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1 Introduction

Recommender systems process all types of signals at their disposal in order to
suggest the most relevant items to users. These signals can take diverse forms, from
categorical to numerical values, from tabular data to unstructured data. Arguably,
the most significant form of content information is textual data, which may hold
detailed and invaluable information. Examples include user-generated reviews,
which elaborate on experiences of users with items, and textual description on items
which can detail an assortment of relevant properties. While the information residing
within the textual signals is tremendous, we need to employ advanced techniques
in order to extract meaningful insights from it. This is where Natural Language
Processing (NLP) comes in as a useful tool to this goal. NLP [18] is a scientific
field focusing on automatically processing and analyzing textual data, thus it can
be of great help for recommender systems. In this chapter, we break down the
various types of inputs that a recommender system can take and identify cases where
NLP capabilities can potentially assist each input type. Then, for each such case,
we present methods to incorporate the textual input into the recommender system,
analyze it and indicate its relative advantages and limitations.

Processing efforts of recommender systems can be coarsely divided into an
offline modeling phase and an online recommendation phase. The former aims to
model users’ preferences and items’ traits while the latter considers the current
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state and ephemeral needs of the user. The output contains the recommendations
themselves, possibly alongside with some additional means to persuade the user.
We now list the possible inputs and outputs while focusing on text:

1. Offline input: collaborative filtering algorithms collect past usage patterns in
order to model users and items. This data may include textual reviews, which
detail the multifaceted experiences of users with items.
Additionally, content-based filtering utilizes side-information on items, where
such information may include textual description of the items. This topic is
covered in Chap. 7 and we refer the interested reader to that chapter.

2. Online input: conversational recommenders allow the users to detail their current
needs in free-text.

3. Output: explanations can significantly increase the effectiveness of recom-
menders, and text generation is one of the prominent techniques to achieve this
goal.

This chapter is organized as follows. In Sect. 2 we cover the most prominent
approaches for review-based recommenders. Section 3 highlights conversational
recommenders. In Sect. 4 we detail on methods to generate explanations.

This chapter discusses only scenarios pertaining to applications of NLP for
recommender systems. We acknowledge there are techniques that were origi-
nally designed for NLP but can be useful for recommenders as well, however
they are out of scope for this chapter. For instance, Transformers [72] were
designated to process tokens and afterwards were adapted to recommenders
to process user sessions.

Some recommenders allow users to write textual feedback on the recom-
mendations rather than on items. That is, the users may specify the relevancy
level of the suggested recommendations. However, this is a rare scenario (a
notable example is [24]) and, therefore, is out of scope for this chapter.

2 User Generated Reviews

User-item experiences can be complex and multifaceted, where the user may have
a different opinion on various aspects of the item. As an example from the movies
domain, a user may not like the special effects because they are either too bombastic
or too moderate; likewise, the user may have justified opinions on the acting,
directing, plot, etc. To better model users and items, recommenders should capture
the entire users’ impressions of items. Namely, it is important to infer not only to
what extent a user likes an item, but also why and which factors led that impression.
User ratings, the most widely used type of explicit feedback, inevitably lose valuable
data because they have to summarize that rich experience into a single scalar.
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Compared to that, textual reviews are feasibly the most elaborate type of feedback
and they allow to fully describe the multifaceted experience of users with items.
Concretely, a textual review may unveil any of the following.

1. User preferences (e.g., “I prefer drama movies”)
2. Traits of the discussed item (“starred by Tom Hanks”)
3. The matching between them (“amazing soundtrack”)
4. The context of the interaction (“I watched this movie with my friends”)

The unstructured form of textual reviews allows them to detail the multifaceted
experiences of users with items. But at the same time, it is non-trivial to integrate
this input source alongside with traditional collaborative filtering data.

Broadly speaking, as discussed in Chap. 15 there are two major tasks for
recommender systems: ranking and rating prediction. In this chapter we review
the most prominent approaches to incorporate textual reviews for these two tasks,
and explain how the special characteristics of reviews are exploited to improve
performance. Furthermore, since each review holds relatively rich information, then
few interactions are required to model users and items, which helps to mitigate
the cold start problem. Unless otherwise stated, the input to any of the described
algorithms is a list of (u, i, rui, tui) quartets, each of which indicates an event where
user u interacted with item i, assigned it an explicit rating rui and complemented it
a textual review tui .

2.1 Affinity to Sentiment Analysis

Sentiment analysis is an NLP task aiming to automatically quantify the emotions or
opinions expressed within textual data [1]. In its most basic form, it converges to
a binary classification problem, where the predicted sentiment is either positive or
negative. Occasionally, polarity precision is not sufficient and more fine-grained
prediction is required. That is, the sentiment score may span multiple ordinal
categories e.g., on a 1–5 Likert scale.

Fine-grained sentiment analysis resembles the rating prediction task of review-
based recommenders, and we would like to stress the differences between the two
tasks. While both tasks have access to the textual data during training time, they
differ at inference time. Sentiment analysis predictions are made with respect to a
given text; while a recommender predicts the rating a user would give to an item
before they have experienced with it. That basically means that the textual review
written by the user for the item is not available at prediction time. Hence, the rating
prediction task is much harder as predictions are made solely based on past behavior,
without an accompanying text.

2.2 Traditional Methods

In recent years, with the advent of deep learning, state-of-the-art methods for most
NLP tasks apply deep learning (DL) techniques, and review-based recommenders
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are no exception. However, for completeness, and, to better understand the intuition
behind DL approaches, we briefly survey some of the most influential traditional
approaches.

Several early works employ topic modeling to represent users and items.
McAuley et al. [47] define as a document the set of all reviews written on a certain
item and apply LDA [4] on the corpus induced by the entire catalog. The topic
distribution of each item is considered as its latent features, while the users’ latent
features are estimated by optimizing rating prediction with gradient descent. A
drawback of this approach stems from the fact that the item vectors are unmindful to
the ratings. This makes them sub-optimal and, as a result, the user vectors are sub-
optimal as well. This drawback was remedied in a later work [2], which considers
the ratings and the reviews simultaneously.

The Ratings Meet Reviews (RMR) algorithm [43] is a probabilistic generative
model that combines a topic model with a rating model. It applies topic modeling
on item review text in order to find the distribution of each item over the latent
topics. A rating rui given by user u to item i is assumed to be generated by a
Gaussian mixture model: user u is associated with a Gaussian per latent topic and
the topic distribution of item i serves as the mixture weights. However, this process
neglects the expressed sentiments. For example, two items with the exact same topic
distributions, but opposite sentiments will have the same predicted ratings for any
user.

Diao et al. [20] proposed a probabilistic model based on collaborative filtering
and topic modeling. It uncovers the relevant aspects in the given domain, finds the
interest distribution of users and content distribution of item and finally infers per-
aspect sentiment as expressed in the reviews. A limitation of this algorithm is its
inability to incorporate explicit ratings, which omits a valuable signal.

Overall, the aforementioned approaches exhibit two shortcomings:

1. Overlook context. These approaches take a bag-of-words approach, and process
individual tokens or n-grams while ignoring their order. In contrast, deep learning
approaches are able to process each token with respect to its context tokens.

2. Operate solely based on lexical similarity. This is a pitfall because semantically
similar reviews may have a low lexical overlap. On the other hand, deep learning
approaches are based on distributed representations, which capture the semantics
of the words.

2.3 Deep Learning: Preliminaries

Per the fundamental limitations of the traditional methods, it comes as no sur-
prise that state-of-the-art review-based recommender are based on deep learning
approaches. This subsection presents few definitions and notations required to
understand these approaches. These include the definition of Text Processor and
some remarks on machine learning techniques.
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2.3.1 Text Processor

All notable work in recent years on recommender systems that leverage text (e.g.,
reviews) rely on a deep learning Text Processor unit. Given an input text, this unit
represents it by a dense vector which captures the most meaningful aspects with
respect to the task at hand.

There are various plausible architectures for the Text Processor, e.g., based on
LSTM [25] or Transformers [72]. Most commonly used is the relatively simple
Convolutional Neural Network (CNN) Text Processor [32]. This architecture first
projects the texts to a latent space by using word embeddings. Then, it applies
multiple filters of variable lengths over all sliding windows, each responding to
different semantic meanings. Next, a max-pooling operation is performed, to obtain
a fixed size vector and to make the algorithm position-invariant. Finally, a fully-
connected layer transforms the output to the desired latent space. Jacovi et al. [30]
and Kim [32] provide a detailed analysis for the user of convolutional neural
networks using text in classification tasks.

We reiterate that different architectures (e.g., LSTM-based) can be used inter-
changeably.

2.3.2 Machine Learning Annotation

Fully Connected Layer: to ease the notation throughout this chapter, we denote a
fully connected layer with output dimensionality of k by FCk(·). This layer refers
to the classic neural network component, in which all k′ input neurons connect to all
k neurons in the output layer. The input neurons are represented by a matrix X and
the layer computes σ(XW +b), where W ∈ R

k′×k and b ∈ R
k are model parameters

and σ is a nonlinear activation function, defaulted to ReLU [52] in this chapter.
Optimization: all described algorithms use conventional techniques for improv-

ing the speed, stability and generalization of the models. This includes dropout
layers [69], regularization and adaptive learning rate optimization algorithms like
Adam [33]. Additionally, other techniques which were not applied in the original
papers such as batch normalization [29], could be utilized to further improve
performance. Since these optimization techniques are not the essence of the models,
we omit them from the descriptions of the algorithms. Also, modern models iterate
through the training data in mini-batches. To facilitate the notation, we simply
describe the process for a single instance.

2.4 Review-Based Recommenders for Rating Prediction

We now proceed to the descriptions of landmarks review-based recommenders.
We iteratively explain each of these methods, explain how they work, analyze
their strengths but also indicate possible weaknesses (which motivates continuous
improvements).
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2.4.1 DeepCoNN

The seminal algorithm DeepCoNN [84] was the first to apply deep learning
capabilities in order to incorporate textual reviews for recommenders, and it has
inspired a great amount of follow-up work. The basic intuition behind this algorithm
is that generated textual reviews encapsulate essential information about both users
and items. Therefore, two instances of text processors �U and �I are learned to
extract meaningful information on the users and the items, respectively. Specifically,
to represent user u, all reviews written by that user are concatenated to form text tu,
which holds all necessary information to model u. Then, the text is fed to �U , which
identifies the user preferences as expressed in their textual reviews and generates pu,
the distributed (vectorial) representation of that user. The representation qi of item i

is done similarly by concatenating all reviews written on that item and applying the
item text processor:

pu = �U(tu) pi = �I (ti)

Given the user and item vectors pu and qi , most CF algorithms predict their
associated rating using a dot product (plus possibly the global mean and the
corresponding user and item bias terms). DeepCoNN takes a different approach
to combine these vectors. It concatenates them as z = pu ‖ qi and predicts the
rating using a Factorization Machine (FM) [61]. FM can model all the second-order
interactions in a given vector in linear time, which may add some expressiveness
power to simple inner product. Formally, the predicted rating is given by:

r̂ = FM(z) = μ +
|z|∑

j=1

wjzj +
|z|−1∑

j=1

|z|∑

k=j+1

〈vj , vk〉 zj zk (1)

where μ is the global computed average rating, w models the strength of each
component in z and vi is a learned vector of some predefined size, corresponding
to each component zi , which models the second order interactions in z. Training is
done end-to-end, where the objective is to minimize the absolute prediction error.
Evaluation on several benchmark datasets asserted the viability of user-generated
reviews to improve rating prediction of future interactions, as it outperformed all
previous methods to incorporate reviews.

2.4.2 TransNets

If at test time, the target textual review tui written by user u for item i was available
to the model, it could have improved accuracy (see Sect. 2.1). Although textual
reviews are not available at test time, they are still available at training time and
TransNets [8] enhances DeepCoNN by harnessing them.
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To this end, another subnetwork is trained, dubbed as the Target Network, which
aims to reconstruct tui from pu and qi . This empowers the recommender since it
allows to model users and items such that their representations can reconstruct the
target reviews, simulating a situation where the target review is available at test time.

Since the semantics of the target review is of key importance rather than the
actual raw text, at training time this subnetwork transforms the target review using
another instance of a Text Processor and its representation zT is to be reconstructed.
First, the representation of the target network zT has to capture the meaning of
the text reviews. This is achieved by generating representations with predictive
capabilities of the ratings. Formally:

zT = �T (tui)

rT = FMT (zT )

In view of the fact that ZT should guide pu and qi and not vice versa, training is
carefully done. Per each training instance, the parameters of the model are divided
into 3 groups, and they are updated sequentially:

1. The parameters of the target network, which comprises �T and FMT , are
updated by minimizing the rating prediction error: | rT − r |.

2. The parameters of the target network remain fixed and �U and �I are learned by
minimizing the loss: (z − zT )2.

3. The parameters of FM are updated by minimizing | r̂ − r |.
We emphasize that these sequential sub-steps occur every instance, rather than

training to convergence each subnetwork.
The Target Network functions only to improve the training process and does

not participate at inference time, as the target review is not available at this point.
Hence, predictions are computed exactly as in DeepCoNN. TransNets adds another
optimization technique: it passes z through stacked fully-connected layers, to allow
modeling of more complex interactions between the user and the item.

2.4.3 Extended TransNets

Thus far the discussed models ignore the identities of the users and the items and
representations are based exclusively on the review texts. However, the identities
may supply usable information. After all, pure collaborative filtering methods rely
solely on this signal. For this reason, the Extended TransNets (TransNet-Ext) model
introduces embedding matrices for users and items, �U and �I , respectively. The
latent representation of a user-item pair is supplemented with the concatenation of
the user and item embeddings:

ωu = �U(u) ωi = �I (i)

zext = ωu ‖ ωi ‖ z
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Now zext is used to predict the rating as in Eq. 1. The embedding matrices do not
stand on their own, but rather they are complementary to the textual representations.
That is, vector pu represents the preferences of user u as captured by the text
processor. However, this vector does not perfectly reflect the true preferences of
the user, whether because of limitation of the text processor or simply because the
textual reviews do not contain all required information to accurately analyze user u.
The role of vector ωu is to supplement the preferences induced by the texts, very
much like the deviation matrix presented in [26]. A similar analogy applies also for
the item embedding matrix �I .

2.5 State-of-the-Art of Review-Based Recommendations

2.5.1 Motivation

A common drawback to the aforementioned work and more recent work CF [9, 11,
12, 64, 73] is the required effort to process a single review during training. The
feed-forward operation of a review given by user u to item i includes all reviews
written by u and the reviews written on i. Let w be the average number of words per
review and lI and lU be the average number of reviews associated with items and
users, respectively. Hence the running time complexity to process a single review is
O(w · (lI + lU )).

If a typical user writes tens of reviews, an item could appear in thousands of
reviews and a review comprises more than one hundred tokens, then processing
a single review requires hundreds of thousands operations. This scalability issue
might pose an insurmountable problem for real-life recommenders, as training
on large datasets is infeasible and therefore a solution to reduce training time is
required.

As we detail in this section, the Matching Distribution by Reviews (MDR) [65]
takes a different perspective on reviews, which both eliminates the running time
issue and improves accuracy.

2.5.2 Intuition

Previous algorithms assume that reviews describe item characteristics and user
preferences and therefore apply a dedicated text processor for each of these two
entity types. Comparing to that, MDR claims that reviews concentrate on the
matching between them, i.e., explain the extent at which the user liked various
aspects in the item. This observation is very beneficial since in some cases it is
possible to infer the matching between the user and the item regarding a specific
trait, even though the individual user preferences or item traits are not disclosed
in the review. Consider for example the following review snippet from the movie
domain: “I loved the soundtrack”. It is clear the soundtrack of the movie fits the
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preferences of the user, although no information is given on the soundtrack itself,
like type or duration.

In each domain there could be an enormous amount of factors relevant to
generating recommendations. In our running example from the movie domain, such
factors include genre, shooting location, plot complexity, animation style, etc. A
single review is unlikely to supply adequate information on all relevant factors. For
example, by reading a review, it may be apparent to what extent a user likes the
genre but less clear whether they enjoyed the animation style. MDR also models the
inevitable uncertainty in processing individual reviews. This is done by predicting
a distribution rather than just a point estimate, which does not allow to encode
uncertainty.

As motivated above, both textual reviews and explicit ratings refer to the
matching level between the user and the item, but they differ in the level of
thoroughness. A textual review is an elaborate form of feedback, as it reasons and
details the factors that made the user form their judgment on the interacted item.
Therefore, it is only natural to view the reviews as augmented labels to train the
collaborative filtering algorithm, in addition to explicit ratings.

2.5.3 Algorithm Overview

The algorithm consists of two phases: the first, learns how to model the textual
reviews and, the second, utilizes the modeled reviews as augmented labels. These
phases are learned sequentially, i.e., after the parameters of the first phase are
learned, they are held fixed and then the second phase’s parameters are learned.

This scheme alleviates the running time issues raised in Sect. 2.5.1, as the whole
algorithm has linear time complexity. The first phase is linear in the number of
tokens and the second phase is linear in the number of reviews.

In this chapter we detail the steps of the algorithm and explain the intuition
behind them. We do not, however, give the theoretical justifications for them. The
curious reader can see the proofs in the original paper [65].

2.5.4 Phase I: Distribution of Matching Vectors

As motivated above, a textual review can bring to light the matching between a user
and an item across the latent features. The purpose of this phase is to automatically
infer this information. To avoid clutter, subscripts u and i are omitted when their
existence is clear from the context. To this end, MDR passes each review t through a
text processor and obtains a matching vector m. Each component f in the matching
vector reflects the matching between the user and the item with regards to the f -th
latent feature. Therefore the sum of the components in the matching vector predicts
the overall satisfaction of the user with the item, which is also reflected by the
explicit rating given by the user to the item. That is r̂ = ∑

f mf , where mf stands
for the f -th component in vector m.
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The problem with this approach is it assumes all latent features can be adequately
estimated by any review. However, a specific review t may be ambiguous or simply
does not cover all latent features. To account for this, MDR finds the distribution of
the matching vectors. The distribution of choice is multivariate normal distribution
N(μ(t), �(t)) with a diagonal covariance matrix, which can be parameterized by
two vectors: mean μ(t) and variance �(t). When the model has high confidence in
the predicted matching value of a specfic factor, then the associated variance of this
factor would be low, and vice versa. Given text t , the distribution of matching vectors
is simply inferred by computing e, the output of a text processor on the review. Then
two different fully connected layers are applied, to yield the parameters of the mean
and variance μ(t) and �(t).

e = �(t) (2)

μ(t) = FC(e) �(t) = FC(e)

In stochastic gradient descent, a single training example represents the whole
distribution of the training data. By the same token, a single sampled vector
z ∼ N(μ(t), �(t)) can represent the whole distribution of matching vectors.
Sampling is a non-differentiable operation, thereby it would eliminate all gradients
and hamper the process of back-propagation. Therefore, the reparameterization
trick [34] is exerted. This means that the sampling operation is done on a newly
introduced input layer, that samples a vector ε ∼ N(0, I ). Then, the appropriate
vector z is mapped by scaling and shifting N(0, I ) to align with N(μ(t), �(t)).
Finally, the matching vector m is obtained by feeding z to a fully connected layer.

ε ∼ N(0, I ) z = μ(t) + �
1
2 (t) � ε

m = FC(z) (3)

The predicted rating is the sum of the elements in the matching vector where
conventionally, also bias terms and global mean are added: r̂ui = ∑

f m
f
ui + bi +

bu + μ. The loss function asks to minimize mean squared error.

2.5.5 Phase II: Collaborative Filtering with Augmented Labels

This phase applies a rating prediction algorithm, while benefiting from augmented
labels that were derived in the previous phase.

Latent factor models represent users and items by some vectors of fixed size.
Each component f in this space refers to a latent feature and the components
in a user vector measure to what extent the user prefers these latent features.
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Comparably, components in an item vector measure the extent to which the item
holds these latent features.

While any CF algorithm could be used in this phase, the authors of MDR chose
the simple SVD [58] as the underlying engine. This algorithm asks to minimize
the squared error: (rui − r̂ui)

2, where the predicted rating is computed as: r̂ui =
pu · qi + bu + bi + μ. The inner product between user vector pu and item vector
qi indicates the affinity between them. Inner product equals to the sum over the
components in the element-wise product: pu · qi = ∑

f (pu � qi)
f . As such, the

element-wise product indicates the matching between the user and the item over the
latent features. We dub the vector pu � qi as the collaborative matching vector.

Using phase I of MDR, each review tui is represented by a distribution of
matching vector. The mean of this distribution, dubbed as the textual matching
vector represents the matching between the user and the item over the latent features
and therefore can be utilized as an augmented label for the collaborative filtering
algorithm. This is done by minimizing the distance between the collaborative
matching vectors and the textual matching vectors. All in all, the loss function is
defined as:

Lui = (r̂ui − rui)
2 + α · ‖pu � qi − mui‖2

2 (4)

Where hyperparameter α controls the relative importance of terms in the loss
function. This loss function contains two labels: explicit rating and textual matching
vector. While the former gives a coarse direction to the optimization process, the
latter provides a direction per each of the f factors, which can significantly improve
performance. Indeed evaluation on several benchmark dataset proves the superiority
of this approach over all previous baselines.

2.6 Empirical Evaluation

This section compares the performance of the strongest review-based models on
several benchmark datasets. The first dataset is Yelp17, which contains restaurant
reviews, introduced in the Yelp Challenge.1 Each of the other three datasets is a
different domain taken from the latest release of Amazon reviews2 [48], which
contains product reviews from Amazon website. These datasets vary in size and
sparsity, where complete statistics can be found at [65].

Table 1 summarizes the empirical results. It shows the viability of incorporating
textual reviews, as all review-based algorithms improve SVD, which does not
incorporate reviews. Furthermore, MDR outperforms all other baselines, in addition
to improved running time complexity.

1 https://www.yelp.com/dataset-challenge.
2 http://jmcauley.ucsd.edu/data/amazon.

https://www.yelp.com/dataset-challenge
http://jmcauley.ucsd.edu/data/amazon
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Table 1 MSE comparison with baselines. Best results are indicated in bold

SVD DeepCoNN TransNetTransNet TransNetTransNet-Ext TransNetMDR Improvement

Yelp 1.8661 1.7045 1.6387 1.5913 1.4257 10.4%

A-Electronics 1.8898 2.0774 1.8380 1.7781 1.5329 13.8%

A-Clothes 1.5212 1.7044 1.4487 1.4780 1.2837 13.1%

A-Movies 1.4324 1.5276 1.3599 1.2691 1.1782 7.2%

2.7 Review-Based Recommenders for Ranking

In this subsection we explain how to incorporate user generated reviews for the
ranking problem. Naturally, to achieve optimal performance on this problem, the
training procedure should be optimized directly for ranking. However, all hitherto
mentioned work optimize rating prediction while neglecting the ranking problem.

As a side note, we would like to stress that any existing method for the rating
prediction problem can be adjusted for ranking. This can be simply done by adding
a ranking loss (e.g., the pairwise BPR loss [62]) as an additional term of the loss
function, or by more advanced techniques like [26, 67]. However, this direction has
not been significantly investigated in the context of review-based recommenders and
is therefore omitted from this chapter.

Recently Chuang et al. [15] suggested the Text-aware Preference Ranking (TPR).
This method simultaneously optimizes two main objectives: user-item ranking and
item-word ranking. The former aims to rank items in the history of the user higher
than missing items. The latter seeks to rank words that appear in an item’s review
higher than other words. However, this method takes a bag-of-words approach,
which may not capture the semantics of the entire review, and is not clear how more
elaborate methods can be integrated instead. Furthermore, TPR cannot incorporate
explicit ratings. Since usually textual reviews are accompanied with explicit ratings,
leaving this signal out might lead to sub-optimal performance.

We now turn to the description of the main algorithm of this subsection. Zhang et
al. [81] presented a Joint Representation Learning (JRL) framework to incorporate
heterogeneous input signals. In the context of this chapter, the considered input
sources are reviews (denoted as V1) and ratings (V2).

The algorithm is learned end-to-end and comprises the following three steps:

1. Create input-source specific representations for users and items.
2. Integrate representations to have a single representation.
3. Apply ranking optimization on the integrated representations.

We now elaborate on each of the aforementioned steps.
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2.7.1 Input Source Modeling

In each input source k (either reviews or ratings), any user u and item i is represented
by a dedicated vector pk

u and qk
i , respectively. These vectors aim to optimize loss

function Lk .

Modeling of Textual Reviews

Each review tui is represented in an unsupervised manner by vector tui (denoted in
bold).

The authors of JRL adopted the PV-DBOW model [41]. This is a generative
model, where review’s representation should maximize the likelihood of its com-
prising words. To this end, each word w in the vocabulary is represented by a learned
vector w. Then, the log probability of having word w in a review is approximated
by the negative sampling (NEG) procedure: log P(w|tui) = log σ(wT tui) + t ·
EwN∼PV

[log σ(−wT
Ntui)], where t is the number of negative samples and PV is the

noise distribution. In this paper t was set to 5 and PV is the unigram distribution
raised to the 3/4rd power. Hence, the objective for a given review is:

L1(u, i) =
∑

w∈tui

fw,tui
log P(w|tui) (5)

where fw,tui
counts the number of occurrences of w in the review.

Then user u is represented by an average of their reviews: p1
u = 1

|R1
u|

∑
i∈R1

u
tui ,

where R1
u is the set of items reviewed by user u. In a similar fashion item vectors

are computed.

Modeling of Numerical Ratings

Modeling users and items according their explicit ratings is rather straightforward.
The predicted rating given by user u to item i is calculated by a two-layer fully
connected network: r̂ui = FC1(FCt (p2

u � q2
i )), with � denoting the element-

wise product, ELU [17] as the activation function and t is a hyperparameter that
determines the dimensionality of the hidden layer. The objective in this input source
is to minimize the squared prediction error:

L2(u, i) = (r̂ui − rui)
2 (6)
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2.7.2 Integrated Representation

The integrated representation of each user and item is obtained by a simple
concatenation of the representations across the input sources: pu = p1

u ‖ p2
u and

qi = q1
i ‖ q2

i . We address to a limitation of this approach in Sect. 2.7.4.

2.7.3 Ranking Optimization

Until this point, the embeddings are not optimized for ranking, but to model textual
data (L1) and to predict ratings (L2). Therefore, JRL incorporates the widely
adopted BPR loss [62] as the pairwise learning-to-rank method. For each observed
user-item interaction (u, i+) ∈ R, a random item i− such that (u, i−) /∈ R is
sampled as a negative sample. The objective is to distinguish between positive and
negative pairs:

LRANK(u, i) = log σ(pu · qi+ − pu · qi−) (7)

For more details on the BPR loss, we refer the reader to Chap. 3. Personalized
recommendations are generated by ordering all items according to their predicted
scores. Combining the input-source dependant loss functions in Eqs. 5 and 6
together with the ranking objective presented in Eq. 7, gives us the objective
function of JRL:

L =
∑

(u,i)∈R

LRANK(u, i) + L1(u, i) + L2(u, i) (8)

2.7.4 In-Depth Analysis

Decoupling Input Sources

Albeit not mentioned in the original paper, while the algorithm assumes the
existence of several modalities, they do not need to be aligned. For instance, a user
may leave explicit ratings for some items, to write textual reviews on other items and
the final user representation will consider all of these interactions. This is in contrast
to all previously described algorithms in this chapter, that require each interaction
to comprise both explicit ratings and textual reviews.

Fusion of Representations

The personalized score is computed as: s = pu ·qi = (p1
u‖p2

u)·(q1
i ‖q2

i ) = p1
u ·q1

i +
p2

u · q2
i . Hence, it is the sum of the scores given by two pairs of representations, and

at prediction time there is no interaction between these two representations. Perhaps
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the model could be improved if the integrated representation was done by feeding
the input-source representations to fully connected layers, which allow to capture
non-linear correlations between the representations.

Generalized Modeling of Textual Reviews

Modeling of textual reviews is done by PV-DBOW, which does not obtain state-
of-the-art results on document representation. Fortunately, JRL is agnostic to the
choice of text modeling, and any other unsupervised could be seamlessly used. For
instance, reviews can be modeled using AutoEncoders [42] or contextual embedding
models (e.g., GPT-3 [6]).

2.7.5 Empirical Evaluation

We now compare relevant baselines to asses the vitality of JRL. All experiments
were conducted on various domains of the Amazon review dataset presented in
Sect. 2.6. For each dataset, 70% of the interactions of each user were randomly
selected for training and the remaining were kept for test. All users are presented
with K = 10 recommendations and a recommended item is marked as “correct” if
it resides within the test items of that user. We report two prevalent top-K evaluation
measures:

• HT: Hit-ratio, which is the percentage of users with at least a single correct
recommendations.

• NDCG: considers also the position of the correct recommendations.

Additional details on these evaluation measures can be found in Chap. 15. The first
baseline is BPR [62], a seminal ranking algorithm that does not leverage reviews.
Another baseline, which was presented in Sect. 2.4.1, is DeepCoNN [84]. This
baseline does incorporate reviews, but is optimized for the rating prediction task.

Table 2 shows the performance of each algorithm. First, it gives another
evidence for the contribution of review to recommender systems, as DeepCoNN

Table 2 Ranking comparison. Best results are indicated in bold

BPR DeepCoNN JRL

Measure HT NDCG HT NDCG HT NDCG

A-Movies 4.421% 1.267% 10.522% 3.800% 13.245% 4.334%

A-CDs 8.554% 2.009% 13.857% 4.218% 16.774% 5.378%

A-Clothes 1.767% 0.601% 3.286% 1.310% 4.634% 1.735%

A-Cellular 5.273% 1.998% 9.913% 3.636% 10.940% 4.364%

A-Beauty 8.241% 2.753% 9.807% 3.359% 12.776% 4.396%
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consistently outperforms BPR across all datasets. Most notably is the benefit of
having a designated algorithm for ranking, as JRL gains a substantial improvement
comparing to other algorithms.

2.8 Discussion and Future Outlook

This section showed the tremendous value of user-generated reviews in modeling
users and items for both rating prediction and ranking. Over the past years,
the recommender systems community has unceasingly improved the means to
incorporate textual reviews, which results in increasing performance and reduction
in running time complexity. Currently, reviews are an integral part of the modeling
process of state-of-the-art production systems and we anticipate a plethora of work
in this direction, towards more accurate recommenders.

We should note that most existing review-based algorithms assume the avail-
ability of explicit ratings. At first, it might seem like a hard assumption that limits
applicability. However, platforms that collect textual user reviews usually also
collect explicit numeric ratings, and hence we are not restricted by the additional
requirement of having explicit ratings.

So far, existing work in this field relies on datasets such that all interactions
are associated with reviews. However, this leads to a selection bias because only
a subset of the users tend to write reviews, while the rest of the population
is ignored. These users may differ in their tastes and usage patterns from the
general population and therefore the system may suffer from poor performance
on the general population. Furthermore, a user may be more likely to devote time
for writing a review if the experience with the item was extremely positive or
negative. This is another form of a potential selection bias, where extreme cases are
overemphasized. Designers of real-life recommenders should consider these aspects
and integrate also data that represents the general population.

Looking to the future, with the great predictive power of reviews, comes a
potential threat by malevolent stakeholders. As textual reviews add invaluable
information on top of explicit ratings, an attack that generates reviews might be
considerably striking. Hence, there is an inherent future need for designing systems
that can effectively detect adversarial reviews.

Another line of research could be to utilize reviews in order to break down
the items and to identify fine-grained recommendable units. Bauman et al. [3] for
example suggested a bag-of-words approach to identify aspects of consumption.
Then for example, beyond recommending a restaurant the system could suggest
specific dishes. This is an interesting problem that has not been widely studied yet,
with a variety of potential applications (e.g., suggest a hotel as well as a room with
a specific view or to recommend a specific chapter in a handbook).
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3 Conversational Preference Elicitation

The main purpose of the preference elicitation reference elicitation process is to
allow end-users to reveal their preferences by interacting with the recommender
system. Such interaction may be implemented through a conversational interface
using natural language.

While the preference elicitation task may be viewed as a kind of intent detection
task, there are two fundamental differences between the two. First, intent detection
may be performed also in ad-hoc systems that have no interaction with the user, e.g.,
predicting query intent [5]. Second, in the context of conversational systems, intent
detection is usually treated as a classification task, which is bounded by a predefined
set of intents (classes) [44]. This in comparison to the preference elicitation task
which may require to reason over a large set of possible user preferences.

Overall, we describe three main types of preference elicitation approaches
that utilize NLP methods: critiquing, facet-based and question-based. We start
by shortly discussing conversational recommender systems as the environment in
which such preference elicitation process is implemented.

3.1 Conversational Recommender Systems

Conversation recommender systems (CRS) have become quite common nowadays
and are implemented by natural language interfaces (e.g., chat-bots) or speech (e.g.,
intelligent assistants). Existing conversational systems can be roughly classified as
chit-chat, informational or task-oriented. In a sense, a conversation recommender
system is both informational and task-oriented. For example, a CRS may be utilized
for recommending news to a user, hence satisfying some information need. On the
other hand, a CRS may be utilized to fulfill some user goal such as reserving a
restaurant, visiting a location or purchasing some item.

Utilizing a CRS is specially effective whenever user preferences are either ill-
defined or unclear (e.g., in a cold-start scenario). In a conversational setting, users
may express their preferences towards items using a natural language interface.
At the same time, the recommender system can further utilize the same natural
language interface to interact with its end-users to clarify their needs and provide
better personalization.

Different from “traditional” recommender systems, which are usually passive
in the sense that they operate in one-shot interaction paradigm, a CRS allows
an interactive, mixed-initiative, dialogue with its end-users. This in turn, allows
for varying the recommendation until enough evidence on user’s preferences is
gathered. Alternatively, a CRS may adapt its previous recommendations to the
change in user’s preferences as reflected in the ongoing conversation.

A typical CRS has two main components: Preference-Elicitation and Recom-
mendation. The role of the preference elicitation component is to gather enough
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information about user preferences for maximizing the predicted user utility. The
recommendation component is responsible to provide recommendations based on
preference information that was actively curated during the conversation with the
user. This component may be also tightly integrated with the preference elicitation
component, driving the latter’s decisions on which user preferences should be
clarified (e.g., present options for item filtering, ask for feedback, etc).

In the rest of this section, we mainly focus on the preference elicitation
process using natural language understanding and the representation of derived user
preferences for recommendation during a conversational recommendation setting.
For broader details on the general scope of conversational recommender systems,
the interested reader is referred to recent surveys [31, 59].

3.2 Critiquing

In the critiquing setting, the user is allowed to define constraints on items imme-
diately after those were recommended. For example, in a restaurant reservation
setting, the user may refine recommended restaurants by their location, price
or rating. Using a critique-based conversational recommendation strategy, users
incrementally define their preferences towards recommendable items. In a sense,
critiquing allows users to modify their learned “static” preferences and adjust the
recommender system to their current “dynamic” tastes [77].

A CRS usually presents to the user several options for refinement based on the
properties of the pool of recommendable items (e.g., size, color, price, etc). A simple
approach to implement a critiquing strategy is to show user options for selection or
fill a manual form. User input is usually assumed to define her critiques to be treated
as negative feedback on recommended items.

While it is more intuitive for users to interact with CRS in a natural language,
such communication form has been less common in earlier critiquing-based rec-
ommender systems [10]. Natural language-based interaction is more complex to
model, as the set of specified user critiques may be still subjective, ambiguous or
unbounded. Hence, most previous works have been focused on system-suggested
(predefined and bounded) critiques or user-initiated critiques [10].

Critiques may be automatically derived from past user interactions [63]. Such
experience-based methods are implemented by analyzing the properties of items
that were successfully recommended in previous similar conversational sessions.
Yet, most critique methods strongly rely on the availability of a item metadata (e.g.,
catalog) or assume a fixed set of critiques.

An alternative and more flexible way to automatically obtain potential critiques
is to curate them from textual sources associated with recommendable items. A
popular approach is to extract keyphrases from item reviews [46, 77]. Keyphrases
may be extracted using statistical language-modeling techniques (e.g., identifying
terms that are salient in the text), using random-walk methods, etc. For a review on
state-of-the-art keyphrase extraction methods, the reader is referred to [49].
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We next describe two recent deep-learning methods that exploit keyphrases
extracted from item reviews for implementing a critiquing-based conversational
preference elicitation process. Using deep-learning techniques allow to better
represent both user preferences and feedback (user critiques) in the same latent
embedded space, and as a result, improve recommendation accuracy.

3.2.1 CE-NCF

As a first method, we describe the Critiquable and Explainable Neural Collabora-
tive Filtering (CE-NCF) method [77]. This method has two versions, deterministic
and variational. Here we only describe the deterministic version.

A key assumption which is now made is that, both the observable user i and
item j (binary) ratings rij and (binary) explanation (keyphrases) vector sij are
generated from the same latent representation zij which is jointly encoded from
the latent user ui and item vj representations. Initial user and item embeddings can
be obtained by any basic method (e.g., [77] used a randomized SVD method that
was fined-tuned during end-to-end training). The above assumption is formulated
into a deep-learning framework by first encoding each user-item pair into an initial
latent representation ẑij = fe(ui, vj ).

Critiquing augments the latent representation which modifies item ratings to
better suite user’s current preferences. This is achieved in several steps, as follows.
First, a prediction function ŝij = fs(ẑij ) is applied to map the latent representation
into explanation predictions for each recommended item to a particular user. The
user then takes a critique action which indicates explanations she disagrees with,
“zeroing out” the corresponding keyphrases in ŝij . Next, the inverse function
z̃ij = f −1

s (s̃ij ) is applied to project back the critiqued explanation to the latent
representation. Finally, the model updates both item ratings r̃ij = fr(z̃ij ) and
explanations s̃ij = fs(z̃ij ). In addition, to more flexibly control the effect of user
critiques, whenever a user makes a critiquing action, the latent representation is
updated according to the following linear combination: z̃ij = ρẑij + (1 − ρ)z̃ij ,
where ρ ∈ [0, 1] is a hyperparameter.

To train the model end-to-end (together with item recommendation), the follow-
ing objective is minimized:

minL = min
∑

ij

L0(rij , fr ◦ fe(ui, vj ))

+λ1

∑

ij

L1(sij , fs ◦ fe(ui, vj ))

+λ2

∑

ij

L2(fe(ui, vj ), f̃
−1
s ◦ fs ◦ fe(ui, vj ))

+λ3‖θ‖2
2,

where the three loss functions L0,L1 and L2 are further taken as Mean Squared
Error (MSE) and λ1, λ2 and λ3 are corresponding hyperparameters.
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3.2.2 Latent Linear Conversational Critiquing

In a sense, each single critiquing step can be viewed as a series of functional trans-
formations that produce a modified prediction r̃i = fm(ri, s̃i ) of item preferences
for user i given critiqued keyphrases si [46]. Having multiple critiquing steps, a
user is iteratively provided with the item recommendations r̃ t

i and, based on those,
the user makes a critique action ci which updates the representation of critiqued
keyphrases s̃t

i through a cumulative critiquing function: s̃t
i = ψ(si, s̃

t−1
i , ci).

Alternatively, the user may accept the item recommendation and the current
conversation ends.

To derive r̃i , both user preferences ri and the critiqued keyphrases are co-
embedded to derive a uniform representation ẑi , as follows. First, user ratings ri
are represented by a projected linear embedding zi = riV . Next, given user’s
critique action ci , the cumulative critiquing representation is derived at step t

as: s̃t
i = s̃t−1

i − max(si, 1) � ct
i (with s̃0

i = 0) and its latent representation is
obtained: Z̃t

i = diag(s̃t
i )W

T + B. Each row z̃k
i of the matrix Z̃i captures the latent

representation of the kth critiqued keyphrase, and each row of B has an identical
bias term b. The unified representation ẑi is then obtained by merging zi with Z̃i as
follows:

ẑi = φλ(zi, Z̃i) = λ0zi + λ1z̃
1
i + . . . + λ|K|z̃|K|

i .

Given ẑi , the updated item ratings are simply given by: r̂ij = 〈ẑi , wj 〉 (where
〈·, ·〉 denotes inner product and wj is the latent representation of item j ).

λ weights can be manually set (e.g., having uniform weight assuming that all
critiques have the same importance). Yet a better alternative is to learn λ using
Linear-Programming (LP) optimization [46].

3.3 Facets-Based Preference Elicitation

In a facet-based preference elicitation process, the conversation context defined by
user utterances is used to predict which item facets represent the user’s preferences.
At each step of the conversation, the CRS may decide to either recommend items to
the user based on such derived facets or try to clarify user preferences (and hence
better learn the item facets that are most relevant).

The facet-based approach allows a more incremental preference elicitation
towards targeted item recommendation. Yet, the facet-based approach still requires
some memorization effort by users, as users may not be familiar in advanced with
all item facets [59] (e.g., what is the meaning of some unit).

In the context of preference elicitation, there are two main challenges that need
to be addressed. The first is mapping user utterances into facets and the second is
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generating clarification questions based on such facets to be presented to the user
whenever more feedback is required.

Mapping user utterances to facets requires to “identify” mentions in the utterance
text related to facet types and/or values. As an example, an utterance such as , “I
need a restaurant near my home” identifies a location facet with a range of possible
values anchored by the user’s own location. As another example, a utterance such
as “I would prefer drama to comedy” defines two facets with a preference order
between the user’s preferred movie genres.

Facet extraction from query-related text (e.g., search results) has been previously
studied in the context of interactive information retrieval [37, 38]. A common
facet curation approach is to first apply textual clustering (e.g., K-Means or
Hierarchical) [55, 79]. Each cluster then represents a facet and a clustering labeling
technique may be applied to extract a short textual description of the facet [7].
Alternative facet extraction techniques include semantic class extraction [57, 66]
(using distributional similarity or pattern mining), topic models [74, 76] mention
detection [22], named entity recognition [40] and entity linking [36] .

We next shortly describe a more recent approach that is better tailored for CRS.
Using deep-learning methods, a give user utterance may be mapped into a set of
potential facet type and values [71], as follows. Let (f, v) denote a specific facet-
value pair, e.g., (color, red), (size, small), etc. Given a user utterance at time step
t, et , an n-gram vector zt is first extracted from et ’s text. Next, the sequence of
n-grams up to the current time is encoded using an LSTM network into a vector
ht = LST M(z1, z2, . . . , zt ). To predict facet values probabilities of a given facet
fi , a softmax activation layer is then applied.

The set of facet-values probabilities are then used for representing the dialogue
state st . This state is used for belief tracking to decide whether to recommend items
based on existing facets or further clarify user preferences by asking questions about
a specific facet [71].

The decision whether to recommend an item or clarify user preference towards
any of the facets may be implemented using a reinforcement learning approach [71].
To this end, at each step t of the conversation, the CRS agent has l + 1 actions it
can take. The first l actions capture the decision of the agent on whether to clarify
the user’s preference regarding the values of one the l possible facets. For example,
a question such as “What color do you prefer?” can be asked given that the color
facet has the highest belief in the model.

Alternatively, the CRS agent may decide to provide a recommendation based on
existing facet-based belief st . In [71], such recommendation is implemented using
Factorization Machines [61] considering st as an additional feature-set. The decision
policy of the CRS agent is further learned using the REINFORCE [75] algorithm.
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3.4 Question-Based Preference Elicitation

In a question-based preference elicitation setting, the CRS aims to unveil user
preferences through a series of one or more clarification questions. In a sense, such
an approach is similar to the facet-based approach, with two additional options.
First, the clarification questions can be topical rather than just asking about existing
item facets (properties) [13]. Second, compared to the facet-based approach which
asks questions about single facets at a time in an absolute manner, using a relative
approach may further allow to identify more clear user preference patterns [14].

We next discuss several recent question-based preference elicitation methods.

3.4.1 “System Ask, User Respond” (SAUR)

In the “System Ask, User Respond” (SAUR) setting [82], each conversation is
assumed to be initiated by some user information need (e.g., “Can you find me
a mobile phone on Amazon?”) and then the CRS agent may either provide a
recommendation or start with a series of clarification questions about aspects that are
relevant to the user information need (e.g., “What operating system do you prefer?”,
“Do you have requirements on storage capacity?”, etc.). Each conversation used for
training the model is assumed to end with a successful item recommendation (e.g.,
judged by analyzing the user’s feedback).

Formally, given a conversation session, initiated with user query related to
product category c and succeeded with k questions that have been asked so far by
the agent (pl) and answered by the user (ql): Q = p1, q1, p2, q2, . . . , pk, qk , the
task is to predict the next question to ask pk+1. Here, each question is assumed to
be about a single product aspect (e.g., operating system) curated from item reviews
and each answer has a value specified by the user to that aspect.

While the SAUR model addresses both item recommendation and question
generation, we next focus only on the latter sub-task and the interested reader is
referred to [82] for the full details.

A given conversation context Q is represented at step t by first concatenating all
the text until that step and encoding it with a Gated Recurrent Unit [16] (GRU). Let
ck denote the encoding at current step k. Each item vj is further represented by a
textual summary (denoted sr

j ) obtained by concatenating its own description with
review text associated with it. The representation is then obtained using a GRU with
an attention mechanism that allows to make the representation of that item sensitive
to a specific conversation context Q. Two memory units are further utilized. The
first m1

j = GRU(sr
j , ck) memorizes the relevance of item vj to Q and used for item

recommendation. The second m2
j = GRU(sr

j ,m
1
j ) serves as question memory for

item vj .
The question sub-task now aims to train a model which will maximize the

likelihood of the next aspect in the conversation pk+1. Such a likelihood is estimated
by first concatenating its own representation with ck and the average memory m̄2
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over all items and then applying a two-layer feed forward neural network followed
by a softmax layer. Since applying the softmax may be computationally costly due
to the large number of aspects to consider, an alternative is to apply a sigmoid with
negative sampling proportional to aspect popularity [82].

3.4.2 Topic-Based Questions

Most conversational recommender systems ask questions related to properties of
end-recommended items. Yet, such an approach may not scale well when the item
pool is too large and constantly updated [13] (e.g., videos on YouTube).

An alternative, which might scale better, is to ask users question on topics so user
feedback can be propagated among items sharing the same topic [13]. The key idea
in such an approach is to present to users a top-N list with topics which they can
provide feedback on. User feedback is further captured via user clicks.

Formally, for a given user event history (e.g., video watching) E =
e1, e2, . . . , eT , the goal is to estimate the topical distribution of user’s interest
at time T + 1, i.e.: p(q|E). For a large enough data, such distribution can be
easily trained using a sequential learning model (e.g., GRU or LSTM). Hence, at
questioning time, for a given user event sequence E′, questions to be asked can be
sampled from the topics with highest likelihood.

Using user’s feedback on the displayed top-N topic list, a more personalized rec-
ommendation can be made by estimating the likelihood of the next response (items
being recommended) p(r|E′, topic = q). Such a likelihood can be estimated, for
example, by restricting the items being considered for recommendation to those that
belong to topic q.

3.4.3 Asking Absolute vs. Relative Questions

The two methods we discussed so far present questions to users in an absolute
fashion one by one in a sequential order [82] or as a list of topics to pick [13]
as the conversation progress. Yet, such questioning strategy does not fully capture
the relative user preferences. An alternative, therefore, is to present clarification
questions to users in a relative form [14]. The key idea here is to pick items (or
aspects to ask) which would allow to reveal as much information as possible about
user’s preferences. For example, a relative question may be given about two items
that are relatively far from each other in the latent space.

We next discuss the questioning framework of [14]. This framework has two
versions, Absolute (recommendation) and Pairwise. For our discussion purposes we
only focus on the Absolute model and refer the reader to [14] for the second one.

As a first assumption, a latent factor recommendation setting is utilized to
implement the underlying Absolute model. Specifically, a simplified version of the
Matchbox Recommender model [70] is implemented. In a nutshell, in this model
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each user i is modeled by a bias variable αi ∼ N(0, σ 2
2 ) and a trait vector ui ∼

N(0, σ 2
1 I). In a similar manner, each item j has a bias variable βj ∼ N(0, σ 2

2 ) and a
trait vector vj ∼ N(0, σ 2

1 I). Then, the unobserved affinity between user i and item j

is given by yij = αi+βj +uT
i vj . Observations are made ŷij ∼ N(yij , εij ), where εij

models the affinity variance, accounting for noise in user preferences. User (dis)like
observation is then given by r̂ij = 1[ŷij > 1]. The hyper-parameters σ1,σ2 model
the variance in traits and biases. The model variables are learned by maximizing the
log-posterior over the item and user variables with fixed hyper-parameters, given the
training observations [14]. To “bootstrap” the model, item embeddings are learned
offline from logged observations, while user parameters are initialized to the mean
user values assuming questions are to be asked in a new user setting [14].

Having defined the underlying recommendation model, we next describe two
main options for asking questions about user preferences towards items, either
Absolute or Relative. The key idea is to ask a few questions so both user’s
preferences and question quality can be learned. Such task is implemented in [14]
using ideas that are borrowed from active learning (query for labels that provide the
highest amount of new information) and bandit learning (balance between model
exploitation and exploration). In the context of conversational recommenders, such
a balance may help focus questions on the most relevant part of the latent space,
while still considering that highly preferred items may lie in as of yet unexplored
areas of the space [14]. At a given time, the model confidence on user preference
towards items j is captured by the current variances of the posterior of the noisy
affinities ycold

j . As the system asks about an item j∗ and observe the user’s feedback,
the variance of the inferred noisy affinity of this item and of the nearby items in the
learned embedding is reduced [14].

The general preference elicitation algorithm is implemented as follows. For a
new user i, the noisy affinities yij are inferred. Then, while more questions are
allowed to be asked, an item j∗ is picked for absolute (relative) question. Several
question (item pick) selection strategies are explored in [14], showing preferable
results to an approach based on Thompson Sampling: j∗ = arg maxj ŷij . The
user feedback (i, j∗, 0/1) is then incorporated into the model to update the noisy
affinities yi according to [70].

To extend to relative preference elicitation, after an item A is selected, we first
assume the user did not like this item and incorporate a virtual feedback (i, A, 0)

into the model. Then, a second item B is selected based on the inferred updated
posterior model when it is used as the prior model. Here, the intuition behind such
relative question is that the two items the user is asked to give a relative preference
on should be relatively far apart in the latent space. This allows the system to both
learn user preferences more efficiently while the user is not forced to choose among
very similar items [14], hence introducing diversity.
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3.5 Discussion and Future Outlook

Recent advances in NLP now allow to better understand user preferences through
interactive dialogue with the recommendation system. Traditional preference elic-
itation methods have been implemented with a predefined set of preferences or
UI-aided tools (e.g., forms). Using textual sources such as item descriptions or
user reviews, now allows to extract and process potential preference-related data
(e.g., facets) more easily and integrate such data within existing recommendation
methods. Moreover, using the mixed initiative nature of conversation, clarification
questions about user preferences can be utilized to allow the recommendation
system better personalization to its users.

Preference elicitation using NLP methods can be improved in two main ways.
First, most existing works utilize user reviews as a source for preference-related
metadata. Other sources may be further utilized and should be explored, including,
for example, text curated from user discussions and forums, social media or news.

Second, existing preference elicitation NLP-based methods still utilize very
simplistic language models learned by traditional deep learning methods such as
CNNs and RNNs. New pre-trained language models such as BERT [19] and GPT-
3 [6] should be further explored in the context of this task, allowing to improve
textual representation and automatic generation of facets and clarification questions.

4 Generating Textual Explanations

As recommendations have become central to shaping decisions, users increasingly
demand convincing explanations to help them understand why particular recom-
mendations are made. To this end, the research community has lately focused on
studying both how to generate explanations from recommender systems as well
as the effect of explanations on influencing user behavior [23, 54]. Chapter 19
provides a detailed overview of explanations in recommender systems. This sec-
tion complements Chap. 19 by focusing on describing how explanations can be
generated from text. In more detail, in what follows, we will describe the most
representative methods of generating explanations by extracting snippets from text
that accompanies an item that is recommended by the system. The input is the user-
item matrix as well as the reviews available for the items that are in abundance in
most recommender systems. The explanation text can be presented as a description
of the item or a comprehensive review (or a set of reviews). The input for most of
the algorithms described is the user-item rating matrix as well as the reviews that are
written about items. The structure of the Section is as follows: we first discuss deep
learning methods that find and show to the user the most useful review (in some
cases reviews can be personalized) and then we describe works that extract explicit
product features and user opinions from review text.
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4.1 Review-Level Explanations

User-generated reviews can be viewed, at least in part, as explanations of the ratings
given by users. As discussed previously in Sect. 2, recommendation accuracy can
be greatly improved when using review text that is available for the items. At the
same time, reviews can help towards an additional goal: explaining why an item is
recommended to a user. Here, we will discuss literature that has demonstrated the
effective application of reviews in the area of explanations ranging from finding and
showing to the user the most useful review to more complex methods where the
models can automatically generate personalized reviews to show to each user.

Early works that proposed to combine latent dimensions in rating data with
review text had a two-fold contribution: first, the approaches could use the
text reviews with ratings to provide accurate recommendations and, second, the
approaches could use the most useful reviews to show to the users as an explanation
for each recommendation (review level explanations). Most of these representative
works are the following: McAuley et al. [47] combine latent rating dimensions
with latent topics in reviews learned by LDA topic models. The proposed method
is able to generate interpretable topics, that can be used to suggest informative
reviews. Along the same lines, Diao et al. [20] also propose to combine ratings with
review text to identify aspects (relative to topics). The key difference with [47] is
that in this work, the authors focus on both learning the aspects as well as learning
the sentiments of these aspects (negative vs. positive). From the deep learning
community, the neural attentional regression model with review-level explanations
model (NARRE) [9] uses the text of the reviews to both predict item ratings and
learn the usefulness of the reviews. In this approach, only the highly-useful reviews
are provided as explanations to the users. The explanations provided in all the above
studies are not personalized, i.e., when the recommender system comes up with a
specific item recommendation, all users will be shown the exact same explanation
which is the most useful reviews. In what follows we describe works that generate
personalized explanations in the form of reviews.

4.1.1 Multi-Task Learning for Recommendation and Personalized
Explanation

Recently, the research community has shown increased interest in personalized
review generation that can serve as a form of explanation to the users. Lu et
al. [45] jointly learn recommendations and explanations by introducing a multi-
task learning framework. Instead of finding the most useful review, the proposed
model generates new reviews that are personalized to the taste of each user.
More specifically, the review text is used for learning the user preferences and
item properties, and implicit and explicit feedback (e.g., clicks or ratings), is
used to learn the level of interest of a user in the attributes of an item. The
approach employs a matrix factorization model (see Chap. 3 for more details) that
generates the user-item ratings combined with a sequence-to-sequence model that
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generates a personalized review (that serves as an explanation) for each user-item
recommendation.

In order to generate an unbiased personalized review (i.e., explanation), Lu et
al. [45] use an adversarial approach over a sequence-to-sequence model, where
a review generator and discriminator network are trained simultaneously. For the
generator network, which eventually produces the explanations, the set di of all
reviews written by user i is mapped onto a textual feature vector Ũ and subsequently
fed into a bi-directional Gated Recurrent Unit (GRU) [16] which concatenates the
last-step hidden forward and backward activations into a vector-based representation
hT for the review. Overall, given the vector Ũ , the model generates reviews that
attempt to maximize the probability of a T ′-lengthed review yi,1, . . . , yi,T ′ given
the user’s textual vector:

p(yi,1, . . . , yi,T ′ |Ũ ) =
T ′∏

t=1

p(yi,t |Ũi , yi,1, . . . , yi,t−1)

Once the reviews are generated, they are next fed into the discriminator that
attempts to discern real from artificially-generated (from the generator) reviews.
In this adversarial setting, the discriminator is implemented as a convolutional
neural net, typical in text classification tasks. More specifically, the review words
are mapped into vectors which are fed into a convolutional, max-pooling and fully-
connected projection layers (in this order) while the final output is adjusted using a
sigmoid function. Overall, the discriminator network attempts, through sampling of
reviews and using policy gradient descent [75], to maximize the function:

maxφEY∼pdata
[logDφ(Y )] + EY ′∼Gθ

[log(1 − Dφ(Y ′))]

where Y ∼ pdata are the ground-truth (i.e., real) sampled reviews and Y ′ ∼ Gθ

are the generated ones. In the process, the learned textual features and the matrix-
factorization-based textual features are regularized in order to allow the sequence-
to-sequence model to leverage the user preferences identified from the collaborative
filtering step. Finally, personalized recommendation explanations are generated by
employing a review decoder that combines the vectors Ũi (i.e., the reviews of user
i) and Ṽj (i.e., the reviews of item j ) to generate reviews for a given user-item pair.

Another popular way of providing useful explanations to recommendations is by
generating (oftentimes personalized) synthetic reviews. Ouyang et al. [56] combine
three generative models that provide natural language explanations while leveraging
the available helpfulness votes of existing reviews. The approach also takes into
account the set of item attributes that may be of interest to the user while generating
the reviews. At a high level, the goal is to maximize the likelihood of an explanation
e = (y1, . . . , yl) of length l for a given set of input attributes for item i ai =
(ai, . . . , a|a|):

p(e|a) =
l∏

t=1

p(yt |yi,1, . . . , yi,t−1, a)
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To this end, Ouyang et al. [56], propose three textual models that produce text as
both character and word sequences using the user id, item id, item rating and review
helpfulness score as input. More specifically, the approach starts in the encoding
phase by identifying all word tokens with their positions in the review corpus that
will be used both during the encoding (training step) and decoding (generating
step). A GCN (generative concatenative) model is employed at the beginning of
the process. The goal of the GCN is to learn the relations of attributes and text by
considering them as one (concatenated) input. More specifically, the model accepts
input of the form X′

t = [xr
t : xa

t ] where xr
t is the encoded review text and xa

t

are the one-hot encoded attributes at time step t . After the first GCN model, a
context and attention model are utilized that aim to transform the attributes to fixed-
length [21] embeddings. The goal of these two models is to learn how attributes and
text aligns and to provide good initialization weights for the decoder. At the end of
the encoding phase, encoded attributes are reshaped to the proper decoder shape:
A = tanh(H [xa

i , . . . , xa|a|] + ba) and are provided as initialization weights for the
decoder.

The decoding phase utilizes Recurrent Neural Networks (RNNs) with long short-
term memory (LSTM) [28]. Given, at a time t , inputs xt , the LSTM cell state Ct−1,
the previous output Ht , W the weights, b the bias and Ĉ the candidate state, the
computation of the decoding step proceeds as follows with � denoting an element-
wise product operation:

Ĉt = tanh(Wc
x xt + Wc

hHt−1 + bc)

ft = σ(W
f
x xt + W

f
h Ht−1 + bf )

it = σ(Wi
xxt + Wi

hHt−1 + bi)

Ct = ft � Ct−1 + it � C′
t

ot = σ(Wo
x xt + Wo

hHt−1 + bo)

Ht = ot � tanh(Ct )

As a final step, for text generation, the decoder output Ht is provided as input to a
softmax function that essentially attempts to maximize the probability p(yt |y<t , a)

by greedily inferring the characters and words. As a result, the final explanation
review text is produced by inferring the index Yt of the generated character/word
through the following process:

p(yt |yi,1, . . . , yi,t−1, a) = sof tmax(WHt + b)

Yt = argmaxp(yt |yi,1, . . . , yi,t−1, a)
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4.1.2 Providing Explanations for Recommendations in Reciprocal
Environments

Reciprocal environments involve applications such as job searching or online dating,
where a recommendation should be mutually beneficial to two or more users.
Kleinerman et al. [35] study how to generate useful reciprocal explanations for such
user-matching (i.e., reciprocal) recommendations on top of two-sided collaborative
filtering approaches [53, 78]. In general, the reciprocal setting assumes that, each
user x, has, for each predefined attribute a in the system, provided their personal
values for these attributes Ax = {va}, together with the (implicit or explicit) user’s
preference px,a for each of the attributes. In Kleinerman et al. [35], preferences are
identified implicitly based on messages sent among users. More specifically, px,a is
the number of messages sent by x to users that have va as a value for attribute a.

Kleinerman et al. [35] approach the problem of reciprocal explanations for
two users x and y by generating two one-sided explanations ex,y and ey,x . To
this end, they propose two single-sided explanation generation approaches named
Transparent and Correlation-based.

In the Transparent approach, in order for the system to explain recommending
user y to user x, it returns the top-k attributes of y that are considered the most
important based on x’s preferences px,a .

In the Correlation-based approach, the system measures the correlation between
a given attribute value va in user y’s profile and the likelihood of user x indicating
that specific attribute as a preference (specifically, sending a message in [35]). For
each user x, all users I = i that x has interacted with are first identified and
two binary metrics are computed: Mx(i) which captures whether x has indicated a
preference (sent a message) to i, and Sx,va (i) which captures whether user i has va in
their profile. Then, given the two binary vectors M and S, we compute the Pearson’s
correlation metric between M and S for each attribute value va . The top-k attributes
with the highest correlation are considered to be the single-sided explanations ex,y .

4.2 Feature-Level Explanations

In what follows, we describe works that extract explicit product features and user
opinions from review text. To infer user opinions, sentiment analysis is used that in
some cases also leverages the sentiments of the social connections of the users.

4.2.1 Explicit Factor Models for Explainable Recommendation Based on
Phrase-Level Sentiment Analysis

Zhang et al. [83] present an approach called Explicit Factor Model. The approach
starts by identifying product aspects (features) that may be of interest to the users
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through sentiment analysis on the reviews and uses learned and latent features to
generate both recommendations and aspect-level explanations.

Initially, the approach identifies the feature descriptions from the reviews F,
the opinion descriptions (O) and the feature sentiments, i.e., (F,O) pairs. The set
L = (F,O,S) is then used to generate feature, review-sentiment (F,S′) pairs.
Next, a user-feature attention matrix X with F = {F1, F2, . . . , Fp} columns (i.e.,
features), and U = {u1, . . . , um} rows (i.e., users) is generated with each element
being either 0 if user ui did not mention feature Fj , or the value of a sigmoid
function σ(tij ) otherwise. Similarly, an item-feature quality matrix Y is generated
with P = {p1, . . . , pn} rows and F = {F1, F2, . . . , Fp} columns. Again, each
element is either 0 if item pi does review feature Fj , or the value of a sigmoid
function σ(tij ). The final factorization model is augmented with additional r ′ latent

factors H1 ∈ R
m×r ′
+ ,H2 ∈ R

n×r ′
+ attempting to capture hidden factors affecting

the user decision P = [U1 H1] and Q = [U2 H2]. It also uses the user-item
ratings A to capture both explicit and implicit features both for recommendations
and explanations:

min
U1,U2,V ,H1,H2

{||PQT − A||2F + ||Y1V
T − X||2F + ||U2V

T − Y ||2F
+ (||U1||2F + ||U2||2F ) + (||H1||2F + ||H2||2F ) + ||V ||2F }

s.t. U1 ∈ R
m×r+ , U2 ∈ R

n×r+ , V ∈ R
p×r
+ ,H1 ∈ R

m×r ′
+ ,H2 ∈ R

n×r ′
+

Given the solution of the factorization, a recommendation of item j to user i

can be computed as: Rij = α

∑
c∈Ci

X̂ic·Ŷjc

kN
+ (1 − α)Âij , where X̂ = U1V

T ,

Ŷ = U2V
T , A = U1U

T
2 + H1H2T , N is the maximum scale of ratings (e.g.

5), α is a scaling factor, and Ci are the columns of X̂ with the k largest values.
Explanations are generated by identifying the best and worst-performing features
Fcbest

and Fcworst of a product pj for each user ui : cbest = argmaxc∈Ci
Ŷjc and

cworst = argminc∈Ci
Ŷjc.

4.2.2 Social Collaborative Viewpoint Regression with Explainable
Recommendations

In addition to concepts, topics, reviews and their sentiments, Ren et al. [60], also
utilize the sentiments of users’ social connections in order to create a notion of
viewpoints, i.e., tuples of concepts, topics, review sentiments and social-connection
sentiments. Ren et al. [60] consider the typical setting of users U = {u1, . . . , uU },
items I = {i1, . . . , iI }, pairs Q = {(u, i)} of user-ratings ru,i and reviews
D = {d1, . . . , d|Q|} with each review being a set of words d = {w1, . . . , w|d|}
and additionally consider a set of trusted social relations Tui ,uj

where user ui trusts
user uj .
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Topics z are defined as a probability distribution over words, while concepts e is
a feature in close proximity to a topic. Sentiments l over words w are considered to
depend on topics. A viewpoint is a finite mixture over v =< e, z, l > tuples. The
user’s u rating values θu are then defined as an R×V matrix with each element θu

i,vj

corresponding to the probability of rating r , for a given pair of user-viewpoint (u, v).
For discovering the concepts, Ren et al., employ a word2vec [50] model while they
use a recursive deep model for sentiment analysis [68].

In order to utilize the social connections, a latent factor model is proposed where,
in addition to viewpoints, topics, concepts and sentiments, the trusted relations of a
user u are modeled by considering the viewpoint distribution of u’s social relations
{θu1

v , . . . , θ
uFu
v } and a base distribution θ0

u,v . Inference is performed using a Gibbs
EM sampler. The E-step approximates the distribution p(V,Z,L|W,E,R,T,F),
while the M-step maximizes each user’s u viewpoint distribution θu. Once the Gibbs
EM sampling is completed, for each user u we compute a recommendation based on
the maximum value of predicted rating probabilities: P(rui

= r|u, i) = ∑
v∈V θu

r,v ·
πi,v , with P(v|i) = πv,i being the viewpoint distribution of item i. Explana-
tions are finally derived by presenting to user u the topics of the recommended
items.

4.2.3 Review-Aware Explainable Recommendation by Modeling Aspects

Aspects (or features) of recommended items can be very useful in providing good
explanations. He et al. [27] utilize textual reviews to identify product aspects which
are modeled as a tripartite graph of users, items and aspects. The problem of
recommendation and explanation is hence viewed as node ranking over this tripartite
graph. He et al. [27], identify the aspects of the items [80] and extract feature,
opinion, sentiment tuples (F,O, S). Next, a tripartite graph G = (U∪P ∪A,EUP ∪
EUA ∪ EPA) is defined, where U,P and A are the vertices corresponding to users,
items and aspects, while EUP ,EUA and EPA are the user-to-items, user-to-aspects
and items-to-aspects edges respectively. A user ui , rating an item pj with a review
containing aspect ak is a triangle with edges eij , ejk, eik in the graph. The edges are
weighted, capturing the strength of relationship among the nodes. Matrices R, Y

and X represent the weights for EUP ,EUA and EPA respectively. The goal is to
identify a ranking function f that will produce the predicted preference of user u

for p.
The approach of He et al. [27] (named TriRank) learns f with two useful

properties encoded as regularizers: (a) smoothness, i.e., nearby nodes should have
similar scores, and, (b) fitting, i.e., the learned function should not cause significant
deviation from the observed data. The overall function that the approach aims to
optimize through alternating least squares (ALS) is:
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Q(f ) = α
∑

i,j

rij (
f (ui)√

du
i

− f (pj )√
d

p
j

)2 + β
∑

j,k

xjk(
f (pj )√

d
p
j

− f (ak)√
da
k

)2

+ γ
∑

i,k

yik(
f (ui)√

du
i

− f (ak)√
da
k

)2 + ηU

∑

i

(f (ui) − u0
i )

2

+ ηP

∑

j

(f (pj ) − p0
j )

2 + ηA

∑

k

(f (ak) − a0
k )

2

The parameters α, β, γ capture the desired weight of the smoothness constraint
on the user-item, item-aspect and user-aspect edges, while ηU , ηP and ηA capture
the desired weight of the fitting constraint on users, items and aspects. Explanations
are provided as recommended items, i.e., the aspects of a recommended item are
presented to the user together with how well the item captures a specific aspect.

4.3 Discussion and Future Outlook

All methods described above generate explanations from the review text. As a result,
the question here is how one can deal with items that have a very small number of
reviews. One possible suggestion is to use additional features that are available for
the items (e.g., description, title).

Most of the studies described above are using offline metrics (such as perplexity)
that focus on evaluating the goodness of a language model is in evaluating the
quality of the explanations. However, a real recommender system cannot rely
exclusively on the results of the offline evaluation metrics since there is a large
number of other factors that play a significant role in the successful application
of explanations. For example, recent studies [39, 51] have shown that users with
different personality traits have different preferences in explanations. As a result,
more user studies are needed to better understand how the explanations provided by
the aforementioned methods are perceived by real end-users of a recommendation
engine.

Another very promising direction is for the explanations to account for privacy.
Consider, for example, an explanation of the form “We recommend bar Crudo
because it is one of the most popular gay bars in the area”. It is obvious that such
an explanation involves several potential issues regarding the privacy of the user.
Document understanding techniques (e.g., GPT-3 [6]) can be deployed to protect
users’ privacy that may be compromised through explanations.

Another future work direction is to design and implement interactive systems
that can foster exploration from the users. The majority of work described above
provided natural language explanations in a static context where the user could not
interact with the explainable recommender system and give feedback. In addition,
most of the work did not allow for further exploration of the provided explanations
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by the interested user. Scrutability and control are two essential characteristics that
an explainable recommender system should offer, thus it is worth for the natural
language community to study this approach.

A final promising direction is to study whether explanations should participate
in the process of ranking the recommendations. All methods described above first
rank the recommendations and then generate the explanations for the top ranked
items, i.e., the process of generating explanations does not affect the ranking
process. A promising future direction would be to incorporate explanations in the
prediction process of the recommender system in order to improve the accuracy and
transparency of recommendations.
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