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1 Introduction

In the past decade, we have experienced a drastic change in the way how people
search for and consume music. The rise of digital music distribution, followed by
the spiraling success of music streaming services such as those offered by Spotify,1

Pandora,2 Apple,3 Amazon,4 YouTube,5 and Deezer,6 has led to the ubiquitous

1 https://www.spotify.com.
2 https://www.pandora.com.
3 https://www.apple.com/apple-music.
4 https://music.amazon.com.
5 https://www.youtube.com.
6 https://www.deezer.com.
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availability of music. While the catalogs of these big players are mostly geared
towards Western music, in recent years, worldwide, many platforms focusing on
domestic markets and music emerged, including Taiwanese KKBOX,7 Korean
Melon,8 Nigerian Boomplay Music,9 and Brazilian Superplayer.10

As a result, music listeners are suddenly faced with an unprecedented scale of
readily available musical content, which can easily become burdensome. Address-
ing this issue, music recommender systems (MRS) provide support to users
accessing large collections of music items and additional music-related content.
Music items that are most commonly recommended include artists, albums, tracks,
and playlists. Moreover, integrating additional music-related content into their
catalogs has become more and more important for streaming providers, to offer their
users a unique selling proposition. Such additional content include lyrics, music
video clips and animated video backgrounds, album cover images, and information
about concert venues.

This chapter gives an introduction to music recommender systems research. In
the remainder of this section, we next discuss the unique characteristics of the music
recommendation domain (Sect. 1.1), as compared to other content domains, such as
videos or books. Then, we define the scope and structure of the subsequent sections
(Sect. 1.2).

1.1 Characteristics of the Music Recommendation Domain

There exist several distinguishing characteristics of the music domain that differenti-
ates MRS from other kinds of recommender systems. We summarize the major ones
in the following. For a more detailed treatment, we refer the reader to [158, 161].

Duration of consumption: The amount of time required for a user to consume a
single media item strongly differs between different categories of items: an image
(typically a few seconds), a song (typically a few minutes), a movie (typically one
to a few hours), a book (typically days or weeks). Since music ranges at the lower
end of the duration scale, the time it takes for a user to form opinions on a music
item can be much shorter than in most other domains. As a result, music items may
be considered more disposable.

Catalog size: Typical commercial music catalogs contain tens of millions of
songs or other musical pieces while catalogs of movies and TV series are several
magnitudes smaller. The scalability of commercially used MRS algorithms is,
therefore, a more important requirement in the music domain than in other domains.

7 https://www.kkbox.com.
8 https://www.melon.com.
9 https://www.boomplay.com.
10 https://www.superplayer.fm.

https://www.kkbox.com
https://www.melon.com
https://www.boomplay.com
https://www.superplayer.fm
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Different representations and abstraction levels: Another distinguishing property
is that music recommendations can be made at different item abstraction levels
and modalities. While movie recommender systems typically suggest individual
items of one specific category (e.g., movies or series) to the user, MRS may
recommend music items of various representations and modalities (most commonly,
the audio of a song, but also music videos or even digital score sheets offered by
providers such as OKTAV11 or Chordify12). Music recommendations can also be
effected at different levels of granularity (e.g., at the level of artist, album, or song).
Furthermore, non-standard recommendation tasks exist in the music domain, such
as recommending radio stations or concert venues.

Repeated consumption: A single music item is often consumed repeatedly by a
user, even multiple times in a row. In contrast, other media items are commonly
consumed at most a few times. This implies that a user might not only tolerate, but
actually appreciate recommendations of already known items.

Sequential consumption: Unlike movies or books, songs are frequently con-
sumed in sequence, e.g., in a listening session or playlist. As a result, sequence-
aware recommendation problems [143] such as automatic playlist continuation
or next-track recommendation play a crucial role in MRS research. Because of
the unique constraints and modeling assumptions of serial consumption, also the
evaluation criteria substantially differ from the more standard techniques found in
the recommender systems literature [71].

Passive consumption: Unlike most other media content, music is often consumed
passively, in the background, which can affect the quality of preference indications.
Especially when relying on implicit feedback to infer music preferences of users,
the situation where a listener is not paying attention to the music (and therefore
does not skip a disliked song) might be misinterpreted as a positive feedback.

Importance of content: In traditional recommendation domains such as movie
recommendation, collaborative filtering (CF) techniques have been predominantly
used and refined over the years, not least thanks to initiatives such as the Netflix
Prize.13 In contrast, research on music recommendation has emerged to a large
extent from the fields of audio signal processing and music information retrieval
(MIR), and is still strongly connected to these areas. This is one of the reasons why
content-based recommendation approaches, such as content-based filtering (CBF),
are more important in the music domain than in other domains. Such approaches aim
at extracting semantic information from or about music at different representation
levels (e.g., the audio signal, artist or song name, album cover, lyrics, album reviews,
or score sheet), and subsequently leverage similarities computed on these semantic
music descriptors, between items and user profiles, to effect recommendations.14

11 https://www.oktav.com.
12 https://www.chordify.net.
13 https://www.netflixprize.com.
14 To avoid confusion, we note that content has different connotations within the MIR and
recommender systems communities. MIR makes an explicit distinction between (content-based)

https://www.oktav.com
https://www.chordify.net
https://www.netflixprize.com
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Another reason for the importance of content-based approaches in MRS is the
fact that explicit rating data is relatively rare in this domain, and even when
available, tends to be sparser than in other domains [44]. Therefore, research in
music recommendation techniques tend to rely more upon content descriptions of
items than techniques in other domains.

1.2 Scope and Structure of the Chapter

In this chapter, we first categorize in Sect. 2 music recommendation tasks into three
major types of use cases. Section 3 subsequently explains the major categories
of MRS from a technical perspective, including content-based filtering, sequential
recommendation, and recent psychology-inspired approaches. Section 4 is devoted
to a discussion of challenges that are faced in MRS research and practice, and
of approaches that address these challenges. Finally, in Sect. 5 we conclude by
summarizing the main recent trends and open challenges in MRS.

Please note that this chapter substantially differs from the previous version that
was published in the second edition of the Recommender Systems Handbook [159].
While the previous version was generally structured according to different tech-
niques and types of music recommender systems, in the version at hand, we take a
more user-centric perspective, by organizing our discussion with respect to current
use cases and challenges.

2 Types of Use Cases

Research on and development of MRS has evolved significantly over the last decade,
owed to changes in the typical use cases of MRS. We can categorize these use cases
broadly into basic music recommendation (Sect. 2.1), lean-in (Sect. 2.3), and lean-
back experiences (Sect. 2.2).

We refer to the most traditional use case as basic music recommendation,
which aims at providing recommendations to support users in browsing a music
collection. Technically, corresponding tasks are common to other domains, and
include predicting a user’s explicit rating (rating prediction task) or predicting
whether a given user will listen to a particular song (predicting item consumption
behavior). Requiring a higher degree of attention and engagement, use cases
pertaining to lean-in exploration refer to supporting users in searching particular
music based on a semantic query that expresses a user intent, e.g., finding music

approaches that operate directly on audio signals and (metadata) approaches that derive item
descriptors from external sources, e.g., web documents [90]. In recommender systems research,
as in the remainder of this chapter, both types of approaches are described as “content-based”.
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that fits a certain activity or affective state. In contrast, by providing a lean-back
experience to the user no specific user task is addressed rather than indulging, for
instance, an endless music listening session.

2.1 Basic Music Recommendation

A typical function of a recommender system is to assist in actively browsing the
catalog of items through item-to-item recommendations. For an MRS, this implies
providing lists of relevant artists, albums, and tracks, when a user browses item
pages of a music shop or a streaming service. Commonly, such recommendations
rely on similarity inferred from the consumption patterns of the users, and they are
presented to a user in the form of a list of “people who played that also played this”
items.

Another basic functionality is to generate personalized recommendation lists on
the platform’s landing page to engage a user in a session even without their active
navigation of the content in the first place. Such recommendations are generated
based on the user’s previous behavior on the platform, which is a core research task
in the recommender systems community. At the same time, it is the topic of lots
of user interface (UI) and user experience (UX) design decisions in the industry,
often out of the scope of academic research. For example, the system interface may
provide contextual “shelves”, grouping recommendations by a particular reason, or
time span of user activity (e.g., recommendations based on global user profile versus
recent user activity).

Figures 1 and 2 demonstrate both types of basic approaches, on the example
of Soundcloud15 and Last.fm.16 In both cases, such basic music recommendation
systems deal with artist, album, or track recommendations using the information
about previous user interactions and their feedback for the items in the music
catalog.

2.1.1 Interaction and Feedback Data

Music services can gather explicit user feedback, including rating provided by a
user for artist, album, or track items (e.g., using 1–10 or 1–5 rating scales), or
binary Likes, Loves, or Favorites reactions, as well as the information about items
purchased or saved to the user’s library. Therefore, a common task is predicting
those explicit user ratings and reactions for items in the system’s music catalog,
which is useful to estimate relevance and generate ranked recommendation lists.
Historically, user ratings have been associated with online music shops (e.g.,

15 https://www.soundcloud.com.
16 https://www.last.fm.

https://www.soundcloud.com
https://www.last.fm
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Fig. 1 Soundcloud’s “Related tracks” web pages provide playlists of top 50 track recommenda-
tions for the tracks in their catalog. The list is pre-computed according to the seed in advance.
The user is able to scroll and listen to the entire list, start and stop the playback (�/�), as well as
navigate by clicking on a particular track or the next or previous track buttons (�/�)

iTunes17 or Amazon18) and music metadata websites that allow users to organize
their music collections (e.g., Discogs19 or RateYourMusic20). They became much
less common nowadays due to the advance of streaming platforms. Even in the shop
scenario, explicit ratings may be too difficult to gather for the majority of the user
base, and instead, systems rely on purchase history.

In the case of music streaming services, it is common to gather implicit user
feedback. These systems often strive to minimize the required interaction effort
while asking for explicit ratings can be tedious. Instead, they register each track
played by a user (user listening events), compute play counts or total time listened
for different items (tracks, albums, and artists), and track skips within the music
player UI.

Such implicit feedback represents music preferences only indirectly. It can be
dependent on user activity, context, and engagement, and there may be other reasons
for user behavior unknown to the system. A played track in the user history does not
necessarily mean the user actively liked it, and a skipped track does not necessarily

17 https://www.apple.com/itunes.
18 https://www.amazon.com.
19 https://www.discogs.com.
20 https://www.rateyourmusic.com.

https://www.apple.com/itunes
https://www.amazon.com
https://www.discogs.com
https://www.rateyourmusic.com
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Fig. 2 Last.fm’s landing page provides a list of personalized recommendations (artists, albums,
tracks, and events) based on gathered listening statistics in a user profile. To give some context, the
justification for the recommendations is provided by referencing similar music items listened by
the user. The user can navigate the entire list as well as listen to a playlist with recommendations

imply negative preference. Still, this feedback is often the only information available
to the system, and therefore it is used as a proxy for music preference.21 Different
criteria can be applied to consider a track as played and relevant for a user. For
example, one can rely on the fraction of the total track duration that is reproduced
within the system’s UI and define a threshold to identify fully or almost fully played
tracks. Also, the raw play count values can be normalized and thresholded to define
relevant items (for example, in the simplest case, consider all items with at least one
play as relevant).

2.1.2 Evaluation Metrics and Competitions

In essence, the basic recommendation task is the prediction of relevant items for
a user and generation of recommendation lists with items ranked by relevance.
The evaluation is commonly done in the offline setting, retaining part of the user

21 Note that explicit ratings can be estimated from implicit feedback such as play counts, as
investigated by Parra and Amatriain [137].
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behavior data (e.g., user-item relevance ratings or play counts) as a ground truth and
measuring the error in relevance predictions (typically via RMSE), or assessing the
quality of generated ranked lists in terms of the position of relevant items therein,
e.g. via precision at k, recall at k, mean average precision (MAP) at k, average
percentile rank, or normalized discounted cumulative gain (NDCG). A few official
research challenges described below have addressed these aspects.

Formulated as a purely collaborative filtering task, the problem has been
addressed by the recommender systems community in the KDD Cup 2011 challenge
[44].22 It featured a large-scale dataset of user-item ratings provided by Yahoo!23

with different levels of granularity of the ratings (tracks, albums, artists, and genres)
and a very high sparsity (99.96%) making the task particularly challenging. There
were two objectives in the challenge, addressed on separate sub-tracks: predict
unknown music ratings based on given explicit ratings (evaluated by RMSE) and
distinguish highly rated songs from songs never rated by a user (evaluated by
error rate). Unfortunately, the dataset for the challenge is anonymized, including
all descriptive metadata, which made it impossible to try any approaches based on
content analysis and music domain knowledge.

The Million Song Dataset (MSD) Challenge24 [115] organized in 2012 opened
the possibility to work with a wide variety of data sources (for instance, including
web crawling, audio analysis, collaborative filtering, or use of metadata). Given full
listening histories of one million users and half of the listening histories for another
110,000 test users, the task was to predict the missing hidden listening events for
the test users. Mean average precision computed on the top 500 recommendations
for each listener (MAP@500) was used as main performance measure.

2.2 Lean-in Exploration

Other music consumption settings emphasize more active and engaged user inter-
action. In these lean-in scenarios, the user is often exploring a collection and the
found tracks in-depth to select candidates for listening immediately or at a later
point. This can be used e.g. to find music that fits a certain affective state, activity, or
setting such as a workout or a road trip. In many cases these scenarios are also tied
to building and maintaining “personal” music collections within online platforms
for individual or shared use, cf. [36, 37]. A recommender system can support such
a process by presenting candidate tracks based on the user’s behavior and adapting
to the selection of tracks, cf. [80]. An example of a lean-in interface is Spotify’s
playlist creation interface, as shown in Fig. 3, in which recommendations are made
to complement the tracks already added to a playlist.

22 https://www.kdd.org/kdd2011/kddcup.shtml.
23 http://music.yahoo.com.
24 http://labrosa.ee.columbia.edu/millionsong/challenge.

https://www.kdd.org/kdd2011/kddcup.shtml
http://music.yahoo.com
http://labrosa.ee.columbia.edu/millionsong/challenge
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Fig. 3 Spotify’s playlist creation application as an example of a lean-in experience. The user
can search the catalog using the textual search box on top. Based on the songs added to the list,
further songs are recommended at the bottom for consideration. Hovering over a track allows to
play/pause the audio (�/�). Further recommendations can be requested by clicking the “Refresh”
button. Before any songs are added, the user is prompted for a title and description for the playlist,
which provide the basis for making initial recommendations. (Note that further playback control,
navigation, advertisement, and social network panels in the interface are omitted in this screenshot.)

Lean-in-oriented interfaces provide a higher degree of control and are therefore
richer in terms of user interface components, demanding more attention and a higher
cognitive load from the user [126]. Controls often include search functionalities
that add possibilities to retrieve specific tracks based on their metadata or via a
“semantic” query that expresses the user intent, cf. Fig. 3. To index music pieces for
semantic textual search, several sources can be tapped, such as knowledge graphs
[134], various forms of community metadata such as tags or websites [90], or
playlist titles given by other users [116]. This not only enriches the descriptions of
individual tracks (e.g., to allow for queries like “90’s band with female singer”), but
also introduces information on context and usage purposes (e.g., “sleep” or “party”).

Beyond playlist creation, lean-in interfaces have been proposed for a variety of
tasks, e.g., exploration of musical structure, beat structure, melody line, and chords
of a track [65], or exploration of tracks based on similar lyrics content [130]. These
“active music-listening interfaces” [64], however, have not seen much adoption
in commercial streaming platforms as they are often targeted at specific music
consumers and non-traditional tasks, cf. [93].
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2.2.1 Evaluation Metrics and Competitions

Evaluation metrics for lean-in scenarios are measuring similar aspects as in a less
targeted browsing scenario, i.e. mostly retrieval-oriented metrics, see Sect. 2.1.2.
In a focused task like the above mentioned playlist creation, however, feedback is
available more explicitly, as selections are made from a known pool of tracks and
a selection more strongly indicates a positive feedback as much as an omission
a negative than is the case in general browsing. This also impacts evaluation,
as information retrieval metrics like precision and recall can be meaningfully
calculated.

This is reflected in the 2018 RecSys Challenge [33],25 which was centered on
the task of recommending tracks for playlist creation, as performed in the Spotify
application shown in Fig. 3. More specifically, provided with a playlist of specific
length k (and optionally a playlist title indicating a context), the task was to
recommend up to 500 tracks that fit the target characteristics of the given playlist.
Different scenarios were addressed in terms of playlist types: by varying k, whether
or not a playlist title was provided, and whether or not the playlist was shuffled.
As part of the challenge, Spotify released a collection of 1 million user-generated
playlists to be used for model development and evaluation.26 Evaluation metrics
used were R-precision, NDCG, and a Spotify-specific metric called “recommended
songs clicks” (defined as the number of times a user has to request 10 more songs
before the first relevant track is encountered). A detailed description and analysis of
the top approaches can be found in [188].

2.2.2 Discussion

Lean-in experiences relate most closely to traditional directed information retrieval
tasks like search and extend to all activities where a user is willing to devote
time and attention to a system to enhance the personal experience. The role of
the recommender system is to support the user in this specific scenario, e.g. by
suggesting complementary items, without interfering, distracting, or persuading the
user.

In terms of designing the recommendation algorithm, a lean-in scenario provides
a good opportunity to favor exploration over exploitation. That is, the recommender
system might not optimize for positive feedback only, but “probe” the user with
potentially negatively perceived items. As such, these closer interactions between
user and system provide an opportunity to develop the user profile for future
recommendations, resulting in a longer-term reward than just the exploitation of
items known to please the user (however, likely in a different context). Immediate

25 https://www.recsyschallenge.com/2018.
26 The Million Playlist Dataset is available from https://www.aicrowd.com/challenges/spotify-
million-playlist-dataset-challenge.

https://www.recsyschallenge.com/2018
https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge
https://www.aicrowd.com/challenges/spotify-million-playlist-dataset-challenge
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user satisfaction does not necessarily suffer from this strategy, as more diverse
recommendations are acceptable in a setting in which the user is open to reflect
upon the suggestions made.

2.3 Lean-Back Listening

In contrast to the recommendation use cases outlined in the previous sections, the
so-called lean-back formulation is designed to address use cases in which user
interaction is minimized, such as automatic playlist generation or streaming radio.
In lean-back settings, users typically are presented a single song at a time, which is
selected automatically by the MRS. Often, it is expected that users do not have
the interface directly in view, but rather are consuming recommendations on a
smartphone application with the device out of view (e.g., in a pocket or bag, or
while driving).

Typical lean-back user interfaces, such as the one depicted in Fig. 4 (left), tend to
be minimal, and severely limit how the user can control the system. Although some

Fig. 4 Pandora’s mobile application provides a prototypical example of a lean-back listening
interface. Left: An image representing the current song (or an advertisement) is displayed, along
with a progress bar and controls to switch “stations”. The user can play/pause the audio (�/�),
provide thumbs-up/down feedback (�/�), skip to the next track (�), or replay a track (	). No
information is provided for alternative track selections: the next track is selected automatically.
Right: recommendations are organized by stations or playlists, allowing users to select a stream
with minimal interactions
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interfaces afford either positive or negative explicit feedback (likes, hearts, thumbs-
up/thumbs-down), the fact that users are typically disengaged during consumption
implies that explicit feedback is relatively rare. As a result, methods and evaluation
criteria in lean-back settings tend to rely more upon implicit feedback, such as song
completion, skipping, or session termination.

2.3.1 Lean-Back Data and Evaluation

Compared to the basic recommender system setup, the treatment of implicit feed-
back in lean-back settings requires a bit more nuance. In the basic setting, users are
typically presented with a collection of items simultaneously, from which positive,
negative, and relative interactions can be inferred efficiently. For example, if a user
is recommended ten songs, and purchases only one, it is relatively safe to infer
that the remaining nine were less relevant than the purchased song—if not outright
irrelevant—which facilitates rapid and large-scale data collection [77]. Because
lean-back interfaces do not present alternatives to the user, implicit feedback can
only be inferred for a single item at a time, which significantly reduces the efficiency
of data collection.

Lean-back music recommenders are often used in certain contexts: for example,
while a user is exercising or working. Users are therefore expected to be inattentive,
at least some portion of the time, and this can make it difficult to properly
interpret even the weak signals that come from play, stop, and skip interactions.
Accurately making sense of feedback gained in a lean-back setting is therefore
highly challenging, and such data may not be suited to exhaustively model user
preferences. For example, listening to a full song may be construed as a positive
interaction, but it may also happen because a user was completely disengaged and
forgot to turn off the stream. Alternatively, skipping a song may suggest a negative
interaction, but a user may also skip a song that they otherwise like because they
recently heard it elsewhere. Finally, a user may abandon a session because they
are dissatisfied with the song selections (a negative interaction), or because they are
finished with whatever outside activity they were performing. While these issues can
be impossible to fully work around (barring invasive user surveillance), it is common
to assume that play/skip/stop behavior, on average, provide weak positive and
negative signals that can be used for model development and evaluation. However,
these issues do highlight an important characteristic of lean-back recommendation:
interactions take place within a particular context, and interpreting the resulting data
outside its context can easily become problematic.

Lean-back interfaces are often designed around concepts of playlists, radio
stations, or other similar abstractions which allow a user to express preference for
groups of songs, e.g., by selecting a pre-generated playlist or station by description,
or by choosing a genre, artist, or song to seed the session. This is depicted in Fig. 4
(right). As a result, much of the research on lean-back systems has focused on
modeling playlists, which can be defined as either ordered or shuffled selections
of songs that are meant to be heard together in a session. Playlists can be composed
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by expert curators (like traditional disc jockeys), amateur users, or collaboratively
by groups of users. Playlist authors often select songs deliberately to reflect some
specific intended use or context [38]. Playlist data therefore provides an attractive
source of high-quality positive interactions: co-occurrence of songs in a playlist
can be a strong positive indicator of similarity. An algorithm which can accurately
predict which songs should go into a playlist—perhaps conditioned on a context,
user preference, or pre-selected songs—should therefore be useful for generating
recommendations [59].

Note that modeling playlist composition is not equivalent to modeling playlist
consumption. In the generation case, it is (perhaps arguably) justified to infer nega-
tive interactions: the playlist author presumably decided which songs to include.
This in turn justifies the use of information retrieval metrics (precision, recall,
etc.), which rely upon having a well-defined notion of what constitutes a relevant
(included) or irrelevant (excluded) example. Playlist consumption, however, does
not inherit relevance and irrelevance from playlist composition. The user was not
exposed to alternative selections, so it is not justified to infer a negative interaction
from tracks which were not included in the playlist. Evaluating a playlist generation
method therefore relies on comparisons to playlist authors, not playlist consumers.
In many commercial settings, authors can be employees of the service, while
consumers are the customers, and it is important to bear this distinction in mind
when developing a recommender system.

As an alternative to playlist data, listening log data can provide a more direct
measurement of actual user behavior, as it captures how users behave in response
to specific song selections. This makes listening log data attractive from a modeling
perspective, but care must be taken to ensure that the data is interpreted correctly,
and does not unduly propagate inductive bias from the system which selected the
songs in the first place. That said, an algorithm which could accurately predict which
songs are likely or unlikely to be skipped by a user (in a particular session or context)
could be used to power a recommendation system. Developing and evaluating such
a method requires large volumes of log data to capture the diversity of listening
preferences and contexts. Fortunately, log data can be collected passively: unlike
playlist generation, which requires deliberate intent from the playlist creator, log
data is generated automatically by users interacting naturally with the system.

While user-generated playlist data has been relatively abundant and freely
available [117, 139, 188], high-quality listening log data has been scarce outside
of private, commercial environments. Until recently, the main source of openly
available log data has been Last.fm scrobbles [28, 151, 181], which provide a large
volume of data, but little in the way of transparency or provenance with respect to
how tracks are selected and interacted with by users. This has recently changed with
the MRS-related challenge in the 2019 WSDM Cup:27 participating teams had to
predict whether a user will listen to or skip the music recommended next by a MRS.
Participants were provided with a set of 130 million listening sessions by Spotify

27 https://www.crowdai.org/challenges/spotify-sequential-skip-prediction-challenge.

https://www.crowdai.org/challenges/spotify-sequential-skip-prediction-challenge
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users [23]. For each listening session, the first half of the session was observed,
and the objective was to predict whether or not each track in the second half of
the session was actually consumed or skipped. The adopted evaluation metric was
mean average accuracy, where average accuracy was computed over all items in the
unseen part of each session. The winning approaches are described in [32, 69, 195].

2.3.2 Discussion

In contrast to the basic recommendation formulation, lean-back settings require
careful attention to several unique factors arising from the characteristics of music
consumption.

First, as previously mentioned, users in lean-back scenarios are assumed to want
minimal interaction with the recommender system. Concretely, lean-back music
recommenders are often designed to be more conservative with recommendations,
prioritizing exploitation over exploration to minimize negative feedback (i.e.,
skips) [29]. While the exploration–exploitation trade-off is a well-known concept in
recommender systems generally [163], one must bear in mind that the right trade-off
fundamentally depends on the mode of delivery and interaction with the user.

Second, the sequential nature of lean-back recommendation scenarios presents
a substantial methodological challenge to evaluation. For example, skip prediction
methods are trained and evaluated on historical log data, which is almost always
biased by whichever recommendation algorithm was used at the time of the
interactions. Left unchecked, this can propagate inductive bias from previous
algorithms, and skew the evaluation results. While not inherently unique to the lean-
back setting, the rapid sequential consumption of recommendations in this context
renders typical simplifying assumptions (e.g., independence between interactions)
suspicious at best. Compensating for this source of bias is generally challenging,
though in some situations, counterfactual risk minimization [170] can be employed
during training [120].

Finally, playlist data may carry biases beyond what are commonly found in
standard collaborative filter data. In particular, several streaming platforms employ
content curators to create playlists which can be shared to users, or allow (and
promote) users to share playlists with each other. While some amount of curation
is undoubtedly desirable in many situations, it is also important to understand the
sources of bias in artist and track selection within the data when developing and
evaluating a playlist generation algorithm.

2.4 Other Applications

There also exist various applications beyond the main lines of research on music
recommendation. In particular, music event recommendation is addressed in [176],
where the authors consider recommending events/venues with local long-tail artists,
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from which metadata available to the system may be lacking. A related task is
the recommendation of music for particular venues, addressed in [35]. Last.fm and
Spotify are examples of industrial systems that provide event recommendations.

Playlist discovery and playlist recommendation are other recent directions [136].
They have not yet received as much attention as playlist continuation (Sect. 2.3):
even though there is research on track recommendation for playlists and listening
sessions, a lack of studies on recommending entire playlists to a user is evident.

We can also highlight the future role of recommender systems in music and video
production. An exemplary use case here is recommending background music for
video. The goal of this task is to assist the user in finding music that fits video
scenes in their video production in terms of semantics, rhythm, and motion. Such
systems rely on multi-modal analysis of audio and video [100, 110]. In turn, in
music production, recommender systems can enrich the users’ workflow, helping
navigate extensive audio collections. In particular, sound recommendation has been
considered in [134, 165]. Based on audio analysis and domain knowledge in music
composition, recommender systems will open promising possibilities for building
more intelligent digital audio workstations with sound, loop, and audio effect
recommendation functionalities.

Another task related to MRS is to recommend digital score sheets, such as
implemented in the system offered by OKTAV28 for piano players; or to recommend
chords for guitar players, offered by Chordify.29

3 Types of Music Recommender Systems

In the following, we briefly characterize the major types of MRS and summarize
the input data and techniques adopted in each type. Please note that the research
works we point to by no means represent an exhaustive list. We intentionally kept
this general part rather short and point the reader, for instance, to our chapter in the
second edition of the Recommender Systems Handbook [159] for a more detailed
description of the different types of MRS.

3.1 Collaborative Filtering

Similar to other recommendation domains, CF-based approaches are often used for
music recommendation. They operate solely on data about user–item interactions,
which are either given as explicit ratings (e.g., on a rating scale) or as implicit
feedback (e.g., statistics on play counts or skipped songs). In the most common

28 https://www.oktav.com.
29 https://www.chordify.net.

https://www.oktav.com
https://www.chordify.net
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variant, CF approaches create a model that predicts whether a given user will
interact or not with a (previously unseen) item. Since approaches solely based on
CF are domain-agnostic, we invite the reader to consider the surveys provided
in [34, 73, 86, 96] for a more detailed general treatment of the topic; and the surveys
provided in [152, 161] that review CF approaches in the music domain, among
others. Also consider chapter “Advances in Collaborative Filtering” of this book.

Note that CF-based approaches are particularly prone to several kinds of biases,
such as data bias (e.g., community bias and popularity bias) and algorithmic bias.
community bias refers to a distortion of the data (user–item interactions) caused
by the fact that the users of a certain MRS platform do not form a representative
sample of the population at large. An example is provided by a study of classical
music on Last.fm and Twitter, carried out in [160]. The over- or under-representation
of a user group, and in turn resulting user preferences, influences the quality of CF-
based algorithms. Popularity bias occurs when certain items receive many more
user interactions than others. This relates to the long-tail property of consumption
behavior and can favor such highly popular items [5, 98]. Other data biases and
artifacts in music usage data stem from additional factors such as record label
associations [89].

In terms of algorithmic bias, Ekstrand et al. [48] find an effect of age and
gender on recommendation performance of CF algorithms, even when equalizing
the amount of data considered in each user group. Similarly, Melchiorre et al. [124]
identify considerable personality bias in MRS algorithms, i.e., users with different
personalities receive recommendations of different quality levels which depend
on the adopted recommendation algorithm. To alleviate these undesirable effects,
devising methods for debiasing is one of the current big challenges in MRS research
(see Sect. 4.3).

3.2 Content-Based Filtering

While CF-based approaches operate solely on user–item interaction data, the main
ingredient to CBF algorithms is content information about items, which is used to
create the user profiles. To compute recommendations for a target user, no other
users’ interaction data is needed.

Recommendations are commonly made based on the similarity between the user
profile and the item representations in a top-k fashion, where the former is created
from individual statistics of item content interacted with by the user. In other words,
given the content-based user profile of the target user, the items with best matching
content representations are recommended. Alternatively, a machine learning model
can be trained to directly predict the preference of a user for an item.

A crucial task for every CBF approach is the representation of content infor-
mation, which is commonly provided in form of a feature vector that can be
composed of (1) handcrafted features or (2) latent embeddings from deep learning
tasks such as auto-tagging. In the former case, commonly leveraged features include
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computational audio descriptors of rhythm, melody, harmony, or timbre, but also
metadata such as genre, style, or epoch (either extracted from user-generated tags
or provided as editorial information), e.g. [20, 21, 42, 66, 118]. We refer to [128]
for an overview of music audio descriptors typically used in MIR. As for the
latter (2), latent item embeddings are often computed from low-level audio signal
representations such as spectrograms, e.g. [178], or from textual metadata such
as words in artist biographies, e.g. [133]. Higher-level semantic descriptors (such
as genres, moods, and instrumentation) retrieved from audio features by machine
learning can also be used and have been shown to correlate with preference models
in music psychology [60].

One of the earliest and most cited deep-learning-based approached to CBF in the
music domain is van den Oord et al.’s work [178]. The authors train a convolutional
neural network (CNN) to predict user–item latent factors from matrix factorization
of collaborative filtering data. The resulting CNN is then able to infer these latent
representations from audio only.

More recent deep learning approaches based on content representations
include [74, 109, 133, 148, 177, 177]. To give one example, Vall et al. [177]
propose a content-based approach that predicts whether a track fits a given user’s
listening profile (or playlist). To this end, all tracks are first represented as a feature
vector (constituting of, e.g., text embeddings of Last.fm tags or audio features such
as i-vectors based on MFCCs [47]). These track vectors are subsequently fed into
a CNN to transform both tracks and profiles into a latent factor space; profiles by
averaging the network’s output of their constituting tracks. As common in other
approaches too, tracks and user profiles are eventually represented in a single vector
space, which allows to compute standard distance metrics in order to identify the
best fitting tracks given a user profile.

3.3 Hybrid Approaches

There exist several perspectives as to what makes a recommendation approach a
hybrid one: either (1) the consideration of several, complementary data sources
or (2) the combination of two or more recommendation techniques.30 In the
former case, complementary data sources can also be leveraged when only a single
recommendation technique is used. For instance, a CBF-based MRS can exploit
both textual information (e.g., tags) and acoustic clues (e.g., MFCC features),
cf. [41].

As for the latter perspective, i.e., combining two or more recommendation tech-
niques, a common strategy is to integrate a CBF with a CF component. Traditionally,
this has often been achieved in a late fusion manner, i.e., the recommendations

30 Note that perspective (2) most commonly also entails (1) since different recommendation
techniques require different data to operate on.



944 M. Schedl et al.

made by two separate recommendation models are merged by an aggregation
function to create the final recommendation list. Examples in the area of music
recommendation include [84, 112, 114, 171]. Tiemann and Pauws [171] propose
an item-based memory-based CF and an audio-based CBF that make independent
rating predictions, which are aggregated based on rating vector similarities. Lu and
Tseng [112] fuse the output of three nearest-neighbor (top-k) recommenders: two
CBF approaches based on similarity of musical scores and of emotion tags, and one
CF approach; the final recommendation list is then created by reranking items based
on personalized weighting of the three components. Mcfee et al. [114] optimize a
content-based similarity metric (based on MFCC audio features) by learning from
a sample of collaborative data. Kaminskas et al. [84] use Borda rank aggregation
to combine into a single recommendation list the items recommended by an auto-
tagging-based CBF recommender that performs matching via emotion labels and a
knowledge-based approach that exploits DBpedia.31 For a comprehensive treatment
of hybridization techniques, we refer to [25, 75].

In contrast, most current deep learning approaches integrate into a deep neural
network architecture audio content information and collaborative information such
as co-listening or co-rating of songs or artists, e.g. [74, 133]. Furthermore, these
approaches can incorporate other types of (textual) metadata. For instance, Oramas
et al. [133] first use weighted matrix factorization to obtain, from users’ implicit
feedback (track play counts), artist and track latent factors. These latent factors
are used as a prediction target to train two neural networks: one to create track
embeddings, the other to obtain artist embeddings, exploiting spectrograms and
biographies, respectively. Based on the spectrograms (constant-Q transformed), a
CNN is used to create track embeddings. Biographies are represented as TF-IDF
vectors and a multilayer perceptron (MLP) is trained to obtain the latent artist
embeddings. Eventually, the resulting track and artist embeddings are concatenated
and fed into another MLP, trained to predict final track latent factors. To create
ranked recommendations, the dot product between a given user latent factor and the
final track factors is computed.

3.4 Context-Aware Approaches

Definitions of what constitutes the “context” of an item, a user, or an interaction
between the two are manifold. So are recommendation approaches that are named
“context-based” or “context-aware”. For a meta-study on different taxonomies and
categories of context, see for instance [16]. Here, in the context of MRS, we adopt
a pragmatic perspective and distinguish between item-related context, user-related

31 https://wiki.dbpedia.org.

https://wiki.dbpedia.org
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context, and interaction-related context.32 Item-related context may constitute, for
instance, of the position of a track in a playlist or listening session. User-related
context includes demographics, cultural background, activity, or mood of the music
listener. Interaction-related or situational context refers to the characteristics of the
very listening event, and include aspects of time and location, among others.

There exist various strategies to integrate context information into a MRS,
which vary dependent on the type of context considered. Simple variants include
contextual prefiltering and contextual postfiltering, cf. [7]. In the former case,
only the portion of the data that fits the user context is chosen to create a
recommender model and effect recommendations, e.g. [17, 157]; or users or items
are duplicated and considered in different recommendation models if their ratings
differ for different contexts, e.g. [15, 194]. In contrast, when adopting contextual
postfiltering, a recommendation model that disregards context information is first
created; subsequently, the predictions made by this model are adjusted, conditioned
on the context, to make the final recommendations, e.g. [193].

An alternative to contextual filtering approaches is to extend latent factor models
by contextual dimensions. If user–item interactions are provided “in context” and
differ between contexts, a common approach is to extend matrix factorization
to tensor factorization, i.e., instead of a matrix of user–item ratings, a tensor
of user–item–context ratings is factorized, so that each item, user, and context
can be represented. More details and examples can be found, among others,
in [1, 14, 62, 85].

Recently, deep neural network approaches to context-aware MRS have emerged.
They often simply concatenate the content- or interaction-based input vector to
the network with a contextual feature vector, e.g. [182]. Another approach is to
integrate context through a gating mechanism, e.g., by computing the element-wise
product between context embeddings and the neural network’s hidden states [19].
An example in the music domain is [153], where the authors propose a variational
autoencoder architecture extended by a gating mechanism that is fed with different
models created from users’ country information.

3.5 Sequential Recommendation

Sequence-aware recommender systems play a crucial role in music recommen-
dation, in particular for tasks such as next-track recommendation or automatic
playlist continuation that aims at creating a coherent sequence of music items.
Corresponding approaches consider sequential patterns of songs, e.g., based on
playlists or listening sessions, and create a model thereof. Note that such approaches
can also be considered a variant of context-aware recommendation in which item

32 Note that we use the term “interaction data” in Sect. 4 to refer to data belonging to the latter kind
of context.
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context is leveraged in form of preceding and subsequent tracks in the sequence. To
create such a system, most state-of-the-art algorithms employ variants of recurrent
or convolutional neural networks, or autoencoders [152, 188]. For a more detailed
treatment of the subject matter, we refer the reader to recent survey articles
on sequence-aware recommendation, which also review approaches to sequential
music recommendation, e.g. [143, 183].

3.6 Psychology-Inspired Approaches

Recently, research on recommender systems emerged that aims at enhancing the
traditional data-driven techniques (based on user–item interactions like in CF or
item content information like in CBF) with psychological constructs. Examples
include the use of models of human memory, personality traits, or affective states
(mood or emotion) of the user in the recommendation algorithm. There exist several
psychological models to formalize human memory, including the adaptive control
of thought-rational (ACT-R) [10] and the inverted-U model [131], which have been
studied in the context of music preferences. These also relate to familiarity and
novelty aspects discussed in Sect. 4.1.2.

For instance, Kowald et al. [97] propose an approach to MRS that integrates
a psychological model of human memory, i.e., ACT-R [10]. They identify two
factors that are important for remembering music: (1) frequency of exposure and
(2) recentness of exposure. Their ACT-R-based approach outperforms a popularity
baseline, several CF variants, and models that only consider one of the two factors
mentioned above.

MRS approaches that consider the users’ personality traits rely on insights
gained from studies that relate personality traits to music preferences, e.g. [45, 56,
123, 144, 145, 155]. Building upon such work, Lu and Tintarev in [113] propose a
MRS that adapts the level of diversity in the recommendation list according to the
personality traits of the user, by reranking the results of a CF system. The proposed
MRS builds upon their finding that users with different personalities prefer different
levels of diversity in terms of music key, genres, and artists. Another personality-
aware approach to music recommendation (and recommendation in other media
domains) is presented by Fernández-Tobías et al. in [50]. The authors integrate into a
traditional matrix factorization-based CF approach a user latent factor that describes
the user’s personality traits.

Research on MRS that considers the user’s affective state, such as mood or
emotion, when computing a recommendation list rely on results of studies in music
psychology and cognition that identified correlations between perceived or induced
emotion on the one hand, and musical properties of the music listened to on the
other hand, e.g. [46, 72, 79, 174, 190]. Such insights are exploited in MRS, for
instance in [12, 43]. Deng et al. [43] acquire the users’ emotional state and music
listening information by applying natural language processing techniques on a
corpus of microblogs. Leveraging the temporal vicinity of extracted emotions and
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listening events, the authors consider emotion as a contextual factor of the user–song
interaction. They integrate this contextual information into a user-based CF model,
an item-based CF model, a hybrid of the two, and a random walk approach. Ayata
et al. [12] propose a MRS architecture that uses the affective response of a user
to the previously recommended songs in order to adapt future recommendations.
Their system leverages data from wearable sensors as physiological signals, which
are used to infer the user’s emotional state.

For a comprehensive survey on psychology-informed recommender systems, we
refer the reader to [108].

4 Challenges

In the following, we provide a discussion of major challenges that are faced in MRS
research and practice, and present approaches to address these challenges.

4.1 How to Ensure and Measure Multi-Faceted Qualities of
Recommendation Lists?

The music items that constitute the recommendation list of a MRS should fulfill
a variety of quality criteria. Obviously, they should match the user’s preferences
or needs. Additional criteria, depending on the situational context or state of the
listener (cf. lean-in and lean-back tasks in Sect. 2), are equally important, though. In
the following, we identify and discuss several of these characteristics that contribute
to a good recommendation list.

4.1.1 Similarity Versus Diversity

Items in the recommendation list should be similar to the user’s preferred tracks,
and also show a certain extent of similarity between them. Determining similarity of
music items is a multi-faceted and non-trivial, if not actually elusive, task [90, 91].
However, operational models of acoustic similarity have been used in the past.33

Notwithstanding all optimization for similarity and consistency, it has been shown
that music recommendation lists containing only highly similar items are often
perceived as boring [104]. At the same time, diversity in recommendation lists
has a positive impact on conversion and retention [9]. Therefore, the right balance
between similarity and diversity of items is key to optimize user satisfaction. Note
that the level of diversity (and accordingly similarity) itself can be personalized,

33 https://www.music-ir.org/mirex/wiki.

https://www.music-ir.org/mirex/wiki
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e.g., using a linear weighting on similarity and diversity metrics. In fact, it has been
shown that different users prefer different levels of diversity [172, 186].

An overview of diversification strategies in recommender systems is given
in [27]. A common approach to measure diversity is to compute the inverse of
average pairwise similarities between all items in the recommendation list [166,
196]. In particular in the music domain, similarity and diversity are highly multi-
faceted constructs; user preferences for them should therefore also be investigated
and modeled in a multi-faceted manner. To give an example, a user may want
to receive recommendations of songs with the same rhythm (similarity) but from
different artists or genres (diversity).

4.1.2 Novelty Versus Familiarity

On the one hand, a recommendation list should contain content the user is familiar
with, e.g., known songs or songs by a known artist, not least because familiarity
seems vital to engage listeners emotionally with music [138]. On the other hand, a
recommendation list should typically also contain a certain amount of items that are
novel to the target user. This can be easily measured as the fraction of artists, albums,
or tracks in the user’s recommendation list that the user has not been interacted with
or is not aware of [27, 156]. However, whether or not a user already knows a track is
not always easy to determine. A recommended item—novel according to the data—
may, in contrast, be already known to the user. For instance, a user may have listened
to the item on another platform. In this case, the MRS does not know that the item is,
in fact, not novel to the user. On the other hand, a user might have forgotten a track
that he or she has not listened to for a while, i.e., the user is (no longer) familiar with
the content.34 In this case, the track may be a novel and interesting recommendation
for the user, even though the user has already interacted with it.

An interesting insight into users’ preferences for novelty has been gained in
[184], where Ward et al. found that even for users who indicate that they prefer
novel music, familiarity is a positive preference predictor for songs, playlists, and
radio stations.

4.1.3 Popularity, Hotness, and Trendiness

In contrast to novelty and familiarity, which are defined for individual users (is a par-
ticular user already familiar with an item?), popularity, hotness, or trendiness refer to
aspects that are global measures, commonly computed on system level. These terms
are often used interchangeably; though, sometimes hotness and trendiness refer to a
more recent or current scope, related to music charts, while popularity is considered

34 This scenario is addressed in MRS that leverage cognitive models of frequency and recentness
of exposure, discussed in Sect. 3.6.
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time-independent. Offering track lists created by a popularity-based recommender
is a common feature of many commercial MRS, to mitigate cold start or keep the
user up-to-date about trending music. Even though such lists are not personalized,
they allow to engage users, serving as an entry point to the system and as basic
discovery tool. For this reason, studies in MRS often consider recommendations
based on popularity as a baseline.

A concept related to popularity is “mainstreaminess” [17], also known as “main-
streamness” [180], which is sometimes leveraged in MRS. Assuming that users
prefer to different extents music that is considered mainstream, such systems tailor
the amount of highly popular and of long-tail items in the recommendation list to
the user’s preference for mainstream music. What constitutes the music mainstream
can further be contextualized, for instance, by defining the mainstreaminess of an
item or user at the scope of a country or an age group [17, 180].

4.1.4 Serendipity

The topic of serendipity has attracted some attention a few years ago, but less
nowadays. Serendipity is often defined rather vaguely as items being relevant and
useful but at the same time surprising to or unexpected by the user [161]. The
notion of unexpectedness, which is central to serendipity, is often interpreted as
being unknown to the user or far away from the user’s regular music taste [82].
For instance, in their proposal for a serendipitous MRS, Zhang et al. use the
average similarity between the user’s known music and the candidates for song
recommendation to define a measure of “unserendipity” [191].

4.1.5 Sequential Coherence

The coherence of music items in the recommendation list is another qualitative
aspect of a MRS. What is considered a coherent sequence of songs in a listening
session or playlist is highly subjective and influenced by individual preferences,
though [104]. Some findings on aspects of coherence that recur in different studies
include a common theme, story, or intention (e.g., soundtracks of a movie, music
for doing sports), a common era (e.g., songs of the 1990s), and the same (or similar)
artist, genre, style, or orchestration [38, 40, 104].

Focusing on music playlists, recent studies conducted by Kamehkhosh et
al. investigated the criteria that are applied when music lovers create playlists,
either with or without support by a recommender engine [80, 81]. In a study
involving 270 participants, the following characteristics of playlists were judged
by the participants according to their importance: homogeneity of musical features
such as tempo, energy, or loudness (indicated as important by 64% of participants),
diversity of artists (57%), lyrics’ fit to the playlist’s topic (37%), track order (25%),
the transition between tracks (24%), tracks popularity (21%), and freshness (20%).
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4.2 How to Consider Intrinsic User Characteristics?

Modeling the user is central to providing personalized recommendations. Tra-
ditionally, a user model for recommender systems consists of the history of
recorded interactions or expressions of preference (cf. Sect. 2.1), a latent space
embedding derived from these, or meta-features aggregating usage patterns based
on domain knowledge, such as “exploratoryness”, “genderedness”, “fringeness”, or
the above mentioned “mainstreamness” [17, 181]. Describing and grouping users
based on such dimensions then allows to tailor recommendations accordingly, e.g.
by balancing similarity and diversity, cf. Sect. 4.1.1. However, in a cold-start setting,
this information can not be resorted to. In addition, one might argue that none of
these descriptions model “the user” in a task- or domain-independent manner, i.e.
incorporate intrinsic user characteristics.

In order to avoid user cold-start and include individual user information into
models, external data can be used. Such individual aspects cover demographic
information, such as age or sex, which have been shown to have an impact on
music preference. For instance, there is evidence that younger users explore a
larger number of genres, while, with increasing age, music preferences become
more stable [55, 144]. A further direction in this line of research is to make
use of psychological models of personality to inform the recommender system,
also see chapter “Personality and Recommender Systems”. Personality is a stable,
general model relating to the behavior, preferences, and needs of people [78] and is
commonly expressed via the five factor model, based on the dimensions openness
to experience, conscientiousness, extraversion, agreeableness, and neuroticism.
For interaction with online music systems, personality has been related to music
browsing preferences [57] and diversity needs [53], among others. Another stable
attribute to describe users is to identify them from a cultural point of view, i.e. by
associating them with their country or culture, and building upon aggregated usage
patterns [17].

More dynamic aspects of user characteristics concern affect and emotional state
and listening intent of the user. Short-time music preference, i.e. what people want
to listen to in a specific moment, depends strongly on the affective state of the
user, e.g. [83]. This, again, can partly be traced to questions of personality, e.g.
there is indication that when being sad, open and agreeable persons prefer happy
music, whereas introverts prefer sad music [54]. Vice versa, music influences the
user’s affective state. Affect regulation is therefore not surprisingly one of the main
listening intents people have [95, 111, 132, 149]. Other important motivations for
listening to music are, obviously, discovery and serendipitous encounters [39, 101]
and social interaction [87]. Differences in goals and intended outcomes do not only
impact the type of music recommender to be built, but also the type of evaluation
strategy and success criteria to be chosen (see Sects. 2 and 4.5). To facilitate this
line of research further, a deeper understanding of how people seek and discover
new music in their everyday life, mediated through online platforms is needed.
Pointers can be found in existing work utilizing user-centric evaluations, in-situ
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interviews, and ethnographic studies, cf. [39, 102, 103, 105, 106, 168]. A more
thorough discussion on user aspects in music recommendation can be found in [92].

To include models of user characteristics into a recommendation systems, the
more static dimensions providing demographic and personality information can be
treated as side information or even as fixed-target user dimensions in collabora-
tive filtering matrix factorization approaches. Other, feature-driven methods like
factorization machines or deep neural networks can benefit by incorporating this
information as user dimensions. Section 3.6 highlights existing work that integrates
these dimensions into MRS. The more dynamic dimensions of user affect and intent
can also be incorporated as contextual information, cf. Sect. 3.4.

4.3 How to Make a Music Recommender Fair?

The increasing adoption of machine learning methods and data-driven recommender
systems in real-world applications has exhibited outcomes discriminating against
protected groups and enforced stereotypes and biases (cf. Sect. 3.1). These outcomes
are considered unfair, as they treat individuals and groups of people differently
based on sensitive characteristic (or even violate anti-discrimination laws), and
irrespective of personal preference, cf. [26]. To address this, existing work builds
upon operational definitions of fairness emphasizing parity at different machine
learning stages [179] and aims at improving fairness by overcoming inadequacy of
metrics and bias in datasets, optimization objectives, or evaluation procedures [187].

To address the question of fairness in MRS, the bigger picture of the music
industry ecosystem needs to be taken into account, cf. [4, 158]. As are other recom-
mendation domains, music recommendation is a multi-stakeholder setting, in which
different stakeholders have different, contradictory goals [3, 24]. Stakeholders in the
music domain include the listeners, the artists, the composers, the right owners, the
publishers, the record labels, the distributors, and the music streaming services, to
mention but the most important. The question of fairness therefore first needs to be
phrased as “fairness for whom”?

Although a large number of stakeholders is involved in the recommendation
process, fairness in music recommendation is often reduced to being a two-sided
setting where fairness towards artists (as providers of the items) and the users
(as consumers) needs to be maintained [122]. Even in this reduced setting, the
opportunity of the artists as item providers, i.e. fairness with respect to exposure
to the customer, is prioritized over fairness for users. This can be attributed to a
fairness definition for users which is simply equated with high user satisfaction and
prediction accuracy, e.g. by calibrating for diversity in user histories [122, 169].
A common restraint for such a definition of user fairness can be found in item
popularity [6, 98]. This two-sided view, however, neglects the very important role
of the recommender system platform as an intermediary between provider and
consumer, cf. [2]. Non-neutrality of the platform, due to utility associated with
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recommending certain items, presents another potential source of unfairness to both
artists and listeners, cf. [88].

It is obvious that in order to optimize MRS towards fairness, several perspectives
and notions can be adopted and need to be taken into consideration. Investigating
perceptions and definitions of fairness for different tasks and different stakeholders
is therefore a highly relevant question for future research.

4.4 How to Explain Recommendations?

Providing justifications of recommendations offer the user a means to understand
why the system recommended a certain item. It has been shown that this can
increase user trust and engagement [11, 61, 146, 173]. Depending on the rec-
ommendation task and technique, such justifications can include similar users’
preferences, predicted rating values, common properties between liked items and
recommendations (e.g., “We are recommending this song because you seem to like
Viking Metal.”) [125, 129], or natural language explanations based on item and/or
contextual features (e.g., “We are recommending this song because it is energetic
and will stimulate your current sports activity.”) [31].

Early works on the topic of explainability in the music domain commonly adopt
a content-based approach to explain artist or track similarities. For instance, Green
et al. [67] use social tags and Wikipedia descriptions to create a tag cloud explaining
artist similarities. Likewise, Pampalk and Goto [135] integrate user-generated artist
tags into a music recommendation and discovery system, thereby enabling users to
steer the artist recommendation process. Turnbull et al. use an auto-tagger to predict
semantic labels from audio signal features in order to generate verbal descriptions
of tracks [175].

More recent examples of explainability in MRS include Moodplay [11], a
recommendation and exploration interface which builds upon a visualized latent
mood space created from artist mood tags. Andjelkovic et al. integrate a CBF
recommender based on acoustic artist similarity into the audiovisual interface.
This interface can be used both to interact with and to explain the recommended
artists. Another method is BAndits for Recsplanations as Treatments (Bart) by
Spotify [120]. Adopting a reinforcement learning strategy, Bart learns interactions
between items and explanations conditioned on the user or item context. User
engagement as result of an explanation is used as a reward function. Explanations
include, for instance, time (“Because it’s Monday”), novelty (“Because it’s a new
release”), genre (“Because you like Jazz”), or popularity (“Because it’s popular”).
McInerney et al. also find that personalizing not only the recommendations, but also
the explanations substantially increase user satisfaction.

While research on explainability in MRS is still scarce, though recently seeing a
strong increase, a vital aspect to keep in mind is that users differ in their demand for
and acceptance of explanations. In fact, Millecamp et al. [125] find that personal
characteristics such as musical expertise, tech savviness, or need for cognition
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influence how users interact with MRS and perceive explanations. Therefore, a vital
challenge to address is not only to devise methods for explaining recommendation
results, but also tailor these methods to the needs of the MRS’ users.

4.5 How to Evaluate a Music Recommender System?

In the recommender systems literature, evaluation strategies are commonly divided
into offline testing, online testing, and user studies, cf. [68]. In the following, these
are briefly discussed in the context of MRS. On a critical note, most if not all of the
methods discussed below do not consider bias and fairness, cf. Sect. 4.3.

4.5.1 Offline Evaluation

Offline evaluation relies on existing datasets of user–item interactions, and is carried
out without involvement of users during evaluation. In this way, it enables gaining
quantitative and objective insights into the performance of preference prediction
algorithms, and is similar to quantitative evaluation strategies found in the machine
learning and (music) information retrieval literature [13, 161].

Like in offline evaluation of other types of recommender systems, performance
metrics commonly used when evaluating MRS include error measures such as root-
mean-squared error (RMSE) computed between predicted and true ratings,35 item
relevance measures such as recall and precision, and rank-based metrics such as
mean average precision (MAP), normalized discounted cumulative gain (NDCG),
and mean percentile rank (MPR). More details can be found in [161], for instance.
In addition to these measures of accuracy, beyond-accuracy measures that gauge
some of the characteristics described in Sect. 4.1 are tailored to the music domain
and include metrics for diversity, familiarity, popularity, and serendipity.

Public datasets available for academic research are summarized in Tables 1
and 2. Table 1 contains basic statistics of the datasets, such as number of songs,
albums, artists, users, and user–item interactions. Table 2 provides more details
on the composition of each dataset, including release year, origin of the data, and
the kinds of item-, user-, and interaction-related data that is included: interaction
data (e.g., ratings or timestamps), item data (e.g., tags), and user data (e.g.,
demographics). Note that the available datasets are dominated by industrial data
released for research. There is no publicly gathered data except for the ListenBrainz
initiative that strives for building an open alternative to gathering listener behavior

35 Note that these ratings can also be binary (1 if the user interacted with the item; 0 otherwise).
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Table 1 Statistics of public data sets for music recommendation research

Dataset Songs Albums Artists Users Interactions

Yahoo! Music [44] – 625K in total – 1M 262.81M

MSD [18] 1M 1.02M 48.37M

Last.fm–360K [28] 187K 359K

Last.fm–1K [28] 108K 1K 19.15M

MusicMicro [150] 71K 20K 137K 594K

MMTD [70] 134K 25K 215K 1.09M

AotM-2011 [117] 98K 17K 16K 859K

LFM-1b [151, 154] 32M 16M 3M 120K 1B

MSSD [23] 3.7M 150M

MLHD [181] 7M 900K 555K 583K 27B

ListenBrainza >7.58M >1.32M >776K 15K 507.84M

MPD [188] 2.26M 735K 296K

Spotify Playlists [139] 1.88M 277K 15K 144K

#nowplaying [189] 1.21M 4.15M 46.05M

#nowplaying-RS [140] 346K 139K 11.64M

Melon Playlist Dataset [52] 649K 269K 108K
a

https://listenbrainz.org, statistics as of January 3, 2022. Only tracks mapped to MBIDs with direct
string matching are reported

data. As a result, all these dataset have a clear bias towards Western music as they
primarily originate from Western companies.36

Following offline strategies is still the predominant way of evaluating MRS
in academia, not least due to the lack of contacts to (large numbers of) real
users. However, despite their obvious advantages, offline evaluations do not provide
sufficient clues on the perceived quality of recommendations and their actual use-
fulness for the listener [162], and there is research evidence that high recommender
accuracy does not always correlate with user satisfaction [121]. They also do not
account for biases on neither the consumer nor the artist side [98]. Furthermore, if
recommender systems are targeted towards discovery, it is fundamental to assess the
listener’s familiarity with the recommended items apart from their relevance, which
is problematic using existing datasets. Another critical point of offline studies is the
overly high confidence in results, often seen in publications. This probably arises
due to the computational and seemingly “objective” nature of the metrics. With
huge amounts of evaluation data on user–item interactions available, it has become
common to train the recommendation models and compute evaluation metrics only
on a randomly drawn sample of the data, in particular to select negative/irrelevant
items. However, results obtained by this kind of evaluation often show low variance
(when metrics are computed across different sets of random samples), but high

36 The Melon Playlist Dataset is a notable exception, containing data from a South Korean music
streaming service.

https://listenbrainz.org
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Table 2 Features of public data sets for music recommendation research. The following symbols
are used to denote the featured categories of data: � single listening events, � playlists or listening
sessions, � ratings, 
 tags, �� playlist titles or annotations, � audio features,  temporal
information/timestamps, � location, � gender, � age, � MusicBrainz or Twitter identifiers. Please
note that we always denote the entity for which the data is provided, e.g., user-generated tags can
be provided as item data (ignoring the information about which users provides them), but also as
interaction data (indicating which user assigned which tag to which item)

Dataset Year Source
Interaction
data

Item
data User data

Yahoo! Music [44] 2011 Yahoo � � ✗ ✗

MSD [18] 2011 Echo Nest � � 
 � ✗

Last.fm – 360K [28] 2010 Last.fm � � � � �

Last.fm – 1K [28] 2010 Last.fm � � � � �

MusicMicro [150] 2013 Twitter �  � � �

MMTD [70] 2013 Twitter �  � �

AotM-2011 [117] 2011
Art of the
Mix ��  � 
 � 

LFM-1b [151, 154] 2016 Last.fm �  
 � � �

MSSD [23] 2019 Spotify �  � � ✗

MLHD [181] 2017 Last.fm � � � � �

ListenBrainz 2015- ListenBrainz � � ✗

MPD [188] 2018 Spotify �� � ✗

Spotify Playlists [139] 2015 Spotify �� ✗ ✗

#nowplaying [189] 2014 Twitter �  � ✗

#nowplaying-RS [140] 2018 Twitter � 
 � �

Melon Playlist Dataset [52] 2021 Melon �� �� ✗

bias, the former being particularly dangerous as it is likely to lead to an unjustified
confidence in evaluation results [99].

4.5.2 Online Evaluation

While offline evaluation is still the predominantly adopted evaluation methodology
in academia, evaluation of MRS in industrial settings is nowadays dominated by
online studies, involving real users. This, of course, does not come as a surprise
since MRS providers such as Spotify, Deezer, or Amazon Music have millions of
customers and can involve them into the evaluation, even without the need to let
them know. In contrast, most academic research lacks such possibility, focusing
instead on offline experiments.

The most common variant of online evaluation is A/B testing, i.e., a com-
parative evaluation of two (or more) recommendation algorithms in a productive
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system [68].37 A/B testing is the most efficient way to evaluate MRS as it allows
to measure the system’s performance or impact according to the final goals of
the system directly in the experiment, using measures such as user retention,
click through rate, amount of music streamed, etc. A recent example of A/B
testing in an MRS is provided by Spotify in [120], where a multi-armed bandit
approach to balance exploration and exploitation, which also provides explanations
for recommendations, is proposed and evaluated both offline and online.

4.5.3 User Studies

Evaluation via user studies allows to investigate the user experience of a MRS,
including aspects of user engagement [107] and user satisfaction [105]. Pu et
al. [142] as well as Knijnenburg et al. [94] propose evaluation frameworks for
user-centric evaluation of recommender systems via user studies, which are partly
adopted in the MRS domain too. Pu et al.’s framework [142], called ResQue,
includes aspects of perceived recommendation quality (e.g., attractiveness, novelty,
diversity, and perceived accuracy), interface adequacy (e.g., information sufficiency
and layout clarity), interaction adequacy (e.g., preference elicitation and revision),
as well as perceived usefulness, ease of use, user control, transparency, explicability,
and trust. While the authors do not explicitly showcase their framework on a
music streaming platform, some results obtained for Youtube38 and Douban39—
both platforms heavily used for music consumption—are likely to generalize
to dedicated MRS. Knijnenburg et al. [94] propose a different instrument to
investigate user experience of recommender systems, which includes aspects such
as perceived recommendation quality, perceived system effectiveness, perceived
recommendation variety, choice satisfaction, intention to provide feedback, general
trust in technology, and system-specific privacy concern, among others.

Conducting user studies to evaluate MRS presents obvious advantages over
offline and online experiments because the respective questionnaires are capable
of uncovering intrinsic characteristics of user experience to a much deeper degree
than the other mentioned strategies. However, such evaluations are rare in the MRS
literature as it is difficult to gather a number of participants large enough to draw
significant and usable conclusions, due to the required effort on the user side.
Existing user studies are typically restricted to a small number of subjects (tens
to a few hundreds) and tested approaches or systems. Although the number of user
studies has increased [185], conducting such studies on real-world MRS remains
time-consuming, expensive, and impractical, particularly for academic researchers.

Consequently, relatively few studies measuring aspects related to user satisfac-
tion have been published, even though their number has been increasing in the

37 Notwithstanding, there also exist offline variants of A/B testing strategies, e.g. [63].
38 https://www.youtube.com.
39 https://www.douban.com.

https://www.youtube.com
https://www.douban.com
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past years. The study by Celma and Herrera [30] serves as an early example of
a subjective evaluation experiment, carried out on a larger scale. Each of the 288
participants provided liking (enjoyment of the recommended music) and famil-
iarity ratings for 19 tracks recommended by three recommendation approaches.
Bogdanov et al. [20] use four subjective measures addressing different aspects of
user preference and satisfaction: liking, familiarity with the recommended tracks,
listening intention (readiness to listen to the same track again in the future), and
“give-me-more” (indicating a request for or rejection of more music that is similar
to the recommended track). These subjective ratings are analyzed for consistency
(a user may like a recommended track, but will not want to listen to it again)
and are additionally re-coded into recommendation outcomes: trusts (relevant
recommendations already known to a user), hits (relevant novel tracks), and fails
(disliked tracks).

Other examples include the recent study by Robinson et al. [147] on perceived
diversity in music recommendation lists created by a CF system. The authors
investigate the extent to which applying an algorithmic diversification strategy,
adopting an intra-list diversity metric, transfers to actual user-perceived diversity.
They find a clear difference between diversity preferences in recommendation lists
within the user’s bounds of music preferences and outside of these bounds.

Another recent study by Jin et al. [76] investigates the extent to which user
control over contextual factors that are considered by the recommendation algorithm
influences perceived quality, diversity, effectiveness, and cognitive load. In their
study, 114 participants are either given no control over the algorithm (realized via
Spotify’s API) or they could chose a specific context and recommendations are
reranked accordingly. The authors find that the users’ ability to control whether
recommendations are contextualized by mood, weather, and location influences
their perception of the MRS. For instance, the ability to consider mood positively
affects perceived recommendation quality and diversity.

4.6 How to Deal with Missing and Negative Feedback in
Evaluation?

As mentioned throughout this chapter, music recommendation poses several chal-
lenges for evaluation. In particular, MRS’s are often faced with both implicit
feedback (e.g., from the lean-back setting) and extreme sparsity of observation.
These both contribute to a lack of strong negative feedback, which makes standard
ranking metrics (derived from precision and recall) difficult to estimate.

The most common approach to cope with sparsity in evaluation is to exploit
structure in the content provided by meta-data. For example, rather than evaluate
a recommender according to its ability to predict interactions between users and
songs, the evaluation can be abstracted to measure interactions between users and
artists. In this view, an item is considered relevant if the user interacted with other
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items by the same artist. This evaluation obviously over-simplifies the task from
the user’s perspective, but it can be considerably more stable in practice than a
pure item-based evaluation. It is also possible to combine song- and artist-level
relevance, as was done in the 2018 RecSys Challenge [33]. Of course, there are
other relational structures present in music meta-data that can be leveraged in similar
ways. Slaney et al. [164] measured artist, album, and blog co-occurrence as a proxy
for (content-based) item similarity, which each gave varying degrees of specificity
to the evaluation. Zheleva et al. [192] evaluated playlist generation models by their
ability to select songs of appropriate genres. While these approaches do not measure
utility in the traditional sense, but in the absence of sufficient interaction data, they
can at least act as stable proxy metrics.

4.7 How to Design User Interfaces That Match the Use Case
and Increase User Experience?

Like most recommender systems domains, music recommendation can benefit from
having recommendations presented in a meaningfully organized manner. Many
commercial music services present recommendations grouped together by genre,
similarity to a popular artist, year of release, etc. Similar experiences are provided
by movie recommenders, book recommenders, or general online shopping sites
where products may be grouped by “department” (e.g., kitchen, apparel, toys,
etc.). The MRS experience differs principally by the high variability of expertise
and familiarity with terminology possessed by users. While movies, books, and
department stores generally have fairly consistent and familiar “sections” (or
shelves), the taxonomies used to categorize and organize music can be both deep
and obscure [49, 167]. For example, a casual jazz listener may not understand (or
care about) the distinctions between sub-genres like bebop or cool jazz, but these
differences would be obvious to listeners with a bit more familiarity with the genre.
This has ramifications for interface design in music recommendation: the groupings
used to organize a set of recommendations should adapt to the user’s experience and
prior knowledge.

Prior knowledge and listening histories are not the only user characteristics
that inform MRS (and MRS interface) design. User studies have demonstrated
that personality traits (e.g., the Big Five taxonomy [78]) correlate with different
preferences for organizational principles in music collections, such as genre, mood,
or intended context/activity [58]. This observation motivates the use of hybrid
methods which adaptively personalize the combination of recommender algorithms
based on each user’s listening patterns [51].

Finally, content curation and simple rule-based systems can play a substantial
role in music recommendation. Some familiar examples include: removing Christ-
mas music from streams outside the month of December, avoiding the mixing
of religious and secular music, filtering music with potentially offensive lyrics,
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moderating user-generated content (e.g., podcasts), restricting access to content
based on licensing terms and availability, and so on. Streaming radio services
additionally may need to comply with regional broadcast regulations, such as
avoiding playing multiple songs from the same album within a given window
of time. Providing a satisfying user experience under these constraints typically
requires a mixture of high-quality meta-data, careful curation and moderation of
content, and logical constraints in the recommendation algorithm.

4.8 Which Open Tools and Data Sources can be Used to Build
a Music Recommender System?

Many generic cross-domain software tools for recommender systems are available
to build MRS. LightFM,40 Implicit,41 Surprise,42 and LibRec43 provide Python and
Java implementations of some popular recommendation algorithms for both implicit
and explicit feedback data. Annoy,44 NMSLIB,45 and faiss46 can be used for
efficient nearest neighbor search in feature spaces of item and user representations,
and are implemented in C++ with Python wrappers.

Here we focus on content annotation tools and data sources particular to music.
Specifically, we discuss open-source tools and publicly accessible data that allow
bootstrapping MRS, even though some commercial services provide API endpoints
to gather music content data and even create recommendations out of the box.

Researchers in MIR have developed tools for music audio content analysis and
feature extraction, that can be used for music recommendation. Essentia47 [22]
and Librosa48 [119] provide signal processing algorithms for computation of MIR
features and audio representations suitable as inputs for CBF and hybrid approaches
(both traditional and deep learning-based). Both libraries provide flexibility of use
for fast prototyping in Python. Essentia provides feature extractors implemented in
C++ for fast analysis on the large scale. It also includes pre-trained TensorFlow
models for auto-tagging and music annotation tasks [8], outputs and latent feature
embeddings of which can be useful features for MRS tasks. More audio analysis
libraries available to researchers are reviewed in [127].

40 https://making.lyst.com/lightfm/docs.
41 https://implicit.readthedocs.io.
42 http://surpriselib.com.
43 https://guoguibing.github.io/librec.
44 https://github.com/spotify/annoy.
45 https://github.com/nmslib/nmslib.
46 https://github.com/facebookresearch/faiss.
47 https://essentia.upf.edu.
48 https://librosa.org.

https://making.lyst.com/lightfm/docs
https://implicit.readthedocs.io
http://surpriselib.com
https://guoguibing.github.io/librec
https://github.com/spotify/annoy
https://github.com/nmslib/nmslib
https://github.com/facebookresearch/faiss
https://essentia.upf.edu
https://librosa.org
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The datasets presented in Tables 1 and 2 can be used for prototyping MRS.
However, their characteristics (provider, origin, release year, composition of user
base, type and quality of data, etc.) will bias any recommendation model created
from these datasets, likely resulting in problems when translating to the newly built
system. Furthermore, it is advisable to check the licenses of the available datasets, as
there may be potential legal uncertainty of their usage outside of academic research.

Given the limitations of access to commercial data for researchers and prac-
titioners, there is an initiative to build an open data and open source ecosystem
suitable for building recommender systems. MusicBrainz49 is one of the largest
databases of editorial music metadata, including information and relations between
millions of artists, recording labels, releases, and particular tracks. It is coupled with
ListenBrainz,50 a database of user listening events, and AcousticBrainz51 [141],
which contains results of automatic music audio analysis and annotation, including
high-level music concepts (e.g., genre, mood, instrumentation, key, rhythm). Similar
to MusicBrainz, Discogs52 [21] also provides rich editorial metadata relations and
genre/style annotations at the very large scale. All of these data sources are available
under open licenses, and they can be used to enrich the data about a particular music
collection at hand.

5 Conclusions

To summarize, research and development in music recommender systems has seen a
paradigm shift in recent years: away from traditional recommendation tasks such as
predicting ratings or impressions, towards more specific use cases to satisfy a lean-
in or lean-back demand of the user and continuously provide a listening experience.
As such, typical applications relevant in music recommendation are, for instance,
automatic playlist continuation, cross-modal tasks such as creating a session or
playlist based on a textual query, and contextual recommendations based on user
intent recognition.

As for techniques, we focused on methods that leverage characteristics of
the music domain, which distinguishes the music recommendation task from
recommendation tasks in other domains. Owed to recent developments, we put
a focus on hybrid methods that integrate both co-listening data and content-
based information. Furthermore, we reviewed recent research on context-aware,
sequential, and psychology-inspired approaches.

Current challenges we eventually discuss include considering multi-faceted
qualities in recommendation lists, adapting recommendations based on intrinsic

49 https://www.musicbrainz.org.
50 https://www.listenbrainz.org.
51 https://www.acousticbrainz.org.
52 https://www.discogs.com.

https://www.musicbrainz.org
https://www.listenbrainz.org
https://www.acousticbrainz.org
https://www.discogs.com
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user characteristics, considering fairness and bias, explaining recommendations,
evaluating music recommender systems, publicly available datasets, dealing with
missing and negative feedback, and designing user interfaces that increase user
experience. We are sure that addressing those challenges will yield exciting research
results and products in the near future.
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