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Mathematical Modeling in Circadian Rhythmicity

Marta del Olmo, Saskia Grabe, and Hanspeter Herzel

Abstract

Circadian clocks are autonomous systems able to oscillate in a self-sustained manner in the absence of
external cues, although such Zeitgebers are typically present. At the cellular level, the molecular clockwork
consists of a complex network of interlocked feedback loops. This chapter discusses self-sustained circadian
oscillators in the context of nonlinear dynamics theory. We suggest basic steps that can help in constructing
a mathematical model and introduce how self-sustained generations can be modeled using ordinary
differential equations. Moreover, we discuss how coupled oscillators synchronize among themselves or
entrain to periodic signals. The development of mathematical models over the last years has helped to
understand such complex network systems and to highlight the basic building blocks in which oscillating
systems are built upon. We argue that, through theoretical predictions, the use of simple models can guide
experimental research and is thus suitable to model biological systems qualitatively.
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1 Introduction

Physiological rhythms are central to life. Some rhythms appear
during certain phases in an individual’s life, like the somite clock
during embryonic development, and some others, like circadian
clocks, are maintained throughout life. Understanding the
mechanisms of physiological rhythms requires an approach that
integrates mathematics and physiology. Of particular relevance is a
branch of mathematics called nonlinear dynamics [1, 2]. Dynamics
is the subject that deals with change, with systems that evolve
throughout time. Whether the system in question settles down to
an equilibrium, keeps repeating in cycles or does something more
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complicated, it is the theory of nonlinear dynamics what we use to
analyze the behavior. The roots of nonlinear dynamics were set by
Henri Poincaré at the end of the nineteenth century, but have seen
remarkable development over the past 50 years, especially in the
application to biological systems.

The development of theoretical models in biology is not a
recent field. Conceptual models have been investigated, for exam-
ple in population biology, long before the first genes were discov-
ered. Nevertheless, with the molecular biology revolution of the
1980s, many new examples of gene regulatory or protein-
interaction networks came to light. With so many feedback and
feed-forward loops underlying the complex dynamics of cellular
processes, many questions became impossible to understand with
intuitive reasoning; and thus, mathematical models gained popu-
larity. Especially in the context of oscillations and clocks, which are
the type of processes in which mathematical models give a good
chance not only to describe them, but also to understand them.
Through numerical simulations, models can highlight the role of
key parameters in oscillations and can be used to predict the sys-
tem’s behavior in conditions that have not yet been experimentally
tested. Mathematical models can also help in grasping the dynamic
properties of molecular mechanisms that are responsible for the
generation of robust oscillations, both at the cellular and inter-
cellular level. They even provide tools to artificially construct
biological networks that can aid in understanding the design prin-
ciples of biochemical oscillating systems. Elowitz and Leibler were
pioneers on this and designed an oscillating network termed
“repressilator” in Escherichia coli [3].

In this chapter we address how circadian clock models can be
developed and what insights they provide. We start by introducing
some important terms in Subheading 2 and exemplify the concepts
with a simple generic oscillator model, the Goodwin model. We
then apply the logic of the Goodwin model to understand how
more complex models have been developed in the context of
circadian clocks, and what mathematical biologists have learned
from such models (Subheading 3). But circadian clocks do not
exist in isolation; they are subjected to a number of inputs (light,
feeding cues, etc.) and they also govern physiological output
responses. Thus, in Subheading 4 we overview the interaction of
clocks with their environment. We end by summarizing the main
points and reviewing modeling limitations. Throughout the chap-
ter there are 9 boxes with practical examples. Scripts for the analyses
are provided as Supplementary Material. More extensive introduc-
tions to mathematical modeling, however, can be found in the
excellent textbooks of Glass and Mackey [1], Kaplan and Glass
[4], Segel [5], Murray [6], Goldbeter [7], Ingalls [8] and
Jackson [9].
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2 Clock Modeling Fundamentals: Mathematical Preliminaries,
Notations and Basic Concepts

Designing a model requires some understanding of the system of
interest. It is necessary to gather and summarize information on
what are the components and key interactions. Because biological
systems are typically of great complexity, it is important to differen-
tiate between essential and superfluous variables. In this sense,
drawing a scheme of the system of interest is often helpful, even
before formulating equations. Putting all the known information
on a single picture helps us clarifying the nature of the interactions,
and to order the different molecular processes. Contrary to many
expectations, this first step in the process of building a model is
often the most time-consuming.

Although the mathematical and computer tools that are used
to simulate models are standard, there is no consensus on how to
construct a model. This always requires some considerations and
assumptions, and a number of questions naturally arise when we
have to write the equations. What are the key variables? How many
equations should be considered? What kind of equations? Are all
kinetic constants (model parameters) known? If not, how can we
set them? Modelers have to make choices that depend, first of all,
on the biological question to be answered, but also on personal
tastes and experiences. Simple generic models are useful to study
general properties of circadian rhythms, such as coupling of large
oscillator ensembles [10, 11], entrainment of clocks to external
Zeitgebers [12–14] or the role of positive feedback loops in the
generation of oscillations [15]. On the other hand, if the focus is to
understand the molecular details, more complex models with a
larger number of variables are generated. A number of detailed
models are now available for the circadian clock in mammals [16–
19], Neurospora [20–22] or Drosophila [23–25], among other
organisms. The model, be it relatively simple, with just a few vari-
ables, or in contrast very complex, will be a precise representation of
what we believe to be true. The modeler’s task, as the mathematical
biologist Tyson says, is “to determine whether it is a good or useful
representation of [that] truth” [26].

2.1 Ordinary

Differential Equations

(ODEs)

Most circadian clock models are described with ordinary differen-
tial equations (ODEs), which take the form

dx
dt

¼ f ðx, y, zÞ: ð1Þ

ODEs are often used to describe how a dynamical system changes
over time [1, 2, 8, 26]. The function f(x, y, z) describes the rate of
change of a variable x(t) as a function of (potentially) all the
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variables x, y, z. . . that define the dynamical system. For example,
x(t) might stand for the concentration of a given protein, whose
evolution depends on a number of time-dependent variables
(amount of mRNA) and on time-independent parameters that
have a physical interpretation (rate of synthesis, degradation, mod-
ification, complex formation, transport, etc.).

Box A Formulating a simple ODE
The concentration of a certain protein (let us call it variable y)
is controlled by synthesis and degradation. Even though pro-
tein production processes are highly complex and might be
modulated by ribosome and tRNA availability, a simple way to
model production is with a first order reaction, in which the
absolute production rate of protein y is proportional to the
mRNA abundance (let us call it x). In the same lines, degra-
dation processes can be assumed to follow first order kinetics
(absolute degradation rate proportional to the protein abun-
dance), although there might be additional regulatory
mechanisms. The mathematical translation of the protein
concentration ( y) differential equation is:

dy
dt

¼ px � dy ð2Þ

a linear first-order ODE with two parameters: production
rate p and degradation rate d. We can read this equation as
follows: the change of protein y over time (dydt) is equal to its
production (proportional to the mRNA abundance x and the
protein synthesis rate p) minus its degradation (proportional
to the protein abundance y and the degradation rate). (Note
the negative sign in front of the degradation term, since it
contributes to the removal of protein y).

Using standard mass action and enzymatic kinetics, we can
convert the network diagram that we have drawn from the
biological system into a set of ODEs. In such equations, concentra-
tions of variables (e.g., the reactant species) are associated with rates
of biochemical reactions (transcription, translation, degradation,
phosphorylation, etc.). The equations can then be solved numeri-
cally, this is, by letting the computer work out the implications of
the complex feedback and feed-forward loops in the network,
without having to solve the system analytically (i.e., by hand).
Many programming languages have built-in strategies that allow
numerical solving of ODEs, such as odeint (as part of the scipy
library) in Python, ode (as part of the deSolve package) in R, or
ode45 in Matlab, among others.
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Box B Goodwin model for circadian clocks, part I—Scheme and ODEs
One of the simplest and most famous ODE-based oscillator models is the one imag-
ined by Goodwin [27]. In 1965, when Goodwin developed his model, the molecular
mechanisms of circadian clocks were not yet known. He proposed the model as a
prototypical biomolecular oscillator. The Goodwin model is based on a delayed
negative feedback loop, where the final product of a 3-step chain of reactions inhibits
the production of the first component (Fig. 1a, b).

In the context of circadian rhythms, the model is interpreted as follows: a clock
gene mRNA (x) produces a clock protein ( y) that, in turn, activates a transcriptional
inhibitor (z) that represses the synthesis of the xmRNA, closing the negative feedback
loop. This generic model can be seen as the minimal backbone for circadian oscilla-
tions, as it accounts for the negative feedback exerted by PER and CRY proteins in
their own genes. The Goodwin model, later refined by Gonze [10], is still used today
to describe fundamental properties of the core circadian oscillator [15, 28, 29] or the
synchronization of an ensemble of coupled circadian oscillators [10, 30, 31].

2.2 Limit Cycles Most circadian clock models generate stable limit cycle oscillations.
Limit cycles are isolated trajectories characterized by a given period
and amplitude [1, 2, 32]. Isolated means that neighboring trajec-
tories are not closed, and they spiral either towards or out of the
limit cycle [2]. If all neighboring trajectories approach the limit
cycle, we say that the limit cycle is stable or attracting (Fig. 2a). This
way, a small perturbation that pushes the system out of a stable limit
cycle will eventually dampen out, and the trajectory of the per-
turbed variable will be “attracted” back to the stable limit cycle
(red and blue curves in Fig. 2a). In the terms of nonlinear

Fig. 1 Goodwin model for self-sustained circadian oscillations. (a) Scheme of the model. (b)
Ordinary differential equations of the model: three variables are considered and account for a clock
mRNA (x) that produces a clock protein ( y) which activates a transcriptional inhibitor (z). Production
reactions are modeled with mass action kinetics; degradation reactions are modeled assuming
Michaelis Menten kinetics; repression is modeled with a Hill equation
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dynamics, stable limit cycles represent a type of attractor, since any
perturbation will asymptotically return back to the limit cycle with
time. Note that not all oscillations are limit cycles: some, like those
idealized by the pendulum, represent another type of oscillators
(conservative oscillators), in which neighboring trajectories are
closed. In these types of oscillations, unlike in limit cycles, ampli-
tude depends on initial conditions (Fig. 2b) [2]. Limit cycle oscilla-
tions, in this sense, ensure robustness to small perturbations in the
environment.

Limit cycles exhibit self-sustained oscillations, this is, they
intrinsically oscillate, even in the absence of external periodic
cues. This self-sustained oscillating nature is often observed
among biological systems [2, 7, 33]. Phenomena such as heart
beats, circadian clocks or neuronal activity are just some biological
limit cycle oscillations among countless examples [7]. In each case,
if the system is slightly perturbed, it always returns to standard
cycle.

2.2.1 Cooking Recipe for

Oscillations

For limit cycle oscillations to occur, the biological system of interest
must fulfill a series of requirements that have been reviewed by
Ferrell, Gonze and Tyson in [32, 34–36], among other
theoreticians.

1. First of all, a negative feedback is necessary to carry the reaction
network back to the point where the oscillation started
[34, 35, 37].

Fig. 2 Limit cycle oscillations (a) and conservative oscillations (b) in phase space. Limit cycles are
isolated trajectories and thus any perturbation that pushes the system out of the cycle (red or blue curves) will
dampen out, and the system will asymptotically return to the limit cycle (thick black line). Conservative
oscillations, on the other hand, are not isolated. As a consequence, there is no damping and, after
perturbation, the amplitude of the oscillation changes and does not recover its initial value
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2. Second, the negative feedback signal must be sufficiently
delayed in time so that reactions do not settle on a stable steady
state. This time delay can be achieved by explicitly introducing
time delays in the equations (the so-called “delay-differential
equations”), or by a long chain of reaction intermediates. The
more variables in the loop, the longer the time delay is, and the
“easier” it is to generate oscillations [34, 38].

3. In addition, nonlinear kinetic processes must present in the
system to destabilize the steady state. Such nonlinear processes
are also commonly referred to as switches [22, 39] or ultrasen-
sitive processes [40–42], and they help to keep the system away
from the stable steady state. In Eq. 2, both production and
degradation terms of protein concentration were linear; in
Eqs. 3, however, degradation of all variables was assumed to
follow nonlinear Michaelis Menten kinetics. Phosphorylation,
active transport, cooperative binding, sequestration, or other
enzymatic events are commonly described by nonlinear terms,
such as Michaelis Menten- or Hill-like kinetics. These terms
often provide the necessary source of nonlinearity [43–45].

4. Lastly, the system must be open; this is, it must be equipped
with dissipative mechanisms (e.g., degradation processes) and
sources of energy (e.g., mRNA or protein synthesis), so that
oscillations that grow too large are dampened out, and oscilla-
tions that become too small are pumped up [38].

The Goodwin model presented in Box B includes these four
“ingredients” and thus, self-sustained oscillations can be expected
for proper choice of parameter values.

Box C Goodwin model for circadian clocks, part II—Limit cycle oscillations
The original Goodwin model [27] only contains one nonlinear term, which is given by
the Hill equation used to model the z-mediated repression of x. Griffith demonstrated
that the Hill coefficient had to be sufficiently large (n¼8) for the model to generate
self-sustained oscillations [46]. But, since such high Hill coefficients are not biologi-
cally meaningful, the original model was modified by Gonze and others by including
additional nonlinearities. This reduced the need of such a high Hill coefficient [10, 15,
45]. In the modified Goodwin model represented in Fig. 1, there are two sources of
nonlinearities: the repressive Hill term and the Michaelis Menten-like kinetics assumed
for degradation processes [10].

Numerical integration of the Goodwin model equations (Fig. 1b) over time, with
an appropriate parameter choice, can result in self-sustained limit cycle oscillations
(Fig. 3). We can plot the solution as time series, in which we illustrate how the
concentration of the different species change over time (Fig. 3a), or in phase space,
which is the illustration of the space of all possible states (Fig. 3b).

(continued)
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2.3 Bifurcation

Diagrams

Another important term that frequently appears in the field of
theoretical chronobiology is that of bifurcation diagrams. To
understand this concept, we have to be aware of how the dynamics
of a system greatly depend on parameter values. Unfortunately,
kinetic rates and equilibrium constants are not measured experi-
mentally in many cases, so this poses a challenge for constructing
the model. Although a model with several parameters leads to a
combinatorial number of possible parameter values, there are many
constraints that fortunately allow us to narrow down the range of
suitable values. In the context of circadian clocks, examples of such
constraints might be given by the oscillation period (which needs to
be circadian), by phase relationships of variables (if known), by
effects of some mutations (assuming that we know which para-
meters are affected) or from some biochemical constants known
from in vitro experiments. The unknown parameters that have to
be “guessed” should be chosen within realistic physiological
ranges.

Usually, when a parameter value changes, the characteristics of
the limit cycle (i.e., period, amplitude, phase relationship between
variables. . .) also change. These changes can be illustrated in bifur-
cation diagrams. Novak and Tyson make the analogy of bifurcation
diagrams being for modelers what signal-response curves are for
experimentalists [26]. In a physiology experiment, biologists mea-
sure how some behavior of the cell (e.g., oscillation amplitude or
period) depends on the value of an experimentally controlled signal

Fig. 3 Limit cycle circadian oscillations of the Goodwin model. Limit cycle oscillations, plotted as
time series (a) or in phase space (b). Results were obtained by numerical integration of the equations in
Fig. 1b for the following parameter values: ν1¼ 0.70 nM/h, ν2¼ 0.45 nM/h, ν3¼ 0.70 h�1, ν4¼ 0.35
nM/h, ν5¼ 0.70 h�1, ν6¼ 0.35 nM/h, K1¼ 1 nM, K2¼ 1 nM, K4¼ 1 nM, K6¼ 1 nM, n¼ 7. Oscillations
were normalized to their mean
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(e.g., the concentration of a certain synchronizing factor in culture
medium). The signal is held at a constant value until the response
settles on a definitive value. Then, the signal is changed to a new
value and the new response is recorded. A one-parameter bifurca-
tion diagram illustrates the same concept. It shows how the final
states of a mathematical model (e.g., period or amplitude of oscilla-
tions, or most commonly the maximum andminimum of a variable,
plotted in the y axis) depend on a control parameter of the model
(plotted in the x axis).

Variation in parameter values can cause qualitative changes in
the long-term behavior of the system. For example, the number of
steady states or their stability properties can vary. These qualitative
changes in the dynamics are called bifurcations, and the parameter
values at which they occur are called bifurcation points [2]. In the
context of oscillations, Hopf bifurcations are the most important
type of bifurcation point. They occur in dynamic systems when a
periodic solution (limit cycle) arises from a stable steady state that
loses its stability (Fig. 4). By manually exploring the parameter
space (i.e., by analyzing how solutions change as parameter values
are varied), we can make predictions of how the model might
behave under different conditions, and its sensitivity towards
parameter changes.

Box D Goodwin model for circadian clocks, part III—Bifurcation diagrams
The bifurcation diagram of a given control parameter can be numerically constructed
in the same way as Fig. 3 was built, but iterating this process over a range of parameter
values. Thus, for each value of the control parameter, we let the computer solve the set
of ODEs (i.e., we simulate the system) and retain the maximum and minimum values
(or any other oscillation parameter) reached by a given variable once the system has
converged to its stable regime. If the system converges to a steady state, then the
minimum and maximum will be indistinguishable and a single point will be plotted on
the bifurcation diagram. If, on the contrary, the system oscillates for the simulated
parameter value, then two points will be plotted.

Such maximum-minimum bifurcation plot is shown in Fig. 4a. We can also build
the period bifurcation diagram (Fig. 4b), keeping in mind that the period can only be
estimated when oscillations appear. The bifurcation plots show, firstly, that oscillations
disappear when the degradation rate is >0.93 nM/h (this is the Hopf bifurcation
point). Moreover, it illustrates that both amplitude and period of x decrease as its
degradation rate increases. The model thus predicts that decreasing the degradation
rate should lead to oscillations with longer period. In this way, modeling and bifurca-
tion analyses can be used to predict the behavior of the system in conditions that might
have not yet been tested experimentally.

Of note is that there are other methods, such as those implemented in
XPP-AUTO, that allow the calculation of bifurcations without intensive simulation
for each parameter value.

(continued)
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3 Learnings from Modeling Interlocked Feedback Loops

The Goodwin oscillator exemplified in Box B demonstrates that,
with a minimum number of “ingredients”, it is possible to generate
stable limit cycle oscillations (Fig. 3). But in biological systems,
however, the picture is more complex. Over the last years, the
discovery of additional clock genes and regulations has led to the
realization that the circadian timing system involves multiple
sources of nonlinearity and interlocked feedback loops. Conse-
quently, these findings have motivated the development of more
detailed molecular models [16–19, 47–49] that contain additional
positive and negative feedback loops, which have also been shown
to contribute to the generation of stable and robust oscillations.
Nevertheless, their structure most of the times relies on a
Goodwin-like negative feedback loop.

Fig. 4 Bifurcation diagrams of the Goodwin model as a function of the x degradation rate ν2. Effect
that changes in ν2 have on maxima and minima (a) or on the period (b) of x dynamics. The diagrams
were built numerically by simulating the ODEs for each value of the control parameter ν2 (the rest of the
parameters take their default value, given in the caption of Fig. 3) and retaining either the maximum and
minimum values of the x oscillations, or the period, once the system converged to its stable regime.
Maximum and minimum values or periods are plotted against the control parameter values. When the
system converges to a stable steady state, maximum and minimum values are indistinguishable: a
single point is plotted in the maximum-minimum bifurcation diagram, and no point is plotted in the
period bifurcation plot. Oscillations vanish at ν2¼ 0.93 nM/h (Hopf bifurcation point). Red points
indicate the default parameter value that produces �24 h circadian oscillations, ν2¼ 0.45 nM/h
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Box E Positive feedback loops promote oscillations in the Goodwin model
There have been many useful refinements of the Goodwin oscillator. It has been
shown, for example, that complementary positive feedback loops can enhance the
capabilities of rhythm generation [15, 50–52]. However, it is important to note that
not all feedback loops (positive or negative) are always explicitly visible. Sequestration
(formation of inactive protein complexes), for instance, can also form implicit feedback
loops. A prominent example is the sequestration of KaiA molecules in the cyanobac-
terial clock [53]. Although the majority of models use Hill functions to describe
transcriptional repression, some have also introduced protein sequestration-based
repression [54].

Ananthasubramaniam et al. showed very elegantly in 2014 that addition of positive
feedback loops to the Goodwin model promotes oscillations at lower Hill coefficients.
Figure 5 summarizes their findings: a Goodwin-like motif with a Hill coefficient n¼4
(lower n than in the simulations from Fig. 3, where n¼7) cannot oscillate;
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Fig. 5 A positive feedback loop promotes oscillations in a Goodwin-like motif. (a) Simulation of a
Goodwin-like motif with a Hill coefficient n¼ 4 does not produce self-sustained limit cycle oscillations.
Instead, the system approaches a stable steady state. (b) When a self-activating positive feedback loop
is included on x, limit cycle oscillations emerge for the same parameter values. Results were obtained
by numerical integration of the equations in Fig. 1b for the following parameter values: ν1¼ 0.70 nM/h,
ν2¼ 0.45 nM/h, ν3¼ 0.70 h�1, ν4¼ 0.35 nM/h, ν5¼ 0.70 h�1, ν6¼ 0.35 nM/h, K1¼ 1 nM, K2¼ 1
nM, K4¼ 1 nM, K6¼ 1 nM, n¼ 4. Oscillations were normalized to their mean
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nevertheless, the same Goodwin-like motif with an explicit positive feedback loop
on x (which can be interpreted as the BMAL1-Ror loop) generates limit cycle
oscillations. In the study, the authors highlighted additional mechanisms that may
facilitate the emergence of oscillations, such as cross-activation (explicit feedback
loop) or Michaelis Menten degradation (implicit feedback loop) of variables [15].

In 2011, Relógio et al. developed an extensive 19 variable
ODE-based model. The Relógio system contains clock transcripts,
cytoplasmatic and nuclear proteins, either alone or in complex with
other clock proteins [19]. It was built from available data on phases
and amplitudes of clock components to understand the mechan-
isms that govern circadian rhythm generation in mammalian cells
[19]. It allowed to independently study the roles of the
Ror-BMAL1-RevErb and Per2:Cry1 loops, as well as the role of
Per2 degradation rate in the dynamics of the system. The authors
provided in silico evidence, for the first time, that the Ror-BMAL1-
RevErb loop could act as an oscillator independently of the Per2:
Cry1 loop and they showed that in silico overexpression of RevErbα
and RevErbβ resulted in the loss of oscillations [19]. This theoreti-
cal prediction was experimentally validated one year after in mouse
embryonic fibroblasts [55]. Taken together, the computational
findings from the Relógio model challenged the role of the Ror-B-
MAL1-RevErb loop as a merely auxiliary loop and illustrate how
models can be used to make predictions.

In the same lines, a more recent study from Pett et al. showed
that a repressilator motif containing regulated expression of Cry1,
Per2 and RevErbα is sufficient to generate 24 h rhythmicity, thus
constituting a core loop of the mammalian oscillator [48]. In a later
bioinformatic study, the authors proposed that the most essential
feedback loops which result in rhythm generation can differ among
tissues [56]. It has been suggested that the primary rhythm-
generating loop in adrenal gland and heart is the BMAL1-RevErb
loop, whereas self-inhibitions of Per and Cry genes are more char-
acteristic for models of suprachiasmatic nucleus clocks [56]. Of
note, though, is that the authors did not use ODEs in their study,
but instead delay differential equations, in which time delays are
introduced explicitly in the equations.

A new simple ODE model of the mammalian circadian clock-
work was published by Almeida in the early 2020. It was tailored to
identify the essential interactions that are needed to generate phase
opposition between the activating CLOCK:BMAL1 and the
repressing Per2:Cry1 complexes [49]. Van Soest and colleagues
performed extensive bifurcation analyses on the Almeida model
and found that changes in degradation rates of clock proteins
could generate arrhythmic dynamics. These findings suggested
(and predicted) that not only knockout [57, 58] or overexpression
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[55] of core clock components can lead to arrhythmicities, but also
changes in degradation or transcription activation rates. The
in vitro or in vivo significance of such observations, however,
remains to be validated.

The take-home message from these computational studies is
that modeling can help to study alternative network architectures
and can in this way guide experimental research. Mathematical
models are usually made to answer a specific question, but a big
advantage of modeling is that we can then make predictions and ask
ourselves additional questions, that can be later tested (and hope-
fully validated) experimentally.

4 Interaction of Clocks with the Environment

The major role of circadian rhythms is to coordinate physiological
and behavioral processes with the natural daily variation. To do this,
molecular circadian clocks need to integrate signals from the exter-
nal world (Zeitgebers) and to transmit such signals to the whole
organism. Figure 6 illustrates the key paradigm in biological clock
research: although clocks are able to tick by themselves, they
respond to inputs (Zeitgebers) and perform output responses
(coordination of physiology or behavior with external time).

In mathematical terms, a free-running clock is an autonomous
system. An autonomous system is a system of ordinary differential
equations which does not explicitly depend on the independent
variable. When the variable is time, like in our case, they are also
called time-invariant systems. When mathematical biologists want
to model how external signals confer timekeeping information to
an autonomous clock, they typically add a time-dependent term on
the right-hand side of an ODE. This is commonly referred to as
“adding a forcing” or “driving term” to the system, and thus the
resulting system is said to be forced, driven or non-autonomous
(since now the system depends on time explicitly) (Box F).

Fig. 6 Simplified scheme of circadian clock systems. Circadian clock systems consist of a network of input
pathways that integrate external Zeitgeber timing cues, the central oscillator (pacemaker) and output path-
ways. Central oscillators generate the endogenous rhythm and must be able to synchronize to environmental
Zeitgebers (e.g., light, food, temperature) via input pathways. Consequently, pacemakers drive output path-
ways (e.g., physiology, behavior) and clock-controlled activities by synchronizing downstream oscillators
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Box F Amplitude-phase models
Amplitude-phase oscillators are one of the most abstract yet intuitive class of models
that can relate to any observed rhythm. They describe phenomenologically the dynam-
ics of a system, independently of any molecular details [11, 14, 32]. Such models have
been used in clock research to study generic properties of phase response curves [59],
entrainment [12, 14], the behavior of ensembles of coupled oscillators [11, 38, 60–
63], or to interpret experimental results [64]. They are described with only two
variables, namely radius r and phase ϕ of the oscillation, and thus they do not
necessarily account for the levels of a given protein or transcript. The equations, in
polar coordinates, read:

dr
dt

¼ λrðA0 � rÞ,
dϕ
dt

¼ 2π
τ

ð3Þ

where r and ϕ represent the variables (radius and phase, respectively), and λ, A0 and τ,
the parameters (amplitude relaxation rate, oscillation amplitude and period, respec-
tively). The amplitude relaxation rate is a relatively abstract concept that describes how
fast a perturbation relaxes back to the limit cycle [11, 12, 38].

Basic calculus allows the transformation of any point in the polar plane into
Cartesian coordinates, since r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and ϕ ¼ arctan ðyxÞ (Fig. 7). Thus, the

amplitude-phase model can be converted into Cartesian coordinates, reading:

(continued)
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φ
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Polar
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P (r, φ)
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φ
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Fig. 7 Converting between polar and Cartesian coordinates. A point in polar coordinates is
characterized by the variables r and ϕ. Polar coordinates can be converted to the Cartesian
coordinates x and y with r> 0 by r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y 2

p
(as in the Pythagorean theorem) and ϕ ¼

arctan ðyxÞ
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dx
dt

¼ λxðA0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ � 2π

τ
y,

dy
dt

¼ λyðA0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ þ 2π

τ
x:

ð4Þ

Period and amplitude can easily be calculated from the oscillatory time series.
Amplitude relaxation rate can be determined by estimating the rate at which a pertur-
bation decays back to the limit cycle. The reader is encouraged to calculate this
parameter for any variable of the Goodwin oscillator described in Fig. 3.

So far, the right-hand sides of the amplitude-phase model ODEs do not contain
time t. Thus, these equations describe an autonomous system that oscillates by itself,
i.e., in the absence of external timing cues. But clocks usually respond to external
timekeeping cues, and thus they can be driven (forced) by these signals. Assuming that
the forcing is done by a sinusoidal Zeitgeber Z(t) with period T and amplitude F,

Z ðtÞ ¼ F cos ð2π
T

t þ ϕÞ, ð5Þ

and that the Zeitgeber Z(t) drives oscillations of x, we can now incorporate the forcing
term (Eq. 5) in the right-hand side of the x ODE (Eq. 4) as follows:

dx
dt

¼ λxðA0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ � 2π

τ
y þ Z ðtÞ,

dy
dt

¼ λyðA0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ þ 2π

τ
x:

ð6Þ

The system has become forced or non-autonomous, since time t is now explicitly
included in the ODEs inside the Z(t) term.

4.1 Coupled

Oscillators,

Synchronization and

Entrainment

Both theoretical and experimental scientists have long been puz-
zled by the existence of spontaneous order (and thus synchroniza-
tion) that exists in the universe. The “science of synchronization”
centers on the study of coupled oscillators, which are widespread
throughout biological systems: groups of fireflies, pacemaker cells
or circadian clocks are collection of oscillators in which one can find
some “underlying order”. Understanding the basic rules of coupled
oscillator theory can help us to gain insights into how coupling
results in synchronization or entrainment.

Two or more oscillators are said to be coupled if some physical
or chemical process allows them to influence one another [2]. Fire-
flies communicate with light, heart cells exchange electrical curren-
ts. . . The result of this mutual influence is often synchrony. When
synchrony occurs, oscillators acquire a rational m

n ratio, meaning
that one oscillator will undergo m cycles in the time in which the
second one undergoes n cycles. Some examples can be seen by the
1:4 frequency locking between respiratory and cardiac rhythms in
some individuals (i.e., 1 inhalation and exhalation occur for every
4 heart beats) [65, 66], or by the 1:1 synchronization of circadian
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clocks to the day-night cycle. We can distinguish between intrinsic
or multidirectional and extrinsic or unidirectional coupling in
biological systems:

l Intrinsic ormultidirectional coupling can be seen as the coupling
that exists among oscillators without explicit external time infor-
mation. Here, all oscillators exchange information with one
another. For example, coupling among cardiac cells exists to
produce a coherent heart beat as output response. In the context
of circadian clocks, it is often said that feedback loops that
comprise the core clock network are coupled: in principle, dif-
ferent feedback loops are able to oscillate independently [56],
but all loops are coupled such that they all oscillate with a 24 h
periodicity. Another example of intrinsic coupling occurs clearly
in neurons from the suprachiasmatic nucleus (SCN). Although
circadian rhythms can be observed on the single cell level
[67, 68], synaptic connections, gap junctions and neurotrans-
mitters are believed to couple (and thus synchronize) SCN
neurons in a robust manner [68].

l Extrinsic or unidirectional coupling, on the other hand, requires
an explicit periodic signal (Zeitgeber) present in the surround-
ing of an oscillator, such as the alternation of night and day,
feeding-fasting rhythms or tidal rhythms. This external rhythm
affects the intrinsic clock, but not the other way around (thus
unidirectional coupling). When the intrinsic clock adapts (syn-
chronizes) to the external timing signal, entrainment results.

We have defined some terminology related to coupling
between oscillators. In Boxes G and H we illustrate some of the
key behaviors that are seen in coupled oscillator systems, namely
spontaneous synchronization and entrainment.

Box G Coupled circadian oscillators synchronize spontaneously
A remarkable property of circadian rhythms in the SCN is their robust nature.
Although the free-running periods of isolated neurons are broadly distributed [68],
the SCN as an ensemble oscillates very robustly with a clear periodicity. This indicates
that a coupling mechanism must operate between the neurons, which is known to be
achieved by periodic neurotransmitter release and synaptic connections [68].

Based on this, it is a reasonable hypothesis to assume global coupling among all
oscillators in the SCN, achieved through a mean-field M. The mean-field can be
defined as the average concentration of neurotransmitter xi as follows:

M ¼ 1
N

XN

i¼1
xi ð7Þ

The network dynamics of an ensemble ofN amplitude-phase models, in Cartesian
coordinates, that describes the oscillatory dynamics of N neurotransmitter xi in the
presence of mean-field coupling can then be given by

(continued)
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dxi
dt

¼ λxiðA0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

q
Þ � 2π

τi
yi þKcoupM ,

dyi
dt

¼ λyiðA0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

q
Þ þ 2π

τi
xi:

ð8Þ

where the parameterKcoup denotes the strength of the coupling between the mean field
and the single oscillatory units. We assume, in the lines of previous studies [11, 13],
that the mean-field M additively couples only to the x coordinate. Note that this is,
strictly speaking, not a forced system, since there is no explicit time dependence in the
right-hand side of the equations.

Figure 8 shows how an ensemble ofN¼50 heterogeneous oscillators with periods
chosen from a normal distribution with mean μ¼24 h and a standard deviation
σ¼1.5 h can spontaneously synchronize when they are coupled. In the absence of

(continued)

Fig. 8 Spontaneous synchronization of coupled circadian oscillators. 50 heterogeneous amplitude-
phase oscillators run at their own pace in the absence of coupling (a), but they spontaneously
synchronize when coupled through a mean-field M (b). Grey thin lines represent individual oscillators;
thick lines (blue, red) represent the signal of the average population (bulk). (c) Distribution of the
individual periods in the uncoupled (Kcoup¼ 0, blue) and coupled (Kcoup¼ 0.1, red) systems. (d)
Coupling leads to higher bulk amplitudes due to resonance. Results were obtained by numerical
integration of Eqs. 8, for 100 days and the following parameter values: A0¼ 1, λ¼ 0.03 h�1, individual
periods τi taken from a normal distribution with mean μ¼ 24 h and standard deviation σ¼ 1.5 h, and
varying Kcoup values. Bulk amplitudes were calculated as the mean peak-to-trough distance of the
average signal (thick lines in panels (a) and (b)) during the last 5 days of simulations
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inter-oscillator coupling (Fig. 8a), each oscillator runs with its free-running period τi,
and the average bulk signal (in blue thick line) does not display robust rhythms. When
the individual oscillators are coupled through their mean-field, on the other hand,
order emerges: oscillators start running at the same pace and locked to the mean-field
(Fig. 8b). Consequently, the period distribution of the individual oscillators becomes
narrower (Fig. 8c).

It is well known from the theory of coupled oscillators that if a periodic stimulus
(in this case the mean-field) is of the same or nearly the same frequency as the natural
vibrating frequency of a system, the amplitude of the system will increase; a phenome-
non called resonance [69]. For a network of oscillators, like in this case, resonance can
be interpreted as amplification of the amplitude of individual oscillators. Figure 8d
shows precisely this phenomenon: as the coupling strength increases, so does the
amplitude of the bulk signal due to resonance effects (to values that are even bigger
than that of the individual oscillators, A0¼1 in the simulations).

It is important to mention that the emergent properties of the coupled ensemble
depend not only on the characteristics of coupling, but also on the properties of
individual oscillators. For example, amplitude relaxation rate λ of individual oscillators
is inversely correlated with amplitude resonance: as the oscillator relaxation rate
increases, amplitude expansions decrease [11, 12]. The reader is encouraged to analyze
through simulations how the curve from Fig. 8d changes in systems with varying λ.

4.1.1 Entrainment and

Arnold Tongues

A characteristic property of circadian rhythms is their ability to be
synchronized, or entrained, by external Zeitgebers. Thus, although
circadian rhythms can persist in the absence of external timing cues,
normally such cues are present and rhythms are aligned to them.
This alignment is called entrainment, and it occurs when the
strength of the Zeitgeber (the “coupling strength”) is capable of
overcoming the period mismatch between its period T and the
clock’s intrinsic period τ. If this happens, the Zeitgeber will enforce
its natural periodicity T on the clock. The range of period mis-
matches τ–T for which entrainment occurs is called the range of
entrainment and it depends on the Zeitgeber strength as well as on
the clock’s properties (Box H). It is in fact the difference of both
periods τ and T, rather than the single periods per se, what deter-
mines whether a clock can be entrained or not for a given Zeitgeber
strength [1, 13, 14]. When entrainment occurs, the system adopts a
specific phase relationship with the phase of the Zeitgeber, and this
difference is known as phase of entrainment Ψ.

In more general terms, entrainment is the process in which
oscillators synchronize to an external signal at a fixed m to n ratio,
and it is common to all systems of coupled oscillators. In the field of
circadian clocks, 1:1 entrainment is the common scenario (the
period τ of the circadian system adjusts such that it equals the
period T of the Zeitgeber); nevertheless, other entrainment ratios
might exist under some circumstances. The regions of m

n
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synchronization can be plotted as Arnold tongues (Box H), named
after the mathematician Arnold, who described them in the 1960s.
The dynamics are more or less simple at low coupling: tori (limit
cycles of two frequencies that are not locked) and some zones of
synchronization (and thus period- and phase-locking) dominate
the parameter space. Higher coupling increases the regions in
which the tongues (and thus synchronization) exist, but can also
lead to more complex behavior, including chaos. Arnold tongues
are generic to coupled oscillators and there is a vast amount of
literature on their theory and the results of mathematical modeling
[1, 13, 14, 70–72].

Box H Entrainment and Arnold tongue of a circadian amplitude-phase model
We now compute the Arnold tongue of a circadian amplitude-phase oscillator driven
by a sinusoidal Zeitgeber (Eqs. 5 and 6) and explore which combinations of Zeitgeber
strength F and Zeitgeber period T lead to entrainment. From the theory of coupled
oscillators we know that sufficiently strong Zeitgebers (with high “unidirectional”
coupling strength F) can entrain oscillators even if the period difference between the
intrinsic oscillator and the Zeitgeber (i.e., the period mismatch τ–T) is large [1, 2, 12–
14, 69, 70, 72].

The tongue indeed shows that the range of entrainment increases with Zeitgeber
strength F (Fig. 9a). Nevertheless, not only the coupling strength F, but also the
intrinsic oscillator properties can affect the entrainment range. Stronger oscillators
with high amplitude relaxation rates λ display narrow ranges of entrainment, whereas
weaker oscillators (lower λ) have wider entrainment ranges. The reader is encouraged
to compute the Arnold tongues of an amplitude-phase oscillator with changing values
of λ. These principles explain experimental findings, namely that peripheral clocks in
the lung entrain to extreme Zeitgeber cycles, while SCN clocks do not [12].

The simulations reproduce the observations that the phase of entrainment Ψ
increases (i.e., the intrinsic clock becomes later) with period mismatch τ–T (Fig. 9a)
[14]. These theoretical observations can be translated into biological words and
associated to the spread of chronotypes. Under natural conditions of T¼24 h, varia-
tions of intrinsic period τ lead to different phases of entrainment: short endogenous
periods τ often lead to early phases or entrainment (“morning larks”), whereas longer
periods τ correspond to later phases (“night owls”) [13, 14, 73, 74].

The strength of a Zeitgeber has also been suggested to modulate the phase of
entrainment [75]. If we move vertically along the τ>T region of the tongue (red
vertical line in Fig. 9a), we see how an increase in the Zeitgeber strength results in
earlier entrainment phases. On the other hand, stronger Zeitgebers can lead to later
phases Ψ within the τ<T region (blue vertical line in Fig. 9a). Thus, increasing
Zeitgeber strength can lead to both decrease or increase of Ψ depending on the
mismatch τ–T (Fig. 9b). Experimental predictions can relate light intensity and chron-
otypes in the base of these observations: we expect that more light leads to earlier
entrainment phases for night owls with τ>T, but later values of Ψ for morning larks
with τ<T. Taken together, these theoretical results predict that strong Zeitgebers
should lead to narrower distributions of chronotypes [13, 14, 76].

(continued)
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4.2 Output

Regulation

So far we have focused on the ability of clocks to free run (exhibit
self-sustained limit cycle oscillations, Subheading 2) and on how
external signals impinge on the oscillator (Subheading 4.1). Never-
theless, clocks also regulate a myriad of output signals. In fact,
transcriptomic studies have shown that the expression of almost
10% of all genes in peripheral tissues is regulated rhythmically
(despite small overlap between tissues) [56, 77–79]. Modeling
can also help in studying properties of the expression of clock-
controlled genes, as described in [80].

Box I Modeling driven expression of clock-controlled genes
In many cases, transcription factors like BMAL1 activate the expression of the so-called
clock-controlled genes, and this can lead to the following model generalization:

dx
dt

¼ pð1þ F sin ð2π
τ
tÞÞ � dx, ð9Þ

where the production rate p of an mRNA x is periodically driven by a core clock
element with an amplitude F and a period τ of about 24 h. This (non-autonomous)
equation can be solved numerically (letting the computer run) or analytically, and the

(continued)

Fig. 9 Entrainment of an amplitude-phase oscillator to an external sinusoidal Zeitgeber. (a) Arnold
tongue for a circadian amplitude-phase oscillator driven by a Zeitgeber, where phases of entrainmentΨ
are color-coded. (b) Phase of entrainment in dependence on the Zeitgeber strength F along the vertical
blue and red lines in (a). Results were obtained by numerical integration of Eq. 6 for the following
parameter values: A0¼ 1, τ¼ 24 h, λ¼ 0.01 h�1, Zeitgeber strengths F ranging from 0 to 0.1 and
Zeitgeber periods T ranging from 19 h to 29 h
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solution will oscillate periodically around its mean (pd , unless normalized like in
Fig. 10a). Some interesting insights emerge from these simulations: first, amplitude
and, second, phase of the clock-controlled transcript depend strongly on its own half-
life (Fig. 10b, c). Short-lived transcripts display large amplitudes and are almost in
phase with the transcriptional modulator. Long lived genes have larger delays
(approaching 6 h) but smaller amplitudes as lifetimes increase. Indeed, such depen-
dencies have been found for many clock-controlled genes [81].
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Fig. 10 Modeling the expression of clock-controlled genes. (a) Oscillations in mRNA abundance of
two clock-controlled genes with different half-lives. Amplitude (b) and phase delay (c) of the driven
clock-controlled gene depend on its half-life. Results were obtained by numerical integration of Eq. 9
for the following parameter values: p¼ 1 (units of concentration/h), F¼ 0.20 and τ¼ 24 h. Oscillations
were normalized to their mean. The amplitude values depicted in panel (c) were calculated as peak-to-
trough distances
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5 Concluding Remarks and Modeling Limitations

We have seen how two simple and generic models, namely the
Goodwin and an amplitude-phase model, properly reproduce core
features of the circadian clock, notably its self-sustained nature, its
response to parameter variations, to coupling and to Zeitgeber
entrainment. These “toy models” give hints, ideas and speculative
explanations, but they are also subjected to several caveats. The
most common criticism towards models is that the type of equa-
tions and the model parameters are (mostly) arbitrary. Whereas
molecular models are empirically based on well-established genetic
regulations, the quantitative details of the molecular mechanisms
are usually unknown. For instance, the choice of Michaelis Menten
or Hill-like functions are realistic representations of enzymatic
processes (and they account for the necessary degree of nonlinearity
that models need to oscillate) but the hypotheses underlying these
approximations are not always satisfied. Thus, theoretical models
like the ones presented in this chapter should be regarded as semi-
quantitative and phenomenological models. Simple models usually
do not allow the investigation of quantitative details of physiologi-
cal processes, but they allow to study qualitatively the dynamic
properties of oscillating systems.

Second, most circadian clock models are based on ODEs.
These models, as well as their stochastic versions, only account for
the regulation of physiological responses in time, and neglect the
aspects in space. They assume that the underlying molecular
mechanisms occur in well-stirred reaction vessels, and that the
variables move freely around the cell. But eukaryotic cells are far
from being well-stirred reaction vessels. Cells are very crowded
spaces and cellular processes are not only organized in time but
also in space. They are divided into compartments, which might
need to be modeled individually to take into account space and
diffusion, two variables that likely play critical roles in the dynamics
of cellular systems.

We must be aware that none of the models, as detailed as they
may be, bring really definitive answers. Rather, they provide ele-
ments for reflection. For example, the role of positive feedback
loops in the molecular mechanism of circadian clocks is not fully
elucidated yet. But modeling provides us with clues to possible
functions of these additional loops: increasing robustness to param-
eter variations, allowing period tunability, etc. But that is in fact the
beauty of simple models: they provide us with additional perspec-
tives of a system and allow the constant self-formulation of new
questions. In the words of the great Albert Einstein, and invoking
Occam’s razor “everything should be made as simple as possible,
but not simpler”.
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