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Abstract

The 5-carbon positions on cytosine nucleotides preceding guanines in genomic DNA (CpG) are common
targets for DNA methylation (5mC). DNA methylation removal can occur through both active and passive
mechanisms. Ten-eleven translocation enzymes (TETs) oxidize 5mC in a stepwise manner to
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5mC can also
be removed passively through sequential cell divisions in the absence of DNA methylation maintenance. In
this chapter, we describe approaches that couple TET-assisted bisulfite (TAB) and oxidative bisulfite
(OxBS) conversion to the Illumina MethylationEPIC BeadChIP (EPIC array) and show how these
technologies can be used to distinguish active versus passive DNA demethylation. We also describe
integrative bioinformatics pipelines to facilitate this analysis.
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1 Introduction

Methylation on the 5-carbon of cytosine nucleotides in genomic
DNA of eukaryotes is the most extensively studied epigenetic mod-
ification. To date, over 70,000 research papers, methods chapters,
and review articles have been dedicated to the study of DNA
methylation (5mC). 5mC provides diverse functionality in the
regulation of gene expression, genome stability, chromatin com-
paction, and developmental timing [1]. Indeed, DNA methylation
is largely regarded as one of the most stable epigenetic modifica-
tions, as its inheritance to daughter cells following cell division is
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faithfully copied during DNA replication by the maintenance meth-
ylation machinery, DNA methyltransferase 1 (DNMT1) and
Ubiquitin-like, containing PHD and RING finger domains,
1 (UHRF1) [2–5]. 5mC patterning is conserved across most
somatic tissues, with the most dynamics occurring at enhancers
and other distal regulatory regions of the genome that influence
gene expression [6, 7]. Additional dynamic changes in 5mC are
observed in disease transformation and in early mammalian devel-
opment, as further described below.

DNA methylation can be passively removed in dividing cells that
lackDNAmethylationmaintenance activity. An active mechanism for
5mC removal remained elusive until 2009, when the existence of an
oxidized form of DNA methylation, DNA hydroxymethylation
(5hmC) was thrust into the spotlight with the discovery of its abun-
dance in neuronal tissue and the identification of an enzyme that
could oxidize 5mC to 5hmC, Ten-eleven translocation 1 (TET1) [8–
10]. Subsequently, two additional TET enzymes, TET2 and TET3,
also demonstrated the ability to oxidize 5mC in a stepwise manner to
5hmC, 5-formylcytosine (5fC), and 5-carboxylcytoine (5caC)
[11, 12]. Oxidation of 5mC to 5fC and 5caC allows for base-excision
repair of the oxidized nucleotide by thymidine deglycosylase (TDG)
and replacement by unmodified cytosine (5C) [13–15]. Combined,
these discoveries laid the foundation for what is now widely accepted
as the active DNA demethylation pathway.

While recent evidence suggests that the oxidized forms of 5mC
can act in a regulatory manner through the recruitment of reader
proteins [16, 17], perhaps the most well-studied roles for the active
DNA demethylation pathway are in the early stages of mammalian
development [18]. Following fertilization, both the paternal and
maternal genomes undergo massive changes in DNA methylation
patterning that occurs through both active and passive DNA
demethylation, respectively [19–23]. Primordial germ cells
(PGCs) also undergo a dramatic loss of DNA methylation that
can be attributed to both passive and active DNA demethylation
mechanisms [24, 25]. Embryonic stem cells (ESCs) also rely on
TET proteins to maintain self-renewal properties as well as to direct
lineage specification upon induction of differentiation [11, 26].

Given the importance of 5mC for maintaining proper control
of chromatin structure and function, aberrant patterning of 5mC
has been widely studied in the context of aging, psychiatric and
developmental disorders, and cancer [27–30]. As hypermethylation
of tumor suppressor genes is a hallmark of cancer, significant effort
has been devoted to developing therapies that induce DNA
demethylation of these genes in order to restore their expression
and function in cancer cells [27]. Accordingly, both passive and
active DNA demethylation mechanisms are now being targeted for
combination cancer therapies with DNMT inhibitors like 5-aza-2-
0-deoxycytidine (DAC) and with L-ascorbic acid (Vitamin C, VitC),
a co-factor for TET dioxygenase activity [31–33].
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In this chapter, we use DAC and VitC to induce active and
passive DNA demethylation in the human germ cell tumor-derived
cell line NCCIT, known to express TET enzymes [34, 35]. To
distinguish between active and passive DNA demethylation at
base-resolution, we coupled Tet-assisted bisulfite (TAB) and oxida-
tive bisulfite (OxBS) conversion chemistries to DNA methylation
analysis with the Illumina MethylationEPIC BeadChIP (EPIC
array) [36–40]. The EPIC array is a high-throughput platform
that interrogates the DNA methylation status of approximately
850,000 individual CpG dinucleotides at base-resolution across
multiple features of the genome (e.g., CpG islands, promoters,
enhancers). Using bisulfite-converted genomic DNA (gDNA) as
an input, single-stranded DNA probes hybridize to the bisulfite-
converted gDNA, and single base-pair extensions with fluores-
cently labeled nucleotides reveal the underlying modification status
of the gDNA (Fig. 1a). For example, if a cytosine nucleotide is
unmodified in the gDNA, bisulfite conversion will deaminate the
cytosine to uracil, which will then be read as thymine following
whole-genome amplification. Once the probe for this specific CpG
hybridizes to the bisulfite-converted gDNA, an adenine nucleotide
will be incorporated and give off a fluorescent signal to indicate that
the cytosine was unmethylated (Fig. 1a). Vice versa, cytosine nucleo-
tides that are modified (5mC/5hmC) are protected from bisulfite
conversion and will remain cytosines [41]. Following bisulfite con-
version, whole-genome amplification, and hybridization, a fluores-
cently labeled guanine nucleotide will be incorporated, informing
that the underlying cytosine was methylated (Fig. 1a).

TAB conversion is an upstream modification to the standard
bisulfite conversion method that allows for only 5hmC nucleotides
to be read as modified cytosines [38, 42]. 5hmC nucleotides in
gDNA are first protected from downstream steps by addition of a
glucose moiety mediated by T4 β-glucosyltransferase (β-GT)
(Fig. 1b). 5mC nucleotides are targeted for TET-mediated stepwise
oxidation to 5hmC, 5fC, and 5caC by incubating β-GT-treated
gDNA with the recombinant catalytic domain of TET2 and its
required co-factors. Following bisulfite conversion and amplification,
only 5hmC nucleotides will be read as cytosine by the EPIC array,
and 5mC/5C nucleotides are read as thymine (Fig. 1b). With OxBS
conversion, 5hmC nucleotides in gDNA are oxidized by potassium
perruthenate (KRuO4) to 5fC prior to bisulfite conversion (Fig. 1c)
[43]. Following EPIC array processing, 5mC will be read as cytosine
while all oxidized cytosines and 5C will be thymine (Fig. 1c).

In this chapter, we demonstrate the utility of EPIC arrays for
determining active versus passive DNA demethylation using the
techniques shown in Fig. 1. We provide bioinformatic pipelines
that can be used to analyze the 5mC and 5hmC signals from TAB
and OxBS arrays. Additionally, we detail assays that can be used to
determine relative global change in 5mC and 5hmC across gDNA
samples, which we use to check samples prior to EPIC array
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Fig. 1 Coupling TAB and OxBS to EPIC array analysis to enable distinction of 5mC and 5hmC. (a) Sodium
bisulfite (BS) conversion of genomic DNA (gDNA) deaminates unmodified cytosine (5C) residues to uracil (U).
5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are protected from deamination. Bisulfite-
converted gDNA is PCR amplified and hybridized to the Illumina Infinium MethylationEPIC BeadChip (EPIC
array) for analysis. Both 5mC and 5hmC are read as C, while 5C residues are read as T on this platform. (b)
TET-assisted bisulfite conversion (TAB) incorporates transfer of a sugar moiety (gluc) to 5hmC by
β-glucosyltransferase (β-GT). Prior to bisulfite conversion, β-GT-modified gDNA is reacted with the catalytic
domain of TET2 (TET2-CD), which catalyzes stepwise oxidation of 5mC to 5hmC, 5-formylcytosine (5fC), and
5-carboxycytosine (5caC). Gluc-5hmC is protected from further oxidation and is resistant to bisulfite conver-
sion. 5fC, 5caC, and 5C are converted as described above. (c) With Oxidative Bisulfite conversion (OxBS),
gDNA is treated with potassium perruthenate (KRuO4) to oxidize 5hmC to 5fC prior to reaction with sodium
bisulfite. Image of EPIC array modified from Illumina
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analysis. Finally, we provide a comparison of the TAB array and
OxBS array approaches and discuss how to determine which plat-
form is best suited for different experiments.

2 Materials

2.1 Benchtop Assays

to Detect DNA

Modification Change

2.1.1 Locus-Specific

High-Resolution Melt

(HRM) Analysis

Equipment and Reagents

1. NanoDrop spectrophotometer.

2. ZYMO EZ DNA Methylation Kit.

3. Bio-Rad Precision Melt Supermix.

4. Heat block, water-bath or thermocycler capable of holding
temp at 37 and 50 �C.

5. Nuclease-free water.

6. Real-Time PCR instrument with SYBR detection capabilities.

7. Compatible Real-Time PCR plates (96-well).

8. Compatible Real-Time PCR plate seals.

2.1.2 Global

Quantification of 5hmC

ELISA-Based Assay

Equipment and Reagents

1. EpiGentek MethylFlash Global DNA Hydroxymethylation
(5-hmC) ELISA Easy Kit (Colorimetric).

2. 8-channel pipette.

3. Aerosol resistant pipette tips.

4. Incubator at 37 �C.

5. Microplate reader capable of reading absorbance at 450 nm.

DNA Dot Blot

Equipment and Reagents

1. 1 M NaOH.

2. 10 M ammonium acetate.

3. 20� SSC buffer: 3 M NaCl, 300 mM sodium citrate.

4. 1� TE buffer: 10 mMTris–HCl pH 8.0, 1 mM EDTA pH 8.0.

5. 1� PBST: 2.68 mM KCl, 1.47 mM KH2PO4, 136.9 mM
NaCl, 9.5 mM Na2PO4, 1% Tween-20.

6. Stripping buffer: 5% acetic acid, 500 mM NaCl.

7. 5% methylene blue stain.

8. Thermo Scientific Superblock T20 blocking buffer.

9. Nitrocellulose membrane and two pieces of filter paper cut to
4.500 � 3.100.

10. NanoDrop spectrophotometer.

11. Stratagene UV Stratalinker 2400.

12. Hybridization oven.

13. Bio-rad Bio-Dot apparatus.

14. 12-channel pipette.

15. Multi-channel filtered pipette tips.
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16. 96-well plate with concave bottom wells.

17. Active Motif anti-rabbit 5hmC antibody (pAb: 39791).

18. Film developer.

2.2 Modifications

to Bisulfite Conversion

Chemistry

to Distinguish 5mC

from 5hmC

2.2.1 TET-Assisted

Bisulfite (TAB) Array

Equipment and Reagents

1. Covaris E220 evolution sonicator.

2. Covaris microtube (130 μL volume).

3. Thermocycler.

4. PCR-tube strips (200 μL).
5. Heat block or incubator to 37 �C.

6. DynaMag magnet.

7. Invitrogen Qubit fluorometer.

8. Invitrogen Qubit assay tubes.

9. Transilluminator (312 nm).

10. Agarose gel electrophoresis apparatus.

11. QUMA analysis software [44].

12. 3 M Sodium Acetate pH 4.8.

13. 100% Ethanol.

14. Nuclease-free water.

15. Invitrogen Qubit dsDNA HS assay kit.

16. T4-Phage β-glucosyltransferase (T4-βGT).

17. ZYMO 5-Methylcytosine and 5-Hydroxymethylcytosine DNA
Standard Set.

18. KAPA Biosystems KAPA Pure beads.

19. Tet oxidation reagent #1: 1.5 mM Fe(NH4)2(SO4)2.

20. Tet oxidation reagent #2: 83.3 mM NaCl, 167 mM HEPES
pH 8.0, 4 mM ATP, 8.3 mM DTT, 3.33 mM α-ketoglutaric
acid, 6.7 mM L-ascorbic acid.

21. TET2 catalytic domain (TET2-CD) 2.0 mg/mL.

22. ZYMO EZ DNA Methylation Kit.

23. Taq polymerase.

24. Agarose.

25. DNA Gel Extraction Kit.

26. Promega pGEM-T Vector System I.

27. DH5a high-efficiency competent cells.

28. X-gal.

29. Ampicillin agar bacterial plates.

30. illustra TempliPhi DNA Sequencing Template Amplification Kit.
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2.2.2 Oxidative Bisulfite

(OxBS) Array

Equipment and Reagents

1. NuGEN TrueMethyl oxBS Module, Tecan Genomics, Inc.
(Catalog #: 0414-32).

3 Methods

3.1 Benchtop Assays

to Detect DNA

Modification Change

We treated NCCIT cells (biological duplicate) with PBS (NoTx),
1 μM DAC to induce passive DNA demethylation, and 1 μMDAC
with 57 μM VitC (DAC + VitC) to induce both passive and active
DNA demethylation (Fig. 2a). In order to conduct TAB array or
OxBS array, each gDNA sample must undergo two different treat-
ments: (1) bisulfite conversion and (2) TAB/OxBS conversion.
Both treatments of an individual gDNA sample are then submitted
for processing on the EPIC array, meaning that the user cost is
doubled for analysis of each sample. Depending on the nature of
the experiment, querying both 5mC and 5hmC on the EPIC array
can become quite expensive. In this section, we describe quick,
low-cost benchtop assays commonly used in our laboratory to
detect locus-specific and global changes in 5mC and 5hmC across
gDNA samples of interest prior to submission on the EPIC array.

3.1.1 Locus-Specific

High-Resolution Melt

(HRM) Analysis

High-resolution melt (HRM) analysis is a quantitative, real-time
PCR-based method that allows the user to determine the relative
nucleotide composition of a region of double-stranded DNA by
analyzing the melting curve of a PCR amplicon [45]. Initially
designed to identify mutations and polymorphisms in a gDNA
sample, HRM has been adapted for use in epigenetics research to
determine the relative amount of DNA modifications at a given
locus [46, 47]. Following DNA isolation, a sodium bisulfite con-
version step is performed to make single nucleotide polymorphisms
(SNPs) to the DNA that indicate if a cytosine nucleotide was
modified. If the cytosine is modified (either 5mC or 5hmC), the
C will stay a C, but if the cytosine is unmodified, it will be deami-
nated to uracil (and converted into thymine during PCR amplifica-
tion). HRM takes advantage of these methylation-specific SNPs.
After bisulfite conversion, regions of interest in the genome are
amplified by real-time qPCR, and then a high-resolution melt step,
in which the temperature is raised in very small increments and
fluorescence is detected after each increment, is conducted to
determine the melting temperature of the amplicon. The more Ts
(unmodified cytosines) in the amplicon, the lower the melting
temperature; the more Cs (modified cytosines) in the amplicon,
the higher the melting temperature. By using differences in melting
temperature of an amplicon across samples, the relative DNA mod-
ification state of a sample can be determined.
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and 57 μM Vitamin C (DAC + VitC) for 72 h as shown. (b) High-resolution melt (HRM) curve analysis of
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In our treatment paradigm (Fig. 2a), we measured a decrease in
the peak melting temperature for DAC and DAC + VitC samples
relative to the NoTx group, indicating that the genomic loci being
queried (PPP1R18, DAXX) have less modified cytosines than the
NoTx group (Fig. 2b). The RPL30 promoter served as a negative
control for cytosine modifications, as it is completely unmodified in
NCCIT (Fig. 2b). RPL30 also served as a positive control for
bisulfite conversion, as amplification of this region could not
occur without high conversion efficiency. Collectively, these results
demonstrate that the DAC treatment was effective in reducing the
overall modification level of cytosines at known regions of modifi-
cation in the NoTx sample, indicating that these samples and
treatment paradigms were good candidates for EPIC array analysis.

General Procedure 1. Design bisulfite qPCR primers for regions of interest, including
a known fully modified region and a known fully unmodified
region, using MethPrimer [48] with the following
specifications:

(a) Primer Length: between 20 and 30 bp.

(b) Amplicon Length: between 100 and 150 bp.

(c) Tm of primer set: between 58 and 61 �C.

(d) May allow one CpG in the first 1/3 of the primer.

(e) Aim to have at least three CpGs in the amplicon so that
melting temperatures will be noticeably divergent.

2. Using the ZYMO EZ DNA Methylation kit, bisulfite convert
500 ng of sample gDNA as described in the kit protocol. Elute
in 10 μL of nuclease-free water, then dilute sample with 42 μL
of nuclease-free water (see Notes 1–3).

3. Optimize primers by real-time qPCR on bisulfite-converted
gDNA. Ensure that only one amplicon (one peak in the melt-
ing curve) is produced.

4. Set up each PCR reaction as follows:

Reagent Amount (μL)

10� Bio-Rad Precision Supermix 10

Bisulfite primers (2 μM) 2

Nuclease-free water 3

Bisulfite-converted gDNA 5

5. Set up the PCR protocol as follows:

Step 1 95 �C 2 min

Step 2 95 �C 10 s

Step 3 Annealing Temp 30 s
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Repeat Steps 2 and 3 39�.

Step 4 95 �C 30 s

Step 5 60 �C 1 min

Step 6 Melt Curve

65–95 �C—10 s/step—increase temperature by 0.1 �C
each step, and capture fluorescence at end of each step.

6. The CFX manager software will automatically calculate the
melting temperature of each sample. All fluorescence data can
also be exported for each individual temperature measurement
(“Melt Curve Derivative Results.xlsx”) to build the plots as
shown in Fig. 2b (see Note 4).

3.1.2 Global

Quantification of 5hmC

As 5mC is substantially more abundant in the genome than 5hmC
(approximately 14-fold higher), quantification by HRM for passive
loss of DNA methylation is sufficient. However, detecting global
changes in 5hmC and active DNA demethylation is challenging due
to the low level of this modification on cytosine nucleotides. In this
section, we discuss two approaches to determine the global level of
5hmC across samples: (1) ELISA-based quantification and
(2) 5hmC DNA Dot Blot.

ELISA-Based Assay HRM analysis of DAC and DAC + VitC treated samples suggested
substantial loss in cytosine modifications relative to NoTx (Fig. 2b).
As 5mC is the most abundant cytosine modification, detection of
changes in 5hmC are likely masked by 5mC changes in the HRM
assay. Using the EpiGentek MethylFlash Global DNA Hydroxy-
methylation (5-hmC) ELISA Easy Kit (Colorimetric), we profiled
global 5hmC levels in our gDNA samples to determine if treatment
with DAC or DAC + VitC induced changes in 5hmC. Indeed,
while DAC treatment did not significantly affect global 5hmC
levels relative to NoTx, the addition of VitC to the DAC treatment
lead to a significant increase in 5hmC detectable by this assay
(Fig. 2c). Taken together with our HRM results of these gDNA
samples, we concluded that our treatment conditions induced
changes to both 5mC and 5hmC.

General Procedure 1. Prepare gDNA samples in a 96-well plate at a concentration of
25 ng/μL. A total of 100 ng gDNA is added to the assay wells.

2. Follow all assay instructions in the EpiGentek MethylFlash
Global DNA Hydroxymethylation (5-hmC) ELISA Easy Kit
(Colorimetric) manual (see Notes 5 and 6).

3. Follow analysis instructions as outlined in the EpiGentek
MethylFlash Global DNA Hydroxymethylation (5-hmC)
ELISA Easy Kit (Colorimetric) manual (see Note 7). Analyze
all biological and technical duplicates separately.
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DNA Dot Blot For additional confirmation that our treatments sufficiently pro-
moted changes in 5hmC levels, we performed gDNA dot blot
analysis. Briefly, gDNA is denatured and immobilized on a nitro-
cellulose membrane prior to being probed with a 5hmC antibody.
With this assay, changes in global 5hmC were detected in samples
treated with DAC and DAC + VitC relative to NoTx (Fig. 2d).
Complimenting the results of our HRM analysis and ELISA-based
assays, we further concluded that both active and passive DNA
demethylation would be observed in our samples after application
to TAB array and OxBS array.

General Procedure 1. Pre-chill 10 M ammonium acetate on ice.

2. Use a NanoDrop spectrophotometer to measure gDNA sam-
ple concentration.

3. For each sample, prepare 2 μg gDNA in 225 μL 1� TE buffer
(see Note 8).

4. Denature samples in 0.1 M NaOH at 95 �C for 10 min.

5. Neutralize samples with 1 M ammonium acetate on ice. Incu-
bate sample on ice for 10 min.

6. Load 240 μL of each sample into the top row of a 96-well plate.
Load 120 μL 1� TE buffer in each sequential row. Using a
multichannel pipette, ensure the samples in the top row con-
taining gDNA are thoroughly mixed and transfer 120 μL to the
row below. Repeat this process working down the rows to
achieve twofold serial dilutions.

7. Equilibrate nitrocellulose membrane and two sheets of filter
paper in 6� SSC buffer.

8. Secure membrane on top of filter papers in the dot blot appa-
ratus. Tighten knobs as much as possible, apply vacuum, and
re-tighten knobs.

9. Wash wells with 200 μL 1� TE buffer (see Note 9).

10. Using a multichannel pipette, apply 109 μL of each sample to
the membrane. Final amount of gDNA is 800 ng followed by
twofold serial dilutions. Allow samples to sit on membrane
2–5 min before applying vacuum (see Note 9).

11. Apply vacuum to pull samples through the manifold. Once
each well has cleared, wash wells in 200 μL 2� SSC buffer.

12. Remove membrane from apparatus, mark corners with a pencil
to maintain orientation, place in a covered container (we use
pipette tip box lids), and dry at 80 �C for 45 min in a
hybridization oven.

13. UV-crosslink gDNA to membrane at 120,000 μJ.
14. Block for 1 h in Superblock at room temperature.
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15. Incubate blot overnight at 4 �C in Active Motif anti-rabbit
5hmC antibody (pAb: 39791) diluted 1:5000 in Superblock.

16. Wash blot 3 � 5 min in 1� PBST buffer (see Note 10).

17. Incubate blot in rabbit secondary antibody diluted 1:5000 in
Superblock at room temperature for 1 h.

18. Wash blot 3 � 5 min in 1� PBST buffer (see Note 10).

19. Use chemiluminescence to visualize blot.

20. For verification of gDNA loading, incubate blot in stripping
buffer for 20–30 min. Rinse with distilled water and incubate
in 5% methylene blue stain for 15–20 min. Rinse with distilled
water and place between plastic to scan image.

3.2 Modifications

to Bisulfite Conversion

Chemistry

to Distinguish 5mC

from 5hmC

3.2.1 Tet-Assisted

Bisulfite (TAB) Array

General Procedure

Preparation of gDNA

1. Quantify gDNA by Invitrogen Qubit fluorometer dsDNA HS
assay and dilute 5 μg gDNA in nuclease-free water to a final
volume of 130 μL.

2. Transfer prepared gDNA to a Covaris microtube, and shear
sample with Covaris E220 sonicator to a final size of
<10,000 bp using the following parameters:

Peak incident power (W) 140

Duty factor 2%

Cycles per burst 200

Treatment time 10 s

3. Transfer sheared gDNA from the Covaris microTUBE to a
1.5 mL microcentrifuge tube.

4. Precipitate the sheared gDNA by adding 13 μL 3 M Sodium
Acetate (1/10 volume) and 325 μL 100% ethanol to each
sample. Store samples at �20 �C for 30 min to overnight.

5. Centrifuge samples at 17,090 RCF for 30 min at 4 �C to pellet
precipitated gDNA.

6. Wash samples once with 70% ethanol, and centrifuge at
17,090 RCF for 10 min at room temperature.

7. Air-dry pelleted gDNA upside-down over a KimWipe for
approximately 8–10 min at room temperature.

8. Resuspended gDNA in 30 μL nuclease-free water.

9. Quantify gDNA using the Invitrogen Qubit dsDNA HS assay.

T4-β-glucosyltransferase

(T4-βGT) Reaction

1. In a PCR-tube strip, combine the following reagents from the
NEB T4-βGT kit:
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Reagent Amount

10� CutSmart Buffer 2 μL

UDP-Glucose (2 mM) 0.6 μL

T4-βGT (10 U/mL) 1 μL

Sheared gDNA 1 μg (as measured by Qubit)

ZYMO 5mC/or 5hmC standard 5 ng

Nuclease-free water up to 20 μL

2. In a thermocycler, incubate reaction overnight at 37 �C.

3. Add 80 μL of nuclease-free water to 20 μL of reaction. Transfer
total volume to 1.5 mL tube.

4. Add an additional 100 μL of nuclease-free water to bring the
total volume to 200 μL.

5. Add KAPA Pure Beads to sample at a 1:1 ratio. In this case, add
200 μL of beads (see Note 11).

6. Mix sample and beads well by flicking the tube multiple times.

7. Incubate at room temperature for 10 min.

8. Place samples on DynaMag magnetic rack and let beads move
to the back of the tube. Usually this step takes about 10 min for
the supernatant to become completely clear.

9. Remove the supernatant (see Note 12).

10. With the beads still on the rack, wash beads with 500 μL of 80%
ethanol.

11. Let wash sit on beads for 30 s and then remove.

12. Repeat wash.

13. Remove the wash, and let beads air-dry for 4 min.

14. Remove the beads from the magnetic rack and resuspend in
30 μL of nuclease-free water to elute gDNA.

15. Incubate beads at room temperature for 10 min.

16. Place beads back on the magnetic rack and allow beads to move
to the back of the tube.

17. Carefully withdraw elution and save in 1.5 mL tube.

18. Quantify β-GT treated DNA by Invitrogen Qubit dsDNA HS
assay.

TET Oxidation Treatments 1. Add components in the following order and amounts (see
Notes 13–15):
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Reagent Amount

Water Up to 50 μL

β-GT treated DNA 500 ng (as measured by Qubit)

Tet oxidation reagent #2 15 μL

Tet oxidation reagent #1 3.5 μL

TET2-CD (2.0 mg/mL) 8 μL

2. Incubate samples in the dark at 37 �C for 2 h.

3. Re-add Tet oxidation reagent #2, Tet oxidation reagent #1,
and TET2-CD enzyme in same amounts as listed above.

4. Bring final volume up to 100 μL with nuclease-free water.

5. Incubate at 37 �C for 2 h in the dark.

6. Add an additional 100 μL of nuclease-free water to bring the
total volume to 200 μL.

7. Add KAPA Pure Beads to sample at a 1:1 ratio. In this case, add
200 μL of beads.

8. Repeat steps 6 through 17 from β-GT bead gDNA purification
clean-up. Elute in 33 μL nuclease-free water. Save first elution
in 1.5 mL microcentrifuge tube.

9. Add an additional 20 μL of nuclease-free water to the KAPA
Pure beads following removal of the TAB-treated gDNA
elution.

10. Incubate beads at room temperature for 10 min.

11. Place beads back on the magnetic rack and allow beads to move
to the back of the tube.

12. Carefully withdraw elution and save in a different 1.5 mL
microcentrifuge tube than the first elution. This elution will
be used to process the 5mC/5hmC standards described below.

13. Quantify TAB-treated gDNA from the first elution using Invi-
trogen Qubit dsDNA HS assay. TAB-treated gDNA may be
stored at �20 �C for up to 2 weeks.

14. Submit TAB-treated gDNA and non-treated gDNA from the
same sample to a genomics core that processes EPIC arrays (see
Note 16).

Bisulfite Sanger

Sequencing of 5mC/5hmC

Standards

1. Using 10 μL of the second elution of the TAB-treated gDNA
recovered from step 12 above, perform bisulfite conversion
overnight with the ZYMO DNA EZ Methylation kit per the
manufacturer’s instructions (see Note 2). Elute in 10 μL
nuclease-free water.
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2. Set up PCR reaction mixture to amplify the 5mC/or 5hmC
spike-in standard from step 1 of β-GT reaction (see Note 17):

Reagent Amount

2� MyTaq 10 μL

Primers (5 μM F + 5 μM R) 1 μL

DNA 5 μL

Nuclease-free water 4 μL

3. Amplify the 5mC/5hmC spike-in standard with the following
PCR protocol:

Step 1 95 �C 30 s

Step 2 95 �C 30 s

Step 3 59 �C 45 s

Step 4 72 �C 45 s

Repeat Steps 2–4 44�.

Step 5 72 �C 5 min

Step 6 4 �C Hold

4. Run amplification products on a 1.5% agarose gel at 100 V for
30 min.

5. Excise amplification product from the agarose gel and purify
using NEBMonarch Gel Extraction Kit following all manufac-
turer’s instructions. Elute PCR product in 6 μL nuclease-free
water.

6. Ligate PCR product into Promega pGEM-T vector overnight
at room temperature using the following reaction mixture:

Reagent Amount

2� Rapid Ligation Buffer 5 μL

pGEM-T Vector 0.6 μL

DNA 4 μL

T4 DNA Ligase 1 μL

7. Thaw NEB DH5α competent cells on ice for 10 min.

8. Aliquot 50 μL of competent cells per ligation product into a
new tube.
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9. Add 5 μL of ligation product to cells, gently flick the tube a few
times, and incubate the cells on ice for 30 min.

10. Heat shock cells for exactly 30 s at 42 �C.

11. Place the cells on ice for 5 min.

12. Add 450 μL of SOC media to the cells and incubate with
shaking at 37 �C for 1 h.

13. Split the cells onto two different ampicillin bacterial agar plates
that have been coated with 80 μL of 80 mg/mL X-gal and
spread until mostly dry.

14. Incubate agar plates overnight at 37 �C.

15. The next day, make a master ampicillin agar plate for each PCR
product and pick at least 30 white clones to grow up individu-
ally on the plate.

16. Incubate the master agar plates overnight at 37 �C.

17. Perform colony PCR using the reaction conditions from steps
2 and 3 on at least 20 clones to verify successful insertion of the
product.

18. Using illustra TempliPhi DNA Sequencing Template Amplifi-
cation Kit, prepare a 96-well plate of clones to be sequenced by
adding 5 μL of Denature Buffer to each well and a small
amount of a positive colony (see Note 18).

19. Denature the samples at 95 �C for 3 min and let the samples
cool to 4 �C.

20. Add 5 μL of the Premix buffer to the cooled samples, seal the
plate, and submit for Sanger sequencing.

21. Analyze sequences using QUMA online software with all para-
meters set to account for CpH methylation [44].

3.2.2 Oxidative Bisulfite

(OxBS) Method

General Procedure

1. Follow all manufacturer instructions exactly. gDNA samples
should be in water rather than TE buffer. gDNA input is
500 ng for both the sample that will be treated with oxidant
and the sample without oxidant.

3.3 Bioinformatic

Pipelines for EPIC

Array Analysis

To model the utility of BS array (Fig. 1a), TAB array (Fig. 1b), and
OxBS array (Fig. 1c) for detecting active and passive DNA demeth-
ylation, we treated NCCIT embryonal carcinoma cells with com-
pounds to inhibit the DNMTs (DAC) and enhance TET activity
(VitC). Notably, NCCIT cells are derived from a germ cell tumor,
giving them pluripotent properties and the ability to differentiate
upon treatment with retinoic acid [49]. Given these properties,
NCCIT cells serve as an excellent model to study active and passive
DNA demethylation, as cytosine modification patterning by both
DNMTs and TETs is dynamic [35, 50]. To specifically inhibit the
catalytically active DNMTs, of which all are highly expressed in
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NCCIT, we treated cells with 1 μM DAC for 24 h, and then
refreshed cells with media lacking DAC for the remainder of the
growth period (Fig. 2a). To both inhibit DNMTs and enhance
TET activity, we treated cells with a 24-h pulse of 1 μM DAC and
then added VitC at a physiologic concentration (57 μM) every 24 h
until collection. Cells treated with PBS (NoTx) served as our
control (Fig. 2a). All treatments were done in biological duplicate
over 72 h, and differences in population doublings across treat-
ments were insignificant (data not shown), indicating that all treat-
ment groups went through DNA replication roughly an equivalent
number of times. As discussed, we performed benchtop assays to
determine the effectiveness of our drug treatments for 5mC loss
(Fig. 2b) and induction of 5mC conversion to 5hmC (Fig. 2c, d)
prior to submission on the EPIC array. All EPIC array analysis is
conducted in the R statistical software environment (Version 3.6.1)
(R Core Team).
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3.3.1 TAB Array

Processing

We validated the efficiency of TAB oxidation reactions by standard
bisulfite Sanger sequencing (detailed in Subheading 3.1) of fully
modified 5mC and 5hmC spike-in standards (Fig. 3a). Following
validation of the reaction, BS and TAB array were completed for
both biological duplicates of NoTx, DAC, and DAC + VitC sam-
ples to measure the levels of 5mC/5hmC and 5hmC, respectively.
While BS array samples demonstrated a high retention rate of
probes following SeSAMe processing with default settings, TAB
array samples were more likely to fail array QC standards due to a
high detection p-value (�0.05). As the intensity values from the
unmethylated and methylated fluorescent channels are used to
determine the quality of probe detection, we hypothesized that
SeSAMe was overestimating our failure rate due to the low signal
from the methylated fluorescent channel [51]. In an effort to retain
more probes in the TAB-treated samples that were biologically
meaningful, we relaxed the detection p-value threshold to include
all probes with a detection p-value �0.15. At this threshold, we
were able to retain almost 70,000 more probes in our analysis
without compromising our biological conclusions. For this analy-
sis, we included all probes that had a detection p-value�0.15 across
all samples queried on BS and TAB arrays (12 samples, n¼ 466,341
probes).

DNA modifications across a sample’s population of DNA
molecules are quantified on the EPIC array by the β-value in
which a β-value of 1 indicates the cytosine is fully modified
(5mC/5hmC) in the population and a β-value of 0 indicates the
cytosine is completely unmodified (5C) in the population. For
initial sample characterization, we profiled the density distribution
of β-values for cytosine modifications (BS array) and 5hmC alone
(TAB array) (Fig. 3b, c). BS array analysis demonstrated a bimodal
distribution of β-values for the NoTx samples in which the majority
of cytosines were either fully modified or fully unmodified (Fig. 3b
(top), c (left panel)). For both DAC and DAC + VitC samples, a
leftward shift in β-value distributions was observed, consistent with
loss of DNAmodifications. The DAC + VitC samples also appeared
to lose slightly more cytosine modifications relative to the DAC
samples, although the difference between the median losses was not
as pronounced as compared to the NoTx samples (Fig. 3b, top).
Unlike BS array, TAB array samples yielded a unimodal distribution
of β-values closer to 0, as the level of 5hmC in a sample population
is typically very low (Fig. 3b, bottom; c, middle). While it was
difficult to determine whether DAC induced increases in 5hmC
distributions relative to NoTx, DAC + VitC samples demonstrated
a clear leftward shift in β-value distributions (Fig. 3b, bottom;
Figure 3c, middle), indicating that treatment of NCCIT cells with
Vitamin C effectively enhanced TET activity and the conversion of
5mC to 5hmC.
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As BS array β-values are a summation of 5mC and 5hmC signal,
5mC signal alone can be calculated by subtraction of TAB array β-
values from BS array β-values from the same sample. In principle,
this subtraction works well and yields 5mC β-values that are inter-
pretable. As previously reported, this subtraction occasionally
results in negative β-values, typically when the cytosine nucleotide
is primarily modified by 5hmC in the population with little to no
detectable 5mC [38, 52]. To account for negative β-values, a
correction was applied that discarded all probes that yield a β-
value for 5mC that was <�0.05. Calculated 5mC β-values that
fell between �0.05 and 0 were adjusted to have a β-value of
0.001 [38]. Performing this correction on our dataset resulted in
a loss of 8953 probes from our analysis. Distribution of 5mC β-
values among all samples revealed that the DAC + VitC samples
demonstrated a more significant leftward β-value shift than DAC
and NoTx, indicating that DAC + VitC treatment induced more
DNA demethylation than DAC (Fig. 3c, right panel). In Subhead-
ing 3.3.4, the calculated β-values for 5mC and TAB array β-values
for 5hmC from this processing pipeline were used to determine the
significance of modification changes across all samples.

General Pipeline 1. Load necessary R packages for analysis.

library(sesame)

library(colorRamps)

library(ggplot2)

library(data.table)

library(dplyr)

library(gplots)

library(grDevices)

library(reshape2)

library(tidyverse)

library(minfi)

library(RColorBrewer)

library(limma)

2. Move all IDAT files for analysis to the same directory, and then
set the working directory to the location of the IDAT files.

setwd("~/rothbart_secondary/Rochelle/ROTS_20191216_EPICoxBS/

TAB/")

3. Make a signal summary dataset for all the IDAT files and run
SeSAMe to generate and normalize β-values for each sample
[51]. Relax the pval.threshold to 0.15 to include more probes
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in the analysis. Name your samples as needed. Make sure the
sample order is the same as the order of EPIC array number and
position.

ssets <-

lapply(searchIDATprefixes("~/rothbart_secondary/Rochelle/ROT-

S_20191216_EPICoxBS/TAB/"),readIDATpair)

TABbetas <- openSesame(ssets, pval.threshold = 0.15)

colnames(TABbetas) <-

c("NoTx1_TAB","DAC1_TAB","DAC2_BS","DAC2_aa_BS","DAC1_aa_TAB",

"NoTx2_TAB","DAC2_TAB",

"DAC2_aa_TAB","NoTx1_BS","DAC1_BS","DAC1_aa_BS","NoTx2_BS")

head(TABbetas,2)

## NoTx1_TAB DAC1_TAB DAC2_BS DAC2_aa_BS DAC1_aa_TAB

NoTx2_TAB

## cg00000029 0.0899248 0.06510993 0.1414132 0.1678307

NA 0.06671769

## cg00000103 NA NA NA NA NA NA

## DAC2_TAB DAC2_aa_TAB NoTx1_BS DAC1_BS DAC1_aa_BS

NoTx2_BS

##cg000000290.11388160.075077550.14990860.1488320.11389760.1693033

##cg00000103NANANANANANA

4. To make a bean plot of the β-value distributions as shown in
Figs. 3b, 4a, and 4d, use the following command from minfi:

densityBeanPlot(TABbetas, main = "Beta Values")

5. Transform the β-value data matrix into a data frame and
remove all probes that do not have a β-value for all samples
queried. Plot the density of β-value distributions across
samples.

TABbetas_df <- data.frame(TABbetas)

TABbetas_df <- TABbetas_df[complete.cases(TABbetas_df),]

plot(density(TABbetas_df$NoTx1_BS), col = "#190B28", lty =

1, lwd = 2, xlim = c(0,1), ylim = c(0,6))

lines(density(TABbetas_df$NoTx2_BS), col = "#190B28", lty =

2, lwd = 2)

lines(density(TABbetas_df$DAC1_BS), col = "#EF3E36", lty =

1, lwd = 2)

lines(density(TABbetas_df$DAC2_BS), col = "#EF3E36", lty =

2, lwd = 2)
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lines(density(TABbetas_df$DAC1_aa_BS), col = "#17BEBB", lty =

1, lwd = 2)

lines(density(TABbetas_df$DAC2_aa_BS), col = "#17BEBB", lty =

2, lwd = 2)
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6. Calculate true 5mC β-values by subtracting the TAB array β-
values from the BS array β-values for each individual sample.

TABbetas_df <- mutate(TABbetas_df, NoTx1_5mC = NoTx1_BS -

NoTx1_TAB)

TABbetas_df <- mutate(TABbetas_df, DAC1_5mC = DAC1_BS -

DAC1_TAB)

TABbetas_df <- mutate(TABbetas_df, DAC1_aa_5mC = DAC1_aa_BS -

DAC1_aa_TAB)

TABbetas_df <- mutate(TABbetas_df, NoTx2_5mC = NoTx2_BS -

NoTx2_TAB)

TABbetas_df <- mutate(TABbetas_df, DAC2_5mC = DAC2_BS -

DAC2_TAB)

TABbetas_df <- mutate(TABbetas_df, DAC2_aa_5mC = DAC2_aa_BS -

DAC2_aa_TAB)

7. To correct for negative 5mC β-values, write an if-else statement
such that any β-value that is less than �0.05 will be given the
new value “10,” and any β-value between �0.05 and 0 will be
corrected to 0.001. If the β-value does not meet either of these
criteria, it will remain as it was originally calculated from the
code above. Finally, remove all 5mC β-values that were trans-
formed into “10” as they will not remain in the analysis.

TABbetas_df <- mutate(TABbetas_df, NoTx1_5mC = ifelse

(NoTx1_5mC < -0.05, 10, ifelse(NoTx1_5mC < 0 & NoTx1_5mC >=

-0.05, 0.001, NoTx1_5mC)))

TABbetas_df <- mutate(TABbetas_df, NoTx2_5mC = ifelse

(NoTx2_5mC < -0.05, 10,

ifelse(NoTx2_5mC < 0 & NoTx2_5mC >= -0.05, 0.001, NoTx2_5mC)))

TABbetas_df <- mutate(TABbetas_df, DAC1_5mC = ifelse(DAC1_5mC

< -0.05, 10,

ifelse(DAC1_5mC < 0 & DAC1_5mC >= -0.05, 0.001, DAC1_5mC)))

TABbetas_df <- mutate(TABbetas_df, DAC2_5mC = ifelse(DAC2_5mC

< -0.05, 10,

ifelse(DAC2_5mC < 0 & DAC2_5mC >= -0.05, 0.001, DAC2_5mC)))

TABbetas_df <- mutate(TABbetas_df, DAC1_aa_5mC = ifelse(DA-

C1_aa_5mC < -0.05, 10,

ifelse(DAC1_aa_5mC < 0 & DAC1_aa_5mC >= -0.05, 0.001, DA-

C1_aa_5mC)))

TABbetas_df <- mutate(TABbetas_df, DAC2_aa_5mC = ifelse(DA-

C2_aa_5mC < -0.05, 10,

ifelse(DAC2_aa_5mC < 0 & DAC2_aa_5mC >= -0.05, 0.001, DA-

C2_aa_5mC)))

TABbetas_df <- subset(TABbetas_df, NoTx1_5mC != 10 & NoTx2_5mC

!= 10 & DAC1_5mC != 10 & DAC2_5mC != 10 & DAC1_aa_5mC != 10 &

DAC2_aa_5mC != 10)
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3.3.2 OxBS Array

Processing

BS and OxBS array were performed on an individual set of drug
treatments (NoTx1, DAC1, DAC1 + VitC) to determine levels of
5hmC/5mC and 5mC, respectively. Distribution of β-values for
NoTx and DAC treatments were similar to those observed on the
BS array conducted alongside the TAB array, where a bimodal
distribution was observed for highly modified and completely
unmodified cytosines (Fig. 4a, top). Similar to the BS array results
in Subheading 5.1, we observed a leftward β-value shift in DAC
treated samples, indicating a loss of DNA modifications. Impor-
tantly, the difference in this leftward shift between DAC1 and
DAC1 + VitC was minimal in the BS array β-value distribution
(Fig. 4a, top). While the NoTx1 and DAC1 β-value distribution
from the OxBS array were similar to the BS array pattern, the
DAC1 + VitC distribution of β-values on OxBS array demonstrated
a greater degree of a leftward shift relative to both NoTx1 and
DAC1 than observed by BS array, suggesting that 5hmC patterning
was also changing in this sample (Fig. 4a, bottom).

To determine the β-values for 5hmC in drug treatments, we
performed the same calculation as described for TAB array, except
subtraction of OxBS array (5mC) from BS array (5mC/5hmC)
yielded 5hmCβ-values rather than 5mC. Next, we plotted the
density distributions of β-values from the BS array, OxBS array,
and calculated 5hmC values. Unlike the results from TAB array,
we noticed that a large fraction of calculated 5hmCβ-values fell
below zero, particularly for NoTx1 and DAC1 treated samples
(Fig. 4b). We quantified the number of CpG probes with a
5hmCβ-value below and above zero among all samples and deter-
mined that while NoTx1 5hmCβ-values were evenly split, more
probes fell above zero in DAC1 than NoTx1. DAC1 + VitC
5hmCβ-values were almost all above zero (Fig. 4c). Taken together
with the results from ELISA-based assays (Fig. 2c) and TAB array
5hmCβ-value distributions (Fig. 3b, bottom; c middle), we believe
that the overall abundance of 5hmC in a sample population can
predict the ability of OxBS array to quantify 5hmCβ-values via the
subtraction method, a perspective that will be further discussed in
Subheading 6.

To correct for the subtraction method disparity, we employed a
Bioconductor package specifically designed to correct for this prob-
lem in OxBS array data, OxBS-MLE [53]. OxBS-MLE uses the
paired CpG probe intensity values from the BS array and OxBS
array to calculate maximum likelihood estimates of 5mC and
5hmCβ-values within a sample. OxBS-MLE correction produced
β-value distributions (Fig. 4d, e) for 5mC (top) and 5hmC (bot-
tom) that closely resembled results obtained by BS array and TAB
array (Fig. 3b, c), where DAC + VitC samples demonstrated the
greatest loss of 5mC and the greatest increase in 5hmC relative to
both NoTx and DAC. Finally, we calculated β-values for 5mC and
5hmC of DAC and DAC + VitC relative to the NoTx sample to
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quantify changes in 5mC and 5hmC (Fig. 4f). As we only per-
formed OxBS array on a single drug treatment set, we used β-values
to determine significance of these changes in Subheading 5.3.

General Pipeline 1. Load necessary R packages for analysis.

library(sesame)

library(colorRamps)

library(ggplot2)

library(data.table)

library(dplyr)

library(gplots)

library(grDevices)

library(reshape2)

library(tidyverse)

library(minfi)

library(RColorBrewer)

library(ENmix)

2. Move all IDAT files for analysis to the same directory, and then
set the working directory to the location of the IDAT files.

setwd("~/rothbart_secondary/Rochelle/ROTS_20191216_EPICoxBS/

OxBS/")

3. Make a signal summary dataset for all the IDAT files and run
SeSAMe to generate and normalize β-values for each sample.
Name your samples as needed. Make sure the sample order is
the same as the order of EPIC array number and position.

ssets <-

lapply(searchIDATprefixes("~/rothbart_secondary/Rochelle/ROT-

S_20191216_EPICoxBS/OxBS/"),readIDATpair)

OxBSbetas <- openSesame(ssets)

colnames(OxBSbetas) <-

c("NoTx1_BS","DAC1_BS","DAC1_aa_BS","NoTx1_Ox","DAC1_Ox",

"DAC1_aa_Ox")

head(OxBSbetas,2)

## NoTx1_BS DAC1_BS DAC1_aa_BS NoTx1_Ox DAC1_Ox DAC1_aa_Ox

## cg00000029 NA NA 0.1144161 NA NA NA

## cg00000103 NA NA NA NA NA NA
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4. Transform the β-value data matrix into a data frame and
remove all probes that do not have a β-value for all samples
queried.

OxBSbetas_df <- data.frame(OxBSbetas)

OxBSbetas_df <- OxBSbetas_df[complete.cases(OxBSbetas_df),]

5. Calculate true 5hmCβ-values by subtracting the OxBS array β-
values from the BS array β-values for each individual sample.

OxBSbetas_df <- mutate(OxBSbetas_df, NoTx_5hmC = NoTx1_BS -

NoTx1_Ox)

OxBSbetas_df <- mutate(OxBSbetas_df, DAC1_5hmC = DAC1_BS -

DAC1_Ox)

OxBSbetas_df <- mutate(OxBSbetas_df, DAC1_aa_5hmC = DAC1_aa_BS

- DAC1_aa_Ox)

6. Determine the number of CpG probes with a 5hmCβ-values
above and below 0.

NoTx_5hmC_above <- subset(OxBSbetas_df, NoTx_5hmC> 0) #298901

CpGs

NoTx_5hmC_below <- subset(OxBSbetas_df, NoTx_5hmC< 0) #264307

CpGs

DAC1_5hmC_above <- subset(OxBSbetas_df, DAC1_5hmC> 0) #365646

CpGs

DAC1_5hmC_below <- subset(OxBSbetas_df, DAC1_5hmC< 0) #197562

CpGs

DAC1_aa_5hmC_above <- subset(OxBSbetas_df, DAC1_aa_5hmC> 0)

#484142 CpGs

DAC1_aa_5hmC_below <- subset(OxBSbetas_df, DAC1_aa_5hmC< 0)

#76066 CpGs

7. To correct for the number of 5hmCβ-values below 0, use the
OxBS-MLE command from ENmix [53]. First, isolate the β-
values for BS array and then isolate the β-values for OxBS array.

colnames(OxBSbetas) <- c("NoTx","DAC","DAC.aa","NoTx","-

DAC","DAC.aa")

beta.BS <- OxBSbetas[,c(1:3)]

beta.oxBS <- OxBSbetas[,c(4:6)]
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8. Next, isolate the intensity values independently for both BS
array and the OxBS array. A critical note is that all samples must
remain in the same order and be named the same thing
between BS array and OxBS array.

NoTx <- totalIntensities(ssets$‘203855160107_R03C01‘)

DAC <- totalIntensities(ssets$‘203855160107_R04C01‘)

DAC.aa <- totalIntensities(ssets$‘203855160107_R05C01‘)

N.BS <- cbind(NoTx,DAC, DAC.aa)

N.BS <- N.BS[order(row.names(N.BS)),]

NoTx <- totalIntensities(ssets$‘203855160107_R06C01‘)

DAC <- totalIntensities(ssets$‘203855160107_R07C01‘)

DAC.aa <- totalIntensities(ssets$‘203855160107_R08C01‘)

N.oxBS <- cbind(NoTx,DAC, DAC.aa)

N.oxBS <- N.oxBS[order(row.names(N.oxBS)),]

9. Using the isolated β-values and intensity values from above,
run OxBS-MLE to recalculate 5mC and 5hmCβ-values.

OxBS.EN <- oxBS.MLE(beta.BS, beta.oxBS, N.BS, N.oxBS)

OxBS.df <- data.frame(OxBS.EN)

OxBS.df <- OxBS.df[complete.cases(OxBS.df),]

OxBS.df <- cbind(rownames(OxBS.df), data.frame(OxBS.df), row.

names = NULL)

colnames(OxBS.df) <- c("probeID","NoTx.5mC","DAC.5mC","DAC.

aa.5mC","NoTx.5hmC","DAC.5hmC","DAC.aa.5hmC")

10. Calculate β-values for each drug treatment relative to each
other for both 5mC and 5hmC.

OxBS.df <- mutate(OxBS.df, DAC.5hmC.db = DAC.5hmC- NoTx.5hmC)

OxBS.df <- mutate(OxBS.df, DACaa.5hmC.db = DAC.aa.5hmC-

NoTx.5hmC)

OxBS.df <- mutate(OxBS.df, DAC.5mC.db = DAC.5mC - NoTx.5mC)

OxBS.df <- mutate(OxBS.df, DACaa.5mC.db = DAC.aa.5mC -

NoTx.5mC)

OxBS.df <- mutate(OxBS.df, DACaa.5mC.DAC.db = DAC.aa.5mC -

DAC.5mC)

OxBS.df <- mutate(OxBS.df, DACaa.5hmC.DAC.db = DAC.aa.5hmC-

DAC.5hmC)
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3.3.3 Comparison of TAB

and OxBS Array Results

To directly compare results derived from TAB array and OxBS array
among samples, we merged the calculated 5mC and 5hmCβ-values
from each analysis for probes that maintained high QC standards
between both arrays (n ¼ 448,954 CpGs). Multi-dimensional scal-
ing (MDS) analysis among all probes revealed that samples clus-
tered based on drug treatments and cytosine modification rather
than by platform (TAB versus OxBS), indicating that our results
between the approaches were consistent (Fig. 5a). Next, we directly
compared β-values of 5mC and 5hmC for samples that were the
same between the two arrays: NoTx1, DAC1, and DAC1 + VitC
(Fig. 5b). Overall, 5mC β-values were consistent between TAB and
OxBS array with Pearson correlation coefficients above 0.9
(Fig. 5b, top). While 5hmCβ-values were not as consistent as
5mC, we noted that DAC1 + VitC, the sample with known higher
amounts of 5hmC compared to NoTx1 and DAC1, yielded the
highest Pearson correlation coefficient (R ¼ 0.365) (Fig. 5b, bot-
tom), suggesting that when 5hmC is abundant, both platforms may
more consistently capture this distribution. We believe that the lack
of strong correlation between TAB and OxBS5hmCβ-values is due
to the low abundance of this cytosine modification and the differ-
ence in how the β-values are determined in TAB (directly) versus
OxBS array (indirectly).

General Pipeline 1. Merge the β-value results from both TAB array and OxBS array
at individual CpG loci using the following command and
merge by “probeID” (common identifier between both
datasets):

TAB.Ox <- merge(x = TABbetas_df, y = OxBS.df, by = "probeID")

2. Performmultidimensional scaling (MDS) analysis on all sample
β-values using the following command from minfi to deter-
mine variance and relative separation among samples:

TAB.Ox.mds <- TAB.Ox[,c(2:25)]

TAB.Ox.mds <- data.matrix(TAB.Ox.mds)

plotMDS(TAB.Ox.mds, top = 500000, gene.selection = "common")

3. Perform Pearson correlation between all sample β-values and
visualize the correlation using the following commands:

correlation.table <- TAB.Ox[,c(2:25)]

res2 <- cor(correlation.table, method = c("pearson"))
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Fig. 5 Comparison of TAB array and OxBS array results for determining drug-induced passive vs. active DNA
demethylation. (a) Multidimensional scaling (MDS) of β-values among all the shared CpG probes (n¼ 448,954
CpGs) from TAB array (square) and OxBS array (circle) analysis. 5mC and 5hmC labeling denotes the cytosine
modification that is clustered. (b) β-Value density scatterplots for 5mC (top) and 5hmC (bottom) as derived
from OxBS array (x-axis) and TAB array (y-axis) for the same biological sample. R ¼ Pearson correlation
coefficient between OxBS and TAB array β-values. (c) Number of significantly differentially modified cytosines
(both increase and decrease in modification) for TAB array (left) and OxBS array (right). Differentially modified
CpGs for TAB array were determined by limma significance testing among biological duplicates (adjusted p-
value� 0.01, log2 fold-change� 1). Differentially modified CpGs for OxBS array were determined by applying
β-value cut-offs among a single biological replicate (5mC: |β-value| � 0.2; 5hmC: |β-value| � 0.1). (d)
Percentage of CpG probes from TAB array (left) and OxBS array (right) that meet criteria for specific
classification of cytosine modification behavior (5hmC and 5mC). +/� ¼ significant increase/decrease in
modification as described in c; 0 ¼ no significant change
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head(res2)

## NoTx1_TAB DAC1_TAB DAC2_BS DAC2_aa_BS DAC1_aa_TAB NoTx2_TAB

## NoTx1_TAB 1.0000000 0.5643396 0.3490599 0.3351804 0.4845934

0.7459988

## DAC1_TAB 0.5643396 1.0000000 0.3358964 0.3162146 0.4842038

0.5913501

## DAC2_BS 0.3490599 0.3358964 1.0000000 0.9899646 0.4206427

0.3245357

## DAC2_aa_BS 0.3351804 0.3162146 0.9899646 1.0000000

0.3919641 0.3077355

## DAC1_aa_TAB 0.4845934 0.4842038 0.4206427 0.3919641

1.0000000 0.5281145

## NoTx2_TAB 0.7459988 0.5913501 0.3245357 0.3077355 0.5281145

1.0000000

## DAC2_TAB DAC2_aa_TAB NoTx1_BS DAC1_BS DAC1_aa_BS NoTx2_BS

## NoTx1_TAB 0.6304929 0.5435206 0.3126113 0.3471773 0.3327407

0.3062050

## DAC1_TAB 0.5972861 0.4992690 0.3139309 0.3342330 0.3134234

0.3098587

## DAC2_BS 0.3495153 0.4635381 0.9814008 0.9959075 0.9897792

0.9803097

## DAC2_aa_BS 0.3286710 0.4296738 0.9705574 0.9901041

0.9956422 0.9696005

## DAC1_aa_TAB 0.5281480 0.6878447 0.4090525 0.4181847

0.3881634 0.4049876

## NoTx2_TAB 0.6858835 0.6020530 0.2822104 0.3220271 0.3049796

0.2749049

## NoTx1_5mC DAC1_5mC DAC1_aa_5mC NoTx2_5mC DAC2_5mC DA-

C2_aa_5mC

## NoTx1_TAB 0.1979439 0.2625503 0.2047185 0.2322715 0.2511905

0.1988773

## DAC1_TAB 0.2535767 0.1724687 0.1847842 0.2525685 0.2437360

0.1920930

## DAC2_BS 0.9692103 0.9813832 0.9343618 0.9689641 0.9853086

0.9389595

## DAC2_aa_BS 0.9597779 0.9788413 0.9499092 0.9600163

0.9786455 0.9603676

## DAC1_aa_TAB 0.3616385 0.3511735 0.1005694 0.3569280

0.3449820 0.2161602

## NoTx2_TAB 0.1980618 0.2311349 0.1603694 0.1727235 0.2151134

0.1506239

## NoTx.5mC DAC.5mC DAC.aa.5mC NoTx.5hmC DAC.5hmC DAC.aa.5hmC

## NoTx1_TAB 0.2951723 0.3191521 0.2837059 0.1247655159

0.1550317 0.1778982

## DAC1_TAB 0.3062280 0.3267851 0.2832649 0.0783602799

0.1163134 0.1519621

## DAC2_BS 0.9741743 0.9853362 0.9331337 0.0003636201

0.1795046 0.3208518
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## DAC2_aa_BS 0.9642960 0.9841005 0.9522282 -0.0162461095

0.1416026 0.2771144

## DAC1_aa_TAB 0.4017782 0.3994346 0.2941971 0.0639621609

0.1772982 0.3645255

## NoTx2_TAB 0.2606820 0.2832240 0.2437400 0.1614722777

0.1898653 0.1997464

smoothScatter(TAB.Ox$DAC1_aa_TAB~TAB.Ox$DAC.aa.5hmC, nbin =

2000, bandwidth = 0.00001, colramp = colorRampPalette(c(blue2-

red(12))),

nrpoints = 100, xlim = c(-0.02,1), ylim = c(0,1), xlab = "",

ylab = "", axes = TRUE, frame.plot = FALSE)

3.3.4 Determining Active

Versus Passive DNA

Demethylation Using TAB

and OxBS Arrays

For each individual platform, we next determined which cytosines
were significantly differentially modified for 5mC and 5hmC rela-
tive to the other drug treatment samples. For TAB array analysis, we
assayed both biological duplicates of each drug treatment, which
allowed us to conduct significance testing for each cytosine modifi-
cation using limma [54, 55]. We considered a CpG as differentially
modified if the adjusted p-value �0.01 and the log2 fold-change
�1.0. As would be expected from global analysis, DAC + VitC
exhibited gains in 5hmC relative to both NoTx and DAC
(Fig. 5c, left). Both DAC and DAC + VitC drug treatments also
demonstrated significant loss of 5mC relative to NoTx, and
DAC + VitC additionally had a number of CpGs that significantly
lost 5mC relative to DAC (Fig. 5c). We performed OxBS arrays on
a single set of drug treatments, so rather than conduct significance
testing across biological duplicates, we calculated β-values among
the samples and set the following thresholds for determining dif-
ferential modifications: 5hmC |β-value| �0.1; 5mC |β-value| �0.2.
Consistent with our comparison of TAB array and OxBS array β-
values, the pattern of differentially modified cytosines, as queried by
OxBS array, was almost identical to that of TAB array (Fig. 5c).
Notably, OxBS array differential analysis did call more probes sig-
nificant using our set criteria; however, this was most likely due to
our inability to call statistical significance, as we only submitted one
of the drug treatment sets for OxBS array analysis, indicating the
importance of querying biological replicates when possible.

Our ultimate goal for TAB array and OxBS array analysis was to
distinguish the degree of active versus passive DNA demethylation
in drug treatments. To do this, we classified the collective behavior
of cytosine nucleotides, both 5mC and 5hmC, for each individual
platform. Using the criteria for determining differential modifica-
tions as discussed for TAB array and OxBS array analysis (Fig. 5c),
we classified a CpG’s collective behavior by asking how 5hmC
changed in one drug treatment group relative to another, and
then asking how 5mC changed as well. If the criteria was not met
for determining differential modifications, we classified this as “no
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change” in the modification. For example, if 5hmC at an individual
CpG increased (“+”) in DAC + VitC relative to NoTx, and 5mC at
the same CpG decreased (“�”), we considered this a CpG that was
susceptible to active DNA demethylation (Fig. 5d, middle circles,
red). However, if 5hmC did not have a significant change (“0”),
but 5mC decreased (“�”), then we would consider this passive loss
of DNA methylation (Fig. 5d, blue). No change in 5mC or 5hmC
at a CpG locus is represented by dark green. All classifications that
had a measurable number of probes that behaved in the given
manner are shown in the legend for Fig. 5d. Overall, for both
TAB array and OxBS array analysis, DAC treatment compared to
NoTx demonstrated predominately passive DNA demethylation
(Fig. 5d, top, blue). Addition of VitC to DAC treatments
(DAC + VitC) successfully induced active DNA demethylation in
addition to passive DNA demethylation relative to NoTx as queried
by both platforms (Fig. 5d, middle, red/blue). Finally, by compar-
ing DAC + VitC to DAC, we observed that while passive DNA
demethylation is largely conserved with DAC treatments (high-
lighted by the increase of “no change” in dark green), the primary
difference between DAC + VitC and DAC is the induction of 5mC
conversion to 5hmC and an increase in active DNA demethylation
with the addition of VitC (Fig. 5d, bottom see Note 19).

TAB Array Pipeline 1. For statistical testing, we use the standard workflow within
limma to compare sample groups [54–57]. First, transform β-
values to M-values, and transform the data frame into a data
matrix.

myMs <- logit2(TABbetas_df)

myMs <- data.matrix(myMs)

2. Next, set up a design matrix that places each sample into its
corresponding treatment group and modification group. For
this analysis, treat 5mC and 5hmC values as separate groups.

design <- model.matrix(~0+factor(c(1–9)))

colnames(design) <-c("NoTx_TAB","DAC_TAB","DAC_aa_TAB","-

NoTx_BS","DAC_BS","DAC_aa_BS","NoTx_5mC","DAC_5mC","DA-

C_aa_5mC")

3. Construct a contrast matrix for the samples to be compared,
and then proceed with the standard limma workflow to calcu-
late the statistical significance. For simplicity of comparisons
and to get individual statistics for each comparison, make each
contrast matrix individually and combine all statistical data at
the end.
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fit <- lmFit(myMs, design)

#Bisulfite comparisons

#DAC vs NoTx

contrast.matrix <- makeContrasts(DAC_BS-NoTx_BS, levels = de-

sign)

fit3 <- contrasts.fit(fit, contrast.matrix)

fit3 <- eBayes(fit3)

DAC.NoTx.BS <- topTable(fit3, num = Inf)

DAC.NoTx.BS <- cbind(rownames(DAC.NoTx.BS), data.frame(DAC.

NoTx.BS), row.names = NULL)

colnames(DAC.NoTx.BS) <- c("probeID","logFC.DACvNoTx.BS","A-

veExpr.DACvNoTx.BS","t.DACvNoTx.BS","P.Val.DACvNoTx.BS","adj.

P.Val.DACvNoTx.BS","B.DACvNoTx.BS")

DAC.NoTx.BS <- DAC.NoTx.BS[,c(1, 2, 6)]

#DAC_aa vs NoTx

contrast.matrix <- makeContrasts(DAC_aa_BS-NoTx_BS, levels =

design)

fit4 <- contrasts.fit(fit, contrast.matrix)

fit4 <- eBayes(fit4)

DACaa.NoTx.BS <- topTable(fit4, num = Inf)

DACaa.NoTx.BS <- cbind(rownames(DACaa.NoTx.BS), data.frame

(DACaa.NoTx.BS), row.names = NULL)

colnames(DACaa.NoTx.BS) <- c("probeID","logFC.DACaavNoTx.

BS","AveExpr.DACaavNoTx.BS","t.DACaavNoTx.BS","P.Val.DACaav-

NoTx.BS","adj.P.Val.DACaavNoTx.BS","B.DACaavNoTx.BS")

DACaa.NoTx.BS <- DACaa.NoTx.BS[,c(1, 2, 6)]

#DAC_aa vs DAC

contrast.matrix <- makeContrasts(DAC_aa_BS-DAC_BS, levels =

design)

fit5 <- contrasts.fit(fit, contrast.matrix)

fit5 <- eBayes(fit5)

DACaa.DAC.BS <- topTable(fit5, num = Inf)

DACaa.DAC.BS <- cbind(rownames(DACaa.DAC.BS), data.frame(DA-

Caa.DAC.BS), row.names = NULL)

colnames(DACaa.DAC.BS) <- c("probeID","logFC.DACaa.DAC.

BS","AveExpr.DACaa.DAC.BS","t.DACaa.DAC.BS","P.Val.DACaa.DAC.

BS","adj.P.Val.DACaa.DAC.BS","B.DACaa.DAC.BS")

DACaa.DAC.BS <- DACaa.DAC.BS[,c(1, 2, 6)]

#TAB comparisons

#DAC vs NoTx

contrast.matrix <- makeContrasts(DAC_TAB-NoTx_TAB, levels =
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design)

fit6 <- contrasts.fit(fit, contrast.matrix)

fit6 <- eBayes(fit6)

DAC.NoTx.TAB <- topTable(fit6, num = Inf)

DAC.NoTx.TAB <- cbind(rownames(DAC.NoTx.TAB), data.frame(DAC.

NoTx.TAB), row.names = NULL)

colnames(DAC.NoTx.TAB) <- c("probeID","logFC.DACvNoTx.TA-

B","AveExpr.DACvNoTx.TAB","t.DACvNoTx.TAB","P.Val.DACvNoTx.

TAB","adj.P.Val.DACvNoTx.TAB","B.DACvNoTx.TAB")

DAC.NoTx.TAB <- DAC.NoTx.TAB[,c(1, 2, 6)]

#DAC_aa vs NoTx

contrast.matrix <- makeContrasts(DAC_aa_TAB-NoTx_TAB, levels

= design)

fit7 <- contrasts.fit(fit, contrast.matrix)

fit7 <- eBayes(fit7)

DACaa.NoTx.TAB <- topTable(fit7, num = Inf)

DACaa.NoTx.TAB <- cbind(rownames(DACaa.NoTx.TAB), data.frame

(DACaa.NoTx.TAB), row.names = NULL)

colnames(DACaa.NoTx.TAB) <- c("probeID","logFC.DACaavNoTx.TA-

B","AveExpr.DACaavNoTx.TAB","t.DACaavNoTx.TAB","P.Val.DACaav-

NoTx.TAB","adj.P.Val.DACaavNoTx.TAB","B.DACaavNoTx.TAB")

DACaa.NoTx.TAB <- DACaa.NoTx.TAB[,c(1, 2, 6)]

#DAC_aa vs DAC

contrast.matrix <- makeContrasts(DAC_aa_TAB-DAC_TAB, levels =

design)

fit8 <- contrasts.fit(fit, contrast.matrix)

fit8 <- eBayes(fit8)

DACaa.DAC.TAB <- topTable(fit8, num = Inf)

DACaa.DAC.TAB <- cbind(rownames(DACaa.DAC.TAB), data.frame

(DACaa.DAC.TAB), row.names = NULL)

colnames(DACaa.DAC.TAB) <- c("probeID","logFC.DACaa.DAC.TA-

B","AveExpr.DACaa.DAC.TAB","t.DACaa.DAC.TAB","P.Val.DACaa.

DAC.TAB","adj.P.Val.DACaa.DAC.TAB","B.DACaa.DAC.TAB")

DACaa.DAC.TAB <- DACaa.DAC.TAB[,c(1, 2, 6)]

#True 5mC comparisons

#DAC vs NoTx

contrast.matrix <- makeContrasts(DAC_5mC-NoTx_5mC, levels =

design)

fit9 <- contrasts.fit(fit, contrast.matrix)

fit9 <- eBayes(fit9)
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DAC.NoTx.5mC <- topTable(fit9, num = Inf)

DAC.NoTx.5mC <- cbind(rownames(DAC.NoTx.5mC), data.frame(DAC.

NoTx.5mC), row.names = NULL)

colnames(DAC.NoTx.5mC) <- c("probeID","logFC.DACvNoTx.5m-

C","AveExpr.DACvNoTx.5mC","t.DACvNoTx.5mC","P.Val.DACv-

NoTx.5mC","adj.P.Val.DACvNoTx.5mC","B.DACvNoTx.5mC")

DAC.NoTx.5mC <- DAC.NoTx.5mC[,c(1, 2, 6)]

#DAC_aa vs NoTx

contrast.matrix <- makeContrasts(DAC_aa_5mC-NoTx_5mC, levels

= design)

fit10 <- contrasts.fit(fit, contrast.matrix)

fit10 <- eBayes(fit10)

DACaa.NoTx.5mC <- topTable(fit10, num = Inf)

DACaa.NoTx.5mC <- cbind(rownames(DACaa.NoTx.5mC), data.frame

(DACaa.NoTx.5mC), row.names = NULL)

colnames(DACaa.NoTx.5mC) <- c("probeID","logFC.DACaavNoTx.5m-

C","AveExpr.DACaavNoTx.5mC","t.DACaavNoTx.5mC","P.Val.DACaav-

NoTx.5mC","adj.P.Val.DACaavNoTx.5mC","B.DACaavNoTx.5mC")

DACaa.NoTx.5mC <- DACaa.NoTx.5mC[,c(1, 2, 6)]

#DAC_aa vs DAC

contrast.matrix <- makeContrasts(DAC_aa_5mC-DAC_5mC, levels =

design)

fit11 <- contrasts.fit(fit, contrast.matrix)

fit11 <- eBayes(fit11)

DACaa.DAC.5mC <- topTable(fit11, num = Inf)

DACaa.DAC.5mC <- cbind(rownames(DACaa.DAC.5mC), data.frame

(DACaa.DAC.5mC), row.names = NULL)

colnames(DACaa.DAC.5mC) <- c("probeID","logFC.DACaa.DAC.5m-

C","AveExpr.DACaa.DAC.5mC","t.DACaa.DAC.5mC","P.Val.DACaa.

DAC.5mC","adj.P.Val.DACaa.DAC.5mC","B.DACaa.DAC.5mC")

DACaa.DAC.5mC <- DACaa.DAC.5mC[,c(1, 2, 6)]

NCCIT.stats <- merge(x = DAC.NoTx.BS, y = DACaa.NoTx.BS, by =

"probeID")

NCCIT.stats <- merge(x = NCCIT.stats, y = DACaa.DAC.BS, by =

"probeID")

NCCIT.stats <- merge(x = NCCIT.stats, y = DAC.NoTx.TAB, by =

"probeID")

NCCIT.stats <- merge(x = NCCIT.stats, y = DACaa.NoTx.TAB, by =

"probeID")

NCCIT.stats <- merge(x = NCCIT.stats, y = DACaa.DAC.TAB, by =

"probeID")

130 Rochelle L. Tiedemann et al.



NCCIT.stats <- merge(x = NCCIT.stats, y = DAC.NoTx.5mC, by =

"probeID")

NCCIT.stats <- merge(x = NCCIT.stats, y = DACaa.NoTx.5mC, by =

"probeID")

NCCIT.stats <- merge(x = NCCIT.stats, y = DACaa.DAC.5mC, by =

"probeID")

head(NCCIT.stats, 2)

## probeID logFC.DACvNoTx.BS adj.P.Val.DACvNoTx.BS logFC.DA-

CaavNoTx.BS

## 1 1 -2.3111577 9.042276e-06 -2.3341208

## 2 10 0.9194189 6.677093e-01 0.4857809

## adj.P.Val.DACaavNoTx.BS logFC.DACaa.DAC.BS adj.P.Val.DACaa.DAC.BS

## 1 5.231595e-06 -0.02296312 0.9999978

## 2 8.419191e-01 -0.43363805 0.9999978

## logFC.DACvNoTx.TAB adj.P.Val.DACvNoTx.TAB logFC.DACaavNoTx.TAB

## 1 0.02229206 0.999997 0.31428085

## 2 -0.49531260 0.999997 0.02696331

## adj.P.Val.DACaavNoTx.TAB logFC.DACaa.DAC.TAB

adj.P.Val.DACaa.DAC.TAB

## 1 0.4024360 0.2919888 0.4181687

## 2 0.9999993 0.5222759 0.9046001

## logFC.DACvNoTx.5mC adj.P.Val.DACvNoTx.5mC logFC.DACaavNoTx.5mC

## 1 -1.708069 8.033274e-05 -1.82091491

## 2 3.187525 5.854615e-02 0.05450381

## adj.P.Val.DACaavNoTx.5mC logFC.DACaa.DAC.5mC

adj.P.Val.DACaa.DAC.5mC

## 1 2.495906e-05 -0.1128459 0.7522229

## 2 9.772170e-01 -3.1330210 0.1663701

4. Combine the statistics for differential methylation with the
calculated β-values.

TABbetas_df <- cbind(rownames(TABbetas_df), data.frame(TABbe-

tas_df), row.names = NULL)

colnames(TABbetas_df) <- c("probeID","NoTx1_TAB","DAC1_-

TAB","DAC2_BS","DAC2_aa_BS","DAC1_aa_TAB","NoTx2_TAB","DAC2_-

TAB","DAC2_aa_TAB",

"NoTx1_BS","DAC1_BS","DAC1_aa_BS","NoTx2_BS","NoTx1_5mC","-

DAC1_5mC","DAC1_aa_5mC","NoTx2_5mC","DAC2_5mC","DAC2_aa_5mC")

NCCIT.final <- merge(x = TABbetas_df, y = NCCIT.stats, by =

"probeID")
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5. Using adjusted p-values �0.01 and LogFC �1, define the
direction of the change for each modification or note if the
change is not significant.

NCCIT.final <- mutate(NCCIT.final, DACvsTx_5mC_direction =

ifelse(adj.P.Val.DACvNoTx.5mC <= 0.01 & logFC.DACvNoTx.5mC

>= 1, "Up",

ifelse(adj.P.Val.DACvNoTx.5mC <= 0.01 & logFC.DACvNoTx.5mC <=

-1, "Down", "NotSig")))

NCCIT.final <- mutate(NCCIT.final, DACaavsTx_5mC_direction =

ifelse(adj.P.Val.DACaavNoTx.5mC <= 0.01 & logFC.DACaav-

NoTx.5mC >= 1, "Up",

ifelse(adj.P.Val.DACaavNoTx.5mC <= 0.01 & logFC.DACaav-

NoTx.5mC <=- 1, "Down", "NotSig")))

NCCIT.final <- mutate(NCCIT.final, DACvsTx_5hmC_direction =

ifelse(adj.P.Val.DACvNoTx.TAB <= 0.01 & logFC.DACvNoTx.TAB >=

1, "Up",

ifelse(adj.P.Val.DACvNoTx.TAB <= 0.01 & logFC.DACvNoTx.TAB <=

-1, "Down", "NotSig")))

NCCIT.final <- mutate(NCCIT.final, DACaavsTx_5hmC_direction =

ifelse(adj.P.Val.DACaavNoTx.TAB <= 0.01 & logFC.DACaavNoTx.

TAB >= 1, "Up",

ifelse(adj.P.Val.DACaavNoTx.TAB <= 0.01 & logFC.DACaavNoTx.

TAB <=- 1, "Down", "NotSig")))

NCCIT.final <- mutate(NCCIT.final, DACaavsDAC_5mC_direction =

ifelse(adj.P.Val.DACaa.DAC.5mC <= 0.01 & logFC.DACaa.DAC.5mC

>= 1, "Up",

ifelse(adj.P.Val.DACaa.DAC.5mC <= 0.01 & logFC.DACaa.DAC.5mC

<= -1, "Down", "NotSig")))

NCCIT.final <- mutate(NCCIT.final, DACaavsDAC_5hmC_direction

= ifelse(adj.P.Val.DACaa.DAC.TAB <= 0.01 & logFC.DACaa.DAC.TAB

>= 1, "Up",

ifelse(adj.P.Val.DACaa.DAC.TAB <= 0.01 & logFC.DACaa.DAC.TAB

<=- 1, "Down", "NotSig")))

table(NCCIT.final$DACaavsTx_5hmC_direction)

##

## Down NotSig Up

## 848 410813 45727

6. Using if-else statements, define the collective behavior of
5hmC and 5mC for each individual probe using the signifi-
cance criteria defined above. Only DAC + VitC relative to
NoTx is shown as an example.

NCCIT.final <- mutate(NCCIT.final, DACaavsTx.states =

ifelse(DACaavsTx_5hmC_direction=="Up"&DACaavsTx_5mC_direction==
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"NotSig", "State1",

ifelse(DACaavsTx_5hmC_direction == "NotSig" & DACaavsTx_5mC_direc-

tion == "Up", "State2",

ifelse(DACaavsTx_5hmC_direction=="Up"&DACaavsTx_5mC_direction==

"Up","State3",

ifelse(DACaavsTx_5hmC_direction ==

"Up" & DACaavsTx_5mC_direction == "Down","State4",

ifelse(DACaavsTx_5hmC_direction ==

"Down" & DACaavsTx_5mC_direction == "Up", "State5",

ifelse(DACaavsTx_5hmC_direction=="Down"&DACaavsTx_5mC_direction==

"Down","State6",

ifelse(DACaavsTx_5hmC_direction == "NotSig" & DACaavsTx_5mC_direction ==

"Down","State7",

ifelse(DACaavsTx_5hmC_direction=="Down"&DACaavsTx_5mC_direction==

"NotSig", "State8",

ifelse(DACaavsTx_5hmC_direction == "NotSig" & DACaavsTx_5mC_direction ==

"NotSig","State9","else"))))))))))

table(NCCIT.final$DACaavsTx.states)

##

## State1 State2 State4 State5 State6 State7 State8 State9

## 622 22869 45105 7 431 217602 410 170342

OxBS Array Pipeline 1. Using the calculated β-values, define the direction of change
for each modification or note if the change is not significant
using the following criteria:

5hmC |β-value| �0.1

5mC |β-value| �0.2

OxBS.df <- mutate(OxBS.df, DACvsTx_5mC_direction = ifelse

(DAC.5mC.db >= 0.2, "Up",

ifelse(DAC.5mC.db <= -0.2,

"Down", "NotSig")))

OxBS.df <- mutate(OxBS.df, DACvsTx_5hmC_direction = ifelse

(DAC.5hmC.db >= 0.1, "Up",

ifelse(DAC.5hmC.db<= -0.1,

"Down", "NotSig")))

OxBS.df<-mutate(OxBS.df,DACaavsTx_5mC_direction=ifelse(DACaa.5mC.

db>= 0.2, "Up",

ifelse(DACaa.5mC.db<= -0.2,

"Down", "NotSig")))

OxBS.df <- mutate(OxBS.df, DACaavsTx_5hmC_direction = ifelse(DA-

Caa.5hmC.db>= 0.1, "Up",
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ifelse(DACaa.5hmC.db<= -0.1,

"Down", "NotSig")))

OxBS.df <- mutate(OxBS.df, DACaavsDAC_5mC_direction = ifelse(DA-

Caa.5mC.DAC.db>= 0.2, "Up",

ifelse(DACaa.5mC.DAC.db<= -0.2,

"Down", "NotSig")))

OxBS.df <- mutate(OxBS.df, DACaavsDAC_5hmC_direction = ifelse(DA-

Caa.5hmC.DAC.db>= 0.1, "Up",

ifelse(DACaa.5hmC.DAC.db<= -0.1,

"Down", "NotSig")))

table(OxBS.df$DACaavsTx_5hmC_direction)

##

## Down NotSig Up

## 1614 453418 108176

2. Using if-else statements, define the collective behavior of
5hmC and 5mC for each individual probe using the signifi-
cance criteria defined above. Only DAC + VitC relative to
NoTx is shown as an example.

OxBS.df <- mutate(OxBS.df, DACaavsTx.states =

ifelse(DACaavsTx_5hmC_direction == "Up" & DACaavsTx_5mC_direction ==

"NotSig", "State1",

ifelse(DACaavsTx_5hmC_direction == "NotSig" & DACaavsTx_5mC_direction

== "Up", "State2",

ifelse(DACaavsTx_5hmC_direction == "Up" & DACaavsTx_5mC_direction ==

"Up","State3",

ifelse(DACaavsTx_5hmC_direction == "Up" & DACaavsTx_5mC_direction ==

"Down","State4",

ifelse(DACaavsTx_5hmC_direction=="Down"&DACaavsTx_5mC_direction==

"Up", "State5",

ifelse(DACaavsTx_5hmC_direction=="Down"&DACaavsTx_5mC_direction==

"Down","State6",

ifelse(DACaavsTx_5hmC_direction == "NotSig" & DACaavsTx_5mC_direction

== "Down","State7",

ifelse(DACaavsTx_5hmC_direction=="Down"&DACaavsTx_5mC_direction==

"NotSig", "State8",

ifelse(DACaavsTx_5hmC_direction == "NotSig" & DACaavsTx_5mC_direction

== "NotSig", "State9", "else"))))))))))

table(OxBS.df$DACaavsTx.states)

##

## State1 State4 State6 State7 State8 State9

## 3359 104817 100 221062 1514 232356
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4 Notes

1. 500 ng will allow for amplification of 4–5 genomic loci in
technical duplicate.

2. Add an additional centrifugation step following the last ethanol
wash to remove any excess ethanol left in the column. Excess
ethanol will adversely affect the results of this analysis.

3. Bisulfite-converted gDNA should be used for HRM analysis
immediately after completion of bisulfite conversion, as DNA
will begin to degrade and results will be adversely affected.

4. gDNA isolated from HCT116 DKO1 cells (genetic hypo-
morph of DNMT1 and genetic knockout of DNMT3B alleles)
serves as a good positive control for lack of cytosine modifica-
tions at all genomic loci.

5. Make sure to mix all gDNA samples extremely well before
applying to the assay plate, as comparisons among samples are
dependent on the amount of gDNA loaded.

6. Measure remaining gDNA by NanoDrop to ensure accurate
concentrations and amount loaded into the assay wells.

7. We determined that the calculation using polynomial second
order regression fit our standard curve best for our analysis of %
5hmC (data not shown).

8. Even loading of gDNA across samples is crucial. To achieve
this, use the average of at least two Nanodrop readings and
thoroughly mix samples and wells. In addition, it is helpful to
move quickly through the denaturation and neutralization
steps to ensure even processing across samples. If an alternative
starting concentration of gDNA is desired, adjust accordingly,
but account for a minimum of 20 μL dead volume in each well
of the 96 well plate to improve pipetting accuracy.

9. Always apply liquid to the membrane while the vacuum is off. If
individual wells do not clear, pipetting a few times will allow
them to flow through.

10. Perform washes in liberal amounts of 1� PBST and rock with
sufficient vigor to ensure thorough and even washing.

11. We tried several different methods of purifying gDNA follow-
ing β-GT and Tet oxidation reactions (including phenol:chlo-
roform purification with ethanol precipitation and standard
DNA purification kits) and determined that KAPA Pure
Beads most reliably gave the best yield of gDNA. As the
amount of gDNA to be submitted to core facilities for EPIC
array processing is crucial, it is important to use a method of
DNA recovery that will provide the best overall yield as
measured by Invitrogen Qubit dsDNA HS assay.
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12. To avoid pulling beads with the withdrawal of the supernatant,
leave a small amount of volume at the bottom of the tube.
Addition of 80% ethanol will take the small proportion of beads
at the bottom of the tube and efficiently capture in the mag-
netic field so that accidentally taking beads will not be an issue
in the removal of the washes.

13. Tet oxidation reagent #1 and #2 can be made ahead of time,
aliquoted, and stored at �80 �C for future, one-time use.

14. All Tet oxidation reagents should remain in the dark as these
components are light-sensitive.

15. For protein production of TET2-CD enzyme, please see
Chapter 13 by Dr. Gerd Pfeifer’s group in this edition of
Methods in Molecular Biology.

16. Contact the core facility that will be processing samples on the
EPIC array prior to submission. Most core facilities that pro-
cess EPIC arrays require a certain amount and quality of
gDNA, and TAB-treated gDNA typically does not meet these
standards. Discuss with the core facility the upstream modifica-
tion that will be done with the gDNA, and howmuch gDNA is
expected to be submitted. Our laboratory typically recovers
280–330 ng of TAB-treated gDNA from the initial 500 ng of
gDNA that was put into the reaction. If TET2-CD enzyme is
in ample supply, we recommend doubling the Tet oxidation
reaction for each sample and pooling the reactions together
prior to KAPA Pure Beads DNA purification.

17. For the initial spike-in of the standard to the T4-βGT reaction,
add only 5mC to one reaction and only 5hmC to a different
reaction. Both the 5mC and 5hmC standard from ZYMO have
the same sequence, so determining efficiency of the TAB oxi-
dation reaction for both standards needs to be separated in
space. The standards are also modified at every cytosine (CpG
and CpH) in the sequence. We designed bisulfite primers using
MethPrimer that would still allow for amplification following
bisulfite conversion of this DNA molecule:

Forward Primer: TTTAAAGATGTAGGGGTAAAAGTTA

Reverse Primer: ACCAAATTTAATTCCTTTCAAC

18. For validation of TAB reactions on the 5mC standard, we
submit at least 30 colonies to ensure that all 5mC was success-
fully oxidized.

19. Of particular note, we would like to comment on deciding
between TAB array and OxBS array for quantifying 5hmC in
a sample population. As previously mentioned, 5hmC abun-
dance is very low in comparison to 5mC (almost 14-fold on
average), with the exception of ESCs and brain tissue [10, 11,
58]. In our analysis, the OxBS array was inefficient at detecting
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5hmC in the NoTx and DAC samples due to the low level of
5hmC; however, it was much better at capturing this modifica-
tion in the DAC + VitC sample in which VitC successfully
induced an increase in the mark (Fig. 4c), suggesting that a
threshold of 5hmC abundance is needed in a sample popula-
tion for OxBS array to reliably quantify this mark. Indeed, by
coupling this rationale with our ELISA-based global quantifi-
cation results (Fig. 2c), we hypothesize that a threshold of at
least 0.1% total 5hmC is needed in a gDNA sample to be
detected by OxBS array, as our DAC + VitC samples exceeded
this threshold while our DAC and NoTx samples did not. To
further investigate this notion, we downloaded OxBS array
data from a patient cohort of brain tissue samples and per-
formed the subtraction calculation on these data
(GSE138597) [59]. While in our analysis of NoTx and DAC
treated samples we observed a large percentage of probes with
negative 5hmCβ-values following subtraction (Fig. 4c), the
brain samples with known high levels of 5hmC only demon-
strated 9% of negative 5hmCβ-values on average (data not
shown). We believe that samples with low 5hmC abundance
processed by OxBS array analysis are more susceptible to this
issue than if they are processed by TAB array, as OxBS array
provides an indirect measurement of 5hmC while TAB array
provides a direct measurement. Further work needs to be
conducted to determine what exact global 5hmC threshold
needs to be met to allow accurate quantification of 5hmC by
the OxBS array. We recommend that the decision for use of
TAB array or OxBS array should be made following global
quantification of 5hmC levels in a sample. If the global amount
of 5hmC is very low, we recommend the TAB array approach,
as it can directly measure low levels of 5hmC present in a
sample population. If the global amount of 5hmC is relatively
high, then we recommend the OxBS approach, as reagent cost
and sample processing time is limited in comparison to TAB
array.
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