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Abstract

Bivalve mollusks are filter-feeding animals that are often consumed raw or partially cooked. They can harbor
a wide variety of microorganisms such as the pathogenic protozoaGiardia andCryptosporidium. Both these
pathogens are well-known causative agents of diarrhea in humans and have been associated with several
water and foodborne outbreaks around the world. Their infective stages, cysts and oocysts, respectively, can
remain on the gills and other organs of shellfish, posing a potential threat to human health. There is no
standard protocol or valid ISO for the detection of cysts and oocysts from shelled mollusks. The aim of this
chapter is to describe the main methods used to detect Giardia cysts and Cryptosporidium oocysts from
shellfish, based on techniques adapted from clinical and environmental parasitology, as well as molecular
procedures. The monitoring of these foodborne protozoa in bivalve mollusks is of great relevance to public
health, contributing to knowledge of contamination in one of the main food products derived from
aquaculture. Indeed, it also reflects the quality of the environmental health surrounding its cultivation,
highlighting another important aspect related to global environmental epidemiology.
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1 Introduction

Shelled mollusks, also known as shellfish, are among the most
important animals derived from aquaculture destined for human
consumption. The most recent The State of World Fisheries and
Aquaculture census revealed that almost 18 million tons of mol-
lusks were produced worldwide, representing 56.3% of the produc-
tion of marine and coastal aquaculture [1].

Despite its importance as a source of food and income, for
decades freshwater and marine bivalve mollusks have been used as
“sentinels” of environmental pollution, as they are sedentary filter-
feeding species and may therefore be indicators of the sanitary
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quality of the surrounding cultivation areas, which are also some-
times used for human recreational purposes [2–5].

Another important public health aspect is infectious outbreaks
linked to the consumption of bivalve mollusks, as the tissues of the
animals may harbor a wide variety of pathogenic microorganisms,
posing a risk to health as they are often consumed raw or with
minimal cooking. Moreover, the risk of infection can increase when
the animals are sold without the cleaning or purification proce-
dures—especially UV depuration—applied by the mariculture
industry [6–10].

The contamination of bivalve mollusks by pathogenic protozoa
has only attracted global attention in the last 25 years, withGiardia
and Cryptosporidium being the most commonly detected protozoa
in different edible shellfish species, or in those of no commercial
interest [11–13].

These parasites are of significant importance to human health as
they are recognized agents of diarrheal diseases, and their risks are
often neglected [14]. In addition, both are recognized as important
foodborne agents in other different food matrices, such as salads,
milk, juices, and meat [15–17].

Until now, few giardiasis outbreaks have been related to shell-
fish consumption, and none have been identified as caused by
Cryptosporidium [16, 18]. Although there is no apparent relation-
ship between shellfish vehicles and outbreaks of giardiasis or cryp-
tosporidiosis, several factors should be considered: (1) the lack of a
system for the reporting of foodborne diseases in many countries,
which leads to under-estimation or underreporting of infections;
(2) the unavailability of the original food matrix suspected of or
responsible for originating the outbreak, for further analysis;
(3) the extended incubation period exhibited by both protozoa
(1–2 weeks), and the difficulty in performing the retrospective
association between the ingestion of bivalves and the appearance
of clinical signs or symptoms [13, 16]. Indeed, some biological
aspects of both protozoa must be taken into consideration, which
reinforces the importance of monitoring these bivalve mollusks.
Giardia and Cryptosporidium are ubiquitous in aquatic environ-
ments, and their infective stages (cysts and oocysts, respectively) are
immediately released as infectious upon excretion [19]. Also, the
infectious dose required to establish an infection is low for both,
meaning that along with the high number of (oo)cysts excreted,
they can spread easily and pose a great risk to public health [20].

It is also important to highlight that cysts and oocysts exhibit
considerable longevity in coastal environments, as they can with-
stand great variety in temperature and salinity and remain viable
outside their hosts in aqueous environments for several months to
a year in seawater [21–23]. There is still no correlation between
microbiological fecal indicators and pathogenic protozoa inmollusk
flesh or in waters where they are cultivated and, unlike other micro-
organisms, they are not inactivated or quickly removed from the
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environment [5, 22, 24]. Finally, both protozoa can remain in the
bivalve tissues, even after depuration procedures [4, 6, 8, 10, 24].

1.1 Overview

of Strategies

for the Detection

of Cryptosporidium

Oocysts and Giardia

Cysts in Shellfish

No standard validated method for the detection of Cryptosporid-
ium and Giardia in shellfish is available, making comparison diffi-
cult, as each study utilized one or more types of bivalve mollusk,
and different analytical methods [13, 25–27]. Another important
factor that makes detection complex relates to the transit of the
protozoa through the shellfish, which can vary, being concentrated
in different animal tissues [28–30]. Thus, prior to detection, it
would be reasonable to consider which tissue or other compound
will be chosen for further analysis, and also to consider the most
edible relevant species destined for human consumption from each
specific geographical location [5, 8, 13].

Overall, gills and the digestive tract are frequently employed for
this purpose, with tissue homogenates [11, 24, 31, 32] or washings
mainly used to concentrate the protozoa [8, 33, 34]. Other strate-
gies have previously been employed to detect the protozoa, with
hemolymph extracted from the adductor muscle [30, 35, 36],
inner-shell water (intravalvular liquid) [4, 8, 37] or the pooled
whole mollusk [26, 38] also used.

Several studies have adopted individual shellfish (whole flesh) as
their analytical material [39, 40] or have taken specific parts or
organs of animals separately as their samples [12, 34, 41]. However,
it should be remembered that the analysis of pooled shellfish or
organs, while increasing detection rates, may substantially diminish
costs, being considered a more representative sample and facilitat-
ing the assessment of foodborne protozoa risk associated with
shellfish consumption in low-income food-deficit countries or
those with lower financial budgets.

Despite the use of the bivalve (tissue or whole flesh) target,
there is a concern that for successful isolation of both protozoa
through the shellfish, the protocol applied must obey a minimum
of three major steps: concentration: successive centrifugations,
coarse-sieving, or usage of pepsin digestion solution; purification:
flotation or immunomagnetic separation (IMS) using magnetic
beads coated with anti-Cryptosporidium and anti-Giardia; detection
method of cysts and oocysts: microscopy visualization—preferably
through the use of direct immunofluorescence, using specific
monoclonal antibodies conjugated with fluorescein isothiocyanate
(FITC) against epitopes of cysts and oocysts—considered the gold
standard, and molecular techniques such as PCR [25, 26, 30]. PCR
protocols are also used, but present some difficulties, such as the
removal of the inhibitors from the matrices. The advantage of this
technique is that it allows the source of contamination to be
tracked—which may be particularly important in foodborne out-
breaks—through the identification of Cryptosporidium species and
genotypes and Giardia duodenalis genetic groups [13, 27].
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2 Materials

2.1 Pre-Sampling

Harvesting

Prepare all solutions with correct molarity or concentration using
ultrapure water at room temperature. After preparation, store solu-
tions at 4 �C (see Note 1).

2.2 Reagents 1. Elution solution: Prepare 1 L of Tween 80 (0.1%) (seeNote 2).

2. Sterile PBS solution (0.04 M). Adjust pH to 7.2.

3. Diethyl ether (see Note 3).

2.3 Materials 1. Petri dishes.

2. Sterilized clam knife.

3. Scalpel and scalpel blades.

4. Tissue homogenizer.

5. Centrifuge and micro centrifuge tubes (15 mL and 1 mL,
respectively).

6. Sample mixer (RK Dynal®) or similar.

7. Pasteur pipette.

8. Tweezers.

2.4 Sample

Collection

1. Samples must be collected using suitable tools. Immediately
transport shellfish to laboratory in clean plastic bags and suit-
able refrigerated containers.

2. Samples must be kept under refrigerated conditions until
processing.

3 Methods

3.1 Protocol 1:

Detection of Protozoa

through Liquid

Materials from

Mollusks

3.1.1 Bivalve Opening

Open each animal with suitable tools looking for the umbo (the
oldest part of the shell; the junction that connects both shells)
(Fig. 1a); section the adductor muscles of the bivalve to facilitate
opening (Fig. 1b) (see Note 4).

3.1.2 Sample Processing

Internal Content

1. Each sample represents a pool of one dozen oysters (Fig. 1c),
with the gill sets and inner-shell water (intravalvular liquid)
removed from each animal.

2. Aspirate all the inner-shell water content of the animals with a
Pasteur pipette (Fig. 1d) and place in clean and decontami-
nated centrifuge tubes (see Notes 5 and 6).
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3. Sieve the liquid content of all the tubes. After this step, centri-
fuge the liquid (1050 � g for 10 min) (see Note 7).

4. Remove all supernatants and maintain a volume of 2 mL of
sediment in each tube. Complete the tube with ultrapure water
and centrifuge again under the same conditions.

5. Remove the supernatant and transfer the sediment into prop-
erly identified micro tubes. Keep all tubes at 4 �C until the
purification process using IMS.

Gill Collection

and Processing

1. After opening the bivalve (see Subheading 3.1.1), excise the
entire set of gills from each animal with the aid of a scalpel and
tweezers (Fig. 1e) (see Note 8).

2. Place four sets of gills on each glass tube (Leighton tubes may
be used) (Fig. 1f). Next, add about 2 mL of elution solution to
the tube and gently shake manually so that the liquid meets the
gills.

Fig. 1 Shellfish processing: analysis of inner-shell water and gill wash. (a) Opening of the umbo (junction that
connects both shells); (b) Section of the adductor muscles of the bivalve to facilitate opening; (c) Each sample
represents a pool of one dozen oysters; (d) Aspiration of all the inner-shell water content of the animals; (e)
Extirpation the entire set of gills from each animal; (f) Sets of gills on glass tube; and (g) Tubes (corresponding
to the set of gills from 12 animals) in sample mixer
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3. After removing the fourth gill set, complete the tube with
Tween 80 (0.1%) elution solution until all gill sets are
submerged.

4. Place the three tubes (corresponding to the set of gills from
12 animals) in the sample mixer (IMS rotor may be used) and
leave to homogenize for 1 h at 20 RPM (Fig. 1g).

5. After this step, remove each tube from the rotor and vortex for
15 s.

6. Open each glass tube separately and remove each set of gills
individually, placing each one in a sieve over a beaker. Gently,
wash the gills with 3 mL of elution solution while sieving.
Aspirate all the sieved liquid and transfer to 15-mL centrifuge
tubes.

7. Collect the gill washing liquid from the empty glass tubes and
place in 15-mL centrifuge tubes.

8. Add 5 mL of elution solution to the glass tube (empty) and mix
by vortexing for 10 s. Aspirate the liquid and add to the
centrifuge tubes.

9. Centrifuge all tubes at 1.050 � g for 10 min (see Note 7).

10. Remove all supernatants and complete with ultrapure water
and centrifuge again under the same conditions.

11. Remove supernatant and transfer sediment into properly iden-
tified micro tubes. Maintain all tubes at 4 �C until the purifica-
tion process using IMS.

3.2 Protocol 2:

Detection of Protozoa

through Homogenized

Tissue Materials from

Mollusks

3.2.1 Bivalves Opening

Proceed as described in Subheading 3.1.1.

3.2.2 Sample Processing

Gill and Gastrointestinal

Tract Removal

1. After opening the bivalve, excise the entire set of gills and
gastrointestinal tracts from each animal with the aid of a scalpel
and tweezers and transfer them to petri dishes.

2. With the aid of a tweezer, transfer all the sets of both tissues
(separately) to tissue homogenizer.

3. Add elution solution containing Tween 80 (0.1%) and distilled
water (2:1).

4. Homogenize the tissues until they become a liquid solution.

5. Transfer the solution to glass centrifuge tubes.

6. Add 4 mL of refrigerated diethyl ether (in order to remove
lipids) to each tube.
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7. Cover each tube and wrap the edges with cotton.

8. Shake each tube vigorously for 30 s.

9. Complete centrifuge tube with sterile PBS solution (0.04 M;
pH 7.2).

10. Centrifuge at 1.250 � g for 5 min. After this, three phases will
be produced (Fig. 2).

11. Remove the supernatant and the remaining tissue and lipids
with the aid of wooden and cotton toothpicks (Fig. 2).

12. Transfer the sediment to micro tubes.

13. Maintain all tubes at 4 �C until purification using IMS.

3.3 Purification

Using

Immunomagnetic

Separation (IMS)

1. For all pellets, proceed to immunomagnetic separation phase in
accordance with reference method 1623.1 [42] or ISO 15553
[43] (see Note 9).

2. After the IMS procedure, the final volume will be 100 μL.
3. Separate 50 μL per slide (the volume to be used for immuno-

fluorescence assay) and the remaining 50 μL for PCR (poly-
merase chain reaction). In this case, the total number of
oocysts/cysts will be the total number of (oo)cysts visualized
on the slide multiplied by 2.

Fig. 2 Analysis of homogenized tissues. Tissues subjected to centrifugation with
ether-PBS: yellow arrows: represent the sediments analyzed by IFA, gills (left
tube) and gastrointestinal tract (right tube); black arrows: mucus in tissues; red
arrows: amount of lipids present in tissues
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3.4 Detection

of Protozoa by Direct

Immunofluorescence-

Assay

1. Immunofluorescence assay (IFA) must be processed according
to the manufacturer’s instructions. The only change is in the
volume placed in the slide well (50 μL), with the rest utilized in
PCR (see Notes 10 and 11).

2. Keep slides incubated in a humid chamber. After drying, fixing,
and staining, the entire smear in each well must be examined at
400� or 600� magnification using an epifluorescence micro-
scope. DAPI and DIC should be applied as per USEPA 1623.1
protocol [42].

3.5 Detection

of Protozoa by

Molecular Methods

1. Use the 50 μL remaining from the IMS procedure to extract
the DNA (see Note 12).

2. After DNA extraction, amplify the DNA by nested-PCR pro-
tocols (see Note 13).

If the molecular analyses of the samples are positive, the use of
two or three genes is encouraged to determine the genotype
present.

4 Notes

1. Shellfish farming producers recommend the consumption of
animals within 5 days of harvest or purchase. However, from
our personal experience, the animals should be processed
within 48 h, as even in areas of high microbiological quality,
specimens spoil quickly, generating a pungent smell (bad
odor), and bacterial proliferation.

2. Add 100 μL of Anti Foam A to the elution solution. Use the
magnetic stirrer to homogenize the solution until the reagents
are completely dissolved.

3. Must be stored at 4 �C prior to use.

4. Use individual protection equipment before starting: coat,
gloves, and safety goggles, as oysters may be harvested from
areas impacted by sewage.

5. Rinse all centrifuge tubes and Pasteur pipettes with Tween
80 (0.1%) prior to the experiments to reduce the likelihood
of parasite attachment. The use of glass materials is preferable as
adhesion of cysts and oocysts is greater with plastic, reducing
the possible loss of protozoa.

6. Take care not to suck grease or fragments from the shell into
the animals, as this may interfere with visualization and the IMS
process.

7. All tubes containing inner-shell water and gill wash liquid may
be also centrifuged following the recommendations of the last
version of the USEPA method (1623.1) for liquid materials
(1500 � g for 15 min) [42].
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8. Avoid moving material from the gastrointestinal tract (hepato-
pancreas) to the glass tube, as well as the mantle (the layer on
top of all the other organs).

9. Consider using thermic rather than acid dissociation [44]. It is
important to perform this step twice (80 �C for 10 min) as
shellfish are rich in mucous tissue and lipids.

10. Use only IFA commercial kits recommended by validated
methods, as per the standard procedures established for water
samples:

(a) MeriFluor® Cryptosporidium/Giardia, Meridian Diag-
nostics Cincinnati, OH.

(b) Aqua-Glo™ G/C Direct FL, Waterborne, Inc. New
Orleans, LA.

(c) Crypt-a-Glo™ and Giardi-a-Glo™, Waterborne, Inc.
New Orleans, LA.

(d) EasyStain™C&G, BTF Pty Limited, Sydney, Australia.

11. Gastrointestinal tract homogenate analysis by IFAmay bemore
difficult than gill homogenate examinations, due to the pres-
ence of thick layers on the slides. Therefore, (oo)cysts may not
be detected due to masking [32, 34].

12. For DNA extraction, use commercial kits. Freezing–thawing
cycles may also be used for Cryptosporidium. The number of
cycles employed in the extraction process is critical, with a
greater number of cycles potentially leading to DNA
degradation [45].

13. For nested PCR protocols, consider the genes described in
Table 1 for each pathogenic protozoan. In the event that
nested PCR second reactions are positive, proceed to sample
purification and then to gene sequencing.

Table 1
Most commonly used locus for the amplification of Giardia and
Cryptosporidium genes in environmental samples

Protozoan Locus Reference

Giardia 18S rRNA [46, 47]
ß-giardin [48, 49]
Tpi [50]
Gdh [51]

Cryptosporidium 18S SSU rRNAa [52, 53]

aIt is important to proceed to the nested PCR protocol for locus gp60 to confirm the

sample contamination of Cryptosporidium parvum or Cryptosporidium hominis
genotypes
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49. Cacciò SM, de Giacomo M, Pozio E (2002)
Sequence analysis of the β-giardin gene and
development of a polymerase chain reaction-
restriction fragment length polymorphism
assay to genotype Giardia duodenalis cysts
from human faecal samples. Int J Parasitol 32
(8):1023–1030

50. Sulaiman IM, Fayer R, Bern C et al (2003)
Triosephosphate isomerase gene characteriza-
tion and potential zoonotic transmission of
giardia duodenalis. Emerg Infect Dis 9
(11):1444–1452. https://doi.org/10.3201/
eid0911.030084

51. Read CM, Monis PT, Andrew Thompson RC
(2004) Discrimination of all genotypes of
Giardia duodenalis at the glutamate dehydro-
genase locus using PCR-RFLP. Infect Genet
Evol 4(2):125–130. https://doi.org/10.
1016/j.meegid.2004.02.001

52. Santı́n M, Trout JM, Vecino JAC et al (2006)
Cryptosporidium, Giardia and Enterocytozoon
bieneusi in cats from Bogota (Colombia) and
genotyping of isolates. Vet Parasitol 141
(3–4):334–339. https://doi.org/10.1016/j.
vetpar.2006.06.004

53. Silva SOS, Richtzenhain LJ, Barros IN et al
(2013) A new set of primers directed to 18S
rRNA gene for molecular identification of
Cryptosporidium spp. and their performance
in the detection and differentiation of oocysts
shed by synanthropic rodents. Exp Parasitol
135(3):551–557. https://doi.org/10.1016/j.
exppara.2013.09.003

198 Diego Averaldo Guiguet Leal et al.

https://doi.org/10.3390/ijerph13040381
https://doi.org/10.3390/ijerph13040381
https://doi.org/10.1007/s00436-002-0697-1
https://doi.org/10.1007/s00436-002-0697-1
https://www.epa.gov/sites/production/files/2015-07/documents/epa-1623.pdf
https://www.epa.gov/sites/production/files/2015-07/documents/epa-1623.pdf
https://www.iso.org/standard/39804.html
https://doi.org/10.1016/j.mimet.2003.06.001
https://doi.org/10.1016/j.mimet.2003.06.001
https://doi.org/10.1016/j.mimet.2018.11.017
https://doi.org/10.1016/j.mimet.2018.11.017
https://doi.org/10.1016/s0304-4017(02)00422-3
https://doi.org/10.1016/s0304-4017(02)00422-3
https://doi.org/10.1016/j.ijpara.2004.10.022
https://doi.org/10.1016/j.ijpara.2004.10.022
https://doi.org/10.3201/eid0911.030084
https://doi.org/10.3201/eid0911.030084
https://doi.org/10.1016/j.meegid.2004.02.001
https://doi.org/10.1016/j.meegid.2004.02.001
https://doi.org/10.1016/j.vetpar.2006.06.004
https://doi.org/10.1016/j.vetpar.2006.06.004
https://doi.org/10.1016/j.exppara.2013.09.003
https://doi.org/10.1016/j.exppara.2013.09.003

	Chapter 17: Detection of Giardia Cysts and Cryptosporidium Oocysts in Edible Shellfish: Choosing a Target
	1 Introduction
	1.1 Overview of Strategies for the Detection of Cryptosporidium Oocysts and Giardia Cysts in Shellfish

	2 Materials
	2.1 Pre-Sampling Harvesting
	2.2 Reagents
	2.3 Materials
	2.4 Sample Collection

	3 Methods
	3.1 Protocol 1: Detection of Protozoa through Liquid Materials from Mollusks
	3.1.1 Bivalve Opening
	3.1.2 Sample Processing
	Internal Content
	Gill Collection and Processing


	3.2 Protocol 2: Detection of Protozoa through Homogenized Tissue Materials from Mollusks
	3.2.1 Bivalves Opening
	3.2.2 Sample Processing
	Gill and Gastrointestinal Tract Removal


	3.3 Purification Using Immunomagnetic Separation (IMS)
	3.4 Detection of Protozoa by Direct Immunofluorescence Assay
	3.5 Detection of Protozoa by Molecular Methods

	4 Notes
	References


