
Trust Your Neighbors: A Comprehensive
Survey of Neighborhood-Based Methods
for Recommender Systems

Athanasios N. Nikolakopoulos, Xia Ning, Christian Desrosiers,
and George Karypis

1 Introduction

The appearance and growth of online markets has had a considerable impact on
the habits of consumers, providing them access to a greater variety of products
and information on these goods. While this freedom of purchase has made online
commerce into a multi-billion dollar industry, it also made it more difficult for
consumers to select the products that best fit their needs. One of the main solutions
proposed for this information overload problem are recommender systems, which
provide automated and personalized suggestions of products to consumers.

The recommendation problem can be defined as estimating the response of a
user for unseen items, based on historical information stored in the system, and
suggesting to this user novel and original items for which the predicted response
is high. User-item responses can be numerical values known as ratings (e.g.,
1–5 stars), ordinal values (e.g., strongly agree, agree, neutral, disagree, strongly
disagree) representing the possible levels of user appreciation, or binary values (e.g.,

A. N. Nikolakopoulos
Amazon, Seattle, WA, USA

X. Ning
Biomedical Informatics Department, Computer Science and Engineering Department, The Ohio
State University, Columbus, OH, USA
e-mail: ning.104@osu.edu

C. Desrosiers (�)
Software Engineering and IT Department, École de Technologie Supérieure, Montreal, QC,
Canada
e-mail: christian.desrosiers@etsmtl.ca

G. Karypis
Computer Science & Engineering Department, University of Minnesota, Minneapolis, MN, USA
e-mail: karypis@cs.umn.edu

© Springer Science+Business Media, LLC, part of Springer Nature 2022
F. Ricci et al. (eds.), Recommender Systems Handbook,
https://doi.org/10.1007/978-1-0716-2197-4_2

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-2197-4_2&domain=pdf
mailto:ning.104@osu.edu
mailto:christian.desrosiers@etsmtl.ca
mailto:karypis@cs.umn.edu
https://doi.org/10.1007/978-1-0716-2197-4_2

40 A. N. Nikolakopoulos et al.

like/dislike or interested/not interested). Moreover, user responses can be obtained
explicitly, for instance, through ratings/reviews entered by users in the system, or
implicitly, from purchase history or access patterns [45, 87]. For the purpose of
simplicity, from this point on, we will call rating any type of user-item response.

Item recommendation approaches can be divided in two broad categories: per-
sonalized and non-personalized. Among the personalized approaches are content-
based and collaborative filtering methods, as well as hybrid techniques combining
these two types of methods. The general principle of content-based (or cognitive)
methods [4, 8, 48, 70] is to identify the common characteristics of items that
have received a favorable rating from a user, and then recommend to this user
unseen items that share these characteristics. Recommender systems based purely
on content generally suffer from the problems of limited content analysis and over-
specialization [79]. Limited content analysis occurs when the system has a limited
amount of information on its users or the content of its items. For instance, privacy
issues might refrain a user from providing personal information, or the precise
content of items may be difficult or costly to obtain for some types of items, such as
music or images. Another problem is that the content of an item is often insufficient
to determine its quality. Over-specialization, on the other hand, is a side effect of the
way in which content-based systems recommend unseen items, where the predicted
rating of a user for an item is high if this item is similar to the ones liked by this user.
For example, in a movie recommendation application, the system may recommend
to a user a movie of the same genre or having the same actors as movies already
seen by this user. Because of this, the system may fail to recommend items that
are different but still interesting to the user. More information on content-based
recommendation approaches can be found in chapter “Semantics and Content-based
Recommendations” of this book.

Instead of depending on content information, collaborative (or social) filtering
approaches use the rating information of other users and items in the system. The
key idea is that the rating of a target user for an unseen item is likely to be similar to
that of another user, if both users have rated other items in a similar way. Likewise,
the target user is likely to rate two items in a similar fashion, if other users have given
similar ratings to these two items. Collaborative filtering approaches overcome some
of the limitations of content-based ones. For instance, items for which the content
is not available or difficult to obtain can still be recommended to users through the
feedback of other users. Furthermore, collaborative recommendations are based on
the quality of items as evaluated by peers, instead of relying on content that may
be a bad indicator of quality. Finally, unlike content-based systems, collaborative
filtering ones can recommend items with very different content, as long as other
users have already shown interest for these different items.

Collaborative filtering approaches can be grouped in two general classes
of neighborhood and model-based methods. In neighborhood-based (memory-
based [10] or heuristic-based [2]) collaborative filtering [19, 20, 32, 45, 51, 55,
73, 75, 79], the user-item ratings stored in the system are directly used to predict
ratings for unseen items. This can be done in two ways known as user-based or
item-based recommendation. User-based systems, such as GroupLens [45], evaluate

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 41

the interest of a target user for an item using the ratings for this item by other users,
called neighbors, that have similar rating patterns. The neighbors of the target user
are typically the users whose ratings are most correlated to the target user’s ratings.
Item-based approaches [20, 51, 75], on the other hand, predict the rating of a user
for an item based on the ratings of the user for similar items. In such approaches,
two items are similar if several users of the system have rated these items in a
similar fashion.

In contrast to neighborhood-based systems, which use the stored ratings directly
in the prediction, model-based approaches use these ratings to learn a predictive
model. Salient characteristics of users and items are captured by a set of model
parameters, which are learned from training data and later used to predict new
ratings. Model-based approaches for the task of recommending items are numerous
and include Bayesian Clustering [10], Latent Semantic Analysis [33], Latent Dirich-
let Allocation [9], Maximum Entropy [89], Boltzmann Machines [74], Support
Vector Machines [28], and Singular Value Decomposition [6, 46, 69, 85, 86]. A
survey of state-of-the-art model-based methods can be found in chapter “Advances
in Collaborative Filtering” of this book.

Finally, to overcome certain limitations of content-based and collaborative
filtering methods, hybrid recommendation approaches combine characteristics of
both types of methods. Content-based and collaborative filtering methods can be
combined in various ways, for instance, by merging their individual predictions into
a single, more robust prediction [8, 71], or by adding content information into a
collaborative filtering model [1, 3, 59, 64, 67, 81, 88]. Several studies have shown
hybrid recommendation approaches to provide more accurate recommendations
than pure content-based or collaborative methods, especially when few ratings are
available [2].

1.1 Advantages of Neighborhood Approaches

While recent investigations show state-of-the-art model-based approaches superior
to neighborhood ones in the task of predicting ratings [46, 84], there is also an
emerging understanding that good prediction accuracy alone does not guarantee
users an effective and satisfying experience [31]. Another factor that has been iden-
tified as playing an important role in the appreciation of users for the recommender
system is serendipity [31, 75]. Serendipity extends the concept of novelty by helping
a user find an interesting item he or she might not have otherwise discovered.
For example, recommending to a user a movie directed by his favorite director
constitutes a novel recommendation if the user was not aware of that movie, but is
likely not serendipitous since the user would have discovered that movie on his own.
A more detailed discussion on novelty and diversity is provided in chapter “Novelty
and Diversity in Recommender Systems” of this book.

Model-based approaches excel at characterizing the preferences of a user with
latent factors. For example, in a movie recommender system, such methods may

42 A. N. Nikolakopoulos et al.

determine that a given user is a fan of movies that are both funny and romantic,
without having to actually define the notions “funny” and “romantic”. This system
would be able to recommend to the user a romantic comedy that may not have
been known to this user. However, it may be difficult for this system to recommend
a movie that does not quite fit this high-level genre, for instance, a funny parody
of horror movies. Neighborhood approaches, on the other hand, capture local
associations in the data. Consequently, it is possible for a movie recommender
system based on this type of approach to recommend the user a movie very different
from his usual taste or a movie that is not well known (e.g., repertoire film), if one
of his closest neighbors has given it a strong rating. This recommendation may not
be a guaranteed success, as would be a romantic comedy, but it may help the user
discover a whole new genre or a new favorite actor/director.

The main advantages of neighborhood-based methods are:

• Simplicity: Neighborhood-based methods are intuitive and relatively simple to
implement. In their simplest form, only one parameter (the number of neighbors
used in the prediction) requires tuning.

• Justifiability: Such methods also provide a concise and intuitive justification
for the computed predictions. For example, in item-based recommendation, the
list of neighbor items, as well as the ratings given by the user to these items,
can be presented to the user as a justification for the recommendation. This can
help the user better understand the recommendation and its relevance, and could
serve as basis for an interactive system where users can select the neighbors
for which a greater importance should be given in the recommendation [6]. The
benefits and challenges of explaining recommendations to users are addressed in
chapter “Beyond Explaining Single Item Recommendations” of this book.

• Efficiency: One of the strong points of neighborhood-based systems are their
efficiency. Unlike most model-based systems, they require no costly training
phases, which need to be carried at frequent intervals in large commercial
applications. These systems may require pre-computing nearest neighbors in
an offline step, which is typically much cheaper than model training, providing
near instantaneous recommendations. Moreover, storing these nearest neighbors
requires very little memory, making such approaches scalable to applications
having millions of users and items.

• Stability: Another useful property of recommender systems based on this
approach is that they are little affected by the constant addition of users, items
and ratings, which are typically observed in large commercial applications. For
instance, once item similarities have been computed, an item-based system can
readily make recommendations to new users, without having to re-train the
system. Moreover, once a few ratings have been entered for a new item, only
the similarities between this item and the ones already in the system need to be
computed.

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 43

While neighborhood-based methods have gained popularity due to these advan-
tages,1 they are also known to suffer from the problem of limited coverage, which
causes some items to be never recommended. Also, traditional methods of this
category are known to be more sensitive to the sparseness of ratings and the cold-
start problem, where the system has only a few ratings, or no rating at all, for new
users and items. Section 5 presents more advanced neighborhood-based techniques
that can overcome these problems.

1.2 Objectives and Outline

This chapter has two main objectives. It first serves as a general guide on
neighborhood-based recommender systems, and presents practical information
on how to implement such recommendation approaches. In particular, the main
components of neighborhood-based methods will be described, as well as the
benefits of the most common choices for each of these components. Secondly, it
presents more specialized techniques on the subject that address particular aspects
of recommending items, such as data sparsity. Although such techniques are not
required to implement a simple neighborhood-based system, having a broader view
of the various difficulties and solutions for neighborhood methods may help making
appropriate decisions during the implementation process.

The rest of this document is structured as follows. In Sect. 2, we first give
a formal definition of the item recommendation task and present the notation
used throughout the chapter. In Sect. 3, the principal neighborhood approaches,
predicting user ratings for unseen items based on regression or classification,
are then introduced, and the main advantages and flaws of these approaches are
described. This section also presents two complementary ways of implementing
such approaches, either based on user or item similarities, and analyzes the impact
of these two implementations on the accuracy, efficiency, stability, justifiability
and serendipity of the recommender system. Section 4, on the other hand, focuses
on the three main components of neighborhood-based recommendation methods:
rating normalization, similarity weight computation, and neighborhood selection.
For each of these components, the most common approaches are described, and their
respective benefits compared. In Sect. 5, the problems of limited coverage and data
sparsity are introduced, and several solutions proposed to overcome these problems
are described. In particular, several techniques based on dimensionality reduction
and graphs are presented. Finally, the last section of this document summarizes the

1 For further insights of some of the key properties of neighborhood-based methods under a
probabilistic lens, see [12]. Therein, the interested reader can find a probabilistic reformulation of
basic neighborhood-based methods that elucidates certain aspects of their effectiveness; delineates
innate connections with item popularity; while also, allows for comparisons between basic
neighborhood-based variants.

44 A. N. Nikolakopoulos et al.

principal characteristics and methods of neighorhood-based recommendation, and
gives a few more pointers on implementing such methods.

2 Problem Definition and Notation

In order to give a formal definition of the item recommendation task, we introduce
the following notation. The set of users in the recommender system will be denoted
by U , and the set of items by I. Moreover, we denote byR the set of ratings recorded
in the system, and write S the set of possible values for a rating (e.g., S = [1, 5]
or S = {like, dislike}). Also, we suppose that no more than one rating can be made
by any user u ∈ U for a particular item i ∈ I and write rui this rating. To identify
the subset of users that have rated an item i, we use the notation Ui . Likewise, Iu

represents the subset of items that have been rated by a user u. Finally, the items
that have been rated by two users u and v, i.e. Iu ∩ Iv , is an important concept in
our presentation, and we use Iuv to denote this concept. In a similar fashion, Uij is
used to denote the set of users that have rated both items i and j .

Two of the most important problems associated with recommender systems are
the rating prediction and top-N recommendation problems. The first problem is to
predict the rating that a user u will give his or her unrated item i. When ratings are
available, this task is most often defined as a regression or (multi-class) classification
problem where the goal is to learn a function f : U ×I → S that predicts the rating
f (u, i) of a user u for an unseen item i. Accuracy is commonly used to evaluate the
performance of the recommendation method. Typically, the ratings R are divided
into a training set Rtrain used to learn f , and a test set Rtest used to evaluate the
prediction accuracy. Two popular measures of accuracy are theMean Absolute Error
(MAE):

MAE(f) = 1

|Rtest|
∑

rui∈Rtest

|f (u, i) − rui |, (1)

and the Root Mean Squared Error (RMSE):

RMSE(f) =
√√√√ 1

|Rtest|
∑

rui∈Rtest

(f (u, i) − rui)
2. (2)

When ratings are not available, for instance, if only the list of items purchased by
each user is known, measuring the rating prediction accuracy is not possible. In such
cases, the problem of finding the best item is usually transformed into the task of
recommending to an active user ua a list L(ua) containing N items likely to interest
him or her [20, 75]. The quality of such method can be evaluated by splitting the
items of I into a set Itrain, used to learn L, and a test set Itest. Let T (u) ⊂ Iu ∩ Itest

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 45

be the subset of test items that a user u found relevant. If the user responses are
binary, these can be the items that u has rated positively. Otherwise, if only a list of
purchased or accessed items is given for each user u, then these items can be used
as T (u). The performance of the method is then computed using the measures of
precision and recall:

Precision(L) = 1

|U |
∑

u∈U
|L(u) ∩ T (u)| / |L(u)| (3)

Recall(L) = 1

|U |
∑

u∈U
|L(u) ∩ T (u)| / |T (u)|. (4)

A drawback of this task is that all items of a recommendation list L(u) are
considered equally interesting to user u. An alternative setting, described in [20],
consists in learning a function L that maps each user u to a list L(u) where items are
ordered by their “interestingness” to u. If the test set is built by randomly selecting,
for each user u, a single item iu of Iu, the performance of L can be evaluated with
the Average Reciprocal Hit-Rank (ARHR):

ARHR(L) = 1

|U |
∑

u∈U

1

rank(iu, L(u))
, (5)

where rank(iu, L(u)) is the rank of item iu in L(u), equal to ∞ if iu �∈ L(u). A
more extensive description of evaluation measures for recommender systems can be
found in chapter “Evaluating Recommender Systems” of this book.

3 Neighborhood-Based Recommendation

Recommender systems based on neighborhood automate the common principle that
similar users prefer similar items, and similar items are preferred by similar users.
To illustrate this, consider the following example based on the ratings of Fig. 1.

Example 1 User Eric has to decide whether or not to rent the movie “Titanic” that
he has not yet seen. He knows that Lucy has very similar tastes when it comes to
movies, as both of them hated “The Matrix” and loved “Forrest Gump,” so he asks

Fig. 1 A “toy example”
showing the ratings of four
users for five movies

The Titanic Die Forrest Wall-EMatrix Hard Gump
John 5 1 2 2
Lucy 1 5 2 5 5
Eric 2 ? 3 5 4
Diane 4 3 5 3

46 A. N. Nikolakopoulos et al.

her opinion on this movie. On the other hand, Eric finds out he and Diane have
different tastes, Diane likes action movies while he does not, and he discards her
opinion or considers the opposite in his decision.

3.1 User-Based Rating Prediction

User-based neighborhood recommendation methods predict the rating rui of a user
u for an unseen item i using the ratings given to i by users most similar to u, called
nearest-neighbors. Suppose we have for each user v �= u a value wuv representing
the preference similarity between u and v (how this similarity can be computed will
be discussed in Sect. 4.2). The k-nearest-neighbors (k-NN) of u, denoted by N (u),
are the k users v with the highest similarity wuv to u. However, only the users
who have rated item i can be used in the prediction of rui , and we instead consider
the k users most similar to u that have rated i. We write this set of neighbors as
Ni (u). The rating rui can be estimated as the average rating given to i by these
neighbors:

r̂ui = 1

|Ni (u)|
∑

v∈Ni (u)

rvi . (6)

A problem with (6) is that is does not take into account the fact that the neighbors
can have different levels of similarity. Consider once more the example of Fig. 1.
If the two nearest-neighbors of Eric are Lucy and Diane, it would be foolish to
consider equally their ratings of the movie “Titanic,” since Lucy’s tastes are much
closer to Eric’s than Diane’s. A common solution to this problem is to weigh the
contribution of each neighbor by its similarity to u. However, if these weights do
not sum to 1, the predicted ratings can be well outside the range of allowed values.
Consequently, it is customary to normalize these weights, such that the predicted
rating becomes

r̂ui =

∑
v∈Ni (u)

wuv rvi

∑
v∈Ni (u)

|wuv| . (7)

In the denominator of (7), |wuv| is used instead of wuv because negative weights can
produce ratings outside the allowed range. Also, wuv can be replaced by wα

uv , where
α > 0 is an amplification factor [10]. When α > 1, as is it most often employed, an
even greater importance is given to the neighbors that are the closest to u.

Example 2 Suppose we want to use (7) to predict Eric’s rating of the movie
“Titanic” using the ratings of Lucy and Diane for this movie. Moreover, suppose
the similarity weights between these neighbors and Eric are respectively 0.75 and
0.15. The predicted rating would be

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 47

r̂ = 0.75×5 + 0.15×3

0.75 + 0.15
� 4.67,

which is closer to Lucy’s rating than to Diane’s.

Equation (7) also has an important flaw: it does not consider the fact that users
may use different rating values to quantify the same level of appreciation for an item.
For example, one user may give the highest rating value to only a few outstanding
items, while a less difficult one may give this value to most of the items he likes. This
problem is usually addressed by converting the neighbors’ ratings rvi to normalized
ones h(rvi) [10, 73], giving the following prediction:

r̂ui = h−1

⎛

⎜⎝

∑
v∈Ni (u)

wuv h(rvi)

∑
v∈Ni (u)

|wuv|

⎞

⎟⎠ . (8)

Note that the predicted rating must be converted back to the original scale, hence
the h−1 in the equation. The most common approaches to normalize ratings will be
presented in Sect. 4.1.

3.2 User-Based Classification

The prediction approach just described, where the predicted ratings are computed
as a weighted average of the neighbors’ ratings, essentially solves a regression
problem. Neighborhood-based classification, on the other hand, finds the most likely
rating given by a user u to an item i, by having the nearest-neighbors of u vote on
this value. The vote vir given by the k-NN of u for the rating r ∈ S can be obtained
as the sum of the similarity weights of neighbors that have given this rating to i:

vir =
∑

v∈Ni (u)

δ(rvi = r)wuv, (9)

where δ(rvi = r) is 1 if rvi = r , and 0 otherwise. Once this has been computed for
every possible rating value, the predicted rating is simply the value r for which vir

is the greatest.

Example 3 Suppose once again that the two nearest-neighbors of Eric are Lucy and
Diane with respective similarity weights 0.75 and 0.15. In this case, ratings 5 and 3
each have one vote. However, since Lucy’s vote has a greater weight than Diane’s,
the predicted rating will be r̂ = 5.

A classification method that considers normalized ratings can also be defined.
Let S ′ be the set of possible normalized values (that may require discretization), the
predicted rating is obtained as:

48 A. N. Nikolakopoulos et al.

r̂ui = h−1

⎛

⎝argmax
r∈S ′

∑

v∈Ni (u)

δ(h(rvi) = r)wuv

⎞

⎠ . (10)

3.3 Regression vs. Classification

The choice between implementing a neighborhood-based regression or classifica-
tion method largely depends on the system’s rating scale. Thus, if the rating scale
is continuous, e.g. ratings in the Jester joke recommender system [25] can take any
value between −10 and 10, then a regression method is more appropriate. On the
contrary, if the rating scale has only a few discrete values, e.g. “good” or “bad,” or
if the values cannot be ordered in an obvious fashion, then a classification method
might be preferable. Furthermore, since normalization tends to map ratings to a
continuous scale, it may be harder to handle in a classification approach.

Another way to compare these two approaches is by considering the situation
where all neighbors have the same similarity weight. As the number of neighbors
used in the prediction increases, the rating rui predicted by the regression approach
will tend toward the mean rating of item i. Suppose item i has only ratings at either
end of the rating range, i.e. it is either loved or hated, then the regression approach
will make the safe decision that the item’s worth is average. This is also justified
from a statistical point of view since the expected rating (estimated in this case) is
the one that minimizes the RMSE. On the other hand, the classification approach
will predict the rating as the most frequent one given to i. This is more risky as the
item will be labeled as either “good” or “bad”. However, as mentioned before, risk
taking may be be desirable if it leads to serendipitous recommendations.

3.4 Item-Based Recommendation

While user-based methods rely on the opinion, of like-minded users to predict a
rating, item-based approaches [20, 51, 75] look at ratings given to similar items. Let
us illustrate this approach with our toy example.

Example 4 Instead of consulting with his peers, Eric instead determines whether
the movie “Titanic” is right for him by considering the movies that he has already
seen. He notices that people that have rated this movie have given similar ratings
to the movies “Forrest Gump” and “Wall-E”. Since Eric liked these two movies he
concludes that he will also like the movie “Titanic”.

This idea can be formalized as follows. Denote by Nu(i) the items rated by user
u most similar to item i. The predicted rating of u for i is obtained as a weighted
average of the ratings given by u to the items of Nu(i):

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 49

r̂ui =

∑
j∈Nu(i)

wij ruj

∑
j∈Nu(i)

|wij | . (11)

Example 5 Suppose our prediction is again made using two nearest-neighbors, and
that the items most similar to “Titanic” are “Forrest Gump” and “Wall-E,” with
respective similarity weights 0.85 and 0.75. Since ratings of 5 and 4 were given by
Eric to these two movies, the predicted rating is computed as

r̂ = 0.85×5 + 0.75×4

0.85 + 0.75
� 4.53.

Again, the differences in the users’ individual rating scales can be considered by
normalizing ratings with a h:

r̂ui = h−1

⎛

⎜⎝

∑
j∈Nu(i)

wij h(ruj)

∑
j∈Nu(i)

|wij |

⎞

⎟⎠ . (12)

Moreover, we can also define an item-based classification approach. In this case, the
items j rated by user u vote for the rating to be given to an unseen item i, and these
votes are weighted by the similarity between i and j . The normalized version of this
approach can be expressed as follows:

r̂ui = h−1

⎛

⎝argmax
r∈S ′

∑

j∈Nu(i)

δ(h(ruj) = r)wij

⎞

⎠ . (13)

3.5 User-Based vs. Item-Based Recommendation

When choosing between the implementation of a user-based and an item-based
neighborhood recommender system, five criteria should be considered:

• Accuracy: The accuracy of neighborhood recommendation methods depends
mostly on the ratio between the number of users and items in the system. As
will be presented in Sect. 4.2, the similarity between two users in user-based
methods, which determines the neighbors of a user, is normally obtained by
comparing the ratings made by these users on the same items. Consider a system
that has 10, 000 ratings made by 1000 users on 100 items, and suppose, for
the purpose of this analysis, that the ratings are distributed uniformly over the

50 A. N. Nikolakopoulos et al.

Table 1 The average number of neighbors and average number of ratings used in the computa-
tion of similarities for user-based and item-based neighborhood methods. A uniform distribution
of ratings is assumed with average number of ratings per user p = |R|/|U |, and average number
of ratings per item q = |R|/|I|

Avg. neighbors Avg. ratings

User-based (|U | − 1)
(
1 −

(|I|−p
|I|

)p)
p2

|I|
Item-based (|I| − 1)

(
1 −

(|U |−q
|U |

)q)
q2

|U |

Table 2 The space and time complexity of user-based and item-based neighborhood methods, as
a function of the maximum number of ratings per user p = maxu |Iu|, the maximum number
of ratings per item q = maxi |Ui |, and the maximum number of neighbors used in the rating
predictions k

Time

Space Training Online

User-based O(|U |2) O(|U |2p) O(|I|k)

Item-based O(|I|2) O(|I|2q) O(|I|k)

items.2 Following Table 1, the average number of users available as potential
neighbors is roughly 650. However, the average number of common ratings used
to compute the similarities is only 1. On the other hand, an item-based method
usually computes the similarity between two items by comparing ratings made
by the same user on these items. Assuming once more a uniform distribution of
ratings, we find an average number of potential neighbors of 99 and an average
number of ratings used to compute the similarities of 10.

In general, a small number of high-confidence neighbors is by far preferable to
a large number of neighbors for which the similarity weights are not trustable. In
cases where the number of users is much greater than the number of items, such
as large commercial systems like Amazon.com, item-based methods can therefore
produce more accurate recommendations [21, 75]. Likewise, systems that have
less users than items, e.g., a research paper recommender with thousands of users
but hundreds of thousands of articles to recommend, may benefit more from user-
based neighborhood methods [31].

• Efficiency: As shown in Table 2, the memory and computational efficiency of
recommender systems also depends on the ratio between the number of users
and items. Thus, when the number of users exceeds the number of items, as is it
most often the case, item-based recommendation approaches require much less
memory and time to compute the similarity weights (training phase) than user-
based ones, making them more scalable. However, the time complexity of the
online recommendation phase, which depends only on the number of available

2 The distribution of ratings in real-life data is normally skewed, i.e. most ratings are given to a
small proportion of items.

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 51

items and the maximum number of neighbors, is the same for user-based and
item-based methods.

In practice, computing the similarity weights is much less expensive than the
worst-case complexity reported in Table 2, due to the fact that users rate only
a few of the available items. Accordingly, only the non-zero similarity weights
need to be stored, which is often much less than the number of user pairs. This
number can be further reduced by storing for each user only the top N weights,
where N is a parameter [75] that is sufficient for satisfactory coverage on user-
item pairs. In the same manner, the non-zero weights can be computed efficiently
without having to test each pair of users or items, which makes neighborhood
methods scalable to very large systems.

• Stability: The choice between a user-based and an item-based approach also
depends on the frequency and amount of change in the users and items of the
system. If the list of available items is fairly static in comparison to the users
of the system, an item-based method may be preferable since the item similarity
weights could then be computed at infrequent time intervals while still being able
to recommend items to new users. On the contrary, in applications where the list
of available items is constantly changing, e.g., an online article recommender,
user-based methods could prove to be more stable.

• Justifiability: An advantage of item-based methods is that they can easily be
used to justify a recommendation. Hence, the list of neighbor items used in the
prediction, as well as their similarity weights, can be presented to the user as an
explanation of the recommendation. By modifying the list of neighbors and/or
their weights, it then becomes possible for the user to participate interactively in
the recommendation process. User-based methods, however, are less amenable
to this process because the active user does not know the other users serving as
neighbors in the recommendation.

• Serendipity: In item-based methods, the rating predicted for an item is based on
the ratings given to similar items. Consequently, recommender systems using this
approach will tend to recommend to a user items that are related to those usually
appreciated by this user. For instance, in a movie recommendation application,
movies having the same genre, actors or director as those highly rated by the user
are likely to be recommended. While this may lead to safe recommendations, it
does less to help the user discover different types of items that he might like as
much.

Because they work with user similarity, on the other hand, user-based
approaches are more likely to make serendipitous recommendations. This is
particularly true if the recommendation is made with a small number of nearest-
neighbors. For example, a user A that has watched only comedies may be very
similar to a user B only by the ratings made on such movies. However, if B

is fond of a movie in a different genre, this movie may be recommended to A

through his similarity with B.

52 A. N. Nikolakopoulos et al.

4 Components of Neighborhood Methods

In the previous section, we have seen that deciding between a regression and a
classification rating prediction method, as well as choosing between a user-based
or item-based recommendation approach, can have a significant impact on the
accuracy, efficiency and overall quality of the recommender system. In addition to
these crucial attributes, three very important considerations in the implementation of
a neighborhood-based recommender system are (1) the normalization of ratings, (2)
the computation of the similarity weights, and (3) the selection of neighbors. This
section reviews some of the most common approaches for these three components,
describes the main advantages and disadvantages of using each one of them, and
gives indications on how to implement them.

4.1 Rating Normalization

When it comes to assigning a rating to an item, each user has its own personal
scale. Even if an explicit definition of each of the possible ratings is supplied
(e.g., 1=“strongly disagree,” 2=“disagree,” 3=“neutral,” etc.), some users might be
reluctant to give high/low scores to items they liked/disliked. Two of the most
popular rating normalization schemes that have been proposed to convert individual
ratings to a more universal scale are mean-centering and Z-score.

4.1.1 Mean-centering

The idea of mean-centering [10, 73] is to determine whether a rating is positive or
negative by comparing it to the mean rating. In user-based recommendation, a raw
rating rui is transformation to a mean-centered one h(rui) by subtracting to rui the
average ru of the ratings given by user u to the items in Iu:

h(rui) = rui − ru.

Using this approach the user-based prediction of a rating rui is obtained as

r̂ui = ru +

∑
v∈Ni (u)

wuv (rvi − rv)

∑
v∈Ni (u)

|wuv| . (14)

In the same way, the item-mean-centered normalization of rui is given by

h(rui) = rui − ri,

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 53

Fig. 2 The user and item
mean-centered ratings of
Fig. 1

User mean-centering:

The Titanic Die Forrest Wall-EMatrix Hard Gump
John 2.50 -1.50 -0.50 -0.50
Lucy -2.60 1.40 -1.60 1.40 1.40
Eric -1.50 -0.50 1.50 0.50
Diane 0.25 -0.75 1.25 -0.75

Item mean-centering:

The Titanic Die Forrest Wall-EMatrix Hard Gump
John 2.00 -2.00 -1.75 -1.67
Lucy -2.00 2.00 -1.33 1.25 1.33
Eric -1.00 -0.33 1.25 0.33
Diane 1.00 0.00 1.67 -0.75

where ri corresponds to the mean rating given to item i by user in Ui . This
normalization technique is most often used in item-based recommendation, where a
rating rui is predicted as:

r̂ui = ri +

∑
j∈Nu(i)

wij (ruj − rj)

∑
j∈Nu(i)

|wij | . (15)

An interesting property of mean-centering is that one can see right-away if the
appreciation of a user for an item is positive or negative by looking at the sign of the
normalized rating. Moreover, the module of this rating gives the level at which the
user likes or dislikes the item.

Example 6 As shown in Fig. 2, although Diane gave an average rating of 3 to the
movies “Titanic” and “Forrest Gump,” the user-mean-centered ratings show that her
appreciation of these movies is in fact negative. This is because her ratings are high
on average, and so, an average rating correspond to a low degree of appreciation.
Differences are also visible while comparing the two types of mean-centering. For
instance, the item-mean-centered rating of the movie “Titanic” is neutral, instead of
negative, due to the fact that much lower ratings were given to that movie. Likewise,
Diane’s appreciation for “The Matrix” and John’s distaste for “Forrest Gump” are
more pronounced in the item-mean-centered ratings.

4.1.2 Z-score Normalization

Consider, two users A and B that both have an average rating of 3. Moreover,
suppose that the ratings of A alternate between 1 and 5, while those of B are always

54 A. N. Nikolakopoulos et al.

3. A rating of 5 given to an item by B is more exceptional than the same rating
given by A, and, thus, reflects a greater appreciation for this item. While mean-
centering removes the offsets caused by the different perceptions of an average
rating, Z-score normalization [30] also considers the spread in the individual rating
scales. Once again, this is usually done differently in user-based than in item-based
recommendation. In user-based methods, the normalization of a rating rui divides
the user-mean-centered rating by the standard deviation σu of the ratings given by
user u:

h(rui) = rui − ru

σu

.

A user-based prediction of rating rui using this normalization approach would
therefore be obtained as

r̂ui = ru + σu

∑
v∈Ni (u)

wuv (rvi − rv)/σv

∑
v∈Ni (u)

|wuv| . (16)

Likewise, the z-score normalization of rui in item-based methods divides the item-
mean-centered rating by the standard deviation of ratings given to item i:

h(rui) = rui − ri

σi

.

The item-based prediction of rating rui would then be

r̂ui = ri + σi

∑
j∈Nu(i)

wij (ruj − rj)/σj

∑
j∈Nu(i)

|wij | . (17)

4.1.3 Choosing a Normalization Scheme

In some cases, rating normalization can have undesirable effects. For instance,
imagine the case of a user that gave only the highest ratings to the items he has
purchased. Mean-centering would consider this user as “easy to please” and any
rating below this highest rating (whether it is a positive or negative rating) would
be considered as negative. However, it is possible that this user is in fact “hard
to please” and carefully selects only items that he will like for sure. Furthermore,
normalizing on a few ratings can produce unexpected results. For example, if a user
has entered a single rating or a few identical ratings, his rating standard deviation
will be 0, leading to undefined prediction values. Nevertheless, if the rating data is

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 55

not overly sparse, normalizing ratings has been found to consistently improve the
predictions [30, 34].

Comparing mean-centering with Z-score, as mentioned, the second one has the
additional benefit of considering the variance in the ratings of individual users or
items. This is particularly useful if the rating scale has a wide range of discrete
values or if it is continuous. On the other hand, because the ratings are divided and
multiplied by possibly very different standard deviation values,Z-score can be more
sensitive than mean-centering and, more often, predict ratings that are outside the
rating scale. Lastly, while an initial investigation found mean-centering and Z-score
to give comparable results [30], subsequent analysis showed Z-score to have more
significant benefits [34].

Finally, if rating normalization is not possible or does not improve the results,
another possible approach to remove the problems caused by the rating scale
variance is preference-based filtering. The particularity of this approach is that it
focuses on predicting the relative preferences of users instead of absolute rating
values. Since, an item preferred to another one remains so regardless of the rating
scale, predicting relative preferences removes the need to normalize the ratings.
More information on this approach can be found in [16, 23, 37, 38].

4.2 Similarity Weight Computation

The similarity weights play a double role in neighborhood-based recommendation
methods: (1) they allow to select trusted neighbors whose ratings are used in the
prediction, and (2) they provide the means to give more or less importance to these
neighbors in the prediction. The computation of the similarity weights is one of the
most critical aspects of building a neighborhood-based recommender system, as it
can have a significant impact on both its accuracy and its performance.

4.2.1 Correlation-Based Similarity

A measure of the similarity between two objects a and b, often used in information
retrieval, consists in representing these objects in the form of a vector xa and xb and
computing the Cosine Vector (CV) (or Vector Space) similarity [4, 8, 48] between
these vectors:

cos(xa, xb) = x

a xb

||xa|| · ||xb|| .

In the context of item recommendation, this measure can be employed to compute
user similarities by considering a user u as a vector xu ∈ R|I |, where xui = rui if
user u has rated item i, and 0 otherwise. The similarity between two users u and v

would then be computed as

56 A. N. Nikolakopoulos et al.

CV (u, v) = cos(xu, xv) =

∑
i∈Iuv

rui rvi

√ ∑
i∈Iu

r2ui

∑
j∈Iv

r2vj

, (18)

where Iuv once more denotes the items rated by both u and v. A problem with this
measure is that is does not consider the differences in the mean and variance of the
ratings made by users u and v.

A popular measure that compares ratings where the effects of mean and variance
have been removed is the Pearson Correlation (PC) similarity:

PC(u, v) =

∑
i∈Iuv

(rui − ru)(rvi − rv)

√ ∑
i∈Iuv

(rui − ru)2
∑

i∈Iuv

(rvi − rv)2
. (19)

Note that this is different from computing the CV similarity on the Z-score
normalized ratings, since the standard deviation of the ratings in evaluated only on
the common items Iuv , not on the entire set of items rated by u and v, i.e. Iu and Iv .
The same idea can be used to obtain similarities between two items i and j [20, 75],
this time by comparing the ratings made by users that have rated both these items:

PC(i, j) =

∑
u∈Uij

(rui − ri)(ruj − rj)

√ ∑
u∈Uij

(rui − ri)2
∑

u∈Uij

(ruj − rj)2
. (20)

While the sign of a similarity weight indicates whether the correlation is direct
or inverse, its magnitude (ranging from 0 to 1) represents the strength of the
correlation.

Example 7 The similarities between the pairs of users and items of our toy example,
as computed using PC similarity, are shown in Fig. 3. We can see that Lucy’s taste
in movies is very close to Eric’s (similarity of 0.922) but very different from John’s
(similarity of −0.938). This means that Eric’s ratings can be trusted to predict
Lucy’s, and that Lucy should discard John’s opinion on movies or consider the
opposite. We also find that the people that like “The Matrix” also like “Die Hard”
but hate “Wall-E”. Note that these relations were discovered without having any
knowledge of the genre, director or actors of these movies.

The differences in the rating scales of individual users are often more pronounced
than the differences in ratings given to individual items. Therefore, while computing
the item similarities, it may be more appropriate to compare ratings that are
centered on their user mean, instead of their item mean. The Adjusted Cosine (AC)
similarity [75], is a modification of the PC item similarity which compares user-
mean-centered ratings:

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 57

Fig. 3 The user and item PC
similarity for the ratings of
Fig. 1

User-based Pearsoncorrelation

John Lucy Eric Diane
John 1.000 -0.938 -0.839 0.659
Lucy -0.938 1.000 0.922 -0.787
Eric -0.839 0.922 1.000 -0.659
Diane 0.659 -0.787 -0.659 1.000

Item-based Pearsoncorrelation

The Titanic Die Forrest Wall-EMatrix Hard Gump
Matrix 1.000 -0.943 0.882 -0.974 -0.977
Titanic -0.943 1.000 -0.625 0.931 0.994
DieHard 0.882 -0.625 1.000 -0.804 -1.000

ForrestGump -0.974 0.931 -0.804 1.000 0.930
Wall-E -0.977 0.994 -1.000 0.930 1.000

AC(i, j) =

∑
u∈Uij

(rui − ru)(ruj − ru)

√ ∑
u∈Uij

(rui − ru)2
∑

u∈Uij

(ruj − ru)2
.

In some cases, AC similarity has been found to outperform PC similarity on the
prediction of ratings using an item-based method [75].

4.2.2 Other Similarity Measures

Several other measures have been proposed to compute similarities between users or
items. One of them is theMean Squared Difference (MSD) [79], which evaluate the
similarity between two users u and v as the inverse of the average squared difference
between the ratings given by u and v on the same items:

MSD(u, v) = |Iuv|∑
i∈Iuv

(rui − rvi)2
. (21)

While it could be modified to compute the differences on normalized ratings, the
MSD similarity is limited compared to PC similarity because it does not allows
to capture negative correlations between user preferences or the appreciation of
different items. Having such negative correlations may improve the rating prediction
accuracy [29].

Another well-known similarity measure is the Spearman Rank Correlation
(SRC) [42]. While PC uses the rating values directly, SRC instead considers the
ranking of these ratings. Denote by kui the rating rank of item i in user u’s list

58 A. N. Nikolakopoulos et al.

Table 3 The rating prediction accuracy (MAE) obtained on theMovieLens dataset using theMean
Squared Difference (MSD), Spearman Rank Correlation and Pearson Correlation (PC) similarity
measures. Results are shown for predictions using an increasing number of neighbors k

k MSD SRC PC

5 0.7898 0.7855 0.7829

10 0.7718 0.7636 0.7618

20 0.7634 0.7558 0.7545

60 0.7602 0.7529 0.7518

80 0.7605 0.7531 0.7523

100 0.7610 0.7533 0.7528

of rated items (tied ratings get the average rank of their spot). The SRC similarity
between two users u and v is evaluated as:

SRC(u, v) =

∑
i∈Iuv

(kui − ku)(kvi − kv)

√ ∑
i∈Iuv

(kui − ku)2
∑

i∈Iuv

(kvi − kv)2
, (22)

where ku is the average rank of items rated by u.
The principal advantage of SRC is that it avoids the problem of rating normaliza-

tion, described in the last section, by using rankings. On the other hand, this measure
may not be the best one when the rating range has only a few possible values, since
that would create a large number of tied ratings. Moreover, this measure is typically
more expensive than PC as ratings need to be sorted in order to compute their rank.

Table 3 shows the user-based prediction accuracy (MAE) obtained with MSD,
SRC and PC similarity measures, on theMovieLens3 dataset [29]. Results are given
for different values of k, which represents the maximum number of neighbors used
in the predictions. For this data, we notice that MSD leads to the least accurate
predictions, possibly due to the fact that it does not take into account negative
correlations. Also, these results show PC to be slightly more accurate than SRC.
Finally, although PC has been generally recognized as the best similarity measure,
see e.g. [29], subsequent investigation has shown that the performance of such
measure depended greatly on the data [34].

4.2.3 Considering the Significance of Weights

Because the rating data is frequently sparse in comparison to the number of users
and items of a system, it is often the case that similarity weights are computed using

3 http://www.grouplens.org/.

http://www.grouplens.org/

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 59

only a few ratings given to common items or made by the same users. For example,
if the system has 10, 000 ratings made by 1000 users on 100 items (assuming a
uniform distribution of ratings), Table 1 shows us that the similarity between two
users is computed, on average, by comparing the ratings given by these users to a
single item. If these few ratings are equal, then the users will be considered as “fully
similar” and will likely play an important role in each other’s recommendations.
However, if the users’ preferences are in fact different, this may lead to poor
recommendations.

Several strategies have been proposed to take into account the significance of a
similarity weight. The principle of these strategies is essentially the same: reduce
the magnitude of a similarity weight when this weight is computed using only a few
ratings. For instance, in Significance Weighting [30, 53], a user similarity weight
wuv is penalized by a factor proportional to the number of commonly rated item, if
this number is less than a given parameter γ > 0:

w′
uv = min{|Iuv|, γ }

γ
× wuv. (23)

Likewise, an item similarity wij , obtained from a few ratings, can be adjusted as

w′
ij = min{|Uij |, γ }

γ
× wij . (24)

In [29, 30], it was found that using γ ≥ 25 could significantly improve the accuracy
of the predicted ratings, and that a value of 50 for γ gave the best results. However,
the optimal value for this parameter is data dependent and should be determined
using a cross-validation approach.

A characteristic of significance weighting is its use of a threshold γ determining
when a weight should be adjusted. A more continuous approach, described in [6],
is based on the concept of shrinkage where a weak or biased estimator can be
improved if it is “shrunk” toward a null-value. This approach can be justified using
a Bayesian perspective, where the best estimator of a parameter is the posterior
mean, corresponding to a linear combination of the prior mean of the parameter
(null-value) and an empirical estimator based fully on the data. In this case, the
parameters to estimate are the similarity weights and the null value is zero. Thus, a
user similarity wuv estimated on a few ratings is shrunk as

w′
uv = |Iuv|

|Iuv| + β
× wuv, (25)

where β > 0 is a parameter whose value should also be selected using cross-
validation. In this approach, wuv is shrunk proportionally to β/|Iuv|, such that
almost no adjustment is made when |Iuv| � β. Item similarities can be shrunk
in the same way:

60 A. N. Nikolakopoulos et al.

w′
ij = |Uij |

|Uij | + β
× wij , (26)

As reported in [6], a typical value for β is 100.

4.2.4 Considering the Variance of Ratings

Ratings made by two users on universally liked/disliked items may not be as
informative as those made for items with a greater rating variance. For instance,
most people like classic movies such as “The Godfather” so basing the weight
computation on such movies would produce artificially high values. Likewise, a user
that always rates items in the same way may provide less predictive information than
one whose preferences vary from one item to another.

A recommendation approach that addresses this problem is the Inverse User
Frequency [10]. Based on the information retrieval notion of Inverse Document
Frequency (IDF), a weight λi is given to each item i, in proportion to the log-ratio
of users that have rated i:

λi = log
|U |
|Ui | .

In the Frequency-Weighted Pearson Correlation (FWPC), the correlation between
the ratings given by two users u and v to an item i is weighted by λi :

FWPC(u, v) =

∑
i∈Iuv

λi(rui − ru)(rvi − rv)

√ ∑
i∈Iuv

λi(rui − ru)2
∑

i∈Iuv

λi(rvi − rv)2
. (27)

This approach, which was found to improve the prediction accuracy of a user-based
recommendation method [10], could also be adapted to the computation of item
similarities. More advanced strategies have also been proposed to consider rating
variance. One of these strategies, described in [36], computes the factors λi by
maximizing the average similarity between users.

4.2.5 Considering the Target Item

If the goal is to predict ratings with a user-based method, more reliable correlation
values can be obtained if the target item is considered in their computation.
In [5], the user-based PC similarity is extended by weighting the summation terms
corresponding to an item i by the similarity between i and the target item j :

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 61

WPCj (u, v) =

∑
i∈Iuv

wij (rui − ru)(rvi − rv)

√ ∑
i∈Iuv

wij (rui − ru)2
∑

i∈Iuv

wij (rvi − rv)2
. (28)

The item weights wij can be computed using PC similarity or obtained by consider-
ing the items’ content (e.g., the common genres for movies). Other variations of this
similarity metric and their impact on the prediction accuracy are described in [5].
Note, however, that this model may require to recompute the similarity weights for
each predicted rating, making it less suitable for online recommender systems.

4.3 Neighborhood Selection

The number of nearest-neighbors to select and the criteria used for this selection can
also have a serious impact on the quality of the recommender system. The selection
of the neighbors used in the recommendation of items is normally done in two steps:
(1) a global filtering step where only the most likely candidates are kept, and (2) a
per prediction step which chooses the best candidates for this prediction.

4.3.1 Pre-filtering of Neighbors

In large recommender systems that can have millions of users and items, it is usually
not possible to store the (non-zero) similarities between each pair of users or items,
due to memory limitations. Moreover, doing so would be extremely wasteful as
only the most significant of these values are used in the predictions. The pre-
filtering of neighbors is an essential step that makes neighborhood-based approaches
practicable by reducing the amount of similarity weights to store, and limiting the
number of candidate neighbors to consider in the predictions. There are several ways
in which this can be accomplished:

• Top-N filtering: For each user or item, only a list of the N nearest-neighbors
and their respective similarity weight is kept. To avoid problems with efficiency
or accuracy, N should be chosen carefully. Thus, if N is too large, an excessive
amount of memory will be required to store the neighborhood lists and predicting
ratings will be slow. On the other hand, selecting a too small value for N may
reduce the coverage of the recommendation method, which causes some items to
be never recommended.

• Threshold filtering: Instead of keeping a fixed number of nearest-neighbors, this
approach keeps all the neighbors whose similarity weight’s magnitude is greater
than a given threshold wmin. While this is more flexible than the previous filtering
technique, as only the most significant neighbors are kept, the right value of wmin
may be difficult to determine.

62 A. N. Nikolakopoulos et al.

• Negative filtering: In general, negative rating correlations are less reliable than
positive ones. Intuitively, this is because strong positive correlation between two
users is a good indicator of their belonging to a common group (e.g., teenagers,
science-fiction fans, etc.). However, although negative correlation may indicate
membership to different groups, it does not tell how different are these groups, or
whether these groups are compatible for some other categories of items. While
certain experimental investigations [30, 31] have found negative correlations to
provide no significant improvement in the prediction accuracy, in certain settings
they seem to have a positive effect (see e.g., [83]). Whether such correlations
can be discarded depends on the data and should be examined on a case-by-case
basis.

Note that these three filtering approaches are not exclusive and can be combined
to fit the needs of the recommender system. For instance, one could discard all
negative similarities as well as those that are not in the top-N lists.

4.3.2 Neighbors in the Predictions

Once a list of candidate neighbors has been computed for each user or item, the
prediction of new ratings is normally made with the k-nearest-neighbors, that is, the
k neighbors whose similarity weight has the greatest magnitude. The choice of k

can also have a significant impact on the accuracy and performance of the system.
As shown in Table 3, the prediction accuracy observed for increasing values of

k typically follows a concave function. Thus, when the number of neighbors is
restricted by using a small k (e.g., k < 20), the prediction accuracy is normally
low. As k increases, more neighbors contribute to the prediction and the variance
introduced by individual neighbors is averaged out. As a result, the prediction
accuracy improves. Finally, the accuracy usually drops when too many neighbors
are used in the prediction (e.g., k > 50), due to the fact that the few strong local
relations are “diluted” by the many weak ones. Although a number of neighbors
between 20 to 50 is most often described in the literature, see e.g. [29, 31], the
optimal value of k should be determined by cross-validation.

On a final note, more serendipitous recommendations may be obtained at the cost
of a decrease in accuracy, by basing these recommendations on a few very similar
users. For example, the system could find the user most similar to the active one and
recommend the new item that has received the highest rated from this user.

5 Advanced Techniques

The neighborhood approaches based on rating correlation, such as the ones pre-
sented in the previous sections, have three important limitations:

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 63

• Limited Expressiveness: Traditional neighborhood-based methods determine
the neighborhood of users or items using some predefined similarity measure
like cosine or PC. Recommendation algorithms that rely on such similarity
measures have been shown to enjoy remarkable recommendation accuracy in
certain settings. However their performance can vary considerably depending on
whether the chosen similarity measures conform with the latent characteristics of
the dataset onto which they are applied.

• Limited coverage: Because rating correlation measures the similarity between
two users by comparing their ratings for the same items, users can be neighbors
only if they have rated common items. This assumption is very limiting, as users
having rated a few or no common items may still have similar preferences.
Moreover, since only items rated by neighbors can be recommended, the
coverage of such methods can also be limited. This limitation also applies when
two items have only a few or no co-ratings.

• Sensitivity to sparse data:Another consequence of rating correlation, addressed
briefly in Sect. 3.5, is the fact that the accuracy of neighborhood-based rec-
ommendation methods suffers from the lack of available ratings. Sparsity is
a problem common to most recommender systems due to the fact that users
typically rate only a small proportion of the available items [7, 26, 76, 77]. This
is aggravated by the fact that users or items newly added to the system may have
no ratings at all, a problem known as cold-start [78]. When the rating data is
sparse, two users or items are unlikely to have common ratings, and consequently,
neighborhood-based approaches will predict ratings using a very limited number
of neighbors. Moreover, similarity weights may be computed using only a small
number of ratings, resulting in biased recommendations (see Sect. 4.2.3 for this
problem).

A common solution for latter problems is to fill the missing ratings with default
values [10, 20], such as the middle value of the rating range, or the average user
or item rating. A more reliable approach is to use content information to fill out the
missing ratings [18, 26, 45, 54]. For instance, the missing ratings can be provided by
autonomous agents called filterbots [26, 45], that act as ordinary users of the system
and rate items based on some specific characteristics of their content. The missing
ratings can instead be predicted by a content-based approach [54]. Furthermore,
content similarity can also be used “instead of” or “in addition to” rating correlation
similarity to find the nearest-neighbors employed in the predictions [4, 50, 71, 82].
Finally, data sparsity can also be tackled by acquiring new ratings with active
learning techniques. In such techniques, the system interactively queries the user to
gain a better understanding of his or her preferences. A more detailed presentation
of interactive and session-based techniques is given in chapter “Session-Based
Recommender Systems” of this book. These solutions, however, also have their own
drawbacks. For instance, giving a default values to missing ratings may induce bias
in the recommendations. Also, item content may not be available to compute ratings
or similarities.

64 A. N. Nikolakopoulos et al.

This section presents two approaches that aim to tackle the aforementioned
challenges: learning-based and graph-based methods.

5.1 Learning-Based Methods

In the methods of this family the similarity or affinity between users and items is
obtained by defining a parametric model that describes the relation between users,
items or both, and then fits the model parameters through an optimization procedure.

Using a learning-based method has significant advantages. First, such methods
can capture high-level patterns and trends in the data, are generally more robust to
outliers, and are known to generalize better than approaches solely based on local
relations. In recommender systems, this translates into greater accuracy and stability
in the recommendations [46]. Also, because the relations between users and items
are encoded in a limited set of parameters, such methods normally require less
memory than other types of approaches. Finally, since the parameters are usually
learned offline, the online recommendation process is generally faster.

Learning-based methods that use neighborhood or similarity information can
be divided in two categories: factorization methods and adaptive neighborhood
learning methods. These categories are presented in the following sections.

5.1.1 Factorization Methods

Factorization methods [6, 7, 17, 25, 46, 60, 76, 85, 86] address the problems
of limited coverage and sparsity by projecting users and items into a reduced
latent space that captures their most salient features. Because users and items are
compared in this dense subspace of high-level features, instead of the “rating space,”
more meaningful relations can be discovered. In particular, a relation between two
users can be found, even though these users have rated different items. As a result,
such methods are generally less sensitive to sparse data [6, 7, 76].

There are essentially two ways in which factorization can be used to improve
recommender systems: (1) factorization of a sparse similarity matrix, and (2)
factorization of a user-item rating matrix.

Factorizing the Similarity Matrix

Neighborhood similarity measures like the correlation similarity are usually very
sparse since the average number of ratings per user is much less than the total
number of items. A simple solution to densify a sparse similarity matrix is to
compute a low-rank approximation of this matrix with a factorization method.

Let W be a symmetric matrix of rank n representing either user or item
similarities. To simplify the presentation, we will suppose the latter case. We wish

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 65

to approximate W with a matrix Ŵ = QQ
 of lower rank k < n, by minimizing
the following objective:

E(Q) = ||W − QQ
||2F (29)

=
∑

i,j

(
wij − qiq

j

)2
,

where ||M||F =
√∑

i,j m2
ij is the matrix Frobenius norm. Matrix Ŵ can be seen

as a “compressed” and less sparse version of W . Finding the factor matrix Q is
equivalent to computing the eigenvalue decomposition of W :

W = V DV
,

whereD is a diagonal matrix containing the |I| eigenvalues ofW , and V is a |I|×|I|
orthogonal matrix containing the corresponding eigenvectors. Let Vk be a matrix
formed by the k principal (normalized) eigenvectors of W , which correspond to the
axes of the k-dimensional latent subspace. The coordinates qi ∈ Rk of an item i in
this subspace is given by the i-th row of matrix Q = VkD

1/2
k . Furthermore, the item

similarities computed in this latent subspace are given by matrix

Ŵ = QQ

= VkDkV

k . (30)

This approach was used to recommend jokes in the Eigentaste system [25]. In
Eigentaste, a matrix W containing the PC similarities between pairs of items is
decomposed to obtain the latent subspace defined by the k principal eigenvectors of
W . A user u, represented by the u-th row ru of the rating matrix R, is projected in
the plane defined by Vk:

r′
u = ruVk.

In an offline step, the users of the system are clustered in this subspace using a
recursive subdivision technique. Then, the rating of user u for an item i is evaluated
as the mean rating for i made by users in the same cluster as u. This strategy is
related to the well-known spectral clustering method [80].

Factorizing the Rating Matrix

The problems of cold-start and limited coverage can also be alleviated by factorizing
the user-item rating matrix. Once more, we want to approximate the |U |×|I| rating
matrix R of rank n by a matrix R̂ = PQ
 of rank k < n, where P is a |U |×k matrix

66 A. N. Nikolakopoulos et al.

of users factors and Q a |I|×k matrix of item factors. This task can be formulated
as finding matrices P and Q which minimize the following function:

E(P,Q) = ||R − PQ
||2F (31)

=
∑

u,i

(
rui − puq

i

)2
.

The optimal solution can be obtained by the Singular Value Decomposition (SVD)
of R: P = UkD

1/2
k and Q = VkD

1/2
k , where Dk is a diagonal matrix containing

the k largest singular values of R, and Uk, Vk respectively contain the left and right
singular vectors corresponding to these values.

However, there is significant problem with applying SVD directly to the rating
matrix R: most values rui of R are undefined, since there may not be a rating given
to i by u. Although it is possible to assign a default value to rui , as mentioned above,
this would introduce a bias in the data. More importantly, this would make the large
matrix R dense and, consequently, render impractical the SVD decomposition of R.
A common solution to this problem is to learn the model parameters using only the
known ratings [6, 46, 84, 86]. For instance, suppose the rating of user u for item i is
estimated as

r̂ui = bu + bi + puq

i , (32)

where bu and bi are parameters representing the user and item rating biases. The
model parameters can be learned by minimizing the following objective function:

E(P,Q,b) =
∑

rui∈R
(rui − r̂ui)

2 + λ
(
||pu||2 + ||qi ||2 + b2u + b2i

)
. (33)

The second term of the function is as a regularization term added to avoid
overfitting. Parameter λ controls the level of regularization. A more comprehensive
description of this recommendation approach can be found in chapter “Advances in
Collaborative Filtering” of this book.

The SVD model of Eq. (32) can be transformed into a similarity-based method
by supposing that the profile of a user u is determined implicitly by the items he or
she has rated. Thus, the factor vector of u can be defined as a weighted combination
of the factor vectors sj corresponding to the items j rated by this user:

pu = |Iu|−α
∑

j∈Iu

cuj sj . (34)

In this formulation, α is a normalization constant typically set to α = 1/2, and cuj

is a weight representing the contribution of item j to the profile of u. For instance,

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 67

in the SVD++ model [46] this weight is defined as the bias corrected rating of u

for item j : cuj = rui − bu − bj . Other approaches, such as the FISM [39] and
NSVD [69] models, instead use constant weights: cuj = 1.

Using the formulation of Eq. (34), a rating rui is predicted as

r̂ui = bu + bi + |Iu|−α
∑

j∈Iu

cuj sjq

i . (35)

Like the standard SVD model, the parameters of this model can be learned by
minimizing the objective function of Eq. (33), for instance, using gradient descent
optimization.

Note that, instead of having both user and item factors, we now have two different
sets of item factors, i.e., qi and sj . These vectors can be interpreted as the factors of
an asymmetric item-item similarity matrix W , where

wij = siq

j . (36)

As mentioned in [46], this similarity-based factorization approach has several
advantages over the traditional SVD model. First, since there are typically more
users than items in a recommender system, replacing the user factors by a
combination of item factors reduces the number of parameters in the model, which
makes the learning process faster and more robust. Also, by using item similarities
instead of user factors, the system can handle new users without having to re-train
the model. Finally, as in item-similarity neighborhood methods, this model makes
it possible to justify a rating to a user by showing this user the items that were most
involved in the prediction.

In FISM [39], the prediction of a rating rui is made without considering the
factors of i:

r̂ui = bu + bi + (|Iu| − 1
)−α

∑

j∈Iu\{i}
sjq

i . (37)

This modification, which corresponds to ignoring the diagonal entries in the item
similarity matrix, avoids the problem of having an item recommending itself and
has been shown to give better performance when the number of factors is high.

5.1.2 Neighborhood-Learning Methods

Standard neighborhood-based recommendation algorithms determine the neighbor-
hood of users or items directly from the data, using some pre-defined similarity
measure like PC. However, subsequent developments in the field of item recom-
mendation have shown the advantage of learning the neighborhood automatically
from the data, instead of using a pre-defined similarity measure [43, 46, 56, 72].

68 A. N. Nikolakopoulos et al.

Sparse Linear Neighborhood Model

A representative neighborhood-learning recommendation method is the SLIM
algorithm, developed by Ning et al. [65]. In SLIM, a new rating is predicted as a
sparse aggregation of existing ratings in a user’s profile,

r̂ui = ruw

i , (38)

where ru is the u-th row of the rating matrix R and wj is a sparse row vector
containing |I| aggregation coefficients. Essentially, the non-zero entries in wi

correspond to the neighbor items of an item i.
The neighborhood parameters are learned by minimizing the squared prediction

error. Standard regularization and sparsity are enforced by penalizing the �2-norm
and �1-norm of the parameters. The combination of these two types of regularizers
in a regression problem is known as elastic net regularization [90]. This learning
process can be expressed as the following optimization problem:

minimize
W

1

2
‖R − RW‖2F + β

2
‖W‖2F + λ‖W‖1

subject to W ≥ 0

diag(W) = 0.

(39)

The constraint diag(W) = 0 is added to the model to avoid trivial solutions (e.g.,
W corresponding to the identity matrix) and ensure that rui is not used to compute
r̂ui during the recommendation process. Parameters β and λ control the amount of
each type of regularization. Moreover, the non-negativity constraint on W imposes
the relations between neighbor items to be positive. Dropping the non-negativity as
well as the sparsity constraints has been recently explored in [83], and was shown to
work well on several datasets with small number of items with respect to users. Note,
however, that without the sparsity constraint the resulting model will be fully dense;
a fact that imposes practical limitations on the applicability of such approaches in
large item-space regimes (Fig. 4).

Sparse Neighborhood with Side Information

Side information, such as user profile attributes (e.g., age, gender, location) or item
descriptions/tags, is becoming increasingly available in e-commerce applications.
Properly exploited, this rich source of information can significantly improve the
performance of conventional recommender systems [1, 3, 81, 88].

Item side information can be integrated in the SLIM model by supposing that
the co-rating profile of two items is correlated to the properties encoded in their
side information [67]. To enforce such correlations in the model, an additional
requirement is added, where both the user-item rating matrix R and the item side

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 69

Fig. 4 A simple illustration of SLIM. The method works by first building an item-to-item model,
based onR. Intuitively, this item model expresses each item (i.e., each column of the original rating
matrix R) as a sparse linear combination of the rest of the items (i.e., the other columns of R).
Then, given W , new recommendations for a target user u can be readily produced by multiplying
the row corresponding to user u (i.e. the u-th row of R), with the learned item model, W

information matrix F should be reproduced by the same sparse linear aggregation.
That is, in addition to satisfying R ∼ RW , the coefficient matrix W should also
satisfy F ∼ FW . This is achieved by solving the following optimization problem:

minimize
W

1

2
‖R − RW‖2F + α

2
‖F − FW‖2F + β

2
‖W‖2F + λ‖W‖1

subject to W ≥ 0,

diag(W) = 0.

(40)

The parameter α is used to control the relative importance of the user-item rating
information R and the item side information F when they are used to learn W .

In some cases, requiring that the aggregation coefficients be the same for both R

and F can be too strict. An alternate model relaxes this constraints by imposing these
two sets of aggregation coefficients to be similar. Specifically, it uses an aggregation
coefficient matrix Q such that F ∼ FQ and W ∼ Q. Matrices W and Q are learned
as the minimizers of the following optimization problem:

minimize
W,Q

1

2
‖R − RW‖2F + α

2
‖F − FQ‖2F + β1

2
‖W − Q‖2F

+ β2

2

(‖W‖2F + ‖Q‖2F
) + λ

(‖W‖1 + ‖Q‖1
)

subject to W,Q ≥ 0,

diag(W) = 0, diag(Q) = 0.

(41)

70 A. N. Nikolakopoulos et al.

Parameter β1 controls how much W and Q are allowed to be different from each
other.

In [67], item reviews in the form of short texts were used as side information
in the models described above. These models were shown to outperform the
SLIM method without side information, as well as other approaches that use side
information, in the top-N recommendation task.

Global and Local Sparse Neighborhood Models

A global itemmodel may not always be sufficient to capture the preferences of every
user; especially when there exist subsets of users with diverse or even opposing
preferences. In cases like these training local item models (i.e., item models that are
estimated based on user subsets) is expected to be beneficial compared to adopting
a single item model for all users in the system. An example of such a case can be
seen in Fig. 5.

GLSLIM [13] aims to address the above issue. In a nutshell, GLSLIM computes
top-N recommendations that utilize user-subset specific models (local models) and
a global model. These models are jointly optimized along with computing the

Su
bs

rt
 2U

se
rs

Items Items

Case A: Overlapping rated items
 between user subsets

Case B: No common rated items
 between user subsets

Su
bs

rt
 1

Su
bs

rt
 2U

se
rs Su

bs
rt

 1

Fig. 5 GLSLIM Motivating Example. The figure shows the training matrices R of two different
datasets. Both contain two user subsets. Let’s assume that we are trying to compute recom-
mendation scores for item i, and that the recommendations are computed using an item-item
similarity-based method. Observe that in Case A there exist a set of items that have been rated
solely by users that belong to Subset 1, while also a set of items which have been rated by users
in both Subsets. Notice that the similarities of items c and i will be different when estimated
based on the feedback of (a) Subset 1 alone; (b) Subset 2 alone; and, (c) the complete set of users.
Specifically, their similarity will be zero for the users of Subset 2 (as item i is not rated by the users
in that subset), but it will be e.g., lic > 0 for the users of Subset 1, as well as e.g., gic > 0 when
estimated globally, with gic being potentially different than the locally estimated lic. Combining
global and local item-item similarity models, in settings like this could help capture potentially
diverse user preferences which would otherwise be missed if only a single global model, was
computed instead. On the other hand, for datasets like the one pictured in Case B the similarity
between e.g., items i and j will be the same, regardless of whether it is estimated globally, or
locally for Subset 1, since both items have been rated only by users of Subset 1

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 71

user-specific parameters that weigh their contribution in the production of the final
recommendations. The underlying model used for the estimation of local and global
item similarities is SLIM.

Specifically, GLSLIM estimates a global item-item coefficient matrix S and also
k local item-item coefficient matrices Spu , where k is the number of user subsets
and pu ∈ {1, . . . , k} is the index of the user subset, for which a local matrix Spu is
estimated. The recommendation score of user u, who belongs to subset pu, for item
i is estimated as:

r̃ui =
∑

l∈Ru

gusli + (1 − gu) s
pu

li . (42)

Term sli depicts the global item-item similarity between the l-th item rated by u and
the target item i. Term s

pu

li captures the item-item similarity between the l-th item
rated by u and target item i, based on the local model that corresponds to user-subset,
pu, to which user u belongs. Finally, the term gu ∈ [0, 1] is the personalized weight
of user u, which controls the involvement of the global and the local components,
in the final recommendation score.

The estimation of the global and the local item models, the user assignments
to subsets, and the personalized weights is achieved by alternating minimization.
Initially, the users are separated into subsets, using a clustering algorithm. Weights
gu are initialized to 0.5 for all users, in order to enforce equal contribution of the
global and the local components. Then the coefficient matrices S and Spu, with
pu ∈ {1, . . . , k}, as well as personalized weights gu are estimated, by repeating the
following two step procedure:

Step 1: Estimating local and global models: The training matrix R is split into
k training matrices Rpu of size |U | × |I|, with pu ∈ {1, . . . , k}. Every row u

of Rpu coincides with the u-th row of R, if user u belongs in the pu-th subset;
or is left empty, otherwise. In order to estimate the i-th column, si , of matrix S,
and the i-th columns, spu

i , of matrices Spu, pu ∈ {1, . . . , k}, GLSLIM solves the
following optimization problem:

minimize
si ,

{
s1i ,...,s

k
i

}
1
2

∥∥∥ri − g � Rsi − g′ � ∑k
pu=1 Rpuspu

i

∥∥∥
2

2
+ 1

2βg ‖si‖22 + λg ‖si‖1 +

+ ∑k
pu=1

1
2βl

∥∥spu

i

∥∥2
2 + λl

∥∥spu

i

∥∥
1

subject to si ≥ 0, spu

i ≥ 0, ∀pu ∈ {1, . . . , k}
[si]i = 0, [spu

i]i = 0, ∀pu

(43)

where ri is the i-th column of R; and, βg , βl are the l2 regularization hyper-
parameters corresponding to S, Spu,∀pu ∈ {1, . . . , k}, respectively. Finally, λg ,
λl are the l1 regularization hyperparameters controlling the sparsity of S, Spu

∀pu ∈ {1, . . . , k}, respectively. The constraint [si]i = 0 makes sure that when

72 A. N. Nikolakopoulos et al.

computing rui , the element rui is not used. Similarly, the constraints [spu

i]i = 0
∀pu ∈ {1, . . . , k}, enforce this property for the local sparse coefficient matrices
as well.

Step 2: Updating user subsets:With the global and local models fixed, GLSLIM
proceeds to update the user subsets. While doing that, it also determines the
personalized weight gu. Specifically, the computation of the personalized weight
gu, relies on minimizing the squared error of Eq. (42) for user u who belongs to
subset pu, over all items i. Setting the derivative of the squared error to 0, yields:

gu =
∑m

i=1

(∑
l∈Ru

sli − ∑
l∈Ru

s
pu

li

) (
rui − ∑

l∈Ru
s
pu

li

)

∑m
i=1

(∑
l∈Ru

sli − ∑
l∈Ru

s
pu

li

)2 . (44)

GLSLIM tries to assign each user u to every possible subset, while computing
the weight gu that the user would have, if assigned to that subset. Then, for every
subset pu and user u, the training error is computed and the user is assigned to
the subset for which this error is minimized (or remains to the original subset, if
no difference in training error occurs).

Steps 1 and 2, are repeated until the number of users who switch subsets, in
Step 2, becomes smaller than 1% of |U |. It is empirically observed that initializing
subset assignments with the CLUTO [40] clustering algorithm, results in a significant
reduction of the number of iterations till convergence.

Furthermore, a comprehensive set of experiments conducted in [13] explore in
detail the qualitative performance of GLSLIM, and suggest that it improves upon
the standard SLIM, in several datasets.

5.2 Graph-Based Methods

In graph-based approaches, the data is represented in the form of a graph where
nodes are users, items or both, and edges encode the interactions or similarities
between the users and items. For example, in Fig. 6, the data is modeled as a bipartite
graph where the two sets of nodes represent users and items, and an edge connects

Fig. 6 A bipartite graph
representation of the ratings
of Fig. 1 (only ratings with
value in {2, 3, 4} are shown)

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 73

user u to item i if there is a rating given to i by u in the system. A weight can also be
given to this edge, such as the value of its corresponding rating. In another model,
the nodes can represent either users or items, and an edge connects two nodes if the
ratings corresponding two these nodes are sufficiently correlated. The weight of this
edge can be the corresponding correlation value.

In these models, standard approaches based on correlation predict the rating of
a user u for an item i using only the nodes directly connected to u or i. Graph-
based approaches, on the other hand, allow nodes that are not directly connected to
influence each other by propagating information along the edges of the graph. The
greater the weight of an edge, the more information is allowed to pass through it.
Also, the influence of a node on another should be less if the two nodes are further
away in the graph. These two properties, known as propagation and attenuation [27,
35], are often observed in graph-based similarity measures.

The transitive associations captured by graph-based methods can be used to
recommend items in two different ways. In the first approach, the proximity of a
user u to an item i in the graph is used directly to evaluate the relevance of i to
u [21, 27, 35]. Following this idea, the items recommended to u by the system are
those that are the “closest” to u in the graph. On the other hand, the second approach
considers the proximity of two users or item nodes in the graph as a measure of
similarity, and uses this similarity as the weights wuv or wij of a neighborhood-
based recommendation method [21, 52].

5.2.1 Path-Based Similarity

In path-based similarity, the distance between two nodes of the graph is evaluated
as a function of the number and of paths connecting the two nodes, as well as the
length of these paths.

Let R be once again the |U |×|I | rating matrix, where rui is the rating given by
user u to an item i. The adjacency matrix A of the user-item bipartite graph can be
defined from R as

A =
(
0 R

R 0

)
.

The association between a user u and an item i can be defined as the sum of
the weights of all distinctive paths connecting u to v (allowing nodes to appear
more than once in the path), whose length is no more than a given maximum
length K . Note that, since the graph is bipartite, K should be an odd number. In
order to attenuate the contribution of longer paths, the weight given to a path of
length k is defined as αk , where α ∈ [0, 1]. Using the fact that the number of
length k paths between pairs of nodes is given by Ak , the user-item association
matrix SK is

74 A. N. Nikolakopoulos et al.

SK =
K∑

k=1

αkAk

= (I − αA)−1(αA − αKAK). (45)

This method of computing distances between nodes in a graph is known as the
Katz measure [41]. Note that this measure is closely related to the Von Neumann
Diffusion kernel [22, 44, 47]

KVND =
∞∑

k=0

αkAk

= (I − αA)−1 (46)

and the Exponential Diffusion kernel

KED =
∞∑

k=0

1

k!α
kAk

= exp(αA), (47)

where A0 = I .
In recommender systems that have a large number of users and items, computing

these association values may require extensive computational resources. In [35],
spreading activation techniques are used to overcome these limitations. Essentially,
such techniques work by first activating a selected subset of nodes as starting nodes,
and then iteratively activating the nodes that can be reached directly from the nodes
that are already active, until a convergence criterion is met.

Path-based methods, as well as the other graph-based approaches described in
this section, focus on finding relevant associations between users and items, not
predicting exact ratings. Therefore, such methods are better suited for item retrieval
tasks, where explicit ratings are often unavailable and the goal is to obtain a short
list of relevant items (i.e., the top-N recommendation problem).

5.2.2 Random Walk Similarity

Transitive associations in graph-based methods can also be defined within a
probabilistic framework. In this framework, the similarity or affinity between users
or items is evaluated as a probability of reaching these nodes in a random walk.
Formally, this can be described with a first-order Markov process defined by a set
of n states and a n×n transition probability matrix P such that the probability of
jumping from state i to j at any time-step t is

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 75

pij = Pr
(
s(t+1) = j | s(t) = i

)
.

Denote π(t) the vector containing the state probability distribution of step t , such
that πi(t) = Pr (s(t) = i), the evolution of the Markov chain is characterized by

π(t+1) = P
π(t).

Moreover, under the condition that P is row-stochastic, i.e.
∑

j pij = 1 for all i, the
process converges to a stable distribution vector π(∞) corresponding to the positive
eigenvector of P
 with an eigenvalue of 1. This process is often described in the
form of a weighted graph having a node for each state, and where the probability
of jumping from a node to an adjacent node is given by the weight of the edge
connecting these nodes.

Itemrank

A recommendation approach, based on the PageRank algorithm for ranking Web
pages [11], is ItemRank [27]. This approach ranks the preferences of a user u for
unseen items i as the probability of u to visit i in a random walk of a graph in which
nodes correspond to the items of the system, and edges connects items that have
been rated by common users. The edge weights are given by the |I|×|I| transition
probability matrix P for which pij = |Uij |/|Ui | is the estimated conditional
probability of a user to rate and item j if it has rated an item i.

As in PageRank, the random walk can, at any step t , either jump using P to an
adjacent node with fixed probability α, or “teleport” to any node with probability
(1 − α). Let ru be the u-th row of the rating matrix R, the probability distribution
of user u to teleport to other nodes is given by vector du = ru/||ru||. Following
these definitions, the state probability distribution vector of user u at step t +1 can
be expressed recursively as

πu(t+1) = αP
πu(t) + (1−α)du. (48)

For practical reasons, πu(∞) is usually obtained with a procedure that first
initializes the distribution as uniform, i.e. πu(0) = 1

n
1, and then iteratively updates

πu, using (48), until convergence. Once πu(∞) has been computed, the system
recommends to u the item i for which πui is the highest.

Average First-Passage/Commute Time

Other distance measures based on random walks have been proposed for the
recommendation problem. Among these are the average first-passage time and the
average commute time [21, 22]. The average first-passage time m(j |i) [68] is the

76 A. N. Nikolakopoulos et al.

average number of steps needed by a random walker to reach a node j for the first
time, when starting from a node i �= j . Let P be the n×n transition probability
matrix, m(j |i) can be obtained expressed recursively as

m(j | i) =
⎧
⎨

⎩

0 , if i = j

1 +
n∑

k=1
pik m(j | k) , otherwise

A problem with the average first-passage time is that it is not symmetric. A related
measure that does not have this problem is the average commute time n(i, j) =
m(j | i) + m(i | j) [24], corresponding to the average number of steps required by a
random walker starting at node i �= j to reach node j for the first time and go back
to i. This measure has several interesting properties. Namely, it is a true distance
measure in some Euclidean space [24], and is closely related to the well-known
property of resistance in electrical networks and to the pseudo-inverse of the graph
Laplacian matrix [21].

In [21], the average commute time is used to compute the distance between
the nodes of a bipartite graph representing the interactions of users and items in
a recommender system. For each user u there is a directed edge from u to every
item i ∈ Iu, and the weight of this edge is simply 1/|Iu|. Likewise, there is a
directed edge from each item i to every user u ∈ Ui , with weight 1/|Ui |. Average
commute times can be used in two different ways: (1) recommending to u the item
i for which n(u, i) is the smallest, or (2) finding the users nearest to u, according
to the commute time distance, and then suggest to u the item most liked by these
users.

5.2.3 Combining Random Walks and Neighborhood-Learning Methods

Motivation and Challenges

Neighborhood-learning methods have been shown to achieve high top-n recommen-
dation accuracy while being scalable and easy to interpret. The fact, however, that
they typically consider only direct item-to-item relations imposes limitations to their
quality and makes them brittle to the presence of sparsity, leading to poor itemspace
coverage and substantial decay in performance. A promising direction towards
ameliorating such problems involves treating item models as graphs onto which
random-walk-based techniques can then be applied. However directly applying
random walks on item models can lead to a number of problems that arise from
their inherent mathematical properties and the way these properties relate to the
underlying top-n recommendation task.

In particular, imagine of a random walker jumping from node to node on an
item-to-item graph with transition probabilities proportional to the proximity scores
depicted by an item model W . If the starting distribution of this walker reflects the
items consumed by a particular user u in the past, the probability the walker lands

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 77

on different nodes after K steps provide an intuitive measure of proximity that can
be used to rank the nodes and recommend items to user u accordingly.

Concretely, if we denote the transition probability matrix of the walk S =
diag(W1)−1W where 1 is used to denote the vector of ones, personalized rec-
ommendations for user u can be produced e.g., by leveraging the K-step landing
distribution of a walk rooted on the items consumed by u;

π

u = φ

u SK, φ

u = r
u

‖r
u ‖1 (49)

or by computing the limiting distribution of a random walk with restarts on S, using
φ

u as the restarting distribution. The latter approach is the well-known personalized
PageRank model [11] with teleportation vector φ

u and damping factor p, and its
stationary distribution can be expressed [49] as

π

u = φ

u

∞∑

k=0

(1 − p)pkSk. (50)

Clearly, both schemes harvest the information captured in the K-step landing
probabilities {φ

u Sk}k=0,1,.... But, how do these landing probabilities behave as the
number of steps K increases? For how long will they still be significantly influenced
by user’s preferences φ

u ?
Markov chain theory ensures that when S is irreducible and aperiodic the landing

probabilities will converge to a unique stationary distribution irrespectively of the
initialization of the walk. This means that for large enough K , the K-step landing
probabilities will no longer be “personalized,” in the sense that they will become
independent of the user-specific starting vector φ

u . Furthermore, long before
reaching equilibrium, the quality of these vectors in terms of recommendation will
start to plummet as more and more probability mass gets concentrated to the central
nodes of the graph. Note, that the same issue arises for simple random walks that act
directly on the user-item bipartite network, and has lead to methods that typically
consider only very short-length random walks, and need to explicitly re-rank the K-
step landing probabilities, in order to compensate for the inherent bias of the walk
towards popular items [14]. However, longer random-walks might be necessary to
capture non-trivial multi-hop relations between the items, as well as to ensure better
coverage of the itemspace.

The RecWalk Recommendation Framework

RecWalk [61, 62] addresses the aforementioned challenges, and resolves this
long- vs short-length walk dilemma through the construction of a nearly uncoupled
random walk [58, 63] that gives full control over the stochastic dynamics of the walk
towards equilibrium; provably, and irrespectively of the dataset or the specific item
model onto which it is applied. Intuitively, this allows for prolonged and effective

78 A. N. Nikolakopoulos et al.

Fig. 7 RecWalk Illustration. Maroon colored nodes correspond to users; Gold colored nodes
correspond to items

exploration of the underlying network while keeping the influence of the user-
specific initialization strong.4

From a random-walk point of view, the RecWalk model can be described as
follows: Consider a random walker jumping from node to node on the user-item
bipartite network. Suppose the walker currently occupies a node c ∈ U ∪I. In order
to determine the next step transition the walker tosses a biased coin that yields heads
with probability α and tails with probability (1 − α):

1. If the coin-toss yields heads, then:

a. if c ∈ U , the walker jumps to one of the items rated by the current user (i.e.,
the user corresponding to the current node c) uniformly at random;

b. if c ∈ I, the walker jumps to one of the users that have rated the current item
uniformly at random;

2. If the coin-toss yields tails, then:

a. if c ∈ U , the walker stays put;
b. if c ∈ I, the walker jumps to a related item abiding by an item-to-item

transition probability matrix MI , that is defined in terms of an underlying
item model.

The stochastic process that describes this random walk is defined to be a homo-
geneous discrete time Markov chain with state space U ∪ I; i.e., the transition
probabilities from any given node c to the other nodes, are fixed and independent
of the nodes visited by the random walker before reaching c. An illustration of the
RecWalk model is given in Fig. 7.

The transition probability matrix P that governs the behavior of the random
walker can be usefully expressed as a weighted sum of two stochastic matrices H

4 The mathematical details behind the particular construction choices of RecWalk that enforce
such desired mixing properties can be found in [61, 62].

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 79

and M as

P = αH + (1 − α)M (51)

where 0 < α < 1, is a parameter that controls the involvement of these two
components in the final model. Matrix H can be thought of as the transition
probability matrix of a simple random walk on the user-item bipartite network.
Assuming that the rating matrix R has no zero columns and rows, matrix H can
be expressed as

H = Diag(A1)−1A, where A =
(

R

R

)

. (52)

Matrix M , is defined as

M =
(

I

MI

)
(53)

where I ∈ RU×U the identity matrix and MI ∈ RI×I is a transition probability
matrix designed to capture relations between the items. In particular, given an item
model with non-negative weights W (e.g., the aggregation matrix produced by a
SLIM model), matrix MI is defined using the following stochasticity adjustment
strategy:

MI = 1

‖W‖∞
W + Diag

(
1 − 1

‖W‖∞
W1

)
. (54)

The first term divides all the elements by the maximum row-sum of W and the
second enforces stochasticity by adding residuals to the diagonal, appropriately. The
motivation behind this definition is to retain the information captured by the relative
differences of the item-to-item relations in W . This prevents items that are loosely
related to the rest of the itemspace to disproportionately influence the inter-item
transitions and introduce noise to the model.5

In RecWalk the recommendations are produced by exploiting the information
captured in the successive landing probability distributions of a walk initialized in
a user-specific way. Two simple recommendation strategies that were considered
in [61] are:

RecWalkK−step: The recommendation score of user u for item i is defined to
be the probability the random walker lands on node i after K steps, given that

5 From a purely mathematical point-of-view the above strategy promotes desired spectral prop-
erties to MI that are shown to be intertwined with recommendation performance. For additional
details see [62].

80 A. N. Nikolakopoulos et al.

the starting node was u. In other words, the recommendation score for item i is
given by the corresponding elements of

π

u = e

u P K (55)

where eu ∈ RU+I is a vector that contains the element 1 on the position that
corresponds to user u and zeros elsewhere. The computation of the recom-
mendations is performed by K sparse-matrix-vector products with matrix P ,
and it entails
(K nnz(P))operations, where nnz(P) is the number of nonzero
elements in P .

RecWalkPR: The recommendation score of user u for item i is defined to be the
element that corresponds to item i in the limiting distribution of a random walk
with restarts on P , with restarting probability η and restarting distribution eu:

π

u = lim

K→∞ e

u

(
ηP + (1 − η)1e

u

)K
. (56)

The limiting distribution in (56) can be computed efficiently using e.g., the power
method, or any specialized PageRank solver. Note that this variant of RecWalk
also comes with theoretical guarantees for item-space coverage for every user in
the system, regardless of the base item model W used in the definition of matrix
MI [62].

In [62] it was shown that both approaches manage to boost the quality of several
base item models on top of which they were built. Using fsSLIM [66] with
small number of neighbors as a base item model, in particular, was shown to
achieve state-of-the-art recommendation performance, in several datasets. At the
same time RecWalk was found to dramatically increase itemspace coverage of
the produced recommendations, in every considered setting. This was true both for
RecWalkK−step, as well as for RecWalkPR.

5.2.4 User-Adaptive Diffusion Models

Motivation Personalization of the recommendation vectors in the graph-based
schemes we have seen thus far, comes from the use of a user-specific initialization,
or a user-specific restarting distribution. However, the underlying mechanism for
propagating user preferences, across the itemspace (i.e., the adopted diffusion
function, or the choice of the K-step distribution) is fixed for every user in the
system. From a user modeling point of view this translates to the implicit assumption
that every user explores the itemspace in exactly the same way—overlooking the
reality that different users can have different behavioral patterns. The fundamental
premise of PerDif [57] is that the latent item exploration behavior of the users
can be captured better by user-specific preference propagation mechanisms; thus,
leading to improved recommendations.

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 81

PerDif proposes a simple model of personalized item exploration subject to
an underlying item model. At each step the users might either decide to go forth
and discover items related to the ones they are currently considering, or return to
their base and possibly go down alternative paths. Different users, might explore
the itemspace in different ways; and their behavior might change throughout the
exploration session. The following stochastic process, formalizes the above idea:

The PerDIF Item Discovery Process Consider a random walker carrying a bag
of K biased coins. The coins are labeled with consecutive integers from 1 to K .
Initially, the random walker occupies the nodes of graph according to distribution
φ. She then flips the 1st coin: if it turns heads (with probability μ1), she jumps to a
different node in the graph abiding by the probability matrix P ; if it turns tails (with
probability 1 − μ1), she jumps to a node according to the probability distribution
φ. She then flips the 2nd coin and she either follows P with probability μ2 or
‘restarts’ to φ with probability (1 − μ2). The walk continues until she has used all
her K coins. At the k-th step the transitions of the random walker are completely
determined by the probability the k-th coin turning heads (μk), the transition matrix
P , and the restarting distribution φ. Thus, the stochastic process that governs the
position of the random walker over time is a time-inhomogeneous Markov chain
with state space the nodes of the graph, and transition matrix at time k given by

G(μk) = μkP + (1 − μk)1φ
. (57)

The node occupation distribution of the random walker after the last transition can
therefore be expressed as

π
 = φ
G(μ1)G(μ2) · · · G(μK). (58)

Given an item transition probability matrix P , and a user-specific restarting
distribution φu, the goal is to find a set of probabilities μu = (

μ1, . . . , μK

)
so that

the outcome of the aforementioned item exploration process yields a meaningful
distribution over the items that can be used for recommendation. PerDif tackles
this task as follows:

Learning the Personalized Probabilities For each user u we randomly sample
one item she has interacted with (henceforth referred to as the ‘target’ item) along-
side τneg unseen items, and we fit μu so that the node occupancy distribution after
a K-step item exploration process rooted on φu (cf (58)) yields high probability to
the target item while keeping the probabilities of the negative items low. Concretely,
upon defining a vector hu ∈ Rτneg+1 which contains the value 1 for the target item
and zeros for the negative items, we learn μu by solving

minimize
μu∈RK

∥∥φ

u G(μ1) · · · G(μK)Eu − h

u

∥∥2
2

subject to μi ∈ (0, 1), ∀i ∈ [1, . . . , K]
(59)

82 A. N. Nikolakopoulos et al.

where μi = [μu]i ,∀i, and Eu is a (I × (τneg + 1)) matrix designed to select and
rearrange the elements of the vectorφ

u G(μ1) · · · G(μK) according to the sequence
of items comprising hu. Upon obtaining μu, personalized recommendations for user
u can be computed as

π

u = φ

u G(μ1) · · · G(μK). (60)

Leveraging the special properties of the stochastic matrix G the above non-linear
optimization problem can be solved efficiently. In particular, it can be shown [57]
that the optimization problem (59) is equivalent to

minimize
ωu∈ΔK+1++

∥∥ω

u SuEu − h

u

∥∥2
2

where ΔK+1++ = {x : x
1 = 1, x > 0} and

Su =

⎛

⎜⎜⎜⎜⎜⎜⎝

φ

u

φ

u P

φ

u P 2

...

φ

u P K

⎞

⎟⎟⎟⎟⎟⎟⎠
, ωu ≡ ωu(μu) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − μK

μK (1 − μK−1)

μK μK−1 (1 − μK−2)
...

μK · · · μ2 (1 − μ1)

μK · · · μ2 μ1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The above result simplifies learning μu significantly. It also lends PerDif
its name. In particular, the task of finding personalized probabilities for the item
exploration process, reduces to that of finding personalized diffusion coefficients
ωu over the space of the first K landing probabilities of a walk rooted on φu

(see definition of Su). Afterwards μu can be obtained in linear time from ωu

upon solving a simple forward recurrence [57]. Taking into account the fact that in
recommendation settings K will typically be small andφu, P sparse, building ‘on-
the-fly’ SuEu row-by-row, and solving the (K + 1)-dimensional convex quadratic
problem

PERDIFFREE : minimize
ωu∈ΔK+1++

∥∥ω

u SuEu − h

u

∥∥2
2 (61)

can be performed very efficiently (typically in a matter of milliseconds even in large
scale settings).

Moreover, working on the space of landing probabilities can also facilitate
parametrising the diffusion coefficients within a family of known diffusions. This
motivates the parameterized variant of PerDif

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 83

5 10 15 20

steps

weights

5 10 15 20

steps

weights

Fig. 8 Personalized diffusions on the user-item bipartite network

PERDIFPAR : minimize
γu∈ΔL+

‖γ

u DSuEu − h

u ‖22 (62)

with ΔL+ = {y : y
1 = 1, y ≥ 0} and D ∈ RL×(K+1) defined such that its
rows contain preselected diffusion coefficients (e.g., PageRank [11] coefficients for
several damping factors, heat kernel [15] coefficients for several temperature values
etc.), normalized to sum to one. Upon obtaining γu, vectorωu can be computed as
ω

u = γ

u D (Fig. 8).

While PERDIFFREE learns ωu by weighing the contributions of the landing
probabilities directly, PERDIFPAR constrainsωu to comprise a user-specific mixture
of predetermined such weights (i.e., the rows of D), thus allowing one to endow
ωu with desired properties, relevant to the specific recommendation task at hand.
Furthermore, the use of matrix D can improve the robustness of the personalized
diffusions in settings where the recommendation quality of the individual landing
distributions comprising Su is uneven across the K steps considered.

Besides, its merits in terms of recommendation accuracy, personalizing the
diffusions within the PerDif framework can also provide useful information
arising from the analysis of the learned diffusion coefficients, ωu. In particular,
the dual interpretation of the model parameters (μu in the item exploration space;
and, ωu in the diffusion space) allows utilizing the learned model parameters
to identify users for which the model will most likely lead to poor predictions,
at training-time—thereby affording preemptive interventions to handle such cases
appropriately. This affords a level of transparency that can prove particularly
useful in practical settings (for the technical details on how this can be achieved
see [57]).

84 A. N. Nikolakopoulos et al.

6 Conclusion

One of the earliest approaches proposed for the task item recommendation,
neighborhood-based recommendation still ranks among the most popular methods
for this problem. Although quite simple to describe and implement, this
recommendation approach has several important advantages, including its ability to
explain a recommendation with the list of the neighbors used, its computational
and space efficiency which allows it to scale to large recommender systems,
and its marked stability in an online setting where new users and items are
constantly added. Another of its strengths is its potential to make serendipitous
recommendations that can lead users to the discovery of unexpected, yet very
interesting items.

In the implementation of a neighborhood-based approach, one has to make
several important decisions. Perhaps the one having the greatest impact on the accu-
racy and efficiency of the recommender system is choosing between a user-based
and an item-based neighborhood method. In typical commercial recommender
systems, where the number of users far exceeds the number of available items,
item-based approaches are typically preferred since they provide more accurate
recommendations, while being more computationally efficient and requiring less
frequent updates. On the other hand, user-based methods usually provide more
original recommendations, which may lead users to a more satisfying experience.
Moreover, the different components of a neighborhood-based method, which
include the normalization of ratings, the computation of the similarity weights and
the selection of the nearest-neighbors, can also have a significant influence on the
quality of the recommender system. For each of these components, several different
alternatives are available. Although the merit of each of these has been described
in this document and in the literature, it is important to remember that the “best”
approach may differ from one recommendation setting to the next. Thus, it is
important to evaluate them on data collected from the actual system, and in light
of the particular needs of the application.

Modern machine-learning-based techniques can be used to further increase
the performance of neighborhood-based approaches, by automatically extracting
the most representative neighborhoods based on the available data. Such models
achieve state-of-the-art recommendation accuracy, however their adoption imposes
additional computational burden that needs to be considered in light of the par-
ticular characteristics of the recommendation problem at hand. Finally, when the
performance of a neighborhood-based approach suffers from the problems of
limited coverage and sparsity, one may explore techniques based on dimensionality
reduction or graphs. Dimensionality reduction provides a compact representation
of users and items that captures their most significant features. An advantage of
such approach is that it allows to obtain meaningful relations between pairs of
users or items, even though these users have rated different items, or these items
were rated by different users. On the other hand, graph-based techniques exploit the
transitive relations in the data. These techniques also avoid the problems of sparsity

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 85

and limited coverage by evaluating the relationship between users or items that are
not “directly connected”. However, unlike dimensionality reduction, graph-based
methods also preserve some of the “local” relations in the data, which are useful in
making serendipitous recommendations.

References

1. R.P. Adams, G.E. Dahl, I. Murray, Incorporating side information into probabilistic matrix
factorization using Gaussian processes, in Proceedings of the 26th Conference on Uncertainty
in Artificial Intelligence, ed. by P. Grünwald, P. Spirtes (2010), pp. 1–9

2. G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems: a survey
of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749
(2005)

3. D. Agarwal, B.C. Chen, B. Long, Localized factor models for multi-context recommendation,
in Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’11 (ACM, New York, NY, 2011), pp. 609–617. http://doi.acm.org/10.
1145/2020408.2020504

4. M. Balabanović, Y. Shoham, Fab: content-based, collaborative recommendation. Commun.
ACM 40(3), 66–72 (1997)

5. L. Baltrunas, F. Ricci, Item weighting techniques for collaborative filtering, in Knowledge
Discovery Enhanced with Semantic and Social Information (Springer, New York, 2009), pp.
109–126

6. R. Bell, Y. Koren, C. Volinsky, Modeling relationships at multiple scales to improve accuracy of
large recommender systems, inKDD ’07: Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (ACM, New York, NY, 2007), pp. 95–
104

7. D. Billsus, M.J. Pazzani, Learning collaborative information filters, in ICML ’98: Proceedings
of the 15th International Conference on Machine Learning (Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 1998), pp. 46–54

8. D. Billsus, M.J. Pazzani, User modeling for adaptive news access. User Model. User-Adapted
Interact. 10(2–3), 147–180 (2000)

9. D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022
(2003)

10. J.S. Breese, D. Heckerman, C. Kadie, Empirical analysis of predictive algorithms for collab-
orative filtering, in Proceedings of the 14th Annual Conference on Uncertainty in Artificial
Intelligence (Morgan Kaufmann, 1998), pp. 43–52

11. S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine. Comput. Netw.
ISDN Syst. 30(1–7), 107–117 (1998)

12. R. Cañamares, P. Castells, A probabilistic reformulation of memory-based collaborative
filtering: Implications on popularity biases, in Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information. Retrieval (2017), pp. 215–
224

13. E. Christakopoulou, G. Karypis, Local item-item models for top-n recommendation, in
Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16 (Association
for Computing Machinery, New York, NY, 2016), p. 6774. https://doi.org/10.1145/2959100.
2959185

14. F. Christoffel, B. Paudel, C. Newell, A. Bernstein, Blockbusters and wallflowers: accurate,
diverse, and scalable recommendations with random walks, in Proceedings of the 9th ACM
Conference on Recommender Systems, RecSys ’15 (Association for Computing Machinery,
New York, NY, 2015), p. 163170. https://doi.org/10.1145/2792838.2800180

http://doi.acm.org/10.1145/2020408.2020504
http://doi.acm.org/10.1145/2020408.2020504
https://doi.org/10.1145/2959100.2959185
https://doi.org/10.1145/2959100.2959185
https://doi.org/10.1145/2792838.2800180

86 A. N. Nikolakopoulos et al.

15. F. Chung, The heat kernel as the pagerank of a graph. Proc. Natl. Acad. Sci. 104(50), 19735–
19740 (2007)

16. W.W. Cohen, R.E. Schapire, Y. Singer, Learning to order things, in NIPS ’97: Proceedings
of the 1997 Conference on Advances in Neural Information Processing Systems (MIT Press,
Cambridge, MA, 1998), pp. 451–457

17. P. Cremonesi, Y. Koren, R. Turrin, Performance of recommender algorithms on top-n recom-
mendation tasks, in Proceedings of the Fourth ACM Conference on Recommender Systems
(2010), pp. 39–46

18. M. Degemmis, P. Lops, G. Semeraro, A content-collaborative recommender that exploits
wordnet-based user profiles for neighborhood formation. User Model. User-Adapt. Interact.
17(3), 217–255 (2007)

19. J. Delgado, N. Ishii, Memory-based weighted majority prediction for recommender systems,
in Proceedings of the ACM SIGIR’99 Workshop on Recommender Systems (1999)

20. M. Deshpande, G. Karypis, Item-based top-N recommendation algorithms. ACM Trans. Inf.
Syst. 22(1), 143–177 (2004)

21. F. Fouss, J.M. Renders, A. Pirotte, M. Saerens, Random-walk computation of similarities
between nodes of a graph with application to collaborative recommendation. IEEE Trans.
Knowl. Data Eng. 19(3), 355–369 (2007)

22. F. Fouss, L. Yen, A. Pirotte, M. Saerens, An experimental investigation of graph kernels
on a collaborative recommendation task, in ICDM ’06: Proceedings of the 6th International
Conference on Data Mining (IEEE Computer Society, Washington, DC, 2006), pp. 863–868

23. Y. Freund, R.D. Iyer, R.E. Schapire, Y. Singer, An efficient boosting algorithm for combining
preferences, in ICML ’98: Proceedings of the 15th International Conference on Machine
Learning (Morgan Kaufmann Publishers Inc., San Francisco, CA, 1998), pp. 170–178

24. F. Gobel, A. Jagers, Random walks on graphs. Stoch. Process. Appl. 2, 311–336 (1974)
25. K. Goldberg, T. Roeder, D. Gupta, C. Perkins, Eigentaste: a constant time collaborative filtering

algorithm. Inf. Retr. 4(2), 133–151 (2001)
26. N. Good, J.B. Schafer, J.A. Konstan, A. Borchers, B. Sarwar, J. Herlocker, J. Riedl, Combining

collaborative filtering with personal agents for better recommendations, in AAAI ’99/IAAI ’99:
Proceedings of the 16th National Conference on Artificial Intelligence (American Association
for Artificial Intelligence, Menlo Park, CA, 1999), pp. 439–446

27. M. Gori, A. Pucci, Itemrank: a random-walk based scoring algorithm for recommender
engines, in Proceedings of the 2007 IJCAI Conference (2007), pp. 2766–2771

28. M. Grcar, B. Fortuna, D. Mladenic, M. Grobelnik, k-NN versus SVM in the collaborative
filtering framework. Data Sci. Classif. 251–260 (2006). http://db.cs.ualberta.ca/webkdd05/
proc/paper25-mladenic.pdf

29. J. Herlocker, J.A. Konstan, J. Riedl, An empirical analysis of design choices in neighborhood-
based collaborative filtering algorithms. Inf. Retr. 5(4), 287–310 (2002)

30. J.L. Herlocker, J.A. Konstan, A. Borchers, J. Riedl, An algorithmic framework for performing
collaborative filtering, in SIGIR ’99: Proceedings of the 22nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (ACM, New York, NY,
1999), pp. 230–237

31. J.L. Herlocker, J.A. Konstan, L.G. Terveen, J.T. Riedl, Evaluating collaborative filtering
recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

32. W. Hill, L. Stead, M. Rosenstein, G. Furnas, Recommending and evaluating choices in a virtual
community of use, in CHI ’95: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (ACM Press/Addison-Wesley Publishing Co., New York, NY, 1995), pp.
194–201

33. T. Hofmann, Collaborative filtering via Gaussian probabilistic latent semantic analysis, in
SIGIR ’03: Proceedings of the 26th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (ACM, New York, NY, 2003), pp. 259–266

34. A.E. Howe, R.D. Forbes, Re-considering neighborhood-based collaborative filtering param-
eters in the context of new data, in CIKM ’08: Proceeding of the 17th ACM Conference on
Information and Knowledge Management (ACM, New York, NY, 2008), pp. 1481–1482

http://db.cs.ualberta.ca/webkdd05/proc/paper25-mladenic.pdf
http://db.cs.ualberta.ca/webkdd05/proc/paper25-mladenic.pdf

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 87

35. Z. Huang, H. Chen, D. Zeng, Applying associative retrieval techniques to alleviate the sparsity
problem in collaborative filtering. ACM Trans. Inf. Syst. 22(1), 116–142 (2004)

36. R. Jin, J.Y. Chai, L. Si, An automatic weighting scheme for collaborative filtering, in SIGIR
’04: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (ACM, New York, NY, 2004), pp. 337–344

37. R. Jin, L. Si, C. Zhai, Preference-based graphic models for collaborative filtering, in Proceed-
ings of the 19th Annual Conference on Uncertainty in Artificial Intelligence (UAI-03) (Morgan
Kaufmann, San Francisco, CA, 2003), pp. 329–33

38. R. Jin, L. Si, C. Zhai, J. Callan, Collaborative filtering with decoupled models for preferences
and ratings, in CIKM ’03: Proceedings of the 12th International Conference on Information
and Knowledge Management (ACM, New York, NY, 2003), pp. 309–316

39. S. Kabbur, X. Ning, G. Karypis, Fism: factored item similarity models for top-n recommender
systems, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’13 (ACM, New York, NY, 2013), pp. 659–667. http://doi.
acm.org/10.1145/2487575.2487589

40. G. Karypis, Cluto-a clustering toolkit. Tech. rep., Minnesota Univ Minneapolis, Dept of
Computer Science (2002)

41. L. Katz, A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43
(1953)

42. M. Kendall, J.D. Gibbons, Rank Correlation Methods, 5th edn. (Charles Griffin, London, 1990)
43. N. Koenigstein, Y. Koren, Towards scalable and accurate item-oriented recommendations, in

Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13 (ACM, New
York, NY, 2013), pp. 419–422. http://doi.acm.org/10.1145/2507157.2507208

44. R.I. Kondor, J.D. Lafferty, Diffusion kernels on graphs and other discrete input spaces, in ICML
’02: Proceedings of the Nineteenth International Conference on Machine Learning (Morgan
Kaufmann Publishers Inc., San Francisco, CA, 2002), pp. 315–322

45. J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R. Gordon, J. Riedl, GroupLens:
applying collaborative filtering to usenet news. Commun. ACM 40(3), 77–87 (1997)

46. Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model,
in KDD’08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (ACM, New York, NY, 2008), pp. 426–434

47. J. Kunegis, A. Lommatzsch, C. Bauckhage, Alternative similarity functions for graph kernels,
in Proceedings of the International Conference on Pattern Recognition (2008)

48. K. Lang, News Weeder: learning to filter netnews, in Proceedings of the 12th International
Conference on Machine Learning (Morgan Kaufmann publishers Inc., San Mateo, CA, 1995),
pp. 331–339

49. A.N. Langville, C.D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine
Rankings (Princeton University Press, Princeton, 2011)

50. J. Li, O.R. Zaiane, Combining usage, content, and structure data to improve Web site
recommendation, in Proceedings of the 5th International Conference on Electronic Commerce
and Web Technologies (EC-Web) (2004)

51. G. Linden, B. Smith, J. York, Amazon.com recommendations: item-to-item collaborative
filtering. IEEE Intern. Comput. 7(1), 76–80 (2003)

52. H. Luo, C. Niu, R. Shen, C. Ullrich, A collaborative filtering framework based on both local
user similarity and global user similarity. Mach. Learn. 72(3), 231–245 (2008)

53. H. Ma, I. King, M.R. Lyu, Effective missing data prediction for collaborative filtering, in SIGIR
’07: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (ACM, New York, NY, 2007), pp. 39–46

54. P. Melville, R.J. Mooney, R. Nagarajan, Content-boosted collaborative filtering for improved
recommendations, in 18th National Conference on Artificial intelligence (American Associa-
tion for Artificial Intelligence, Menlo Park, CA, 2002), pp. 187–192

55. A. Nakamura, N. Abe, Collaborative filtering using weighted majority prediction algorithms,
in ICML ’98: Proceedings of the 15th International Conference on Machine Learning (Morgan
Kaufmann Publishers Inc., San Francisco, CA, 1998), pp. 395–403

http://doi.acm.org/10.1145/2487575.2487589
http://doi.acm.org/10.1145/2487575.2487589
http://doi.acm.org/10.1145/2507157.2507208

88 A. N. Nikolakopoulos et al.

56. N. Natarajan, D. Shin, I.S. Dhillon, Which app will you use next?: Collaborative filtering with
interactional context, in Proceedings of the 7th ACM Conference on Recommender Systems,
RecSys ’13 (ACM, New York, NY, 2013), pp. 201–208. http://doi.acm.org/10.1145/2507157.
2507186

57. A.N. Nikolakopoulos, D. Berberidis, G. Karypis, G.B. Giannakis, Personalized diffusions for
top-n recommendation, in Proceedings of the 13th ACMConference on Recommender Systems,
RecSys ’19 (Association for Computing Machinery, New York, NY, 2019), p. 260268 https://
doi.org/10.1145/3298689.3346985

58. A.N. Nikolakopoulos, J.D. Garofalakis, Ncdawarerank: a novel ranking method that exploits
the decomposable structure of the web, in Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining, WSDM ’13 (Association for Computing
Machinery, New York, NY, 2013), p. 143152. https://doi.org/10.1145/2433396.2433415

59. A.N. Nikolakopoulos, J.D. Garofalakis, Top-n recommendations in the presence of sparsity:
An ncd-based approach, in Web Intelligence, vol. 13 (IOS Press, Amsterdam, 2015), pp. 247–
265

60. A.N. Nikolakopoulos, V. Kalantzis, E. Gallopoulos, J.D. Garofalakis, Eigenrec: generalizing
puresvd for effective and efficient top-n recommendations. Knowl. Inf. Syst. 58(1), 59–81
(2019)

61. A.N. Nikolakopoulos, G. Karypis, Recwalk: nearly uncoupled random walks for top-n
recommendation, in Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining, WSDM ’19 (Association for Computing Machinery, New York, NY, 2019),
p. 150158. https://doi.org/10.1145/3289600.3291016

62. A.N. Nikolakopoulos, G. Karypis, Boosting item-based collaborative filtering via nearly
uncoupled random walks. ACM Trans. Knowl. Discov. Data 14(6) (2020). https://doi.org/
10.1145/3406241

63. A.N. Nikolakopoulos, A. Korba, J.D. Garofalakis, Random surfing on multipartite graphs, in
2016 IEEE International Conference on Big Data (Big Data) (2016), pp. 736–745

64. A.N. Nikolakopoulos, M.A. Kouneli, J.D. Garofalakis, Hierarchical itemspace rank: exploiting
hierarchy to alleviate sparsity in ranking-based recommendation. Neurocomputing 163, 126–
136 (2015)

65. X. Ning, G. Karypis, Slim: sparse linear methods for top-n recommender systems, in
Proceedings of 11th IEEE International Conference on Data Mining (2011), pp. 497–506

66. X. Ning, G. Karypis, Slim: sparse linear methods for top-n recommender systems, in 2011
IEEE 11th International Conference on Data Mining (ICDM). (IEEE, New York, 2011), pp.
497–506

67. X. Ning, G. Karypis, Sparse linear methods with side information for top-n recommendations,
in Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12 (ACM,
New York, NY, 2012), pp. 155–162. http://doi.acm.org/10.1145/2365952.2365983

68. J.R. Norris, Markov Chains, 1st edn. (Cambridge University Press, Cambridge, 1999)
69. A. Paterek, Improving regularized singular value decomposition for collaborative filtering, in

Proceedings of the KDD Cup and Workshop (2007)
70. M. Pazzani, D. Billsus, Learning and revising user profiles: The identification of interesting

Web sites. Mach. Learn. 27(3), 313–331 (1997)
71. M.J. Pazzani, A framework for collaborative, content-based and demographic filtering. Artif.

Intell. Rev. 13(5–6), 393–408 (1999)
72. S. Rendle, C. Freudenthaler, Z. Gantner, S.T. Lars, BPR: Bayesian personalized ranking from

implicit feedback, in Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, UAI ’09 (AUAI Press, Arlington, VA, 2009), pp. 452–461

73. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl, GroupLens: an open architecture
for collaborative filtering of netnews, in CSCW ’94: Proceedings of the 1994 ACM Conf. on
Computer Supported Cooperative Work (ACM, New York, NY, 1994), pp. 175–186

74. R. Salakhutdinov, A. Mnih, G. Hinton, Restricted Boltzmann machines for collaborative
filtering, in ICML ’07: Proceedings of the 24th International Conference on Machine Learning
(ACM, New York, NY, 2007), pp. 791–798

http://doi.acm.org/10.1145/2507157.2507186
http://doi.acm.org/10.1145/2507157.2507186
https://doi.org/10.1145/3298689.3346985
https://doi.org/10.1145/3298689.3346985
https://doi.org/10.1145/2433396.2433415
https://doi.org/10.1145/3289600.3291016
https://doi.org/10.1145/3406241
https://doi.org/10.1145/3406241
http://doi.acm.org/10.1145/2365952.2365983

Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based. . . 89

75. B. Sarwar, G. Karypis, J. Konstan, J. Reidl, Item-based collaborative filtering recommendation
algorithms, in WWW ’01: Proceedings of the 10th International Conference on World Wide
Web (ACM, New York, NY, 2001), pp. 285–295

76. B.M. Sarwar, G. Karypis, J.A. Konstan, J.T. Riedl, Application of dimensionality reduction in
recommender systems A case study, in ACM WebKDD Workshop (2000)

77. B.M. Sarwar, J.A. Konstan, A. Borchers, J. Herlocker, B. Miller, J. Riedl, Using filtering agents
to improve prediction quality in the grouplens research collaborative filtering system, in CSCW
’98: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work
(ACM, New York, NY, 1998), pp. 345–354

78. A.I. Schein, A. Popescul, L.H. Ungar, D.M. Pennock, Methods and metrics for cold-start
recommendations, in SIGIR ’02: Proceedings of the 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (ACM, New York, NY,
2002), pp. 253–260

79. U. Shardanand, P. Maes, Social information filtering: algorithms for automating “word of
mouth”. in CHI ’95: Proceedings of the SIGCHI Conference on Human factors in Computing
Systems (ACM Press/Addison-Wesley Publishing Co., New York, NY, 1995), pp. 210–217

80. J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 22(8), 888–905 (2000)

81. A.P. Singh, G.J. Gordon, Relational learning via collective matrix factorization, in Proceeding
of the 14th ACM International Conference on Knowledge Discovery and Data Mining (2008),
pp. 650–658. http://doi.acm.org/10.1145/1401890.1401969

82. I.M. Soboroff, C.K. Nicholas, Combining content and collaboration in text filtering, in
Proceedings of the IJCAI’99 Workshop on Machine Learning for Information Filtering (1999),
pp. 86–91

83. H. Steck, Embarrassingly shallow autoencoders for sparse data, in The World Wide Web
Conference (2019), pp. 3251–3257

84. G. Takács, I. Pilászy, B. Németh, D. Tikk, Major components of the gravity recommendation
system. SIGKDD Exploration Newslett. 9(2), 80–83 (2007)

85. G. Takács, I. Pilászy, B. Németh, D. Tikk, Investigation of various matrix factorization methods
for large recommender systems, in Proceedings of the 2nd KDD Workshop on Large Scale
Recommender Systems and the Netflix Prize Competition (2008)

86. G. Takács, I. Pilászy, B. Németh, D. Tikk, Scalable collaborative filtering approaches for large
recommender systems. J. Mach. Learn. Res. (Spec. Top. Mining Learn. Graphs Relat.) 10,
623–656 (2009)

87. L. Terveen, W. Hill, B. Amento, D. McDonald, J. Creter, PHOAKS: a system for sharing
recommendations. Commun. ACM 40(3), 59–62 (1997)

88. J. Yoo, S. Choi, Weighted nonnegative matrix co-tri-factorization for collaborative prediction,
in Advances in Machine Learning, ed. by Z.H. Zhou, T. Washio. Lecture Notes in Computer
Science, vol. 5828 (Springer Berlin/Heidelberg, 2009), pp. 396–411

89. C.L. Zitnick, T. Kanade, Maximum entropy for collaborative filtering, in AUAI ’04: Proceed-
ings of the 20th Conference on Uncertainty in Artificial Intelligence (AUAI Press, Arlington,
VA, 2004), pp. 636–643

90. H. Zou, T. Hastie, Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser.
B 67(2), 301–320 (2005)

http://doi.acm.org/10.1145/1401890.1401969

	Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based Methods for Recommender Systems
	1 Introduction
	1.1 Advantages of Neighborhood Approaches
	1.2 Objectives and Outline

	2 Problem Definition and Notation
	3 Neighborhood-Based Recommendation
	3.1 User-Based Rating Prediction
	3.2 User-Based Classification
	3.3 Regression vs. Classification
	3.4 Item-Based Recommendation
	3.5 User-Based vs. Item-Based Recommendation

	4 Components of Neighborhood Methods
	4.1 Rating Normalization
	4.1.1 Mean-centering
	4.1.2 Z-score Normalization
	4.1.3 Choosing a Normalization Scheme

	4.2 Similarity Weight Computation
	4.2.1 Correlation-Based Similarity
	4.2.2 Other Similarity Measures
	4.2.3 Considering the Significance of Weights
	4.2.4 Considering the Variance of Ratings
	4.2.5 Considering the Target Item

	4.3 Neighborhood Selection
	4.3.1 Pre-filtering of Neighbors
	4.3.2 Neighbors in the Predictions

	5 Advanced Techniques
	5.1 Learning-Based Methods
	5.1.1 Factorization Methods
	5.1.2 Neighborhood-Learning Methods

	5.2 Graph-Based Methods
	5.2.1 Path-Based Similarity
	5.2.2 Random Walk Similarity
	5.2.3 Combining Random Walks and Neighborhood-Learning Methods
	5.2.4 User-Adaptive Diffusion Models

	6 Conclusion
	References

