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1 Introduction

Item recommendation, also known as top-n recommendation, is the task to select
the best items from a large catalogue of items to a user in a given context. For
example, an e-commerce website recommends products to their customers, or a
video platform might want to select videos that matches a user’s interests. Item
recommendation models are usually learned from implicit feedback. Instead of
recommending based on explicit preferences such as a user gave 4 stars to a
movie, the recommendations are based on the past interactions of the user with the
system. For example, recommendation can be based on past products purchased
by a customer, or videos watched by a user. A good recommender system is often
contextual, considering the situation at which a recommendation should be made,
e.g., what product is the user currently browsing on, or time information such as
weekday vs weekend.

Item recommendation can be formulated as a context-aware ranking problem
where the whole set of items should be ordered given a query context. In traditional
collaborative filtering, the context would be the user, in more complex cases, the
context might be user and time, a user and location, the sequence of previously
selected items by a user, etc. To cover these cases, this chapter uses the general
concept of a context as a placeholder. A scoring function that expresses the
preference between a context and an item is used to order the items. This chapter
covers learned scoring functions that are optimized from implicit feedback. The
core challenges of learning from implicit feedback are to formulate an optimization
objective and to design algorithms that can handle large item catalogues. First,
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implicit feedback contains weak signals about a user’s preference: the selected items
in the past give a weak indicator of what a user likes. Implicit feedback usually does
not contain negative interactions, instead weak negatives are derived from all the
remaining items, i.e., the items that a user has not interacted with. Considering
all remaining items as weak negative signal leads to the second challenge of
high training costs. Formulating the item recommendation problem as a standard
machine learning task is very costly because every positive signal from the implicit
feedback entails negative signal over all items. That makes off-the-shelve training
algorithms hard to apply to item recommendation models. Item recommenders are
usually trained either (a) using sampling or (b) specialized algorithms taking into
account model and loss structure.

This chapter starts with a detailed discussion of the item recommendation prob-
lem, covering the scoring function, the retrieval task, common evaluation metrics,
and a summary of the core challenges in learning item recommendation from
implicit feedback. The main part of this chapter focuses on the training problem.
Sampling methods for general scoring functions based on pointwise, pairwise and
softmax losses are described. The sampling distribution and weighting function
are important for fast convergence and for aligning the algorithm better with the
evaluation metrics. Section 5 discusses more efficient training algorithms that can
be applied to dot product models and square losses. Finally, at application time,
item recommenders need to be able to retrieve the highest scoring items quickly
from the whole item catalogue. Section 6 discusses sublinear time approaches for
the retrieval task.

2 Problem Definition

The goal of item recommendation is to retrieve a subset of interesting items for a
given context c ∈ C from a set of items I . This chapter uses the general concept of a
context as a placeholder to cover many common item recommendation scenarios. In
the simplest case, the context could be the user, in more complex cases, the context
might be user and time, a user and location, the sequence of previously selected
items by a user, etc. Also the input representation of a context and an item is flexible,
it could be a user id or item id, but also more complex such as image pixels of an
item, a textual description, etc. Such attributes are especially important in the cold
start problem. The discussion in this chapter is independent of these choices and
should be able to accommodate most item recommendation settings.

2.1 Recommender Modeling

The preference of a context c ∈ C to an item i ∈ I is given by a scoring function
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Table 1 Frequently used notation

Symbol Description

I Set of items

C Set of context

S ⊆ C × I Set of implicit observations

Ic Set of items selected in context c, i.e., Ic := {i : (c, i) ∈ S}
Ci Set of context that selected item i, i.e., Ci := {c : (c, i) ∈ S}
ŷ(i|c) (Learnable) scoring function over context-item pairs

θ Model parameters of the scoring function ŷ

φ(c) (Learnable) context representation/ embedding

ψ(i) (Learnable) item representation/ embedding

〈·, ·〉 Inner/ dot/ scalar product between two vectors or two matrices

⊗ Outer product between two vectors

δ(b) Indicator function, 1 if b is true, 0 otherwise

ŷ(c, i) = ŷ(i|c), ŷ : C × I → R (1)

The choice and design of the scoring function ŷ is the problem of recommender
system modeling. Most of the discussion here is independent of the particular
choice of ŷ. Chapter “Advances in Collaborative Filtering” focuses on recommender
system modeling and contains some examples of possible scoring functions.

The scoring function is parametrized1 by a set of model parameters θ ∈ R
p.

Learning the model parameters is a core problem within item recommendation
and the main focus of this chapter. The first derivative of ŷ(i|c) with respect to a
parameter vector θ is denoted as ∇θ ŷ(i|c), and the second derivative as ∇2

θ ŷ(i|c).
Table 1 contains an overview of frequently used symbols.

2.1.1 Dot Product Models

While most of this chapter does not make any assumption about the scoring
function, many recommender models have additional structure which is discussed
now. For item recommendation, ŷ is often decomposable into a dot product between
a context and item representation

ŷ(i|c) = 〈φ(c),ψ(i)〉 (2)

where context and items are represented by d dimensional embeddings

φ : C → R
d , ψ : I → R

d . (3)

1 To be precise, ŷ should be ŷθ , but for convenience, the subscript is omitted in this chapter.
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Again, φ and ψ are parametrized by θ . Such models are also known as two tower
models, or dual encoders [30].

Unless stated otherwise, the methods described in this chapter will be general
and are not restricted to dot product models. However, dot product models will be
revisited frequently as they have very desirable properties for item recommendation.

2.1.2 Examples

Two common examples for scoring functions with a dot product are matrix
factorization and two tower deep neural networks. First, the scoring function of
matrix factorization is ŷ(i|c) = 〈wc,hi〉 where each context (or item) is directly
represented by a d dimensional embedding vector, wc ∈ R

d (or hi ∈ R
d ). These

embedding matrices, W ∈ R
C×d and H ∈ R

I×d are the model parameters θ . A
matrix factorization is a dot product model with φ(c) = wc and ψ(i) = hi .

Second, a general two tower deep neural network (DNN), ŷ(i|c) = 〈φ(c),ψ(i)〉,
where φ(c) is a learnable function that extracts a d dimensional representation
for each context, and analogously ψ(i) is a learned representation for items. The
model parameters of these functions are θ . For example ψ(i) could be a multi layer
perceptron that generates an embedding based on the features of an item (e.g., genre,
actors, director, release year of a movie)—here the model parameters θ would be the
weight matrices of the hidden layers. Other examples for ψ(i) or φ(c) would be a
convolutional network to extract spatial features from an image and map it to an
embedding, or a recurrent model that builds an embedding representation based on
sequential data such as previous purchases of a user or textual descriptions of an
item.

2.2 Applying Item Recommenders

The scoring function ŷ can be used to rank items for a given context. Let r̂(i|c) be
the rank/position of item i in the sorted list of items I given context c and scoring
function ŷ, i.e., r̂ : I → {1, . . . , |I |}. Here r is a bijective mapping—in case of
ties, there is some resolution, e.g., random. Thus, the inverse function gives the
item ranked at a certain position, e.g, r̂−1(3|c) would be the item ranked at the 3rd
position for a context c.

When a recommendation model ŷ is used for the task of item recommendation,
it needs to find the n highest scoring items for a given context c. That means
it has to compute the items r̂−1(1|c), r̂−1(2|c), . . . , r̂−1(n|c). For example, a
recommendation platform might want to show the user the 20 items with the highest
score. Section 6 will discuss this problem of computing the top n items in more
detail.

For a good user experience there are other considerations besides high scores
when selecting items. For example, diversity of results and slate optimization are
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important factors [11, 28]. A naive implementation just returns the top scoring items.
While each item that is shown to a user might be individually a good choice, the
combination of items might be suboptimal. For example, showing item i might make
item j less attractive if i and j are very close or even interchangeable. Instead,
it might be better to choose an item l that complements i better—even if l has
a lower score than j . Diversification of result sets is an example to avoid some
of these effects. Commonly, algorithms for slate optimization and diversification
are built on top of an item recommender. The remainder of this chapter will not
discuss these important issues further, instead the chapter will focus on the top n

item recommendation task.

2.3 Evaluation

The quality of an item recommendation algorithm is typically measured by a ranking
metric over the positions at which it ranks relevant items. For a given context c and a
ground truth set of relevant items {i1, i2, . . .}, the ranks of these relevant items, R :=
{r̂(i1|c), r̂(i2|c), . . .}, are computed and then a metric is applied. Several popular
choices are discussed next. Chapter “Evaluating Recommender Systems” contains
an exhaustive discussion about evaluation and more metrics.

Precision at position n measures the fraction of relevant items among the top n

predicted items:

Prec(R)n = |{r ∈ R : r ≤ n}|
n

. (4)

Recall at position n measures the fraction of all relevant items that were recovered
in the top n:

Recall(R)n = |{r ∈ R : r ≤ n}|
|R| . (5)

Average Precision at n measures the precision at all ranks that hold a relevant item:

AP(R)n = 1

min(|R|, n)

n∑

i=1

δ(i ∈ R)Prec(R)i . (6)

Normalized discounted cumulative gain (NDCG) at n places an inverse log reward
on all positions that hold a relevant item:

NDCG(R)n = 1
∑min(|R|,n)

i=1
1

log2(i+1)

n∑

i=1

δ(i ∈ R)
1

log2(i + 1)
. (7)
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Area under the ROC curve (AUC) measures the likelihood that a random relevant
item is ranked higher than a random irrelevant item.

AUC(R) = 1

|R|(|I | − |R|)
∑

r∈R

∑

r ′∈({1,...,|I |}\R)

δ(r < r ′) (8)

These metrics differ in how much emphasize they place on particular ranks. Most
metrics focus strongly on the top ranks and give almost no rewards for items that
appear late in the result list. AUC is an exception as it has a slow (linear) decay. A
more detailed discussion about these metrics can be found in [14].

The choice of the metric depends on the application. For retrieval tasks, head-
heavy metrics such as Precision, Recall, AP or NDCG are better choices than AUC
because users will likely investigate only the highest ranked items. If the retrieved
results are directly shown, NDCG and AP can be better metrics than Precision
and Recall because they emphasize the top ranked results stronger, e.g., distinguish
between the first and second position. If the retrieval stage is followed by a reranking
step, metrics such as Recall with n equal to the number of candidates that will be
reranked can be a better choice than metrics that care about the ranks within the top
n such as NDCG or AP.

2.4 Learning from Implicit Feedback

This chapter covers implicit feedback between contexts and items. Let S ⊆ C×I be
a set of such observations, where (c, i) ∈ S is an implicit feedback pair. Examples
for S are clicks on links, video watches, purchases of items. Implicit observations
provide a (weak) positive signal of a user’s preferences. For example, if a user
watches a video, it means that this video matches to the user’s taste to some degree.
Likewise, the items a user has never considered in the past are indicative of their
taste as well. These non-selected items contain both the items that a user is not
interested in and items that should be recommended to the user in the future. A core
problem of learning item recommendation from implicit feedback is to define a
training objective for trading off the selected with the non-selected items. Section 3
describes such strategies. Each of these strategies defines the loss over all selected
and non-selected items, i.e., not just over S but over the whole set C × I . This leads
to a second core challenge of deriving efficient learning algorithms.

This differentiates item recommendation from the learning to rank literature [5]
where a smaller set of candidates needs to be reranked. This reranking of a small
set of candidates has different problem characteristics than item recommendation
because (1) it can be done directly on clickthrough data [12] avoiding the problem
to define labels on unobserved data and (2) it is computationally simpler because
it does not involve the full catalogue of all items. Such models serve a different
purpose than the item recommendation models that are discussed in this chapter, and
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applying them directly to retrieval over the whole corpus is prone to low retrieval
quality due to folding [29]. However, they are very useful as a second stage reranker
on top of the retrieval models discussed in this chapter. For example, [6] describes
such a two stage architecture where item recommendation is trained from implicit
feedback and a second stage reranks the top n retrieved items based on impression
data. In this case, the primary goal of item recommendation is to achieve a high
recall within the top n results because the final ranking of these candidates is
determined by the second stage ranker.

Another class of recommender system problems is based on explicit feedback,
most notably rating prediction. Here, explicit preferences are provided such as
a user u assigns 5 stars to a movie i, but only 2 stars to movie j. This is a
different problem from item recommendation from implicit feedback. The training
objective is simpler because it can be defined directly on the explicit feedback,
avoiding the costly optimization over all items. These aspects makes it similar to the
learning to rank problem, however it differs from learning to rank in the metrics. A
commonality of item recommendation from implicit feedback and recommenders
over explicit feedback, is that they share similar design patterns for the scoring
function. For example, matrix factorization or item-based collaborative filtering is
popular for both problems.

2.5 Core Challenges of Item Recommendation

To summarize, the core challenges of item recommendation are:

1. Formulating a loss function over implicit feedback. This requires to define a
strategy to trade off selected with unselected items while considering the ranking
metric.

2. Learning algorithms that can handle the large number of unselected items
efficiently.

3 Learning Objectives

This section describes three popular approaches for casting the item recommenda-
tion problem into a supervised machine learning problem.

3.1 Pointwise Loss

The observations, S, can be directly casted into a binary classification problem by
treating the observed feedback S as positive instances and all non selected items,
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(C ×I )\S as weak negatives. Each training instance has a positive or negative label
and an example weight. Any positive pair (c, i) ∈ S, is assigned a positive label, e.g.,
y = 1 or, if available, another positive signal such as the strength of the interaction,
e.g., number of times selected, or time spent. Additionally all non-observed items
j for the context are included with a negative label, e.g., y = 0 (for regression) or
y = −1 (for classification). A weight α can be assigned to each context-item tuple
to indicate the confidence about the training case. Usually, the confidence in the
non-observed pairs is lower than for observed one. That balances the large amount
of O(|C × I |) negatives with the smaller amount of |S| positives. Other weighting
schemes can be used to downweight popular items to promote more tail items in
the result, or reduce the weight of users with many positive interactions so that the
experience is not dominated by the behavior of heavy users.

From a regression point of view, a good scoring model predicts scores close to
y. From a probabilistic point of view, the binary event p(i = true|c) is modeled
through ŷ, e.g., p(i = true|c) = σ(ŷ(i|c)). These ideas can be formalized as a
pointwise loss

L(θ, S) :=
∑

c∈C

∑

i∈I

α(c, i) l(ŷ(i|c), y(c, i)) + λ(θ) (9)

where α : C × I → R
+ is a weight function, y the label function (e.g., y(c, i) =

δ((c, i) ∈ S)), and λ is some regularization function and l is a loss function, e.g.,

lsquare(ŷ, y) = (ŷ − y)2 (10a)

llogistic(ŷ, y) = ln(1 + exp(−y ŷ)) (10b)

lhinge(ŷ, y) = max(0, 1 − y ŷ) (10c)

This casts the problem of item recommendations to a standard binary classification
or regression problem. What makes this problem special is that the number of
training examples is huge O(|C| |I |). The number of items can be in the millions
for large scale problems which makes application of standard learning methods
challenging.

Examples for recommender system algorithms that use a pointwise loss are
iALS [10], SLIM [16], or iCD [2].

3.2 Pairwise Loss

For retrieval, it is not of primary interest if the score ŷ is exactly 1 or 0. Instead the
relative ordering of the items in a context is of central importance. Given a context
c, pairwise methods compare all pairs of items (i, j) where (c, i) ∈ S, (c, j) �∈ S. A
successful scoring function, ŷ, assigns a higher score to the observed item i than the
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unobserved one: ŷ(i|c) > ŷ(j |c). For the final retrieval, the items are simply sorted
by the score.

A general pairwise loss function can be defined as:

L(θ , S) :=
∑

(c,i)∈S

∑

j∈I

α(c, i, j) l(ŷ(i|c) − ŷ(j |c), 1) + λ(θ) (11)

where α is a weight function. See Eq. (10) for some example losses l.
The number of pairs in this loss is O(|S| |I |) ⊇ O(|C| |I |). That means it is

at least as expensive as pointwise training, and it faces the same computational
challenges.

3.3 Softmax Loss

From a probabilistic point of view, pointwise training models the binary event p(i =
true|c) through ŷ, e.g., p(i = true|c) = σ(ŷ(i|c)). Pairwise training models the
conditional probability of the binary comparison p(i > j |c) through ŷ, e.g., p(i >

j |c) = p(ŷ(i|c) > ŷ(j |c)) = σ(ŷ(i|c) − ŷ(j |c)). A third option is to model
the conditional multinomial event p(i|c), i.e.,

∑
j∈I p(j |c) = 1 and ∀j : 0 ≤

p(j |c) ≤ 1. The most common function to translate a real valued score, such as ŷ,
to a multinomial distribution is the softmax:

p(i|c) = exp(ν ŷ(i|c))∑
j∈I exp(ν ŷ(j |c)) ∝ exp(ν ŷ(i|c)). (12)

The numerator of the softmax is often referred to as the partition function. ν ∈
R

+ of the softmax is an (inverse) temperature parameter. Small choices of ν

(=high temperature) make the distribution more uniform. Larger choices (=low
temperature) make it more spiky and concentrated around the large values. For ν →
∞, softmax approaches the maximum operator. And for this limit the probability is
concentrated at one index

p(i|c) = δ

(
i = argmax

j

ŷ(j |c)
)

(13)

This aligns well with ranking metrics that focus on the top ranked positions. Softmax
is widely used in multiclass classification problems, including natural language
models where the classes are words, or image classification where the labels are
categories.

To keep the notation short, the remainder of this chapter ignores ν because
usually ŷ can absorb any scaling effect of ν by increasing the norm of ŷ. From the
softmax definition of the multinomial probability follows the loss function through
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the negative log likelihood:

L(θ, S) = −
∑

(c,i)∈S

ln p(i|c) + λ(θ)

= −
∑

(c,i)∈S

ln
exp(ŷ(i|c))∑

j∈I exp(ŷ(j |c)) + λ(θ)

= −
∑

(c,i)∈S

⎡

⎣ŷ(i|c) − ln
∑

j∈I

exp(ŷ(j |c))
⎤

⎦ + λ(θ) (14)

Again, the loss contains a double sum over S and I , so the number of elements is
O(|S| |I |), or O(|C| |I |) if the partition function is computed once per context.

4 Sampling Based Learning Algorithms

Algorithms based on sampling are the most common approaches for learning
recommender systems from implicit feedback. Their basic idea is to iterate over
the positive examples (c, i) ∈ S, sample negatives j with respect to a sampling
distribution q(j |c) and perform a weighted gradient step. This section discusses
algorithms for pointwise, pairwise and softmax losses. The choice of q together
with a weighting function α̃ are key for designing the learning algorithms. These
two choices are related to α in the loss formulation. Many different instances of
these algorithms have been proposed by varying q and α̃ and some popular choices
are discussed in this section. Most of the results of this section apply to any scoring
function, with the exception of Sects. 4.2.4 and 4.3.1 that are restricted to dot-
product models.

4.1 Algorithms for Pointwise Loss

The pointwise loss in Eq. (9) is defined over all context-item combinations, C × I .
The elements in this set are either a positive observation, if (c, i) ∈ S or an implicit
negative one otherwise. The positive observations are usually informative while the
negative provide weaker feedback and are assigned a smaller weight so that they
contribute less to the loss. A sampling based learning algorithm iterates over the
positive observations and samples m negatives. Algorithm 4.1 sketches this idea.
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Pointwise SGD

1: repeat
2: sample (c, i) ∈ S � positive item
3: θ ← θ − η

[
α̃(c, i)∇θ l(ŷ(c, i), 1) + ∇θλ(θ)

]

4: for l ∈ {1, . . . , m} do � m negative items
5: sample j from q(j |c)
6: θ ← θ − η

[
α̃(c, j)∇θ l(ŷ(c, j), 0) + ∇θλ(θ)

]

7: end for
8: until converged

The main algorithm iterates over positive items as well as samples of negative
items and performs an update step on each of them. The proportion of positive and
negative items is controlled by m. It can help to sample more than one negative item
per positive item because there are overall more negative items than positive ones
and often each negative item is less informative than a positive one. Each update step
moves the model parameters in the opposite direction of the gradient with respect
to the loss. This process is known as stochastic gradient descent (SGD). The size of
an update step is controlled by the learning rate η ∈ R

+. Larger values of η lead
to faster progress but if the value is too large, the algorithm diverges. The iterative
updates are repeated until some stopping criterion is met, e.g., a fixed number of
repetitions, or the learning progress is less than a predefined threshold. The learning
progress can be defined as the difference in a metric over two sufficiently spaced
evaluations over the training set or a holdout set. It should be noted that due to
the stochastic updates, the progress even on the training loss is noisy and not
monotonically decreasing.

The main design choices of the algorithm are the sampling distribution q and the
weight α̃. Their choice is related to α from the loss. If q and α̃ are independent of
the model parameters θ , then the relationship between the three values is

α(c, j) =
{

α̃(c, j), (c, j) ∈ S

m|Ic|q(j |c)α̃(c, j), (c, j) �∈ S
(15)

where the sampling probability q(j |c) = 0 for (c, j) ∈ S. This shows how a
weighted loss can be either achieved by changing q or α̃. For example, if the
sampling probability q is uniform

α(c, j) =
{

α̃(c, j), (c, j) ∈ S

mα̃(c, j), (c, j) �∈ S
(16)
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A non-uniform sampling might be beneficial because most of the items are trivially
negative, e.g., it is unlikely that a customer likes a random product from a large
catalogue. Such samples are trivial for the model to predict and presenting an
already correctly classified item during training has a (near) zero gradient, so overall
convergence will be slow. Sampling items that have a higher chance to be considered
by a user are more informative during learning.

Besides uniform sampling, popularity based sampling is another common
approach. Here, the items are sampled proportional to their empirical frequency
in the dataset q(j |c) ∝ |Cj |β with a squashing exponent β to desharpen the
distribution. Section 4.2 describes some more sophisticated sampling algorithms.

4.1.1 Batching

The SGD algorithm presented so far performs one update step per context-item
pair. Each step is computationally cheap. Modern hardware can benefit from larger
units of computations, so grouping several training examples can result in more
efficient utilization of hardware. For the proposed SGD algorithm, several positive
and negative items can be sampled and grouped into a batch of training examples,
and then their updates are performed in parallel. This scheme is especially useful if
the same set of negatives is shared in the batch—a context independent sampler, e.g.,
frequency based, naturally fits here. Even more, instead of sampling from a global
distribution, it is also common to use the positive items in the batch as the negatives.
For example, if the batch contains positive observations (c1, i1), (c2, i2), . . ., then
{i1, i2, . . .} are treated as the negatives for this batch, e.g., for c1, the negatives
would be (c1, i2), (c1, i3), . . .. In expectation, this corresponds to choosing the
empirical frequency sampler for q. To summarize, batching does not improve the
computational costs from a complexity perspective but it lowers the wall time on
modern hardware.

4.1.2 Omitted Details

For simplicity, Algorithm 4.1 was sketched with a constant learning rate, η, but
more complex schedules can be applied as well. Also depending on the form of ŷ,
it is common to update only the subset of model parameters that affects ŷ(i|c) for
the particular choice of (c, i). For example, in an embedding model, usually only a
subset of the embeddings are involved in scoring a pair (c, i), and it is common to
apply the gradient step only to this subset of embeddings involved. These details are
omitted because they are orthogonal to the problem of item recommendation from
implicit feedback.
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4.2 Algorithms for Pairwise Loss

The pairwise loss (Eq. 11) is a double sum over elements (c, i) ∈ S and items j ∈ I .
This scheme can be directly used for sampling and gradient steps can be performed
for each item-pair (i, j). Algorithm 4.2 shows a SGD algorithm for optimizing a
pairwise loss.

Pairwise SGD

1: repeat
2: sample (c, i) ∈ S

3: sample j from q(j |c, i)
4: θ ← θ − η

[
α̃(c, i, j)∇θ l(ŷ(c, i) − ŷ(c, j), 1) + ∇θλ(θ)

]

5: until converged

The design choices of this algorithm are the sampling distribution of negatives,
q(j |c, i), and the weight of the gradient α̃(c, i, j). These two choices are related to
the weight α(c, i, j) in the loss (Eq. (11)). Similar to the pointwise loss, if q(j |c, i)
and α̃(c, i, j) are independent of the model parameters then choosing q and α̃

implies a pairwise loss with α(c, i, j) = q(c, i, j) α̃(c, i, j). Again, fixing two of
the quantities will determine the third. For pairwise optimization, several variations
with model dependent sampling and weighting have been proposed.

The next subsections discuss several popular variations of the algorithm. The first
one samples items uniformly and has no weights. The second scheme adds a weight
to consider head-heavy metrics. The third algorithm samples uniformly from items
close or above the positive item, the sampling scheme is used to estimate the rank
which is used as a weight. Finally, a sampler that oversamples items based on their
rank is presented.

4.2.1 Uniform Sampling Without Weight

The most simple instance of this algorithm uses a constant weight α̃(c, i, j) = 1
and a uniform sampling probability q(j |c) ∝ 1, which optimizes an unweighted
loss with α(c, i, j) = 1. This loss optimizes the area under the ROC curve, AUC,
or equivalently, the likelihood that a random relevant item is ranked correctly above
a random irrelevant item. This loss and algorithm is often referred to as Bayesian
Personalized Ranking (BPR) [20].

There are two major issues with this approach:

1. Uniform sampling will sample irrelevant items that can be easily distinguished
by the model and thus the gradient of such pairs becomes 0. The progress of the
algorithm will be very slow because most of the pairs are not helpful.
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2. Metrics that focus on the top items are often preferred for evaluating item
recommendation. As discussed in Sect. 2.3, AUC is not a top-heavy metric. For
example, for AUC, the benefit for moving a relevant item from position 1000
to 991 is the same as moving on item from position 10 to 1. For a metric such
as NDCG, the second change is much more beneficial and gives a much larger
improvement in the metric. In most applications, the second change would be
considered more important.

Several improvements are discussed next.

4.2.2 Uniform Sampling with Weights

A popular approach in the learning to rank community is LambdaRank [5] which
weights the gradient by its influence on a ranking metric. Let M be a metric as
defined in Sect. 2.3, then the weight of a pair of items i, j given a context c is
α̃(c, i, j) = |M(r̂(i|c)) − M(r̂(j |c))|. That means the weight is directly tied
to the metric because it measures the influence of flipping the order of the two
items. A practical difficulty of this approach is that the rank of the items i and
j needs to be computed. For item recommendation with a large number of items
this becomes very costly. This is less of a problem for learning to rank problems
where only a small set of items are reranked. An adaption of LambdaRank to item
recommendation was proposed in [32].

4.2.3 Adaptive Sampling with Weights

WARP (Weighted Approximate-Rank Pairwise) [27] is a pairwise algorithm specif-
ically designed for item recommendation. The motivation of the WARP loss is to
directly learn a ranking metric. Each rank is associated with a penalty, γ , where the
better the predicted rank of the relevant item, the lower the penalty. This penalty
can be chosen to align with the ranking metric [25]. For example, the penalty
can be linearly increasing (as in AUC) or be a step function for a metric such as
precision@k, or increase by the reciprocal of the position.

WARP uses an online algorithm for optimizing this loss. First, the sampling
distribution is non-uniform. The algorithm tries to sample an irrelevant item j such
that it is ranked close to or above the relevant item, i.e., ŷ(j |c) + 1 > ŷ(i|c).
This choice is aligned with the hinge loss (Eq. (10c)), where the gradient is zero
if the item is correctly ranked above the margin. The authors propose a rejection
sampling algorithm that draws j uniformly, and if it does not meet the condition,
it discards j and samples another item. This means the sampling distribution is
q(j |i, c) ∝ δ(ŷ(j |c) + 1 > ŷ(i|c)).

Sampling an item j that fulfills the requirement ŷ(j |c) + 1 > ŷ(i|c) becomes
increasingly hard, the better the model is and the more items are in the catalogue.
The authors propose to stop the sampling algorithm after |I | repetitions. The number
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of rounds until the algorithm terminates can be used to estimate the rank of the
relevant item: r(i|c) ≈ �(#rounds − 1)/|I |�. The penalty, γ , of the estimated rank
is used as the weight in the SGD algorithm:

α̃(c, i, j) = γ (�(#rounds − 1)/|I |�) (17)

The definition of q avoids the problem of sampling pairs that have no influence
on the gradient step. However, while the algorithm avoids steps on non-influentual
items, the cost for finding a relevant item are high because it needs to score
all discarded items. Usually, scoring an item and updating an item have similar
computational complexity. This gives WARP at most a constant speedup over a
trivial method that does not discard items. However, sampling is only one part of
the WARP algorithm and the more important part is that WARP uses the estimated
rank in the weight for the gradient. This way, WARP optimizes a loss that is more
reflective of ranking metrics than uniformly weighted methods such as BPR.

4.2.4 Adaptive Sampling Without Weights

As an improvement of the BPR algorithm, [19] propose to sample items based
on their rank, here the sampling distribution is q(j |c) ∝ exp(−r(j |c)/γ ), while
keeping the weight constant α̃ = 1. While LambdaRank and WARP introduce a
weight on the rank by α̃, here the weight is implicitly introduced through q that
depends on the rank. Note that this sampling distribution depends on the context
and the current choice of model parameters. As the model learns, the sampling
distribution adapts.

The novelty of this work is an algorithm to approximately sample from q(j |c)
in constant time. Unlike all the methods that have been discussed in this chapter
so far and that were applicable to any scoring function, this work assumes a dot
product model 〈φ(c),ψ(i)〉. Next, the sampling algorithm is described briefly and
more background can be found in [19].

For a given context, it first samples an embedding dimension f ∗ according to

q(f |c) = |φc,f |σf , σ 2
f = Var(ψ·,f ) (18)

The motivation for this choice is that for a given context embedding φ(c) different
embedding dimensions f ∈ {1, . . . , d} are expected to have different contributions
on the score and consequently on the rank. The larger an entry |φc,f | of the context
embedding, the more influential is this embedding dimension. The sign is ignored
at this step because without looking at the item embeddings it is meaningless. Each
dimension is normalized by the variance of the item embeddings to ensure that
dimensions with larger entries are overweighted in the sampling step.

Then an item is sampled according to the rank induced by ψ(i)·,f ∗ . This is done
by first sampling a desired rank r∗ from exp(−r/γ ), this step is independent of
the scoring function. Then the r∗-largest item from ψ(i)·,f is returned—or if the
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sign of φc,f ∗ is negative, the r∗-smallest (=most negative). This last step can be
achieved by storing a sorted list of items for each embedding dimension. This sorted
list is independent of the context and can be refreshed occasionally. In total, this
is an amortized constant time algorithm for sampling an item approximately from
q(j |c) ∝ exp(−r(j |c)/γ ).

4.3 Algorithms for Sampled Softmax

A common strategy for training a model over a softmax loss is to sample m

negatives {j1, . . . , jm} from a distribution q(j |c) and to compute the partition
function on this smaller sample. A key difference of sampled softmax to negative
sampling for pointwise and pairwise losses is that for softmax the sample is applied
inside a logarithm (see Eq. (14)). That makes it difficult to get unbiased estimates.
Sampled softmax is commonly used with a correction to the scores and for a sample
{j1, . . . , jm} of m negative items, and for an observation, (c, i) ∈ S, a gradient step
with respect to the following loss is taken:

−ŷ(i|c) + ln

(
exp(ŷ(i|c)) +

m∑

l=1

exp(ŷ(jl |c))
m q(jl |c)

)
(19)

The correction 1
mq(j |c) ensures that if m → ∞, then sampled softmax is unbi-

ased [3]. However, typically a small (finite) set of negatives is sampled and thus
sampled softmax is biased. This means no matter how many training epochs the
algorithm is run, as long as m is constant, sampled softmax will converge to a
different solution than full softmax. It was shown that the only way to avoid this
issue is to use q(j |c) = p(j |c), i.e., to use the softmax distribution itself for
sampling [4]. In this case, sampled softmax is unbiased for any sample size m.
For sure, sampling from p is expensive and not a viable option. Nevertheless, it
shows that the bias can be reduced by either increasing m and/or using a sampling
distribution closer to p(j |c).

In practice, when optimizing a recommender system with sampled softmax, the
sample size m is an important hyperparameter because it directly impacts what loss
is optimized. Typically, a large sample size, m, is chosen to mitigate the bias. Again,
the most common sampling distributions are (squashed) popularity (=“unigram”)
sampling or in-batch sampling (=popularity sampling where m = batchsize). Two
more sophisticated sampling approaches that have been specifically designed for
softmax are discussed in Sects. 4.3.1 and 4.3.2.

Algorithm 4.3 sketches pseudo code for optimizing a model with SGD for
sampled softmax.



Item Recommendation from Implicit Feedback 159

Sampled Softmax SGD

1: repeat
2: sample (c, i) from S

3: sample {j1, . . . , jm} from q(j |c)
4: θ ← θ − η∇θ

[
−ŷ(i|c) + ln

(
exp(ŷ(i|c)) + ∑m

l=1
exp(ŷ(jl |c))
m q(jl |c)

)
+ λ(θ)

]

5: until converged

4.3.1 Kernel Based Sampling

As discussed before, the sampling distribution is very important for sampled
softmax optimization because it lowers the number of samples, m, required while
keeping the bias low. The ideal sampling distribution would be p(j |c, θ) ∝
exp(ŷ(j |c))—or for dot product models p(j |c, θ) ∝ exp(〈φ(c),ψ(j)〉). This
formulation can be seen as a kernel and a mapping function π : Rd → R

D from the
original embedding space to a larger space can be introduced, such that

p(j |c, θ) ∝ exp(〈φ(c),ψ(j)〉 ≈ 〈π(φ(c)), π(ψ(j))〉 ∝q(j |c, θ) (20)

Such a decomposition allows to compute the (approximated) partition function as:

∑

j∈I

exp(ŷ(j |c)) ≈
∑

j∈I

〈π(φ(c)), π(ψ(j))〉 =
〈
π(φ(c)),

∑

j∈I

π(ψ(j))

︸ ︷︷ ︸
z∈RD

〉

= 〈π(φ(c)), z〉

The key here is that z is independent of the context and can be precomputed. Then
the sampling probability of an element j, q(j |c), can be computed in O(D) time.
Based on this observation, a divide and conquer algorithm can be derived to sample
j from q(j |c, θ) in O(D log2 |I |) time (see [4] for details). Quadratic expansion [4]
and random feature maps [17] have been explored for π .

4.3.2 Two-Pass Sampler

Another sampling strategy is a two stage sampler [1], where first a large set of
M > m items is sampled and only the m most promising candidates are accepted.
The first set is sampled from the squashed empirical frequency distribution, typically
1–10% of the items I are sampled. Then all items on this large set are scored against
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a batch of context and a smaller set of the m < M highest scoring items is returned.
For efficient computation, it was proposed to distribute the computation of the scores
of the M items over several machines, preferably machines with GPUs. Finally,
sampled softmax is applied on the smaller set. More details can be found in [1].

4.3.3 Relation of Sampled Softmax to Pairwise Loss

Finally, a relationship between sampled softmax and a pairwise loss is highlighted.
When the number of negative samples in sampled softmax is m = 1, then

− ŷ(i|c) + ln

(
exp(ŷ(i|c)) + exp(ŷ(j |c))

q(j |c)
)

= ln
exp(ŷ(i|c)) + exp(ŷ(j |c))

q(j |c)
exp(ŷ(i|c))

= llogistic (
ŷ(i|c) − ŷ(j |c) + ln q(j |c), 1

)

Which is a pairwise logistic loss where the prediction of the negative item is shifted
by the correction term ln q(j |c).

5 Efficient Learning Algorithms for Special Cases

This section investigates efficient learning algorithms for dot product models, i.e.,
ŷ(i|c) = 〈φ(c),ψ(i)〉, and square losses. First efficient alternating least squares
and gradient descent learning algorithms are presented for pointwise losses. Finally,
their application to pairwise square losses is discussed briefly.

5.1 Pointwise Square Loss

The following restrictions are made: (1) the weights and labels for all unobserved
tuples (c, i) �∈ S is constant: let their weight be α0 and the label 0. It follows

L(θ, S) =
∑

c∈C

∑

i∈I

α(c, i)(ŷ(i|c) − y(c, i))2 + λ(θ)

=
∑

(c,i)∈S

[α(c, i)(ŷ(i|c) − y(c, i))2 − α0ŷ(i|c)2]

+ α0

∑

c∈C

∑

i∈I

ŷ(i|c)2 + λ(θ)

This can be further simplified to
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L̃(θ, S̃) =
∑

(c,i,α,y)∈S̃

α(ŷ(i|c) − y)2 + α0

∑

c∈C

∑

i∈I

ŷ(i|c)2 + λ(θ) (21)

With S̃ = {(c, i, α(c, i) − α0, yα(c, i)/(α(c, i) − α0)) : (c, i) ∈ S} and both L̃ and
L share the same optimum (see [2] for more details). The remainder of this section
uses this simplified formulation.

5.1.1 Gramian Trick

The first part of the loss L̃ depends only on the small set of observed positive data
and is cheap to compute. The second part appears to be expensive with |C||I | terms
and a naive computation is prohibitively costly. However, the Gramian trick makes
the computation of the second part very efficient [2]:

α0

∑

c∈C

∑

i∈I

ŷ(i|c)2 =α0

∑

c∈C

∑

i∈I

〈φ(c),ψ(i)〉2 (22)

=α0

〈
∑

c∈C

φ(c) ⊗ φ(c),
∑

i∈I

ψ(i) ⊗ ψ(i)

〉
(23)

=α0

〈
GC,GI

〉
(24)

with Gram matrices

GC =
∑

c∈C

φ(c) ⊗ φ(c), GI =
∑

i∈I

ψ(i) ⊗ ψ(i) (25)

The advantage of this Gramian trick is that the sum over all context-item combina-
tion is simplified as a the dot product over two Gram matrices, where each matrix
has size d × d. The cost for computing the Gramians2 is O(d2(|I | + |C|)). The cost
for computing the loss, L̃, assuming the Gramians are known is O(|S| d + d2). The
overall costs are dominated by the loss over the positive examples, |S|, as long as
d ≤ |S|/(|C| + |I |). This means the loss over all examples (including the implicit
negative ones) can be computed without paying the computational costs for the
negative ones.

The remainder of this section derives efficient solvers for the loss with the
Gramian formulation

2 The analysis here ignores the cost for computing the embeddings φ(c) and ψ(i). The derived
results have a linear complexity in the costs for computing the embeddings.
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L̃(θ, S̃) =
∑

(c,i,α,y)∈S̃

α(ŷ(i|c) − y)2 + α0

〈
GC,GI

〉
+ λ(θ) (26)

The Gramian trick is related to the Kernel softmax (see Sect. 4.3.1) where
exp(〈φ(c),ψ(i)〉) ≈ 〈π(φ(c)), π(ψ(i))〉. In particular, using the square function
instead of the exp, 〈φ(c),ψ(i)〉2 = 〈π(φ(c)), π(ψ(i))〉 for π(x) = x ⊗ x.

5.1.2 Coordinate Descent/ALS Solver for Multilinear Models

The Gramian trick can be used to derive efficient alternating least squares solvers
for the family of multilinear models. This section starts with a recap of multilinear
models and then derives a learning algorithm. Besides multilinearity, it is assumed
that the regularization λ(θ) is a L2 regularization, i.e., λ(θ) = λ||θ ||2.

Multilinear Model

Following [2], the derivation in this subsection makes the assumption that φ(c) and
ψ(i) do not share model parameters. In particular for every scalar coordinate θ̃ from
the vector θ of model parameters

∀c ∈ C : ∇θ̃φ(c) = 0 or ∀i ∈ I : ∇θ̃ψ(i) = 0 (27)

To simplify notation, it is further assumed that the model is multilinear in the model
parameters. That means for each model parameter θ̃ the model can be written in a
linear form

ŷ(i|c) = g(i|c) + θ̃ ∇θ̃ ŷ(i|c), ∇2
θ̃
ŷ(i|c) = 0 (28)

Often, models are not just linear in scalars but linear in subvectors θ̃ of the model
parameters θ

ŷ(i|c) = g(i|c) + 〈θ̃ ,∇
θ̃
ŷ(i|c)〉, ∇2

θ̃
ŷ(i|c) = 0 (29)

For example, matrix factorization: ŷ(i|c) = 〈wu,hi〉 is linear in wu or hi . Some
other examples for multilinear models are factorization machines [18], or tensor
factorization models such as PARAFAC [8] and Tucker Decomposition [24].

Optimization

With these prerequisites, efficient alternating least squares solvers can be derived.
Let θ̃1, θ̃2, . . . be a partition of the model parameters θ such that the model is linear
in each θ̃ . From this follows that the optimal values for θ̃ have a closed form solution
that can be obtained by a linear regression solver. An efficient computation of the
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least square solution needs to consider the Gramian trick. This will be discussed
next. The solution can be derived by finding the root of ∇

θ̃
L(θ , S). A single iteration

of Newton’s method finds its solution:

θ̃
∗ = θ̃ − (∇2

θ̃
L̃(θ, S̃))−1∇

θ̃
L̃(θ , S̃)

The computation of the sufficient statistics ∇2
θ̃
L̃(θ, S̃) and ∇

θ̃
L̃(θ , S̃) is now

discussed for a vector of model parameters θ̃ from the context side. The equations
for model parameters from the item side are analogously.

∇
θ̃
L̃(θ, S̃)

(∗)=
∑

(c,i,α,y)∈S̃

α(ŷ(i|c) − y)∇
θ̃
ŷ(i|c) + α0

∑

c∈C

φ(c)GI (∇
θ̃
φ(c))t + λθ̃

∇2
θ̃
L̃(θ, S̃)

(∗∗)=
∑

(c,i,α,y)∈S̃

α∇
θ̃
φ(c) ⊗ ∇

θ̃
φ(c) + α0

∑

c∈C

(∇
θ̃
φ(c))GI (∇

θ̃
φ(c))t + λI

where (*) uses ∇
θ̃
ŷ(i|c) = 〈∇

θ̃
φ(c),ψ(i)〉 and (**) uses of ∇2

θ̃
ŷ(i|c) = 0.

From these equations follows the generic ALS algorithm from implicit data. The
algorithm iterates over parameters from the context side, computes the first and
second derivative as outlined above and performs the Newton update step. The same
steps are repeated for parameters from the item side.

iALS-Pointwise for Multilinear Models

1: repeat
2: GI ← ∑

i∈I ψ(i) ⊗ ψ(i)

3: for θ̃ ∈ {θ̃1, θ̃2, . . .} do � Iterate over parameters of the context side
4: ∇

θ̃
← λθ̃

5: ∇2
θ̃

← λI

6: for c ∈ C where ∇
θ̃
φ(c) �= 0 do

7: ∇
θ̃

← ∇
θ̃

+ α0φ(c)GI (∇
θ̃
φ(c))t

8: ∇2
θ̃

← ∇2
θ̃

+ α0(∇θ̃
φ(c))GI (∇

θ̃
φ(c))t

9: end for
10: for (c, i, α, y) ∈ S̃ where ∇

θ̃
φ(c) �= 0 do

11: ∇
θ̃

← ∇
θ̃

+ α(ŷ(i|c) − y)〈∇
θ̃
φ(c),ψ(i)〉

12: ∇2
θ̃

← ∇2
θ̃

+ α∇
θ̃
φ(c) ⊗ ∇

θ̃
φ(c)

13: end for
14: θ̃ ← θ̃ − (∇2

θ̃
)−1∇

θ̃

15: end for
16: Perform a similar pass over parameters from the item side
17: until converged
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If ŷ is a matrix factorization model, and if for θ̃ a user embedding vector, wu or
item embedding vector hi is chosen, then this is equivalent to the iALS algorithm
proposed in [10]. This algorithm has a complexity of O(|S| d2 + (|C| + |I |) d3)

per epoch. This is much more efficient than the complexity of O(|C| |I | d2 +
(|C| + |I |) d3) of a naive ALS implementation. The work of [10] was the first
to provide this efficient training algorithm for learning matrix factorization from
implicit feedback. Later, [9] derived a variation of this algorithm for PARAFAC
tensor factorization.

The derivation in this chapter applies to any multilinear model including matrix
factorization, PARAFAC, Tucker Decomposition or factorization machines. The
coordinate descent version (i.e., choosing a scalar for θ ) of this generalized
algorithm was proposed in [2]. The alternating least squares version in this chapter
is more general because any vector θ can be chosen, including a vector of size one
(i.e., a scalar) which would reduce to a coordinate descent algorithm. Coordinate
descent (CD) algorithms have a lower computation complexity than ALS solvers,
e.g., O(|S| d + (|C|+ |I |) d2) for matrix factorization (see [2] for details). However,
on modern hardware, vector operations as used by a ALS can be much more efficient
than the scalar operations of CD, and with a careful implementations the higher
theoretical complexity is not noticable. Moreover, using vectors instead of scalars
reduces synchronization points which is very important in distributed algorithms, so
ALS methods can be overall more efficient in wall time than their CD equivalents.

5.1.3 SGD Solver for General Models

The previous section discussed multilinear models. Now, following [13], this is
generalized to any dot-product model ŷ(i|c) = 〈φ(c),ψ(i)〉. In particular, φ(c)

and ψ(i) can be any structure, including non-linear DNNs. Such structures are
commonly optimized by SGD algorithms that iterate over observed examples S.

Now, the loss in Eq. (26) is reformulated as a sum over training examples

L̃(θ, S̃) =
∑

(c,i,α,y)∈S̃

l(c, i, α, y) (30)

so that stochastic gradient descent can be applied. To achieve this form, the Gramian
term in the loss is rewritten as a sum over training examples:

〈
GC,GI

〉
= 1

2

(
∑

c∈C

φ(c)GIφ(c)t +
∑

i∈I

ψ(i)GCψ(i)t

)
(31)

=
∑

(c,i,α,y)∈S̃

1

2

(
1

|Ic|φ(c)GIφ(c)t + 1

|Ci |ψ(i)GCψ(i)t
)

(32)
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Combining this with the loss on the positive observations, results in the final form
of the elementwise loss

l(c, i, α, y) = α(ŷ(i|c) − y)2 + α0

2

(
1

|Ic|φ(c)GIφ(c)t + 1

|Ci |ψ(i)GCψ(i)t
)

(33)

Now, gradient descent can be applied to this equation. For the purpose of learning
θ , GC and GI are treated as constants and replaced by estimates ĜC and ĜI

∇θ l(c, i, α, y) = 2α(ŷ(i|c) − y)∇θ ŷ(i|c)

+ α0

(
1

|Ic|φ(c)ĜI (∇θφ(c))t + 1

|Ci |ψ(i)ĜC(∇θψ(i))t
)

(34)

The Gramian estimates are updated by gradient descent as well. A good Gramian
estimate, Ĝ, is close to the true Gramian, G. A reasonable objective to enforce
closeness is the Frobenius norm ||Ĝ − G||2F . To make this objective amendable to
SGD, the Gramian loss is reformulated as a sum over positive training examples

argmin
ĜC

∥∥∥ĜC − GC
∥∥∥

2

F
= argmin

ĜC

∥∥∥∥∥ĜC −
∑

c∈C

φ(c) ⊗ φ(c)

∥∥∥∥∥

2

F

(35)

= argmin
ĜC

∑

c∈C

∥∥∥ĜC − |C|φ(c) ⊗ φ(c)

∥∥∥
2

F
(36)

= argmin
ĜC

∑

(c,i,α,y)∈S̃

1

|Ic|
∥∥∥ĜC − |C|φ(c) ⊗ φ(c)

∥∥∥
2

F
(37)

which results in the gradient of the Gramian estimate:

∇
ĜC

⎡

⎣
∑

(c,i,α,y)∈S̃

1

|Ic|
∥∥∥ĜC − |C|φ(c) ⊗ φ(c)

∥∥∥
2

F

⎤

⎦ (38)

=
∑

(c,i,α,y)∈S̃

1

|Ic|
(
ĜC − |C|φ(c) ⊗ φ(c)

)
(39)

To summarize, when sampling a training example (c, i, α, y) ∈ S̃, the update rule
for the Gramian estimate is

ĜC ← ĜC − η
1

|Ic|
(
ĜC − |C|φ(c) ⊗ φ(c)

)
(40)
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= ĜC

(
1 − η

|Ic|
)

+ η

|Ic| |C|φ(c) ⊗ φ(c) (41)

See [13] for other estimation algorithms.3

Algorithm 5.1.3 shows the final SGD procedure.

SGD-Pointwise with Gramian Trick

1: repeat
2: sample (c, i) ∈ S

3: θ ← θ − η∇θ l(c, i, α, y) � See Eq. (34)
4: sample (c, i) ∈ S

5: ĜC ← ĜC − η 1
|Ic|

(
ĜC − |C|φ(c) ⊗ φ(c)

)

6: ĜI ← ĜI − η 1
|Ci |

(
ĜI − |I |ψ(i) ⊗ ψ(i)

)

7: until converged

Comparing this to the vanilla SGD Algorithm 4.1, it can be seen that there is no
negative sampling step necessary when using the Gramian trick. All negatives are
already considered in the update step of the positive item through the Gramian (see
line 3). In addition, there is the estimation step of the Gramians.

In some sense, negative sampling can be seen as an estimation of Gramians
as well: instead of keeping track of an estimate of the Gramian as proposed
here, negative sampling rebuilds the Gramian based on only a small sample of m

negatives. This is a much less precise estimate of the Gramian than keeping a long-
term estimate because the global Gramians are unlikely to change considerably for
each step.

5.2 Pairwise Square Loss

Finally, efficient solvers for pairwise square losses are shortly discussed. For
keeping the derivation simple, it is assumed that α(c, i, j) = 1; a generalization
to α(c, i, j) = αc,iαj is simple and follows the same pattern. The pairwise square
loss is defined as

3 [13] uses a different weight on each Gramian element which makes the derivation more natural
for SGD algorithms. This chapter uses the same Gramian definition as in Eq. (25) to make all
results consistent.
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L(θ , S) =
∑

(c,i)∈S

∑

j∈I

[ŷ(i|c) − ŷ(j |c) − 1]2. (42)

This can be reformulated to:

L(θ, S) =
∑

(c,i)∈S

∑

j∈I

[(ŷ(i|c) − 1)2 − 2(ŷ(i|c) − 1)ŷ(j |c) + ŷ(j |c)2] (43)

=
∑

(c,i)∈S

|I |(ŷ(i|c) − 1)2 + 〈GC,GI 〉 − 2
∑

(c,i)∈S

(ŷ(i|c) − 1)〈φ(c), z〉

(44)

with

GC :=
∑

c∈C

|Ic|φ(c) ⊗ φ(c), GI :=
∑

i∈I

ψ(i) ⊗ ψ(i), z :=
∑

i∈I

ψ(i) (45)

The first two terms in the loss are identical to the pointwise square loss in Eq. (26):
a pointwise loss over the positive observations, and the Gramian term. The last term
is an additional correction term for pairwise square loss, and its computation is in
O(|S| d). The algorithms (both iALS and SGD) introduced for pointwise loss can
be extended to take the new term into account. Instead of just storing the Gramian
GI , the vector z has to be stored as well.

Takács and Tikk [23] first introduced an efficient solver for matrix factorization
and pairwise square loss. Their derivation is based on a gradient reformulation as
previously invented for pointwise square loss by Hu et al. [10]. The derivation in this
chapter is more general and makes pairwise square loss applicable to a wider variety
of models (multilinear models and general dot-product models) and optimization
schemes (ALS, CD, SGD).

6 Retrieval with Item Recommenders

The typical application of an item recommender has to return the highest scoring
items given a context c. This section will first highlight the limitations of a naive
brute-force implementation and then discuss efficient algorithms for dot product
models.

6.1 Limitations of Brute-Force Retrieval

A naive implementation scores all the items, I , with ŷ(i|c), sorts the scores and
returns the highest ranked ones. This is very costly, with a linear dependency on |I |.
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This makes this method infeasible for online scoring for large or medium sized item
catalogues because applications commonly expect the results in a few milliseconds
within a user’s request. For moderately sized catalogues, the top items can be
precomputed offline and stored for each context that could be queried. However,
the size of possible query context can be much larger than the set of training context
|C| and evaluating and storing all top lists becomes infeasible. For example, for
a sequential recommender, the context might be the k most recent clicks of the
user, the potential space of all context is |I |k . It is impossible to precompute the
top scoring items for all of these |I |k context. Offline computation becomes also
a problem if the recommender system is trained online, e.g., a user’s embedding
might be updated online which would require recomputing the top scoring items.
To summarize, brute-force algorithms are only applicable if the number of items is
small or for a static model if the number of context is small. In the former case,
brute-force scoring can be applied online, in the latter, brute-force scoring can be
applied offline.

6.2 Approximate Nearest Neighbor Search

For dot product models, ŷ(i|c) = 〈φ(c),ψ(i)〉, the problem of finding the top
scoring items is equivalent to the well studied field of maximum inner product
search or approximate nearest neighbor search [26]. The nearest neighbor search
problem is to find the closest entries in a database of vectors for a query vector. For
item recommendation, the context φ(c) corresponds to the query and the database
of vectors are the items I represented by the embeddings ψ(i). These problems
are very well studied with efficient sublinear approximate algorithms that can be
applied for the item recommendation problem. Typically, solutions are based on
narrowing down the set of possible nearest neighbors that needs to be evaluated,
e.g., using partitioning algorithms such as trees [15, 31], and efficient scoring using
quantization [26].

These efficient sublinear algorithms make dot product models very attractive
for large scale item recommendation. If an application requires fast retrieval, dot
product models are the best choice.

6.3 Dynamic User Model

When a user interacts with a recommender system, the system should be responsive
and change the recommendation based on a user’s feedback. For example, after
watching a video, the system should be able to make better recommendations taking
into account this new information. Depending on the type of scoring function,
this might require to update the model itself. For example, in a user-item matrix
factorization model, the user embedding wu would need to be retrained in real time
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after every interaction—for user-item matrix factorization a projection, Eq. (30) can
be applied. Other scoring functions avoid retraining by representing the user as
a function of their past behavior. For example, if the user is represented by the
average item embedding in their history, the user embedding function φ(c) is trivial
to compute and can be done online at query time. In both cases, the main model can
be retrained occasionally offline to propagate all training data through the model.

7 Conclusion

This chapter introduced the item recommendation problem and discussed its unique
challenges. Several popular approaches to train recommender systems from implicit
feedback data were presented. An advantage of sampling based approaches is that
they can be applied to most recommender models. That makes them a popular
choice for learning item recommenders. Another advantage is that they can be
adapted to retrieval metrics by rank based weighting and sampling schemes.
However, if the item catalogue is large, sampling based approaches are slow unless
they use good samplers which is an open area of research. For special cases the
Gramian trick allows to learn item recommenders much more efficently, typically
dropping the runtime dependency on the catalogue size |I |. However, this trick is
only applicable to square losses which can be less effective than a ranking loss such
as weighted pairwise or softmax. Dot product models that represent the context and
the items by a d-dimensional embedding have useful properties throughout learning
and retrieval. For learning, their structure can be exploited for faster sampling, or
the Gramian trick, and for retrieval it allows real-time retrieval in sublinear time
through maximum inner product search algorithms.

As a conclusion of this chapter, a few rules of thumb for applying recommender
systems in practice are suggested. Dot product models are a reasonable default
choice due to their attractive retrieval properties. The family of dot product models
is broad including popular approaches such as matrix factorization but also more
complex techniques such as deep neural networks including transformers, recurrent
structures, or in general any model that extracts representations which are combined
in the final layer with a dot product. For learning, sampling based algorithms such as
sampled softmax with a large number of samples m are easy to implement and can
result in good ranking quality. If the item catalogue is very large, algorithms based
on the Gramian trick can be a better choice, and implementations for models like
matrix factorization are simple. In any case, properly tuning and setting up models
can be more important than switching to a more complex approach [7, 21, 22].
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