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1 Introduction

Since the reinvigoration of neural networks, deep learning has attracted significant
attention. It provides a revolutionary step to actualize artificial intelligence and has
fundamentally changed the landscape of a number of fields, including computer
vision, natural language processing, robotics, and more. Applications of deep
learning have become ubiquitous. For example, deep neural networks can be
trained to recognize objects in images, translate text between languages, recognize
speech, generate images/texts, just to mention a few. Very often, state-of-the-art
performances are achieved with deep neural networks.

With this striking success, a variety of deep learning designs and methods
have blossomed in the context of recommender systems. It has attracted a huge
interest from academia and industry, evidenced by the exponentially increase of
public research works and implementations. A growing number of companies
are developing and deploying deep learning based algorithms to enhance their
recommender systems, so as to attract more customers, improve user satisfaction
and retention rate, and as a result boost their revenue. Clearly, deep learning
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based recommendation models are now in wide use across platforms and domains.
Meanwhile, recommendation with deep learning techniques has been the major
focus in the research community and the number of scientific publications on this
topic grows exponentially.

There are numerous benefits of using deep learning techniques to build recom-
mender systems. Firstly, deep learning requires less feature engineering effort as it
can easily process unstructured data such as text, image, sound, video, etc. Secondly,
deep learning opens up an opportunity for a range of challenging recommendation
tasks. For example, we can solve the cold-start problem, improve the recommenda-
tion explainability/robustness, and handle temporal dynamics effortlessly with deep
neural networks. Thirdly, deep neural networks have a high degree of flexibility in
the sense that multiple neural building blocks can be composed end-to-end so that
building powerful models (e.g., multitask models, etc.) becomes more convenient.
Just as importantly, the increasing of computational resources as well as the easy
access of deep learning computation libraries make the implementation, iteration,
and deployment process more handily. All in all, these benefits have led to the rapid
and revolutionary development of recommender systems.

In this chapter, we do not intend to give a thorough review of all related methods,
but rather to overview various key approaches and highlight the impact of deep
learning techniques on the recommender systems field. This chapter is divided
into three parts. We begin with the basics of deep learning techniques that are
widely adopted in the recommendation area, namely, multilayered perceptrons,
convolutional neural networks, recurrent neural networks, graph neural networks,
deep reinforcement learning, etc. In the second part, we review how deep learning
methods are applied to specific recommendation problems including interaction
modeling, user modeling, content representation learning, cold-start problem, and
interpretability/robustness enhancement. Thereafter, we describe how recommen-
dations in various application domains such as e-commerce, online entertainment,
news, and point-of-interests, can benefit from deep learning techniques.

2 Deep Learning for Recommender Systems: Preliminary

We begin with the basics of recommender systems and widely adopted deep learning
techniques.

2.1 Basics of Recommender Systems

In a typical recommender system setting, there are a bunch of users and a
catalog of items. Items can refer to movies, books, jobs, jokes, news articles,
music pieces, houses, products, and even services. There usually exist some
historical interactions (e.g., purchases, ratings, likes, watches, etc.) between users
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and items. If there is no interaction record for some users/items, we call them
cold-start users/items. Oftentimes, additional information such as contexts like
timestamp, item descriptions, and user profiles are available. With these available
data, we can learn a recommendation model that anticipates user’s preferences
and performs personalised recommendations. A good recommender system should
have the ability of accurately capturing users’ preferences/intentions, modeling
the characteristics of items, and fitting the context better. Popular methods such
as matrix factorization [64] (Chapters “Advances in Collaborative Filtering” and
“Item Recommendation from Implicit Feedback”), user-based/item-based collab-
orative filtering [92] (Chapter “Trust Your Neighbors: A Comprehensive Sur-
vey of Neighborhood-Based Methods for Recommender Systems”), content-based
approaches (Chapter “Semantics and Content-based Recommendations”), context-
aware recommender systems (Chapter “Context-Aware Recommender Systems:
From Foundations to Recent Developments”), cross-domain recommender sys-
tems (Chapter “Design and Evaluation of Cross-Domain Recommender Systems”),
and session-based recommender systems (Chapter “Session-Based Recommender
Systems”) have been extensively investigated in the past decades. We refer users to
the corresponding chapters for more details.

2.2 Basics of Deep Learning Techniques

Deep learning utilizes a hierarchical level of neural networks to carry out the
process of machine learning. Neural network is made up of neurons which are
inspired by biological neurons. A typical deep neural network consists of multiple
layers and each layer has multiple neurons. Neurons between two successive layers
are connected. It accumulates signals from a previous layer and the information
transmission between layers is controlled with activation functions [36]. Unlike
traditional linear methods, activation functions such as ReLU, Sigmoid, and Tahn
in neural networks enable machines to process data in a nonlinear way.

At a high level, deep learning is a representation learning approach. It offers the
potential to identify complex patterns and relationships hidden in the data. As such,
deep learning has been widely used to learn representations of text, image, audio,
video, etc. The representation learning process can operate either in a supervised
manner or in an unsupervised manner. Based on the way how neurons are organized
in the network, there are various neural network architectures. Major (but not
exhaustive) neural networks include: multi-layer perceptrons (MLPs), convolutional
neural networks (CNNs), recurrent neural networks (RNNs), autoencoders, genera-
tive adversarial networks, and graph neural networks [36, 63].

To learn parameters of deep learning models, an algorithm known as back-
propagation is widely adopted [36]. Back-propagation computes the derivatives of
the loss function like mean squared error loss, cross-entropy loss, or triplet loss, with
respect to the weights and biases in a neural network. The computed gradients are
then used by optimizers such as gradient descent, stochastic gradient descent, and
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Adam to update the corresponding weights and biases. Same as traditional machine
learning techniques, deep learning also suffers from the overfitting problem. To
overcome this problem, regularization methods such as dropout, batch normaliza-
tion, and layer normalization are usually employed. We will briefly introduce some
widely used neural network architectures in the following sections.

2.2.1 Multi-Layer Perceptrons

A multilayer perceptron is composed of multiple perceptrons. It has an input
layer to receive the signal, an output layer to make predictions, and an arbitrary
number of hidden layers in between. Theoretically, an MLP is able to learn any
mapping functions and has been proven to be a universal approximation algorithm.
The predictive capability of MLPs comes from the hierarchical and multi-layered
structure. It is an ideal representation learning approach as it can represent features
at different scales, orders, and resolutions.

MLPs are usually used to model the correlations or dependencies between inputs
and outputs. An example of MLP is shown in Fig. 1. The input layer takes the dataset
as input and passes it to the next layer. The layer after the input layer is a hidden
layer. It is possible to stack many hidden layers to form a very deep architecture.
Deep learning refers to learning with networks that have many hidden layers. The
last layer is the output layer which outputs a scalar or a vector depending on the task.
For example, a regression problem has a single output neuron and there are more
than one neuron in binary or multi-class classification tasks. Generally, the network
outputs are converted to probabilities with sigmoid or softmax function.

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are suitable for grid topology data. For grid-
like data such as images, MLPs might not scale well. For example, a small image of
size 32 (width) × 32 (height) × 3 (RGB channels) has 3072 dimensions. The full
connectivity will bring in a huge number of parameters and is more likely to cause
overfitting. CNNs are precisely designed to circumvent this limitation. CNN can
capture the locality and spatial-invariance (e.g., position of an object in an image

Fig. 1 Multi-layer
perceptrons
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ConvolutionInput Pooling Fully connected layer

Fig. 2 Illustration of a convolutional neural network which has a convolutional layer, a pooling
layer, and a fully-connected layer

does not change the class of the object) in features with merely a small number
of free-parameters. CNNs can also process other types of data structure such as
sequences [2].

A typical convolutional neural network consists of an input layer, several
convolutional layers and pooling layers, and fully-connected layers (same as MLPs).
An example is shown in Fig. 2. Convolutional layers are a major building block
of CNNs. A convolution layer defines a window (or filter, kernel), by which the
model can examine a subset of input (e.g., a region of an image), and subsequently
scan the entire input by looking through this window. The window is small and
parameterized so that it needs fewer parameters than fully connected layers. In
addition, this window mechanism provides a way to look at the local regions of
the input and enables a more efficient learning of local patterns. Oftentimes, we can
use multiple windows to get multiple feature mappings. Pooling layer is also an
important component in CNNs. Pooling operations are used to compress spatial
information rather than extract certain features. It is useful when we care more
about whether some features are present or not instead of where they are. Pooling is
also operated with windows and various pooling operations including max pooling,
average pooling, and minimum pooling are usable. Among them, max pooling is the
most commonly used operation as it can return the most notable features.

Recent years have witnessed the emergence of numerous CNN architectures such
as LeNet, AlexNet, VGG, Inception, ResNet, ResNeXt, and many more [36]. These
networks have got very deep (up to 100 layers) and achieved huge performance
boost. We omit the details for brevity.

2.2.3 Recurrent Neural Networks

Many practical problems such as time series prediction, sentence classification,
machine translation, text generation, and speech recognition, require the ability of
modeling sequential and temporal patterns. In these tasks, current outputs depend
on previous inputs and outputs. Recurrent neural network is such a model that can
deal with sequential dynamics in the data and are becoming increasingly popular.

RNNs allow a model to operate over sequences in the input, output, or both of
them [36]. The most important feature of RNNs is the hidden state which remembers
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Fig. 3 Illustration of recurrent neural networks in folded (left) and unfolded (right) forms

what information has been calculated about a sequence. Figure 3 shows the structure
of RNNs in both folded and unfolded forms. It has several distinct components: (1)
X is the sequential input; (2) o is the output; (3) h is the hidden states; (4) V,W,U

are trainable model parameters. The hidden state h is the memory of the network
and is calculated based on the previous hidden state and the current input. A simple
calculation is:

ht = f (UXt + V ht−1), (1)

where f is a nonlinear activation function.
Vanilla RNNs may suffer from problems like gradient vanishing and exploding

problems. They are less effective in processing very long sequences. There-
fore, there are many variants of RNNs and Long short-term memory networks
(LSTMs) [52] and gated recurrent units (GRUs) [22] are the most popular ones.
LSTMs are proposed to address the problem of keeping or resetting context. LSTM
unit is composed of a cell, an input gate, an output gate, and a forget gate. It
utilizes the cell and gate mechanism to memorize or filter long-term dependencies.
The sibling architecture GRUs operate in a similar fashion and can achieve the
same goal. In some tasks like speech recognition and handwriting recognition, it is
important to look beyond the current state, to fix the past. Knowing what is coming
next can help understand the context and alleviate the ambiguity faced in the past.
This gives rise to bi-directional RNNs [36].

2.2.4 Encoder and Decoder Architectures

The encoder-decoder architecture is quite common in the deep learning field. We
first introduce auto-encoder (commonly written as autoencoder).

Autoencoder [111] is an unsupervised learning framework which consists of an
encoder, a decoder, and a bottleneck layer (see Fig. 4). The output can be viewed
as a copy of the input. It aims to reconstruct the input in the output layer by
minimizing the reconstruction error measured by the differences between the input
and the reconstruction. It is a widely used representation learning approach as it can
compress the high-dimensional input into a low-dimensional hidden representation
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at the bottleneck layer, while maintaining the important characteristics. A variant
of autoencoder called variational autoencoder (VAE) can generate new data. VAE
encodes the input as a distribution over a latent space and this distribution is
regularised to ensure continuity and completeness.

Conceptually, in an typical encoder-decoder architecture, an encoder is used
to map the input to a compact hidden representation and a decoder is used to
generate a high-dimensional output by up-sampling the compressed representation.
It is not exclusive to autoencoder. Many sequence-to-sequence models such as
transformer [109] are also structured in this way.

2.2.5 Graph Neural Networks

Graph data (e.g., social networks, chemical molecules, knowledge graph, transac-
tion graph, etc.) is commonplace in real world applications. A graph consists of a set
of nodes and a set of edges between nodes. Usually, nodes and edges are associated
with some feature information for descriptive purposes.

The network architectures discussed earlier (e.g., CNNs or RNNs) cannot handle
graph data effectively. As such, graph neural networks (GNNs) [63, 110] come into
play. GNNs learn node/graph representations from node (edge) features and graph
structures via message propagation and aggregation. The most critical process,
message passing, pushes messages from surrounding nodes around a given reference
node through its edges. At a single time step, each node is updated by its current
presentation and the aggregation of its neighbors’ representations. This step is
repeated multiple times in deep GNNs, allowing information from multi-hops away
to be propagated. A general update rule of GNNs is as follows:

h
(�+1)
i = σ(h

(�)
i W

(�)
0 +

∑

j∈Ni

1

cij

h
(�)
j W

(�)
1 ), (2)

where h
(�+1)
i is the representation of node i at layer � + 1; Ni is a set of neighbors

of node i; cij is a fixed/trainable norm; W ∗∗ is a weight matrix.

2.2.6 Deep Reinforcement Learning

Deep reinforcement learning [32] is the combination of deep learning and rein-
forcement learning. Reinforcement learning provides a formalism for behavior
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Fig. 5 The architecture of
deep reinforcement learning
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and allows us to solve many types of decision-making problems. Deep learning
is powerful in handling unstructured data such as raw sensor or image signals.
By integrating deep learning techniques, it allows reinforcement learning to solve
more complex problems end-to-end. Deep neural networks enable the agent to get
knowledge from raw data and derive efficient representations without handcrafted
features and domain heuristics. Thus, deep reinforcement learning opens up the
possibility for applications in domains such as robotics, games, healthcare, and
many more (Fig. 5).

Reinforcement learning is learning through interaction with an environment, The
agent learns to achieve a goal in a complex environment. It employs a trial and error
strategy to learn from the consequence of its actions and selects its actions on the
basis of past experiences (exploitation) and new choices (exploration). The agent
receives rewards or penalties for the actions it performs and seeks to learn to select
actions that maximize the accumulated reward over time.

2.2.7 Adversarial Neural Networks

We are concerned with two techniques: adversarial training and generative adver-
sarial neural networks (GANs) [24].

An adversarial example is an instance with small, intentional feature pertur-
bations that cause a machine learning model to make a mistake. Adversarial
examples will cause model performance degradation and, even worse, be dangerous
in applications like autonomous driving. Adversarial training is a straightforward
way to combat with adversarial examples. It generates adversarial examples during
the training process and the model is learned to combat these generated examples
such that it cannot be fooled easily after training.

Generative adversarial neural networks (GANs), inspired by the minimax game
in game theory, have two neural networks which compete with each other. The
two networks in GANs are: generator and discriminator. The generator creates
new data instances that resemble the training data, and the discriminator is trained
to distinguish the generated fake data from real data. The generator and the
discriminator are simultaneously trained with back-propagation. In the end, the
generator can generate images that are not present in the training data.
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2.2.8 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) [31] can lean a probability distribution over
its input. RBMs have found applications in dimensionality reduction, classification,
topic modeling, recommendation, etc. A classical RBM can be considered as a
shallow two-layer neural network which in general consists of a visible layer (also
known as an input layer) and a hidden layer. The restriction indicates that there is
no intra-layer communication. Same as MLPs, activation functions and bias terms
can also be used. To optimize the parameters of RBMs, the algorithm contrastive
divergence is usually adopted. RBMs are the building blocks of deep belief networks
(DBNs) [51] where multiple hidden layers are needed.

3 Deep Learning for Recommender Systems: Algorithms

This section focuses on how various challenges (e.g., interaction/user modeling,
cold-start problems, robustness, explainability, etc.) in recommender systems can
be tackled with deep learning techniques.

3.1 Deep Learning for Interaction Modeling

Interaction modeling lives at the heart of recommender systems. Past interactions
recorded between users and items such as ratings, purchases, likes, and views
are the major source for performing collaborative filtering. As such, a good
recommendation model should be able to capture the interactions/crossings between
objects/features. Modeling features in their raw form will rarely provide optimal
results and interaction modeling becomes necessary.

3.1.1 User-Item Interaction Modeling

Interactions between users and items form a user-item interaction matrix. This
interaction matrix can be extremely sparse as many interactions are missing.
Modeling user item interaction from this partially observed matrix forms the
bedrock of collaborative filtering (CF) algorithms. A standard CF approach is to
model user item interactions with dot product (e.g., matrix factorization). As an
alternative, we can also use deep neural networks to fulfill this goal.

Formally, we adopt the following formula to define the interaction between users
and items.

s = f (h(g1(u), g2(i))), (3)
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Table 1 Comparison of various user item interaction modelling approaches

Models h f g∗
NeuMF [47] Concatenation: [Uu; Vi ] MLPs Embedding

look-upHadamard product: Uu � Vi

He et al. [45] Outer product: Uu ⊗ Vi CNNs Embedding
look-up

AutoRec [93],
CDAE [127]

Encoder Decoder MLPs

DFM [132] Dot product: Uu · Vi Identity mapping MLPs

CML [53],
LRML [53]

Euclidean distance: Identity mapping Embedding
look-up‖ Uu − Vi ‖2

2

HyperML
[112]

Hyperbolic distance: Identity mapping Embedding
look-up

cosh−1(1 + 2 ‖Uu−Vi‖2

(1−‖Uu‖2)(1−‖Vi‖2)
)

Yao
et al. [137]

Searched MLPs Embedding
look-up

where g∗ is used to get the representation of user/item. For example, if g∗ is a sparse
embedding look-up function, it will output the corresponding user embedding Uu

and item embedding Vi ; s is the recommendation score; f can be neural networks,
identity mapping, etc., and h is the interaction operation such as concatenation,
Hadamard product, etc. Table 1 summarizes popular user-item interaction modeling
approaches.

Using neural networks to model the interactions between users and items has
aroused extensive interest. Recently, there is an increasing popularity to replace
dot product with MLPs. For example, NeuMF [47] models the interaction with
multilayer perceptron. It takes the concatenation of Uu and Vi or the element-wise
multiplication of Uu and Vi as the input of MLPs to capture the interactions. A
follow-up work [45] replaces dot product with outer product where the output is
treated as an interaction map and CNNs are applied to learn high-order correlations
among embedding dimensions. Despite its popularity, a recent study [88] suggests
that it is non-trivial to learn the dot product with an MLP, and it might be too costly
to be used in production environments.

The autoencoder architecture can also be applied to interaction modeling [93,
127]. These methods take as inputs the columns or rows of the partially observed
interaction matrix, then recover the columns/rows in the output. The gradients
of unobserved entries are masked out in the training phase. Nonlinear activation
functions, dropout, and denoising strategies are usually used to enhance the model
expressiveness and robustness. These methods can be regarded as generalizations
of latent factor models. Different from conventional autoencoders, the goal of these
models is to complete the interaction matrix in a column-wise (row-wise) manner
instead of learning compact representations of inputs. The generated scores in
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Fig. 6 Deep learning based
interaction modeling for
recommendation
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the outputs for missing entries are viewed as the recommendation scores for the
corresponding user-item pair.

As shown in Fig. 6, learning user or item representations is also an indispensable
step in interaction modeling. Instead of using a simple one-hot identifier to learn
user/item embeddings, an alternative way is to enrich the representation information
by incorporating all historical interactions of each user/item [132, 148]. For
example, we can use the rows (all items that the user rated) or columns (all users who
liked the item) as the input and obtain the corresponding user/item representations;
the pioneering neural network based recommendation model, RMB-CF [35, 91],
aims to learn a user-specific feature vector from the observed interaction matrix
(e.g., rating matrix, implicit feedback, etc.) via RBMs. The learned hidden units,
in return, can help approximate the distribution of the whole user-item interaction
input, thus, making predictions on unobserved data possible.

The idea of word2vec [82] can also be utilized for item representation learning.
Representative models are item2vec [4], prod2vec [37], and [38]. In essence, they
treat items as words and the sets of items generated from purchase logs/click
sequences as sentences and a skip-gram algorithm is utilized to learn the item
embeddings. For example, prod2vec learns the product embeddings by minimizing
the following objective function:

L =
∑

s∈S

∑

pi∈s

∑

−c≤j≤c,j �=0

log P(pi+j |pi), (4)

where S is the entire “sentence” set; c defines the window size; pi+j is the
neighboring product of current product pi . The probability P(pi+j |pi) is obtained
with a softmax function. Works [4, 38] take a similar form so that the details are
omitted for brevity.

Another line of research is modeling interactions between users and items via
distance metric learning where a shorter distance between a user and an item
indicates stronger fondness. These methods aim to learn the distance ‖ Uu − Vi ‖2

2
between users and items [53]. To enhance the geometrical flexibility, Yi et al. [104]
propose adding a trainable relation vector r and the distance function becomes
‖ Uu + r − Vi ‖2

2. Extending this metric learning approach to non-Euclidean space
for recommender systems also shows promising performance. An ideal option is the
hyperbolic space where hierarchical structures and exponentially expansion proper-
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ties can be easily captured. Representative methods such as HyperML [112, 145]
have shown promising results. We review these methods because most of these
methods are constructed and optimized within standard deep learning operators and
they can also be integrated into other deep learning architectures.

However, due to the complex nature of interactions in real-world applications, it
is difficult for a specific interaction function to have consistently good performance
across different application scenarios. As such, Yao et al. [137] propose using
automated machine learning (AutoML) to search for the neural interaction functions
for different scenarios. The search space includes inner product, Euclidean distance,
outer product, concatenation, maximum, minimum, etc. The proposed method can
train the search architecture and the recommendation model simultaneously in an
end-to-end manner.

3.1.2 Feature Interaction Modeling

Apart from the user-item interaction matrix, there are abundant side informa-
tion/feature1 available that can be predictive for making recommendations. Nev-
ertheless, using features in their raw form, in general, will not lead to optimal
solutions. Two features combined via some operations could be more predictive than
the same two features used independently. However, exhaustive manual search for
feature interaction is infeasible in real world applications. The capability of learn-
ing feature interactions automatically is of great importance to recommendation
models.

A popular feature interaction modeling approach is factorization machines which
capture the pairwise interactions in linear time complexity. However, modeling
higher-order feature interaction with factorization machines can be costly. Recently,
there is a growing interest in applying deep neural networks to model feature
interaction. For instance, Cheng et al. [19] propose a wide and deep framework to
combine MLPs with a linear model (shown in Fig. 7a). In this framework, the deep
part captures feature combinations and has good generalization for unseen feature
combinations, and the wide part keeps good memorization for feature co-occurrence
or correlation. The recommendation score is defined as:

s = σ(fLM(xwide) + fMLP (xdeep)) (5)

where fLM and fMLP represent a linear model and multilayered perceptrons
respectively. The input feature x is manually separated into xwide and xdeep.

Obviously, the wide and deep network requires expert knowledge in splitting
features into two parts. As such, Guo et al. [40] propose an improved deep and
wide architecture, DeepFM (shown in Fig. 7b). In this model, the deep part and the
wide have shared input features. The deep part is an MLP utilized to capture the

1 In this section, we mainly refer to categorical features.
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Fig. 7 Architectures for feature interaction modeling: (a) Wide and Deep Model [19]; (b)
DeepFM [40]

high-level and nonlinear feature interactions and the wide part is an FM. DeepFM
can capture both high-level and lower-order feature interactions. A concurrent work
NFM [44] also has a similar design as DeepFM. The scoring function of DeepFM
is defined as:

s = σ(fFM(x) + fMLP (x)) (6)

where fFM represents factorization machines. Clearly, the two components share
the same input.

It is noted that MLPs can only model interactions implicitly which is not
necessarily effective for all types of cross features. To circumvent this limitation,
Wang et al. [118] propose a deep and cross network (CrossNet) to explicitly apply
feature crossings across layers. This model requires no manual feature engineering
and will not incur much additional computational cost. The downside of CrossNet
is that the interactions come in a bit-wise fashion. As such, Lian et al. [74] design a
generic version of CrossNet to enable vector-wise feature interaction. The proposed
model, xdeepfm [74], is a combination of a generalized CrossNet and MLPs.

Evidently, not all feature interactions are created equally. Inappropriate feature
interactions might be useless and even harmful. To better distinguish the importance
of different feature combinations, Xiao et al. [129] propose an attention based deep
factorization recommendation algorithm (AFM). This model utilizes a parameter-
ized attention network to get an attention score for each pair of interactions in
FM. The output is an attentive summation of all possible interactions. A similar
attention based FM model, A3NCF [20], is proposed for the rating prediction task.
Essentially, FM model adopts inner product to model the pairwise interaction.
Same as the methods used to improve user item interactions, we can replace the
interaction function with a few alternatives. For example, HFM [107] uses circular
convolution operations or circular correlation operations to replace the inner product
in FM. LorentzFM [130] substitutes the inner product with Lorentzian distance
and generalizes FM to non-Euclidean space. It is worth noting that AFM, A3NCF,
HFM, and LorentzFM lose the efficiency advantage of FM and have quadratic
training/inference complexity.
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3.2 Deep Learning for User Modeling

To provide personalised recommendations to users, a key step is to accurately infer
users’ demands, intentions, and interests from their profiles and past behaviors.
However, the highly dynamic interaction data and extremely entangled/complex
user interests hinder the use of traditional machine learning methods. We scratched
the surface of user representation learning in the previous section. Here, we will
dive deeper into more specific challenges on this topic.

3.2.1 Temporal Dynamics Modeling

Many traditional recommendation algorithms ignore the chronological order of
user historical interactions. Nonetheless, the user item interactions are essentially
sequential. User’s short-term interests have huge impact on her decisions. Time
context (e.g., holiday, black Friday, etc.) also affects user behaviors. Moreover,
items’ popularity are dynamic rather than static over time [59]. The temporal
dynamics call for sequence-aware recommender systems. Learning preference
representation from the sequence of actions becomes the fundamental task in
sequence-aware recommendation. The preference learning process is shown in
Fig. 8.

To tackle sequential patterns, popular sequence modeling approaches such as
RNN come into play. Wu et al. [124] propose recurrent recommender networks
(RRN) which uses LSTMs to capture the temporal dependencies for both users
and items. In RRN, the state evolution for a user depends on which items she
liked previously. An item’s state is dependent on the users who liked it in the
past. At last, short-term and long-term impacts (e.g., long-term preference of a
user, fixed properties of an item) are integrated for final prediction. Using standard
LSTMs or GRUs for temporal dynamics modeling in recommender systems might
not be the optimal solution since users and items are usually modeled separately.
As such, Donkers et al. [27] devise a novel gated GRU cell for personalized next
item recommendations. The proposed cell integrates user characteristics into the
recommendation model, which is beneficial to the network’s predictive power.
Thenceforth, customizing the gated cell in recurrent neural networks has gain
growing interest. For instance, Bharadhwaj et al. [6] propose a customized gated
recurrent unit to capture latent features of users and items. Guo et al. [41] propose

User
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Fig. 8 Sequence aware recommender systems for temporal dynamics modeling
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PcGRU, an improved GRU, to model the preference drifts and dynamics of user
preferences (Fig. 9).

Convolutional neural networks have demonstrated superior performance in a
diverse set of sequence modeling tasks such as polyphonic music modeling,
character-level language modeling, and word-level language modeling, over canon-
ical recurrent neural networks [2]. CNNs based recommendation models also show
promising results in user representation learning from historical sequences. Tang
et al. [103] present a convolutional sequence embedding learning approach (Caser)
for sequential recommendation. Caser consists of a vertical convolutional network
and a horizontal convolutional network to capture both union-level patterns and
point-level sequential patterns. You et al. [139] propose a hierarchical temporal
convolutional networks (HierTCN) for sequential aware recommendation. HierTCN
is composed of a GRU to model the long-term interests across sessions, and
a temporal convolutional network [2] to learn dynamic user embeddings. Yan
et al. [133] propose a 2-D convolutional network (CosRec) to capture complex item
correlations in user’s historical actions. Very often, CNNs based sequential learning
architectures are more efficient than RNNs based models.

Self-attention makes huge performance boost in the natural language processing
field and is gradually becoming a key component in sequence models [109]. This
mechanism can also be applied to address the task of sequential recommendation.
Atrank [156] takes the lead in using self-attention network to capture temporal
dynamics in user behaviors and achieves encouraging results. Kang et al. [61] use
multi-head self-attention networks to model user’s dynamic interests. The adopted
framework is the same as the transformer model [109]. Zhang et al. [146] propose
integrating self-attention module into metric learning for sequence dependencies
modeling. Huang et al. [58] adopt a self-attention network to model the heteroge-
neous user behaviors, including diversity of actions and multi-modal property of
content. Zhang et al. [150] combine vanilla attention with self-attention to capture
feature importance and item transition patterns. The original self-attention model
does not consider the time span even with positional encoding. Nonetheless, the
absolute time span also matters. Intuitively, if a user has no activities for a relative
long time, her last action might have less impact on her current decision. Thus, Xu
et al. [131] propose a time kernel to learn functional time representations in a self-
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attention model. The improved model obtains promising results on sequence-aware
recommendation tasks. Another limitation of self-attention is that it can only model
left-to-right unidirectional patterns, which might lead to sub-optimal performance.
Inspired by the recent success of BERT [26], Sun et al. [99] adopt a BERT-like
model which uses a deep bidirectional self-attention module to fuse both left-to-
right and right-to-left dependencies in behavior sequences.

There are many other methods for temporal dynamics modeling. For example,
Chen et al. [79] propose a hierarchical gating networks to discriminate item
importance based on users’ preferences via gating mechanism. Chen et al. [16]
design a memory-augmented network based sequential recommendation algorithm.
It utilizes an external memory matrix to store, access, and manipulate users’
historical records in a more explicit fashion. Tang et al. [101] propose a mixture
model which combines MLPs, RNNs, CNNs, and self-attention to capture tiny,
small, and long range sequential dependencies.

In the sequence-aware recommendation task, users’ identifier may be missing
in some scenarios. For example, some websites/applications do not require user
registration or login. In this case, the system can only record the activities in
the current active session. Making recommendations in this scenario is known
as session-based recommendations. GRU4Rec [49] is the pioneering work that
solves this task with neural networks. Specifically, it adopts GRUs to model the
sequential patterns in the sessions and predict the next event. In their extension
work, the authors design a new ranking loss that is tailored to RNNs in session-based
recommendation settings [48], and propose a parallel RNNs architecture to model
both the click sessions and the features of the clicked items [50]. Li et al. [71] present
an attention based model to capture users’ intentions in the current session. Tuan
et al. [108] propose a content-based session recommendation approach with CNNs
and a three-dimensional CNN is used to learn representations from item textual
descriptions and categorical features.

3.2.2 Diverse Interest Modeling

Users might have a diverse set of preferences and be interested in certain aspects of
items. For example, a user might like history documentaries and romantic comedies
for different reasons. Yet, common modeling approaches usually force all these
interests to be encoded into one latent factor. It is critical to enable models to be
aware of the diversity in user interests and to have the capability of distinguishing
them. To reach the goal, Li et al. [70] present a multi-interest learning approach with
dynamic routing. Specifically, to achieve richer user representations, the dynamic
routing method disentangles user’s interests from her historical interactions. The
dynamic routing component acts as a soft clustering approach which groups user’s
historical behaviors into several clusters, with each cluster corresponding to a
particular interest. Similar idea is presented in [8]. The difference is that this
work adopts a dynamic routing mechanism from Capsnet [90]. Multiple interests
is also investigated in [149] where quaternions are used to represent users. Each
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component of the quaternion (three imagery components and one real component)
represents one aspect of user’s interests. In their follow-up work [144], multiple
hypercuboids (i.e., concentric hypercuboids, multiple independent hypercuboids)
are utilized to represent user interests. The benefits of using hypercuboids is that
they can naturally embed the range of preference such as the preferred price range,
enabling greater expressiveness. To disentangle the complex user interests, Ma
et al. [80] use disentangled variational autoencoder to infer both macro and micro
disentanglements for user interests. Macro disentanglement refers to high-level
intentions (e.g., buy a book or smartphone) while micro disentanglement reflects
low-level factors (e.g., color, size, etc.). Learning disentanglement representations
makes the recommendation lists controllable and enriches the interpretability of the
learned representations.

3.3 Deep Learning for Content Representation Learning

Features (e.g., text, image, sound, video, etc.) associated with items or users can be
predictive for recommender systems. Unsurprisingly, these features play a pivotal
role in conventional content-based recommender systems. Nonetheless, processing
these content and mapping them into latent factors are non-trivial with traditional
feature extraction methods. The representation learning capability of deep learning
makes it easy to integrate these raw features into modern recommendation models.

3.3.1 Textual Feature Extraction

Text data is a rich source of information. Text can be collected from different places
such as user reviews, news content, social media, and many more. In recommender
systems, text data can be leveraged to better understand items and users, to alleviate
the sparsity and even to address the cold-start problem. Processing text data
and extracting useful representations can be challenging due to its unstructured
nature. Recently, deep learning is becoming the mainstream option for various text
processing tasks. Deep learning cannot only process unstructured data easily, but
also has the ability to uncover hidden patterns in text data.

Textual description of items (e.g., abstract of an academic paper, plot summary
of a movie, news content, tweets) is one of the most used text data in recommender
systems.2 To make use of the textual descriptions, Wang et al. [114] propose a
framework, CDL (short for collaborative deep learning), to fuse stacked autoencoder
with Bayesian probabilistic matrix factorization (BPMF). An EM-style optimization
algorithm is devised to alternatively update the parameters of autoencoder and

2 Since there are a large body of related work on news recommendation, we refer readers to Sect. 4
for more details.
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BPMF. Nonetheless, CDL uses bag-of-words representation as the input and
ignores the contextual information such as surrounding words and word orders.
To overcome the limitations, Kim et al. [62] replaces the autoencoder of CDL
with convolutional neural networks. Pre-trained word embeddings (e.g., Glove
embeddings) are used for better semantics and expressiveness. Bansal et al. [3]
present an end-to-end collaborative filtering model which leverages GRUs to encode
the text associated with items into latent vectors for both warm-start and cold-start
recommendations. Tan et al. [100] present a quote recommendation method that uses
LSTMs to learn the distributed representations for quotes. Lee et al. [67] design a
quotes recommender system which combines CNNs and RNNs for quotes process.

Reviews-based recommendation is another typical text-intensive recommen-
dation scenario. On many e-commerce platforms, writing reviews is a strongly
encouraged act. The rich semantic information in text reviews cannot be conveyed
via the implicit interaction data. For example, users explain the reasons behind their
ratings and their additional opinions in reviews. Reviews also provide a wealth of
knowledge for prospective customers. In recent years, there has been a widespread
interest in using deep learning to exploit reviews for better recommendations. Zheng
et al. [155] present a deep cooperative neural network for jointly modeling of
users and items reviews. Each user is represented by all reviews she has written
and an item is represented by all reviews it received. Specifically, reviews for a
single user (item) are concatenated and processed by convolutional networks to
get the user(item) representation. To further improve model interpretability, Seo
et al. [94] propose adding an attention layer before the convolutional layer. The
attention layer contains a local attention window to select informative keywords and
a global attention window to filter out irrelevant and noisy words. Yet, the former
paradigm of simple concatenation of reviews is unnatural. For example, when
deciding if a book should be recommended or not, the user’s historical reviews on
other books are highly relevant, while her reviews on clothes can be ignored. To this
end, Tay et al. [105] present a multi-pointer co-attention network for review based
recommendation where a pointer-based learning scheme is employed to extract
important and predictive reviews from user and item reviews for subsequent user-
item interaction. The pointer-based method is implemented with a gumbel-softmax
based pointer mechanism that incorporates discrete vectors within differentiable
neural architectures. When reviewing an item, different users may have opinions
on different aspects of the item. For example, in restaurant recommendation, some
users might care more about tastes while others might pay more attention to
locations or ambiences. As such, Guan et al. [39] design an aspect-aware method
for review-based recommendation. It extracts the aspects of reviews and uses an
attention network to dynamically learn the importance of each aspect.

3.3.2 Image Feature Extraction

Images are commonplace on many e-commerce and social platforms. On platforms
like Amazon, product images are what users typically scan through most intently.
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Images can attract user’s attention easily, hence incorporating visual features into
recommender systems catches potential preferences of users.

Benefiting from the computer vision research, extracting and processing feature
representations from images become easier than ever before. CNNs are the most
popular tool for image processing. A number of works attempt to incorporate image
features into recommender systems. He et al. [43] incorporate visual features into
the conventional Bayesian personalised ranking (BPR) framework and propose
VBPR for top-n recommendations. VBPR uses a pretrained-CNN architecture for
image pre-processing. Niu et al. [84] propose a neural personalised ranking model
for image recommendation on Flickrnote3 where a hybrid-CNN model is used for
visual feature extraction. Lei et al. [69] present a comparative deep learning method
for Flickr image recommendation. In this dual network, images are processed with
an Alexnet-like CNN architecture. Geng et al. [34] use CNNs to learn visual feature
representations for image-based recommendation in social networks on Pinterest.
Chu et al. [21] present a visual-aware restaurant recommender system which adopts
CNNs to extract visual features from restaurant environment and food images.
Additionally, in fashion recommendation domain, incorporation of visual content
is also a matter of prime importance. Likewise, CNNs are the top option for feature
extraction. For example, McAuley et al. [81], He et al. [42], Yu et al. [140] and Liu
et al. [76] all utilize CNNs to infer user’s preference/aesthetic on visual styles of
fashion products (e.g., clothes. accessories, shoes, etc.). Kang et al. [60] present
a system that recommends the best fit products based on ‘scene’ images (e.g.,
recommending hats based on a given selfie), where ResNet is employed for image
representation learning.

3.3.3 Video and Audio Feature Extraction

Deep learning has achieved tremendous success in audio/video analysis such as
speech recognition and video surveillance analytics. Compared with the aforemen-
tioned features, learning from audio and video features is relatively less common in
the context of recommender systems.

Music recommendation is a representative audio-based recommendation sce-
nario. In general, audio information such as rhythm, melody, and timbre is of
critical importance to listeners. In the music recommender model designed by Van
et al. [85], CNNs are used to extract music features from audio clips. CNNs are
also adopted by Huang et al. [56] for music representation learning from acoustic
inputs to address the task of music co-listen prediction. CNNs are suited for audio
representation learning as they can operate on multiple timescales. Concurrently,
Wang et al. [121] use deep belief networks (DBNs) for automatic music feature
extraction for music recommendation and they claim that DBNs do well in modeling
rhythms and melodies.

3 https://www.flickr.com/.

https://www.flickr.com/
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Video features can also be leveraged to improve recommendations. Usually,
videos are converted into a sequence of frames and audio waves. As such, CNNs
based models become a desirable option for video analysis. For instance, Xu
et al. [17] propose a key frame recommender system to select the key frames from a
video for each user. A CNN with five convolutional layers and three fully-connected
layers is used for frame representation learning. In the video recommender system
proposed by Lee et al. [68], both video frames and audio features are included.
The model employs an Inception-v3 network to extract frame features, then it
aggregates the frame-level features into video-level ones with average pooling. The
audio features are extracted with a modified version of ResNet-50.

In summary, for each type of data, various deep learning techniques can be
applied. For text data, sequence modeling approaches are more suitable. While for
image, video, and audio data, CNN based architectures are preferable.

3.4 Deep Learning for Graph-Structured Data in
Recommendation

The interaction data generated from recommender systems can be formulated
as a bipartite graph (shown in Fig. 10a). Users and items are two disjoint and
independent sets. The interactions between users and items compose the edges
of the graph. The user item interaction matrix is the biadjacency matrix of this
bipartite graph. Furthermore, connections between users can also formulate a
relationship/social network.

The idea of incorporating social networks into recommendation has been cir-
culating for quite a while. Only recently has it been connected to deep learning
approaches. In recent years, there is a surge of interest in graph neural networks
which has achieved state-of-the-art performances on a number of graph related
tasks. Given the interaction logs, it is natural to employ GNNs to learn from
the bipartite graph so as to better understand the characteristics of nodes and
their relationships. Using GNNs for recommender systems is beneficial for two

(a) (b)

Fig. 10 Example graphs in recommender systems. (a) Interaction graph; (b) item session graph
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reasons: (1) GNN can better model graph-structural relationships; (2) GNN can help
incorporate other graph related data (e.g., social graph, knowledge graph).

Recommendation on the user-item bipartite graph is performed from the link
prediction view, where ratings/purchase are represented as links. In doing so, the
graph-structural information can be naturally captured. Berg et al. [5] propose a
graph convolutional matrix completion model which produces latent factors of
user and item nodes via message passing on the bipartite interaction graph. A
bilinear decoder with the learnt latent factors is used to reconstruct the links.
The same neighbourhood message passage is adopted in Wang et al. [120]. In
addition, multi-hop propagation is also taken into consideration in this model. To
avoid computation on the entire graph, Ying et al. [138] present a sampling based
graph convolution approach for pins recommendation at Pinterest. The proposed
model performs a localized convolution by sampling the neighborhood around a
node, and dynamically constructing aggregations from the sampled neighborhood.
Monti et al. [83] present a multi-graph convolutional neural networks to extract local
features from the interaction matrix with row and column similarities encoded by
user and item graphs.

GNNs can also be used to capture inter-item relatedness by mining from the items
graph. For instance, in session-based recommendation task, the click sequences and
transition patterns from sessions can be represented with a session graph (shown
in Fig. 10b). As such, it is natural to use graph neural networks to learn click
representations [87, 126] in session-aware recommender systems.

Social graph is another type of graph that is useful for recommender systems.
When making decisions, users can be easily influenced by their friends. GNNs
can be utilized for influence diffusion on social graphs in social recommendations.
Fan et al. [28] propose learning user representations by simultaneously aggregating
information from her neighbourhood items in the interaction graph and her neigh-
bourhood users in the social network and an attention mechanism is adopted for
information aggregation. Influences maybe context-dependent. For example, users
might trust different groups of friends for different types of products. To model
such dynamic effects, Song et al. [97] propose a dynamic graph attention network
to attend the influence of friends with user’s short-term actions.

Knowledge graph is also a widely available information source in recommender
systems. Knowledge graph is a directed graph of linked data where nodes cor-
respond to entities (e.g., person, movie, etc.) and edges correspond to relations.
For example, a triple in a knowledge graph 〈James Cameron, direct, Titanic〉 has
two entities (James Cameron and Titanic) and one relation (direct). Knowledge
graphs are usually associated with items, e.g., movies in this example. As such,
this supplementary information can be used to infer connections between items. For
example, the main idea behind the model by Wang et al. [117] is to consider items
as entities in the knowledge graph, and then the model aggregates neighborhood
information for learning entity representations. In their later study [116], they add
flexibility to the model by enabling user-specific relation learning. The authors also
introduce a label-smoothing regularization to overcome the outfitting issue.
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Graph neural networks have exhibited great potential in learning from graph-
structured data in recommender systems. However, there are challenges that remain
to be solved. A worrisome aspect of these models is the low computational
efficiency. Real-world recommendation tasks on the other hand, often come with
large scale data, so more efficient GNNs based recommender systems are expected.

3.5 Deep Learning for Cold-Start Recommendation

Cold-start problems happen when new users or new items arrive in the system.
Because most recommendation models are built on historical interactions, the lack
of interaction records for these new items/users makes the cold-start problem
challenging. Leveraging the associated side information accounts for the major
paradigm in cold-start scenarios.

Bansal et al. [3] present deep recurrent neural networks for cold-start article
recommendation. It adopts GRUs to encode text into latent factors, and a multi-
task learning framework is proposed to enable both recommendations and item
metadata predictions. Instead of incorporating additional content-based objective
terms, Volkovs et al. [113] focus on the optimization process. They demonstrate that
neural network models can be explicitly trained for cold-start recommendation via
dropout. A key observation is that cold-start problem is equivalent to the problem of
missing data. As such, they make DNNs generalize to cold-start settings by selecting
an appropriate amount of dropout. This approach shows superior performance on
both warm start and cold start scenarios. Pan et al. [86] propose a meta-learning
approach to address the cold-start problem which trains an embedding generator for
new items through gradient-based meta learning. This model learns embeddings
by taking as input item content and attributes. Zhang et al. [142] present Star-
GCN, a graph neural networks based recommendation model. Star-GCN predicts
the embeddings of unseen nodes by the means of masking a part of (or the whole)
user/item embeddings and then reconstructing the masked embeddings. Zhang
et al. [143] propose a graph based matrix completion algorithm under the inductive
setting. It trains GNNs based on one-hop subgraphs, and can generalize to unseen
users/items. This approach does not use any side information. However, it cannot
address extreme cold-start scenarios because it needs the cold user/item to have a
few interactions with neighbors.

3.6 Deep Learning for Recommendation: Beyond Accuracy

Beyond accuracy, some other characteristics of recommender systems are also
crucial. Here, we review methods that enhance the explainability and robustness
of recommender engines using deep learning techniques.
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3.6.1 Explainable Recommendations

Explainable recommender systems not only generate personalised recommenda-
tions but also produce intuitive explanations to the recommendations. In doing
so, model transparency is enhanced and the persuasiveness and trustworthiness of
recommendations are improved. Moreover, the explanations also provide a way for
system designers to diagnose and refine the recommendation algorithms.

It is well known that the internal decision process of deep learning models is
hard to control and explain. By circumventing direct explanation on the internal
architectures, we can use deep learning methods to generate explicit explanations
for the recommendations. For example, we can generate a user-specific sentence
for each item in a recommendation list. For example, the model by Li et al. [73]
can simultaneously make recommendations and generate readable tips that describe
possible reviews a user might give to the recommended items. The model combines
a recommendation module, a neural rating regression module, and a text generation
module, RNNs. The text generation module is similar to the decoder of sequence-
to-sequence models for machine translation, where user reviews are used as the
supervision signals of the tips generation module. To generate controllable textual
explanations, Li et al. [72] adopt a cue word based GRU [136] to control the
generated sentence with a given cue word. For example, for hotel recommen-
dations, given a cue word “room”, the generated tips would be “the room is
spacious and comfortable”. It offers the option to users to select aspects that they
care about.

Attention mechanism is also a desirable tool to enhance explanation. It can be
employed to highlight critical information of the recommended items. For example,
attention mechanism can be used to highlight the prime information in the reviews
for each recommendation. Chen et al. [10] propose an attention based approach
to pick up valuable and useful reviews from all reviews of a target item. They
further improve the accuracy of explanations by considering the dynamics of user
preferences. In specific, the model attentively learns the importance of review
information according to the user’s current state and preference [18]. Attention
networks are also used to highlight key phrases/words in the reviews in Seo
et al. [94]. Key regions in images can also be highlighted to provide visual
explanations. In the area of fashion recommendation, Chen et al. [15] adopt CNNs
to extract region representations of each image and use an attention mechanism
to select the most impactful regions to the prediction. This model therefore
can tell users, for recommended items, which parts that they are likely to be
interested in.

The rich linked data in knowledge graphs has also been leveraged to provide
tailored explanations for recommendations. Huang et al. [55] present a knowledge
graph based approach to enhance explanations in sequential recommendation
settings. A memory network is used to capture attribute-level preferences by
leveraging external knowledge graphs. This approach provides explanations on
which attributes (e.g., genre, album, singer, actor, etc.) are taking effects when
making recommendations. Knowledge graph can also used to identify the paths
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that lead to the recommendations. Huang et al. [57] adopt a self-attention network
to explicitly model the knowledge graph aware paths between user-item pairs for
path-wise explanations. The attention scores help identify the most influential path
for each recommendation. Xian et al. [128] propose a deep reinforcement learning
approach for pathfinding in knowledge graphs as the interpretable evidence for
recommendations. For example, item b is recommended to user u because of the
path: {user u → item a → brand e → item b}. This reasoning path gives explicit
explanations for why a certain item is recommended.

3.6.2 Robust Recommender Systems

Recent work shows that recommendation models are not robust and are vulnerable
to adversarial attacks. Defending against those adversaries lives at the core pertain-
ing to the robustness. This task can be modeled as a minimax game similar to that in
GANs where the adversary crafts adversarial examples to degrade recommendation
performances while the recommender engine is trained to become robust to such
noises.

He et al. [46] propose an adversarial personalized ranking approach to improve
Bayesian personalised ranking (BPR) method by performing adversarial training.
The adversarial perturbations are added on the embedding vectors of users and
items, and are trained to maximize the BPR objective. The recommendation
model is trained to minimize the BPR loss plus an additional loss with adversary.
This adversarial training method can also be combined with autoencoder [141],
which could further improve both the robustness and performance. Adversarial
permutations can also be added to the content of users/items. For instance, Tang
et al. [102] apply this adversarial training approach to multimedia recommender
systems where the adversary adds perturbations on the multimedia content of items
to maximize VBPR (visual BPR) loss. The recommendation model is learned by
minimizing the VPBR and adversary’s loss.

3.7 Deep Reinforcement Learning for Recommendation

Recommender systems are usually solved in a supervised learning paradigm.
There are two major limitations of this line of work: (1) recommendation is an
interactive process; supervised learning will bring the so-called system bias that
only observed feedback from the current system is considered. (2) it tends to give
myopic recommendations by only recommending catchy items to get immediate
response instead of long term user utility. In recent years, DRL has begun to attract
attention in the recommender systems community. Using DRL, the recommendation
process can be formulated as a dynamic decision-making problem. DRL aims to
maximize the overall accumulated reward and considers the long term reward of the
recommendations. In order to build a recommender system based on reinforcement
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Fig. 11 Reinforcement
learning based recommender
systems
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learning, the key elements are defined as: Agent is a candidate generator; State
corresponds to user interests and contexts; Reward is defined as user satisfaction;
and action represents the nomination of items for recommendation. The definition
might be different in some cases, we refer readers to corresponding papers (Fig. 11).

To overcome the aforementioned limitations of supervised learning, Chen
et al. [12] propose REINFORCE, for recommendations at YouTube. REINFORCE
is a policy-gradient algorithm which can scale to production environment with an
action spaces up to millions. Chen et al. [11] present a tree-structured policy gradient
approach to handle the problem of large discrete action space in recommender
systems. In specific, to reduce time complexity, a balanced hierarchical clustering
tree is built over items and selecting an item is formulated as finding a path from
the root in this tree. Zhao et al. [153] apply DRL to capture distinct contributions
of both positive and negative feedback in a sequential interaction setting. During
scanning of the recommendation list, users may skip some recommended items.
Incorporating such negative feedback helps the system gain better understandings
about user’s preference. Zhao et al. [152] explore the page-wise recommendation
scenario with DRL. The proposed framework DeepPage is able to adaptively
optimize a page of items based on user’s real-time actions. Zheng et al. [154]
present DRN, a reinforcement learning based news recommender method which
considers: (1) the dynamic changes of news content and user preferences, (2)
incorporating return patterns (to the service) of users, and (3) the increase diversity
of recommendations. Xian et al. [128] propose a reinforcement learning approach to
find the paths in knowledge graph to enhance the explainability of recommendation.
Zou et al. [159] propose PDQ where real customers are replaced with a customer
simulator. The simulator is used to simulate the environment and is optimized
according to the current recommendation policy. Using a customer simulator
reduces the instability of convergence and provides unlimited interactions without
involving real users. In many works like [11, 152, 153], the embeddings of
users and items are usually pretrained and kept fixed during the training of the
reinforcement learning algorithms. However, the pretrained and fixed embeddings
cannot reflect the dynamics in user preferences and item characteristics, and might
lead to sub-optimal solutions. To solve this problem, Liu et al. [75] propose an
end-to-end framework to overcome the limitations. As the embedding component
cannot be stably trained with reinforcement learning algorithms, they introduce an
additional supervised learning classifier to stabilize the embedding learning process
by predicting whether a user offers positive feedback to the recommended item
or not.
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4 Deep Learning for Recommender Systems: Applications

In what follows, we introduce how deep learning techniques are used to build a vari-
ety of recommendation applications. We categorize existing publications according
to their target domains which are prevalent in today’s life. We contextualize closely
related domains and review how they address specific recommendation problems in
these domains. Table 2 summarizes a representative publication. Note that this is
not an exhaustive enumeration.

4.1 Deep Learning for E-commerce Recommendation

Recommender systems have become serious business tools in many e-commerce
sites such as Amazon,4 eBay,5 and Alibaba,6 and are re-shaping the world of e-
commerce. Most large commerce web sites are using recommender systems to help
their customers to identify the products they are interested in. Nowadays, deep
learning has been playing a primary role in the recommendation process on e-
commerce platforms. Here, we give some examples to illustrate how deep learning
is used in some e-commerce platforms.7

Lake et al. [66] present a deep learning based product embedding approach
for product recommendations on Amazon. The model adopts an attention network
to select relevant pieces of information from a user’s historical interactions.
It then learns a joint representation from a specific user-item pair, instead of
representing user and items in a common latent space. Both online and offline

Table 2 Deep learning based recommendation applications and corresponding publications

Applications Publications

E-commerce Lake et al. [66], Galron et al. [33], Zhou et al. [156, 157], Wu et al. [125],
Li et al. [70], Feng et al. [29, 30], Cen et al. [8], Chen et al. [13, 14]

Entertainment Covington et al. [23], Chen et al. [12], Van et al. [85], Huang et al. [56],
Wang et al. [121], Cheng et al. [19], Ying et al. [138], Yang et al. [135]

News Wu et al. [122, 123], An et al. [1], De et al. [98], Wang et al. [115] Hu
et al. [54]

Point-of-
Interests

Yang et al. [134], Wang et al. [119], Chang et al. [9], Liu et al. [77] Zhou
et al. [158]

Other domains Shang et al. [95, 96], Biswal et al. [7], Tay et al. [106]

4 https://www.amazon.com/.
5 https://www.ebay.com/.
6 https://www.alibaba.com/.
7 Note that there is no guarantee that the listed methods are currently in use.

https://www.amazon.com/
https://www.ebay.com/
https://www.alibaba.com/
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experiments demonstrate promising performance of this method for personalized
product recommendation. Galron et al. [33] propose an item embedding network
for recommendation on eBay. It has an item embedding network to learn continuous
item representations from its features (e.g., attributes, categories, and title tokens),
and a prediction network to compute the similarity between seed items (e.g. a
recently purchased item) and recommendation candidates. Deep learning based
recommender algorithms are also widely employed in Alibaba [8, 13, 14, 29, 30, 70,
156, 157]. Zhou et al. [157] use deep learning to learn user representations from user
profiles and her behaviors. A local activation unit is used to attend the related user
interests by soft-searching for relevant parts from historical behaviors. In the follow-
up work [13, 30, 156], the sequential order of user behaviors is also considered.
In specific, sequence modeling approaches RNNs, self-attention mechanism, and
transformer are adopted to capture the sequential signals underlying users’ behavior
data. To enhance the capability of modeling the diversity of user interests, [70]
and [8] adopt dynamic routing approaches to learn each user multiple interest
representations. Knowledge graph is also leveraged to improve the recommendation
performance [29]. Xu et al. [14] explore the use of deep learning in fashion outfit
recommendations on Alibaba. In this model, an encoder-decoder model is designed
to generate personalized fashion outfits. Wu et al. [125] deploy a deep recurrent
neural network based method for recommendation at NetEase (Kaola platform8). In
this model, deep RNNs are used to model the sequential behaviors of users.

4.2 Deep Learning for Online Entertainment Recommendation

Online entertainment platforms are taking over theatrical and home entertainment
business. Online entertainment covers a range of domains such as music, video,
book, etc. As such, personalized entertainment recommendation is critical to
help people narrow the universe of potential items to fit their unique tastes. In
recent years, deep learning also plays an important part in online entertainment
recommendations.

Covington et al. [23] propose a deep neural network based recommendation
method for recommendation on YouTube. It consists of a deep candidate generation
module and a separate deep ranking module. Both modules are fully connected
deep nonlinear neural networks. The deep candidate generation module is used for
candidate selection from the large pool of videos and the ranking module ranks
candidates. To improve the long-term user utility and tackle system biases, Chen
et al. [12] further propose a deep reinforcement learning based recommendation
algorithm which is currently in use on YouTube. Deep learning techniques can
also be applied for music recommendations [56, 85, 121]. In specific, these models
use CNNs to extract music representations from audio signals. Cheng et al. [19]

8 https://www.kaola.com/.

https://www.kaola.com/
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present a wide and deep learning based model to make app recommendations in
the Google play application store. A two-tower neural network with mixed negative
sampling is also employed in Google play [135]. Ying et al. [19] design a graph
convolutional neural network based recommender that is deployed to perform Pins
recommendations at Pinterest.9

4.3 Deep Learning Based News Recommendation

Reading news online has become a routine in many people’s lives. To avoid
overwhelming readers, personalization of the recommended articles is important for
online news services. Generally, news is text extensive and sometimes also contains
images, audio, and video pieces. An encoder that gets the representation for each
piece of news is indispensable, and deep learning techniques are suitable tools for
news resources.

Wu et al. [122] propose a news recommender model which adopts CNNs to
learn news representations from titles. The model applies attention networks to
select important words. User representation is learned via an attentive multi-view
learning framework from user’s search queries, clicked news, and browsed web-
pages. They further improve the news recommender by learning both news and users
representations with multi-head self-attention [123]. An et al. [1] use an attention-
based CNNs method for news representation learning, and incorporate sequential
behaviors and short-term preferences of users with GRUs. User’s long- and short-
term representations are integrated by concatenation, or by using the long-term
representation as the initialization of the hidden state of the GRUs. De et al. [98]
propose a deep learning architecture for session-based recommendation. This archi-
tecture has two modules: a news article representation module and a session-based
recommendation module with RNNs. News readers usually have diverse interests.
Their interests in different topics or events can be revealed from their historical
browsed news. To learn the fine-grained interests, Wang et al. [115] construct
representations for each news from multiple semantic views with stacked dilated
convolutional encoder, and perform fine-grained matching between candidate news
and user’s browsed news at different semantic levels. Hu et al. [54] model the
diverse interests by disentangling a user’s latent preference factors. In specific,
they construct a bipartite graph from the user-news interactions and apply graph
neural networks to relationships encoding via information propagation. The learned
representations are disentangled by a neighborhood routing algorithm to enhance
the expressiveness and interpretability.

9 https://www.pinterest.com/.

https://www.pinterest.com/
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4.4 Deep Learning for Point-of-Interest Recommendation

Point-of-Interest recommendation is useful and acts as a link between internet users
and real-world places such as stores, cinemas, restaurants, and tourist attractions.
Location-aware apps like Yelp,10 Foursquare,11 Google map,12 and Meituan13 all
provide location based services that are extensively used by millions of users.

Yang et al. [134] adopt fully connected neural networks to model the interaction
between users and POIs, and regularize users’ and POIs’ latent factors with an
additional context prediction task. Wang et al. [119] propose to enrich the POIs
recommendation by incorporating the visual contents of users’ posts (e.g., photos of
landmarks and food). In their model, CNNs is used for visual feature extraction
which is utilized for user intention identification. Textual information such as
reviews/comments on locations can also be utilized. Chang et al. [9] use both multi-
head attention mechanism and character-level CNNs to encode user’s generated
textual content into content embeddings. Those content embeddings are integrated
with LSTMs to capture user’s overall interests. To model the sequential behaviors,
Liu et al. [77] propose a spatial temporal recurrent neural networks to model both
time-specific transition and distance specific transition in POIs. Zhou et al. [158]
integrate a temporal latent Dirichlet allocation topic model and memory network
for personalized POI recommendation. This model integrates the POI-specific
geographical influence to enhance recommendations. Zhao et al. [151] present a
spatio-temporal gated network (STGN) for POI recommendation by enhancing the
long-short term memory network with gating mechanisms. Specifically, a time gate
and a distance gate are proposed to control the updates of short-term and long-term
preference representations.

4.5 Deep Learning Based Recommendation on Other Domains

Besides the domains described above, there exist substantial studies on many other
domains. We use healthcare as an example domain here. An important healthcare
related application is medication recommendations. Shang et al. [96] present a
graph augmented memory networks for medication combination recommendation.
It integrates both drug-to-drug interaction knowledge and patient health records
to provide safe and personalized recommendation. The problem in medication
recommendation is that the records of patients with only single visit (visit hospital
only once) are usually discarded. To leverage those data, Shang et al. [95] propose

10 https://www.yelp.com/.
11 https://foursquare.com/.
12 https://www.google.com/maps.
13 http://www.meituan.com/.
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a pre-training approach to leverage the single visit health records and fine-tune
it for downstream predictive tasks on longitudinal electronic health records from
patients with multiple visits. Biswal et al. [7] present doctor2vec to help identify
the appropriate doctors for clinical trial based on trial description and patient EHR
data. Friends recommendation is also popular in applications such as Twitter and
Facebook. For instance, Tay et al. [106] present an attention based GRU model for
friends recommendation on Twitter.

5 Discussion and Conclusion

Each task in recommender systems has its own challenges and specific factors
to consider. This chapter provides a categorised overview and perspective on the
published academic literature on deep learning based recommender systems. For
example, deep learning is advantageous in interaction modeling by introducing
nonlinearity and high-order interactions; user modeling by capturing the temporal
dynamics via sequential models and by disentangling user complex interests;
representation learning from unstructured content information; interpretability and
robustness. We hope that this chapter can shed some light on those who are
confronting these tough problems.

Nonetheless, some attractive properties come with the cost of time complexity.
Not all models reviewed in the chapter are computationally efficient, and some
models have high running time even with the help of GPU acceleration. In addition,
deep learning models are black boxes and neurons interact in complex ways to
produce the results. It is difficult to interpret the learned model and understand
how the outputs are arrived at. Luckily, we can partially bypass this problem by
producing human understandable explanations for recommendations. Deep learning
based models usually have many hyperparameters to tune. For example, the number
of layers, the number of neurons, dropout rate, how to initialize parameters, just
to name a few. There are no principles to guide the hyperparameter selection
process. Moreover, it usually requires a large amount of data to learn an effective
deep learning model. It might lead to sub-optimal solutions if the system does not
have enough data available. Expectantly, these limitations can be reduced with the
development of deep learning techniques.

Moreover, criticism on the field cannot be overlooked [25, 65, 89, 147]. One
major concern is that the evaluation of those newly proposed recommendation
models are not rigorous, which is manifested in several aspects. Firstly, the selection
of baselines and datasets in most papers are seemingly arbitrary. Authors have
free rein over the choices of datasets(e.g., random splits of train/val/test)/baselines.
This is understandable to a certain extent when the number of baselines/datasets
increases too quickly. Nonetheless, without a fair and comprehensive comparison,
the reported improvements do not add up and the advancements do not seem
convincing. Secondly, the inappropriate use of evaluation methodology exaggerates
the problem. Recent study shows that a popular evaluation methodology based on
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sampling that are widely adopted to measure the effectiveness of recommendation
models does not reflect the true model effectiveness [65, 89]. Having a full grasp
of the chosen evaluation methodology is critical in preventing inconsistent results.
Thirdly, many traditional methods are not fully tuned for comparison. It is reported
that some simple traditional methods can easily outperform neural networks on
some tasks with sufficient tuning [78]. Although these issues are not only tied to this
field, it is a good practice to bear these pitfalls in mind when evaluating your models.
We also encourage that standard benchmarks with consistent evaluation metrics and
data splits should be constructed in order to better judge incoming recommendation
algorithms. Also, codes and datasets shall be released to enhance reproducibility
when appropriate.

This chapter introduces the main deep learning techniques that can be applied
in the design of recommender systems. We have reviewed their use in the literature
and characterized them from different perspectives. The aim is to give researchers
and practitioners an understanding and a thorough summary of the field’s breadth
and depth. There are broad types of recommender systems; some of them are rarely
touched in the moment and some aspects might require more modelling efforts.
We hope that deep learning could lead to the advancement of next-generation
recommender systems that possess better intelligence and offer better customer
experience.

References

1. M. An, F. Wu, C. Wu, K. Zhang, Z. Liu, X. Xie, Neural news recommendation with long- and
short-term user representations, in Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, Florence (2019), pp. 336–345

2. S. Bai, J.Z. Kolter, V. Koltun, An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. Preprint, arXiv:1803.01271 (2018)

3. T. Bansal, D. Belanger, A. McCallum, Ask the GRU: multi-task learning for deep text
recommendations, in Recsys, New York, NY (2016), pp. 107–114

4. O. Barkan, N. Koenigstein, Item2vec: neural item embedding for collaborative filtering, in
2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP)
(IEEE, Piscataway, 2016), pp. 1–6

5. R. van den Berg, T.N. Kipf, M. Welling, Graph convolutional matrix completion. CoRR
abs/1706.02263 (2017). http://arxiv.org/abs/1706.02263

6. H. Bharadhwaj, H. Park, B.Y. Lim, RecGAN: recurrent generative adversarial networks for
recommendation systems, in Recsys (2018), pp. 372–376

7. S. Biswal, C. Xiao, L.M. Glass, E. Milkovits, J. Sun, Doctor2vec: dynamic doctor represen-
tation learning for clinical trial recruitment, in Proceedings of AAAI (2020), pp. 557–564

8. Y. Cen, J. Zhang, X. Zou, C. Zhou, H. Yang, J. Tang, Controllable multi-interest framework
for recommendation, in Proceedings of SIGKDD (2020)

9. B. Chang, Y. Koh, D. Park, J. Kang, Content-aware successive point-of-interest recommen-
dation, in Proceedings of the 2020 SIAM International Conference on Data Mining (SIAM,
Philadelphia, 2020), pp. 100–108

10. C. Chen, M. Zhang, Y. Liu, S. Ma, Neural attentional rating regression with review-level
explanations, in Proceedings of WWW, WWW ’18, Republic and Canton of Geneva, CHE
(2018), pp. 1583–1592

https://arxiv.org/abs/1706.02263


204 S. Zhang et al.

11. H. Chen, X. Dai, H. Cai, W. Zhang, X. Wang, R. Tang, Y. Zhang, Y. Yu, Large-scale interactive
recommendation with tree-structured policy gradient, in Proceedings of AAAI, vol. 33 (2019),
pp. 3312–3320

12. M. Chen, A. Beutel, P. Covington, S. Jain, F. Belletti, E.H. Chi, Top-k off-policy correction
for a reinforce recommender system, in Proceedings of WSDM, WSDM ’19 (Association for
Computing Machinery, New York, 2019), p. 456–464

13. Q. Chen, H. Zhao, W. Li, P. Huang, W. Ou, Behavior sequence transformer for e-commerce
recommendation in Alibaba, in Proceedings of the 1st International Workshop on Deep
Learning Practice for High-Dimensional Sparse Data, DLP-KDD ’19, New York (2019)

14. W. Chen, P. Huang, J. Xu, X. Guo, C. Guo, F. Sun, C. Li, A. Pfadler, H. Zhao, B. Zhao,
POG: personalized outfit generation for fashion recommendation at Alibaba iFashion, in
Proceedings of SIGKDD, KDD ’19, New York (2019), pp. 2662–2670

15. X. Chen, H. Chen, H. Xu, Y. Zhang, Y. Cao, Z. Qin, H. Zha, Personalized fashion
recommendation with visual explanations based on multimodal attention network: towards
visually explainable recommendation, in Proceedings of SIGIR, SIGIR’19, New York (2019),
pp. 765–774

16. X. Chen, H. Xu, Y. Zhang, J. Tang, Y. Cao, Z. Qin, H. Zha, Sequential recommendation with
user memory networks, in Proceedings of WSDM (2018), pp. 108–116

17. X. Chen, Y. Zhang, Q. Ai, H. Xu, J. Yan, Z. Qin, Personalized key frame recommendation, in
Proceedings of SIGIR, New York (2017), pp. 315–324

18. X. Chen, Y. Zhang, Z. Qin, Dynamic explainable recommendation based on neural attentive
models, in Proceedings of AAAI, vol. 33 (2019), pp. 53–60

19. H.T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G.
Corrado, W. Chai, M. Ispir et al., Wide & deep learning for recommender systems, in
Proceedings of the 1st Workshop on Deep Learning for Recommender Systems (2016), pp.
7–10

20. Z. Cheng, Y. Ding, X. He, L. Zhu, X. Song, M. Kankanhalli, A3NCF: an adaptive aspect
attention model for rating prediction, in Proceedings of IJCAI (2018), pp. 3748–3754

21. W.T. Chu, Y.L. Tsai, A hybrid recommendation system considering visual information for
predicting favorite restaurants. WWW 20(6), 1313–1331 (2017)

22. J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural
networks on sequence modeling. Preprint, arXiv:1412.3555 (2014)

23. P. Covington, J. Adams, E. Sargin, Deep neural networks for youtube recommendations, in
Proceedings of Recsys (2016), pp. 191–198

24. A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, A.A. Bharath, Generative
adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

25. M.F. Dacrema, P. Cremonesi, D. Jannach, Are we really making much progress? A worrying
analysis of recent neural recommendation approaches, in Proceedings of the 13th ACM
Conference on Recommender Systems (2019), pp. 101–109

26. J. Devlin, M.W. Chang, K. Lee, K. Toutanova, Bert: pre-training of deep bidirectional
transformers for language understanding, in Proceedings of NAACL-HLT (2019)

27. T. Donkers, B. Loepp, J. Ziegler, Sequential user-based recurrent neural network recommen-
dations, in Proceedings of Recsys (2017), pp. 152–160

28. W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D. Yin, Graph neural networks for social
recommendation, in Proceedings of WWW, New York (2019), pp. 417–426

29. Y. Feng, B. Hu, F. Lv, Q. Liu, Z. Zhang, W. Ou, ATBRG: adaptive target-behavior relational
graph network for effective recommendation, in Proceedings of SIGIR (2020)

30. Y. Feng, F. Lv, W. Shen, M. Wang, F. Sun, Y. Zhu, K. Yang, Deep session interest network
for click-through rate prediction, in International Joint Conferences on Artificial Intelligence
Organization, IJCAI (2019), pp. 2301–2307

31. A. Fischer, C. Igel, An introduction to restricted Boltzmann machines, in Iberoamerican
Congress on Pattern Recognition (Springer, New York, 2012), pp. 14–36

32. V. François-Lavet, P. Henderson, R. Islam, M.G. Bellemare, J. Pineau et al., An introduction
to deep reinforcement learning. Found. Trends Mach. Learn. 11(3–4), 219–354 (2018)



Deep Learning for Recommender Systems 205

33. D.A. Galron, Y.M. Brovman, J. Chung, M. Wieja, P. Wang, Deep item-based collaborative
filtering for sparse implicit feedback (2018)

34. X. Geng, H. Zhang, J. Bian, T.S. Chua, Learning image and user features for recommendation
in social networks, in Proceedings of ICCV (2015), pp. 4274–4282

35. K. Georgiev, P. Nakov, A non-IID framework for collaborative filtering with restricted
Boltzmann machines, in Proceedings of ICML (2013), pp. 1148–1156

36. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016). https://www.
deeplearningbook.org

37. M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla, V. Bhagwan, D. Sharp,
E-commerce in your inbox: product recommendations at scale, in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2015),
pp. 1809–1818

38. A. Greenstein-Messica, L. Rokach, M. Friedman, Session-based recommendations using
item embedding, in Proceedings of the 22nd International Conference on Intelligent User
Interfaces (2017), pp. 629–633

39. X. Guan, Z. Cheng, X. He, Y. Zhang, Z. Zhu, Q. Peng, T.S. Chua, Attentive aspect modeling
for review-aware recommendation. ACM Trans. Inf. Syst. 37(3) (2019)

40. H. Guo, R. Tang, Y. Ye, Z. Li, X. He, DeepFM: a factorization-machine based neural network
for CTR prediction, in Proceedings of IJCAI (2017), pp. 1725–1731

41. X. Guo, C. Shi, C. Liu, Intention modeling from ordered and unordered facets for sequential
recommendation, in Proceedings of WWW (2020), pp. 1127–1137

42. R. He, J. McAuley, Ups and downs: modeling the visual evolution of fashion trends with one-
class collaborative filtering, in Proceedings of WWW, Republic and Canton of Geneva, CHE
(2016), pp. 507–517

43. R. He, J. McAuley, VBPR: visual Bayesian personalized ranking from implicit Feedback, in
Proceedings of AAAI (2016), pp. 144–150

44. X. He, T.S. Chua, Neural factorization machines for sparse predictive Analytics, in
Proceedings of SIGIR (2017), pp. 355–364

45. X. He, X. Du, X. Wang, F. Tian, J. Tang, T.S. Chua, Outer product-based neural collaborative
filtering, in Proceedings of IJCAI (2018), pp. 2227–2233

46. X. He, Z. He, X. Du, T.S. Chua, Adversarial personalized ranking for recommendation, in
Proceedings of SIGIR, SIGIR ’18, New York (2018), pp. 355–364

47. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.S. Chua, Neural collaborative filtering, in
Proceedings of WWW (2017), pp. 173–182

48. B. Hidasi, A. Karatzoglou, Recurrent neural networks with top-k gains for session-based
recommendations, in Proceedings of CIKM (2018), pp. 843–852

49. B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk, Session-based recommendations with
recurrent neural networks. Preprint, arXiv:1511.06939 (2015)

50. B. Hidasi, M. Quadrana, A. Karatzoglou, D. Tikk, Parallel recurrent neural network architec-
tures for feature-rich session-based recommendations, in Proceedings of Recsys (2016), pp.
241–248

51. G.E. Hinton, Deep belief networks. Scholarpedia 4(5), 5947 (2009)
52. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780

(1997)
53. C.K. Hsieh, L. Yang, Y. Cui, T.Y. Lin, S. Belongie, D. Estrin, Collaborative metric learning,

in Proceedings of WWW (2017), pp. 193–201
54. L. Hu, S. Xu, C. Li, C. Yang, C. Shi, N. Duan, X. Xie, M. Zhou, Graph neural news recom-

mendation with unsupervised preference disentanglement, in Proceedings of Association for
Computational Linguistics (2020)

55. J. Huang, W.X. Zhao, H. Dou, J.R. Wen, E.Y. Chang, Improving sequential recommendation
with knowledge-enhanced memory networks, in Proceedings of SIGIR, SIGIR ’18, New York
(2018), pp. 505–514

56. Q. Huang, A. Jansen, L. Zhang, D.P.W. Ellis, R.A. Saurous, J. Anderson, Large-scale weakly-
supervised content embeddings for music recommendation and tagging, in ICASSP 2020–

https://www.deeplearningbook.org
https://www.deeplearningbook.org


206 S. Zhang et al.

2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(2020), pp. 8364–8368

57. X. Huang, Q. Fang, S. Qian, J. Sang, Y. Li, C. Xu, Explainable interaction-driven user
modeling over knowledge graph for sequential recommendation, in Proceedings of the 27th
ACM International Conference on Multimedia, MM ’19, New York (2019), pp. 548–556

58. X. Huang, S. Qian, Q. Fang, J. Sang, C. Xu, CSAN: contextual self-attention network for
user sequential recommendation, in Proceedings of the 26th ACM International Conference
on Multimedia (2018), pp. 447–455

59. Y. Ji, A. Sun, J. Zhang, C. Li, A re-visit of the popularity baseline in recommender systems,
in Proceedings of SIGIR (2020), pp. 1749–1752

60. W.C. Kang, E. Kim, J. Leskovec, C. Rosenberg, J. McAuley, Complete the look: scene-based
complementary product recommendation, in Proceedings of CVPR (2019)

61. W.C. Kang, J. McAuley, Self-attentive sequential recommendation. in Proceedings of ICDM
(IEEE, Piscataway, 2018), pp. 197–206

62. D. Kim, C. Park, J. Oh, S. Lee, H. Yu, Convolutional matrix factorization for document
context-aware recommendation, in Proceedings of Recsys, New York (2016), pp. 233–240

63. T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks.
Preprint, arXiv:1609.02907 (2016)

64. Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems.
Computer 42(8), 30–37 (2009)

65. W. Krichene, S. Rendle, On sampled metrics for item recommendation, in Proceedings of
SIGKDD, KDD ’20, New York (2020), pp. 1748–1757

66. T. Lake, S.A. Williamson, A.T. Hawk, C.C. Johnson, B.P. Wing, Large-scale collaborative
filtering with product embeddings. Preprint, arXiv:1901.04321 (2019)

67. H. Lee, Y. Ahn, H. Lee, S. Ha, S.g. Lee, Quote recommendation in dialogue using deep neural
network, in Proceedings of SIGIR, New York (2016), pp. 957–960

68. J. Lee, S. Abu-El-Haija, B. Varadarajan, A.P. Natsev, Collaborative deep metric learning for
video understanding, in Proceedings of SIGKDD, New York (2018), pp. 481–490

69. C. Lei, D. Liu, W. Li, Z.J. Zha, H. Li, Comparative deep learning of hybrid representations
for image recommendations, in Proceedings of CVPR (2016)

70. C. Li, Z. Liu, M. Wu, Y. Xu, H. Zhao, P. Huang, G. Kang, Q. Chen, W. Li, D.L. Lee, Multi-
interest network with dynamic routing for recommendation at Tmall, in Proceedings of
CIKM, CIKM ’19, New York (2019), pp. 2615–2623

71. J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, J. Ma, Neural attentive session-based recommendation,
in Proceedings of CIKM (2017), pp. 1419–1428

72. L. Li, L. Chen, Y. Zhang, Towards controllable explanation generation for recommender
systems via neural template, in Proceedings of WWW, WWW ’20, New York (2020), pp.
198–202

73. P. Li, Z. Wang, Z. Ren, L. Bing, W. Lam, Neural rating regression with abstractive tips
generation for recommendation, in Proceedings of SIGIR, SIGIR ’17, New York (2017), pp.
345–354

74. J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, G. Sun, xDeepFM: combining explicit and
implicit feature interactions for recommender systems, in Proceedings of SIGKDD (2018),
pp. 1754–1763

75. F. Liu, H. Guo, X. Li, R. Tang, Y. Ye, X. He, End-to-end deep reinforcement learning based
recommendation with supervised embedding, in Proceedings of WSDM, WSDM ’20, New
York (2020), pp. 384–392

76. Q. Liu, S. Wu, L. Wang, Deepstyle: learning user preferences for visual recommendation, in
Proceedings of SIGIR, New York (2017), pp. 841–844

77. Q. Liu, S. Wu, L. Wang, T. Tan, Predicting the next location: a recurrent model with spatial
and temporal contexts, in Thirtieth AAAI Conference on Artificial Intelligence (2016)

78. M. Ludewig, D. Jannach, Evaluation of session-based recommendation algorithms. User
Model. User-Adapted Interact. 28(4–5), 331–390 (2018)



Deep Learning for Recommender Systems 207

79. C. Ma, P. Kang, X. Liu, Hierarchical gating networks for sequential recommendation, in
Proceedings of SIGKDD (2019), pp. 825–833

80. J. Ma, C. Zhou, P. Cui, H. Yang, W. Zhu, Learning disentangled representations for recom-
mendation, in Proceeding of NeurIPS, ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, R. Garnett (Curran Associates, Red Hook, 2019), pp. 5711–5722

81. J. McAuley, C. Targett, Q. Shi, A. van den Hengel, Image-based recommendations on styles
and substitutes, in Proceeding of SIGIR, New York (2015), pp. 43–52

82. T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in
vector space. Preprint, arXiv:1301.3781 (2013)

83. F. Monti, M. Bronstein, X. Bresson, Geometric matrix completion with recurrent multi-graph
neural networks, in Advances in Neural Information Processing Systems, ed. by I. Guyon,
U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Curran
Associates, Red Hook, 2017), pp. 3697–3707

84. W. Niu, J. Caverlee, H. Lu, Neural personalized ranking for image recommendation, in
Proceedings of WSDM, New York (2018), pp. 423–431

85. A. van den Oord, S. Dieleman, B. Schrauwen, Deep content-based music recommendation,
in Advances in Neural Information Processing Systems, ed. by C.J.C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, K.Q. Weinberger (2013), pp. 2643–2651

86. F. Pan, S. Li, X. Ao, P. Tang, Q. He, Warm up cold-start advertisements: improving CTR
predictions via learning to learn ID embeddings, in Proceedings of SIGIR, SIGIR’19, New
York (2019), pp. 695–704

87. R. Qiu, Z. Huang, J. Li, H. Yin, Exploiting cross-session information for session-based
recommendation with graph neural networks. ACM Trans. Inf. Syst. 38(3), 1–23 (2020)

88. S. Rendle, W. Krichene, L. Zhang, J. Anderson, Neural collaborative filtering vs. matrix
factorization revisited. Preprint, arXiv:2005.09683 (2020)

89. S. Rendle, W. Krichene, L. Zhang, J. Anderson, Neural collaborative filtering vs. matrix
factorization revisited, in Fourteenth ACM Conference on Recommender Systems, RecSys
’20, New York (2020), pp. 240–248

90. S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, in Proceedings of
NeurIPS (2017), pp. 3856–3866

91. R. Salakhutdinov, A. Mnih, G. Hinton, Restricted Boltzmann machines for collaborative
filtering, in Proceedings of ICML (2007), pp. 791–798

92. B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommenda-
tion algorithms, in Proceedings of WWW (2001), pp. 285–295

93. S. Sedhain, A.K. Menon, S. Sanner, L. Xie, Autorec: autoencoders meet collaborative
filtering, in Proceedings of WWW, WWW ’15 Companion, New York (2015), pp. 111–112

94. S. Seo, J. Huang, H. Yang, Y. Liu, Interpretable convolutional neural networks with dual local
and global attention for review rating prediction, in Proceedings of Recsys, New York (2017),
pp. 297–305

95. J. Shang, T. Ma, C. Xiao, J. Sun, Pre-training of graph augmented transformers for medication
recommendation, in Proceedings of IJCAI (2019), pp. 5953–5959

96. J. Shang, C. Xiao, T. Ma, H. Li, J. Sun, Gamenet: graph augmented memory networks for
recommending medication combination, in Proceedings of AAAI, vol. 33 (2019), pp. 1126–
1133

97. W. Song, Z. Xiao, Y. Wang, L. Charlin, M. Zhang, J. Tang, Session-based social recommen-
dation via dynamic graph attention networks, in Proceedings of WSDM, New York (2019),
pp. 555–563

98. G. de Souza Pereira Moreira, F. Ferreira, A.M. da Cunha, News session-based recommenda-
tions using deep neural networks, in Proceedings of the 3rd Workshop on Deep Learning for
Recommender Systems (2018), pp. 15–23

99. F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, P. Jiang, Bert4rec: sequential recommendation
with bidirectional encoder representations from transformer, in Proceedings of CIKM (2019),
pp. 1441–1450



208 S. Zhang et al.

100. J. Tan, X. Wan, J. Xiao, A neural network approach to quote recommendation in writings, in
Proceedings of CIKM, New York (2016), pp. 65–74

101. J. Tang, F. Belletti, S. Jain, M. Chen, A. Beutel, C. Xu, H. Chi, E.: Towards neural mixture
recommender for long range dependent user sequences, in Proceedings of WWW (2019), pp.
1782–1793

102. J. Tang, X. Du, X. He, F. Yuan, Q. Tian, T. Chua, Adversarial training towards robust
multimedia recommender system. IEEE Trans. Knowl. Data Eng. 32(5), 855–867 (2020)

103. J. Tang, K. Wang, Personalized top-n sequential recommendation via convolutional sequence
embedding, in Proceedings of WSDM (2018), pp. 565–573

104. Y. Tay, L. Anh Tuan, S.C. Hui, Latent relational metric learning via memory-based attention
for collaborative ranking, in Proceedings of WWW (2018), pp. 729–739

105. Y. Tay, A.T. Luu, S.C. Hui, Multi-pointer co-attention networks for recommendation, in
Proceedings of SIGKDD, New York (2018), pp. 2309–2318

106. Y. Tay, L.A. Tuan, S.C. Hui, Couplenet: paying attention to couples with coupled attention for
relationship recommendation, in Twelfth International AAAI Conference on Web and Social
Media (2018)

107. Y. Tay, S. Zhang, A.T. Luu, S.C. Hui, L. Yao, T.D.Q. Vinh, Holographic factorization
machines for recommendation, in Proceedings of AAAI, vol. 33 (2019), pp. 5143–5150

108. T.X. Tuan, T.M. Phuong, 3D convolutional networks for session-based recommendation with
content features, in Proceedings of RecSys, New York (2017), pp. 138–146

109. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I.
Polosukhin, Attention is all you need, in Proceedings of NeurIPS (2017), pp. 5998–6008
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