 Basics #2:

Recognize the

Importance of Data

Visualization

At all stages of a data analysis, visualization plays a critical role. This
is well illustrated by considering Anscombe’s quartet [24]. Whereas
the four datasets have almost identical descriptive statistics (in terms
of individual mean, variance, and pairwise correlation), they appear
to have very different distributions when they are plotted on a
graph (Fig. 3a). Graphics are therefore very important for increas-
ing perspectives on a set of observations.

We have often observed that data visualization is underesti-
mated by our collaborators. The main reason is probably that we
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are so immersed in a world of images that we no longer notice
them. But more than a simple process to “show” or to “communi-
cate” ideas, visualization triggers a cognitive process (Fig. 3b).
Applied to data, visualization (often referred to as “dataviz”)
helps to detect potential bias in the collected datasets, to define
underlying structures or to anticipate the significance of the arising
information. Applied to information (often referred to as “info-
graphics”), visualization helps to integrate heterogeneous results,
compare, and confront them with current knowledge in a particular
field of interest. Finally, applied to knowledge, visualization helps to
explain and communicate new understanding of processes. While
some visualizations are quick procedures, possibly automated with
the use of graphics software, others are very slow. They require deep
thought to realistically synthesize and convey a complex message.

Again, visualization is above all a cerebral process. It allows us
to form mental images of concepts, supports thinking, and ampli-
fies cognition. Visualization thus gives new perspectives and drives
further analyses. This is worth considering for the benefit of a data
analysis.

2.3 Basics #3: Think

of Data Analysis as

a Cycle

Our research projects have taught us a lesson: data analysis never
happens as originally planned. More complicated or time consum-
ing than anticipated, something is always missing. What is the effect
of a method parameter on the retrieved list of genes? The genes are
not those expected, what shall we do? Should we change raw data
normalization? These are examples of questions raised in our ana-
lyses of transcriptomics data. Writing this chapter was an opportu-
nity for us to take a step back from our practices and explain the
different steps of a more reasoned and efficient strategy.

In that respect, our main insight is that data analysis is not a
linear process, but rather a cycle. The challenge for researchers is to

Fig. 3 Illustrations of basics #2 for data analysis. (a) Presentation of Anscombe’s quartet, which is an
emblematic example of the necessity of converting numbers into graphics. Whereas all sets of data (x, y)
have identical means, standard deviation, and pairwise correlations, they are very different in terms of
graphical shapes. (b) Illustration of the direct connection between data visualization and cognition [42]
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avoid getting stuck in a perpetual cycle. We identified five different
steps, which are represented in Fig. 4 and detailed below.

2.3.1 Formulation of the

Scientific Question

This is the most important step. A clear formulation of the scientific
question helps to delineate the purpose of the data analysis and to
anticipate the information that will be obtained and the associated
potential issues. A typical mistake is to directly target the creation of
new knowledge, forgetting the information intermediate. Even if
they are very interdependent notions (see previous section),
keeping in mind their specificities is at this step critical. Information
is associated with “data meaning,” whereas knowledge is associated
with “data understanding.” These are very different aims. In case of
a transcriptomics data analysis, for instance, it can be illustrated as
follows. Imagine you are comparing gene expression between two
conditions; it is very different to say “I want to know how cells
adapt in response to environmental changes?” (vague question,
multiple answers can be formulated) than to say “I want to know
the set of genes for which normalized gene expression measure-
ments are significantly different, with an associated type I error rate

Fig. 4 Representation of the data analysis cycle that underlies the step-by-step progression of a scientific
project. Five main steps are required: (1) Formulation of the scientific question; (2) Collection of available data;
(3) Data exploration and preliminary analyses; (4) Formulation of statistical hypotheses; and (5) Interpretations
and conclusions. This last step often opens new perspectives in the project, thus initiating a new cycle of data
analysis. The succession of coherent cycles allows a step-by-step progression of the project
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of 1%?” (precise question associated with classical statistical proce-
dures). Of course, the first question is more attractive from a
scientific point of view. The underlying idea is clearly to create
new knowledge, the goal for all researchers. But we can anticipate
the first question will be very hard to fully answer, especially if
several collaborators share different points of view concerning
“cell adaptation.” There is no such risk with the second goal.
Even more, we can anticipate, based on the number of replicates
available, the power of the statistical test, and hence, our ability to
detect genes that are truly differentially expressed [25]. The results
may be disappointing, but they will still be results, i.e., new infor-
mation collected that can be associated with other information, as
part of a more ambitious scientific project.

2.3.2 Collection (and

Cleaning) of Available Data

Being a data analyst in 2021 is a strong advantage for this step.
Many sources of biological data exist and are freely available in
public databases [4]. It is thus possible to answer a lot of scientific
questions without carrying out new experiments. Of course, the
experiments of others can still be considered imperfect and unsatis-
factory, but this is not so important if some new information can be
obtained from the data. A typical mistake at this step is to collect
more data than we actually need. It is important to remain focused
on the scientific question only. Indeed, with too much data, the risk
is to spend more time than necessary on purely technical (informat-
ics) issues. Data cleaning is also a necessary step, whose cost
increases with the amount of data collected. On this subject, inter-
esting advice is presented here [26]. To ensure good data quality, it
is necessary to check validity, accuracy, completeness, and consis-
tency. This takes time but deserves to be taken into account because
the quality of cleaning and data collection has a direct impact on the
quality of the information, i.e., the adage “garbage in, garbage out”
[27]. In this context, being specific about what we are trying to
accomplish is a great help in deciding what actions to take.

2.3.3 Data Exploration

and Preliminary Analyses

This step is our favorite. For the first time, the collected dataset is
handled without any restraint regarding what is right or wrong to
do. It consists of exploring the data, plotting multiple graphs,
calculating many parameters, etc. We like the idea that this step is
about “getting to know” the collected data. The visualization
methods described above are of great interest at this stage, while
ensuring the reproducibility of the process is not yet necessary (see
next section). This greatly reduces the work of the data analyst and
provides very appreciable freedom. A typical mistake is to spend too
much time at this step and over-interpret the observations. Indeed,
no solid conclusions will be drawn from these explorations and
preliminary analyses, the objective of this step is only to develop
intuitions, which will help for the following steps.
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2.3.4 Formulation of

Statistical Hypotheses

This is undoubtedly the most challenging part of the cycle. The
problem is that we are going to subject the collected data to more
complex calculations, applying procedures that involve mathemati-
cal details, often beyond our general understanding. At this step,
the hard work is purely mental. It consists of converting the scien-
tific question into relevant statistical hypotheses, prerequisite to
using the right methodology. Once done, all the rest is mere
computation, which simply requires statistical software. Note that
at this step of the data analysis cycle, the issues of repeatability,
replicability, and reproducibility must be carefully considered
[28]. While the previous exploration step can remain “quick and
dirty” [29], this part of the analysis must be rigorous and well
documented [30]. A typical mistake is to confuse “scientific
hypotheses” with “statistical hypotheses.” Again, data analysis is a
very lexically challenged discipline. As an illustration, a scientific
hypothesis could be “I think that the function of this gene is
required for the adaptation of cells to this environmental change,”
whereas a derived statistical hypothesis could be “the mean of
logFC replicates in RNAseq data for this gene is different from
0.” These are two very different statements. We have often encoun-
tered colleagues who were already convinced that their scientific
hypothesis was true (for very good reasons which we do not ques-
tion), and thus strongly rejected the results of a statistical analysis
that did not go in the expected direction. Such misunderstandings
lead to difficult discussions, which could be avoided through a
better understanding of statistics [31]. Rejecting a statistical
hypothesis, based on a p-value calculation and/or a threshold for
type I error rate, does not imply the scientific hypothesis is wrong
[32]. But the information cannot simply be ignored, on the con-
trary, it can help decide the course of further analyses.

2.3.5 Interpretation and

Conclusions

Finally, the last step. It is an essential time to describe the results and
to interpret them in the general context of the scientific project.
Expertise in the scientific field for which the data analysis is per-
formed is very important. Links with already established knowledge
are identified, discussed, and may lead to new scientific questions. A
new cycle of analysis can be performed and, in this way, the scientific
project advances one step (or cycle) after another.

3 Specific Statements in Omics Data Analyses

Below, we alert the reader about two important issues, which are
specific to the analysis of omics data. Although detailed explanation
is beyond the scope of this chapter, we provide references for those
who wish to pursue these topics.
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3.1 Be Aware of

Cherry Picking

Over the past 10 years, Big Data has revolutionized many areas of
the life sciences [33]. But is it an infinite source of new information?
The answer is a priori yes, if appropriate analytic procedures are
applied. Otherwise, Big Data can become an important source of
false discoveries. Indeed, when the mind is motivated to search
through a mass of data, it always ends up discovering a path, usually
a straight line, to the narrative it initially wished to find. In other
words, if we are already convinced that our scientific hypothesis is
true (see previous section), there is a risk of retaining from the
multiple explorations of a large data set, only the information that
supports the hypothesis, while rejecting (consciously or uncon-
sciously) the information that contradicts the initial conviction.
This is called “cherry picking” [34], i.e., the action of pointing to
individual cases that confirm a particular idea, while ignoring a
significant portion of related and similar cases that may contradict
that idea. In this context, statistics have an important role to play,
helping to discriminate observations that have a high probability of
being random from those which, on the contrary, have a low
probability.

3.2 Be Aware of P-

Hacking

P-hacking relies on an inappropriate manipulation of data which
favors the result to be presented as statistically significant
[35]. Extensively discussed in the literature (for instance [36]),
there are several P-hacking scenarios. In the first one, several statis-
tical tests are performed on the same dataset (e.g., a parametric test
and a nonparametric test), and only the results of the most signifi-
cant test (with the lowest P-value) are shown. In the second one,
observations are added (or removed) from a sample used as statisti-
cal test input, until the calculated P-value is below a targeted
threshold (generally 0.05). In the last scenario, a single dataset
composed of multiple variables is used to test multiple statistical
hypotheses until one of them is significant. It is very easy to fall into
the P-hacking trap, even for experienced data analysts and especially
with P-hacking scenario 3, which is very close to the exploration
step of the data analysis cycle described above. This is the reason
why this exploration step must be followed by a rigorous validation
step. To delve deeper into this subject, we suggest the very com-
prehensive article of [37].

4 Our Ten Recommended Rules

In the last section, we list 10 rules that help us move forward,
despite the constant deluge of data. We are not always able to follow
them consistently, but they represent a common objective.

1. Take the time to set your long-term goal and break it into
smaller, very specific parts.
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While it is important to dream big, it is also important to
define the different stages that will allow you to move forward
in the desired direction. Each of these steps must be specific
enough to be carried out in a simple and effective way, without
too much effort.

2. Do not bypass elementary analyses.
Even if there is a temptation to directly apply “hype”

methodologies (in 2021, this is AI), simple analyses are still
very valuable. Because they are easy to understand, you can stay
focused on the data rather than the underlying assumptions
that guide the methodology. You also limit the risk of misun-
derstanding what the method can tell you. Elementary analyses
are also interesting for guiding subsequent choices of more
complex methodologies. Taking a little time with this can
save a lot of time later. If your data is not worth considering
for instance, we might not put as much energy into using
it. Note here that the choice of methods (simple or complex)
must always be guided to achieve the stated objective, no more,
no less, hence the importance of the previous rule.

3. Use unlimited data visualization.
We explained in previous sections how data visualization

can drive our thinking in an analysis. Be careful not to restrict
your data explorations to graphics that are automatically and
systematically generated by a single tool. To be fully useful,
data visualization should be as flexible and broad as possible,
allowing data to be viewed from very different angles. Online
tools [38, 39] exist to support your creativity. Keep in mind the
importance of distinguishing “dataviz” (rapid process used for
exploration) and “infographics” (lengthy process to support
communication and help other people understand your
message).

4. Use statistics because you need them, not because others
tell you to.

Do not ask a question if you do not want to listen to the
answer. This is the best advice to remember when the issue of
carrying out a statistical test is discussed. Do we need statistics
to convince ourselves or to convince others? We deeply believe
that statistics are a powerful and indispensable tool for
performing rigorous data analysis. However, poorly mastered
or applied for the wrong reasons, their use can lead to border-
line situations. “P-hacking” and “Cherry picking” are perfect
illustrations (see previous section). Do not hesitate to consult a
statistician to verify the accuracy of the analyses and keep in
mind that, at the end, it is you and you alone who make the
decision, statistics are only one part of your overall thinking.
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5. Choose the right time to discuss your results, neither too
early nor too late.

This is an important advice. Presenting your results
(whether they are preliminary or advanced) requires clear
thinking. Explaining your motivations, justifying your choices,
and expressing your doubts cannot be improvised. We control
how a message is sent, but we do not control how it is received.
Communication therefore deserves a little preparation. Also, to
be able to listen to feedback and comments, and thus identify
weak points in the analysis, you cannot be in a hurry because of
an impending deadline. Timing is therefore important. Finally,
it is essential to take into account your audience. The less
people know about your project, the more you will have to
explain. This is worth considering if you are expecting the
discussion to focus on a specific element of your project.

6. Listen to the opinions of others but take full responsibility
for all decisions.

Collaboration in a multidisciplinary context can sometimes
be difficult. While having different perspectives on the same
issue can be very rich, it can also be crippling. At some point,
therefore, it is important to be able to decide and move for-
ward. At the end of the study, a critical review process can be
applied in order to assess the relevance of the decisions that
have been taken and therefore to learn from any errors.

7. Guarantee the reproducibility of analyses but pay attention
to not unnecessarily burden the process.

The reproducibility of analyses is one of the major chal-
lenges of current bioinformatics. However, it can be arduous to
test and very constraining in a situation where creativity can
make all the difference. This is why we clearly separate two
stages of the data analysis cycle. When exploring the data, it is
important to work as freely as possible and then, only if the
preliminary results are worth it, to implement good reproduc-
ibility practices. Keep in mind that the more these practices are
mastered, the less the effort required to use them.

8. Remain constantly intentional regarding where you are in a
cycle.

Working in analysis cycles has been a decisive change of
habit for us. Our experience is that performing short cycles
(a few days) is most effective.

9. Take your time, but not too much, perfection is stagnation.
You understood that to navigate through a constant deluge

of data, you must be able to slow down. Not run faster and
faster just to stay in the same place, like the RedQueen [40]. Be
careful, however, not to stop completely. Doing nothing but
reading and thinking, looking for the perfect solution to the
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problem being addressed is ultimately useless if it does not turn
into concrete action.

10. Remember that being a data analyst is an amazing job!
Data are nowadays everywhere and allow endless creativity

for those who appreciate it. Combining computer science,
statistics, and biology, omics data analysis is fascinating inter-
disciplinary work with many attractive perspectives. Isn’t data
the new (s)oil?

5 Conclusion

In this chapter, we have shared key ideas and convictions that help
us work on a daily basis. They have been developed both during the
experiences of our own omics data analyses and in the context of
collaborative projects with biologists, informaticians, and statisti-
cians. Overwhelmed by the constant flow of data and challenged
with the methodological evolution in bioinformatics to follow the
FAIR Guiding Principles [41], we started to feel “stuck,” as if our
work was never enough. The desire to automate our analyses was
very strong at that point and we did make significant progress in
that direction. While this has been helpful, it was not enough.
Today, we accept that we cannot compete with the pace at which
the omics technologies evolve, and we recognize that the burden
represented by omics data is much too heavy to be carried alone.
Again, data analysis is a complex process for which there is no
universal protocol. It requires strong expertise, a lot of curiosity,
and above all, patience. We believe that developing one’s own
“know-how” is one key to success. It helps to become strategic
and intentional, thus avoiding an endless drift into the ocean of
possibilities. Taking full responsibility for the different choices
required at each analysis step is another key to success. It is not
easy in a multidisciplinary context, where we often think that others
are more legitimate to say that we are proceeding in the right
direction. But in practice, we learned that if we become the person
in the room who asks the right questions, we greatly help the
experts to give us accurate answers. Finally, we like the idea that
data analysis is as much an art as a science [29], there are no right or
wrong answers, and that it is ok to have differences in opinion. So,
listening, reading, brainstorming, and going one step at a time are
our main recommendations, and we suggest constantly keeping in
mind that if we often overestimate what we can do in a day, we also
underestimate what we can do in a year.
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Camadro J-M, Poulain P et al (2019) Pixel: a
content management platform for quantitative
omics data. PeerJ 7:e6623

18. Denecker T, Lelandais G (2018) Empowering
the detection of ChIP-seq “basic peaks”
(bPeaks) in small eukaryotic genomes with a
web user-interactive interface. BMC Res
Notes 11(1):698

19. Lelandais G, Denecker T, Garcia C, Danila N,
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