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Abstract

Spray-drying is an old technology that is used in the cutting edge of science. From a drying technique used
in the front lines of the Second World War to the most promising encapsulation techniques in drug delivery
systems.
The most beneficiaries of this technique are usually the food and the pharmaceutical industry as the

stability of active molecules is a key factor to the success of their application into the final formulations.
Spray-drying provides a range of processes that can be optimized according to the final objective such as the
operating conditions, the use of carrier agents, the drying gases, all of them having a direct impact in the
final powders/particles.
This technology has changed over the years, it now takes advantage of mathematical modelling to

optimize spray-drying of compounds. Countless extracts, molecules, drugs, and other compounds have
been spray-dried over the last few decades, making the spray-drying technique one of the cornerstones of
many industries.
In this chapter, the history, technical aspects, examples, and general usage are addressed, focusing on the

food and pharmaceutical industries. Trends and challenges of this technology are also focused.

Key words Spray-drying, Operating conditions, Stabilization, Bioactive molecules, Industrial
application

1 Introduction

1.1 Spray-Drying:

What and Why?

Spray-drying is the transformation of a feed (that is pumpable)
from a fluid state to a dried one by spraying the particles through
a hot drying medium [1]. This technology’s inception dates back to
the 1870s, having been invented by Samuel Percy who filed a
patent to the U.S. Patent Office named “Improvement in Drying
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andConcentrating Liquid Substances by Atomizing” [2]. Although
the technology did suffer some improvements, its use was limited
until World War II started. The military used the technology to
reduce the weight of the food being transported to the front lines
and distant battles. The major use was in powdering milk for
soldiers, due to it being a reasonably complete nutritious and
inexpensive food but had the drawback of its weight when in liquid
state [3]. Since this war, improvements to the technology increased,
and it disseminated into many industries, namely for the produc-
tion or transformation of foods, pharmaceuticals, soaps, fertilizers,
clays, ceramics, polymers, and many other products [3].

1.2 Featured

Advantages and

Disadvantages

In recent years, the food industry has become the major user of this
technology, transforming millions of tons of ingredients and foods.
According to Technavio, in 2016, the spray-drying market was
valued at 1.2 billion dollars, and expected to rise to 1.5 billion by
2021, with just the spray-drying of milk representing 420 million
dollars of the total amount. Still, by 2020, this global market had
already reached a size of 4.5 billion dollars and expected to rise to
6 billion by 2025 [4].

Spray-drying represents considerable advantages when com-
pared to other transformative technologies, namely the fact that it
can be fully automized and work in a continuous manner with very
low human intervention, reducing contamination of sensible pro-
ducts like food or pharmaceuticals.

This technology also has short residence times and is suitable
for both heat-sensitive and heat-resistant foods and other products,
with a wide variety of applications, provided they are pumpable. It
allows a tailored approach and specific conditions for each of the
products it is used with, accommodating the specific needs of a
products. It can be used as an encapsulation technique, resulting in
a homogenous product, resistant to thermal degradation and
allowing a controlled release, being especially important for the
pharma industry, and to encapsulate bioactive substances for
foods [3, 5]. The disadvantages of this technology should not be
overlooked, and one of the most significant is the price of a spray-
drier, both for laboratorial and industrial use. Although the invest-
ment is quite high, a spray-drier, over time, will probably offset, but
the initial investment might not be accessible to all. Furthermore,
there are also considerable maintenance issues that increase the
overall costs of the equipment. Another important drawback is
the yield of particles, which can be as low as 20%, and tends to
be lower in smaller, laboratorial sized spray-driers due to the parti-
cles remaining stuck to the walls of the drying chamber. In some
cases, small particles, under 2 μm, can usually pass into the exhaust
air and be removed. Another disadvantage, found especially for
microencapsulation, is limited types of wall materials, and these
must have a good solubility in water to be used [5, 6].
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2 Spray-Drying Operating Processes

There are four primary steps, namely the atomization, followed by
the droplet-to-particle stage, the moisture evaporation, and finally
the particle collection (Fig. 1). The atomization stage is one of the
most important, in which the liquid is atomized or divided into
small droplets and become ready to undergo the next steps. In
terms of atomization, there are several different atomizers that are
adjusted to different products. Rotary atomizers, for instance, are
used with low viscosity fluids and rely on centrifugal energy by
discharging the fluids at a high velocity (200 m/s) from the edge
of a wheel or disc. Two-fluid nozzle atomizers use kinetic energy
and feature the impact of the droplets at high velocity with gaseous
flows, allowing the production of particles with a relatively greater
size. Hydraulic atomizers discharge the fluid under pressure
through an orifice of variable sizes and can reach pressures of
250–10,000 PSI but produce less homogenous and coarser parti-
cles. The ultrasonic atomizers force the liquid through two piezo-
electric disks that vibrate at high frequencies and ensure the
vibration of the atoms of the droplets, reducing the surface tension.
This type of atomization is intended for low-viscosity Newtonian
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Fig. 1 Stages of the spray-drying procedure and different variations of the
technology
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fluids. Finally, the electrohydrodynamic atomizers pass an electric
current through the fluid enabling the production of droplets of
narrow particle sizes.

In terms of the particle collection, there are three types of
collectors, namely the cyclone separators that use a centrifugal
force to separate the solid particles from the carrier gas, bag filters
that separate the particles by retaining them inside the bag and
allowing the carrier gas through the bag material, and the electro-
static precipitators that retain the particles by using electrostatic
forces to ionize the air and make the particles cling to collecting
plates [1, 7].

3 Stabilization of Bioactive Molecules

Stability is a factor of great importance when it comes to the
exploration of natural products [8]. Natural products have poor
stability when compared to products obtained synthetically, namely
by chemical synthesis. In order to enable their use by different
industries, new approaches are constantly being researched to over-
come these problems and make this possibility real [9]. There are
several factors that affect the stability of molecules of natural origin,
such as light, temperature, pH, the presence of oxygen, among
others. This occours due to the recover the molecules it is necessary
to remove them from their surroundings, leaving them unpro-
tected and susceptible to various factors that can somehow affect
their molecular structure and destabilize it, causing them to lose or
modify properties of interest [10]. After the extraction process, the
simple fact of removing the extractor solvent is in itself a process of
stabilization, since a greater physical and chemical stability is
achieved in the solid state [11]. Due to this there are several process
to remove solvents, namely freeze drying, convective hot air drying,
spray drying [12], among others, all with different costs, efficien-
cies, and sustainability.

In recent years, the pharmaceutical and food industries have
expressed a preference for the spray-drying technique, as this is a
methodology that, despite effectively removing the extractor sol-
vent, is still capable of encapsulating the molecules of interest [13]
and thus increase their stability in a fast and relatively cheap process.

During the spray-drying/encapsulation process, stability is
achieved due by creation of a protective barrier against various
factors that interfere with molecular stability. This is done in a fast
process, where the small particles are formed while the solvent is
extracted. For instance, dehydrated fruits, with a high content of
organic acids and low molecular weight sugars, during the storage
period tend to present a rubbery structure. To overcome this
problem, some compounds can be added during the spray-drying
process, known as carriers [14]. This example outlines the
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versatility of the technology to adapt to various situations and
different solvents and carriers, which is one of the strongest advan-
tages. With spray drying-carriers, it is possible to increase stability
and, depending on the proportion in which it is added, achieve the
encapsulation, where the carrier becomes the actual wall material.

Some examples of carriers are high molecular weight biopoly-
mers such as maltodextrins, modified starch or gums, or steric
function biopolymers, such as fibers, proteins, or some inorganic
compounds. The spray-drying process can be applied to a huge
range of products for the food, pharmaceutical, and other indus-
tries [15–22]. Considering the food industry, spray-drying has
been used in dairy products, essential oils, aromas, coloring com-
pounds, phenolic compounds, probiotics, and others [23–28].

From Table 1, it is possible to see that the spray-drying tech-
nique is a highly inclusive technique regarding the type of samples
that can be processed. It is possible to perform drying or encapsu-
lation by spray-drying on natural compounds, bioactive molecules,
color-holding molecules, probiotics, essential oils, molecules with
pharmacological activity, among others [23–25, 28, 34]. Carrier
molecules can be luteolin, maltodextrins, gum arabic, modified
starches, and simple sugars such as trehalose and inulin
[15, 29]. Oils are also an example of carrier agents [19, 22, 25,
31, 36, 37, 44, 53, 59, 64, 68, 78]. In the case of oils, the
technique of spray-drying is of great importance, because, consid-
ering their composition, they are very susceptible to oxidative
decomposition and have a volatile portion that besides having
interesting biological activities can be protected. Encapsulation in
the case of oils helps to provide a barrier against deterioration
processes, increase stability, and suppress unpleasant aromas. The
spray-drying technique is capable of much more than protecting
molecules against deterioration processes and camouflaging
unwanted aromas/flavors.

The added value of this technique is to increase the stability of
the molecules of interest, and thus, enable different industries to
resort to new alternatives to incorporate in their products. It allows
to make products more natural and to develop new products for the
food industry, since it offers a whole new panoply of substances, for
example with regard to molecules to be explored as colorants of
natural origin [14, 15, 34, 39, 45, 61, 66, 80], probiotics, and
bioactives [12, 23, 24, 49, 54, 57].

In the pharmaceutical industry, this technique is used to
increase molecular stability, producing small-sized particles, which
are easier to transport and thus allow the use and approach of new
therapies. With spray-drying, it is possible to encapsulate active
ingredients that have some difficulty in expressing their beneficial
effect, such as solubility problems. The pharmaceutical industry
takes advantage of all the possibilities that the spray-drying tech-
nique offers, such as encapsulating the active ingredients, increasing
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its stability, and altering its bioavailability in the organism. Through
this technique, it is possible to obtain particles with a gradual and
controlled release of the active principle. This is of great importance
as it allows a gradual dosing of the same and that it remains constant
during therapy [63, 75, 78].

Mainly due to these characteristics, the spray-drying technique
is progressively a viable resource for different industries, which is
constantly being improved, by varying the molecules, the carriers,
and the operating conditions, allowing to explore a whole new
range of molecules and products. This technique allows to explore
and develop the industries, more precisely the food and pharma-
ceutical industry.

3.1 Spray-Drying

Operational Conditions

The spray-drying operating conditions must be chosen considering
the chemical features of the material that will be spray-dried. The
use of the spray-drying is increasing due to its ability to protect
molecules from deterioration and volatile losses, allowing the pro-
tection of the target compounds from adverse factors such as light,
moisture, oxygen, among others [81].

Furthermore, this technology also allows the encapsulation of
bioactive compounds, leading to the increase in their solubility,
their affinity with the destination matrix, or to allow a controlled
release [81]. Bearing this in mind, the deep knowledge regarding
the chemical features of the material to be spray-dried, as well as the
final desirable particles, are crucial to establish the most efficient
operating conditions. The secret to a successful spray-drying oper-
ation is the choice of the operating conditions, namely inlet/outlet
temperature, drying air flow rate, feed flow rate, speed of the
atomizer, carrier agent, and respective concentration [82, 83].

3.1.1 Temperature One of the most important parameters to be considered is the
temperature. This technology needs high temperatures that can
cause thermal degradation of the target molecules. In fact, the
material to spray-dry has a very short contact with high tempera-
tures, namely the inlet temperature that is commonly in the range
of 150–220 �C and the outlet temperature between 50 and 80 �C.
In general, there are several factors directly affected by the inlet
temperature such as the final size of the produced particles which is
directly related with the inlet temperature; high temperatures lead
to faster solvent evaporation, causing the faster production of
spheres without the ideal shrinkage, thus producing larger
particles [84].

Also, the solubility of the final powders is affected by the inlet
temperature. Daza et al. [84] described that an increase in the inlet
temperature from 120 to 160 �C improved the solubility of sam-
ples. For instance, the outlet temperature is a crucial parameter and
must be controlled to assure that this temperature is lower than the
thermal degradation temperature of the constituents, to avoid the
powder degradation by high temperatures [85, 86].
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Several studies suggest that the outlet temperature is the most
relevant to control the droplet drying temperature or droplet dry-
ing speed. The outlet temperature is directly related and increases
with the increase of the inlet temperature and drying flow rate and
decreases with the decrease in the feed flow rate and atomizing air
flow rate [87]. High outlet temperatures cause the reduction in
moisture contents, increasing the process yields, while low outlet
temperatures improve the sphericity of particles, causing higher
retention of some compounds such as anthocyanins, thus being a
key factor on the physicochemical properties of the final powders
[87]. Nevertheless, this temperature cannot be too low, as it can
lead to water accumulation in the final product, resulting in a
significant decrease in the product stability and shelf life.

The direct contact of the material with inlet temperature causes
significant heat and mass transfer during the droplet process and
affects the particle formation caused by the high rate of solvent
evaporation. Singh et al. [85] analyzed these effects and described
that this leads to a pressure gradient inside, but also outside the
droplet, causing morphologic alterations in the final powder,
namely surface roughness.

Thus, a thermal equilibrium must be found in order to main-
tain the particles stability during the process, without compromis-
ing the final stability.

3.1.2 Carrier Agents Carrier agents are very important to overcome some drawbacks of
spray-drying. For instance, samples with high concentrations in
sugars mostly cannot be spray-dried without a carrier agent, due
to their stickiness, leading to serious drying problems and conse-
quent low yields [86]. The use of carrier agents decreases the
stickiness of samples and their hygroscopicity allowing the obten-
tion of dried powders.

Arabic gum, maltodextrins, starches, pectin, alginates, and
combinations of these agents are the most used carriers [88],
used for their high solubility, low viscosity, high molecular weight,
capacity to decrease stickiness, and protect the material from exter-
nal factors such as heat, oxygen, humidity, pH, among others [86].

Regarding the concentrations of carrier agents and analyzing
the results from the literature (Table 1), significant different
amounts of carrier agents are applied even for the same samples;
thus the concentration of the carrier agents must be applied accord-
ingly to each different sample.

3.1.3 Feed Concentration

and Rate

The feed flow rate corresponds to the atomizer speed. Specifically, it
relies on the concentration of the feed solutions; higher concentra-
tions have high solid contents and lead to the presence of less
solvent in the droplets, causing short evaporation times and the
formation of agglomerates constituted of porous final particles with
low density [89].
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Another important factor is the feed rate that basically corre-
sponds to the speed of the atomizer system. If the feed rate is high,
the systems will need more energy to evaporate the solvent from the
droplets, and it does not allow an ideal interaction between the feed
droplets and the hot air, producing wet particles that stick on the
wall of the drying chamber and leading to a less effective heat and
mass transfer, corresponding to high moisture contents in the final
particles, and low processed yields [87, 90].

According to the available literature, high feed rates lead to
lower yields in the spray-drying process, and they increase the
particle size and bulk density [91]. Nevertheless, there are also
some exceptions such is the case of the same authors [91] thar
described that the spray-drying process of orange juice with high
feed rates lead to less moisture in the final particles and less bulk
density.

3.1.4 Atomization

Parameters and Drying

Gases

Probably the most important parameter of the spray-drying process
is the atomization step; it is crucial to the final particles size, density,
velocity, among other important characteristics of the final pow-
ders. The main objective of the atomizer is the maximization of the
surface volume of liquid area of the feed solution for an efficient
drying step. Therefore, choosing the ideal atomizer system is cru-
cial to the final particles and to their physicochemical parameters,
since their properties are directly related with the atomizer design
and performance features [92].

Concerning the atomizer conditions, the pressure is also an
important parameter and also influences the final product features.
According to the available literature, higher pressures in the range
of 1–2.5 bar create smaller particles and larger surface areas,
increase the total solid percentage and bulk density, in turn increas-
ing the drying process efficiency [86, 93]. In another study, Tee
et al. [92] reported that increasing the atomizer pressure from
80 to 100% produced smaller particles and decreased the moisture
content, while also increasing the process yield and hygroscopicity.

Nevertheless, the use of excessive pressures also leads to an
enormous energy consumption without bringing additional bene-
fits regarding the particle size and yields of the process.

Particular attention must be given to the atomizer choice; the
most commonly used are the rotary atomizer, pneumatic, ultra-
sonic, and hydraulic nozzles. When comparing the efficiency of
these different atomizers, the literature describes that rotary ato-
mizers create larger particles when comparing with nozzle atomi-
zation, and two-fluid nozzle atomizer usually produces the smaller
particles [86].

The speed of the atomization is another parameter that directly
influences the final product characteristics. For instance, higher
atomization speeds (10,000 to 25,000 rpm) usually lead to a
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decrease in the moisture contents and a reduction in the final size.
As the increase in the atomization speed results in the increase in
the flow rate, creating tiny particles, resulting in a higher area of
contact that allows for a faster drying procedure, and an increase in
the yields [86–94].

Different gases are commonly used in the spray-drying process,
being compressed air, CO2, and N2 the most common ones. These
gases and their properties also represent key factors to the success of
the spray-drying products. For instance, the use of low-density
gases such as nitrogen, an inert gas, which is commonly used in
solutions with high concentrations of organic solvents and in solu-
tions with easily oxidable compounds, produces smaller particles
with different surface morphologies [85]. On the other hand, CO2

that presents higher density properties produces larger particles.
Several authors reported the effect of the atomization gas type and
concluded that the crystallinity of the final particles is directly
influenced by the type of gas, describing that N2 allows the pro-
duction of higher crystallin particles than CO2 and compressed air
[95]. On the other hand, the atomization with CO2 means higher
temperature and mass transfer during the process, obtaining higher
efficiency in the drying process, resulting in 20% faster drying,
which offers 4% energy savings on the heat input according to
Kudra and Poirier [96].

As stated above, all the spray-drying parameters are strongly
related with the final particle’s characteristics, namely in terms of
particle distribution, moisture, yields, particle size, and morphol-
ogy. According to the final applications, the operating conditions
can be adjusted and optimized to target different morphologies,
yields, particle sizes, and distribution.

Furthermore, these parameters can be optimized using mathe-
matical models such as the response surface methodology that can
predict the ideal operating conditions to the desirable target parti-
cle characteristics, a technology based on reduced experimental
data that is already applied to the spray-drying processes, namely
by the pharmaceutical industry to increase particle yields [86, 97].

4 Challenges, Trends, and Conclusions

Considering that published papers in 2003 with the keywords
“spray-drying” were about 200 and had risen to over 1000 in
2017, it is clear that this technology has improved over time, and
pondering the consistent growth until today, it is expected to
continue into the next decade [98]. Although spray-drying tech-
nology is centuries old, it is still developing, and important devel-
opments have been introduced in the past years, with some
important ones that are previewed for the near future. With
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globalization, the cost of the equipment has seen some important
reduction in their price, allowing more businesses and research
centers to use them, thus creating a bigger potential audience for
improvements which in turn encourages more improvements and
breakthroughs. Sosnik and Seremeta [5] stated that the trends in
spray-drying would include the production of finer particles, nar-
rowing of the size distributions, and the improvement of yields by
reduction of product loss on the walls of the drying chambers. The
improvements in polymer chemistry and nanotechnology are also
important for the miniaturization of encapsulation techniques,
allowing for the encapsulation of smaller and smaller products,
which result in finer powders that are suitable for broader applica-
tions. Another improvement that is envisioned for the near future is
the stability of the dried or encapsulated products over a longer
period, as well as the improvement of nano-spray driers. Special
emphasis is also considered in the food industry, due to the higher
need for encapsulation of natural food additives. These natural
compounds have seen increasing demand by consumers due to
the concomitant increase of distrust of synthetic additives and the
need of higher stabilization from the natural additives [86, 98, 99].

Overall, the contribution of spray-dryers to the food and phar-
maceutical industries is undeniable. From a simple method of
drying and encapsulating food during the end of the twentieth
century to a technology that allows controlled release of ingredients
and active compounds in drugs, spray-drying is an essential tech-
nology in the twenty-first century. With the previewed enhance-
ments to the technique, longer shelf-lives are expected in foods,
better efficacy in drugs, nano-spray driers, and an overall reduction
in the cost of the equipment which will democratize its use, leading
to a broader use.
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