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Definition

Accumulation of evidence in decision making is
the process by which noisy sensory information is
sequentially sampled until sufficient evidence has
accrued to favor one decision over another or
others.
Detailed Description

The accumulation of evidence over time is a cen-
tral topic in computational neuroscience spanning
behavior, brain, and theory (Huk and Meister
2012; Shadlen et al. 2006; Usher and McClelland
2001): (1) it is a fundamental aspect of tractable
forms of cognition, such as simple forms of deci-
sion making; (2) mathematical models of how
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evidence could (and should) be accumulated are
available and have a rich history of accounting for
performance in laboratory tasks; and (3) there is
an apparent disconnect between the hundreds of
milliseconds over which animals can integrate
evidence and the individual computing elements
of the brain, neurons, which integrate their inputs
over a small number of milliseconds.

Although accumulating evidence over time is a
central component of both cognitive function and
many statistical models for decision making, the
current emphasis on this topic is likely driven by
the simple fact that remarkably direct neural cor-
relates of such temporal accumulation appear to
have been found in the spiking responses of neu-
rons in brain areas such as the posterior parietal
cortex, prefrontal cortex, and other areas with
premotor functions (Gold and Shadlen 2007).
Mathematical Foundations

The computational neuroscience of evidence
accumulation starts with Bloch’s Law, a funda-
mental principle of sensory processing (Bloch
1885). Bloch’s Law is a description of temporal
summation, such that if more time results in more
signal, simple behaviors such as detection will
show increases in accuracy that depend on the
product of stimulus intensity and time. At longer
durations, a breakdown in Bloch’s Law is
interpreted as the limit of the temporal summation
properties of the transducer. Despite its historical
significance, Bloch’s Law is rarely applied to
modern decision-making tasks, as it focuses on
“sufficiently short” durations and does not explic-
itly model noise, a critical tool for manipulating
difficulty in many decision-making paradigms.

As opposed to the linear dependence of accu-
racy on time of Bloch’s Law, statistical models
within the “sequential sampling” framework
assume that significant noise is present and that
by accumulating many samples, accuracy can be
improved. Under the simplest conditions of inde-
pendent additive noise at each instant in time,
accuracy based on ideal temporal accumulation
will improve as a function of the square root of
time. This root-time improvement in accuracy is
directly related to the square root (n) term that
many students will recognize from basic statistics.

This statistical point is the basis of a large family
of models in the “sequential sampling” framework,
a set of models built and adapted within statistics,
physics, mathematical psychology, and neurosci-
ence (Stone 1960; Watson 1979; Luce 1986; Link
1992; Ditterich 2006). In essence, these models
assume that noisy information about a stimulus is
sampled sequentially, until sufficient evidence has
been accrued to favor a decision. For binary
choices, the accumulation follows a noisy trajec-
tory, where information is represented as a single
quantity in which input supporting one hypothesis
is evidence against another (i.e., H1 vs. H2). Math-
ematically, sampled evidence is weighted to sup-
port one of the two hypotheses and may be
expressed as the ratio of likelihoods, the probability
of observing the evidence (“e”) given the hypoth-
esis (p(e|H1)/p(e|H2). The logarithm of this quan-
tity may be summed over time to represent the
degree of evidence accumulated in favor of one of
the hypotheses over the other, termed the “log
likelihood ratio.” This value can be used to deter-
mine the optimal stopping rule for an accumulation
process as implemented in the sequential probabil-
ity ratio test (Wald 1947).
Evidence Accumulation in Models of
Decision Making

This family of models has been extensively used
to account for behavioral data and linked to psy-
chological mechanisms: the number of samples
required to reach a bound reflects decision time,
and the identity of the bound reached reflects the
decision. The weight of sampled evidence is a
function of stimulus strength such that a strong
stimulus in favor of H1 will require fewer samples
to reach the H1 bound, resulting in faster reaction
times and higher accuracy. For choices where H1
and H2 are equally likely, the bounds are equidis-
tant from the starting point, the magnitude of
which primarily reflects the tight coupling
between decision time and accuracy: fast deci-
sions come at the cost of accuracy, and high accu-
racy comes at the cost of time (the speed-accuracy
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trade-off). A shift in starting point position
towards H1 may reflect an a priori bias, resulting
in a higher proportion of H1 choices over H2, with
faster decision times.

The first major distinction between model
types is whether they posit a single accumulator
or multiple, racing accumulators. If there is a
single accumulation process, models posit a pair
of decision bounds (for a two-alternative para-
digm), and the accumulation process starts in
between these upper and lower limits. Thus,
incoming evidence is “signed” with positive evi-
dence pushing the accumulator towards the upper
bound and negative evidence pushing the accu-
mulator towards the lower bound. In typical
“race” models, a pair of parallel and competing
mechanisms each accumulates evidence in favor
of their particular outcome, and the decision is
determined by the first accumulator to reach its
respective bound (Usher and McClelland 2001).
If the signal and noise available to both accumu-
lators are identical, such perfectly correlated rac-
ing accumulators make the same predictions as a
single accumulator, despite the difference in
hypothesized architecture. On the other hand, rac-
ing mechanisms can exhibit increasingly complex
behaviors as additional parameters between them
become statistically uncorrelated. Independent
noise changes the behavior of racing versus
single-variable accumulators, and more baroque
models can behave quite differently than a stan-
dard single accumulator (Ditterich 2006).

The second major distinction within sequential
sampling models is whether they model time as
discrete or continuous. Discrete models are more
straightforward to implement in computer code,
while continuous models avail themselves to
closed-form mathematics. While it is of course
true that in the limit (i.e., as discrete time steps
go to infinitesimals) discrete models become con-
tinuous, this requires some care in practice. It is
critical that discrete approximations of continuous
models be implemented using appropriately fine
time scale steps. Otherwise, small rounding arti-
facts can manifest themselves in peculiar behav-
iors of the model. It is therefore advisable that
discrete models be implemented with checks rel-
ative to known properties of the continuous-math
model. Modern computers make the prospect of
fine time steps less of a practical (speed) concern,
but counterintuitive or quirky predictions of a
discrete modeling exercise should be interpreted
with caution.
The Drift-Diffusion Model

Perhaps the most common model of evidence
accumulation is the (continuous time) diffusion
model, increasingly referred to as the “drift-
diffusion to bound” model (DDM) (Shadlen
et al. 2006; Ratcliff 1978; Ratcliff and Rouder
1998; Palmer et al. 2005; Ratcliff and McKoon
2008). It stands as a hub because it is mathemat-
ically tractable (i.e., the psychometric and chro-
nometric functions can be derived analytically)
and can be flexibly extended to capture a wide
range of behavioral data. The simplest diffusion
models are composed of three parameters: a drift
rate, bound height, and accumulator noise. The
drift rate relates the stimulus units to a rate of drift
of the diffusion process. The bound height is the
stopping point (for two alternatives, e.g., H1 and
H2, symmetrically above and below an unbiased
start point). Accumulator noise is invariant across
stimulus conditions and describes the noise in the
accumulation process. This version of the model
is overdetermined and can be rewritten as a two-
parameter model with bound height or noise fixed.
The diffusion model can be easily extended. For
example, an additive nondecision time may be
included to account for nondecisional sensory
transduction and motor execution delays. Param-
eters added to model trial-to-trial variability in
drift rate and residual time can capture phenomena
like delayed reaction times for incorrect trials
(Ratcliff 1978; Ratcliff and Rouder 1998; Ratcliff
and McKoon 2008).
Evidence Accumulation in Neurons

The presence or implementation of diffusion-like
algorithms in the brain is still a matter of signifi-
cant interest and contention. The first direct evi-
dence for a putative diffusion process in the brain
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was observed in the spike rates of single neurons
in the lateral intraparietal sulcus (LIP) of macaque
monkeys during a stochastic motion discrimina-
tion task where the experimenter can control the
amount of motion (the “evidence”) on a single
trial (Shadlen and Newsome 2001; Roitman and
Shadlen 2002). Neurons in the LIP have a mean
spike rate that ramps up for choices that result in
an eye movement into their response field
(RF) and ramps down for choices out of their
RF. Moreover, the slope of the ramp is steeper
for trials with more evidence, mirroring the drift
rate of a diffusion process. Time-varying motion
stimuli have further supported the notion that LIP
neurons reflect temporal accumulation
(integration) of relevant sensory signals (Huk
and Shadlen 2005; Kiani et al. 2008). Other
work has shown that the spike rates of single
neurons in a range of cortical and subcortical
brain areas also exhibit correlates of a diffusion
process (Ratcliff et al. 2007; Ding and Gold
2012a, b).

To date, these early investigations shed little
light on exactly how neurons might implement
time integration, yet understanding the biophysical
mechanisms may provide significant insights into
the cognitive constraints of evidence accumulation
(Huk and Meister 2012; Wong and Wang 2006).
Likewise, the current focus on responses as aver-
aged over neurons, trials, and sessions paints a
categorical and potentially inaccurate picture of
what occurs on the time scale of individual trials
and decisions (Churchland et al. 2011). The next
generation of work on this topic will hopefully
unpack how the theoretical mechanisms of evi-
dence accumulation are implemented by real neu-
ral circuits (Bollimunta et al. 2012).
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Synonyms

Auditory recognition; Sound source identification
Definition

Timbre is what allows a listener to distinguish
two sounds that have otherwise the same sub-
jective pitch, loudness, location, and duration.
For instance, when orchestral musicians tune at
the beginning of a concert, they all play the
same note, but one can still tell the difference
between instruments. This is largely because of
timbre.
Detailed Description

The standard definition of timbre has several
shortcomings. First, it says what timbre is not,
rather than what it is. Second, it relates to the
comparison between two sound tokens, whereas
a more useful function for hearing is to associate a
single timbre directly with a sound source (the
timbre of the piano, the timbre of the voice of a
friend). Perhaps as a consequence, there is still a
lively debate about the acoustic features, mental
representations, and neural mechanisms underly-
ing timbre recognition. Here, we first outline the
basic principles that make timbre such a powerful
potential cue for sound source identification. Then
we put forward two possible approaches to tim-
bre, which we follow into the fields of acoustics,
perception, neural mechanisms, and computa-
tional applications.
Why Do Different Sound Sources
Produce Different Timbres?

Sound sources are physical objects that come in
all shapes and sizes. Sound is produced when
some energy makes the object vibrate. The vibra-
tions spread around the source, which then prop-
agate to the air and reach the ear of a listener in
the form of pressure waves (Fig. 1). Simple
physics shows that the wave pattern at the ear
can contain a lot of information about what hap-
pened at the source (Helmholtz 1877). For
instance, if the energy input was brief, such as a
door knock, the chances are that the sound itself
will be brief and have most of its energy concen-
trated around the time of the knock. After the
knock, the way the door continues to vibrate is
closely related to its geometry, because some
wave patterns are consistent with some geome-
tries and some are not. One such rule is that
waves with low frequency and thus a long wave-
length are not stable within small objects. Thus,
the proportions of different frequency compo-
nents that combine to make the sound of a door
knock will be constrained by the size of the door.
Other, more complex rules apply, depending on
the shape of the object, the nature of the materials
involved, and so on.

Being able to decode the intricate links
between wave patterns and sound sources is
extremely useful for humans and other animals.
It allows the auditory system to serve as a warning
sense, for instance, to identify sound-producing
objects that are out of sight. For people, it is also
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Acoustic Timbre Recognition, Fig. 1 Visual represen-
tations of four sounds with the same duration, loudness,
and pitch, only differing by timbre. Each panel displays a
time-frequency analysis derived from an auditory model
(see Agus et al. 2012 for details). Briefly, color indicates
the pattern of energy within frequency channels (y-axis) as
it evolves over time (x-axis). The top trace is the
corresponding pressure waveform. The right-hand trace is

the average energy over time. The two instruments illus-
trate classic dimensions of timbre: depending on the sound
source and how it is excited, the attack time can be fast
(piano) or slow (trombone); the spectral center of mass can
be high (piano) or low (trombone). The two vowels illus-
trate that other possibly more complex features may also be
used to distinguish, e.g., vowels from instruments or
vowels from each other
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the very basis of spoken language: vowels and
consonants are produced by modulating the
shape of the vocal apparatus, resulting in changes
in timbre that are the building blocks of oral
communication.
Acoustic Timbre Recognition, Fig. 2 Schematic repre-
sentation of the dimensions approach versus the features
approach for timbre. (a) For the dimensions approach, all
different timbres can be projected in a low-dimensional
space of continuous dimensions. (b) For the features
approach, each timbre is defined by a set of distinctive
features among a very large and unordered set of possible
features
Dimensions Versus Features

There is no consensus on what makes timbre
recognition possible for human listeners. To out-
line current controversies, it is useful to consider
two opposite viewpoints (Fig. 2). A first view is
that timbre is composed of a reasonably small
number of perceptual dimensions, which are sub-
jective descriptions of sound just as pitch or loud-
ness. Such dimensions must be metameric, in that
several different sounds may project to the same
point on the dimension.
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A second view is that timbre recognition relies
on the distinctive features of a given sound source,
learned through experience and selected among a
very large space of potential features. The grain of
a friend’s voice may be unique, which is what
allows us to recognize her instantly. Such features
would be conceptually different from dimensions
in that a feature does not necessarily apply to all
possible sound sources; in fact, it is precisely
because it is unique to only a few sources
(or even a single source) that it could be efficient
for recognition.

It is likely that a full account of timbre will lie
somewhat in between these two simplified
hypotheses. However, for clarity, we continue to
contrast each approach for different aspects of
timbre research.
Sound Representations

To investigate timbre, it is useful to represent
sound visually. Classically, this has been done
with tools such as the trace of the pressure wave-
form over time; the spectral analysis of compo-
nent frequencies through, e.g., Fourier analysis;
or spectro-temporal transformations such as the
short-term Fourier transform or wavelet ana-
lyses. More recently, computational models that
aim to mimic peripheral or central auditory pro-
cessing have been suggested (e.g., Patil
et al. 2012).

In the “dimensions” approach, summary statis-
tics are computed on sound representations to
define what are referred to as descriptors of tim-
bre. For instance, the center of mass of all fre-
quency components of a sound produces a single
number that is correlated with the apparent
“brightness” of a sound (McAdams et al. 1995).
In the “features” approach, the tendency is rather
to maximize the richness of the representation, by
including complex spectro-temporal selectivities.
Such a feature-based representation need not be
orderly. It can be over-complete with thousands of
partially overlapping features, or sparse, in the
sense that a given sound would only activate a
small number of features within that large possible
space (Hromadka and Zador 2009).
Perceptual Data

The basic aim of the dimensions approach is to
uncover the nature and number of the perceptual
dimensions underlying timbre. To this effect,
statistical techniques based on multidimensional
scaling have been used: a pair of sounds is pre-
sented to the listener, who has to rate how similar
to each other the two sounds seem. This is
repeated for all possible pairs within a given
sound set. Then, the similarity judgments are
treated as perceptual distances and used to
obtain the dimensionality and geometry of the
corresponding mental representation. For musi-
cal instruments, classic studies point toward two
to three main dimensions: one related to the
attack time, one related to the spectral center of
mass, and one additional dimension that is less
consistently observed (Grey 1977; McAdams
et al. 1995). More recent investigations, using
both multidimensional scaling and verbal
descriptions, suggest five main dimensions
with more complex interpretations (Elliott
et al. 2013).

In the features approach, the focus is not on
similarity but rather on the recognition of the
sound source. Again, using musical instruments,
fast recognition times have been observed (Agus
et al. 2012), and recognition was found to be
preserved even for severely impoverished signals
(Suied et al. 2013). Moreover, recognition was
faster and more robust for highly familiar sources
such as the human voice, an observation that
could not be traced back to simple acoustic dimen-
sions (Agus et al. 2012). These results strongly
suggest the existence of diagnostic features that
were learned by listeners, through experience, to
recognize, e.g., voices in a robust and efficient
manner.
Neural Bases

Neural correlates of generic timbre dimensions
have been investigated with brain imaging.
Using an EEG paradigm to probe sensory mem-
ory known as mismatch negativity, it has been
found that timbre dimensions such as brightness
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or onset time could each be represented sepa-
rately within auditory cortex (Caclin
et al. 2006).

From the features perspective, single-unit
recordings have uncovered a rich variety of selec-
tivities, at many levels of the auditory system,
often without any obvious ordering principle
(other than by frequency). Using linear analysis
techniques such as reverse correlation,
spectro-temporal receptive fields have been
derived. Various spectral and temporal modula-
tion preferences have been observed, e.g., in the
primary auditory cortex (Depireux et al. 2001).
Adding a nonlinear component to the analysis
adds another layer of complexity (Machens et al.
2004). Furthermore, the neural encoding of timbre
may interact with supposedly independent sound
characteristics, such as pitch or location (Bizley
et al. 2009).

A further question is whether the identity of a
source will be encoded by the activity of a wide
network shared by many sound sources or by the
activity of only a small network specifically
tuned to that source category. Evidence has
been put forward for both models. Using fMRI,
the identity of a sound source can be inferred
from distributed activity (Staeren et al. 2009).
At the same time, there are clear indications of
localized brain areas specialized for familiar
sound sources such as the human voice (Belin
2006).
Timbre Recognition by Machines

There are several applications for acoustic timbre
recognition, such as speaker identification or
music information retrieval. Even though the
techniques used are fast evolving and a detailed
description is beyond the scope of this section, it is
interesting to note that the dimensions versus fea-
tures contrast can also be seen in the architectures
of the computational systems.

Automatic speech recognition, which can to
some extent be viewed as a timbre-decoding
exercise, has a long tradition of performing clas-
sification on a small number of generic coeffi-
cients (e.g., mel-frequency cepstrum coefficients
and their variants (Hermansky 1990)). For musi-
cal instruments, a descriptor-based approach has
been directly inspired by the perceptual dimen-
sions of multidimensional studies, with a reason-
ably small number of explicit descriptors
(Peeters et al. 2011). However, other systems
exist that are based on feature generation from a
huge potential feature space, followed by ad hoc
selection for a given classification task (Coath
and Denham 2005; Pachet and Roy 2009). For
musical instrument classification, machine-
learning algorithms applied on a high-
dimensional auditory model representation have
also been successfully demonstrated (Patil
et al. 2012).
Perspectives

The outstanding issues for timbre research will
probably benefit from considering the various
strategies available to a listener. For instance,
when asked for subjective distance judgments,
the most reasonable thing to do may be to
abstract common dimensions to a sound set,
and then use those for the comparisons. How-
ever, when asked to recognize a source as fast as
possible, the mere presence of a diagnostic fea-
ture may be sufficient. The set of useful timbre
dimensions or features can also depend on the
task: for a same set of spoken words, different
strategies are used if listeners are asked to iden-
tify the speaker or report the word content
(Formisano et al. 2008). Finally, the very neural
representation of timbre may be dynamically
tuned to the immediate acoustic context, through
rapid plasticity (Fritz et al. 2003). A fundamental
reason that makes timbre so elusive may there-
fore be that timbre recognition is a profoundly
adaptive mechanism, able to create and use
opportunistic strategies that depend on the
sounds and task at hand.
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Action Planning
▶Decision-Making, Motor Planning
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Synonyms

Back-propagating action potentials (bAPs);
Back-propagating spikes
Definition

Action potential (AP) back-propagation, as
opposed to forward-propagation along the axon,
consists of the conduction of the axonally initiated
AP along neuronal dendrites, in the form of a
depolarization sustained by both active and pas-
sive mechanisms. The amplitude of the depolari-
zation generally decreases along the dendrites
with increasing distance from the soma; the
degree of attenuation is highly variable and
depends on the neuronal type.
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Detailed Description

Simultaneous recordings from dendrites, soma,
and axon have shown that action potentials are
generally initiated in the axon initial segment, the
region with the lowest threshold for AP initiation
(Stuart et al. 1997; Spruston et al. 2016). In addi-
tion to canonical forward-propagation along the
axon to the presynaptic terminals, APs rapidly
invade the soma and propagate back into the den-
drites, where voltage-dependent channels actively
support the depolarization (Spruston et al. 2016).
As opposed to all-or-none axonal APs, the ampli-
tude of back-propagating action potentials (bAPs)
can be modulated and generally decreases along
the dendrites with the distance from the soma. The
extent of back-propagation varies widely in the
different neuronal types investigated, ranging
from non-decremental to almost passive (Fig. 1).

Determinants of Action Potential Back-
Propagation
The main factors that determine the extent of
action potential back-propagation are (a) density
and properties of dendritic voltage-dependent
channels, (b) neuronal morphology, and
(c) neuronal activity (firing history and concurrent
inputs).

Dendritic voltage-dependent channels:
Different neuronal types have distinct distribu-
tions of dendritic voltage-dependent ion channels
(Migliore and Shepherd 2002, 2005; Magee
2016). AP back-propagation is sustained by den-
dritic voltage-dependent Na+ channels and acti-
vates Ca2+ channels (Johnston et al. 1996).
Dendritic K+ channels can modulate the
Action Potential
Back-Propagation,
Fig. 1 Amplitude of bAPs,
normalized to the amplitude
of the somatic AP, along the
apical dendrite, plotted as a
function of the distance
from the soma, in neurons
from different brain areas.
(Reproduced with
permission from Waters
et al. 2005)
amplitude and extent of back-propagation; their
role has been most extensively studied in hippo-
campal CA1 pyramidal neurons, where the den-
sity of A-type (Kv4.2) K+ currents increases along
the apical dendrites with the distance from the
soma (Johnston et al. 2000). Therefore, the extent
of back-propagation along the dendrites depends
on the relative density of dendritic Na+ and K+

channels (see the interactive example in Fig. 2)
and is affected by channel modulation by neuro-
transmitters or plasticity (Johnston et al. 1999;
Magee and Johnston 2005).

Morphology: It is difficult, if not impossible, to
experimentally assess the exclusive contribution
of dendritic morphology, and the relation to ion
channel properties, to action potential back-
propagation. However, computational simula-
tions have shown that significant differences
in propagation can be attributed exclusively to
dendritic geometry. When the same active and
passive parameters were inserted in compartmen-
tal models with reconstructed morphologies of
various neuronal types, there was a strong corre-
lation between back-propagation and dendritic
geometry (branch points and relative impedance;
see Fig. 3; Vetter et al. 2001; Spruston et al. 2016).
These results indicate that dendritic morphology
and branching patterns have a fundamental role in
shaping back-propagation.

Neuronal Activity: Dendritic excitability and
AP back-propagation are highly dependent
on the membrane potential and therefore on con-
current neuronal activity, as well as the firing
history of neurons. Hippocampal CA1, entorhinal
layer V, and neocortical layer V (but not layer
II/III) pyramidal neurons show a significant



Action Potential Back-Propagation, Fig. 2 Effect of
different densities of dendritic Na+ and A-type K+ currents
on AP back-propagation in CA1 pyramidal neurons. An
interactive example, where channel densities can be mod-
ified, is available at http://senselab.med.yale.edu/
ModelDB/ShowModel.asp?model¼148646
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activity-dependent decrease in the amplitude of
bAPs along the apical dendrites during high-
frequency trains (Johnston et al. 1999; Gasparini
2011). In CA1 and entorhinal layer V pyramidal
neurons, this behavior is mostly due to a slow,
cumulative inactivation of dendritic Na+ channels
and can be reduced by neurotransmitters activat-
ing protein kinase C (Johnston et al. 1999; Magee
2016). In addition, the amplitude of bAPs at distal
locations can be boosted by appropriately timed
synaptic inputs (see the interactive example in
Fig. 4), which promote back-propagation by
inactivating A-type K+ channels or by facilitating
Na+ channel activation (Migliore et al. 1999;
Spruston 2008). On the other hand, the bAP-
induced depolarization and Ca2+ influx can be
significantly reduced by inhibition, achieved
experimentally through either GABA uncaging
or stimulation of individual of inhibitory interneu-
rons (Boivin and Nedivi 2018).

Functional Role
The depolarization and Ca2+ influx associated
with bAPs provide feedback to the region that
received the synaptic input, signaling that the
neuron has generated an output. This feedback
signal has important consequences on neuronal
firing and synaptic plasticity. In neocortical layer
V neurons, pairing bAPs with a distal synaptic
input initiates a dendritic Ca2+ spike (back-
propagation-activated Ca2+ or BAC spike),
which results in a burst of somatic APs, possibly
a marker for cortical associations (Spruston 2008;
Palmer et al. 2016). In many neurons, the appro-
priate timing of bAPs and EPSP can cause
long-term changes in synaptic efficacy (spike-
timing-dependent plasticity or STDP). The depo-
larization associated with the bAP provides the
coincidence detection needed for the removal of
Mg2+ from NMDA glutamatergic receptors, trig-
gering plasticity phenomena (Maheux et al.
2016). The Ca2+ influx caused by bAP has also
been suggested to mediate dendritic release of
neurotransmitters (Ludwig and Pittman 2003).
The functional role of bAPs in relation to animal
behaviors is more difficult to establish, since dual
dendritic and somatic recordings in vivo are
extremely more challenging than in vitro (but
see Roome and Kuhn 2018 for recent develop-
ments); therefore dendritic signals cannot be
unequivocally interpreted (Palmer et al. 2016).

Techniques to Study Back-Propagation
The interaction of experimental and
computational methods has been essential to
understanding the mechanisms underlying AP
back-propagation, allowing intrinsic limitations
of the individual approaches to be overcome.

Direct electrophysiological recordings with
the patch-clamp technique in different configura-
tions have been performed at various distances
from the soma mostly on larger diameter dendrites

http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=148646
http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=148646
http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=148646


Action Potential
Back-Propagation,
Fig. 3 Effect of dendritic
morphology on AP back-
propagation in
computational simulations
with identical dendritic
passive properties and
channel types and densities.
(a–c) color-coded
representation of dendritic
AP amplitude in
reconstructed morphologies
from a substantia nigra
dopaminergic neuron (a),
neocortical layer V neuron
(b), and cerebellar Purkinje
neuron. (d–f) bAP
amplitude as a function of
the distance from the soma
for the cells in a–c.
Reproduced with
permission fromVetter et al.
2001
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(Gurkiewicz and Korngreen 2006), providing
information on channel distributions (Magee
2016) and back-propagation (Waters et al. 2005).
Fluorescence imaging techniques (using Ca2+-
or voltage-sensitive dyes) have been used to
assess smaller dendrites and compartments
and/or to obtain data from many dendritic loca-
tions in a single neuron. More recently, geneti-
cally encoded calcium and voltage indicators
have been developed and expressed in neurons,
pushing the boundaries of large-scale, high-
resolution monitoring of neuronal activity (Deo
and Lavis 2018). These experimental techniques
have advantages and limitations (Waters et al.
2005; Scanziani and Häusser 2009). For this rea-
son, the investigation of AP back-propagation and
its functional roles have greatly benefitted from
computational models that use biophysically and
morphologically accurate implementations. These
models have supported, explained, and predicted



Action Potential Back-Propagation, Fig. 4 Effect of
pairing a synaptic input with AP back-propagation in CA1
pyramidal neurons. If the timing is appropriate, bAP is
boosted by the synaptic input (red trace). An interactive
example, where the timing between AP and synaptic input
can be modified, is available at http://senselab.med.yale.
edu/ModelDB/ShowModel.asp?model¼148646
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several experimental findings on AP back-
propagation (Schaefer et al. 2003; Watanabe
et al. 2002). An optimal approach to studying
and understanding AP back-propagation is there-
fore a synergistic loop, with experiments
suggested by computational simulations, and
experimental outcomes used to constrain the
models.
Cross-References

▶Action Potential Initiation
▶Delayed Rectifier and A-Type Potassium
Channels

▶Basal Ganglia: Dopaminergic Cell Models
▶High-Voltage-Activated Calcium Channels
▶Long-Term Plasticity, Biophysical Models
▶Low-Voltage-Activated Calcium Channels
▶Multiscale Modeling of Purkinje Cells
▶N-Methyl-D-Aspartate (NMDA) Receptors,
Conductance Models

▶Neuromodulation: Overview
▶NEURON Simulation Environment
▶ Patch Clamp Technique
▶Reduced Morphology Models
▶ Short-Term Plasticity, Biophysical Models
▶ Sodium Channels
▶ Spike-Timing Dependent Plasticity (STDP),
Biophysical Models

▶Voltage Sensitive Dye Imaging, Intrinsic
Optical Signals

Acknowledgments This work was supported by the
National Institutes of Health (grant NIH R01 MH115832
under the CRCNS program to SG) and by the Horizon
2020 Framework Programme for Research and Innovation
under the Specific Grant Agreement No. 785907 (Human
Brain Project SGA2) to MM.
References

Boivin JR, Nedivi E (2018) Functional implications of
inhibitory synapse placement on signal processing in
pyramidal neuron dendrites. Curr Opin Neurobiol
51:16–22

Deo C, Lavis LD (2018) Synthetic and genetically encoded
fluorescent neural activity indicators. Curr Opin
Neurobiol 50:101–108

Gasparini S (2011) Distance- and activity-dependent mod-
ulation of spike back-propagation in layer V pyramidal
neurons of the medial entorhinal cortex. J Neurophysiol
105:1372–1379

Gurkiewicz M, Korngreen A (2006) Recording, analysis,
and function of dendritic voltage-gated channels.
Pflugers Arch 453:283–292

Johnston D, Magee JC, Colbert CM, Cristie BR
(1996) Active properties of neuronal dendrites. Annu
Rev Neurosci 19:165–186

Johnston D, Hoffman DA, Colbert CM, Magee JC
(1999) Regulation of back-propagating action poten-
tials in hippocampal neurons. Curr Opin Neurobiol
9:288–292

Johnston D, Hoffman DA, Magee JC, Poolos NP,
Watanabe S, Colbert CM, Migliore M (2000) Dendritic
potassium channels in hippocampal pyramidal neu-
rons. J Physiol 525(Pt 1):75–81

Ludwig M, Pittman QJ (2003) Talking back: dendritic
neurotransmitter release. Trends Neurosci 26:255–261

Magee JC (2016) Voltage-gated ion channels in dendrites.
In: Stuart G, Spruston N, Haüsser M (eds) Dendrites,
3rd edn. Oxford University Press, New York,
pp 259–284

Magee JC, Johnston D (2005) Plasticity of dendritic func-
tion. Curr Opin Neurobiol 15:334–342

Maheux J, Froemke RC, Sjöström PJ (2016) Functional
plasticity at dendritic synapses. In: Stuart G,

https://doi.org/10.1007/978-1-0716-1006-0_237
https://doi.org/10.1007/978-1-0716-1006-0_227
https://doi.org/10.1007/978-1-0716-1006-0_227
https://doi.org/10.1007/978-1-0716-1006-0_86
https://doi.org/10.1007/978-1-0716-1006-0_230
https://doi.org/10.1007/978-1-0716-1006-0_351
https://doi.org/10.1007/978-1-0716-1006-0_130
https://doi.org/10.1007/978-1-0716-1006-0_473
https://doi.org/10.1007/978-1-0716-1006-0_354
https://doi.org/10.1007/978-1-0716-1006-0_354
https://doi.org/10.1007/978-1-0716-1006-0_787
https://doi.org/10.1007/978-1-0716-1006-0_795
https://doi.org/10.1007/978-1-0716-1006-0_133
https://doi.org/10.1007/978-1-0716-1006-0_245
https://doi.org/10.1007/978-1-0716-1006-0_358
https://doi.org/10.1007/978-1-0716-1006-0_134
https://doi.org/10.1007/978-1-0716-1006-0_359
https://doi.org/10.1007/978-1-0716-1006-0_359
https://doi.org/10.1007/978-1-0716-1006-0_541
https://doi.org/10.1007/978-1-0716-1006-0_541
http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=148646
http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=148646
http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=148646


156 Action Potential Initiation
Spruston N, Haüsser M (eds) Dendrites, 3rd edn.
Oxford University Press, New York, pp 505–555

Migliore M, Shepherd GM (2002) Emerging rules for the
distributions of active dendritic conductances. Nat Rev
Neurosci 3:362–370

Migliore M, Shepherd GM (2005) Opinion: an integrated
approach to classifying neuronal phenotypes. Nat Rev
Neurosci 6:810–818

Migliore M, Hoffman DA, Magee JC, Johnston D (1999)
Role of an A-type K+ conductance in the back-
propagation of action potentials in the dendrites of
hippocampal pyramidal neurons. J Comput Neurosci
7:5–15

Palmer L, Murayama M, Larkum M (2016) Dendritic
integration in vitro. In: Stuart G, Spruston N,
Haüsser M (eds) Dendrites, 3rd edn. Oxford University
Press, New York, pp 399–427

Roome CJ, Kuhn B (2018) Simultaneous dendritic volt-
age and calcium imaging and somatic recording from
Purkinje neurons in awake mice. Nat Commun
23:3388

Scanziani M, Häusser M (2009) Electrophysiology in the
age of light. Nature 461:930–939

Schaefer AT, Larkum ME, Sakmann B, Roth A (2003)
Coincidence detection in pyramidal neurons is tuned
by their dendritic branching pattern. J Neurophysiol
89:3143–3154

Spruston N (2008) Pyramidal neurons: dendritic struc-
ture and synaptic integration. Nat Rev Neurosci
9:206–221

Spruston N, Stuart G, Häusser M (2016) Principles of
dendritic integration. In: Stuart G, Spruston N, Haüsser
M (eds) Dendrites, 3rd edn. Oxford University Press,
New York, pp 351–398

Stuart G, Spruston N, Sakmann B, Häusser M (1997)
Action potential initiation and backpropagation in neu-
rons of the mammalian CNS. Trends Neurosci 20:
125–131

Vetter P, Roth A, Häusser M (2001) Propagation of action
potentials in dendrites depends on dendritic morphol-
ogy. J Neurophysiol 85:926–937

Watanabe S, Hoffman DA, Migliore M, Johnston D (2002)
Dendritic K+ channels contribute to spike-timing
dependent long-term potentiation in hippocampal pyra-
midal neurons. Proc Natl Acad Sci U S A 99:
8366–8371

Waters J, Schaefer A, Sakmann B (2005) Backpropagating
action potentials in neurones: measurement, mecha-
nisms and potential functions. Prog Biophys Mol Biol
87:145–170

Further Reading
Davie JT, Kole MH, Letzkus JJ, Rancz EA, Spruston N,

Stuart GJ, Häusser M (2006) Dendritic patch-clamp
recording. Nat Protoc 1:1235–1247

Spruston N, Häusser M, Stuart G (2013) Information pro-
cessing in dendrites and spines. In: Squire LR et al (eds)
Fundamental neuroscience, 4th edn. Elsevier,
Amsterdam, pp 231–260
Action Potential Initiation
Dejan Zecevic and Marko Popovic
Department of Physiology, Yale University
School of Medicine, New Haven, CT, USA
Synonyms

Spike initiation
Definition

Electrical impulses (action potentials (APs) or
spikes) which encode and transmit information
in the nervous system are initiated in the proximal
anatomical region of the axon termed axon initial
segment (AIS). The voltage threshold for spike
initiation and the exact location and length of the
spike trigger zone (TZ) within AIS, as well as the
amplitude and waveform of the action potential in
different neuronal classes, depend on the geome-
try and passive electrical properties of a neuron as
well as on the type, spatial distribution, and den-
sity of a variety of voltage-sensitive ionic
channels.
Detailed Description

There is little disagreement over attributing action
potential initiation to a site in the axon initial
segment (AIS) under most circumstances. The
question of the exact location and length, how-
ever, of the spike trigger zone (TZ) in the axon, as
defined in functional terms, is less clear. In most
studies, the spike TZwas characterized by a single
parameter, the distance from the soma, implying a
point of initiation. The length of the initiation site,
however, is fundamentally important because suc-
cessful initiation and propagation of the action
potential wave requires that a certain length of
an axon is brought to the threshold for excitation
(Rushton 1937). Besides the fundamental impor-
tance of characterizing the action potential
(AP) initiation site, the spike TZ location and

https://doi.org/10.1007/978-1-0716-1006-0_300584
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length have a recently discovered specific role in
tuning neuronal computation underlying a well-
defined function in auditory neurons which medi-
ate sound source localization (Carr and Boudreau
1993; Kuba et al. 2006; Kuba and Ohmori 2009).
Moreover, subsequent studies of Kuba et al.
(2010) and Grubb and Burrone (2010) reported a
novel finding that the structure of the spike TZ
mediates an intrinsic plasticity of the axon and
regulates the final stage of integration of synaptic
inputs. This places a great significance on our
ability to directly probe the location and length
of the spike TZ under different conditions. The
available information regarding TZ plasticity is
based on structural data (Grubb and Burrone
2010; Kuba et al. 2010). Molecular structure of
the spike TZ, however, is indirectly correlated
with function in a way that is not fully understood
(Fleidervish et al. 2010; Johnston 2010). Thus, the
anatomical data require functional confirmation.
The location and length of the spike TZ have been
difficult to measure directly using electrodes
because extracellular recordings cannot be
interpreted with sufficient accuracy and intracel-
lular recordings lack the necessary spatial resolu-
tion (e.g., Meeks and Mennerick 2007).
Membrane potential imaging (Vm imaging) offers
a unique advantage of high spatial resolution com-
pared with electrical recordings and has been used
to directly measure the location of action potential
initiation in invertebrate neurons (Zecevic 1996;
Antic et al. 2000) and mammalian axonal arbors
(Palmer and Stuart 2006; Palmer et al. 2010). This
technique was recently improved and utilized to
characterize functionally relevant parameters of
the spike TZ in layer 5 pyramidal neurons of the
cerebral cortex (Popovic et al. 2011). The measur-
ing technique and the analysis of data used to
determine the location and length of the spike
trigger zone are shown in Fig. 1.

A typical experimental measurement used to
determine the location and length of the spike TZ
is illustrated in Fig. 2. These two parameters are
obtained directly from multisite optical recording
of the membrane potential transients (Fig. 2a–c)
either by investigating spike latencies at the soma/
axon hillock and more distal axonal recording
locations or by the inspection of the spatial
distribution of membrane potential as a function
of time. The soma–axon latency is plotted against
recording distance from the edge of the soma in
Fig. 2d. An alternative way to derive the same
information from the data is to analyze a time
sequence of color-coded frames showing the spa-
tial maps of AP amplitude (Fig. 2e). The result of
this analysis is a temporal series of individual
frames separated by 10 ms; each showing the
spatial map of membrane potential at one point
in time. In Fig. 2e, four frames from this series
were selected to illustrate characteristic regions
along the axon that can be clearly identified during
AP initiation. The red region closest to the soma
was the first to cross the threshold value and reach
50% amplitude (time point 0 ms) and was identi-
fied as the AP TZ. The more distal red region
appearing with a delay (45 ms time point) is likely
to be the first node of Ranvier, corresponding to
the issuance of an axon collateral, as indicated in
the high-resolution image (Fig. 2a). The same data
are shown in Fig. 2f as AP signals scaled to the
same height and compared on an expanded time
scale. The two red traces show AP signals from
the two red areas in Fig. 2e corresponding to the
spike TZ and the first node. The green dashed
trace is the AP signal from the axon hillock. The
green trace is the AP signal from the first inter-
nodal region. The mean length of the TZ deter-
mined from the type of data shown in Fig. 2 was
16.5 � 1.1 mm with the mean center located at
28.9 � 1.0 mm from the edge of the soma.

Vm imaging can be used to analyze the spatial
pattern of AP propagation as revealed by moni-
toring transmembrane potential over longer sec-
tions of individual myelinated axons. Previously,
this information was not available for any neuron.
A representative experiment (well-stained neuron
characterized by long axons in one plane of focus
close to the surface of the slice) is illustrated in
Fig. 3. The spatial plot of the soma–axon latency
along an axonal section of approximately 300 mm
clearly identified the position of the spike TZ and
putative nodes of Ranvier; all characterized by
localized reduction in soma–axon latency typical
for saltatory conduction (Fig. 3a). The spatial plot
of AP latency provides a functional readout for the
position of the nodes of Ranvier. Figure 3c shows
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Action Potential Initiation, Fig. 1 Signal processing.
(a) Synaptic stimulation: Upper image – high-resolution
confocal image of a stained neuron with axon in recording
position. Recording electrode attached to soma and stimu-
lating electrode next to basal dendrite shown schemati-
cally. Lower image – low spatial resolution fluorescence
image of the axon obtained by CCD used for Vm imaging.
(b) Electrode recordings from soma and optical recordings
from spike TZ (red) and from node of Ranvier (green). Top
traces: raw data from nine trials showing temporal jitter in
AP initiation following synaptic activation. Second row of
traces: temporally aligned signals. Third row of traces:

averaged signal. Fourth row of traces: bleach correction.
Bottom traces: cubic spline interpolation with one pass of
temporal smoothing. (c) Somatic stimulation: Upper
image – high-resolution confocal image of another neuron
with axon in recording position. Lower image – low spatial
resolution fluorescence image of the axon obtained by
CCD used for Vm imaging. Traces on left: AP transients
from three locations: 1, electrode recording from soma; 2,
optical recording from axon hillock; and 3, optical record-
ing from the first node of Ranvier. Bottom traces: Super-
imposed signal from the same three locations
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Action Potential
Initiation,
Fig. 2 Measurement of the
spatial distribution of
membrane potential as a
function of time along the
proximal axon during AP
initiation. (a) High
resolution confocal image
of the axon in recording
position. (b) Low spatial
resolution fluorescence
image of the axon obtained
by CCD used for Vm
imaging. (c) AP signals
from 10 locations indicated
by yellow rectangles, each
10 mm in length. (d) Soma–
axon latency to 30% (grey)
and 50% (black) AP
amplitude as a function of
distance from the cell body.
The first minimum
identifies the location and
length of the spike TZ. (e)
Time sequence of frames
showing spatial profile of
colour coded relative Vm
amplitude in the axon at
four characteristic time
points: 0 ms – AP initiation
at TZ; 45 ms and 80 ms –
invasion of the first node;
240 ms – peak
depolarization. (f)
Comparison of AP signals
from four characteristic
locations on an expanded
time scale. The measured
data points and cubic spline
interpolation curves are
shown. Red traces – TZ and
first node; green dashed
trace – axon hillock; green
trace – first internodal
region. Membrane potential
colour scale shown on left
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a color-coded spatial map of the depolarizing AP
wave at one characteristic point in time which
indicates the position of the spike TZ as well as
nodes of Ranvier.

The voltage-sensitive dye imaging approach
allows determination of the location and length of
the spike TZ in the AIS of pyramidal neurons, as
defined in functional terms. In addition, it is possi-
ble to characterize the AP propagation pattern in
the main axon and collaterals. It is plausible to
predict that this approach will facilitate the analysis
of signal interactions underlying input–output



Action Potential
Initiation, Fig. 3 Spatial
pattern of AP initiation and
propagation in an individual
axon. (a) Soma–axon
latency to 50% AP
amplitude as a function of
distance from the soma. (b)
High-resolution image of an
axon in recording position.
(c) A color-coded spatial
distribution of relative Vm

amplitude in the axon at one
characteristic point in time
showing correlation
between the positions of
functionally determined
nodes of Ranvier and
axonal branch points in
panel B
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transformations carried out in neuronal processes
of different classes of nerve cells. The question of
TZ dimensions is of fundamental importance
because the size of the initiation site is a critical
functional parameter. Successful initiation and
propagation of the action potential wave requires
that a certain length of an axon is brought to thresh-
old for excitation to generate an action current large
enough to propagate. This follows from intuitive
considerations, from the classical theory (Rushton
1937), as well as from more recent experimental
studies (Colbert and Pan 2002; Meeks and
Mennerick 2007). Additionally, Na þ channel
clustering in the axon, which is critical in determin-
ing the spike TZ location and length, serves an
important specific function in tuning neuronal
computation underlying a well-defined function
(sound localization) in auditory neurons (Carr and
Boudreau 1993; Kuba et al. 2006; Kuba and
Ohmori 2009). These findings advocate that the
size and position of the spike TZ might be cell
specific in other central neurons, depending on
their function. Additionally, new data (Kuba et al.
2010; Grubb and Burrone 2010) show that the
structure (and, by extrapolation, the function) of
the spike TZ participates in neuronal plasticity and
might, in fact, be one of the key factors controlling
neuronal excitability and computation (Grubb and
Burrone 2010; Kuba et al. 2010; Rasband 2010).
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Synonyms

Models of pattern adaptation; Models of sensory
adaptation
Definition

Models of adaptation in sensory cortices provide a
functional and/or mechanistic description of the
changes in neural responses and perception caused
by sensory stimuli observed in the recent past. Sen-
sory systems compute dynamic representations of
the environment: cortical neurons typically adapt
their “code” according to the recently received sen-
sory input. This continuous recalibration is reflected
in changes in neuronal response properties and has
been interpreted as an adjustment of the limited
dynamical range to compensate changes in the envi-
ronment or changes in the observer. Functional
models of sensory adaptation have linked these
findings to optimal coding. Moreover, adaptation
has also been studied in biophysical and network
models, with the goal of understanding the mecha-
nisms that give rise to adaptation in biological cor-
tical circuits.
Detailed Description

Sensory adaptation refers to the changes in neu-
ronal responses and perception caused by a pro-
longed exposure to sensory stimuli. Adaptation

https://doi.org/10.1007/978-1-0716-1006-0_127
https://doi.org/10.1007/978-1-0716-1006-0_313
https://doi.org/10.1007/978-1-0716-1006-0_100663
https://doi.org/10.1007/978-1-0716-1006-0_100663
https://doi.org/10.1007/978-1-0716-1006-0_730
https://doi.org/10.1007/978-1-0716-1006-0_300371
https://doi.org/10.1007/978-1-0716-1006-0_300373
https://doi.org/10.1007/978-1-0716-1006-0_300373


162 Adaptation in Sensory Cortices, Models of
is a rapid form of plasticity that has a reversible
effect on neuronal selectivity: responses adapt
(on short time scales) and recover to their pre-
adapted state when the source of adaptation is
removed. It is found ubiquitously across differ-
ent sensory modalities (visual system (Kohn
2007; Clifford et al. 2007); auditory system
(King et al. 2011); whisker system (Petersen
et al. 2009)).

In psychophysical experiments, it can be
shown that adaptation alters perception: pro-
longed exposure to a stimulus typically leads to
“repulsive” aftereffects, which means stimuli sim-
ilar to the adapting stimulus appear to be more
different from the adapting stimulus than they
actually are. An example is the tilt aftereffect, in
which – after prolonged viewing of oblique lines –
vertical lines appear briefly as if they were tilted in
the opposite direction (see▶ “Visual Aftereffects,
Models of”).

Here, we focus on (1) functional models of the
computational principles that may underlie the
adaptive encoding of sensory information and
(2) models of the neuronal and synaptic mecha-
nisms giving rise to adaptation in cortical
circuits.
Adaptation in Sensory
Cortices, Models of,
Fig. 1 Adaptation to the
mean and the variance of
incoming sensory stimuli.
According to the efficient
coding hypothesis, a change
in the stimulus distribution
(top) should yield an
adaptive change of a
neuron’s transfer function
(bottom)
Adaptation as Optimal Coding

Sensory systems must encode natural stimuli
which change over many orders of magnitude
with the limited dynamical range of neuronal firing
rates. Adaptation has been proposed to serve for
adjusting the sensory representation to the current
statistics of the ever changing environment (Fig. 1).
This was formalized in the efficient coding hypoth-
esis (grounded in information theory), which states
that sensory systems seek to provide an efficient
representation of the natural environment by max-
imizing their information transmission capacity
(Barlow 1961; Laughlin 1981; Wark et al. 2007).
Given the statistics of the environment, this
hypothesis predicts the optimal input–output
behavior of a single neuron (Fig. 1) and how it
should adapt to the mean and variance of the cur-
rent stimulus intensity distribution.

Experimental evidence for efficient coding has
been found across a wide range of sensory modal-
ities and species: contrast adaptation in the visual
system (Kohn 2007; Clifford et al. 2007), fly visual
system (Laughlin 1981; Fairhall et al. 2001), mid-
brain of guinea pigs (Dean et al. 2005), inferior
colliculus of cats (Kvale and Schreiner 2004),

https://doi.org/10.1007/978-1-0716-1006-0_730
https://doi.org/10.1007/978-1-0716-1006-0_730
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songbird auditory forebrain (Nagel and Doupe
2006), and rat barrel cortex (Maravall et al. 2007).

In a similar spirit, adaptation has also been
linked to Bayesian inference, tackling questions
such as how to optimally combine sensory obser-
vations with prior knowledge about the stimulus
distribution (Doya et al. 2007). Adaptation could
be interpreted as changing the prior distribution
within the Bayesian theory of perception, or even
the likelihood model could be affected by
adapting stimuli (Stocker and Simoncelli 2006).
How cortical circuits might implement Bayesian
inference is an active research topic.
Modeling Underlying Neural
Mechanisms

A different class of models aims at understanding
the neuronal mechanisms that underlie adaptation.
In some cases the mechanisms have been studied
in detail experimentally, an example is contrast
adaptation in the visual system. Adaptation shifts
the contrast response curve of individual neurons
toward higher contrast levels, and this can be well
explained by the hyperpolarization of individual
neurons caused by the activation of intrinsic chan-
nels (Sanchez-Vives et al. 2000). This mechanism
accounts for a decrease in a neuron’s firing rate
due to sustained stimulation and is usually called
spike-frequency adaptation; for a phenomenolog-
ical model, see Benda and Herz (2003).

Often, however, the mechanisms underlying
adaptation are not well characterized experimen-
tally. Models can serve to integrate existing data
and to create testable predictions in order to dis-
cern different potential mechanisms. An example
is orientation adaptation, in which the prolonged
exposure to a visual stimulus of a particular ori-
entation yields changes of individual neuronal
tuning curves in the early visual system (Dragoi
et al. 2000) (see Fig. 2). A potential mechanism
underlying this adaptation phenomenon, in addi-
tion to spike-frequency adaptation, is short-term
synaptic depression. This form of rapid and
reversible plasticity leads to a decrease of synaptic
efficacy lasting from milliseconds to several sec-
onds, due to prolonged presynaptic activity. This
timescale is comparable to the timescale of orien-
tation adaptation, but synaptic depression has
mostly been studied in vitro, and direct experi-
mental evidence demonstrating that it is involved
in orientation adaptation is lacking. Synaptic
depression can be described by a change in trans-
mitter release probability in a phenomenological
model (Abbott et al. 1997; Tsodyks and Markram
1997). Computational studies have investigated
how synaptic depression, spike-frequency adap-
tation, and other mechanisms contribute to adap-
tive changes of visual cortical neurons. The
different studies do however reach different con-
clusions about which particular intrinsic or circuit
mechanism is the most likely origin of orientation
adaptation (Bednar and Miikkulainen 2000;
Chelaru and Dragoi 2008; Cortes et al. 2011).
We argue that for a full understanding of adapta-
tion mechanisms in early visual areas, it is neces-
sary to study how adaptation interplays with the
dynamics of local circuits, which are dominated
by strong, approximately balanced, excitation and
inhibition (Stimberg et al. 2009).

On the other hand, computational network
models have elucidated the link between orienta-
tion adaptation and the psychophysically observed
tilt aftereffect, which has long been a challenge
(Teich and Qian 2003). Computational models
showed how adaptive changes in the location, the
width, and the magnitude of single neuron tuning
curves give rise to characteristic changes in popu-
lation responses (Clifford et al. 2000; Compte and
Wang 2006). In fact, the relationship between
changes in experimentally measured single neuron
tuning curves and the response of a population of
neurons to a single stimulus (which is thought to
underlie perception) can be counterintuitive
(Fig. 2). For example, when neuronal tuning curves
shift away from the adapting orientation
(as typically observed experimentally), the
corresponding population activity shifts toward
the adapting orientation (Fig. 2a). If, on the other
hand, adaptation only causes a suppression of neu-
ronal responses close to the adapting stimulus
(Fig. 2b), the result is a shift of the population
activity away from the adapting stimulus
(as observed in the tilt aftereffect). Considered
together, the combination of adaptive changes
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Fig. 2 Example of the relationship between adaptive
changes in single neuron tuning curves and changes in
the population activity, which is thought to underlie per-
ception. (a) Adaptation shifts response curves of individual
neurons away from the adapting stimulus. Shown are the
tuning curves (responses of a neuron to visual stimuli of
different orientation) of three neurons with preferred ori-
entation 0�, 20�, and 40� (thin lines before adaptation, thick
lines after adaptation; triangle indicates the adapting

stimulus). Right: The repulsive tuning curve shifts corre-
spond to a shift of the population activity (response of a
population of neurons to a particular stimulus) toward the
adapting stimulus. The neuron label is determined by each
neuron’s preferred orientation. (b) Same as (a), but now
adaptation suppresses responses of individual neurons with
preferred direction close to the adapting stimulus. Right:
This corresponds to a shift of the population activity away
from the adapting stimulus

164 Adaptation in Sensory Cortices, Models of
observed at single neuron level in visual cortex is
indeed consistent with the observed changes in
perception (Jin et al. 2005). Note that in this frame-
work it is commonly assumed that adaptation alters
encoding in sensory cortical neurons, whereas
downstream areas “reading out” the stimulus-
related information are unaware of adaptation
(Seriès et al. 2009). The predicted perceptual effect
also depends on the hypothetical link between pop-
ulation activity and perception, that is, on the “read-
out” strategy (such as peak activity, population
vector, or maximum likelihood decoding).

More recently, there has been increasing inter-
est in studying high-level adaptation effects,
including face adaptation (Webster 2011) and
adaptation to the perception of causal interactions
(Rolfs et al. 2013). Computational modeling will
be helpful in answering interesting questions
related to these phenomena, such as to what
degree high-level effects can be explained by
adaptation to low-level features or how they
arise across the processing hierarchy due to recur-
rent interactions between cortical areas.
Cross-References

▶ Perception, Bayesian Models of
▶ Perceptual Decision-Making
▶ Short-Term Plasticity, Biophysical Models
▶ Spike-Frequency Adaptation
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Synonyms

Adaptive design optimization; Adaptive sam-
pling; Closed-loop experiments; Optimal experi-
mental design; Optimal stimulus design
Definition

Adaptive stimulus optimization refers to an exper-
imental approach in neuroscience where neuronal
or behavioral responses to stimuli presented on
previous trials are utilized to adaptively generate
new stimuli in an iterative, closed-loop manner,
usually by optimizing an objective function.
There are different choices for the objective func-
tion. For example, if the objective function is the
neural response itself, the optimization procedure
finds an optimal stimulus that drives maximum
response or is at least a local optimum in the
stimulus space. When the objective function is
the mutual information between the responses
and the unknown parameters of a stimulus-
response model, the optimization finds the stimu-
lus set that yields the most accurate parameter
estimation.
Detailed Description

Overview
Traditional experiments in the neurosciences have
typically a fixed set of stimuli chosen a priori to
elicit responses from neurons in an open-loop par-
adigm, with data analysis and model fitting taking
place post hoc. In recent years, with increases in
computer power and improvements of algorithms,
there has been a growing interest in adaptively
generating stimuli online during the course of
experimentation in an iterative, closed-loop man-
ner, where neuronal responses from previous trials
are used to generate new stimuli (Benda et al. 2007;
DiMattina and Zhang 2013; Potter et al. 2013; Park
and Pillow 2016). This general paradigm is illus-
trated schematically in Fig. 1.

Adaptive stimulus optimization has long
been used in psychophysics for estimating sen-
sory thresholds (Watson and Pelli 1983;
Kontsevich and Tyler 1999) and enjoys a large
body of theoretical results from the statistics and
machine learning literature (Paninski 2005;
Chaloner and Verdinelli 1995). In sensory neu-
roscience studies, stimuli have been adaptively
optimized for a wide variety of experimental
goals, including maximizing neural firing rates
(O’Connor et al. 2005; Chambers et al. 2014),
finding maximally informative stimulus ensem-
bles, (Machens et al. 2005), and estimating and
comparing models of sensory processing (Lewi
et al. 2009; DiMattina and Zhang 2011; Tam
2012; Park and Pillow 2012, 2016). In addition
to applications in systems-level sensory neuro-
science, closed-loop approaches have also been
applied in many diverse areas including cogni-
tive science, cellular neurophysiology, and
brain-computer interfaces (Myung et al. 2013;
Potter et al. 2013).
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Fig. 1 Schematic
illustration of adaptive
stimulus optimization,
where responses to
preceding stimuli are used
to generate subsequent
stimuli in a closed-loop
manner (Reproduced from
DiMattina and Zhang 2013)

Adaptive Stimulus Optimization 167

A

Optimizing Firing Rate
Methods for adaptive optimization of neuronal
firing rate fall broadly into two categories:
(1) hill-climbing methods and (2) genetic algo-
rithms. Hill-climbing methods utilize local pertur-
bations of a reference stimulus to estimate the
local response surface from noisy neural
responses, iteratively moving the reference stim-
ulus in a direction (e.g., the gradient) which
increases neural firing rate (Harth and Tzanakou
1974; O’Connor et al. 2005; Nelken et al. 1994;
Koelling and Nykamp 2012). Genetic algorithms
mimic biological evolution by broadly populating
the stimulus space with numerous stimuli and
using their elicited neural responses as a measure
of fitness. The fittest stimuli in each generation are
then used to define the next generation of stimuli
by recombination of their features in a manner
analogous to sexual reproduction (Yamane et al.
2008; Chambers et al. 2014). Genetic algorithms
have the advantage of being more robust to local
maxima than hill-climbing methods and more
extensively sampling the stimulus space.

Iso-response Surfaces
Instead of finding the single stimulus that optimizes
the firing rate, it is also useful to find the set of all
stimuli which elicit the same firing rate response.
The shape of these firing rate level sets can tell us
about how a sensory neuron combines stimulus
dimensions. This method has been applied in
diverse contexts, including studies of spectral inte-
gration in grasshopper auditory neurons and inte-
gration of photoreceptor inputs by V1 neurons
(Gollisch et al. 2002; Horwitz and Hass 2012).

Optimizing Information
Instead of characterizing a neuron by its preferred
or “optimal” stimulus, an alternative approach is
to characterize the neuron in terms of the stimulus
ensemble which its responses most reliably dis-
tinguish. This may be quantified by maximizing
the mutual information between the stimuli and
neural responses, and this technique was applied
byMachens et al. (2005) in a study of grasshopper
auditory receptor neurons.

Estimating and Comparing Models
Given an accurate model of the input-output rela-
tionship for a sensory neuron, it is possible in
principle to predict the neuron’s response to an
arbitrary stimulus. However, estimating high-
dimensional models from limited experimental
data often poses a serious technical challenge.
A study by Lewi et al. (2009) demonstrated that
adaptively selecting stimuli to optimize expected
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mutual information between neural responses and
model parameters allowed fast and robust estima-
tion of generalized linear models. Subsequent
work by DiMattina and Zhang (2011) extended
this idea to arbitrary stimulus-response models
and also considered the problem of adaptively
optimizing stimuli for comparing multiple, com-
peting neural models. These methods were veri-
fied experimentally in a study of spectral
integration in the primate inferior colliculus
(Tam 2012). More recent work has considered
the use of well-chosen priors to further speed
convergence of receptive field estimates (Park
and Pillow 2012, 2016). Optimization of sensory
stimuli for model estimation and comparison have
also been recently applied in vision psychophys-
ics and cognitive science (Wang and Simoncelli
2008; Myung et al. 2013; Kim et al. 2014).
Cross-References

▶Bayesian Approaches in Computational
Neuroscience: Overview
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▶Neural Coding
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Algorithmic Reconstruction of
Motoneuron Morphology
Joseph Graham
Blue Brain Project, École Polytechnique Fédérale
de Lausanne, Lausanne, Switzerland
Synonyms

Algorithmic generation of motoneuron morphol-
ogy; Computational synthesis of motoneuron
morphology; Computer generation of motoneu-
ron morphology
Definition

Algorithmic reconstruction of neuronal morphol-
ogy is the process of parameterizing neurite
branching patterns, quantifying the parameters
for a given population of experimentally
reconstructed neurons, and then feeding the data
into an algorithm which computationally gener-
ates populations of “virtual” neurons.
Detailed Description

Background
Digitization of neuronal morphology is important
for computational neuroscience because neuronal
morphology affects synaptic integration and firing
behavior within individual neurons as well as
determining potential connectivity with other neu-
rons (Ascoli 2002). However, experimental
reconstruction techniques are still largely manual
or, at best, semiautomated, requiring time and
skill to accurately capture neuronal morphology.
As computational models of the nervous system
grow in scale with computational power, there is
an increasing need for large numbers of digitized
(“virtual”) morphologies. Algorithmic generation
of virtual morphologies has the potential to fulfill
this need.

Motoneurons, as the nervous system’s “final
common pathway” of motor control (Sherrington
1906), have long been studied. These neurons
exhibit extensive dendritic arborizations that
may stretch over several millimeters in the spinal
cord (Cullheim et al. 1987a, b) which makes their
reconstruction particularly challenging. As such,
the earliest forays into algorithmic generation of
neuronal morphology occurred in motoneurons.
In particular, one set of reconstructed motoneu-
rons from Cullheim et al. (1987a, b) has been the
basis of algorithmic generation research by multi-
ple groups (these morphologies are available for
download at neuromorpho.org).

The general process of algorithmic generation
begins by parameterizing the neurite branching
patterns. These parameters are statistical distribu-
tions which are then quantified from experimental
reconstructions. Generation then proceeds from
the soma outwards, first generating primary
neurites which go on to branch or terminate
according to the chosen algorithm. This process
continues until all branches have terminated. The
algorithmic reconstructions are then compared to
the experimental reconstructions, whereupon per-
sistent differences are explored to improve the
parameterization and algorithm. As this process
is repeated, the algorithmic reconstructions
become more and more similar to the experimen-
tal. The ultimate goal of this line of research is the
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capability of generating populations of unique
morphologies which are statistically indistin-
guishable from the experimental population
upon which they are based and which capture
the natural variability of such a population.

Parameterization
Hillman (1979) was the first to propose that a set
of “fundamental” parameters could be used to
completely and parsimoniously describe neuronal
morphology. He recognized that there are two
separable aspects of neuronal morphology that
must be parameterized: the branching patterns
and the space-filling behavior. It is important to
remember that these parameters are not scalar
values, but rather statistical distributions, and
also that these parameters may be intercorrelated
or correlated with other local properties of the
arborization.

To capture the branching patterns, Hillman
proposed that every neurite tree begins with a
“stem diameter” and grows for a certain “segment
length” while changing diameter by “segment
taper.” If the final diameter of a branch is larger
than the “terminal diameter,” the branch bifur-
cates into two daughter branches, whose diame-
ters are related to that of their parent by the
“branch power” and whose relative diameters are
determined by the “daughter ratio.” Hillman pro-
posed that quantifying these parameters was suf-
ficient to completely describe neurite branching
patterns.

To capture the space-filling patterns, Hillman
proposed that one must measure the initial direc-
tion of neurite trees and the branching angles (the
angles that daughter branches make with regard to
the parent branch). Since that time, it has been
recognized that to capture space filling, more
parameters need to be measured. Proposed addi-
tions include some measure of “meander” (how
much a neurite’s direction changes as a branch
extends outwards) and some measure of “tro-
pism” (a force inducing a directionality in neurite
behavior, such as an apical dendrite extending
towards the pia).

Slightly different parameter sets have since
been proposed and explored based on Hillman’s
original fundamental parameters.
Algorithms
Burke et al. (1992) were the first to realize that
parameterization of neuronal morphology could
be used to algorithmically generate virtual
neurite trees. Using experimentally
reconstructed motoneurons (Cullheim et al.
1987a, b), their strategy was to “(1) devise a
model system that can simulate dendritic trees,
(2) derive the required model parameters directly
from measurements of real dendrites, and
(3) refine the parameter derivations or basic
model assumptions, based on the degree of con-
gruence between real and simulated dendrites”
(Burke et al. 1992). Using this methodology,
Burke et al. found correlations between their
parameters and local diameter and path length
from the soma. Marks and Burke later extended
this work (2007a, b) to include space-filling
parameters and the generation of entire neurons.

Ascoli and Krichmar (2000) were the first to
apply the methodology in order to create entire
neurons, by adding somatic and neurite trunk
parameters to a software package called
L-Neuron. This software package could replicate
Burke et al.’s (1992) algorithm, as well as several
algorithms derived more closely from Hillman’s
(1979) parameterization. Ascoli et al. (2001) then
went on to explore these algorithms using exper-
imental reconstructions of several different types
of neurons, including the motoneurons from
Cullheim et al. (1987a, b). Donohue and Ascoli
(2008) later extended this work to allow parame-
ters to be correlated with local neurite properties
(branch order, diameter, and path length from the
soma). In an extensive analysis, they explored
which local properties are most important for gen-
erating realistic morphologies.

Many groups have been exploring algorithmic
generation of neuronal morphology, but relatively
few have explicitly explored motoneurons.
Torben-Nielsen et al. (2008) developed a very
different sort of algorithm which they used to
explore motoneuron morphology. In this algo-
rithm, parameters are not quantified in advance,
but rather the entire parameter space is explored in
an evolutionary algorithm which can converge on
parameter values which produce realistic
morphologies.
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Summary

Algorithmic generation of motoneuron morphol-
ogy is a subset of general algorithmic generation
of neuronal morphology. The methodology offers
the promise of a deeper understanding of neuronal
morphology and may eventually fulfill the need of
computational neuroscientists for large numbers
of realistic morphologies for use in simulations.
While no algorithm has yet been capable of pro-
ducing morphologies which are statistically indis-
tinguishable from experimental reconstructions
across all morphometrics, much progress has
been made. The study of motoneurons is espe-
cially useful for algorithm development because
several different groups have explored the same
data set (Cullheim et al. 1987a, b), thus providing
a basis for further improvement.
Cross-References

▶Compartmental Models of Spinal Motoneurons
▶Morphologically Detailed Cellular and Pool
Motoneuron Models

▶Reconstruction, Techniques and Validation
▶ Synthetic Neuronal Circuits/Networks
▶ Synthetic Neuronal Morphology
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Definition

The Amari neural field model (cf. (Amari 1975,
1977)) provides a simple field-theoretic approach
to the dynamics of neural activity in the brain. The
model uses excitations and inhibitions over some
distance as an effective model of mixed inhibitory
and excitatory neurons with typical cortical con-
nectivities. The model is a scalar dynamical equa-
tion for the voltage or activity u(x, t) of the form.
@u
@t

x, tð Þ ¼ �u x, tð Þ

þ
ð
B

w x, yð Þf u y, tð Þð Þdy, x�B, t

� 0, ð1Þ
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where initial conditions u(x, 0)¼ u0(x), x � B are
given. Here, B is our brain, i.e., some domain
where the neural activity takes place; f is the
local activation function or firing rate function;
and w is the connectivity function which models
the strength of the connectivity or signal propaga-
tion from y � B to the point x.

A common choice for the activation function
has sigmoidal shape.
f sð Þ≔ 1

1þ e�b s�hð Þ , s�ℝ, ð2Þ

which is monotonously growing from f(�1) ¼
0 to saturation f(1)¼ 1 for large s, where h is the
threshold and β is a steepness parameter. Often,
the kernel w is chosen to be homogeneous, i.e.,
w(x, y) ¼ w(x � y). In this case, the integral
becomes a convolution integral, such that the
Amari equation can be written in the form.

@u
@t

¼ �uþ w� f uð Þ: ð3Þ

The Amari equation provides a continuous
analogue or continuous description of neural net-
works, which has become widely used in the
engineering community.
Historic Background and Applications

The earliest field models for describing and study-
ing neural activity dynamics go back to Beurle
(1956), investigating the proportion of active neu-
rons in randomly connected networks, followed
by work of Griffith (1963, 1965). The basis of
modern field dynamical models has been the
work of Cowan, Nunez, and Amari in the 1970s
(see Wilson and Cowan 1972, 1973; Nunez 1974;
Amari 1977). Cowan proposed an activity-based
model with two distinct populations of excitatory
and inhibitory subpopulations. Amari suggested a
more condensed scalar model with a Mexican hat-
type connectivity function, where excitation and
inhibition are reflected by the changing sign of the
connectivity kernel w(x � y).
The Amari neural field model has been applied,
e.g., to autonomous robotic behavior (Erlhagen
and Bicho 2006), embodied cognition (Schöner
and Dineva 2007), dynamic causal modeling
(Daunizeau et al. 2009), and language processing
(beim Graben et al. 2008; beim Graben and
Potthast 2012); for further details, we refer to the
recent tutorial by Coombes et al. (2013).
Theory

The problem (4) is an integrodifferential equation,
establishing an evolutionary dynamical system
with initial condition u(x, 0) ¼ u0(x), x � B, at
time t ¼ 0. For a Lipschitz continuous activation
function f, existence and uniqueness of a solution
u of Eq. 4 for all times and in one or several
dimensions are obtained under quite general con-
ditions based on elementary arguments and the
fixed-point theorem (compare Potthast and beim
Graben 2010). Over time, there has been signifi-
cant activity to study the existence and uniqueness
of bumps and waves in one spatial dimension
when a particular homogeneous kernel w(x � y)
is given (see Kishimoto and Amari 1979;
Ermentrout and McLeod 1993) where smooth
sigmoidal firing rates are used (see also Coombes
and Schmidt 2010; Oleynik et al. 2013; Coombes
and Owen 2004 for more general but still rather
restricted classes of functions f ).
Delay Neural Field Equation and
Homogeneous Kernels

Geometric singular perturbation analysis investi-
gates the stability of static or transient solutions,
and numerical bifurcation techniques investigate
the existence and properties of bifurcation points
in state or parameter spaces (compare Pinto and
Ermentrout 2001a, b; Laing and Troy 2003b). For
studies in two or more dimensions, we refer to
Taylor (1999), Laing and Troy (2003a), Folias and
Bressloff (2004), Laing (2005), Owen et al.
(2007), Kilpatrick and Bressloff (2010a), and
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Coombes et al. (2012). Often, the Eq. 4 is
complemented by a delay term.

@u
@t

x, tð Þ ¼ �u x, tð Þ

þ
ð
B

w x, yð Þf u y, y� D x, yð Þ
v

� �� �
dy,

ð4Þ

x � B, t� 0, where D(x, y) is the length of the
fiber between x and y and n is the finite propaga-
tion speed of signals. The above analysis for neu-
ral field equations has been extended to delay
equations (see Nunez 1974; Jirsa and Haken
1997; Coombes et al. 2003; Hutt 2004; Venkov
et al. 2007; Grindrod and Pinotsis 2010), includ-
ing dendritic processing (Bressloff and Coombes
1997) and synaptic depression (Kilpatrick and
Bressloff 2010b).

Most of the above work uses homogeneous
kernels w(x � y). More recent work that tackles
heterogeneity (primarily using simulations) can
be found in Brackley and Turner (2007), Bressloff
(2012), Schmidt et al. (2009), and Coombes et al.
(2012) and functional analytic results in Faugeras
et al. (2008), and Potthast and beim Graben
(2010). The inverse problems perspective for
either homogeneous or nonhomogeneous kernels
has been investigated by Potthast and beim Gra-
ben (2009) and beim Graben and Potthast (2009).
More recently, stochastic neural field equations
have become very popular; compare the review by
Bressloff (2012).
Advantages of the Approach

The Amari neural field model provides a very
concise scalar equation to model neural activity
and dynamics. In contrast to microscopic models,
it summarizes the activity of neurons into the
activity function u(x, t), which can be used to
reduce the computational complexity signifi-
cantly. The field-theoretic approach opens the
dynamic system to mathematical analysis and
beyond the range of discrete network models.
Limitations

The strength of the Amari model is its simplicity,
which is at the same time its strongest limitation. It
does not take into account the complex chemical and
physiological processes which take place in addition
to electrical dynamics in neural tissue, nor is it
capable to include the different temporal scales on
which these processes work and propagate.
Cross-References

▶Bifurcations, Neural Population Models and
▶Chaos, Neural Population Models and
▶ Inverse Problems in Neural Population Models
▶Neural Field Model, Continuum
▶Neural Population Model
▶ Pattern Formation in Neural Population Models
▶ Phase Transitions, Neural Population Models
and

▶ Stochastic Neural Field Theory
▶Wilson-Cowan Model
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Definition

A glutamate receptor that is permeable to sodium
ions and carries an excitatory synaptic current
following the binding of glutamate. AMPA recep-
tors are regulated to control the maximum
synaptic current by processes of synaptic plastic-
ity and they co-localize with NMDA receptors.
Detailed Description

AMPA receptors are named for the selective
agonist (α-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid) that does not bind well to
other glutamate receptors. The receptor is perme-
able to cations and can allow Na+, K+, and Ca2+ to
cross the membrane and has an equilibrium poten-
tial EAMPA ¼ 0 mV. The permeability to Ca2+ is
small and is not considered important for initiat-
ing signaling cascades. AMPA receptors are com-
posed of four types of subunits, and the
combination of subunits determines the kinetics
and permeability to cations.
Kinetics of AMPA Receptors

Mathematical representations of AMPA currents
include the time-dependent synaptic conductance,
gAMPA(t), in the current–voltage equation:
IAMPA tð Þ ¼ gAMPA tð Þ V tð Þ � EAMPAð Þ ð1Þ

The time-dependent synaptic conductance rep-
resents the opening and closing kinetics of the
receptor channels and may be based on a double
exponential function (or a similarly shaped
function).
gs tð Þ ¼ �gs e�t=t1 � e�t=t2
� �

ð2Þ

where t1 is the onset time constant (t2 < 0.1 ms)
and t2 is the decay time constant (t2 < 3 ms)
(Hestrin et al. 1990; Trussell et al. 1993; Jonas
et al. 1993). AMPA currents have a faster decay
than NMDA currents (Jonas and Spruston 1994)
and typically have a substantially larger peak
current.

Because AMPA currents are usually the dom-
inant excitatory synaptic currents, simple repre-
sentations of these currents may be the only
synaptic currents included in the practice of
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modeling neural circuits. In models with low time
resolution, AMPA currents may be represented as
increased currents in a single time bin without
short-term temporal details. However, these sim-
ple models may contain long-term plasticity that
changes the circuit dynamics over time by chang-
ing the strength of connections between neurons.
Computational Functions of AMPA
Receptors

The excitatory characteristics of AMPA cur-
rents can be the main driver of activity in a
network of neurons and for communication
across long distances such as from the periphery
to the central nervous system. Due to the short
time constants of AMPA kinetics, signal trans-
mission can carry high temporal precision. An
example of this precision is found in the audi-
tory pathway where the interaural time differ-
ence can be discerned to extreme precision
(Konishi 1990).

Another consequence of the short duration of
AMPA currents is that they require a large popu-
lation of independent asynchronous inputs to
deliver a constant depolarization to a neuron.
A single AMPA synapse can deliver a fast synap-
tic current that is filtered by cable properties of the
dendrite where the postsynaptic terminal is
located (Rall 1967). But there are temporal limi-
tations to how much filtering is possible to deliver
the excitatory effect to the spike-generating zone
of the postsynaptic neuron. Multiple AMPA cur-
rents located on the postsynaptic neurons can
overcome this constraint if the rate of incoming
spikes is high enough and well distributed in time
to overlap. Thus, the synaptic dynamics of a sin-
gle synaptic terminal may not have a great influ-
ence on the postsynaptic activity.

The strength of the synaptic current is not the
only determinant of the efficacy of the synaptic
input to generate a spike in the postsynaptic neu-
ron. Spikes are triggered by changes in membrane
potential, and the filtering properties of the neuron
are critical in how the dynamics of the individual
synapses are transformed into changes in postsyn-
aptic activity.
AMPA Synaptic Dynamics

In addition to the channel kinetics, AMPA cur-
rents exhibit short-term plasticity that can result
from both pre- and postsynaptic mechanisms
(Zucker and Regehr 2002; Blitz et al. 2004). Pre-
synaptic mechanisms affect the release of gluta-
mate and can influence the peak of the current on
subsequent presynaptic spikes. Postsynaptic
mechanisms affect the response of AMPA recep-
tors to the concentration of glutamate in the syn-
aptic cleft.

AMPA currents are also involved in long-term
plasticity and can be the main component of
changes in synaptic strength. AMPA currents do
not play a direct role in inducing long-term plas-
ticity but reflect the changes in presynaptic release
and their own response to glutamate caused by
other mechanisms.
Cross-References

▶Kinetic Models of Postsynaptic Currents
▶N-Methyl-D-Aspartate (NMDA) Receptors,
Conductance Models
References

Blitz DM, Foster KA, Regehr WG (2004) Short-term syn-
aptic plasticity: a comparison of two synapses. Nat Rev
Neurosci 5(8):630–640

Hestrin S, Sah P, Nicoll RA (1990)Mechanisms generating
the time course of dual component excitatory synaptic
currents recorded in hippocampal slices. Neuron 5(3):
247–253

Jonas P, Spruston N (1994) Mechanisms shaping
glutamate-mediated excitatory postsynaptic currents
in the CNS. Curr Opin Neurobiol 4(3):366–372

Jonas P, Major G, Sakmann B (1993) Quantal components
of unitary EPSCs at the mossy fibre synapse on CA3
pyramidal cells of rat hippocampus. J Physiol 472(1):
615–663

Konishi M (1990) The neural algorithm for sound locali-
zation in the owl. Harvey Lect 86:47

Rall W (1967) Distinguishing theoretical synaptic poten-
tials computed for different soma-dendritic distribu-
tions of synaptic input. J Neurophysiol 30(5):1138

Trussell LO, Zhang S, Ramant IM (1993) Desensitization
of AMPA receptors uponmultiquantal neurotransmitter
release. Neuron 10(6):1185–1196

https://doi.org/10.1007/978-1-0716-1006-0_355
https://doi.org/10.1007/978-1-0716-1006-0_354
https://doi.org/10.1007/978-1-0716-1006-0_354


Anatomy and Physiology of the Mammalian Auditory System 177

A

Zucker RS, Regehr WG (2002) Short-term synaptic plas-
ticity. Annu Rev Physiol 64(1):355–405

Further Reading
Dayan P, Abbott LF, Abbott L (2001) Theoretical neuro-

science: computational and mathematical modeling of
neural systems. Taylor & Francis, Cambridge, MA

Koch C (2004) Biophysics of computation: information
processing in single neurons. Oxford university press,
New York
Amplitude-Amplitude
Coupling
▶Theta-Gamma Cross-Frequency Analyses
(Hippocampus)
Anatomy and Physiology of
the Mammalian Auditory
System
Manuel S. Malmierca
Department of Cellular Biology and Pathology,
Faculty of Medicine, University of Salamanca,
Salamanca, Spain
Auditory Neuroscience Laboratory, Institute for
Neuroscience of Castilla y Léon, Salamanca,
Spain
List of Abbreviations
A1
 Primary auditory cortex

AC
 Auditory cortex

AMPA
 α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid

AN
 Auditory nerve

AVCN
 Anteroventral cochlear nucleus

CNC
 Cochlear nucleus complex

CNIC
 Central nucleus of the inferior

colliculus

DAS
 Dorsal acoustic stria

DCIC
 Dorsal nucleus of the inferior

colliculus
DCN
 Dorsal cochlear nucleus

DLL
 Lateral lemniscus dorsal nucleus

GABA
 γ-Aminobutyric acid

IAS
 Intermediate acoustic stria

IC
 Inferior colliculus

IHC
 Inner hair cell

LCIC
 Lateral cortex of the inferior colliculus

LOC
 Lateral olivocochlear neurons/system

LSO
 Lateral superior olive

MGB
 Medial geniculate body

MGD
 Dorsal division of the medial

geniculate body

MGM
 Medial division of the medial

geniculate body

MGV
 Ventral division of the medial

geniculate body

MNTB
 Medial nucleus of the trapezoid body

MOC
 Medial olivocochlear neurons/system

MSO
 Medial superior olive

NLL
 Nuclei of the lateral lemniscus

NMDA
 N-Methyl-d-aspartate

OHC
 Outer hair cell

PO
 Periolivary nuclei

SOC
 Superior olivary complex

SPO
 Superior paraolivary nucleus

VAS
 Ventral acoustic stria

VCN
 Ventral cochlear nucleus

VLL
 Ventral nucleus of the lateral lemniscus

VNTB
 Ventral nucleus of the trapezoid body
An auditory system is found in all classes of
vertebrates, including fish, amphibians, rep-
tiles and birds, and mammals. Although there
are important similarities across classes, the
system has evolved differently in the different
groups. Even within the class of mammals,
there are notable specializations, especially
in echolocating mammals such as cetaceans
and bats. Because one major objective in hear-
ing research is to understand the structure and
physiology of the human auditory system, this
entry is restricted to an overview of the gen-
eral plan of organization of the mammalian
system. Insights gained from research in ani-
mals should aid in identifying the causes of
hearing impairments in humans and represent
an important step toward developing effective
treatments.

https://doi.org/10.1007/978-1-0716-1006-0_100658
https://doi.org/10.1007/978-1-0716-1006-0_100658


178 Anatomy and Physiology of the Mammalian Auditory System
The specific auditory stimulus consists of pres-
sure waves arriving at the ear within a certain
frequency range. This audible frequency range
varies among species (e.g., humans,
0.02–20 kHz; rat, 0.25–70 kHz; mouse,
2–70 kHz; guinea pig, 0.2–45 kHz; and cat,
0.125–60 kHz) (reviewed in Malmierca 2003;
Fay 1988). Within their audible range, some spe-
cies, such as echolocating bats, are tuned to par-
ticular frequencies of special importance for their
behavior (reviewed in Fay and Popper 1994) and
are considered to be “auditory specialists”
(Echteler et al. 1994).

Sound waves are transmitted mechanically
through the outer and middle ear to the sensory
hair cells of the organ of Corti, in the cochlear
partition of the inner ear. Auditory nerve fibers
transmit information about receptor potentials
generated by the sensory hair cells to the
brainstem (Fig. 1). In contrast to the minimum of
two relay stations between the periphery and cere-
bral cortex in the visual and somatosensory
Anatomy and Physiology of the Mammalian Audi-
tory System, Fig. 1 Afferent and efferent innervation of
the cochlear epithelium. Several type I afferent fibers con-
verge onto single IHCs, while a single type II afferent
fibers innervate several OHCs. Type I fibers terminate in
the AVCN, and type II fibers terminate on the granule cell
regions (GrC) and marginal shell areas of the VCN and
systems, there is a minimum of three relays in
the auditory system (Fig. 2), with several stages
of convergence and divergence, and at least seven
levels of crossing fibers (Figs. 2 and 3), making
the auditory system uniquely complicated. In the
first relay center, the cochlear nuclear complex
(CNC), signals carried by the cochlear nerve are
channeled into a number of parallel ascending
tracts (Figs. 1 and 2), each with a particular course
and destination and each presumably serving a
different function (Fig. 3). Some of these termi-
nate in a collection of nuclei in the pons known as
the superior olivary complex (SOC). Ascending
auditory tracts from both the CNC and the SOC
converge on the inferior colliculus in the midbrain
(Figs. 2, 3, and 8). From the midbrain upward, the
auditory pathway is often divided into core or
“lemniscal” projections with a clear tonotopic
organization and belt or “nonlemniscal” projec-
tions where tonotopy is less sharp or absent (for
review, see Malmierca 2003; Malmierca and
Hackett 2010).
DCN. The efferent MOC innervate the OHCs, and the
efferent LOC innervate IHCs (cf. Figure 19) (Modified
after Brown et al. 1988). Abbreviations in the figure: DC
Dorsal cochlear nucleus, LTz Lateral nucleus of the trape-
zoid body,VCAAnteroventral cochlear nucleus, VCP Post-
eroventral cochlear nucleus



Anatomy and Physiology of the Mammalian Audi-
tory System, Fig. 2 Schematic wiring diagram of the
ascending auditory pathway (Modified after Brodal 1981,
AC is from Herbert et al. 1991). Abbreviations in the
figure: bic Brachium of the inferior colliculus, cc Corpus
callosum, CIC Central nucleus of the inferior colliculus,
cic Commissure of the inferior colliculus, cll Commissure
of the lateral lemniscus (Prosbt), das Dorsal acoustic stria,
h High-frequency region, DC Dorsal cochlear nucleus,

l Low-frequency region, ll lateral lemniscus, LTz Lateral
nucleus of the trapezoid body,MGMedial geniculate body,
MTz Medial nucleus of the trapezoid body, PIL Posterior
intralaminar nucleus, PP Peripeduncular nucleus, Rt Audi-
tory sector of the reticular thalamic nucleus, SPO Superior
paraolivary nucleus, Te1 Temporal area 1, Te2 Temporal
area 2, Te3 Temporal area 3, tz Trapezoid body (or ventral
acoustic stria), VC Ventral cochlear nucleus
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The Auditory Nerve

The auditory nerve (AN) is made of both afferent
and efferent fibers (for review, see Slepecky
1996). The afferent fibers transmit impulses from
the organ of Corti to the cochlear nuclear com-
plex, while the efferent fibers convey impulses
from the superior olivary complex to the organ
of Corti (Fig. 1). There are two subtypes of
afferent fibers: myelinated and unmyelinated
fibers (Fig. 1). The myelinated (type I) fibers are
relatively thick and originate from bipolar spiral
ganglion cells that innervate the inner hair cells
(IHCs). The unmyelinated (type II) fibers are thin-
ner and arise from small, pseudounipolar spiral
ganglion cells that innervate the outer hair cells
(OHCs). About 90–95% of auditory nerve fibers
are type I (Fig. 1); each type I fiber terminates on a



180 Anatomy and Physiology of the Mammalian Auditory System
single IHC. The type II fibers constitute only
about 5% of all auditory nerve fibers (Fig. 1). As
opposed to type I, type II fibers are highly
branched, and a single fiber forms synapses with
many (6–100) OHCs.

Three types of type I fiber have been charac-
terized based on morphological features that cor-
relate with their spontaneous activity and
threshold sensitivity (Liberman et al. 1990).
Fibers with a low threshold and a high spontane-
ous firing rate have the larger diameter and termi-
nate on the pillar side of the IHC, whereas fibers
with a high threshold and a low spontaneous firing
rate are thinner and terminate on the
modiolar side.

The efferent fibers of the olivocochlear system
belong to the descending auditory pathways
(Fig. 1). They can be divided into two groups:
the lateral efferent system (lateral olivocochlear
system) that innervates auditory nerve fibers near
their synapses with IHCs and the medial efferent
system (medial olivocochlear system) that inner-
vates the OHCs (Warr 1992).
The Cochlear Nuclear Complex

The cochlear nucleus complex is situated laterally
and superficially in the brainstem (CNC,
Figs. 1–5) and is the first relay center for ascend-
ing auditory information. It is the site of termina-
tion of all auditory nerve (AN) fibers (Ryugo and
Parks 2003). The CNC consists of a ventral
cochlear nucleus (VCN) and a dorsal cochlear
nucleus (DCN). The VCN is subdivided by the
cochlear nerve root into anteroventral (AVCN)
and posteroventral (PVCN) parts. The DCN
curves around the inferior cerebellar peduncle in
the floor of the lateral recess of the fourth ventri-
cle. The axons of CNC projection neurons leave
the complex via the three primary pathways to
reach higher auditory structures: the dorsal, inter-
mediate, and ventral acoustic striae (DAS, IAS,
and VAS, respectively). The VAS is usually
referred to as the trapezoid body (Figs. 2 and 3).
The projections are largely tonotopically orga-
nized, and neurons within an isofrequency lamina
of the CNC project to a corresponding
isofrequency lamina in higher-order centers. The
right and left CNC are also interconnected by
fibers of glycinergic commissural neurons as
described below (for review, see Cant and Benson
2003). In addition to its ascending inputs from the
AN, the CNC receives descending projections
from the auditory cortex, the inferior colliculus;
the ventral complex of the lateral lemniscus; and
the superior olivary complex (see Malmierca
2003). A large proportion of the latter fibers may
be inhibitory, glycine and/or GABA being the
transmitters, but there are also excitatory
descending fibers, e.g., collaterals of the choliner-
gic olivocochlear bundle (Osen et al. 1984). The
CNC also receives some projections from non-
auditory brain structures.
Primary Afferents

Each AN fiber bifurcates into an ascending
branch, which supplies the AVCN, and a
descending branch, which supplies the PVCN
and DCN (Fig. 1). The anatomical distribution of
the primary fibers forms the basis for the laminar
tonotopic organization of the three subnuclei
observed electrophysiologically (for review, see
Ryugo and Parks 2003). Type I fibers supply all
parts of the CNC except the superficial granule
cell areas and the molecular layer of the DCN
(Fig. 1). Two basic types of terminals are found:
large, axosomatic endings called “endbulbs of
Held” and small boutons. The endbulbs of Held
arise from the ascending branches, while small
boutons arise from loosely ramifying collaterals
of both ascending and descending branches. The
type II fibers innervate areas rich in granule cells
and appear to supply the marginal shell of the
VCN (Fig. 1) (for review, see Ryugo and Parks
2003).
Ventral Cochlear Nucleus

Five main neuronal types are recognized in the
VCN based on patterns of Nissl staining, dendritic
arborization, and main axonal projections: spher-
ical bushy, globular bushy, octopus, multipolar
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tory System, Fig. 3 Projecting cell types of the CNC and
their corresponding physiological responses (Modified
after Moore and Osen 1979). For abbreviations, see list.
Abbreviations in the figure: CIC Central nucleus of the

inferior colliculus, cic Commissure of the inferior
colliculus, ll lateral lemniscus, MTz Medial nucleus of the
trapezoid body, PnC Pontine reticular nucleus, caudalis,
SPO Superior paraolivary nucleus
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(or stellate), and small cells (Figs. 3–5; Osen
1969; Brawer et al. 1974).

The spherical bushy cells are found rostrally in
the AVCN, the globular bushy cells lie centrally
on both sides of the nerve root in the caudal
AVCN and the rostral PVCN, and the octopus
cells are found caudally in the PVCN. The spher-
ical bushy, globular bushy, and octopus neurons
(Fig. 3) have non-tapering dendrites that end in
bushy-like formations, but they differ with regard
to the appearance of the terminal bush, the number
of root segments, and the relative length of the



Anatomy and Physiology
of the Mammalian
Auditory System,
Fig. 4 Diagram of the
planar (T-stellate) and
radiate (d-stellate) cells in
the VCN and their
projections to the DCN.
Planar cells have frequency-
specific projections, while
radiate cells have across
frequency projections
(Figure kindly provided by
Dr. D. K. Ryugo.
Reproduced from Doucet
and Ryugo 1997). For
abbreviations, see list.
Abbreviations in the figure:
AN auditory nerve, DC
Dorsal cochlear nucleus,
LTz Lateral nucleus of the
trapezoid body, VCA
Anteroventral cochlear
nucleus, VCP
Posteroventral cochlear
nucleus
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stem dendrites. The spherical bushy cells receive
a small number of large axosomatic terminals, the
endbulbs of Held (for review, see Ryugo and
Parks 2003), and have the so-called primary-like
responses to pure tone stimulation, similar to
those of the auditory nerve fibers (Young et al.
1988; Young and Davis 2002). The spherical
bushy cells (Fig. 3) project bilaterally to the
medial superior olive and to the ipsilateral lateral
superior olive (Cant and Benson 2003). Globular
bushy cells receive a larger number of distinct
inputs than do the spherical bushy cells, including
small (or “modified”) endbulbs. In response to
pure tone stimulation, they exhibit a firing pattern
known as “primary-like with notch.” The globular
bushy cells (Fig. 3) project to the ipsilateral lateral
nucleus of the trapezoid body and the contralat-
eral medial nucleus of the trapezoid body. Axons
from both globular and spherical bushy cells
course ventrally in the trapezoid body. The pat-
terns of their AN input, along with unique cell
membrane properties, make these cells capable of
transmitting precise temporal information neces-
sary for both high- and low-frequency sound
localization (Young et al. 1988; Young and
Davis 2002). The octopus cells (Fig. 6) receive
small boutons from collaterals arising from the
descending branch of the AN. They respond to a
tone burst with a single spike and so have been
called onset units (Young et al. 1988; Young and
Davis 2002). Their main projection is to the supe-
rior paraolivary nucleus on both sides and to the
contralateral ventral complex of the lateral lem-
niscus, and their axons course dorsally, looping
over the restiform body in the intermediate acous-
tic stria (Wickesberg and Oertel 1988; for review,
see Cant and Benson 2003). Their function is still
unclear, but it has been suggested that they encode



Anatomy and Physiology
of the Mammalian
Auditory System,
Fig. 5 Synaptic endings
containing glutamate,
glycine, and GABA in the
rat dorsal cochlear nucleus.
Synaptic endings and of the
known (solid lines) and
putative (dashed and doted
lines) neuronal sources of
excitatory and inhibitory
endings onto pyramidal
(FC), vertical (VC), and
cartwheel (CWC) cells
(Figure kindly provided by
Dr. M. E. Rubio.
Reproduced from Rubio
and Juiz 2004)
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the pitch period in their temporal firing patterns
(Oertel 1999).

The multipolar and small cells are present
throughout the VCN (Figs. 3 and 4). The small
cells are most abundant around the peripheral
margins of the nucleus deep to the superficial
granule cell layer. A large collection of small
cells located dorsolaterally in a superficial loca-
tion forms the small cell cap of the VCN (Osen
1969). This is particularly conspicuous in cat. The
multipolar cells (Figs. 3 and 6) possess moder-
ately branched, tapering dendrites which are
contacted by small boutons from many primary
afferent fibers. Two types of multipolar cell have
been described (Fig. 3): type I, also referred to as
T-stellate (mouse) and planar (rat), and type II,
also referred to as d-stellate (mouse) or radiate
(rat).

Multipolar type I cells (Figs. 3 and 4) have
oriented dendritic arbors and project to the peri-
olivary region of the superior olivary complex via
the trapezoid body, the nuclei of the lateral lem-
niscus, and the central nucleus of the inferior
colliculus through the lateral lemniscus (Adams
1979; Cant and Benson 2003; Malmierca et al.
2005). They also give rise to frequency-specific
collaterals within the VCN and DCN (Lorente de
Nó 1981). These multipolar neurons exhibit a



Anatomy and Physiology
of the Mammalian
Auditory System,
Fig. 6 (a) Comparison of
the superior olivary
complex in the rat and cat
(Redrawn after Osen et al.
1984). Note the relative size
of of the LSO–MSO in the
two species and the
existence of a distinct SPO
in the rat. (b), Camera
lucida drawing of a section
showing calbindin-positive
neurons in the MTz and
processes in the rat SOC
(Redrawn after Friauf
1993). (c) Confocal image
illustrating VGLUT1-ir in
the SOC of adult rats.
VGLUT1-ir is green, and
MAP 2-ir is red. For
abbreviations, see list (Data
from Blaesse et al. 2005.
Figure kindly provided by
Dr. E. Friauf).
Abbreviations in the figure:
DMPO Dorsomedial
periolivary region, LPO
Lateral periolivary zone,
LTz Lateral nucleus of the
trapezoid body,MTzMedial
nucleus of the trapezoid
body, PO Periolivary
regions, SPO Superior
paraolivary nucleus, tz
Trapezoid body (or ventral
acoustic stria); VTz Ventral
nucleus of the
trapezoid body

184 Anatomy and Physiology of the Mammalian Auditory System
“chopper” response to tone bursts with regularly
repeated firing. They may be specialized for con-
veying frequency-specific excitatory information
about complex acoustic stimuli such as speech.

Multipolar type II cells (Figs. 3 and 4), also
known as commissural neurons, have
non-oriented dendritic arbors. They project
to the contralateral CNC via the dorsal acoustic
stria (Smith and Rhode 1989; Oertel et al. 1990;
Doucet and Ryugo 1997). They also emit exten-
sive (probably broadly tuned) collaterals within
the ipsilateral VCN and DCN. They are the only
known inhibitory (glycinergic) projection neurons
of the CNC (Osen et al. 1990; Doucet et al. 1999)
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and respond to pure tone stimulation with an “on-
chop” pattern (Smith and Rhode 1989).

The small cells are abundant in the marginal
shell of the VCN, which is composed of the
“granule cell layer” and the subjacent “cap area”.
The granule cell layer is continuous over the free
surface of the CNC and forms a lamina partly
separating the VCN and DCN (Mugnaini et al.
1980a, b; for review, see Cant and Benson 2003).
In the DCN, the granule cell layer is covered
superficially by a molecular layer. The granule
cell axons project as parallel fibers (Fig. 5) to the
molecular DCN layer (Mugnaini et al. 1980a, b).
The cap area is small but still distinguishable due
to its contingent of small cells, many of which
show glycine- and/or GABA-like immunoreactiv-
ity (for review, see Cant and Benson 2003). The
cap is supplied by both type I and type II fibers
(Fig. 1), and at least in cat, nearly all type
I auditory nerve fibers that innervate the cap
have low spontaneous rates (for review, see
Ryugo and Parks 2003). The marginal shell also
receives descending input. Its cells show a wide
dynamic range (Ye et al. 2000) and have a large
diversity of projections (Adams 1979; Malmierca
et al. 2002, 2005; Ye et al. 2000). The available
electrophysiological studies suggest that they
form part of a feedback gain control system
made up of the cochlea, cochlear nuclear com-
plex, medial olivocochlear system, and outer hair
cells (Ye et al. 2000).

Cochlear Root Neurons (Fig. 3). The CNC of
rodents contains a population of large cells
scattered in the cochlear nerve root, between the
main body of the VCN and the glial Schwann-cell
border of the AN. It has been suggested that these
root neurons participate in the acoustic startle
reflex (Sinex et al. 2001).
Dorsal Cochlear Nucleus

The DCN varies from being markedly laminated
in rodents and carnivores, where it resembles the
cerebellar cortex, to appearing nonlaminated in
humans (but see Rubio et al. 2008) and some bat
species; it is virtually absent in some cetaceans.
The three superficial layers of the DCN are related
to the morphology of the principal pyramidal
(fusiform) cells (Figs. 3 and 5). The spiny apical
dendritic arbor of pyramidal cells occupies layer
1 together with granule cell axons and several
other types of interneurons (Fig. 5, see below).
Pyramidal cell bodies define layer 2, and their
aspinous basal dendritic arbors comprise layer
3. Pyramidal cell dendritic arbors are flattened
across the long, frequency gradient axis of the
DCN (see, e.g., Cant and Benson 2003;
Malmierca 2003). The highest degree of flatness
and mutually parallel orientation is found in the
basal arbor, which is supplied by primary afferent
fibers in a strictly tonotopic manner.

The pyramidal cells are the main projection
neurons of the DCN, supplying fibers to the con-
tralateral IC via the DAS (Fig. 3). In addition,
some have a direct projection to the medial divi-
sion of the medial geniculate body (Malmierca
et al. 2002). The deepest layer of the DCN con-
tains two categories of cells based on their size,
the giant cells which project to the contralateral IC
through the DAS and smaller glycinergic
tuberculoventral interneurons (Fig. 5). Pyramidal
and giant cell excitatory responses are more
strongly influenced by their inhibitory inputs
than are those of other projection neurons in the
CNC and have been classified as types III and IV
(Oertel and Young 2004). The type IV units have
been found to be sensitive to spectral notches
created by the pinna, which may be important
cues for localizing sounds. DCN projection neu-
rons receive and respond not only to auditory
information but also to somatosensory inputs
from muscle proprioceptors in and around the
pinna. This innervation has led to speculation
that the DCN may be involved in coordinating
pinna orientation with localization cues found in
the different spectra of sounds located at different
points in space. In fact, bilateral lesions of the
DAS in cats result in reduced accuracy in head
orientation responses to broadband sounds, par-
ticularly in elevation (reviewed in Young and
Davis 2002).

DCN possesses a large number of interneurons
that may be divided into two systems: the
tuberculoventral system and the granule cell sys-
tem (Fig. 5). The tuberculoventral system
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reciprocally interconnects the DCN and VCN. It
contains both frequency-specific and diffuse pro-
jections (Malmierca 2003). The frequency-
specific projection from the DCN to the VCN
originates from small interneurons, a subset of
the glycinergic “vertical cells” (Fig. 5).
A separate set of vertical cells with only local
collaterals contain both GABA and glycine, the
relative amounts of which vary among species.
They are located between the basal pyramidal
cell dendrites in layer 3, have flattened dendritic
arbors, and provide the DCN and VCN with a
tonotopically organized inhibition. One projec-
tion from the VCN to the DCN is made up of the
collaterals of type I multipolar cells described
above and probably is excitatory and
tonotopic. An inhibitory projection arises from
axonal collaterals of the glycinergic commissural
(type II) cells. The vertical cells of the DCN
provide inhibition over a narrow frequency
range, whereas the on-chop, type II stellate cells
generate inhibition over a wide frequency range.

The granule cell system includes two types of
excitatory cells: granule cells and unipolar brush
cells and three types of inhibitory cells: the
GABAergic Golgi and stellate cells and the
glycinergic cartwheel cells (Fig. 5; Oertel and
Young 2004; Rubio and Juiz 2004). The granule
cells receive direct excitatory input from many
sources including the somatosensory system and
inhibitory inputs via the Golgi cells. The granule
cell axons contribute parallel fibers to the molec-
ular layer. The unipolar brush cells seem to repre-
sent a device for feedforward excitation to the
mossy fiber pathways, while the stellate cells
and cartwheel cells provide feedforward inhibi-
tion to the pyramidal cells (Rubio and Juiz 2004;
Fig. 5).
The Superior Olivary Complex

The superior olivary complex (SOC) comprises a
group of nuclei in the caudal pons (Figs. 2 and 6).
Three main nuclei are consistently identified: the
lateral superior olive (LSO), the medial superior
olive (MSO), and the medial nucleus of the trap-
ezoid body (MNTB). These three nuclei are
surrounded by more diffusely organized cellular
areas, collectively referred to as the periolivary
region (PO) (Adams 1983; Osen et al. 1984; Scho-
field and Cant 1991). The LSO and MNTB are
well developed in both the rat and cat, while they
are relatively small in human. In contrast, the
MSO is small in the rat but is prominent in both
the cat and human (Fig. 6). These differences
appear to be related to the ability to use specific
frequency cues for directional hearing. The MSO
extracts the information about interaural timing
differences that is available in low-frequency
sounds. Together, the LSO and MNTB detect
interaural intensity differences generated by
high-frequency sounds.
Lateral Superior Olive

The LSO consists of layers of flattened multipolar
neurons (principal cells) with their dendrites ori-
ented perpendicular to its long axis, which is
curved into an S-shape. The LSO is tonotopically
organized with low frequencies represented later-
ally and high frequencies, medially. In addition to
the principal cells, other, less abundant, neuronal
types are also present (Rietzel and Friauf 1998). In
some species, neurons of the lateral olivocochlear
system lie within the LSO.

The LSO receives direct input from the AVCN
on the ipsilateral side and indirect input from the
AVCN on the contralateral side (Fig. 6). The
ipsilateral input derives from spherical bushy
cells and is excitatory. Globular bushy cells in
the contralateral AVCN project to the MNTB
ipsilateral to the LSO. The MNTB, in turn,
sends an inhibitory (glycinergic) input to the
LSO (Fig. 6). Multipolar type I neurons from
the AVCN also innervate the LSO (reviewed in
Helfert and Aschoff 1997; Thompson and
Schofield 2000).

The LSO projects to the central nucleus of the
inferior colliculus bilaterally (Figs. 2 and 6). Most
of the ipsilaterally projecting cells are inhibitory
(glycinergic), while the contralaterally projecting
cells are glycine-negative and presumably excit-
atory. The LSO also innervates the dorsal nucleus
of the lateral lemniscus bilaterally (Fig. 2).
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Medial Nucleus of the Trapezoid Body

Cells of theMNTB are situated among fascicles of
fibers in the trapezoid body (Figs. 2 and 6). The
principal cells resemble the globular bushy cells
of the AVCN, whereas non-principal (marginal)
cells have a multipolar appearance (Fig. 6; Morest
1968; Banks and Smith 1992; Sommer
et al. 1993).

The MNTB receives input from the globular
bushy cells in the contralateral VCN (Fig. 2).
These cells give rise to thick axons that terminate
on the principal cells in the MNTB as large
axosomatic calyces of Held (1893) in a one-to-
one relationship. These calyces provide a fast
and secure relay of information from the CNC
to the MNTB and from there to the LSO. They
constitute the largest synaptic terminals in the
mammalian brain. The responses of cells in the
MNTB to acoustic stimuli show a sharp onset
spike that is also characteristic of the globular
bushy cells.

In addition to its projection to the LSO, the
MNTB projects to the ipsilateral MSO as well as
other parts of the ipsilateral SOC and the dorsal
portion of the ventral complex of the lateral lem-
niscus, providing a source of widespread
glycinergic inhibition.

The microcircuitry and neurochemistry of
the LSO and MNTB suggest that a major func-
tion of the MNTB is to transform excitatory
contralateral input into ipsilateral inhibition,
allowing the LSO to faithfully encode
interaural intensity differences in the high-
frequency range of audition (for review, see
Kopp-Scheinpflug et al. 2008).
Medial Superior Olive

The MSO lies between the LSO and the MNTB
(Fig. 6) and is populated by two types of cells:
principal and non-principal or marginal cells.
The bipolar principal cells are organized into a
transversely oriented row, with their dendrites
extending in the medial and lateral directions.
The multipolar non-principal cells are scattered
among these dendrites and are much less numer-
ous (Smith 1995). The MSO is tonotopically
organized with low-frequency tones represented
dorsally and high-frequency tones ventrally,
although most of the nucleus appears to be
devoted to low frequencies (Guinan et al. 1972).

The MSO receives direct, excitatory input
from spherical bushy cells in the AVCN bilater-
ally (Fig. 6; for review, see Malmierca 2003), but
these inputs remain segregated on the cell sur-
face, such that the lateral dendrites receive input
from the ipsilateral side, while the medial den-
drites receive input from the contralateral side
(Smith 1995). A rostrocaudal organization of
the axons is reminiscent of the required input
configuration in the Jeffress model for sound
localization. The direct bilateral input suggests
that the MSO neurons are ideally suited to mea-
sure interaural phase or time differences (Joris
et al. 1998).

The MSO also receives inhibitory inputs,
mostly glycinergic, from the medial and lateral
nuclei of the trapezoid body on the same side.
The latter may also provide GABAergic inhib-
itory input (Smith 1995). The principal cells
project to the inferior colliculus and to the ipsi-
lateral dorsal nucleus of the lateral lemniscus
(Fig. 8).
Superior Paraolivary Nucleus

A fourth distinct nucleus in the SOC of rodents,
the so-called superior paraolivary nucleus (SPO),
is found in the dorsomedial part of the complex
(Fig. 6; Osen et al. 1984; Schofield and Cant
1991; Schofield 1995). It consists of GABAergic
multipolar cells, which are the largest in the SOC,
and receives inputs from octopus and multipolar
cells in the contralateral VCN, from multipolar
cells in the ipsilateral VCN, and a substantial
glycinergic input from the MNTB on the same
side. SPO projects to the ipsilateral IC (Schofield
1995) and may represent a hyperdevelopment of
periolivary cells with a similar projection, present
in smaller numbers in other mammals (Adams
1983). It appears that the SPO neurons are well
suited for the analysis of temporal features of
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complex sounds and stimulus features across
broad frequency ranges (Dehmel et al. 2002;
Kulesza et al. 2003).
Periolivary Nuclei

The PO contains several distinct types of neurons
with different projection patterns (Adams 1983;
Osen et al. 1984). Neurons in the PO areas receive
input from VCN bilaterally, the lateral areas, from
the ipsilateral side, and the medial areas, from
both sides (Fig. 6). Certain parts of the PO also
receive input from the ipsilateral MNTB
(probably inhibitory), from the ipsilateral inferior
colliculus (probably excitatory), and from the dor-
sal nucleus of the lateral lemniscus (probably
inhibitory).

PO cells project either to the cochlea, the
CNC, or the IC, but individual cells do not
appear to project to all three structures (Adams
1983). The ventral nucleus of the trapezoid body
(VNTB) is a PO region situated ventral to the
MNTB and is of particular interest because it
may be involved in the activation of the
olivocochlear neurons (Rajan 1990). It is strate-
gically situated at the intersection of ascending
projections from the CNC and descending pro-
jections from the IC. The VNTB receives major
afferent projections from the contralateral VCN,
the ipsilateral PVCN (Smith et al. 1991; Thomp-
son and Schofield 2000), and the marginal shell
in the AVCN from both sides (Ye et al. 2000). It is
the major target in the SOC for the descending
projections from the IC.
The Nuclei of the Lateral Lemniscus

The nuclei of the lateral lemniscus (NLL) is made
is of two distinct functional systems (Fig. 2), a
monaural ventral (VLL) and a binaural dorsal
(DLL) system (Covey and Casseday 1991).
There are connectional, neurochemical, and phys-
iological properties which are unique to each sys-
tem (Covey and Casseday 1991; Malmierca
et al. 1998).
The Ventral Nucleus of the Lateral
Lemniscus: The Monaural System

The VLL consists of groups of neurons embedded
within the part of the lateral lemniscus, located
between the SOC and DLL (Fig. 2). It receives its
inputs mainly from the contralateral ear via the
contralateral VCN and ipsilateral MNTB (Fig. 2).
VLL neurons exhibit a variety of shapes and sizes
in Nissl-stained sections, and most of them project
to the ipsilateral IC. The majority of cells in the
ventral part of the complex are glycine and/or
GABA (Riquelme et al. 2001).

In vitro, some VLL neurons show an onset
firing pattern and a nonlinear current-voltage rela-
tionship, while others exhibit a linear current-
voltage relationship and other firing patterns
(Wu 1999; Zhao and Wu (2001)). Similar differ-
ences have also been found in in vivo studies
(Zhang and Kelly 2006a, b). The VLL neurons
are suitable for encoding temporal events (Covey
and Casseday 1991).
The Dorsal Nucleus of the Lateral
Lemniscus: The Binaural System

The DLL receives input from both ears, and it
projects both to ICs and to its counterpart on the
opposite side through the commissure of Probst
(Fig. 2). The DLL plays an important role in
functions dependent on binaural processing such
as sound localization.

Several neuronal types have been described,
depending on the species and the criteria used
for cell classification. Regardless of the morpho-
logical type, all cells have similar membrane
properties with a sustained series of regular action
potentials produced by the injection of positive
current.

Generally speaking, the DLL receives collat-
erals from afferent fibers that also innervate the IC
(Fig. 8). Thus, DLL receives contralateral inputs
from the ventral cochlear nucleus and DLL, ipsi-
lateral input from the medial superior olive, supe-
rior paraolivary nucleus and VLL, and bilateral
inputs from the lateral superior olive. The DLL
projection to the IC is laminar and bilateral, with a
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predominant projection to the contralateral
IC. Most DLL cells are GABAergic and therefore
have an inhibitory influence on the IC.
The Inferior Colliculus

The inferior colliculus (IC) is the principal audi-
tory nucleus in the midbrain and is characterized
by a massive convergence of inputs from lower
and higher auditory centers as well as from non-
auditory structures (Figs. 2 and 7; Irvine 1992;
Malmierca 2003; Casseday et al. 2002; Loftus
et al. 2008). The IC is divided into a central
nucleus (CNIC) surrounded by cortical regions
Anatomy and Physiology of the Mammalian Audi-
tory System, Fig. 7 Subdivisions of the inferior
colliculus in the rat and cat. The low-frequency represen-
tation in the central nucleus (CIC) is expanded in cat and
contracted in rats, while the size of the ventrolateral
nucleus (VLN) (layer 3 of LCIC) is expanded in rat and
contracted in cats. (Redrawn from Loftus et al. 2008)
(Fig. 7). These collicular cortices include a dorsal
cortex (DCIC) that covers the CNIC dorsally and
caudally, a lateral cortex (LCIC) that covers it
laterally, and a rostral cortex (RCIC) that covers
it rostrally (Loftus et al. 2008; Fig. 8).

Neurons in the CNIC tend to be most strongly
influenced by lower auditory centers, while neu-
rons in the DCIC and RCIC tend to be most
strongly influenced by the descending pathways
and commissural inputs. The LCIC (and probably
the RCIC) receives both auditory and nonauditory
(e.g., somatosensory) inputs.

In addition, to its intrinsic and commissural
fiber systems (Malmierca et al. 1995; Saldaña
and Merchán 1992), the IC provides the major
ascending projections to the MGB as well as
descending projections to the SOC and the CNC
(Oliver et al. 1999; Malmierca et al. 1996; Peruzzi
et al. 1997; Ito and Oliver 2012; Cant and Benson
2007).
The Central Nucleus of the Inferior
Colliculus

The CNIC is distinguished by layers of cells and
fibers organized into “fibrodendritic laminae”
(Oliver and Morest 1984; Faye-lund and Osen
1985; Malmierca et al. 1993). These consist of a
parallel organization of afferent lemniscal fibers
and neurons with flattened dendritic arbors and
constitute the structural basis for the tonotopic
organization of the IC (Schreiner and Langner
1997; Malmierca et al. 2008; Fig. 9).

The CNIC is composed of two main neuronal
types: disk-shaped or flat neurons and stellate or
less flat neurons (Oliver and Morest 1984;
Malmierca et al. 1993). These neurons differ in
several respects, including the thickness,
branching pattern and orientation of their den-
dritic arbor, and their location with regard to the
laminae (Fig. 10). The flat neurons lie parallel to
the ascending fibers and form laminae that are
mostly one cell thick, about 40–70 mm (Faye-
Lund and Osen 1985; Malmierca et al. 1993).
These laminae are separated by interlaminar com-
partments that are populated by the stellate neu-
rons. IC neurons show complex functional
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of the Mammalian
Auditory System,
Fig. 8 Summary of major
sources of inputs to the
inferior colliculus on one
side of the brain (left) from
auditory brainstem
(ascending inputs) and
auditory cortex (descending
inputs). Connection
strength is denoted by the
thickness of the arrows. Red
lines represent excitatory
connections, and blue/
dashed lines represent
inhibitory connections.
Abbreviations in the figure:
DC Dorsal cochlear
nucleus, LSO Lateral
superior olive, MSOMedial
superior olive, SPO
Superior paraolivary
nucleus, VC Ventral
cochlear nucleus, VTz
Ventral nucleus of the
trapezoid body
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properties, and there is no simple correlation
between physiological response properties and
morphological classifications (Sivaramakrishnan
and Oliver 2001).

The CNIC receives ascending afferent projec-
tions (Fig. 8) that originate in the AVCN, PVCN,
and DCN bilaterally (although mainly
contralaterally); the VLL and MSO ipsilaterally;
and the DLL and LSO bilaterally (Malmierca
2003; Cant and Benson 2006). These inputs are
tonotopically organized and tend to show a
“banded” pattern of projections with dense
bands (about 200 mm thick) parallel to the iso-
frequency fibrodendritic laminae. The terminal
fields of the various ascending projections may
also vary in their distribution along the main axis
of the IC. For example, in the dorsomedial parts of
the laminae, the axons from the DCN do not
overlap with afferents from the LSO. The CNIC
projects to the ventral division of the MGB in a
tonotopic manner (Fig. 10), largely to the ipsilat-
eral side but also with a crossed component.
A majority of neurons use glutamate as the neu-
rotransmitter, but about a quarter of the cells in the
CNIC are GABAergic (Merchán et al. 2005), and
some of these project to the MGB, making short-
latency, monosynaptic inputs (Peruzzi
et al. 1997).

IC neurons possess NMDA and AMPA recep-
tors as well as GABAA, GABAB, and glycine
receptors (reviewed in Kelly and Caspary 2005).
Studies using microiontophoresis in vivo have
demonstrated that the AMPA receptors regulate
the onset response. Both AMPA and NMDA are
involved in the maintenance of the response for
the duration of the stimulus, and both GABA and
glycine inhibit IC neurons and shape different
temporal, spectral, and binaural properties (e.g.,
LeBeau et al. 2001; reviewed in Kelly and
Caspary 2005). Neurons in the IC show a variety
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tory System, Fig. 9 Summary of the tonotopic organi-
zation of the inferior colliculus. (a) A single electrode
penetration downward (blue trace) and upward (red
trace) along the same electrode track (Tr) along the CIC
in which FRA obtained from multiunit clusters were
recorded at every 50 mm. (b) Frequency representation in
the CIC obtained in a sagittal section after Nissl staining
showing an electrode track (black line), three electrolytic
lesions (circles), and best frequency recorded at 50 mm

intervals. Frequency increases as a function of depth in a
stepwise manner. (c) 3-D reconstruction of three axonal
laminae (yellow, 1.7 kHz lamina; red, 1.8 kHz; green,
4.5 kHz) (Data from Malmierca et al. 2008). (d) A frontal
view of the same 3-D reconstruction seen in (c) after 90�

rotation. (e and f) FRAs recorded at every 50 mm in the
electrode penetration illustrated in (a) at four different
steps (step A–step D).DDepth. (Redrawn fromMalmierca
et al. 2008)

Anatomy and Physiology of the Mammalian Auditory System 191

A

of frequency response areas that include both
V-shaped and non-V shaped types (LeBeau et al.
2001; Palombi and Caspary 1996). Binaural
responses are generally classified as suppression,
summation, or mixed. The laminae of the CNIC
contain a highly organized representation of both
spectral and temporal parameters (for review, see
Schreiner and Langner 1988).
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The Dorsal Cortex of the Inferior
Colliculus

The DCIC covers the dorsomedial and caudal
aspects of the CNIC (Figs. 7 and 9b) and is
made of three layers (Faye-Lund and Osen
1985). Layer 1 (the most superficial layer) is a
thin fibrocellular capsule that wraps the entire
surface of the IC including the LCIC. It contains
scattered, small, flattened neurons. Layer 2 is
slightly thicker and contains mostly small- and
medium-sized multipolar neurons. Layer
3 includes a heterogeneous group of multipolar
neurons that vary in soma size and shape and in
their dendritic orientation. A distinct feature of
neurons in DCIC (and also LCIC) is that they
contain the neuromodulator nitric oxide, a fact
that may explain some of the long-term potentia-
tion and neuronal plasticity observed in some IC
neurons (Zhang and Wu 2000).

The ascending input from lower auditory cen-
ters to the CNIC encroaches upon the DCIC, as do
the intrinsic projections (Saldaña and Merchán
1992; Malmierca et al. 1995). In addition, the
DCIC receives descending input bilaterally that
originates largely from the primary AC. This pro-
jection may generate long-lasting changes in the
neuronal responses of the IC. The DCIC projects
to the dorsal division of the MGB (Winer 1985).
The Lateral Cortex of the Inferior
Colliculus

The LCIC covers the CNIC laterally (Fig. 7) and
ventrally (Loftus et al. 2008) and is made up of
three layers (Faye-Lund and Osen 1985; Loftus
et al. 2008). Layer 1 is a continuation of the
fibrodendritic capsule of the DCIC. Layer 2 is
composed of small- and medium-sized neurons
that are partly aggregated into dense clusters rich
in acetylcholinesterase and GABA. Layer 3 of the
ECIC constitutes its largest part and appears to
continue also into the non-stratified rostral cortex.
In addition to auditory inputs, the LCIC receives
somatosensory input from spinal cord, dorsal col-
umn nuclei, and spinal trigeminal nuclei in the cat
(Zhou and Shore 2006). Neurons in the LCIC
appear to have relatively broad somatosensory
receptive fields in addition to auditory responses,
which are also broadly tuned (Aitkin et al. 1978).
The multisensory integration in the LCIC mirrors
similar types of function at higher levels of the
“extralemniscal” auditory pathway. Although the
functions of the LCIC are not known, it may be a
major source of binaural cues for gaze control in
the superior colliculus (King et al. 1998), and it is
very likely that LCIC plays an important role in
providing auditory input to visual-motor areas
that direct the head and eye movements involved
in gaze initiation. A second role of the LCIC may
be in multisensory integration, distinct from the
“classical” auditory role of the central nucleus.
Finally, the CNIC and LCIC differentially activate
the medial and lateral olivocochlear system (Ota
et al. 2004).
The Rostral Cortex of the Inferior
Colliculus

The rostral cortex (RCIC) is adjacent to the ante-
rior CNIC (Fig. 9b) and includes the largest mul-
tipolar cells in the IC. There are also small- and
medium-sized multipolar neurons (Faye-Lund
and Osen 1985; Malmierca et al. 1993). Like the
LCIC and DCIC, the RCIC receives input from
the cerebral cortex as well as from nonauditory
structures (for review, see Malmierca 2003). The
RCIC projects to the dorsal and medial divisions
of the MG (Fig. 2). The functional role of RCIC
neurons is still unknown, although recent studies
have demonstrated that many neurons in this
region (and in other cortical regions) may be spe-
cialized for detecting novel sounds (Malmierca
et al. 2009).
The Medial Geniculate Body

The principal auditory nucleus in the thalamus is
the medial geniculate body (MGB), which is also
the last opportunity for subcortical processing in
the ascending auditory pathways (Fig. 2). The
MGB is divided into three major divisions
named relative to their locations within the
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complex: the ventral (MGV), dorsal (MGD), and
medial (or magnocellular) (MGM) divisions
(Figs. 11 and 12). Additional subdivisions are
also recognized in some species, usually
representing smaller domains within each of the
major subdivisions. Physiological studies have
shown that the caudal part of the reticular thalamic
nucleus (Fig. 2) is also a part of the auditory
pathway (Cotillon et al. 1999; Yu et al. 2009). It
provides the MGB with an inhibitory GABAergic
input (Bartlett and Smith 1999; Yu et al. 2009).

The main source of ascending projections to
the MGB is the IC (Figs. 2 and 10), but other
inputs include the thalamic reticular nucleus and
auditory subcollicular nuclei, including the SOC,
NLL, and CNC, challenging the idea that the IC is
an obligatory relay station (Malmierca et al.
2002). Ascending fibers enter the structure medi-
ally through the brachium of the IC and terminate
among neurons in each subdivision. Connections
Anatomy and Physiology of the Mammalian Audi-
tory System, Fig. 10 Schematic diagram of the basic
circuitry in the IC. Large GABAergic neurons (1) receive
excitatory inputs on their somata, send their axons to the
MGB, and inhibit tufted or stellate neurons in the MGB.
Small GABAergic neurons (2) do not project to MGB.
with auditory cortex pass through the posterior
limb of the internal capsule, and, for the most
part, these connections are reciprocal.
The Ventral Division of the Medial
Geniculate Complex

The MGV contains bi-tufted principal neurons
that tend to be arranged in rows with oriented
dendritic fields (Fig. 12a–c; Winer et al. 1999).
These neurons are glutamatergic, and most of
them are immunoreactive for parvalbumin (Jones
2007). In the cat, a quarter of the neurons in the
MGV are GABAergic interneurons, but these are
absent in rodents and bats (Winer and Larue
1988). The MGV neurons are well tuned to fre-
quency, exhibiting low-threshold short-latency
responses to tones and complex sounds. They
Glutamatergic neurons (3, 4) project to the MGB and
lack the dense VGLUT2 axosomatic inputs. Red puncta
indicate excitatory glutamatergic terminals. Blue puncta
indicate inhibitory (GABAergic and glycinergic) terminals
(Figure kindly provided by Dr. D. L. Oliver. Reproduced
from Ito and Oliver 2012)



Anatomy and Physiology of the Mammalian Audi-
tory System, Fig. 11 Distribution of calbindin and
calretinin areas at two different rostrocaudal levels of the
MGB in mouse. (a and b) Two sections from same mouse
immunostained for calretinin, visualized with Alexa Fluor
594. (c and d) Identical sections from (a and b),

immunostained for calbindin, visualized with Cy-2. (e)
Overlay images from (a and c). (f) Overlay images from
(b and d). Scale bar ¼ 500 mm (Figure kindly provided by
Dr. Daniel Llano. Adapted from Lu et al. 2009). Abbrevi-
ations in the figure: PIL Posterior intralaminar nucleus, PP
Peripeduncular nucleus
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are sensitive to both interaural time and intensity
differences.

TheMGVreceives its ascending inputs primar-
ily from the ipsilateral CNIC (Fig. 10),
(Malmierca 2003; Jones 2007). These projections
arise from both glutamatergic and GABAergic
neurons (Bartlett and Smith 1999; Ito and Oliver
2012). MGV neurons project mainly to layers III



Anatomy and Physiology
of the Mammalian
Auditory System,
Fig. 12 Camera lucida
drawings of neurobiotin-
labeled cells of the rat
MG. Tufted cells populate
the MGV. Cells with two
distinct morphologies,
tufted and stellate, populate
MGD. Cells (d and e) and
cells (f and g) are typical
examples of MGD tufted
and stellate cells,
respectively. The dendritic
trees of these cells appear
similar regardless of the
plane of section.
Magnocellular neurons
populate the MGM
(Figure kindly provided by
Dr. Philip Smith (some parts
reproduced from Bartlett
and Smith 1999)).
Abbreviations in the figure:
SC suprageniculate nucleus
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and IVof the primary (core) areas of the auditory
cortex.
The Dorsal Division of the Medial
Geniculate Complex

The MGD is generally characterized by a lower
cell-packing density than the MGV, and it lacks a
laminar organization. At least two subdivisions
are clearly recognized on the basis of architectonic
variations and connections in most species
(Burton and Jones 1976; Winer 1985). The most
common neuronal type is the radiate cell
(Fig. 12f–g). These have radially symmetric den-
dritic fields with a simple branching pattern.
Tufted cells (Fig. 12a–c) are also present and
tend to form thin sheets. Finally, there is a small
population of small stellate cells. Compared to the
MGV, parvalbumin immunoreactivity is reduced
in the MGD, but there is a relative increase in the
numbers of calbindin-positive cells (Jones 2007).
GABAergic interneurons are also abundant in the
MGD. Most MGD neurons respond over a wide
range of latencies, typically longer than MGV
neurons, and exhibit broader frequency tuning,
so a clear tonotopic organization is not obvious,
if it is present at all.

The main ascending inputs to the MGD arise
from the DCIC and LCIC (Malmierca 2003; Jones
2007) and may be either glutamatergic or
GABAergic in nature (Bartlett and Smith 1999).
The MGD projects to the nonprimary (belt) areas
of auditory cortex.
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The Medial Division of the Medial
Geniculate Complex

The MGM is located medial to the MGV and
MGD and stretches from the rostral to caudal
poles of the MGB (Fig. 11). The MGM is rather
heterogeneous with respect to cell types and con-
nections. Several different types of cells have
been identified including the magnocellular type,
the largest neurons in the entire MGB (Fig. 12h–i;
Winer and Morest 1983). Some of the neurons are
calbindin reactive and project mainly to layers
I and II of cortex. Projections to the middle layers
of cortex arise from both calbindin- and
parvalbumin-positive neurons (Jones 2007).
Some neurons are narrowly tuned to frequency
and respond robustly at short latencies, similar to
MGV neurons, while others are broadly tuned and
have longer latencies. Some authors define a sep-
arate division referred to as suprageniculate
nucleus (Fig. 12j–k).

MGM receives inputs from both auditory and
nonauditory sources. The main auditory inputs
Anatomy and Physiology of the Mammalian Audi-
tory System, Fig. 13 Schematics of auditory cortex
models in several mammals. Primary (core) auditory
arise from the cortical regions of the IC, as well
as the CNC, SOC, and VLL (Anderson et al.
2006; Malmierca et al. 2002). Nonauditory
inputs include the deep layers of the superior
colliculus and other nuclei that appear to drive
responses to somatic, vestibular, visual, and
nociceptive stimuli in some species (see Jones
2007). In addition to auditory cortex, the MGM
also projects to the striatum and amygdala
(Doron and Ledoux 1999).
The Auditory Cortex

The auditory cortex (AC) is located in the tem-
poral lobe of the cerebral hemisphere and repre-
sents the site of termination for fibers ascending
from the auditory thalamus (Fig. 2). The most
obvious species differences observed in the audi-
tory brain are those seen in the AC (Fig. 13). For
example, the number of areas identified in the
AC ranges from 5 to 6 in mice and rats, 6–9 in
cats and ferrets, 10–12 in primates, and over
areas are shaded. Tonotopic gradients are indicated by
H (high) and L (low) frequency. (Reproduced from
Malmierca and Hackett 2010)
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30 in some studies of humans (Fig. 13). Species
differences include the number of areas present,
their relative position and arrangement, cell den-
sity, connections, and tonotopic organization,
and it is likely that species differences will also
be reflected in the organization of auditory cortex
in other ways. However, a common theme is that
a central primary region, or core, is surrounded
by a variable number of secondary, or belt, areas
in all mammals studied (Fig. 13). In nonhuman
primates, the core–belt scheme has been
extended to include a third region, known as the
parabelt (Kaas and Hackett 1998; Winer and
Schreiner 2011).
The Core Region of Auditory Cortex

The core region is made of the primary field
(A1) and two other tonotopically organized
areas (Fig. 13). Areas in the core are character-
ized by high cell density in a thick layer IV, dense
myelination across laminae, and relatively high
expression of several markers in the horizontal
band involving layers III and IV, compared to
secondary areas in the belt (Jones 2003; Kaas
and Hackett 1998). Several different classes of
pyramidal and nonpyramidal cells are found
across the six layers of auditory cortex (Winer
1992). Pyramidal cells tend to be glutamatergic
and are concentrated in layers III and V, while
many nonpyramidal cells are GABAergic and
account for about one-fourth of the neurons in
most layers, except layer I, where they constitute
more than 90%. Layer II contains both pyramidal
and nonpyramidal neurons. The smaller cells are
located superficially in layer II, while the larger
pyramidal cells predominate near the border with
layer III. Layer III is populated by several types
of pyramidal and nonpyramidal cells. Layer IV is
mainly populated by small tufted cells, which
have radially oriented dendritic fields and are
involved mainly in local columnar projections.
Layer V contains both pyramidal and non-
pyramidal neurons. The somata of the conspicu-
ous large pyramidal neurons located in layer Vb
have apical dendrites that extend to layer I, with
several branches along the way. Other pyramidal
cells in layer V are smaller and more evenly
distributed. Layer V is of particular interest
because its cells form part of the projection to
the thalamus and other subcortical areas (Fig. 14;
Games and Winer 1988; Hefti and Smith 2000;
Malmierca and Ryugo 2011). As in other cortical
regions, two distinct types of pyramidal cells,
“intrinsically bursting” and “regular spiking”
can be distinguished on the basis of their corre-
lated morphology and physiology (Fig. 14;
Kawaguchi 1993; Kasper et al. 1994). The intrin-
sically bursting pyramidal cells (Fig. 14) have
large cell bodies and long, thick apical dendrites
that branch extensively in layer I. Their axons
arborize locally in the infragranular cortical
layers and project into subcortical white matter.
In contrast, the regular-spiking pyramidal cells
(Fig. 14) have smaller cell bodies and a thinner
apical dendrite that seldom extend to layer
I. Their axons also project to the white matter
and arborize locally in the supragranular cortex.
In slice preparations, the intrinsically bursting
neurons exhibit a characteristic firing pattern
with a burst of action potentials followed by
either additional bursts or single spikes, whereas
the regular spiking neurons tend to fire single
spikes with a variable degree of adaptation
(Hefti and Smith 2000, 2003). Intrinsically burst-
ing cells make up the majority of layer V’s input
to subcortical targets (Fig. 15; Games and Winer
1988; Winer 1992; Weedman and Ryugo 1996a,
b; Saldaña et al. 1996) and are capable of pro-
viding a robust input to postsynaptic neurons
(Hefti and Smith 2000). In contrast, most regular
spiking neurons are strongly inhibited and may
provide less robust but perhaps more specific,
information to their inputs. Finally, layer VI has
the widest variety of cell types, including several
classes of pyramidal cells and multipolar, bipo-
lar, and horizontal cells.

The main source of ascending inputs to A1 and
other core areas is the MGV (Fig. 2; Jones 2007;
Winer 1985; Winer and Lee 2007). The
thalamocortical termination is concentrated in
layers III and IV. The organization of these con-
nections is topographic, reflecting tonotopic orga-
nization within the MGV, as well as the areas to
which it projects. Additional inputs to the core



Anatomy and Physiology of the Mammalian Audi-
tory System, Fig. 14 Top panel, examples of morphol-
ogy of layer V and layer VI corticothalamic neurons
biocytin-filled corticothalamic neurons. Scale bar
100 mm; Bottom panels, Llano and Sherman model of
differences of synaptic input and response properties
between auditory layer V and layer VI corticothalamic
neurons. In response to excitatory input, layer
V corticothalamic neurons fire a burst of action potentials
at low threshold, and these neurons receive excitatory input
from neurons in layers II/III, IV, and V (gray) and
GABAA-mediated inhibitory input mostly from lower
layer V with a smaller contribution from layer II/III (red).
In contrast, in response to excitatory input, these neurons
fire a regular train of individual action potentials, and these
neurons receive excitatory input primarily from layer VI
and inhibitory input from adjacent areas in layer VI
(Figure kindly provided by Dr. Daniel Llano. Adapted
from Llano and Sherman 2009)
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include MGM, which projects broadly to all areas
of auditory cortex. The intracortical connections
of the core mainly include other areas of auditory
cortex ipsilaterally and sparse connections with
areas beyond auditory cortex. Tonotopically
matched sites are more densely interconnected
than non-matched sites (Lee and Winer 2005).
Connections with auditory cortex in the opposite
hemisphere are concentrated in the homotopic
(matching) area, (Wallace and Harper 1997) and
heterotopic connections are relatively weak. The
main callosal projections arise from both pyrami-
dal and nonpyramidal cells in layers III and
V. Layers V and VI represent the main source of
descending projections to the MGB and IC and
brainstem (Fig. 15).
The Belt Region of Auditory Cortex

Areas that lie outside of the core region are often
referred to as the nonlemniscal or belt areas
(Fig. 13). These areas are anatomically and phys-
iologically distinct from the core fields and from
one another. Architectonically, each of the belt
areas is distinct, but compared to the core region,
cell density and myelination are generally
reduced, as is the expression of cytochrome oxi-
dase, acetylcholinesterase, and parvalbumin
(Jones 2003).

In addition to the inputs from the core, the
main source of projections to most of the belt
areas is the MGD (Jones 2007; Winer 1985;
Winer and Lee 2007). Additional connections
include the MGM and thalamic nuclei that sur-
round the MGB. Belt areas tend to differ with
respect to the balance of inputs from different
thalamic nuclei. In nonhuman primates, an addi-
tional group of areas has been identified that
surround the belt areas adjacent to the core.
This region is known as the parabelt (Kaas and
Hackett 1998). The parabelt region receives
inputs from the belt region and MGD, but not
the core. Thus, some ascending information
appears to pass serially through the core and
belt regions before reaching the parabelt (Kaas
and Hackett 1998).



Anatomy and Physiology of the Mammalian Audi-
tory System, Fig. 15 Schematic wiring diagram of the
descending auditory pathway of the rat (Modified after
Brodal 1981, AC is from Herbert et al. 1991). Abbrevia-
tions in the figure: bic Brachium of the inferior colliculus,
cc Corpus callosum, CIC Central nucleus of the inferior
colliculus, cic Commissure of the inferior colliculus, cll
Commissure of the lateral lemniscus (Prosbt), das Dorsal
acoustic stria, DC Dorsal cochlear nucleus, h High-
frequency region, IC Inferior colliculus, l Low-frequency

region, ll Lateral lemniscus, LTz Lateral nucleus of the
trapezoid body, MG Medial geniculate body, MTz Medial
nucleus of the trapezoid body, ocb Olivocochlear bundle,
PIL Posterior intralaminar nucleus, PP Peripeduncular
nucleus, Rt Auditory sector of the reticular thalamic
nucleus, SOC superior olivary nucleus, SPO Superior para-
olivary nucleus, Te1 Temporal area 1, Te2 Temporal area 2,
Te3 Temporal area 3, tz Trapezoid body (or ventral acoustic
stria), VC Ventral cochlear nucleus, 8cn Cochlear root of
the vestibulocochlear nerve
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The Descending Auditory Pathways

In parallel to the ascending auditory pathways,
there are stepwise, descending projections from
the auditory cortex to the organ of Corti (Fig. 15).
The descending auditory pathway could be con-
sidered to consist of both (1) a descending chain
of connections and (2) a series of regional feed-
back loops (Warr 1992).

The descending chain comprises three main
levels. The first level originates in the AC and
includes corticothalamic, corticotectal, and
corticopontine projections (Fig. 16). The
corticothalamic projection forms reciprocal and



Anatomy and Physiology of the Mammalian Audi-
tory System, Fig. 16 Diagrammatic summary of the
laminar organization of cortical cells projecting to the
inferior colliculus (IC), superior olivary complex (SOC),
and cochlear nucleus (CN). All three distributions overlap;

however, the cortical neurons projecting to more distant
targets are more narrowly distributed and centered in
deeper regions of layer V (Figure kindly provided by
Dr. D. K. Ryugo. Reproduced from Doucet et al. 2003)
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nonreciprocal connections between the AC and
MGB. The corticotectal projection terminates in
the IC and subcollicular nuclei (Feliciano and
Potashner 1995; Meltzer and Ryugo 2006). The
second level of the chain originates in the IC,
whose descending fibers form colliculo-olivary
and colliculo-cochleonuclear projections
(Fig. 15). The colliculo-olivary fibers terminate
on the periolivary medial olivocochlear cells
which supply the OHCs (Caicedo and Herbert
1993; Faye-Lund 1985; Vetter et al. 1993). They
may also terminate on lateral olivocochlear cells,
which supply the IHCs (Feliciano and Potashner
1995). The last and third level of the chain con-
sists of the olivocochlear system that provides
efferent innervation to the cochlea (Figs. 15
and 19).

The regional feedback loops consist of a series
of cortical projections to subcortical nuclei that
project back to cortex, directly or indirectly, allo-
wing AC to control its inputs from lower centers.
The Corticofugal Pathways

The major AC projections target the MGB and IC
(Figs. 15–18), but there are also AC projections to
subcollicular nuclei, including the nucleus
sagulum, paralemniscal regions, superior olivary
complex, cochlear nuclear complex, and pontine
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nuclei. The AC also supplies the amygdala, basal
ganglia, striatum, superior colliculus, and central
gray (reviewed in Malmierca and Ryugo 2011,
2012), suggesting that the AC has important
roles in addition to auditory sensory processing
(Winer 2006).

In the auditory thalamus, the MGV receives its
heaviest source of input from the primary AC,
while the MGM the least and the MGD receives
an intermediate amount. A prominent feature of
the corticothalamic projection is reciprocity, in
which a cortical region projects to the part of the
thalamus from which it receives input. However,
there are also nonoverlapping regions (Llano and
Sherman 2008). In the MGB, there are two main
types of terminal synaptic boutons (I and II) aris-
ing from the core of the AC (Fig. 17; Bartlett et al.
2000; Llano and Sherman 2009). Type I terminals
are small (<1 mm in long-axis diameter), synapse
on small caliber dendrites of the MGVand MGD,
and arise from the pyramidal cells of layer
VI. Type II terminals are large (>2 mm in long-
Anatomy and Physiology of the Mammalian Audi-
tory System, Fig. 17 Diagram of a cortico-
thalamocortical model of cortical processing. Information
reaches the lemniscalAC via a projection from theMGV to
layer IV of either the AAF or the AI. From here, a layer
5 pyramidal projects to the MGD, where a thalamocortical
relay cell projects to layer IV of the nonlemniscal AC
(DP or AII). From the nonlemniscal AC, a layer VI projec-
tion is sent to the MGB, adhering to the principle that all
thalamocortical projections, whether coming from the first-
or higher-order thalamus, receive a modulator, reciprocal
projection from layer VI (Figure kindly provided by
Dr. Daniel Llano. Adapted from Llano and Sherman 2008)
axis diameter), mostly synapse in the MGD and
occasionally in the MGM (Bartlett et al. 2000;
Llano and Sherman 2009) and arise from pyrami-
dal neurons from layer V.

Sherman and Guillery (1996) first proposed the
notion of “drivers” and “modulators” of thalamic
neurons in the visual and somatosensory thala-
mus, but this hypothesis has been applied to the
auditory system as well (Llano and Sherman
2008). According to this theory, type I terminals
play a modulatory role in the first-order thalamic
nuclei, such as the MGV (Fig. 17). Thus, the
corticothalamic inputs converge with ascending
inputs on thalamic neurons such that the ascend-
ing inputs drive the thalamic neurons and the
cortical inputs modulate them. In contrast, in the
“higher-order” thalamic nuclei, such as the MGD,
the “driver” inputs arise from the large type II
axons and terminals that originate from the cortex
and interact with other ascending input from
the IC.

The corticofugal projection is glutamatergic
and modulates the MGB responses to sound
through a direct excitatory pathway, but the AC
can also provide the MGB with an inhibitory
influence (Bartlett et al. 2000) via its projections
to the auditory sector of the thalamic reticular
nucleus which, in turn, projects to the MGB.

As in the MGB, AC may modulate the pro-
cessing of sounds in the IC through the activation
of local inhibitory connections within the
IC. Several studies have shown direct neocortical
projections to regions surrounding the lateral lem-
niscus, including the nucleus sagulum ipsilater-
ally and the SOC and CNC bilaterally (Feliciano
and Potashner 1995; Weedman et al. 1996;
Weedman and Ryugo 1996a, b).
The Colliculofugal Pathways

Studies in several species have shown that the IC
has descending projections to the LL, SOC, and
CNC (Fig. 15; reviewed in Malmierca and Ryugo
2011, 2012). Perhaps, the most interesting pro-
jections are the colliculo-olivary projections that
originate in the CNIC and LCIC because they
terminate on the VNTB, the site of origin of the



Anatomy and Physiology of the Mammalian Audi-
tory System, Fig. 18 Retrograde labeling in area Te1 for
a rat that received an injection of Fast blue (FB) into the
CNC and Diamidino yellow (DiY) into the IC (top). (a)
Sagittal view of the brain, the gray line through AC indi-
cates the position of the cells along the rostral/caudal axis
display of the location of labeled cortical cells shown in
panels (b–e). (b) Photomontage of layer V with few
FB-labeled cells located in deep layer V whereas the
DiY-labeled neurons are distributed more broadly. (c)
Higher magnification photomontage illustrating the

laminar organization of cortical cells (cortical surface is
towards the top) projecting to the CNC (blue) vs those
targeting the IC (yellow) within layer V. (d and e) Examples
of labeled cortical cells. Cortical cells that contained both
dyes (blue and yellow arrow in d) were observed much less
frequently (Figure kindly provided by Dr. D. K.Ryugo).
Reproduced from Doucet et al. 2003). Abbreviations in the
figure: CN Cochlear nucleus, CIC Central nucleus of the
inferior colliculus, D Dorsal,MMedial, Te1 Temporal area
1, Te2 Temporal area 2, Te3 Temporal area 3
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MOC (White and Warr 1983), suggesting that the
IC influences MOC neurons (Vetter et al. 1993).
The IC also projects to nonauditory nuclei includ-
ing the pontine nuclei, lateral paragigantocellular
nucleus, gigantocellular reticular nucleus, ventro-
lateral tegmental nucleus, and caudal pontine
reticular nucleus (Caicedo and Herbert 1993).
The Olivocochlear System

The olivocochlear bundle provides the organ of
Corti with efferent innervation (Figs. 15 and 19;
Rasmussen 1946) and plays a critical role in
maintaining the normal operation of the cochlea
(Figs. 15 and 19). It may introduce nonlinear
dynamics into the auditory system (Eggermont
2001). There are two systems of olivocochlear
neurons, medial (MOC) and lateral (LOC). The
MOC neurons are located medial and ventral to
the main nuclei of the SOC in the PO nucleus
known as the VNTB and project mainly to the
Anatomy and Physiology of the Mammalian Audi-
tory System, Fig. 19 Scheme of the LOC and MOC
neurons, their projections to the IHCs and OHCs, respec-
tively, and afferent fiber types I and II projecting to the
contralateral cochlea, whereas the LOC neurons
are located within or near the LSO and project to
the ipsilateral cochlea (Warr 1992; White and
Warr 1983).

The MOC neurons constitute a homogeneous
population of cholinergic cells and innervate the
OHCs (Figs. 15 and 19). About 75% of them
originate on the contralateral side with the remain-
der originating ipsilaterally (Warr 1992; Brown
and Levine 2008). They probably receive
descending input from the ipsilateral IC and
ascending input bilaterally from the VCN.

In rodents, the LOC neurons (Figs. 15 and 19)
consist of two distinct types of neurons: intrinsic
and shell neurons (Vetter and Mugnaini 1992;
Warr et al. 1997). Intrinsic neurons are confined
to the ipsilateral LSO and constitute about 85% of
all LOC neurons (Brown and Levine 2008; Vetter
and Mugnaini 1992; Warr et al. 1997). Most shell
neurons surround the ipsilateral LSO and consti-
tute the remaining 15% (Vetter and Mugnaini
1992; Brown and Levine 2008; Warr et al.
CNC. In rodents, two types of LOC cells occur: intrinsic
located inside the LSO and shell located in the margins of
the LSO (Figure kindly provided by Dr. Bruce Warr.
Adapted from Warr 1992)
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1997). (In contrast, in the cat the LOC neurons
surround the LSO, and two populations have not
been distinguished.) The LOC neurons innervate
the type I primary afferent fibers near the region
where they contact the IHCs. Virtually all of them
originate on the ipsilateral side (Brown and
Levine 2008).

The functional role of the MOC neurons may
be to enhance transduction or signal detection
through an unmasking effect, thus regulating the
slow motility of the OHCs and thereby the stiff-
ness of the basilar membrane (Eggermont 2001).
Another function may be to protect the inner ear
from acoustic injury (Taranda et al. 2009).
Although the functional role of the LOC is uncer-
tain, several studies (Safieddine et al. 1997;
Safieddine and Eybalin 1992) have shown that
these neurons may provide a modulatory effect
to the afferent fibers that contact the IHCs.
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Definition

General anesthesia is a reversible, drug-induced
state of unconsciousness characterized by lack of
awareness of surroundings, lack of responsive-
ness to painful stimuli (nociception), and inabil-
ity to form memories (amnesia). The change in
brain state from wakeful to unconscious pro-
duces alterations in cortical electrical activity
that can be monitored with electrodes placed on
the scalp (electroencephalogram (EEG)) or on
the surface of the cortex (electrocorticogram
(ECoG)). The goal of neural modelers is to
develop equations that describe the gross behav-
ior of spatially averaged populations of neurons
during both induction of and recovery from gen-
eral anesthesia.
Detailed Description

Classes of General Anesthesia
There are two broad classes of anesthetic drugs:
inductive agents (such as propofol, etomidate,
isoflurane) that produce a slowed sleeplike EEG
and dissociative agents (e.g., ketamine, nitrous
oxide) that induce a dissociated state with an
activated EEG similar to that of REM sleep.

Most commonly used intravenous and volatile
agents – such as propofol or sevoflurane – boost
inhibition by increasing the influx of chloride ions
at gamma-aminobutyric acid (GABA) receptors
on postsynaptic membranes (Weir 2006), causing
the postsynaptic neuron to become hyper-
polarized. In contrast, dissociative drugs are
believed to disrupt excitatory synaptic transmis-
sion. In both cases, the excitatory – inhibitory
balance required for normal brain function has
been shifted to favor inhibition.

The Induction: Recovery Trajectory
At low concentrations, most GABAergic agents
(e.g., propofol, sevoflurane, etomidate) cause a
paradoxical boost in cortical activity (called the
“biphasic effect”) across most EEG frequency
bands (Kuizenga et al. 2001), with the biphasic
peak appearing first in the high beta frequencies
(24–28 Hz), then sliding smoothly towards lower
frequencies in time (e.g., see Fig. 3 of Koskinen
et al. (2005)). With further increase in concentra-
tion, the EEG slows as large-amplitude delta-band
oscillations (1–4 Hz) become dominant, then
changes to an intermittent burst–suppression pat-
tern (bursting activity alternating with relative
silence), and finally collapses into a flat-line
trace at the deepest levels of comatose anesthesia.

This sequence is reversed as the anesthetic
drug is eliminated naturally from the body, allo-
wing the patient to return to consciousness. How-
ever, the fact that the recovery of responsiveness
generally occurs at a lower drug concentration
(as measured in the blood) than that required to
induce unresponsiveness suggests a hysteresis
separation between induction and recovery trajec-
tories. Part of this hysteresis can be explained in
terms of the time required for the drug to diffuse
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across the blood–brain barrier (Voss et al. 2007)
and so can be compensated using pharmacokinet-
ics models (Roberts 2007), but such compensa-
tions are typically only partially successful
(Ludbrook et al. 1999; Coppens et al. 2010). The
remaining hysteresis may be a consequence of a
recently proposed “neural inertia” that resists tran-
sitions between conscious and unconscious states
(Friedman et al. 2010); such distinct induction/
recovery paths arise naturally if the brain has
access to multiple steady states as suggested by
the modeling of Steyn-Ross et al. (1999, 2004).

Cellular Effects of General Anesthetic Drugs
Studies of propofol, halothane, and isoflurane
have shown that, at drug concentrations rendering
human subjects unresponsive, cerebral blood flow
and metabolism are reduced by about 50%
(Antkowiak 2002) as a result of global reductions
in cortical activity. This is consistent both with
in vivo investigations in rat cortex – where
sedative-level concentrations were found to sup-
press neural firing rates by 50–70% (Gaese and
Ostwald 2001) – and with cultured brain-slice
studies in which low concentrations of general
anesthetics (GABAergic agonists propofol, halo-
thane, isoflurane, enflurane, sevoflurane,
etomidate, ethanol, and pentobarbital and the
non-GABAergic agent ketamine) significantly
decreased mean firing rates (Antkowiak 2002).

All anesthetic drugs influence cellular function
in a number of different ways, but the major
mechanism for GABAergic suppression of firing
rates is believed to be the prolongation of the
opening of chloride channels on the postsynaptic
neuron, thus causing a substantial increase in neg-
ative charge transfer (by a factor of 2–4 times
control at clinically relevant concentrations
(Kitamura et al. 2003; Banks and Pearce 1999))
during the inhibitory postsynaptic current (IPSC)
pulse.

Dissociative drugs reduce excitatory transmis-
sion by blocking N-methyl-d-aspartate (NMDA)
glutamate channels, which probably has a signif-
icant role in producing the characteristic dissoci-
ated anesthetic state (Petrenko et al. 2013);
however, these drugs also have other effects
such as inhibition of hyperpolarization-activated
cyclic nucleotide-gated (HCN1) channels (Chen
et al. 2009) or increased potassium channel open-
ing (Gruss et al. 2004).

Modeling Anesthetic Effects
The challenge for anesthesia modelers is to bridge
the scales from the microscopic cellular drug
effects to the consequent macroscopic population
behaviors detected with scalp or cortical elec-
trodes. By considering spatially averaged
(“mean-field”) properties of cortical tissue, we
can avoid the need (and computational expense)
of attempting to explicitly represent myriads of
individual neurons (as is done in neural net-
works). There is a steadily growing interest in
applying mean-field methods to the challenge of
understanding anesthesia; see Foster et al. (2008)
and Steyn-Ross et al. (2011) for reviews.

The notion of neural fields dates from founda-
tion work by Wilson and Cowan (1972) that
modeled the brain as homogenous populations of
excitatory and inhibitory neurons. The first
attempt at modeling propofol anesthesia by
Steyn-Ross et al. (1999) incorporated prolonga-
tion of inhibitory response into the mean-field
neural model of Liley et al. (1999); it predicted
the possibility of multiple steady states with dis-
tinct first-order phase transitions between acti-
vated (“conscious”) and inactivated
(“unconscious”) states and provided a possible
explanation for the hysteretically separated
biphasic power surges observed at loss and recov-
ery of consciousness (Kuizenga et al. 2001).

Subsequent work by Bojak and Liley (2005)
on isoflurane anesthesia showed that, for suitable
choices of cortical parameters, a smooth descent
into unconsciousness can also generate a biphasic
drug response. Using an alternative mean-field
model, Hutt and colleagues (Hutt and
Schimansky-Geier 2008; Hutt and Longtin
2010) predicted that biphasic power surges can
be expected for both the bistable (jump transition)
and monostable (smooth) inductions of
anesthesia.

General anesthetic agents are widely used to
treat seizures, but paradoxically, some anesthetics
(e.g., enflurane) can also provoke cortical seizures
when the patient is deeply anesthetized. Liley and
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Bojak (2005) and Wilson et al. (2006) used mean-
field modeling to show that subtle changes in the
shape and duration of the drug-induced inhibitory
postsynaptic response can explain why enflurane,
but not isoflurane, is seizurogenic.

An important part of general anesthesia is the
suppression of noxious stimuli. A practical index
of antinociception has been developed from a
mean-field model (Liley et al. 2010) that informed
construction of an autoregressive – moving-
average (ARMA) noise-driven filter whose output
approximates the scalp-recorded EEG. The mean
filter frequency tracks the level of propofol-
induced hypnosis (“cortical state”), while the
decrease in required noise intensity (“cortical
input”) tracks the concentration of a
coadministered analgesic agent (remifentanil).
This computed “cortical input” signal is presumed
to be a measure of cortical stimulus, both noxious
and normal, entering from the thalamus, and
potentially allows differentiation between hyp-
notic and analgesic drug effects.

The unconscious state of anesthesia and of
deepest natural sleep are both characterized by
large-amplitude, slow (0.5–4 Hz) delta waves of
EEG activity. The source of these slow waves is
unknown but is generally supposed to originate
from gradual alternations in depolarizing and
hyperpolarizing ionic currents. By introducing a
slow ionic gating variable into a mean-field model
for desflurane anesthesia, Molaee-Ardekani et al.
(2007) demonstrated emergence of realistic slow
waves. A quite different slow-wave mechanism
has been proposed by Steyn-Ross et al. (2013): if
inhibitory gap junctions are included in the two-
dimensional cortical sheet, then a Turing (pattern-
forming) instability can interact with a weakly
damped low-frequency Hopf instability to pro-
duce turbulent slow-wave activity across the cor-
tex. Anesthetic-induced closure of inhibitory gap
junctions (Wentlandt et al. 2006) is predicted to
weaken the Turing instability in favor of the Hopf
oscillation.

There has been interest in modeling some of
the specific details of EEG spectral changes
caused by various general anesthetic drugs, for
example, the displacement in alpha peak fre-
quency induced by ketamine (Bojak et al. 2013)
or propofol (Hindriks and van Putten 2012; Hutt
2013) and the burst–suppression pattern of deep
anesthesia (Liley and Walsh 2013).

Increasingly there has been a realization that
general anesthesia may disrupt neuronal networks
in an anatomically specific fashion (Kuhlmann
et al. 2013; Lee et al. 2013) and that the current
homogenous and isotropic neuronal population
models might need to include aspects of network
topology. This has led to attempts to link EEG
patterns probabilistically with underlying anes-
thetic effects on inhibitory and excitatory neuro-
nal groups – this should provide a quantitative
basis for the estimation of model parameters. At
an abstract level, dynamic causal-modeling
methods have been employed (Moran et al.
2011; Boly et al. 2012), but a more direct Bayes-
ian approach – which has been used for natural
sleep (Dadok et al. 2013) – could be applied to
anesthesia EEG.
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Definition

Anti-Hebbian learning is a form of activity-
dependent synaptic plasticity that is defined as
the opposite of Hebbian learning. Hebbian learn-
ing is commonly defined as follows: correlated
activation in the pre- and postsynaptic neurons
leading to the strengthening of the connection
between the two neurons. However, the original
definition offered in Hebb (1949) talks about the
increase in the presynaptic neuron’s efficiency of
eliciting activity in the postsynaptic neuron, under
the same correlated firing condition. These two
definitions (strengthening of connection
vs. increased efficiency) are compatible only
when the presynaptic neuron is excitatory. They
are contradictory when the presynaptic neuron is
inhibitory: increased connection strength (weight,
efficacy) corresponds to decreased efficiency in
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eliciting response. Assuming the original defini-
tion of Hebbian learning, we can define anti-
Hebbian learning as a form of synaptic plasticity
where correlated activation in the pre- and post-
synaptic neurons leads to the reduction in the
efficiency of the presynaptic neuron’s ability to
elicit activation of the postsynaptic neuron.
Detailed Description

In this entry, we will review computational for-
mulations of anti-Hebbian learning and their
theoretical implications. We will also briefly
touch upon neurobiological correlates of the
learning mechanism. The literature on anti-
Hebbian learning is not as rich as that on
Hebbian learning. A review of Hebbian learning
by Frégnac (2003) includes a brief discussion on
the neurobiological bases of anti-Hebbian learn-
ing. See Földiák (1990) for a computational
treatment of the subject and Palmieri et al.
(1993) for a review.
x1 y1
v11

v21 w21
Basic Formulation

Consider a simple configuration with a single
presynaptic neuron x connecting to a single post-
synaptic neuron y with synaptic weight w as
shown above (Fig. 1). Anti-Hebbian learning is
the same as Hebbian learning, except for the flip
of the sign.

dw
dt

¼ ��xy, ð1Þ

where the learning rate � is a small, fixed, positive
value. The neuronal activities x and y are normally
assumed to be positive (or zero), but for purely
computational purposes, they can be negative
values as well. In Hebbian learning, adaptive
threshold or normalization approaches are used
x y
w

Anti-Hebbian Learning, Fig. 1 A pair of neurons
forming an anti-Hebbian connection
to check unbounded growth in the synaptic
weight. However, in anti-Hebbian learning,
such a check is unnecessary since the mechanism
is inherently stable (Földiák 1990). At first
glance, it appears that the weight w can tend
toward �1, but this will never happen because
high levels of inhibition will shut off y after a
certain point and thus w will not change any
further thereafter. When x and y are allowed to
be negative, w can increase under the same learn-
ing rule. Some formulations prevent this from
causing infinite growth by imposing a limit
(w is assumed to be negative and it is reset to
0 as soon as it becomes positive; Földiák 1990),
but others do not include such a limit (e.g.,
Girolami and Fyfe 1996).
Theoretical Perspectives

Anti-Hebbian learning is usually combined with
Hebbian learning to produce interesting theoreti-
cal and practical results. Figure 2 below shows
such an example (adapted from Földiák 1990). In
this figure, two downstream neurons y1 and y2
receive afferent input from x1 and x2 through
Hebbian synapses (with weights vij) and exchange
activations via anti-Hebbian lateral connections
(with weights wij). (The subscripts ij on the
weights indicate the target [i] and source neuron
index [j], respectively.)

Földiák showed that the above network can
learn to decorrelate the output neurons’ activity
(sparse coding in neurons yi), which results in the
learning of afferent representations (vij) that are
components that make up the input mixtures. The
model included an anti-Hebbian rule similar to
Eq. 1 with an added threshold (wij), a Hebbian
x2 y2v22

v12
w12

Anti-Hebbian Learning, Fig. 2 Neurons connected with
Hebbian (arrows) and anti-Hebbian synapses (discs).
(Simplified from Földiák 1990)



x1

y1

x2

y2

y3

Anti-Hebbian Learning, Fig. 3 A hierarchy of neurons
yi with Hebbian afferent connections (arrows) and anti-
Hebbian connections in a cascade (discs). (Adapted from
Carlson 1990)
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rule with weight decay (vij), and a dynamic neural

activation equation dyi
dt

� �
with adaptive threshold

and sigmoid nonlinearity (for details, see Földiák
1990).

Now consider a hierarchical network shown
above (Fig. 3). Hebbian learning is known to
extract the first principal component of the
inputs (Oja 1982), so neuron y1 would serve
this role. Using a hierarchical network like
Fig. 3 with anti-Hebbian connections arranged
in a cascade, second, third, and subsequent prin-
cipal components of the input can be found (see
Carlson 1990 for a review and details). The main
idea is that once yi learned the i-th principal
component, and yiþ1 is decorrelated with y1, y2,
. . ., yi through anti-Hebbian connections (note
that y3 receives anti-Hebbian connections from
both y1 and y2), yiþ1 will find the i þ 1-th prin-
cipal component.

For a review of more complicated network
topologies that involve anti-Hebbian learning,
see Palmieri et al. (1993).
Neurobiological Underpinnings

As Hebbian learning is usually associated with
long-term potentiation (LTP), anti-Hebbian learn-
ing is typically explained by long-term depression
(LTD). LTP is a phenomenon where high fre-
quency stimulation of the presynaptic neuron
leads to a prolonged increase in synaptic efficacy
(Bliss and Collingridge 1993). LTD is the
opposite, where low-frequency stimulation causes
a prolonged decrease in synaptic efficacy (Dudek
and Bear 1992); thus, it fits the anti-Hebbian
profile.

Examples of LTD associated with anti-
Hebbian mechanisms have been found in the
mammalian cerebellum (e.g., mouse and rat) and
also in the electrosensory lobe (ELL) in the teleost
electric fishes, and these LTD mechanisms are
thought to be playing an anti-Hebbian role (see
Frégnac 2003 for a brief review).

In some cases, LTP can also be associated with
a form of anti-Hebbian learning, when LTP is
induced not by correlated activation but by pre-
synaptic firing not being met by or negated by the
postsynaptic activity. Such a phenomenon has
been observed in the hippocampus and has been
dubbed anti-Hebbian LTP. Kullmann and Lamsa
(2007) provide an extensive review on this topic
and provide a comparison of anti-Hebbian LTD
and anti-Hebbian LTP.

Finally, spike timing-dependent plasticity
(STDP; see Caporale and Dan 2008 for a review)
has also been linked to anti-Hebbian learning.
STDP is a short-term synaptic plasticity mecha-
nism where depending on the ordering of pre- and
postsynaptic events, either LTP or LTD can entail.
LTP is induced when the presynaptic activity pre-
cedes postsynaptic activity and LTD when the
ordering is reversed. Some views the LTD part
of STDP as implementing an anti-Hebbian rule
(see Nelson 2004 for a discussion).
Applications of Anti-Hebbian Learning

Anti-Hebbian learning has been applied to several
signal and data processing tasks including vision
and speech processing. Girolami and Fyfe (1996)
used anti-Hebbian rule to learn finite impulse
response (FIR) filter coefficients and applied the
technique to blind source separation in the speech
recognition domain. Schraudolph and Sejnowski
(1992) used anti-Hebbian rule to learn invariances
in disparity tuning for stereo vision. Földiák
(1990) combined Hebbian and anti-Hebbian rule
to learn sparse representations from overlapping
visual inputs.



216 Aperture Problem
Cross-References

▶Hebbian Learning
▶ Spike-Timing Dependent Plasticity, Learning
Rules
References

Bliss TVP, Collingridge GL (1993) A synaptic model of
memory: long-term potentiation in the hippocampus.
Nature 361:31–39

Caporale N, Dan Y (2008) Spike timing-dependent plas-
ticity: a Hebbian learning rule. Ann Rev Neurosci 31:
25–46

Carlson A (1990) Anti-Hebbian learning in a non-linear
neural network. Biol Cybern 64:171–176

Dudek SM, Bear MF (1992) Homosynaptic long-term
depression in area CA1 of hippocampus and effects of
N-methyl-d-aspartate receptor blockade. Proce Natl
Acad Sci USA 89:4363–4367

Földiák P (1990) Forming sparse representations by
local anti-Hebbian learning. Biol Cybern 64:
165–170

Frégnac Y (2003) Hebbian synaptic plasticity. In: Arbib
MA (ed) The handbook of brain theory and neural
networks, vol 2. MIT press, Cambridge, MA,
pp 515–522

Girolami M, Fyfe C (1996) A temporal model of linear
anti-Hebbian learning. Neural Process Lett 4:
139–148

Hebb DO (1949) The organization of behavior: a neuro-
psychological theory. Wiley, New York

Kullmann DM, Lamsa KP (2007) Long-term synaptic
plasticity in hippocampal interneurons. Nat Rev
Neurosci 8:687–699

Nelson SB (2004) Hebb and anti-Hebb meet in the
brainstem. Nat Neurosci 7:687–688

Oja E (1982) A simplified neuron model as a principal
component analyzer. J Math Biol 15:267–273

Palmieri F, Zhu J, Chang C (1993) Anti-Hebbian learning
in topologically constrained linear networks: a tutorial.
IEEE Trans Neural Netw 4:748–761

Schraudolph NN, Sejnowski TJ (1992) Competitive anti-
Hebbian learning of invariants. In: Moody JE, Hanson
SJ, Lippmann RP (eds) Advances in neural information
processing systems. Morgan Kaufmann, San Mateo,
pp 1017–1024
Aperture Problem
▶ Somatosensory Cortex: Neural Coding of
Motion
Application of Declarative
Programming in
Neurobiology
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Department of Molecular and Integrative
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Definition

The main technique in computational neurosci-
ence is imperative programming, which is often
used to implement simulations of dynamics, and
describes how a computation is performed.
A complement to this approach is declarative
programming. Declarations provide descrip-
tions of relationships between elements, effec-
tively describing what the computation should
accomplish. The use of declarative program-
ming for modeling biological processes is still
in its infancy (Fisher and Henzinger 2007) yet
has shown itself to be a valuable first step for
analysis of the seemingly impenetrable com-
plexity of molecular interactomics: the interplay
of the myriad proteins and signaling species in
the cell. Declarative programming can also be
used at the connectomic level of understanding
connections among neurons or among brain
areas.
Detailed Description

Declarative Programming
The declarations of a declarative program
describe the relationships between system ele-
ments. Because of this descriptive nature, a
model implemented in a declarative program
may be considered as a system specification.
Many declarative programming languages uti-
lize term-rewriting logic: the declarations are
rewrite laws that specify how one term should
be replaced by another. Abstract rewriting sys-
tems are written with arrows, specifying that the
left-hand side (LHS) is to be replaced by the term
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on the right-hand side (RHS). Other notations,
such as Backus-Naur Form, utilize some variant
of an equal sign to specify that RHS is replaced
by LHS.

Crucially, because the declarations are
descriptions of system properties, the specifica-
tion can be used not only for simulation but also
for analyses such as state-space search and
temporal-logic model checking (explained
below; for a general reference see Huth and
Ryan 2004). Term-rewriting declarative lan-
guages are readily used for expressing data-
driven models constructed directly from experi-
mental observations. These models do not
require an overarching conceptual framework
or preconceived hypothesis, allowing the enor-
mous amounts of data generated by neurobiolog-
ical experiments to be directly entered. This
allows the data to “speak for itself” and provides
a model that can be used as a tool to help develop
subsequent hypotheses.

The first term-rewriting language was the
l-calculus, developed in the 1930s by Alonzo
Church (Cardone and Hindley 2006). Since then
several other term-rewriting, declarative program-
ming languages have been developed. Some well-
known examples are Scheme (http://www.r6rs.
org/), Alloy (http://alloy.mit.edu/alloy/index.
html), Simile (http://www.simulistics.com/tour/
declarative.htm), and ECLiPSe (http://eclipseclp.
org/index.html). One declarative programming
language that has been used effectively for model-
ing molecular interactions and neurobiological
processes is Maude (http://maude.cs.uiuc.edu/;
Clavel et al. 2007).

A specification in Maude is based on an under-
lying algebra, which is defined by sorts (data
types) and by operations that are allowed for
each sort (e.g., natural numbers – sort, can be
added together – operation). Preset algebras such
as the natural numbers are available, but new
algebras can be defined by the user. Declarations
in Maude are written in terms of the underlying
algebra and can be expressed either as equations
or as rules. Equations in Maude specify functional
relationships that simplify the state of the system
being modeled, while rules specify transitional
relationships that change the state of the model
system. For example, an equation could specify
that 2 apples plus 4 apples plus 3 apples equals
9 apples, while a rule could specify that 9 apples
can transition to an apple pie. Equations and rules
can be unconditional (eq and rl, respectively) or
conditional (ceq and crl). For example, a con-
ditional rule could specify that 9 apples can tran-
sition to an apple pie, but only if mom is available
to bake it. While an unconditional equation or rule
applies whenever its LHS is present, a conditional
rule requires both the LHS and the required
conditions.

All rewrite systems have rules (a.k.a. syntax)
that transition the system state and evaluations
(a.k.a. semantics) that can reduce the state, in
whole or in part, to its underlying value at arbi-
trary times (Kain 1972). Another characteristic
of Maude is that equations (i.e., evaluations)
must execute whenever they apply while appli-
cable rules may execute or not. Rules, by exe-
cuting, can transition the system to a state in
which equations become applicable that were
not so in the previous state. In using Maude for
simulation, all applicable rules would ultimately
execute according to a fairness criterion: every
applicable rule must execute once before any
other rule can execute twice. In using Maude
for analyses, such as state-space search or logi-
cal model checking, the rules execute in all pos-
sible combinations and orders. Because rules
cause state transitions, Maude thereby elabo-
rates the state transition tree implied by the
specification and later searches this tree for spe-
cific states or to verify certain temporal-logic
propositions.

Maude has been used to specify and analyze a
broad range of complex engineered systems used
for computer network security, encryption, and
avionics, among others (Meseguer 2012). Maude
is also used to model other programming lan-
guages, and analysis of a Maude model can verify
that a language behaves as intended. This type of
analytical capability suggests how Maude can be
used to assess interactomic “programs,” so as to
determine where they have vulnerabilities, pre-
dicting sites for potential failure which would
produce disease, as well as sites where interven-
tion could compensate for these failures,
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predicting sites where pharmacological interven-
tion would be of value.

Declarative Models of Neurobiological and
Neurodegenerative Processes
Maude has been used to model several biological
processes (Eker et al. 2002; Talcott 2008). An
initial neurobiological application explores the
synaptic plasticity thought to underlie fear condi-
tioning and its extinction (Anastasio 2013b). In
that microconnectomic model, rules specified
synaptic weight changes while equations speci-
fied changes in neural responses caused by weight
changes. Thus, each state of the model system had
a different one of the many possible configura-
tions of synaptic weights. This particular model
had only nine synapses, which were allowed only
a limited number of discrete weights, so the state
space was large but still small enough to permit
exhaustive search. Analysis via state-space search
provided testable hypotheses by revealing which
of these very many synaptic weight configurations
were compatible with fear conditioning followed
by extinction.

More recent neurobiological applications
involve the food-intake control system (Tabe-
Bordbar and Anastasio 2016) and the monoam-
inergic neurotransmitter system (Camacho and
Anastasio 2017). The system of hypothalamic
neurons, distinguishable both in terms of sub-
nucleus and neurotransmitter/neurohormone
profile, was specified in Maude. State-space
analysis revealed activation configurations con-
sistent with new experimental findings that
contradicted current understandings. For exam-
ple, high food-intake had been associated only
with high levels of activity of arcuate nucleus
neurons secreting Agouti-related peptide (AgRP
neurons). Search of the model state-space found
many configurations consistent with that rela-
tionship but also found some configurations con-
sistent with new findings that low AgRP neuron
activity also can be associated with high food
intake. The model showed how overall activity
patterns, comprising all of the neurons modeled,
which were consistent with high food-intake dif-
fered between those having low versus high
AgRP neuron activity. The differences stand as
model predictions. A similar approach based on a
model of the monoaminergic neurotransmitter
system was used to study neuroadaptation to
chronic antidepressant administration due to
changes that are known to occur in various neu-
rotransmitter/neurohormone receptor types.
State-space analysis found many configurations
adapted to chronic selective serotonin reuptake
inhibitors (SSRIs) that nevertheless did not have
serotonin levels that had been elevated to thera-
peutic levels. These findings provide an explana-
tion for the low clinical efficacy of SSRIs, since
elevated serotonin is thought to be the therapeu-
tic mechanism of SSRIs. The analysis also
uncovered chronic antidepressant combinations
that should be more effective than single SSRIs
in treating depression.

Maude models of some of the molecular inter-
actions that underlie Alzheimer Disease
(AD) have also appeared (Anastasio 2011,
2013a, 2014a, b, 2015). These studies were
based on the amyloid hypothesis, which posits
that AD results from buildup of the amyloid-beta
peptide (Hardy and Selkoe 2002). A subset of the
molecular and cellular interactions believed to
underlie the regulation of amyloid-beta is
diagrammed in Fig. 1.

Space constraints prohibit description of all of
these interactions. They are based directly on
findings from the primary literature and
described in detail in Anastasio (2011). Each of
36 declarations specified how the level of bio-
logical activity of one model element,
representing a molecular species, was deter-
mined through interaction among the others.
Many model elements could assume multiple
levels, so the entire state space was too large to
be managed on a desktop computer. As an alter-
native to high-performance computing, the dec-
larations, first specified as equations, were then
divided into subsets that could be converted to
rules. In this way, the space of configurations
involving a subset of interactions could be ana-
lyzed using state-space search and temporal log-
ical, while the rest of the interactions took place
in the background.

An example of an equation in the Maude
model of amyloid-beta regulation is



A
p
p
lic
at
io
n
of

D
ec
la
ra
ti
ve

Pr
og

ra
m
m
in
g
in

N
eu

ro
b
io
lo
g
y,
Fi
g
.1

S
ch
em

at
ic
di
ag
ra
m
of

m
an
y
of

th
e
ce
llu

la
ra
nd

m
ol
ec
ul
ar
in
te
ra
ct
io
ns

th
at
re
gu

la
te
th
e
le
ve
lo
ft
he

pe
pt
id
e

am
yl
oi
d-
be
ta

Application of Declarative Programming in Neurobiology 219

A



Application of Declarative Programming in Neurobi-
ology, Table 1 Modeling the effects of nonsteroidal
anti-inflammatory drugs (NSAIDs) and blockers of
hypoxia-inducible factor and caspase 3 (HIF-blocker and
casp-blocker) on the level of amyloid-beta in the presence
of incipient cerebrovascular disease (CVD)

CVD NSAID
HIF-
blocker

Casp-
blocker

Amyloid-
beta

0 0 0 0 4

1 0 0 0 8

1 1 0 0 5

1 0 1 0 5

1 0 0 1 7

1 1 1 0 4

1 1 0 1 5

1 0 1 1 5

1 1 1 1 4
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ceq [PPARexpress] : PPARgene(G) NSAID
(X) cytokine(Y) PPAR(Z) ¼
PPARgene(G) NSAID(X) cytokine(Y) PPAR
(max(0, G + (X - Y)) * G)
if Z ¼/¼ max(0, G + (X - Y)) * G.

This equation, labeled PPARexpress,
describes the interaction that determines the
level of the peroxisome proliferator-activated
receptor (PPAR). The operator PPAR(Z)assigns
integer level Z to PPAR, and the equation
describes how that level is determined by the
presence of its gene PPARgene and the levels of
cytokines and nonsteroidal anti-inflammatory
drugs (NSAIDs). This equation is conditional
(ceq) and executes only if doing so changes the
level assigned by PPAR. To convert this condi-
tional equation to a conditional rule, it would be
relabeled crl and¼would be replaced with¼>.

The model depicted in Fig. 1 incorporates the
hypothesis that mild cerebrovascular disease
(CVD) can trigger amyloid-beta accumulation
(Scheibel et al. 1989; de la Torre 2009). Simula-
tions and analysis were focused on compounds
known to modulate the activities of model ele-
ments. Specifically, cilnidipine blocks hypoxia-
inducible factor (HIF) (Oda et al. 2009) while
ifenprodil blocks caspase 3 (casp3) (Dave et al.
2003). It was of interest to see whether a HIF-
blocker or a casp3-blocker would be more effec-
tive in reducing the rise of amyloid-beta in the
presence of CVD in the model.

In the model, amyloid-beta rose from its nor-
mative level of 4 to the pathological level of 8 in
the presence of CVD (Table 1). NSAIDs, known
to increase PPAR levels in vitro (Sastre et al.
2006), and HIF-blocker each separately held the
rise of amyloid-beta to 5 while casp3-blocker only
held it to 7. NSAID and HIF-blocker together held
amyloid-beta to its normative level of 4 but casp3-
blocker provided no further benefit in combina-
tion with NSAID or HIF-blocker or both.

These simulations showed that an HIF-blocker
was more effective than a casp3-blocker in reduc-
ing the rise of amyloid-beta in the face of CVD.
We then used temporal-logic analysis to show
why this effect occurs. Temporal-logic analysis
provides answers to questions such as whether a
particular property is always true, never true, or
only true after some other property becomes true.
For the AD model, temporal-logic analysis was
used to determine the value of propositions of the
form ~ hasAPO U cytACT, where hasAPO is
the property that apoptosis has occurred, cytACT
is the property that cytokines have been activated,
and ~ and U are the temporal-logic operators
“not” and “until,” respectively. Maude demon-
strated that this proposition is true, meaning that
apoptosis will not occur until cytokines are acti-
vated in the model. That is important because
apoptosis activated caspase 3 in the model. Simi-
lar analyses revealed that cytokines were not acti-
vated if HIF-blocker was present. Taken together,
the temporal-logic analyses show that casp3-
blocker was not effective in combination with
HIF-blocker because HIF-blocker already pre-
vented caspase 3 activation.

These analyses made several testable
predictions:

1. An HIF-blocker will be effective in reducing
amyloid-beta levels in the presence of
incipient CVD.

2. A casp-blocker will be less effective than an
HIF-blocker.
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3. A casp-blocker will provide no further benefit
if administered in conjunction with an
HIF-blocker.

4. NSAIDs will be more effective in combination
with an HIF-blocker than alone.
Conclusion

Declarative programming can be applied in the
simulation and temporal-logic analysis of com-
plex neurobiological processes, whether normal
or pathological. The phenomenon at issue in the
above example, the regulation of amyloid-beta,
occurs predominantly on the molecular level.
However, term-rewriting and declarative pro-
gramming can also be used to create and analyze
models of neurobiological phenomena at all
scales, from molecular to cellular to network to
whole brain, or to create multiscale models in
order to understand phenomena arising from inter-
actions across multiple scales.
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Definition

Information theory is a practical and theoretical
framework developed for the study of communica-
tion over noisy channels. Its probabilistic basis and
capacity to relate statistical structure to function
make it ideally suited for studying information
flow in the nervous system. It has a number of useful
properties: it is a general measure sensitive to any
relationship, not only linear effects; it has meaning-
ful units which in many cases allow direct compar-
ison between different experiments; and it can be
used to study how much information can be gained
by observing neural responses in single trials, rather
than in averages over multiple trials. A variety of
information-theoretic quantities are commonly used
in neuroscience – (see entry ▶ “Summary of Infor-
mation-Theoretic Quantities”). In this entry we
review some applications of information theory in
neuroscience to study encoding of information in
both single neurons and neuronal populations.
Detailed Description

Information Analysis of Spike Trains to
Investigate the Role of Spike Times in Sensory
Coding
Mutual information is a widely used tool to study
how spike trains encode sensory variables.
A typical application of mutual information to
spike train analysis is to use it to compare the
information content of different representations
of neural responses that can be extracted from
spike trains. The neural code used by a neuron is
often defined operationally as the smallest set of
response variables that carries all (or almost all)
the information contained in the spike train of the
neuron. Mutual information is used to quantify the
information content of increasingly complex rep-
resentations of the neural response, and the sim-
plest representation that carries the most
information is chosen as the putative neural code.

An example of this general approach is the
investigation of the role of spike times in encoding
information. The most established hypothesis on
how sensory information is represented in the
brain is the spike count-coding hypothesis
(Adrian 1928) which suggests that neurons repre-
sent information by the number of spikes
discharged over some relevant time window.
Another hypothesis is the spike timing encoding
hypothesis, which suggests that the timing of
spikes may add important information to that
already carried by spike counts (Rieke et al.
1997; Panzeri et al. 2001). Information theory
can be used to understand the role of spike times
in carrying sensory information, by using it to
characterize the temporal resolution needed to
read out the information carried by spike trains.
This can be performed by sampling the spike train
at different temporal precisions, Δt, (Fig. 1a) and
computing the information parametrically as a
function of Δt (Ruyter et al. 1997). The temporal
precision required to read the temporal code then
can be defined as the largest Δt that still provides
the full information obtained at higher resolutions.
If this precision is equal to the overall length of the
window over which neurons carry information,
then information is carried only by the number
of spikes. As an example, we carried out this type
of analysis on the responses of neurons from the
VPm thalamic nucleus of rats whose whiskers
were stimulated by fast white noise deflections
(Montemurro et al. 2007). We found that the tem-
poral precision Δt at which neurons transmitted
information about whisker deflections was finer
than 1 ms (Fig. 1b), suggesting that these neurons
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Applications of Information Theory to Analysis of
Neural Data, Fig. 1 Effect of temporal resolution of
spike times on information. (a) The response of a neuron
is initially recorded as a series of spike times. To investi-
gate the temporal resolution at which spike times carry
information, the spike train is binned at a variety of differ-
ent time resolutions, by labeling the response at each time
with the number of spikes occurring within that bin,
thereby transforming the response into a discrete integer

sequence. (b) The information rate (information per unit
time) about whisker deflections carried by VPm thalamic
neurons as a function of bin width, Δt, used to bin neural
responses. Information rate increased with bin resolution
up to 0.5 ms, the limit of the experimental setup. This
shows that a very fine temporal resolution is needed to
read out the sensory messages carried by these thalamic
spike trains. (Figure reprinted with permission from Ince
et al. 2010)
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use high-precision spike timing to carry
information.

Information Analysis of Local Field Potentials
to Examine the Information Content of
Network Oscillations
Information analysis in neuroscience is not lim-
ited only to spike train analysis, but it has been
used also to study the measure of massed popula-
tion activity, such as local field potentials (LFPs)
(Buzsáki et al. 2012). LFPs are operationally
defined as the low-pass filtered extracellular
potential measured by an extracellular intracranial
electrode. There are at least three reasons why
LFPs are widely used in neuroscience. The first
is that they are more easily and stably recorded in
chronic settings than is the spiking activity of
individual neurons. The second is that the LFP
captures key integrative synaptic processes and
aspects of subthreshold neural activity that cannot
be measured by observing the spiking activity of a
few neurons alone (Einevoll et al. 2013). The third
is that LFPs are more sensitive to network oscil-
lations than measures of spiking activity from
small populations. LFPs from a sensory area typ-
ically show a power spectrum containing
fluctuations over a wide range of frequencies,
from <1 to 100 Hz or so. Given that the power
of oscillatory activity typically increases during
the presentation of a sensory stimulus, many
authors have speculated that this oscillatory activ-
ity plays a role in brain communication and in
particular in sensory-related computations. How-
ever, understanding the function of these oscilla-
tions has remained elusive and controversial. To
gain insights into the function of oscillations in
sensory encoding, it is important to understand
how they contribute to the representation of the
natural sensory environment.

This problem can be addressed by quantifying
the oscillation power in any given trial in response
to different stimuli and then computing the infor-
mation gained by the power at each frequency.
Since the power is a continuous variable, the
computation of its information is potentially
more difficult than the one based on discrete vari-
ables like the spike train ones described above.
There are at least two ways to solve this problem.
The first is to discretize the power in a number of
equi-populated bins and to use bias corrections to
eliminate the bias. The second is to fit the data to a
parametric distribution. In this case, it is worth
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reminding that the power computed with most
spectral methods follows a chi-square distribu-
tion, and thus, its square or third can reasonably
be well approximated by a Gaussian distribution
(Magri et al. 2009). This makes the computation
of information relatively straightforward. The
third potential approach is to use binless methods
such as Nearest Neighbors approaches (Kraskov
et al. 2004). We tried out these methods exten-
sively on computation of information in power of
LFPs, obtaining very similar results with all
approaches (see, e.g., Magri et al. 2009).

We applied this method to recordings from
primary visual cortex of anesthetized macaques
during stimulation with naturalistic color movies
(Belitski et al. 2008; Magri et al. 2012a). This
revealed, for the first time, how information
about the naturalistic sensory environment is
spread over the wide range of frequencies
expressed by cortical activity. Although the
broadband nature of the spectrum suggests a con-
tribution to coding from many frequency regions,
we found that only two separate frequency regions
contribute to coding: the low-frequency range and
the gamma range (Belitski et al. 2008; see Fig. 2
below). Interestingly, low- and high-frequency
ranges act as perfectly complementary or “orthog-
onal” information channels: they share neither
signal (i.e., stimulus information) nor “noise”
(i.e., trial to trial variability for a fixed stimulus).
This finding has several implications. First, it
shows that, despite the broadband spectrum,
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Information Analysis of Imaging Data to Study
Neural Population Coding or Coupling
Between Different Neural Signals
The analysis tools that we have described above
have, to date, largely been applied to spike train
and time series data recorded using electrophysi-
ological techniques. However, in recent years,
imaging technologies have been developed
which are capable of resolving neural signaling
at systems’ cellular and subcellular resolutions on
a single trial basis (Denk et al. 1990, 1994; Stosiek
et al. 2003; Chen et al. 2013). One way to apply
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the use of imaging data may also allow a wider set
of questions to be approached than can be exam-
ined electrophysiologically, by directly examin-
ing patterns of pixel intensities.

Another interesting application of information
theory to neuroimaging data regards its use for
understanding the nature of the coupling between
neural activity and fMRI responses. In fact,
although there is evidence that fMRI BOLD
responses reflect neural activity, it is not clear
whether the BOLD signal reflects only the total
power of massed neural activity, or only the power
in a given band, or rather the relationships
between powers of neural activity in different
frequency bands. This problem can be cast theo-
retically into quantifying whether more informa-
tion about BOLD can be gained from
simultaneously observing the power of neural
activity in two or more bands of neural activity
than the information gained by observing either
band alone. Because mutual information captures
all the ways a signal may statistically relate to
another, finding that another signal carries extra
information demonstrates that this signal truly
provides some information that cannot be possi-
bly obtained from the first one. This does not
necessarily hold when using methods that capture
only specific relationships between signals. For
example, an increase in predictability based on
linear models may reflect both additional informa-
tion from the second regressor as well as informa-
tion that was already present in the first regressor
but was not captured by the linear assumption.
Application of this idea to simultaneous recording
of LFPs and fMRI BOLD in primary visual cortex
showed that the beta and alpha bands carry infor-
mation about BOLD that complements that car-
ried by the gamma band, the band that most
correlates to the BOLD signal (Magri et al.
2012b).

Since imaging signals such as fMRI have an
analogue rather than discrete nature, the practical-
ity of application of information theory to ana-
logue brain signals is crucially dependent upon
the development of appropriate regularization and
dimensionality reduction algorithms. These might
stem from simple yet efficient discretization algo-
rithms (Belitski et al. 2008; Magri et al. 2009),
Nearest Neighbors regularization algorithms
(Kraskov et al. 2004), the use of manifold learning
techniques for nonlinear dimensionality reduction
(Roweis and Saul 2000; Seung and Lee 2000; Gan
2006), and/or the evaluation of information
through a decoding step (Quian Quiroga and
Panzeri 2009).
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Definition

In psychology, the term association refers to a
connection between different elementary mental
entities (sensations, thoughts, feelings; Dudai
2002). Aside from innate, reflex-like associa-
tions, novel associations are typically acquired
during learning. In Pavlovian/classical condi-
tioning, a stimulus-stimulus association is
formed by repetitively pairing an initially neutral
stimulus with a biologically significant uncondi-
tioned stimulus that automatically triggers an
unconditioned behavioral response. In instru-
mental/operant conditioning, a stimulus-
response association is formed in the presence
of reinforcers. Reinforcers can be either positive,
such as water, food, money, and brain stimula-
tion reward, and result in an increase in the prob-
ability of a response to the stimulus. Negative
reinforcers (e.g., footshocks, airpuffs, money
loss) decrease the probability of a response to
the stimulus. If the reinforcer is removed, the
learned associations risk extinction.
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Detailed Description

Classical View of Brain Structures Reflecting
Associations and Reinforcement
Traditionally associative functions are assigned to
the so-called association cortex (Creutzfeldt
1983). Inspired by “associationism” (the philo-
sophical doctrine that the mind learns and con-
strues the world bottom up by associating mental
entities) and based on anatomical considerations,
Flechsig originally defined the association cortex
as that part of the cerebral cortex that appeared to
lack direct afferences from the senses and
efferences to peripheral motor structures. He pro-
posed that the association cortex provides the
substrate for the fusion of primary sensations to
obtain ideas of objects as a whole. This idea is
challenged, inter alia, by studies demonstrating
associative functions already in primary sensory
cortices, which have direct afferences from the
senses. In addition, the sensory cortex is affected
by reinforcement (Shuler and Bear 2006; Brosch
et al. 2011a; Arsenault et al. 2013; Weis et al.
2013), which generally is thought to involve the
limbic system, including the hypothalamus,
amygdala, hippocampus, septal nuclei, ventral
tegmental area, and anterior cingulate gyrus.
These findings put into question the existence of
unisensory cortical areas at all (Ghazanfar and
Schroeder 2006).

Learning
Learning associations between stimuli, between
stimuli and behavioral responses, or between
stimuli and reinforcers change the auditory cortex,
such as the feature sensitivity (spectrotemporal
receptive field) of neurons in the auditory cortex,
their response strength and response latency, as
well as interneuronal synchrony (Scheich and
Brosch 2013; Shepard et al. 2013). In detection
tasks, the direction of the receptive field change at
the frequency of the conditioned tone depends on
the valence of the tone (Scheich et al. 2011); if it is
negative (associated with punishment), the
response to the tone is increased (receptive field
is sensitized at the conditioned tone frequency); if
it is positive (associated with reward), the
response is decreased (receptive field is
suppressed at the conditioned tone frequency). In
frequency discrimination tasks, slopes of spectral
tuning curves become sharper around the condi-
tioned frequencies. In categorization tasks, stimuli
of the same category evoke (spatiotemporal) neu-
ronal activity patterns that are more similar to each
other than those evoked by stimuli of other
categories.

These changes coincide with or may even form
the basis of changes in representation maps (e.g.,
tonotopic frequency map) in the auditory cortex
that occur, at least transiently, after learning
(Shepard et al. 2013; Grosso et al. 2015). They
may also underlie plasticity of neuronal mass
activity, as revealed by electro- and magnetoen-
cephalography (EEG, MEG) or functional mag-
netic resonance imaging (fMRI) (Rüsseler
et al. 2005).

Neuromodulators
The formation of novel associations in the audi-
tory cortex requires the involvement of
neuromodulators (Shepard et al. 2013). Some of
the described changes can also be mimicked by
repetitively pairing auditory stimuli with electrical
stimulation of neuromodulatory systems, such as
the ventral tegmental area (dopamine; Huang et al.
2016a), the nucleus basalis of Meynert
(acetylcholine; Bakin and Weinberger 1996), the
locus coeruleus (norepinephrine; Martins and
Froemke 2015), or the vagus nerve (triggering
widespread release of neuromodulators; Engineer
et al. 2011). Formation of associations in the audi-
tory cortex also involves cognitive factors:
changes in the auditory cortex and learning do
not occur when an animal is passively exposed
to the stimulus-reward pairings of another animal
while it was instrumentally conditioned (Blake
et al. 2006).

Neuronal Correlates of Association
Sustained firing and slow firing changes may pro-
vide neuronal correlates of associations between
mental entities (Brosch et al. 2011a). The main
condition necessary for the emergence of slow
firing changes is that subjects have learnt that
conditioned associations are contingent on rein-
forcers. When the reinforcer is removed, the slow
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firing changes disappear within a few trials, con-
comitantly with behavioral changes (Huang et al.
2016b). These firings may be related to the con-
tingent negative variation (Walter et al. 1964), an
event-related potential that can be obtained in
electroencephalography in humans. It is consid-
ered to reflect the contingency and the contiguity
of two events that have a motivational “value.”

Different types of events may be associated
through event-related slow firing changes
(Brosch et al. 2011a). Events that trigger such
changes can be auditory (and possibly visual)
stimuli, reinforcers, and behavioral responses,
like grasping. An event with which slow firing
changes end is the reinforcer. Slow firing changes
have been observed between (1) an auditory stim-
ulus and a reinforcer, (2) a behavioral response
and an auditory stimulus, and (3) a behavioral
response and another behavioral response.

The association between behaviorally signifi-
cant events provided by slow firing changes might
even be directed in some cases, that is, this type of
firing might provide some sort of either prospec-
tive coding of an upcoming event or retrospective
coding about a preceding event.

Neuronal Correlates of Rewards
In animals actively engaged in listening to audi-
tory stimuli, direct reflections of rewards have
been demonstrated in the auditory cortex. Neuro-
nal activity in the auditory cortex varied with the
size of the delivered reward and the size of the
reward that was expected to be earned in a future
auditory task, as well as the magnitude of the
mismatch between the expected and delivered
reward (the reward prediction error) (Brosch
et al. 2011b). Reflections of rewards are also pre-
sent in other sensory cortices (Shuler and Bear
2006; Arsenault et al. 2013).
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Definition

Attention – the ability of a sensory system to
facilitate the processing of specific information
at the expense of disregarding the remainder.
Bottom-up processes – information processing in
the nervous system that operates in a feedforward
way, advancing from sensory organs or areas at a
low level of the cortical processing hierarchy.
Top-down influence – modulatory signals in the
nervous system that originate from areas at a high
level of the cortical processing hierarchy,
influencing information processing in lower areas.
Saliency – a measure of the magnitude of the
difference of a stimulus from its neighbors in
space and time.
Detailed Description

The Case for Attention
Evolution has provided humans and other highly
evolved species with powerful sensory systems.
While our cortical processing capacity has also
evolved and grown impressively, the torrent of
information provided by our sensors far outstrips
our ability to process it all. In addition, most of the
sensory information picked up at any moment has
little importance for our survival. Complex ner-
vous systems faced with this challenge have
developed sophisticated selection mechanism to
identify the most relevant incoming information
and to focus processing resources (and ultimately
perception) onto this small fraction. This process
is called attention and for the purpose of this entry
can be defined as the selective modulation of
sensory information based on its assumed behav-
ioral relevance.
Bottom-Up Versus Top-Down

The selection processes underlying attention need
to fulfill two requirements: on the one hand their
ubiquitous (central and incessant) role in the con-
tinuous stream of perceptual decisions requires
that they operate efficiently and as fast as possible.
At the same time, the selection processes’ purpose
of dynamically identifying the most relevant com-
ponents of the sensory input demands harnessing
as much of the cognitive power of the species’
central nervous system as possible.

These seemingly incompatible demands, effi-
cient and fast vs. computationally demanding and
thus slow, have created two flavors of selection:

1. A bottom-up (automatic, exogenous) atten-
tional selection that exploits the realization
that the most informative aspects of our sen-
sory environments are those where one stim-
ulus differs from their neighbors in space and
time. This local saliency can be identified
and enhanced by simple feedforward filter
mechanisms embedded throughout the pro-
cessing of sensory signals in the nervous
system.

https://doi.org/10.1007/978-1-0716-1006-0_474
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2. A top-down (voluntary, endogenous) atten-
tional selection that integrates any information
available to the organism about the current
situation to make the most informed decision
about which sensory input component repre-
sents the most relevant information in the
given situation.

In the visual domain, this distinction is well
illustrated with visual search tasks: If we are
confronted with a fairly homogenous visual
scene, any outlier will be identified, enhanced,
and selected by the continuous parallel computa-
tion of local saliency, creating the perceptual
“pop-out” characteristic of simple search tasks
where the features of the target stimulus differ
substantially from the distribution of features of
the distractors. Conversely, a target stimulus,
which is less distinct, either because it is defined
as a conjunction of more than one feature or
because it does not differ substantially from the
distribution of distractor features, does not pop
out, but rather requires a more demanding and
correspondingly slower selection process.
Taking a Computational Approach to
Attention

Here we illustrate how the attentional modulation
of sensory information processing is implemented
in computational models. Due to the brevity of the
entry, we focus on a few examples of models of
top-down attentional modulation in the visual
system of man and other primates.

One of the most influential computational
models of visual attention is the feature integra-
tion theory (FIT; Treisman and Gelade 1980). In
the FIT, information about different features of
stimulus, such as its shape, color, orientation,
and movement, is extracted in parallel, automati-
cally and effortlessly through a system of feature
maps, which topographically represent the spatial
distribution of specific features in the visual scene.
This process detects and locates a target stimulus
defined by a single unique feature value (such as
the color red) because it is represented by a unique
hotspot in a single feature map (with each
distractor represented by a hotspot in its
corresponding feature map, such as the one for
the color blue). This target detection is very quick
and is unaffected by the numerosity of distractor
stimuli, matching the experimental observation
that human reaction times in such simple search
tasks are independent of the number of distractor
items. If the target stimulus is not defined by a
single feature alone, but by a conjunction of mul-
tiple features, information from different feature
maps needs to be integrated to detect and localize
a target. This requires a serial process that actively
integrates information from different maps to
detect the target’s unique feature conjunction at
one topographical location, matching the linear
increase in reaction time observed with an
increase in the number of distracters in a conjunc-
tive search task. The FIT proposes that this serial
integration process is accomplished by means of a
top-down, spatial “spotlight” of attention.

An alternative account for the pattern of reac-
tion times in search experiments is offered by the
guided search theory (GST, Wolfe 1994), which
does not assume an attentional spotlight. Instead,
the top-down attentional signal changes the
weight of activation maps before they are com-
bined to create a ranking of all present stimuli
based on their likelihood to represent a target.
The selection of stimuli is then again performed
serially, from high to low probability, until the
target stimulus is detected.

While the FIT and the GST emphasize the role
of feature maps in attentional selection, the theory
of visual attention (TVA; Bundesen 1990) takes a
different approach. Here the selection of stimuli is
dependent on their processing speed. Before a
stimulus can be encoded in visual short-termmem-
ory and thus enter awareness, it needs to compete in
a computational race with other stimuli. In the TVA
top-down attention speeds up the processing of
certain items, making them likely to win the race.

While the FIT, GST, and TVA have been devel-
oped to account for the perceptual data available
at the time, more recent models of attention have
been developed to capture data from single-cell
recordings from monkey visual cortex. Two early
conceptual models attempted to account for the
enhanced neuronal response to attended stimuli
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and the reduced response to unattended stimuli.
The biased competition model of attention
(Desimone and Duncan 1995) envisages a com-
petition between the stimulus representation of
attended and unattended stimuli that can be biased
by a top-down attentional signal in favor of the
attended stimulus’ representation. The feature
similarity gain model of attention (Treue and
Martinez-Trujillo 1999) alternatively proposes
that the enhancement of neural responses by atten-
tion reflects a process where top-down attentional
signals enhance the gain of those neurons whose
preferred features match the current attentional
state of the organism, independent of the stimulus
that currently activates a neuron.

These two conceptual models have inspired a
large number of computational models. The most
prominent of those are models that emphasize an
interaction of top-down attention with the normal-
ization process that creates the sigmoidal contrast
response functions typical for neurons throughout
sensory cortex. Multiple varieties of such normal-
ization models of attention have been proposed
(Ghose and Maunsell 2008; Boynton 2009;
Ghose 2009; Lee and Maunsell 2009, 2010; Reyn-
olds and Heeger 2009). They all emphasize the
similarity, in perception, as well as in the neural
encoding and also in the central role of the response
normalization process between two influences on
the strength a neural stimulus representation. One
is the physical (bottom-up) strength of the stimulus
(most directly represented by its contrast) and the
other is the attentional weight (implemented as a
kind of sensory prior) assigned to them through a
top-down attentional signal.

Beyond models that emphasize response nor-
malization, there have been numerous other
approaches to model the attentional modulation
of sensory information processing. They include
the selective tuning model (Tsotsos et al. 2005)
that proposes a layered network architecture
(representing the hierarchy of cortical areas) to
implement a spatial “spotlight of attention” that
endows certain regions of the visual scene with
enhanced processing. The spiking network
model (Deco and Rolls 2005; Deco and Thiele
2011) places much more emphasis than any of the
models discussed above on building its approach
on biological components, such as spiking neu-
rons and specific neurotransmitters.
The Integrated Saliency Map

It should be noted that almost all models of atten-
tion incorporate the concept of an integrated
saliency map (Treue 2003), that is, a topographic
representation of the stimuli in the current visual
scene that combines their relative physical
strength and their assumed behavioral relevance.
This combination implements a weighing of
bottom-up and top-down aspects of a stimulus,
providing processing resources to strong
unattended stimuli as well as to weak attended
ones. While such an integrated saliency map. Is
consistent with a number of perceptual phenom-
ena and is ideally suited to guide eye movements
across a visual scene, it is a matter of some debate
which of the many topographically organized
areas in the visual cortex represents this map or
whether multiple such maps exist.

Similarly, while functional imaging and single-
cell recording studies have implicated a network
of frontoparietal areas in the guidance process that
is necessary to appropriately allocate processing
resources (Kastner and Ungerleider 2001;
Corbetta and Shulman 2002), such anatomic spec-
ificity is rarely included in current computational
models of attention.
Conclusion

In conclusion, in the last decade, a large number of
computational models of top-down attention have
been developed that can account for a large vari-
ety of perceptual and physiological aspects of the
attentional modulation of sensory information
processing. These models emphasize several
core issues, such as the response normalization
in cortical networks, the multistage nature of cor-
tical information processing, and the concept of an
integrated saliency map. Despite this progress
much more work is needed to achieve a complete
computational description of top-down attentional
modulation.



232 Attractor Neural Network
Cross-References

▶Hierarchical Models of the Visual System
▶Working Memory, Models of
References

Boynton GM (2009) A framework for describing the
effects of attention on visual responses. Vis Res 49:
1129–1143

Bundesen C (1990) A theory of visual attention. Psychol
Rev 97:523–547

Corbetta M, Shulman GL (2002) Control of goal-directed
and stimulus-driven attention in the brain. Nat Rev
Neurosci 3:201–215

Deco G, Rolls ET (2005) Neurodynamics of
biased competition and cooperation for attention:
a model with spiking neurons. J Neurophysiol 94:
295–313

Deco G, Thiele A (2011) Cholinergic control of
cortical network interactions enables feedback-
mediated attentional modulation. Eur J Neurosci
34:146–157

Desimone R, Duncan J (1995) Neural mechanisms of
selective visual attention. Annu Rev Neurosci 18(1):
193–222

Ghose GM (2009) Attentional modulation of visual
responses by flexible input gain. J Neurophysiol 101:
2089–2106

Ghose GM, Maunsell JH (2008) Spatial summation can
explain the attentional modulation of neuronal
responses to multiple stimuli in area V4. J Neurosci
28:5115–5126

Kastner S, Ungerleider LG (2001) The neural basis of
biased competition in human visual cortex. Neuropsy-
chologia 39:1263–1276

Lee J, Maunsell JH (2009) A normalization model of
attentional modulation of single unit responses. PLoS
One 4:e4651

Lee J, Maunsell JH (2010) Attentional modulation of MT
neurons with single or multiple stimuli in their recep-
tive fields. J Neurosci 30:3058–3066

Reynolds J, Heeger DJ (2009) The normalization model of
attention. Neuron 61:168–185

Treisman A, Gelade G (1980) A feature-integration theory
of attention. Cog Psychol 12:97–136

Treue S (2003) Visual attention: the where, what, how
and why of saliency. Curr Opin Neurobiol 13:
428–432

Treue S, Trujillo JCM (1999) Feature-based attention influ-
ences motion processing gain in macaque visual cortex.
Nature 399(6736):575–579

Tsotsos JK, Liu Y, Martinez-Trujillo JC, Pomplun M,
Simine E, Zhou K (2005) Attending to visual motion.
Compu Vis Image Underst 100:3–40

Wolfe JM (1994) Guided search 2.0: a revised model of
visual search. Psychon Bull Rev 1:202–238
Attractor Neural Network
▶Hopfield Network
Auditory Brainstem
Responses
Carles Escera1,2,3,4 and Natàlia Gorina-Careta1,2,3
1Brainlab-Cognitive Neuroscience Research
Group, Department of Clinical Psychology and
Psychobiology, University of Barcelona,
Barcelona, Spain
2Institute of Neurosciences, University of
Barcelona, Barcelona, Spain
3Institut de Recerca Sant Joan de Déu (IRSJD),
Barcelona, Spain
4Institute for Brain, Cognition and Behavior
(IR3C), University of Barcelona, Barcelona, Spain
Synonyms

Auditory evoked brainstem responses; Brainstem
auditory evoked potentials (BAEP)
Definition

Auditory brainstem responses (ABRs) are the
earliest auditory event-related potentials
(cf. ▶ “Auditory Event-Related Potentials”)
elicited during the first 10 ms after stimulus
onset in the anatomical relays of the auditory
pathway. ABRs are typically recorded with scalp
electrodes attached to the vertex and referenced to
the earlobe or the mastoid. Two types of ABRs
have been described: the transient-evoked
responses and the sustained frequency-following
response (FFR). While the transient-evoked
ABRs are elicited to high-intensity clicks or tone
bursts, FFRs can only be recorded to periodic
auditory stimuli, and their duration extends to
the length of the eliciting sound. In the ABRs
elicited to periodic and complex auditory stimuli,
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such as speech sounds or music, the two types of
ABRs can be observed.
A

Detailed Description

Transient-Evoked ABRs
The first systematic observation of the human tran-
sient ABRs was by Jewett, Romano, and Williston
in 1970 (Jewett et al. 1970; Jewett and Williston
1971) who described a series of six or seven fully
visible waveforms spanning the first 10 ms after
sound onset. ABRs are characterized for being fast,
vertex-positive response peaks spaced at intervals
of about 1 ms and are evoked by brief stimulus
features, such as broadband clicks, tone bursts, or
the abrupt onset of a sound (Pratt 2012).

The different ABR waveforms define a very
characteristic morphology and are labelled in
sequence by Roman numerals from I to VI
(Fig. 1). Their amplitude is in the order of tenths
of a microvolt, smaller than 0.5 mV (Pratt 2012),
with the most positive component being wave
V (Picton 2011; Pratt 2012). The first component
of the sequence, wave I, is the most positive peak
occurring at approximately 1 ms after stimulus
onset and corresponds to the N1 wave of the
Auditory Brainstem Responses, Fig. 1 Morphology
of the human transient ABR. The figure depicts the
typical morphology of a healthy human adult ABR. It
was obtained by averaging the responses to 6000 presen-
tations of a click delivered bilaterally at 85 dB SPL at a rate
of 19.3/second. The recording is between electrodes placed
at FPz and the right mastoid. The EEG was acquired at
20 kHz sampling rate using a band-pass filter from 100 to
3000 Hz. Waves I to VI are identified at their typical
latencies
electrocochleogram. Between waves I and V, the
most prominent deflection is wave III, which
occurs at a latency of about 3.5 ms. Wave II is a
small peak halfway between wave I and III, and
waves IVand VI can be observed in both sides of
wave V. Wave IV is not always identified in
humans, and when present it is often merged
partially with wave V, yielding a wave IV-V com-
plex (Picton 2011; Pratt 2012).

The different ABR components are generated
by distinct anatomic structures of the auditory
pathway. The first components of the sequence,
waves I and II, are generated exclusively by the
auditory nerve (Gelfand 2010). More precisely,
wave I originates in the ipsilateral distal portion
of the auditory nerve in the region of the ganglion
cells and wave II from the ipsilateral proximal
portion of the auditory nerve in the vicinity of its
entry into the brainstem (Stone et al. 2009; Pratt
2012). The later components, waves III, IV, and V,
have contributions from more than one anatomi-
cal structure. Wave III has been attributed to the
region of the ipsilateral cochlear nucleus and the
superior olivary complex (Stone et al. 2009;
Picton 2011). The generators of wave IV are still
under debate, but all evidence points to bilateral
multiple brainstem sources (Stone et al. 2009),
between the superior olivary complex through
the lateral lemniscus, with a possible contribution
from the inferior colliculus (Pratt 2012). Wave
V is originated in the contralateral distal lateral
lemniscus and the inferior colliculus (Stone et al.
2009), so overall, the wave IV-V complex is
attributed to bilateral generators in the region of
the midbrain tegmentum (Starr et al. 2008). Wave
VI has been attributed to the medial geniculate
body (Gelfand 2010). Although these sources are
the most accepted ones across the literature, there
are still divergent opinions regarding the exact
origins of the components from wave II onwards,
as it is known that multiple generators in the
auditory brainstem may be contributing to them
(Gelfand 2010; Picton 2011).

The transient ABRs are typically elicited by
broadband clicks or chirps (Fobel and Dau 2004;
Maloff and Hood 2014) presented at a rate ranging
from 10 to 20 stimuli per second. They are opti-
mally recorded from the scalp with an electrode at
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the vertex of the head (Cz or Fz) referenced to an
electrode in the vicinity of the stimulated ear
(mastoid or earlobe). To extract the ABR from the
auditory evoked potential, a frequency band-pass
filter from 30 to 3000 Hz is necessary, and, due to
the small amplitude of the components, an average
of at least 2000 stimulus presentations is required.
The sampling rate of the electroencephalographic
signal should not be lower than 20 kHz to avoid
waveform distortions (Picton 2011; Pratt 2012).
When measuring ABRs, the stimulus polarity
must also be taken into account, as although the
full set of components can be obtained with stimuli
presented in any polarity (i.e., condensation and
rarefaction), the latency of the different compo-
nents is modulated depending on it (Ballachanda
et al. 1992; Hall 2007).

A range of non-pathological factors affect the
transient ABR, such as subject’s age, gender, and
body temperature. Also, stimulus factors like
intensity or presentation rate do affect the
recorded ABR (Picton 2011; Pratt 2012); a typical
example is the shortening of the ABR peak laten-
cies by increasing stimulus intensity. On the other
hand, the ABR has high sensitivity, specificity,
and reliability, and it is not susceptible to the
evoking stimulus being attended or ignored nor
to changes during sleep or under anesthetics
(Picton 2011). Fields of clinical application of
ABR recordings are, among others, newborn and
infant auditory screening (i.e., the estimation of
auditory sensitivity in infants and difficult-to-test
children) and neurodiagnosis of eighth nerve or
auditory brainstem dysfunction (i.e., monitoring
eighth nerve and auditory brainstem status
intraoperatively during surgery potentially affect-
ing the auditory system and the diagnosis of
auditory neuropathy) (Hall 2007).

Frequency-Following ABRs
The frequency-following response (FFR) is a
component of the auditory brainstem response
that reflects sustained and synchronous neural
phase-locking to the individual cycles of the
eliciting stimulus waveform and/or to the period-
icity in the envelope of an acoustic stimulus
(Skoe and Kraus 2010; Kraus et al. 2017). The
scalp-recorded FFR can be evoked by frequencies
in the range of 100–1500 Hz approximately. By
reflecting the phase-locked activity to sounds, the
FFR physically “mimics” the eliciting stimulus
and is as complex as it, thus providing a stable
window into the neural transcription of sounds in
neuronal aggregates along the auditory hierarchy
(Galbraith et al. 2000; Bidelman 2018).

The FFR was first recorded in humans by
Moushegian, Rupert, and Stillman in 1973
(Moushegian et al. 1973), and it is suggested
to represent phase-locked neural activity from
multiple generators within the auditory system.
Currently, the neural origins of FFR are still
debated, yet it is treated as a putative window
into subcortical sound encoding. The FFR can
be obtained under passive and active listening
paradigms, and it is highly sensitive to context-
dependent contingencies and to real-time statisti-
cal properties of the stimulation sequence.
It is also modulated by short-term auditory
training and by the individual’s lifelong
auditory experience, such as that with language
and music. Consequently, the FFR has become a
relevant tool in assessing the neural encoding of
speech sounds in both healthy and clinical
populations (Escera 2017; Kraus et al. 2017).

By means of the appropriate analytical
tools, the FFR provides an objective indicator of
fundamental acoustic features intrinsic to speech
and other complex sounds, including timing
(onsets), pitch (fundamental frequency, f0) and
timbre (the harmonics information), as well as
their timing (see Kraus et al. 2017).

For more detailed information, cf.▶ “Auditory
Frequency-Following Responses.”
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Synonyms

Auditory scene analysis; Auditory scene
segmentation
Definition

The process of separating signal from noise is an
aspect of the process of auditory scene segmenta-
tion in which the pressure waves from multiple,
concurrent sound sources that mix in the air must
be de-mixed by perceptual processes to generate
an auditory object-based model of sound sources
in the environment. Sounds that interfere with the
detection or discrimination of an informative
sound of interest, the signal, are often described
as noise. The use of the term “noise” is informed
by a long history of psychophysical experiments
that measure the adverse effects of adding sounds,
usually based on stochastic processes, to more
behaviorally relevant signals, such as speech.
Neurophysiological experiments have demon-
strated that brain regions that process sound act
to filter out noise while retaining information
about behaviorally important sounds, such that
the neural representations of sound mixtures in
central structures like auditory cortex are signifi-
cantly de-noised relative to representations of
those sounds in more peripheral brain regions,
such as the cochlear nucleus. The effects of back-
ground noise on neural responses to a signal
depend on the relative amplitudes of the signal
and noise, which is typically quantified in terms of
the signal to noise ratio (SNR), in decibels. The
similarity between signal and noise in terms of
frequency content, temporal pattern, and spatial
location have important implications for how
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much noise at a particular SNR will disrupt pro-
cessing of the signal. Neurophysiological record-
ings from auditory cortex have demonstrated
significant diversity in how background noise
affects cortical responses to certain classes of sig-
nals, including cases where noise at moderate
SNRs can enhance the cortical representation of
some signals.
Detailed Description

Perceptual segmentation of complex scenes relies
on assigning the most likely distribution of sound
sources based on the mixtures of sounds arriving
at the ears (Bregman 1990; Yost 1992). Most
naturally occurring sounds are complex and
time-varying, so the auditory system must not
only correctly attribute acoustic energy at differ-
ent frequencies to a single sound source, but, in
the presence of multiple concurrent sounds, must
often parse acoustic energy at a single frequency
among multiple sources. When thinking about
this process, it is often useful to categorize sounds
as “signal” or “noise”with respect to the listener’s
specific goals. For example, on a busy street, the
sound of passing cars is noise that interferes with
the conversation between two pedestrians. How-
ever, the pedestrians’ conversation can also be
noise that interferes with the ability a nearby
bystander listening for the sound of passing cars
to determine whether it is safe to cross the street.
The term “background noise” is often contrasted
with “foreground sound” to indicate the atten-
tional focus of the listener.

Although the neurophysiological literature
sometimes makes reference to intrinsic noise that
results in variable neural responses across
repeated presentations of identical stimuli, for
the purposes of this entry, “noise” should be
understood to refer to external, physical sounds
that disrupt the processing of another sound.
Traditionally, the sounds used as background
noises in studies of cortical responses tend to be
stochastic in nature, and as such, are defined by
their time-averaged statistics, rather than a spe-
cific time-frequency pattern. For example, broad-
band or “white” noise has a flat spectrum over the
audible range when measured over a sufficiently
long interval, but the spectra of short segments of
white noise vary considerably, and the output of a
filter with a narrow bandwidth will show consid-
erable modulation over time. These consider-
ations are important when considering the
expected responses of cortical neurons. In primary
auditory cortex, for example, sharply tuned neu-
rons with short temporal integration windows
can exhibit highly reproducible, time-locked
responses to repeated presentations of an identical
(“frozen”) instance of broadband noise (Scott
et al. 2011). In fact, humans in laboratory settings
distinguish among distinct instances of broadband
noise (Agus et al. 2010). In natural listening con-
ditions, however, the exact time-frequency pat-
terns of environmental noise sources such as
wind or ocean waves do not repeat and are not
perceptually meaningful beyond their adverse
effects on the processing of more behaviorally
relevant signals (McDermott et al. 2013).

We define the neural representation of a stim-
ulus as the pattern of activity that occurs in
response to the stimulus and conveys information
about that stimulus to auditory structures further
along in the processing pathway. Background
noise can corrupt the signal representation by
eliciting responses that would otherwise not
occur, or by reducing or eliminating responses
that are typically elicited by the signal.
Effectively, signals and noises compete for neural
representation by influencing the patterns of neu-
ral activity in a given auditory area. It is possible
that changes in signal representations might not
necessarily interfere with perceptual discrimina-
tion if those changes are small relative to the
differences in the responses to a set of distinct
signals. Central auditory representations of com-
plex sounds have been described as “noise invari-
ant” (Moore et al. 2013; Rabinowitz et al. 2013)
when response features associated with the sig-
nals are preserved while those associated with the
noise are attenuated at successive stages of the
auditory pathway.

Early studies that measured auditory cortical
responses to simple stimuli such as pure tones
containing a single frequency tended to focus on
how tuning curves that relate neural firing rates to
signal amplitude shift in the presence of additional
background noise (Ehret and Schreiner 2000;
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Phillips 1990; Phillips and Cynader 1985; Phillips
et al. 1985) and have typically reported increases
in response thresholds and latencies. Studies that
have employed complex, time-varying signals
have considered how the pattern of cortical
responses changes in the presence of noise. For
example, background noise reduces synchroniza-
tion to the phrases of primate vocalizations
(Nagarajan et al. 2002) and birdsong (Narayan
et al. 2007).

Despite increasing research focus on cortical
signal in noise processing (Bar-Yosef and Nelken
2007; Schneider and Woolley 2013), important
questions remain about the underlying neural
mechanisms. Proposed mechanisms include
spectrotemporal filtering (Lee and Theunissen
2015), adaptation (Rabinowitz et al. 2013), syn-
aptic depression (Mesgarani et al. 2014), and
feedback gain normalization (Mesgarani et al.
2014). Recent studies have demonstrated addi-
tional complexities in how cortical neurons
encode signals in noise. Similar to perceptual
studies, the adverse effects of background noise
at a given SNR depend on the absolute levels of
both the signal and noise, such that loud noise is
more disruptive than moderate noise at equivalent
SNRs (Teschner et al. 2016). Among distinct
clusters of cortical neurons, background noise
can disrupt, fail to affect, or even enhance the
representation of frequency-modulated sweeps,
even in animals that are not required to attend to
the stimulus (Malone et al. 2017).

Importantly, auditory cortex spans multiple
levels of processing in the auditory pathway. In
humans and many other vertebrate animals, the
auditory cortex is comprised by a number of areas
in the temporal lobe of the brain. In primates,
including humans, auditory cortex is organized
into core areas which receive direct projections
from the ventral division of the medial geniculate
body and then project to belt areas that project, in
turn, to parabelt areas. Because cortical responses
are believed to be more modulated by attentional
mechanisms and more plastic in response to sen-
sory exposure and perceptual learning than more
peripheral structures, the question of how auditory
cortical regions represent signals of interest in the
presence of competing sounds is of special rele-
vance. The balance of “bottom-up” mechanisms
acting on sensory input and “top-down” mecha-
nisms engaged by attentional focus likely shifts at
different levels of the cortical processing hierar-
chy (Niwa et al. 2013, 2015).

Separation of signal from noise is of great
clinical relevance, since the inability to follow
ones stimulus among many, the “cocktail party
problem” (Cherry and Bowles 1960; Cherry and
Wiley 1967; Plomp 1977) is a hallmark of hearing
loss, and among the most common hearing com-
plaints in the elderly. Neurophysiological experi-
ments in older animals suggest that reductions in
the strength of inhibition may prevent the appro-
priate suppression of background noise (Presacco
et al. 2016; Recanzone 2018).
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Synonyms

Auditory event-related potential (AERP); Audi-
tory evoked field (AEF); Auditory evoked poten-
tial (AEP)
Definition

Auditory event-related potentials are electric
potentials (AERP, AEP) and magnetic fields
(AEF) generated by the synchronous activity of
large neural populations in the brain, which are
time-locked to some actual or expected sound
event.
Detailed Description

Measurement and Derivation of AERPs/AEFs
AERPs are derived from the continuous electro�/
magnetoencephalogram (EEG/MEG) by extra-
cting segments of the signal (epochs) time-locked
to some actual or expected acoustic event. AERPs
were first recorded by Hallowell and Pauline
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A. Davis in 1935–1936 (Davis 1939; Davis et al.
1939). Because EEG/MEG is typically recorded
non-invasively (outside the brain, e.g., from/
around the scalp), these measures only reflect
synchronous activity of large neural populations
(for measuring methods and instrumentation).
Consequently, the acoustic events eliciting detect-
able AERPs consist of relatively large changes of
spectral energy occurring within a relatively short
time period, such as abrupt sound onsets, offsets,
and changes within a continuous sound, because
large acoustic changes affect many neurons within
the auditory system and the short transition period
synchronizes the responses of individual neurons
(Nunez and Srinivasan 2006; cf.▶ “Anatomy and
Physiology of the Mammalian Auditory Sys-
tem”). Furthermore, the expectation of such
changes in the auditory input can elicit AERP
responses even in the absence of actual stimula-
tion (cf. the Omitted Stimulus Response in “Long-
Latency AERP Responses,” below).

The EEG/MEG signal mixes together
on-going (spontaneous) neuroelectric activity
with that elicited by the event. In order to better
estimate the brain activity evoked by the event, it
is usually repeated several times (typically
50–200 trials/sweeps, but up to 2000 times for
▶ “Auditory Evoked Brainstem Responses”) and
the EEG/MEG segments are entered into some
mathematical algorithm extracting the common
part of the single-trial epochs. The most com-
monly used method for extracting AERPs aligns
the single-trial epochs by their common onset and
averages them point by point (the averaging
method; Alain and Winkler 2012). There are
many other algorithms for extracting ERPs from
EEG/MEG, each based on different assumptions
regarding the properties of the event-related
response and the spontaneous EEG/MEG activity
(for a general primer, see Luck 2005; for detailed
discussion of ERPs, see Handy 2005; Fabiani
et al. 2007; for special considerations of MEG/A-
EFs, see Hansen et al. 2010; Nagarajan et al. 2012;
for AERPs, see Picton 2010; Alain and Winkler
2012).

EEG/MEG signals can contain components up
to a few kHz with the faster components mainly
originating from lower levels of the auditory
system (cf. ▶ “Anatomy and Physiology of the
Mammalian Auditory System” and ▶ “Auditory
Evoked Brainstem Responses”). Cortical contri-
butions are much slower, up to a few tens of
Hz. Unless one is specifically looking for very
slow (Vanhatalo et al. 2005) or fast responses
(Curio 2005), AERP recordings are usually
made with bandpass filter settings of 0.01–50 Hz
(or 250 Hz for extracting the Middle-Latency
Response, see below). AERP amplitudes are typ-
ically below 10 mV with the reference (zero) level
set to a baseline voltage (unless direct current is
recorded), which is usually the average signal
amplitude in a time interval preceding the
AERP-eliciting event. Although in general, there
is no unique solution to the inverse problem of
finding the origins (the neural generators) of elec-
tromagnetic potentials measured outside the
brain, by utilizing anatomy/physiology based
constraints, the generators of AERPs can be
located with reasonable accuracy in the brain
(Nunez and Srinivasan 2006; see also ▶ “Brain
Imaging: Overview”). Due to the underlying
physics, magnetic AEFs provide more accurate
source localization compared with electric
AERPs (Nunez and Srinivasan 2006; Nagarajan
et al. 2012). On the other hand, MEG only allows
one to measure the tangential components of the
electromagnetic activity in the brain, whereas
EEG represents the full activity (Hansen et al.
2010). For AEFs, however, this limitation of the
MEG signal is less severe than for other sensory/
cognitive systems (Picton 2010; Nagarajan et al.
2012). This is because a large part of the human
auditory system in the cortex is located in the
Sylvian fissure (see ▶ “Anatomy and Physiology
of the Mammalian Auditory System”), thus
mostly producing magnetic signals which can be
picked up by the MEG device.

AERP Waves, Components, Naming
Conventions
Figure 1 illustrates the progression of stimulus-
related neuronal activity through the auditory sys-
tem and the corresponding series of positive and
negative waveforms observable in the AERP
response. The earliest detectable responses
(< ca. 10 ms after the acoustic event) originate
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Auditory Event-Related Potentials, Fig. 1 The human
Auditory Event-Related Potential (AERP), its main wave-
forms and its generators in the brain. The human AERP is
composed of three groups of waveforms in three different
latency ranges: the Auditory Brainstem Response (ABR)
elicited within the first 8–10 ms from sound onset (green,
bottom panel); the Middle-Latency Response (MLR),
elicited within the 12–50 ms interval from sound onset
(blue, central panel), and the Long-Latency Responses
(LLR) emerging after 50 ms (red, top panel). The anatom-
ical inset (left panel) highlights the main stages of the

auditory pathway: “bn”, brainstem nuclei (including the
cochlear nucleus, the superior olivary nucleus, the nucleus
of the lateral lemniscus); “IC”, inferior colliculus; “MGB”,
the medial geniculate body in the thalamus; “AC”, auditory
cortex. The main assumed brain sources of the different
AERPs are marked by colored circles: the ascending audi-
tory pathway of the brainstem for ABRs (green); the
thalamo-cortical loops and parts of auditory cortex for
MLRs (blue); the auditory cortex for LLRs (red). AERPs
can be broken down into a series of waves (see the naming
convention in the main text)

240 Auditory Event-Related Potentials
from subcortical brain structures and are termed
the Auditory Brainstem Response (ABR;
cf. ▶ “Auditory Evoked Brainstem Responses”).
These are followed by AERP responses of
thalamo-cortical origin (mainly from the primary
auditory cortex), termed the Middle-Latency
Response (MLR), elicited during the
ca. 10–50 ms post-event latency range. The wave-
forms following are called Long-Latency
Responses (LLR) and they originate largely from
auditory cortex, but may also include contribu-
tions from parietal and frontal areas.
ABRs are referred to by Roman numerals set in
the order of their elicitation. MLR waveforms are
usually denoted by their polarity at the vertex
(approximately the top of the head); P for positive
and N for negative polarity waves, and a letter or a
number (see Fig. 1). There are two conventions
for the numbers in referring to LLRs: They either
denote the serial order of the response starting
with the first detected response (Davis 1939;
Davis et al. 1939), termed N1, or they denote the
typical peak latency of the waveform, such as P50
(the same as Pb or P1). However, as more and

https://doi.org/10.1007/978-1-0716-1006-0_300039
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more responses elicited with the same polarity and
in overlapping latency ranges have been discov-
ered, both notations have become equivocal.
Therefore, some recently discovered AERP
responses are denoted by acronyms referring to
their functional aspects, such as ORN (Object
Related Negativity) or MMN (Mismatch Negativ-
ity) (for a detailed description of the variety of
ERP responses, see Luck and Kappenman 2012;
for AERPs, Picton 2010; Alain and Winkler
2012). Magnetic response fields are usually
marked by the letter ‘m’ appended to the name
of the corresponding (A)ERP (e.g., N1m or
N100m).

Beyond the categorization based on the ERP
peak latency there are two other typical distinc-
tions in use. ERPs are termed obligatory or exog-
enous if they are elicited by each event
irrespective of its relation to preceding or concur-
rent events or the person’s task, motivations,
knowledge, etc. ERP components elicited only
when there is a certain relation between the
event and other events or some aspect of the
person’s mental state are termed endogenous.
Another distinction refers to the person’s volun-
tary activity with respect to the given stimulus
event. ERP responses only elicited when the per-
son has some explicit task involving the event
(task-relevant even) are termed “active” ERP
responses, while those elicited irrespective of the
person’s task (task-irrelevant) are termed “pas-
sive” ERP responses.

However, waveforms (peaks and dips) are not
the true building blocks of ERP responses. The
brain is a massively parallel processing instru-
ment. Therefore, at any given moment of time,
multiple processes may contribute to the observ-
able waveform. For a neurophysiologically and
functionally more meaningful decomposition of
the complex neuroelectric response, one should
be able to delineate how each of the concurrent
processes contributed to the observed
neuroelectric activity. This objective is reflected
by Näätänen and Picton’s (1987) definition of an
ERP component: ‘. . . we define an EP “compo-
nent” as the contribution to the recorded wave-
form of a particular generator process, such as the
activation of a localized area of cerebral cortex by
a specific pattern of input’ (p. 376). Thus a com-
ponent is defined by two criteria: (1) it should
have a specific generator structure (e.g., second-
ary auditory and frontal cortices) and (2) it should
be specific to some experimentally definable stim-
ulus configuration (such as stimulus change after
several stimulus repetitions). One could amend
this definition with the person’s task/goals/knowl-
edge regarding the given stimulus configuration
(e.g., instructed to respond to the given stimulus
event). However, the criteria set up by the above
definition are seldom met in ERP research. This is
partly due to limitations in separating generators
(i.e., they are usually distributed over an area in
the brain and concurrently active processes often
occupy areas very close, possibly even over-
lapping each other) as well as not knowing what
stimulus configurations are handled by the same
processes in the brain (are all expectation viola-
tions processed in the same way? – probably not).
Thus in practice, the majority of ERP research
reports use the terms “waveform” and “compo-
nent” interchangeably, sometimes linking the
effects of multiple manipulations to the same
waveform, while at other times, attempting to
separate the specific generator process affected
by a given stimulus or state variable.

There are many different processes, which can
be reflected in AERPs. Early, obligatory
responses typically reflect processes extracting
auditory features, such as pitch, intensity, loca-
tion, etc. Most AERP responses are sensitive to
the amount of sound energy change and also to
some aspects of the sound presentation rate or the
ratio between sound and silence in time. These
attributes of auditory stimuli belong to the pri-
mary descriptors of sound events as studied in
psychoacoustics (Zwicker and Fastl 1990). There
are also AERP responses indicating the presence
of automatic memory for sounds (Cowan 1984;
Demany and Semal 2007) and predictive pro-
cessing of the auditory input (Friston and Kiebel
2009; Winkler et al. 2009). Further, some AERP
responses reflect processes involved in auditory
scene analysis (Bregman 1990), the separation of
concurrently active sound sources in the environ-
ment and the formation of auditory perceptual
objects (Griffiths and Warren 2004; Winkler
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et al. 2009). Many AERP responses are also sen-
sitive to attentional manipulations, including the
active storage of sounds, selective attention, and
target identification (Cowan 1988; Näätänen
1990). AERP responses specific to music and
speech perception are described in the
corresponding entries (▶ “Music Processing in
the Brain” and ▶ “Electrophysiological Indices
of Speech Processing”). Therefore, AERPs have
been extensively used to test theories of percep-
tion (e.g., Bregman 1990; Friston 2005), memory
(e.g., Broadbent 1958; Baddeley and Hitch 1974;
Cowan 2001), and attention (e.g., Broadbent
1958; Lavie 1995) and in recent years they have
received increased interest from computational
modelling (e.g., Garrido et al. 2009; May and
Tiitinen 2010; Wacongne et al. 2011) as well as
from clinical applications (e.g., Picton 2010;
Näätänen et al. 2012).

In the following, we shall describe the most
important middle- and long-latency AERP
responses (for the auditory brainstem responses,
see ▶ “Auditory Evoked Brainstem Responses”).
Middle-Latency AERP Responses

Discrete auditory stimuli elicit a sequence of very
small (<1 mV) negative and positive waveforms
in the 10–50 ms post-stimulus latency range,
termed the Middle Latency Response (MLR).
These responses can usually be best seen on sig-
nals recorded from the vertex with a mastoid or
neck electrode as reference. The names and typi-
cal latencies of MLRs when elicited by click stim-
uli are: N0 (10 ms), P0 (15 ms), Na (20 ms), Pa
(30 ms), and Nb (~40 ms) (see Picton 2010). An
additional later waveform, the Pb, which peaks at
about 50 ms from sound onset, is not always
included amongst the MLR components, because
it can also be obtained as the P50 or P1 with the
filter bandwidth optimised for measuring LLRs
(Regan 1989; see below). Because of their small
amplitude and specific spectro-temporal charac-
teristics, recording the MLR requires
(a) averaging across close to 1000 responses,
(b) appropriate filter settings (15–200 Hz, Bell
et al. 2004), and (c) careful removal of
electromagnetic interference from power supplies
and lines, as a large part of the power of the MLR
responses falls into the 50–60 Hz range. It is also
important to avoid artefacts stemming from the
myoelectric activity of the postauricular muscle
(PAM), which lies behind the ear and is activated
by loud sounds. This is usually achieved by plac-
ing the reference electrode on the neck or the
sternum (Bell et al. 2004). Optimal sounds for
eliciting clear MLRs are chirps and clicks, which
have sharp onsets and a broad spectrum. Pure
tones elicit MLRs of somewhat different morphol-
ogy and smaller amplitude (Borgmann et al.
2001). However, MLRs can be obtained even
with low-intensity tone bursts and relatively inde-
pendently of the arousal level (Jones and Baxter
1988).

No hemispheric asymmetry was found for
MLRs as a function of the stimulated ear (Starr
and Don 1988). Based on precise structural maps
of individual brains, the spatiotemporal pattern of
neural activation giving rise to MLRs has been
identified in supratemporal auditory areas using
either current estimates derived from intracerebral
recordings (Yvert et al. 2005) or equivalent dipole
source modelling of scalp-recorded electric brain
potentials (Yvert et al. 2001). These studies local-
ized the earliest cortical activity (P0) at 16–19 ms
from sound onset in the medial portions of
Heschl’s sulcus (HS) and Heschl’s gyrus (HG),
which likely correspond to primary auditory cor-
tex (PAC). Na generation resulted from activity in
more posterior regions of the same HS and HG
areas. During the Pa/Pb complex, which includes
also the Nb, the electric brain activity propagates
in postero-anterior and medio-lateral directions in
HG to the Planum Temporale (PT) and then to
more anterior parts of the Superior Temporal
Gyrus (STG), which correspond to secondary
auditory areas. Also, frontal and parietal brain
regions contribute as early as 30 ms from sound
onset (the P30 m AEF response) to MLR (Itoh
et al. 2000). Animal studies have suggested that
MLRs involve parallel thalamocortical activation
of areas 41 (PAC), and 36 (parahippocampal
gyrus), while human lesion studies have impli-
cated contributions from thalamic projections to
Pa (Kraus et al. 1982) and Na (Kaseda et al. 1991),
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supporting a thalamo-cortical interaction in MLR
generation.

With increasing sound intensity, MLR compo-
nent latencies decrease while the amplitudes
increase, although these effects may not uni-
formly apply to each component (e.g., Na, but
not Pa; Seki et al. 1993; Althen et al. 2011).
Galambos et al. (1981) found a systematic
reversed U-shaped relationship between the
MLR amplitudes and stimulus presentation rate.
At slow rates (�10 Hz), peak-to-trough ampli-
tudes are rather small (0.4 mV) and they reach
the maximum of 1 mV by about 40 Hz presenta-
tion rate. This twofold increase in amplitude is due
to superimposition of MLRs elicited by succes-
sive sounds. In contrast, at stimulation rates below
and above 40 Hz out-of-phase responses to suc-
cessive MLR responses cancel out each other.
Some authors interpret this finding in terms of
the “steady state” potentials (oscillatory activity
generated in sensory cortical areas that is time-
locked to the periodicity of stimulus presentation;
typically measured from visual and somatosen-
sory cortical areas; Rees et al. 1986). Other
authors assume that this phenomenon reflects the
contribution of transient early evoked gamma-
band oscillations to the auditory MLR (Basar
et al. 1987; Pantev et al. 1991; Müller et al.
2001). Based on the stimulus-driven properties
outlined above, MLRs have been considered exog-
enous AERP components. However, this view has
been challenged by studies showing that MLRs are
enhanced by strongly focused attention as early as
20 ms from sound onset (Woldorff and Hillyard
1991; Woldorff et al. 1993; cf. “Attention-Related
AERP Responses” below), and that MLR ampli-
tudes are modulated as early as 50 ms from sound
onset by task difficulty and whether or not a motor
response is required (Ninomiya et al. 1997). Fur-
ther, a recent series of studies has shown thatMLRs
are sensitive to stimulus probability in a feature-
specific manner (Grimm and Escera 2012) with
infrequent frequency changes enhancing the Pa
(Slabu et al. 2010) and Nb (Grimm et al. 2012;
Alho et al. 2012), whereas location changes
enhance the Na (Sonnadara et al. 2006; Grimm
et al. 2012; Cornella et al. 2012). These results
suggest that theMLR components reflect processes
subserving higher-order sensory/cognitive
functions.

Long-Latency AERP Responses
The auditory P1 (P50, Pb; Fig. 1) component is at
the border between MLR and LLR. In fact, when
recorded and analysed with the filter setting most
useful for deriving MLRs it is termed the Pb (see
“Middle-Latency AERP Responses,” above).
Using the parameters better suited for assessing
LLRs, it typically peaks at about 50 ms from
stimulus onset, appearing with positive polarity
at the vertex and with reversed (negative) polarity
at electrodes placed on the other side of
the Sylvian fissure (e.g., electrodes placed over
the mastoid apophysis). P1 is the first wave of the
P1-N1-P2 obligatory exogenous AERP complex.
It is thought to be generated bilaterally in primary
auditory cortex, somewhat larger contra- than
ipsilaterally for pure tones (Godey et al. 2001)
and for other types of pitch-evoking sounds
(Butler and Trainor 2012), with some spreading
of the neuroelectric activity over its time course
(Yvert et al. 2005). P1 is often used as a landmark
for primary auditory cortex in AERP and AEF
studies aimed at localizing the AERP compo-
nents. Similarly to other obligatory AERP
responses, P1 is highly sensitive to stimulus fea-
tures and presentation rate (fully recovering
within a few hundred milliseconds) as well as to
attentional manipulations (Picton 2010). The P1
was initially assumed to reflect neural activity
involved in extracting auditory features
(e.g. Näätänen and Winkler 1999). Recent evi-
dence also links this response with the automatic
separation of auditory streams (Gutschalk et al.
2005; Snyder et al. 2006; Szalárdy et al. 2013;
cf. ▶ “Auditory Perceptual Organization”): The
amplitude of the P1 component has been found
to be modulated by whether a sequence with two
interleaved sounds (e.g., ABABAB. . ., where ‘A’
and ‘B’ denote two different sounds) was per-
ceived as a single coherent stream or in terms of
two concurrent streams of sound (one made up of
the ‘A’ and the other by the ‘B’ sounds).

The auditory N1 (N100; Fig. 1) wave was the
first AERP response discovered historically
(Davis et al. 1939) as it is the most prominent
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deflection at the vertex. It is elicited by abrupt
changes in sound energy, such as sound onsets
and offsets (Näätänen and Picton 1987). N1 typ-
ically peaks with negative polarity over the vertex
ca. 100 ms after the eliciting event. It is also the
most widely studied AERP response, having been
linked with virtually any and all assumed auditory
processing steps. The N1 wave has a complex
generator (and thus subcomponent) structure
(Näätänen and Picton 1987). The subcomponent
most tightly related to auditory processes (the
supratemporal N1) is mostly located in secondary
auditory areas (Godey et al. 2001), but it also
overlaps the areas active during the P1 component
(Yvert et al. 2005). Similarly to the P1, N1 is
larger contralaterally to the ear of stimulation
and it is highly sensitive to stimulus features,
presentation rate, and attentional manipulations.
However, unlike the P1, the N1 recovery is much
slower, extending beyond 10 s (Cowan et al.
1993). Further, N1 is sensitive to perceived
sound features (e.g., pitch), as opposed to raw
spectral parameters (such as the harmonic fre-
quencies of a complex tone; Pantev et al.
1989b), although feature extraction is not yet
complete at the time the N1 wave is elicited
(Winkler et al. 1997). The supratemporal N1
also shows both tonotopic (Pantev et al. 1988)
and ampliotopic organization (Pantev et al.
1989a); that is, the location of its generator varies
with the frequency and amplitude of pure tones.
However, the N1 generators are not sensitive to
combinations of sound features (i.e., feature
conjunctions).

The processes reflected by N1 have been
linked with onset and acoustic change detection
(Näätänen 1992), feature extraction, sensory
memory (Lü et al. 1992; at least for sound fea-
tures, Näätänen and Winkler 1999) and, recently,
with auditory stream segregation (Gutschalk et al.
2005; Snyder et al. 2006; Szalárdy et al. 2013).
For example, the length of the silent period after
which an N1 with maximal amplitude is elicited
by a sound is in good correspondence with the
behaviourally measurable duration of auditory
sensory memory traces (Cowan 1984). When
sounds are presented in a train with <10 s silent
intervals between them, the N1 amplitude
decreases sharply within the first few presenta-
tions, reaching an asymptote within 5–10 presen-
tations (e.g., Cowan et al. 1993). Based on this
finding, some authors argue that through adapta-
tion (see ▶ “Adaptation in Sensory Cortices,
Models of”), the neurons underlying the N1
response may retain all sound information and
thus provide the basis for detecting violations of
auditory regularities (May and Tiitinen 2010).
However, this hypothesis is debated in the litera-
ture (e.g., Näätänen et al. 2011). The sensitivity of
the auditory N1 wave to selective attention ini-
tially suggested that the difference between the N1
responses elicited by task-relevant (attended) and
task-irrelevant (unattended) sounds (the Nd;
Hillyard et al. 1973) may reflect an orientation to
the attended auditory features and/or maintenance
of the memory trace of the target sound. However,
others argued that the differential response is sep-
arate from the N1, with the early part overlapping
the N1 (termed Nde) assumed to reflect feature
processing, and the later part (Ndl, also termed the
Processing Negativity, PN; Näätänen 1982; see
PN in “Attention-Related AERP Responses”) the
maintenance of the attentional trace (Koch et al.
2005; Näätänen et al. 2011).

Little is known about the auditory P2 (P175,
P200; Fig. 1) AERP response. It has been mostly
studied within the P1-N1-P2 or N1-P2 complex.
P2 typically peaks between 175 and 200 ms from
the event onset with positive polarity over the
vertex, inverting polarity over the Sylvian fissure.
The generators of P2 lie anterior to those of the N1
in secondary auditory areas (Mäkelä et al. 1988;
Bosnyak et al. 2004). Lesion (Woods et al. 1993)
and maturation studies (Ponton et al. 2000) sug-
gest that P2 may reflect the output of the mesen-
cephalic reticular activating system (see
▶ “Anatomy and Physiology of the Mammalian
Auditory System”). Only a few studies have
attempted to distinguish P2 from the N1 wave.
The P2 amplitude was found to be more sensitive
to perturbing the feedback of one’s voice than the
N1 (Behroozmand et al. 2009) as well as to train-
ing with specific types of sounds (e.g., speech:
Tremblay et al. 2001; music: Bosnyak et al.
2004; or frequency discrimination: Tong et al.
2009). There are several speculations regarding
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the functions of the processes reflected by P2.
Based on its assumed neural origin, P2 has been
suggested to be generated by a pre-attentive
alerting mechanism (Tremblay and Kraus 2002).
Other suggestions include P2 reflecting stimulus
classification (Crowley and Colrain 2004), mod-
ulating the threshold for conscious perception
(Melara et al. 2002), protecting against interfer-
ence from irrelevant stimuli (Garcia-Larrea et al.
1992), and the accuracy of memory traces in
short-term memory (Atienza et al. 2002).

The Object Related Negativity (ORN) is
elicited when more than one sound are simulta-
neously heard (Alain et al. 2001). Thus ORN
reflects the outcome of the analysis of simulta-
neous (concurrent or vertical) auditory grouping
Auditory Event-Related Potentials, Fig. 2 Object
Related Negativity (ORN) (a) Complex tones with the
second of five harmonics tuned (green) or mistuned
upwards by 8% (red) were presented equiprobably in a
sequence. (b) Group-averaged (N¼ 20, left; N¼ 23, right)
AERP responses elicited by tuned and mistuned complex
tones recorded at the vertex, separately in the passive
(participants disregarded the sounds) and the active
cues (cf. ▶ “Auditory Perceptual Organization”).
Components of sounds emitted by a single source
usually commence at the same time, they originate
from the same spatial location and, if composed of
discrete frequencies, they consist of harmonics
derived from the same base (i.e., integer multiples
of the same frequency). When the acoustic input
does not meet these criteria, one usually experi-
ences it as two or more concurrent sounds and
ORN is elicited. ORN is typically recorded by
presenting complex tones with one harmonic mis-
tuned by 4% or more (Fig. 2, panel A) and derived
by subtracting the response to the one-sound stim-
ulus (e.g., tuned tone) from that to the multiple-
sound stimulus (e.g., mistuned tone). ORN peaks
between 140 and 180 ms from sound onset, with
condition (participants judged whether they heard one or
two concurrent tones). Mistuned-minus-tuned difference
waveforms (black) show a negative waveform appearing
between 100 and 200 ms from sound onset in both task
conditions. This is the ORN response (the range is marked
by grey shading). The positive difference waveform
observed in the 300–500 ms latency range in the Active
Condition is termed the P400
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the largest amplitude over the fronto-central
region of the scalp (Fig. 2, panel B left). ORN
has bilateral neural generators in auditory cortex,
which are separate from those of the previously
described obligatory AERP responses (Arnott
et al. 2001). Some studies have indicated the
existence of two independent lateralized generator
processes, since although ORN is elicited even
when most tones in the sequence have been mis-
tuned, the probability of mistuned sounds within
the sequence differentially affected the ORN gen-
erators in the two hemispheres (Bendixen et al.
2010). If the listener is instructed to respond when
he/she hears two concurrent sounds, a late posi-
tive response (P400) is elicited in addition to the
ORN (Fig. 2, panel B right; Alain et al. 2001).

The auditory N2 (N200; Fig. 1) wave covers at
least three (N2a or MMN, N2b, N2c; see Pritchard
et al. 1991), possibly more AERP components
(Folstein and Van Petten 2008) appearing partly
overlapping in time between 150 and 300ms from
the eliciting event. The somewhat earlier N2a or
MMN does not require attention to be focused on
the event (cf. MMN), whereas the later compo-
nents are related to attentive monitoring of the
acoustic input and they are not specific to sounds.

The Mismatch Negativity (MMN, N2a) is an
AERP component elicited by violations of audi-
tory regularities (Winkler 2007; Näätänen et al.
2011; Fig. 3). MMN typically emerges between
100 and 200 ms from the onset of deviation with
frontocentrally dominant negative polarity that is
inverted over the Sylvian fissure. MMN genera-
tors are located bilaterally in secondary-auditory
and frontal areas (Alho 1995). Although tradition-
ally regarded as a component reflecting auditory
change detection, technically, MMN does not
reflect acoustic change, as for example, an alter-
nating sequence of sounds does not elicit the
MMN, whereas repeating a sound within such a
sequence does (Horváth et al. 2001). MMN is
derived by subtracting from the response elicited
by the regularity-violating sound (termed “devi-
ant”) the response elicited by a control sound.
Optimally, the control sound is either identical or
very similar to the deviant sound but does not
violate any auditory regularity (for a detailed dis-
cussion of selecting the correct control, see Kujala
et al. 2007). MMN is elicited even when the
sounds are task-irrelevant, although it can be
suppressed by strongly focusing attention on a
parallel auditory channel and/or by contextual
information (Sussman 2007). Initially discovered
within the oddball paradigm (Näätänen et al.
1978), MMN has since been observed for viola-
tions of a large variety of abstract and complex
regularities (Näätänen et al. 2001). In parallel, its
interpretation shifted from MMN being an AERP
correlate of auditory sensory memory (Näätänen
and Winkler 1999; Cowan 1984) tasked with
detecting potentially relevant events in the audi-
tory environment (Näätänen 1992) towards the
compatible but more general notion of
representing a process that updates the detected
auditory regularities when their predictions are
not met by the incoming sound (Winkler 2007).
The latter interpretation links MMN with predic-
tive coding theories (Friston 2005; Winkler and
Czigler 2012) and posits that it plays a role in
auditory stream segregation (cf. ▶ “Auditory Per-
ceptual Organization”) by maintaining the predic-
tive models underlying auditory perceptual
objects (Winkler et al. 2009).

The Repetition Positivity (RP) appears as a
fronto-central amplitude modulation of the P50,
N1 and P2 AERP responses (Fig. 4); all three of
them overlap the slow positive RP waveform so
that the P50 and P2 become more positive and the
N1 less negative with increasing number of repe-
titions of the eliciting sound (Haenschel et al.
2005; Costa-Faidella et al. 2011a, b). Similar
stimulus repetition effects have been observed
even at shorter latencies, during the MLR latency
range (Dyson et al. 2005). The RP was first
observed by Baldeweg et al. (2004) and charac-
terized by Haenschel et al. (2005) in a study that
aimed at investigating the neural correlates of the
sensory memory trace implicated in the genera-
tion of the MMN. It was argued that the MMN
amplitude dependence on the number of standard-
stimulus repetitions preceding the deviant (e.g.,
Sams et al. 1983; Javitt et al. 1998) provides only
an indirect measure of the strength of the under-
lying memory trace. The AERP elicited by the
standard sound was expected to show effects of
repetition suppression (Desimone 1996), as was
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Auditory Event-Related Potentials, Fig. 3 The Mis-
match Negativity (MMN). (a) The experimental setup.
Participants watched and listened to a movie presented on
a TV screen directly in front of them. A series of footsteps
perceived as moving from left to right (Test Sequence;
upper arrow) or right to left (Control Sequence; lower
arrow) were delivered by a pair of loudspeakers placed
symmetrically on two sides, slightly behind the partici-
pant’s head. Ten out of the 11 different digitized natural
footstep sounds (marked as black footprints on the blue
arrows) could be perceived as a coherent sequence pro-
duced by someone walking across a room. The tenth foot-
step of the Test Sequence (“deviant”) and the second
footstep of the Control Sequence (“control”) however
sounded as if the person stepped on a different surface
(marked by the white footprint on the blue arrows). Street
noise was delivered through a loudspeaker placed directly
behind the participant. (b) Group-averaged (N ¼ 8) AERP
responses elicited by the deviant (continuous grey line) and
the identical control sound (dashed grey line) measured

from the frontal midline electrode. The MMN component,
derived by subtracting the control response from that to the
deviant (difference: black line) is marked with yellow-
orange fill in theMMN latency range. The results illustrate
that (1) MMN is only elicited when a sound violates a
detected regularity, as the regular progression of footsteps
needed to be detected and represented by the brain before it
could be violated (which could not happen if only one
“regular” footstep sound preceded the different one);
(2) regularities can be extracted from acoustic variance as
all regular footstep sounds were acoustically different;
(3) regularities are separately maintained for concurrent
auditory streams, as MMN was elicited for deviation in
the footstep stream despite the presence of two other active
sound sources; and (4) MMN elicitation does not require
one to attend the stream in which a regularity has been
violated, as participants in this experiment attended the
movie, not the footsteps. (Adapted from Winkler et al.
2003)
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observed for individual neurons in the primary
auditory cortex of the cat (Ulanovsky et al.
2003), and this could provide a more direct
measure of the strength of standard-stimulus
memory trace. The typical paradigm use for
obtaining the RP is called the “roving-standard”



Auditory Event-Related Potentials, Fig. 4 The Repe-
tition Positivity (RP). Left: Group-averaged (N¼ 14) fron-
tal midline (marked on the schematic head drawing at the
top right corner) AERPs elicited by pure tones in a roving-
standard stimulus paradigm (see in the text). The panel
shows AERPs (averaged across different frequencies)
elicited for the 3rd (blue), 6th (red) and 12th (green)
repetition of the same tone. Note that the positivity cover-
ing the latency range of the P50-N1-P2 waveform complex
emerges at the sixth repetition and becomes more

pronounced by the 12th repetition. Right:Difference wave-
forms resulting from subtracting the response to the third
repetition from that to the 12th repetition under two con-
ditions: Predictable Timing (PT: isochronous presentation,
blue) and Unpredictable Timing (UT: the within-train inter-
onset interval was varied, red). Note that the onset of RP is
earlier (ca. 70 ms post-stimulus) for the predictable than for
the unpredictable timing condition (ca. 170 ms). (Adapted
from Costa-Faidella et al. 2011a)
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paradigm (introduced by Cowan et al. 1993), as
the classical oddball paradigm yields less clear
results (Cooper et al. 2013). In the roving-
standard paradigm, short trains of a repeating
sound are delivered without a break with each
train delivering a different sound (e.g., pure
tones with different frequencies). The number of
sound repetitions can also vary from train to train.
To separate the RP from other concurrent AERP
components, the average response elicited by the
second or the third sound of the train is subtracted
from that elicited by the last tone of the train. The
response to the first sound of the train is not used
in the subtraction, because, due to the sound
change between the trains, it should elicit the
MMN (Haenschel et al. 2005; Costa-Faidella
et al. 2011a, b). The generator structure of the
RP has not yet been fully characterized, but its
early onset latency (commencing during the P50)
and its long duration (ending during the P2) sug-
gest that it may involve a distributed cortical net-
work spanning from PAC up to auditory
association areas (Baldeweg 2007). The RP has
been shown to simultaneously encode repetitions
over multiple time scales (Costa-Faidella et al.
2011b; Cooper et al. 2013) similarly to single
neurons observed in the cat’s PAC (Ulanovsky
et al. 2004). In addition to stimulus repetition,
the RP is also sensitive to temporal regularities,
such as whether the sounds are presented isochro-
nously or with random timing: Costa-Faidella
et al. (2011a) found earlier and larger RP’s for
isochronous as compared with randomly timed
tones in the trains. The latter result supports the
predictive coding view of auditory deviance
detection (Winkler 2007; Winkler and Czigler
2012), according to which detection of a regular-
ity helps to encode the sensory memory trace of
upcoming stimuli. Thus higher levels in the audi-
tory processing hierarchy feed back to lower pro-
cessing levels (Baldeweg 2006).

Auditory brain responses can also be elicited
without hearing sounds. By omitting sounds from
an isochronous sequence, one can record poten-
tials time-locked to the moment when the
sequence would have continued in a regular man-
ner. The responses are termed the Omitted Stimu-
lus Response (OSR). Some of them are elicited
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even when listeners don’t focus on the sounds,
thus demonstrating a basic tendency of the audi-
tory system to generate predictions for incoming
sounds (Friston 2005; Winkler et al. 2009). It has
been shown that when all features of the upcom-
ing sound can be predicted from the preceding
sound sequence, the OSR elicited by sound omis-
sion during the first 50 ms does not differ from the
AERP elicited by the sound itself; however, when
only the timing of the sound can be predicted, but
not its features, the OSR starts to differ from the
corresponding AERP at an earlier time (Bendixen
et al. 2009). When sounds are predictably caused
by some action of the listener, occasionally omit-
ting one elicits an AERP that is initially (up to
ca. 100 ms) morphologically similar to that
elicited by the corresponding self-initiated
sound; although the brain generators underlying
the two responses partly differ from each other
(SanMiguel et al. 2013). There is also an MMN-
like OSR (Yabe et al. 1999). Elicitation of these
responses is limited to inter-onset-intervals (IOI)
shorter than ca. 200 ms (Horváth et al. 2007),
except when the omitted sound is part of a pattern
(Salisbury 2012). With longer IOIs, an early pos-
terior negative (180–280 ms) response and a later
anterior positive wave have been obtained (Busse
and Woldorff 2003). Further, ERP responses can
also be elicited by mental imagery of sounds,
although the results vary somewhat with the pro-
cedure employed (Meyer et al. 2007; Cebrian and
Janata 2010; Wu et al. 2011).

Attention-Related AERP Responses
Attention-related AERPs include two distinct
groups of responses: those related to involuntary
(passive or exogenous) attention, and those
related to voluntary, mainly selective attention.
Regarding involuntary attention, at least three
components have to be considered. The MMN
(described above), or at least its frontal compo-
nent (Giard et al. 1990; Deouell et al. 1998; Escera
et al. 2000a; Deouell 2007), has been associated
with involuntary attention (Näätänen and Michie
1979; Näätänen 1990, 1992). Some studies have
also related the activation of the supratemporal
MMN generator with behavioural correlates of
involuntary attention, i.e., delayed response
times to target stimuli on a primary task (Yago
et al. 2001). Näätänen and Michie (1979) pro-
posed that the process generating MMN may
issue a call for focal attention (Öhman 1979)
upon the detection of an unexpected change in
the acoustic environment. Initial supportive evi-
dence was provided by Schröger (1996; Schröger
and Wolff 1998a) and Escera et al. (1998), who
introduced new auditory-auditory and auditory-
visual distraction paradigms (for a more recent
design, see Horváth and Winkler 2010). In these
paradigms, participants are instructed to perform a
primary auditory or visual task while ignoring rare
task-irrelevant violations of an auditory regularity.
Several studies have shown that these rare devia-
tions prolong the reaction time and reduce the hit
rate to target stimuli in the primary task (Escera
and Corral 2007), thus demonstrating involuntary
attention switching to the task-irrelevant
deviations.

Following the MMN, AERPs recorded in the
distraction paradigm display a fronto-central pos-
itive deflection ca. 250–350 ms from stimulus
onset, termed the P3a or novelty-P3. P3a was
first described by Squires et al. (1975) as an earlier
and more frontal positive deflection compared to
the later and more posterior P3b component (for a
review on P3b, see Donchin and Coles 1988).
Whereas P3a is elicited by rare task-irrelevant
sounds, P3b is elicited by target sounds (for a
detailed comparison between the P3a and P3b,
see Polich 2007). P3a is also elicited by widely
different and “novel” (unique, categorically dif-
ferent from the context) sounds (Knight 1984),
hence it is sometimes referred to as the novelty-
P3 (for a discussion of whether the P3a and the
novelty-P3 can be considered as the same ERP
component, see Simons et al. 2001). Compelling
evidence linking the novelty-P3 to the orienting
reflex (OR; Sokolov 1963) was obtained by
Knight (1996), who found strong correlation
between the novelty-P3 and one of the well-
known autonomic components of OR, the gal-
vanic skin response (GSR). The P3a is composed
of two subcomponents distinctly differing in
latency (early and late), scalp distribution, and



250 Auditory Event-Related Potentials
sensitivity to attentional manipulations (Escera
et al. 2000a; Yago et al. 2003). Source modelling
of the magnetic counterpart of P3a (P3am) elicited
by auditory deviants and novel sounds has
revealed a genuine auditory cortical contribution
to the early part of P3a (Alho et al. 1998).
Whereas the early part of the novelty-P3 appears
to be insensitive to attentional manipulations
(Escera et al. 1998), the later part is modulated
by working memory (SanMiguel et al. 2008) and
emotional load (Domínguez-Borràs et al. 2008).
The early P3a is sensitive to stimulus-specific
information predicting task-irrelevant auditory
deviance, whereas the late P3a appears to be
more closely correlated with distraction (Horváth
et al. 2011). P3a is widely regarded as a correlate
of attention switching (Escera et al. 2000a;
Friedman et al. 2001). However, some recent
studies suggested that although P3a is probably
an antecedent of attention switching it can be
elicited without a corresponding shift in the
focus of attention (Rinne et al. 2006; Horváth
et al. 2008b; Horváth and Winkler 2010; Hölig
and Berti 2010).

The third involuntary attention related AERP
component is the so-called Reorienting Negativ-
ity (RON), first described by Schröger and Wolff
(1998b). RON is observed as a negative deflec-
tion following the P3a (Escera and Corral 2007).
RON has been suggested to reflect processes of
reorientation (restoring the task set of the pri-
mary task) after a distracting stimulus. RON is
composed of two subcomponents (Escera et al.
2001; Munka and Berti 2006; Berti 2008) the
functional characterization of which are still
debated (Escera et al. 2001; Berti 2008). The
cortical generators of RON are not well known.
Horváth et al. (2008a) found contributions from
primary motor areas to RON, suggesting that
action-selection related activity plays a role in
the reorientation process. Both P3a and RON as
well as behavioural correlates of distraction (but
not MMN) are eliminated or at least strongly
diminished when the task-irrelevant deviant is
predicted by a visual cue (Sussman et al. 2003;
Horváth and Bendixen 2012). Cues that provide
more specific information about the distracting
stimulus are more effective in preventing
distraction and the elicitation of P3a and RON
(Horváth et al. 2011).

Selective attention related AERPs have been
traditionally studied in the context of the classical
“cocktail-party” situation described by Cherry
(1953). In the simplified dichotic listening model
of this situation, participants are exposed to two
concurrent messages (one to each ear). Using this
paradigm, many studies attempted to decide
between the “early” (Treisman 1964; Treisman
1998; Broadbent 1970) versus “late” selection
theories of attention (Deutsch and Deutsch 1963;
Norman 1968). These theories of attention pri-
marily differ from each other in the placement of
a selective filter within the chain of information
processing (Broadbent 1958): whereas early
selection theories suggest that stimuli are selected
for elaborate processing based on simple sensory
features (such as pitch) and unattended stimuli do
not receive processing beyond extracting these
sensory features, late selection theories propose
that all stimuli receive elaborate processing and
stimuli can therefore be selected on the basis of
higher-order properties. (Note that more recent
theories of attention do not posit a single selective
filter; see e.g., Lavie 1995.) The seminal observa-
tion by Hillyard et al. (1973) that selective atten-
tion enhances the N1 amplitude for stimuli
presented in the to-be-attended channel favoured
the early filtering view. However, the findings of
Näätanen et al. (1978) of a long-lasting negativity
elicited by all attended stimuli, the Processing
Negativity (PN; Näätänen 1982) challenged this
interpretation providing support to late-selection
theories. Subsequent studies confirmed both of
these effects (Okita 1979; Hansen and Hillyard
1980; Näätänen et al. 1980) and proposed subtrac-
tion of the AERP elicited by the non-attended
stimuli from that elicited by the attended stimuli
as the method to reveal the Negative Difference
(Nd) potential to isolate the AERP correlates of
selective attention (Nd; Hansen and Hillyard
1980). The Nd is composed of two parts: the
early one, termed Nde, associated with a gating
mechanism preferentially processing the task-
relevant stimulus features, and a later part (Ndl)
related to the maintenance of the attentional trace
(correspond to the PN). The functional distinction
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between the Nd and PN has been debated in detail
(Alho et al. 1986a; Alho et al. 1986b; Alho et al.
1994; Teder et al. 1993). Studies showing very
early selective attention effects, e.g., at the latency
range of the MLR (Woldorff et al. 1987; Woldorff
and Hillyard 1991) and possibly even earlier, at
the level of the cochlea (Giard et al. 1994) support
the interpretation of the Nde as a correlate of
gating by simple stimulus features. On the other
hand, the fact, that the more similar the stimulus to
the target the longer the corresponding PN, sup-
ports the notion of a comparison with the atten-
tional trace. The frontal scalp distribution of Ndl
(Woods and Clayworth 1987) and the cerebral
sources of PN (Giard et al. 1988) are also compat-
ible with the memory-based interpretation of Ndl.
There are several further ERP components related
to various facets of attention. However, these are
not specific to the auditory modality and thus fall
outside the scope of this entry.

AERPs Reflecting Speech and Music
processing
The sounds of speech and music may elicit any
and all the AERP responses described above.
There are, however, also some ERP responses,
which arise from events that can be defined in
syntactic or semantic terms. It should be noted
that most speech-related ERPs can also be elicited
through reading. Most AERP responses specific
to speech and music have been obtained in para-
digms, in which the expectation for the most
likely (or simplest) continuation of a sequence of
words has been violated. For example, violating
the expectation for the first phoneme of the
upcoming word elicits a negative shift in the
150–350 ms latency range, termed the Phonolog-
ical Mismatch Negativity (PMN; Connolly and
Phillips 1994). It is, however, debated, whether
this response can be separated from that elicited
by words, which are semantically incongruent
with respect to the preceding context (D’Arcy
et al. 2004; Van den Brink and Hagoort 2004).
Violating speech syntax can lead to the elicitation
of the Early Left Anterior Negativity (ELAN) in
the 150–200 or the Left Anterior Negativity (LAN)
in the 300–500 ms latency range, depending on
the type of violation, whereas potentially correct
but syntactically complex sentences elicit the Syn-
tactic Positive Shift (SPS or P600) (for reviews,
see Friederici 2002; Hagoort 2008). Violating
semantic expectations in speech elicits the N400
component (Kutas and Federmeier 2011). Musi-
cal syntax violations elicit an ELAN-like but pre-
dominantly right-hemispheric response, the Early
Right Anterior Negativity (ERAN) in the
180–200 ms or the Right Anterior-Temporal Neg-
ativity (RATN) in the 200–400 ms latency range
and N400 has been also be observed in musical
models of semantic incongruence (Koelsch and
Siebel 2005). For a more detailed discussion of
speech- and music-related ERPs, see ▶ “Electro-
physiological Indices of Speech Processing“ and
▶ “Music Processing in the Brain”.

Development of AERPs
Previous sections described the AERP responses
elicited in adults. Although AERPs can be
recorded immediately after birth and even in
foetuses within the womb (Draganova et al.
2005), their morphology and functional charac-
teristics widely differ from the adult responses.
Further, different AERP components become
mature at different times and they often undergo
several intermediate phases before reaching
adult-like characteristics. As this topic would
require a full entry of its own, here we point the
reader to some of the existing literature. The
most complete reviews of the maturation of
AERPs from infancy to adolescence were pro-
vided by Wunderlich et al. (2006) and Coch and
Gullick (2012). The early infantile development
of the AERP components has been summarized
by Kushnerenko (2003); for the maturation of the
AERPs reflecting auditory change detection, see
Jing and Benasich (2006), for large deviations,
see Kushnerenko et al. (2013). The maturation of
obligatory AERP components from 5 to 20 years
of age is covered in Ponton et al. (2000, 2002).
AERP maturation during adolescence is
described in Bishop et al. (2007). Summarizing
these works, one can conclude that the adult
AERP morphology characterizes humans from
17/18 years onward and remains more or less
unchanged through ageing. There are, however
several findings of differences between elderly
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and young adults in specific tasks (for a review,
see Friedman 2012).

Modelling AERP’s: Some General Principles
Theories that seek to explain some of the LLRs
have also been explored using more tightly
constrained mathematical and computational
models. Here we focus on models of the mismatch
negativity (MMN) component, as it has arguably
received the most widespread attention. Theoret-
ically, MMN has been variously associated with
change detection, adaptation, prediction error,
novelty detection, and model adjustment,
although for some years, there has been contro-
versy as to whether anything more than adaptation
is required to explain the experimental data (e.g.,
see May and Tiitinen 2010 vs. Näätänen
et al. 2011).

Using a modelling framework in which exem-
plars of each of the competing explanations, listed
above, were expressed as mathematical functions
of stimulation-induced changes in an
unobservable ‘internal state’ and resulting observ-
able (EEG) responses, Lieder et al. (2013) inves-
tigated the ability of each model to explain
empirical MMN responses on a trial-by-trial
basis. The models were expressed in a rather
abstract way, as summarized below, with simple
expressions for internal state and response func-
tions (intended to predict stimulus-evoked MMN
amplitudes), that captured a range of possibilities
for each of the categories. Change detection was
modelled with the internal state simply a record of
the log frequency of the previous tone in the
sequence, and response functions as: a) a flag,
set if a difference was detected, b) the signed and
c) absolute difference between the frequency of
the incoming and previous tone; giving three
change detection models. Adaptation was
modelled by the exponential decay and recovery
of the internal state variable associated with each
stimulus frequency, and the response function as a
read out of the internal state corresponding to the
incoming stimulus. The internal state for the pre-
diction error, novelty detection, and model adjust-
ment accounts was modelled as a Bayesian
observer’s belief in the tone category of the stim-
ulus, with the evolution of tone category modelled
according to a transition matrix derived
incrementally from the data according to the
‘free-energy-minimisation principle’ (Friston
2005). Two prediction error response functions
were modelled: prediction errors with respect to
sensory input and internal state, respectively.
Novelty response functions were modelled as sur-
prise about sensory input and temporal structure
(tone category), respectively. Model adjustment
response functions were modelled in terms of
adjustments to the parameters of the internal
model, e.g. mean frequency of a category,
expected sequence length, transition probabilities
between categories. Simulations showed that, at
least at this level of detail, prediction error (with
respect to tone category) and model adjustment
models (change in expected sequence length,
change in transition probabilities between catego-
ries), accounted best for the data (Lieder
et al. 2013).

On the other hand, May and Tiitinen (2010)
have argued strongly that their neural model
which includes adaptation on the inputs can
explain all MMN data to date; the key mechanism
being the activation of fresh afferents by stimuli
that deviate in some way from the standards. In
this account, MMN is seen as a modulation of the
N1 component rather than as a separate compo-
nent in its own right. The model, consisting of a
bank of neural oscillators driven via adapting
input synapses, can account for the latency as
well as the amplitude of the MMN (May et al.
1999). In addition, extending the model to include
local inhibitory feedback circuits, results in a set
of non-homogeneous band-pass temporal filters
that can also support the topographic representa-
tion of stimulus presentation rate (May and
Tiitinen 2001). Ringing in these filters is argued
to account for the MMN elicited by a missing
expected sound. Diverse receptive fields, e.g. to
frequency modulations, also allow the model to
simulate MMN responses elicited by violations of
some abstract rules, such as a repeated tone in a
random pattern of ascending tone pairs. However,
although adaptation is claimed to be the key to
MMN, the model responses also depend upon the
amplification of recurrent excitation, lateral inhi-
bition, and the connectivity of the network. The
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model thus essentially contains within its chang-
ing pattern of adaptation and inhibition, a memory
trace of recent activation, and in this sense, con-
tains a memory component embedded within it.

Building on their previous work on a brain-
inspired architecture for learning long-term repre-
sentations of action-perception associations,
Garagnani and Pulvermüller (2011) proposed a
similar model in which, in addition to adaptation
and inhibition, spreading activation through cir-
cuits strengthened by learning (long term mem-
ory) caused MMN responses to familiar deviants
to be larger than that to unfamiliar deviants. They
pointed out that only through some form of long
term memory mechanism could this differential
sensitivity of MMN to familiarity/unfamiliarity be
explained. By modelling multiple auditory areas
they also provided a novel explanation for differ-
ences between the N1 and MMN generators, with
N1 being generated in primary auditory areas
subject to strong adaptation, and MMN in addi-
tion to adaptation also being influenced by rever-
berating excitation within distributed memory
circuits. However, the model processes sequences
of static patterns, and as presented, it is not able to
account for the sensitivity of MMN to unexpected
changes in the timing of sequences, such as the
omission MMN (Yabe et al. 1997).

A model that explicitly includes a separate
memory module to keep track of the short term
history of activation and simulatesMMN at a finer
level of granularity, i.e. at the level of spiking
neurons, was proposed by Wacongne et al.
(2012). Memory in the model is implemented
using a set of neurons organised into a delay
line, i.e. their connectivity ensures that activity
passes in one direction across the population,
and the progress of activity through this popula-
tion explicitly represents the timing of the previ-
ous event, up to 400 ms. Separate delay lines are
used for each tone frequency modelled, thereby
also recording their identity. The model simulates
MMN by means of prediction errors. Through
exposure to tone sequences it learns to generate
a prediction of the next tone (both its timing and
identity) in a repeating pattern. These predictions
are compared with the incoming stimuli in the
prediction error units, where mismatches result
in a larger signal than matches. The model learns
transition probabilities between successive
events, as long as they fit within its fixed memory
span. In contrast to the adaptation account of
MMN, the model relies exclusively on prediction
errors. An experiment designed to distinguish
between these two explanations for MMN found
evidence in favour of a predictive error model of
MMN (Wacongne et al. 2012), a result compatible
with the findings of Lieder et al. (2013).

A predictive coding account of MMN has also
been modelled at a more abstract level using a
Kalman filtering (Kalman 1960) approach (Kaya
and Elhilali 2013). In this case the timing of
events is modelled using a separate filter from
the one used to model feature distributions. The
advantage of the Kalman filter is that it provides a
well-understood way to recursively estimate the
system state, refined through analysis of predic-
tion errors, and has been shown to be
implementable in the form of a neural network
(Szirtes et al. 2005). The model adapts to the
variance in observations and, with time, as its
predictions improve so its tolerance decreases,
making it more sensitive to outliers. Deviants are
detected as events not predicted by any existing
filter, and trigger the creation of a new set of
Kalman filters intended to model a potentially
new sound source, making this an interesting
framework for more general auditory scene anal-
ysis problems, e.g. (Chakrabarty and Elhilali
2013).

In summary, computational models of the the-
oretical accounts of MMN have begun to be
explored. However, so far they have either only
been implemented at a rather abstract level;
e.g. (Garrido et al. 2009; Lieder et al. 2013;
Kaya and Elhilali 2013), focus exclusively on a
single mechanism for explaining MMN;
e.g. (May and Tiitinen 2001; Wacongne et al.
2012) or account only for MMN responses to
unexpected within-event properties (Garagnani
and Pulvermüller 2011; Garagnani et al. 2008).
The finding, using dynamic causal modelling, that
modifications to both feed forward and feedback
connections are required (Garrido et al. 2009), and
evidence in auditory cortex for adaptation, short
term and long term plasticity, recurrent excitation
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and inhibition suggests that MMN in the brain
may actually depend on the combination of all
these factors. Furthermore, while the learning of
transition probabilities may be sufficient for some
scenarios, in the short term at least, people
become sensitive to specific tone patterns; it is
unclear whether any of the models discussed
here could respond differentially to violations of
more extended pattern sequences or more abstract
rules.

Utility of AERP for Clinical Practice
Clinical applications of AERPs range from rou-
tine practice in audiology, neurotology, neurol-
ogy, and neurosurgery by ABRs and MLRs
(Picton 2010) to highly promising tools for cog-
nitive assessment by some long-latency endoge-
nous components, of which MMN is a prime
example. In audiology, ABRs are used universally
for hearing screening in neonates failing the
Otoacoustic Emission test (OAEs; Robinette and
Glatkke 2007). Currently, about 97% of infants
are screened for hearing impairment in the USA
(Gaffney et al. 2010). ABRs, elicited by click
stimuli, are used as a tool for objective audiome-
try, and ABRs elicited by pure tones can also be
used for assessing frequency-specific thresholds
in infants (Stapells and Oates 1997; Stapells et al.
1993). In neurotology and neurology, AERPs are
combined with the patient’s medical history and
with an extensive battery of tests for evaluating
the anatomy and functional properties of the ear-
brain relationship (Picton 2010) in search for an
extensive range of disorders of the ear and the
auditory pathway, such as Ménière’s disease and
demyelinating lesions such as Multiple Sclerosis.
In these applications, AERPs are used to deter-
mine conduction times along the auditory path-
way and to localize the anatomical locus of the
brain damage with the help of the known origin of
the different ABR waveforms (see reviews in
Baloh 1997; Chiappa 1997; Lustig et al. 2003).
In addition, ABRs are used in combination with
evoked potentials from other modalities to moni-
tor coma prognosis (Guérit 2005; Fischer et al.
2006; see below), or in isolation to corroborate
brain death (Machado et al. 1991). In the surgical
theatre, MLR is used to monitor the depth of
anaesthesia in adults (Bell et al. 2004) and chil-
dren (Kuhnle et al. 2013). It has been recently
shown that, compared with the traditional clinical
assessment of depth of anaesthesia, MLR moni-
toring led to a reduction in (a) the amount anaes-
thetic drug requirement, (b) the use of
vasopressors to manage hypotension, and
(c) consequential cognitive impairment
(Jildenstål et al. 2011).

Regarding cognitive AEPRs, MMN (see
above) has shown great promise for potential clin-
ical applications (Näätänen and Escera 2000). Part
of this expectation stems from the fact that MMN
indexes auditory discrimination accuracy without
the requirement to perform some task (i.e., it can
be recorded without the patient’s collaboration
and even in newborn infants; see Alho et al.
1990) and that it can be elicited very reliably,
compared with other cognitive event-related
potentials (Escera and Grau 1996; Escera et al.
2000b). Yet, after two decades of clinical research
(see Näätänen et al. 2012), except for coma mon-
itoring and prognosis no routine clinical applica-
tion has emerged for the MMN. As for coma
monitoring, it has been demonstrated that the
presence of MMN in a comatose patient is asso-
ciated with the return of consciousness (Kane
et al. 1993; Fischer et al. 1999), and that as part
of a battery of physiological indicators of brain
activity, MMN can be used in the decision tree for
estimating awakening from coma (Fischer et al.
2006). Given the large variety of disorders and
clinical conditions in which impairedMMNs have
been observed, it has been suggested that, rather
than providing a specific diagnostic measure for
any particular disease, the MMN provides an
objective index of dysfunction of N-metyl-d-
aspartate (NMDA) receptor-mediated cognitive
functions (Näätänen et al. 2011). In general, due
to their high variability and complex functional
and anatomical origin, endogenous AERPs can
only be employed within large test batteries for
diagnostic and monitoring purposes. However,
some of these responses provided new insights
into the cognitive and emotional aspects of vari-
ous neurological and psychiatric disorders (e.g.,
for schizophrenia research using MMN, see
Mondragón-Maya et al. 2011).
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AERPs: Advantages and Limitations
(A)ERPs provide information about sound-
elicited neural activity with millisecond accuracy.
Thus they are ideally suited for breaking down the
steps of auditory information processing in the
brain in the empiricist tradition. It is thus under-
standable that some of the most recent theoretical
developments in the field (e.g., predictive coding
theories; Friston 2005) trace back their roots to
Helmholtz’ (1860/1962) theories of perception.
High temporal resolution coupled with the possi-
bility of finding the neural generators of the vari-
ous ERP responses is also appealing to
neurologists and medical doctors, in general. By
finding correlations between AERPs and con-
scious perception on the one hand (such as the
link between ORN and the perception of two
concurrent sounds; Alain et al. 2001), and discov-
ering the neural mechanisms underlying the
observed AERP waveforms on the other hand
(e.g., linking SSA and the deviance-detection
responses observed in the MLR latency range;
Slabu et al. 2010; Grimm et al. 2011; for a review,
see Ayala and Malmierca 2013), AERPs can pro-
vide a crucial link in understanding the neural
mechanisms of perception.

However, there are a number of limitations to
the utility of (A)ERPs for research and applica-
tions. Firstly, they only reflect a part of the infor-
mation processing in the brain. When the number
of neurons involved in some process is relatively
small, or the neurons are distributed over a large
area in the brain, or the neural activation is not
fully time-locked to the given auditory event, no
ERP can be measured. Other methods, such as
time-frequency analysis of the EEG, provide bet-
ter information about these types of processes.
AERPs are usually smaller than their visual coun-
terparts. Consequently the signal to noise ratio,
where activity not time-locked to the sound onset
is regarded as noise, is quite low. This forces one
to present many trials to the participant and rely on
assumptions which are not fully met by the EEG
signal (such as the independence of the signal
from the noise, ergodicity, etc.). Further, the accu-
racy of localizing the sources of neuroelectric
activity is limited by the quality of constraints
(e.g., anatomical knowledge) required to solve
the inverse problem, and the dispersion of the
electrical fields. Although magnetoencephalogra-
phy provides a better spatial resolution, as was
already mentioned, AEFs only reflect tangential
sources, but not radial ones, thus restricting their
general usefulness. In terms of spatial accuracy,
other neuroimaging methods, such as fMRI, pro-
vide a superior alternative (at the cost of much
lower temporal resolution). Further, the corre-
spondence between perception and AERP
responses is often not straightforward, as can be
gleaned from the often controversial psychologi-
cal interpretations mentioned in the main text of
this entry. Few AERP components can be
consistently observed across different stimulus
paradigms, thus limiting the validity of most
process-based interpretations. Efforts to discover
the neural bases of ERP responses must overcome
many obstacles. One of the most difficult prob-
lems is that whereas individual neurons can
mainly be studied in animal models due to the
invasive nature of such investigations, it is often
difficult to assess how well findings in various
species can be extended to characterizing the
human brain. Finally, the biggest issue for clinical
applications is, as was already mentioned, the
large inter- and even intra-individual variability
of AERPs.

In summary, AERPs can potentially provide
much information about sound processing in the
brain, but for extracting this information, better
theories and more tightly constrained models,
which can integrate information from the diverse
fields of anatomy, neuroscience, and psychology,
are required.
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Synonyms

Complex auditory brainstem response (cABR);
Envelope-following response (EFR); Speech
auditory brainstem response (sABR)
Definition

The frequency-following response (FFR) is a
sustained auditory evoked potential that
reflects synchronous neural phase-locking to the
spectrotemporal components of the acoustic
signal. FFRs are recorded noninvasively from
the scalp with electroencephalography (EEG)
and with magnetoencephalography (MEG) and
emerge at circa 7–15 ms from sound onset to
auditory frequencies in the range 100–1500 Hz.
By reflecting phase-locked activity to the incom-
ing sounds, FFRs faithfully mimic and are as
complex as the eliciting stimulus as it unfolds in
time, so that they can be recognized as such when
played through a speaker. The FFR has gained
recent interest in auditory cognitive neuroscience
as it captures with great fidelity the tracking
accuracy of the periodic sound features in the
ascending auditory system. By decomposing the
FFR in the temporal and spectral domains, it is
possible to read neural traces from the scalp as
sounds are transcribed in neuronal aggregates and
how these neural sound traces are shaped by
experience, context, and challenging conditions,
such as listening in noise, with age and in speech
and language disorders.
Detailed Description

Introduction to the FFR
The auditory system is essential for us humans, as
it allows to make sense of the sounds around
us and to decipher the complex spectrotemporal
signals hidden in the ongoing acoustic flow, hence
supporting human communication, building our
cognitive system through the use of language, and
promoting social interaction through the joy
of music. Acoustic signals are transduced into a
neural code in the inner ear and then released
through the auditory nerve to the central nervous
system. Understanding how the central auditory
system encodes for the different spectrotemporal
attributes of sounds and isolates different auditory
objects is thus capital to understand the way
we use sounds to communicate and interact
with others, and the frequency-following response
provides a valuable neurophysiological tool to
unravel these mysteries. The FFR was originally
recorded in animal preparations of the auditory
nerve and ascending fibers of the auditory path-
way as synchronous phase-locked activity in
neuronal aggregates elicited to pure tone stimuli.
In humans, it was first recorded by Moushegian,
Rupert, and Stillman in 1973 (Moushegian et al.
1973) to pure tone stimuli of frequencies of 0.25,
0.5, 1.0, 1.5, and 2.0 kHz, as they could
show compelling evidence of the neuroelectric
recordings to follow the cycles of the eliciting
stimuli at these different frequencies, and
of these neuroelectric signals being of central
nervous origin.

The FFR is currently conceived to reflect an
aggregation of phase-locked neural activity from
multiple generators along the auditory system,
although it has been considered for long as a
putative measure of subcortical sound encoding.
The FFR can be obtained under passive and active
listening paradigms, and it is highly sensitive to
context-dependent contingencies and to real-time
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statistical properties of the incoming stimulation
(Escera 2017). It is also modulated by short-term
auditory training and lifelong auditory experience,
including musical training and linguistic compe-
tence. Consequently, the FFR has become a major
tool in the assessment of the neural encoding of
speech sounds in both healthy and clinical
populations (Kraus et al. 2017). By means of a
range of analytical tools in the temporal and spec-
tral domains, the FFR provides an objective indi-
cator of the fundamental acoustic features intrinsic
to speech sounds, including timing (onsets), pitch
(fundamental frequency, F0), and timbre (the har-
monics information). Specifically, it informs about
the latency and amplitude of the auditory input in
the time domain and the magnitude of the funda-
mental frequency and its harmonics in the fre-
quency domain (Kraus et al. 2017) (Fig. 1).

While the term frequency-following response
is the most broadly used and probably the most
comprehensive one, there are other terms that
have been used interchangeably or which high-
light a specific aspect or variant in the response.
These include complex auditory brainstem
response (cABR), speech auditory brainstem
response (sABR), envelope-following response
(EFR), and amplitude-modulation following
response (AMFR). As seen, some of these vari-
ants refer to the auditory brainstem response
(ABR) for good technical reasons: FFRs are
recorded with the same equipment and settings
as the ABR. In fact, the ABRs can be decomposed
into two distinct components, the transient-
evoked responses and the FFR (see entry
▶ “Auditory Brainstem Responses”). In addition,
as introduced above and explained in further
detail below in this entry, the use of the term
“brainstem” in naming this auditory evoked
potential conveys an anatomical implication that
has been overcome by the available evidence.
Indeed, FFR was considered since seminal studies
to have a primary origin in the inferior colliculus
of the auditory midbrain, yet recent studies have
indicated that the FFR represents an integrated
response of the entire auditory system, with
contributions from both subcortical but also cor-
tical centers. Therefore, including anatomical
indications on the terminology can lead to
misconception. Overall, the scientific community
has agreed to the term FFR being the most appro-
priate one, as it only refers to what the component
is: a response that follows the frequency of the
incoming stimulus (Kraus et al. 2017).

Importantly, the FFR has a great potential to
inform basic and applied questions in learning and
communication. Throughout this entry we will
review the technical considerations for recording
the FFR and computing a large range of
FFR-derived measures. We will also discuss its
neural origins and how it develops throughout
the individual’s life-span. Finally, we will
characterize the FFR by showing its sensitivity
to different auditory contexts and experiences
and its role in the study of clinical conditions.

Recording the FFR: Technical Considerations
Selecting appropriate stimuli to elicit reliable
FFRs depends on several factors, including spe-
cific research purposes as well as taking into
account the properties of the electrophysiological
response per se. Some of the most commonly used
stimuli include pure tones (i.e., simple sinusoids),
which allow the assessment of responses phase-
locked to the sound waveform (response peaks
appear with the same periodicity than in the
eliciting stimulus); amplitude-modulated tones,
enabling the study of responses to the amplitude
envelope; complex tones, used to study both the
encoding of different spectral components and the
periodic aspects of the sound; synthetic vowels
and natural vowels, used to study the encoding
of vowel formant structure with linguistic mate-
rial; consonant-vowel syllables, possibly the best
studied, allowing to reveal the encoding of fast
formant transitions and sustained responses to
vowels (e.g., /da/ vs. /ga/) as well as meaningful
pitch contours in tonal languages (slower changes
in sound periodicity, e.g., in Mandarin lexical
tones); musical sounds from different musical
instruments, used to study the encoding of har-
monic structure and other timbre characteristics;
and even iterated rippled noises, which are noise
stimuli with periodic structure that can be used
to study the emergence of perceptual pitch and
its neural encoding (Chandrasekaran and Kraus
2010; Skoe and Kraus 2010a).

https://doi.org/10.1007/978-1-0716-1006-0_423
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Fig. 1 Morphology and characteristics of the human
scalp-recorded FFR. The frequency-following response
(FFR) can be recorded to complex auditory stimuli, such as
a consonant-vowel /da/ utterance (upper panel). The middle
panel shows the FFR recorded from the Fpz electrode in one
single individual (human neonate) to such a stimulus. As can
be appreciated, the FFR faithfully mimics the incoming
stimulus by phase-locking to its temporal features; notice

the same number of cycles within the framed portion in
both the stimulus and the neural response. The central origin
of the FFR, as opposing to a cochlear origin, is reflected by
the short delay in the emergence of phase-locked
neuroelectric signal, which corresponds to the neural delay
the signal needs to reach the central generating structures
within the auditory pathway. In addition to phase-locking to
the stimulus temporal components, the FFR also encodes for
the spectral features of the incoming stimulus, as can be seen
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All these stimulus types are fully periodic or
contain periodic sections, and, in order to elicit
robust FFRs, their fundamental frequencies
(F0) usually range between 80 and 300 Hz, fall-
ing within the natural speech range. Their fre-
quency content may span up to 10 kHz, but the
FFR signal becomes weaker with increasing fre-
quency (Greenberg 1980), and its phase-locking
limits are around 1500 Hz. However, most of the
spectral information needed to distinguish
vowels is well below 3000 Hz. Stimuli are com-
monly delivered binaurally at conversational
suprathreshold intensities (60–85 dB SPL) to
approach naturalistic settings, although monau-
ral stimulation can as well be used. Stimulus
duration ranges from several tens of milliseconds
to seconds (e.g., 40 ms to 2 s), and interstimulus
intervals also vary widely, only limited by exper-
imental time constraints, which may depend on
the studied population (recording sessions are
shorter in babies or patients suffering from dif-
ferent conditions than in young healthy adults).
A common practice is to deliver half of the stim-
uli with opposite polarity (180� phase shift) to
allow averaging and subtracting responses across
polarities in order to emphasize responses to the
sound envelope (useful to extract pitch tracking
measures) or to the spectral content (and study
vowel formant structure encoding), respectively
(Aiken and Picton 2008; Skoe and Kraus 2010a).
Given the small amplitude of the FFR signal (i.e.,
in the range of a tenth of a mV), a typical record-
ing needs roughly 1000–2000 stimulus presenta-
tions to be averaged further per polarity
(if applicable).
��

Auditory Frequency-Following Responses, Fig. 1
(continued) in the frequency spectrum, pitch tracking accu-
racy, and spectrograms computed from FFR of this very
same individual (bottom panel). The frequency spectrum
illustrates the amplitude spectral decomposition of the
whole FFR, which reveals a clear peak corresponding to
the stimulus fundamental frequency. Pitch tracking accu-
racy provides a measure of the ability to track changes in
the fundamental frequency along the stimulus entire dura-
tion (stimulus frequency depicted in black; response track-
ing in red). The spectrogram provides combined
information regarding the frequency and the amplitude at
FFRs are typically recorded with scalp elec-
trodes using essentially the same montage and
settings than those used to record ABRs (see
entry ▶ “Auditory Brainstem Responses”). In a
characteristic montage, an active electrode is
placed over the vertex of the scalp or on top of
the forehead; a reference electrode is placed on an
earlobe (or the mastoid or a high vertebra, at the
expense of muscle noise and bone vibration), and a
ground electrode is located either on the other
earlobe or on the middle of the forehead (Skoe
and Kraus 2010a). Impedances are usually kept
below 5000 Ω. Recording sampling rate should
be at least as high as the double of the highest
sound frequency to be studied, although
researchers usually oversample (10 or 20 kHz) in
order to obtain fine temporal variations in the signal
that could be informative (Skoe and Kraus 2010a).

Regarding the most common analysis methods,
the FFR is generally computed as an auditory
event-related potential (see entry ▶ “Auditory
Event-Related Potentials”) by averaging or sub-
averaging per polarity the total number of available
trials, in windows lasting typically from�40 ms to
20 ms poststimulus ending. Importantly, the FFR
can be distinguished from the cochlear micro-
phonic, a receptor potential generated in the outer
hair cells that mimics the incoming stimulus, as the
FFR has a 6–10ms delay poststimulus onset/peaks,
while the cochlear microphonic is nearly coinci-
dent with the stimulus waveform, or by cancelling
the latter via averaging responses to opposite stim-
ulus polarities (Skoe and Kraus 2010a).

Due to the shared characteristics between the
FFR and the sound used to elicit it, most of the
which the FFR is phase-locked to the different spectral
components of the incoming stimulus along its entire dura-
tion. The color scale from black to white indicates the
spectral amplitude in mV, with lighter colors depicting
highest amplitude values. Overall, this figure illustrates
how the FFR faithfully tracks the eliciting stimulus and
its complexity even in a single individual, thus providing a
valuable tool to address issues in auditory cognitive neu-
roscience as well as the assessment of hearing abilities at
individual level. Figure adapted and reproduced with per-
mission from Ribas-Prats et al. (2019)

https://doi.org/10.1007/978-1-0716-1006-0_423
https://doi.org/10.1007/978-1-0716-1006-0_99
https://doi.org/10.1007/978-1-0716-1006-0_99
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analyses and interpretation on FFRs are based on
the acoustic properties of the stimulus, assessing
timing and neural synchrony magnitude, as well as
phase-locking strength and precision (Skoe and
Kraus 2010a). The following are common param-
eters that are extracted from time and frequency
domains, in fixed or sliding windows (to capture
changes as a function of time), attempting to
disentangle several auditory neural processing
features that the FFR may reveal: stimulus-to-
response cross-correlation, showing the accuracy
with which the FFR replicates the stimulus wave-
form; neural lag, an estimation of the temporal
delay between stimulus and response; consistency,
a measure of neural response stability; root mean
square (RMS) amplitude, indicating the overall
magnitude of neural activity over a determined
period of time; pitch strength, a measure of period-
icity based on autocorrelation that reflects the
robustness of the response’s phase-locking to the
stimulus F0 contour; pitch error, a measure of how
faithfully the FFR encodes the pitch along the
stimulus duration, measured as a difference in Hz
from the stimulus F0 contour; spectral amplitude,
usually computed with fast Fourier transform, indi-
cating the magnitude of neural phase-locking at a
certain frequency (F0 and harmonics); and points
below noise floor, describing how the signal can be
differentiated from baseline (i.e., pre-stimulus)
noise (see Ribas-Prats et al. 2019, for an empirical
implementation of all these measures).

Neural Generators
Despite the accumulation of studies on the neural
origins of the FFR, no clear picture has emerged so
far regarding its anatomical generators, and certain
controversy is still being debated. Early seminal
studies were addressed to demonstrate that the
FFR had a central rather than a cochlear origin,
and its sources were attributed to neuronal aggre-
gates in caudal brainstem and midbrain structures,
with the inferior colliculus (IC) being the major
neuronal source. These seminal studies supported
somehow the use of “brainstem” in variants of the
nomenclature and its treatment as a putative corre-
late of subcortical sound encoding. The midbrain
origin is supported by the fact that the short latency
of the FFR aligns with the latency of the first spikes
in IC (Langner and Schreiner 1988) and since FFRs
contain phase-locked activity up to 1500Hz, which
spans beyond the upper limit of phase-locking
capabilities of cortical neurons (~100 Hz; Aiken
and Picton 2008). Additionally, focal lesions
(Sohmer et al. 1977) as well as the cryogenic
cooling of the IC result in the abolishment of
FFRs, with subsequent heating in this later case
yielding recovering of FFRs both in the IC and at
the scalp (Marsh et al. 1970; Smith et al. 1975).
Nevertheless, a mixture of brainstem sources was
indeed recognized in the generation of the FFR
(Chandrasekaran and Kraus 2010; Tichko and
Skoe 2017) and was further supported by other
studies that reported weaker contributions of the
IC to the FFR, with the major source located in the
CN (Gardi et al. 1979a) or in theMGB (Weinberger
et al. 1970).

Recently, the controversy around the neural
origins of the FFR was renewed with MEG
evidence demonstrating that the responses to a
complex auditory stimulus of a fundamental fre-
quency close to 100 Hz receive contributions not
only from the subcortical nuclei (i.e., the cochlear
nucleus and the IC) but also from the medial
geniculate body of the thalamus and to a major
extent from the auditory cortex (Coffey et al.
2016, 2017). The implications of these findings
need, however, a re-examination in the light of the
phase-locking capabilities of neuronal aggregates
along the auditory hierarchy. Indeed, the upper
limit of temporal precision in phase-locked firing
reduces with each ascending step in the auditory
pathway, so that the ability of neurons to follow
fast modulations reduces upstream the auditory
hierarchy (Batra et al. 1989; Langner 1992; Joris
et al. 2004), and therefore the specific frequency
of the eliciting stimulus used to obtain the FFR
may play a critical role in engaging multiple
sources and a specific configuration of subcortical
and cortical generators. Hence, capitalizing on the
frequency-specific phase-locking capabilities
along the auditory hierarchy, it has been observed
that the relative contribution of subcortical and
cortical sources to the scalp-recorded FFR varies
systematically with stimulus frequency. In fact,
the cortical contributions to the scalp-recorded
FFR observed were restricted to the lowest
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(fundamental) frequencies of the speech spectrum
(100 Hz), and recent evidence demonstrated that
this cortical contribution to the FFR disappears at
frequencies higher than 150 Hz (Bidelman 2018).
These findings challenge the assumption of the
FFR as a correlate of subcortical sound encoding
and support an emerging viewpoint in the litera-
ture that the FFR represents an integrated
response of the entire auditory system (Kraus
and White-Schwoch 2015; Kraus and Slater
2016), with its specific neural origins depending
on the frequency of the eliciting sounds.

Developmental Issues: The FFR from Birth to
Adulthood
The refinement and modulation of the encoding
and representation of complex sounds in the
cortico-subcortical auditory system, as reflected
by the FFR, remain active and undergo stages of
progression along the human life-span. The first
FFR recording in human neonates was carried out
by Gardi and colleagues in 1979 using low-
frequency tone bursts (Gardi et al. 1979b), but it
was not until three decades later when the neo-
nates’ adultlike capabilities to phase-lock to the
incoming stimulus fundamental frequency were
fully characterized (Jeng et al. 2010; Ribas-Prats
et al. 2019). FFRs recorded in neonates have a
similar response morphology to those from adults,
in both the phase-locking to the periodicity of
the stimulus waveform and its latency, thus
confirming that the integrity of the subcortical
auditory pathway can be assessed using FFRs
from the first day of life at the maternity
hospital room.

To understand the encoding and processing
of complex sounds in infants, it is important to
consider first the development of the auditory path-
way during the gestational age. The inner ear and
the cochlea become fully mature and functional by
5 months of gestation, which makes the fetus sen-
sory and neurally capable to receive acoustic inputs
from both its mother’s body and from the external
world. However, the only acoustic vibrations that
reach the fetus are through the mother’s womb,
which filters out the input of higher frequencies
and allows only the transmission of low-frequency
sounds to the fetus. This influence of prenatal
listening experience on the neural development of
auditory subcortical structures has been supported
by studies showing that the FFR amplitude to the
fundamental frequency of the eliciting stimuli was
clearly observed in neonates (Ribas-Prats et al.
2019) and did not increase significantly in older
infants (Anderson et al. 2015). On the other hand,
the amplitudes of the FFR to higher frequencies
(corresponding to the first formant and higher har-
monics) are significantly smaller than the ones of
the fundamental frequency (Ribas-Prats et al.
2019) and increase significantly with increasing
age (Anderson et al. 2015). The mandatory delay
of exposure to high frequencies until birth and the
continued myelination of neural structures at the
subcortical level during the first year of life may
explain the different sensitivity to the input fre-
quency content during the first years of life.

The encoding of spectral and temporal speech
components becomes adultlike by the age of
6 months or around, period at which, according
to electrophysiological and behavioral studies,
the preference for the native language becomes
evident. The auditory system suffers rapid matu-
rational changes during the firth months of age,
followed by an overshoot during childhood
(5–11 year old), and remained stable throughout
adulthood until aging-related modulations come
into effect (Skoe et al. 2015a).

Contrasting with the abundance of literature
describing cortical responses in infants, very few
studies have focused on the sound processing at
subcortical stages of the auditory pathway in
neonates. One remarkable attempt to characterize
subcortical auditory processing of complex
sounds during the first 3 months of age was by
Jeng et al. (2016), who conducted a longitudinal
study in which the FFRwas recorded in a group of
infants in two periods of time: during their first
days of life (1–3 days after birth) and at the age of
3 months (Jeng et al. 2016). Although only 13 of
the initial group of 44 were recorded at 3 months,
the results suggested an improvement in pitch
processing with increasing age. These findings
are in line with a preliminary work by the same
group in which the FFR was collected in one
of their participants at 1, 3, 5, 7, and 10 months
of age (Jeng et al. 2010). However, further
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longitudinal follow-up studies are necessary to
fully characterize the developmental stages the
FFR may follow.

Effects of Experience-Dependent Plasticity on
the FFR
As mentioned above, the FFR has gained recent
interest in cognitive auditory neuroscience, as it
allows investigation of the biological mechanisms
and environmental conditions that modulate
the encoding of complex sounds in the auditory
hierarchy in service of human communication.

One of the most remarkable features of
the FFR is its sensitivity to context-dependent
contingencies and to real-time statistical proper-
ties of the stimulus. A number of studies have
demonstrated that the FFR is able to capture
the rapid statistical features of the incoming stim-
ulation, disclosing the encoding of auditory regu-
larities along the auditory hierarchy. In particular,
it has been shown that the second harmonic of the
FFR is enhanced for both local and global repeti-
tions of a five-tone melody, thus indicating
encoding of both global and local statistical regu-
larities within the ongoing stimulation, and that
regularity encoding mechanisms might be
involved when an auditory object must be sepa-
rated from background noise (Skoe and Kraus
2010b). In a similar vein, the use of an oddball
stimulus sequence with consonant-vowel stimuli
revealed that the FFR is not only enhanced for
local regularities but also attenuated on its second
harmonic in response to a deviant event (e.g., one
with low local probability; Slabu et al. 2012).
These findings were replicated and extended by
subsequent studies, thus supporting the role of the
entire auditory hierarchy in extracting statistical
information from the acoustic background and
demonstrating that context-dependent contingen-
cies and learning-dependent plasticity interact in
subcortical stages of the auditory hierarchy (Skoe
et al. 2014). In a related account, it was further
shown that not only stimulus predictability but
also temporal predictability of the incoming stim-
ulation enhances regularity encoding of the acous-
tic environment, thus indicating that context-
dependent contingencies of the ongoing auditory
input modulate the encoding of stimulus statistics
in the ascending auditory pathway (Gorina-Careta
et al. 2016).

The neural sensitivity to stimulus statistics
generalizes to more ecological conditions, in
which sound patterns were embedded within a
single uninterrupted sequence, as was demon-
strated in a number of studies in which a series
of musical notes were presented in random or
patterned sequences. In the patterned sequences,
the occurrence of a tone predicted with high
accuracy the following one. By using this design,
attenuated responses were obtained for the pat-
terned condition compared to the random one,
and the more enhanced were the subcortical
responses to the patterned condition to the random
one, the greater was the individual capability to
learn the sequence (Skoe et al. 2013). This sensi-
tivity to stimulus statistics is biased by prior expe-
rience and the expectations arising from
this experience (Skoe et al. 2015b). Interestingly,
the sensitivity to the contingencies of the incom-
ing stimulation is not exclusive of adults but
is already seen in children with good reading
skills (Chandrasekaran et al. 2009). These results
indicate that the whole auditory hierarchy is
sensitive to the ongoing stimulus context and
that prior experience modulates the responses to
the incoming sounds.

Evidence for experience-dependent plasticity
has also been provided by the results of short-
term training studies, in which FFRs were
recorded before and after a period of training
(for a review, see Carcagno and Plack 2017). For
example, as mentioned above, context-dependent
contingencies interact with the effects of short-
term training on the accuracy of the encoding of
the fundamental frequency (F0) of sounds (Skoe
et al. 2014), and, as a result of short-term F0
discrimination training, it has also been observed
an improvement of the bilingual robustness of
the subcortical temporal encoding (Carcagno
and Plack 2011). FFR plasticity has also been
investigated after the training on the identification
of lexical tones (Song et al. 2008; Chandrasekaran
et al. 2012) as well as using general speech-in-
noise training protocols (Song et al. 2012).
By using this latter one, it has been shown that
the subcortical encoding of temporal information
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is improved after training. The finding that sub-
cortical auditory processing is not static but can
be manipulated by training led to the hypothesis
that sensory deficits caused by degraded sound
processing could be improved by training. Indeed,
it was shown that auditory training can alter the
preconscious neural encoding of complex sounds
by improving the neural synchrony in the auditory
brainstem in children with learning disabilities
(Russo et al. 2005).

Furthermore, the FFR is not only modulated
by short-term auditory training but also by
different auditory experiences, such as musical
training or language exposure. The first study on
the influence of musical training on the FFR was
conducted by Musacchia and colleagues
(Musacchia et al. 2007), where they demonstrated
that musicians have earlier and larger FFRs than
nonmusicians to both speech and musical stimuli
presented in auditory and audiovisual conditions.
Their work was extended by the observation that
musicianship enhances the FFR tracking of pitch
contours (Wong et al. 2007) and that this
experience-dependent plasticity is shaped along
the dimensions that are the most behaviorally
salient for the listener (Bidelman et al. 2011).
Musicians also have a more robust subcortical
representation of acoustic stimuli in the presence
of noise (Parbery-Clark et al. 2009) and enhanced
encoding of speech syllables presented in a pre-
dictable condition relative to a variable condition
than nonmusicians (Parbery-Clark et al. 2011),
thus leading to the hypothesis that subcortical
regularity encoding is shaped by musical training
and may contribute to the musicians enhanced
speech-in-noise perception. Interestingly, the
neural changes produced by musical training
during childhood are retained in adulthood, as
the magnitude of the FFR correlates with how
recently the training ceased (Skoe and Kraus
2012).

Language experience is another factor that
strongly influences the encoding of speech sounds
along the auditory pathway. Bilingual experience
enhances the neural responses to the fundamental
frequency of sounds (Krizman et al. 2015; Skoe
et al. 2017) as well as the subcortical representa-
tion of pitch-relevant information (Krizman et al.
2012) and neural consistency, which correlates
with both a better attentional control and language
proficiency (Krizman et al. 2014). In addition,
long-term experience with a tone language (such
as Mandarin) sharpens the tuning characteristics
of neurons along the pitch axis with enhanced
sensitivity to linguistically relevant, rapidly
changing sections of pitch contours (Krishnan
et al. 2008). In summary, neural encoding of
sounds in the subcortical auditory pathway, as
revealed by means of the FFR, is shaped by
long-term experience with language or music,
thus supporting that early sensory processing can
undergo experience-dependent plasticity (Fig. 2).

FFR in Challenging Conditions
Human auditory function in challenging conditions
can be understood from different perspectives. First,
the challenge can be imposed by external situations
in which the acoustic signal is degraded by concur-
rent competing sound streams (i.e., listening in
noise) or by room acoustics introducing echoes
and reverberation, which necessarily hamper the
intelligibility of speech signals. A serious challenge
in listening, of an internal nature, is also imposed by
hearing loss and even normal aging. A further chal-
lenge to central auditory processing is conveyed by
clinical conditions, mostly neurodevelopmental,
that have been shown to affect auditory, speech,
and language perception. In all these domains, the
FFR has played a significant role in characterizing
the effects of the challenges in the neural encoding
of complex, typically speech sounds and its
consequences in listening, linguistic, and even cog-
nitive competence.

Both noise- and reverberation-related changes
in the FFR are shown in both the time and fre-
quency domains. In particular, noise masks the
spectral details of speech, reducing the contrast
between the salient frequency features of the
sound and the baseline noise (Russo et al. 2004;
Li and Jeng 2011). In contrast, reverberation causes
a smearing of the spectrotemporal details of the
acoustic signal, thus producing a temporal overlap
of time-frequency information which results in a
systematic degradation in neural periodicity as it
degrades the normal phase-locking ability of the
FFR (Bidelman and Krishnan 2010). Interestingly,
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Fig. 2 Modulation of the FFR by auditory experience
and context-dependent contingencies. The FFR to dif-
ferent acoustic stimuli is sensitive and can be modulated by
a range of different auditory experiences, such as language
exposure and musical training. In particular, this influence
is so strong that it can be appreciated in the temporal
representation of the FFR when comparing groups with
different levels of exposure, for example, to two
(bilinguals) instead to only one (monolinguals) language
(a), or in participants with musical experience as compared
to nonmusicians (b). The FFR is also highly sensitive to
context-dependent contingencies (c) and to real-time sta-
tistical properties of the stimulus (d). In some cases, as the
ones illustrated here, differences in the FFRs are not evi-
dent in the time domain but can be appreciated in the

spectral decomposition of the neural signal. The bottom
left panel (c) depicts the spectral representation of the FFRs
elicited to the same stimulus having three different contex-
tual roles as a function of its probability of occurrence
(i.e., as a low-probable [Deviant], red; high-probable
[Standard], blue; control, black). Differences became
clearly (and statistically) visible in the amplitude of the
second harmonic. The bottom right panel (d) shows
a similar approach to illustrate the effects of short-term
statistics (stimulus repetition) on the FFR (first presenta-
tion in red; tone repetition in black). Differences between
tone statistics (e.g., repetition) are clearly observed in the
second harmonic. Figures adapted and reproduced with
permission from (a) Krizman et al. (2012), (b) Skoe and
Chandrasekaran (2014), (c) Slabu et al. (2012), and
(d) Skoe and Kraus (2010b)
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the two types of acoustic interference do not result
in uniform impairment in the speech signal. Indeed,
pitch (measured in the encoding of the fundamental
frequency) and timbre (assessed by the spectral
energy in higher harmonics and spectral envelope)
are differentially affected and hence encoded in the
FFRs. Little degradation in the FFR fundamental
frequency is observed neither with noise nor rever-
beration, whereas higher harmonics degrade
quickly with acoustic interference.
The encoding of speech sounds along the
auditory hierarchy with acoustic interference is
not stable across the life-span. Rather it naturally
declines with age and is impaired in certain
auditory disorders. The evoked responses for the
three fundamental acoustic features intrinsic to
speech sounds are shown to be inefficiently
encoded, reduced, or delayed in different ways
for distinct clinical populations compared to typ-
ically developing controls, but, overall, they all
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lead to a weakness in the neural processes that are
important for the appropriate auditory processing
of the auditory signal. In particular, reduced rep-
resentation of the fundamental frequency and the
harmonics or delayed onset of the FFRs have been
observed for children with learning problems
(Cunningham et al. 2001) and/or with language
deficits and reading disorders such as dyslexia
(Banai et al. 2005, 2009; Banai and Ahissar
2006; Chandrasekaran et al. 2009; Anderson
et al. 2010; Hornickel et al. 2012; Hornickel and
Kraus 2013). Additionally, neural synchrony
(timing) and phase-locking (frequency encoding)
are also decreased in children with autistic
spectrum disorders (Russo et al. 2008, 2009).
Conclusions

In this entry we have attempted to characterize
the frequency-following response (FFR) as an
auditory evoked potential which is called to
play a relevant role in modern auditory cognitive
neuroscience. By virtue of its “neurophonic”
nature, its ability to reproduce the eliciting
sound when played through a speaker, the FFR
faithfully reveals how the fine-grained
spectrotemporal features of complex auditory
stimuli are analyzed and represented along the
entire auditory system. Furthermore, by its multi-
dimensional sensitivity to the individual’s expe-
rience with acoustic surroundings along the life-
span, including long-term exposure to language,
music, and noise but also short-term, dynamic
processing of auditory streams, the FFR has
demonstrated the profound plasticity of the audi-
tory system in the service of auditory perception,
the use of language, and communication. By
characterizing the complex generating pattern
of anatomical structures contributing to the
FFR, from the cochlear nucleus to the inferior
colliculus, the medial geniculate body of the
thalamus, and the auditory cortex, studies with
the FFR have revealed the auditory system to be
the core of a neural network that interacts with
the motor and reward systems to guide and refine
our life in sound (Kraus and White-Schwoch
2015). Also, the FFR may have a major transla-
tional role in audiologic, neurodevelopmental,
and educational domains. In the first place, the
FFR recoded at a preschool age has been shown
to predict performance across multiple domains
of emergent literacy as measured 1 year later
(White-Schwoch et al. 2015). Second, given
these predictive capabilities of the FFR, one is
tempted to speculate that a simple FFR recording
at birth (Ribas-Prats et al. 2019) may give a
snapshot into the speech-learning abilities on
the neonate. Such a test could be routinely
applied at the maternity unit, together with the
universal newborn hearing screening, right after
birth and could lead to early preventive interven-
tion in babies at risk of speech acquisition or
developmental delays (Kraus and White-
Schwoch 2016). Finally, the FFR may provide a
complementary tool in the practice of audiology
to objectivize auditory perceptual deficits in
patients with complaints about hearing loss in
the presence of a normal audiogram and negative
testing.
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Definition

Auditory memory is the storage of information
about sounds, including both acoustic features
(sensory memory) and categorical information
about sound categories and multi-sound structure.
Detailed Description

Auditory memory plays a critical role in various
aspects of human activities, such as music, verbal
learning, and communication. For example, when
a person says, “I said ‘rice,’ not ‘lice,’” the listener
must keep the word “rice” in auditory memory to
compare it with the word “lice” afterward.

It is widely accepted that auditory memory can
be partitioned into three components (Cowan
1984; Crowder 1976; Massaro 1975; Neisser
1967), which Massaro terms preperceptual audi-
tory storage (known also as echoic memory), syn-
thesized auditory memory, and generated abstract
memory. Figure 1 illustrates these components
and their relationships.

Preperceptual Auditory Storage
Preperceptual auditory storage retains the
uncategorized representations of auditory inputs
Raw auditory features

Integrated auditory
representations

Abstract information
about the sounds

Generated Abstract
Memory

Synthesizd Auditory
Memory

Preperceptual Auditory
Storage

Auditory Information

Auditory Memory, Fig. 1 Three phases of auditory
memory according to Massaro (1975)
that have not yet been fully processed (Massaro
1975) and is also referred to as short auditory
storage (Cowan 1984). It is the auditory counter-
part of what is thought of as iconic memory in the
visual domain. Preperceptual auditory storage is
the first step in auditory processing and starts right
after an auditory stimulus enters perception. The
duration of preperceptual auditory storage is very
short. Most researchers agree that it lasts less than
300 ms. One compelling source of evidence for
the duration of preperceptual auditory storage
comes from the finding that when a sound is
very short (e.g., less than 100 ms), it is still per-
ceived as lasting for about a quarter of a second,
which is considered to be the duration of pre-
perceptual auditory storage (for a review see
Cowan 1984).

Synthesized Auditory Memory
The auditory features stored in preperceptual
auditory storage can be further analyzed to form
integrated representations of sound. These inte-
grated representations are considered to be stored
in synthesized auditory memory (Massaro 1975).
The term “synthesized” refers to the process in
which auditory features such as pitch, loudness,
and aspects of timbre are analyzed and combined
into integrated auditory representations. The dura-
tion of the synthesized auditory memory appears
to vary from less than 1 s up to 30 s, depending on
how it is measured, but it is most often found to be
several seconds (Cowan 1984).

The distinction between preperceptual audi-
tory storage and synthesized auditory memory is
supported by several lines of research, including
backward masking, dichotic listening, and the
suffix effect (Cowan 1984). One of the most con-
vincing sources of evidence comes from a back-
ward masking study by Kallman and Massaro
(1979). Backward masking refers to the phenom-
enon that when two sounds are presented sequen-
tially with a very short interval between them, the
processing of the first sound (target) sustains inter-
ference from the second one (mask). Kallman and
Massaro (1979) used two types of sound
sequence: (1) standard tone, target tone, and
mask (referred to as mask third or “M3”) and
(2) standard tone, mask, and target tone (referred



276 Auditory Pathway
to as mask second or “M2”). The participants
needed to judge whether the target tone had a
higher or lower frequency than the standard
tone. In each type of sequence, the interval
between the mask and its preceding tone
(stimulus onset asynchrony or SOA) was varied,
and the mask was either similar to the preceding
tone or quite different from it (it was then a white
noise). A prediction can be made on the basis of
two forms of memory, preperceptual auditory
storage and synthesized auditory memory. These
two forms can be separately interfered with. In
both types of trials, the comparison between the
target and standard tones should be impaired by
target-mask similarity at a very short SOA
because at short SOAs, the similar mask interferes
with preperceptual auditory storage of the preced-
ing target tone. Additionally, in the M2 trials only,
it is expected that the comparison is always
impaired by a similar mask, regardless of the
SOA. The reason is that the mask in this procedure
comes between the standard and target tones and
therefore can interfere with synthesized auditory
memory of the standard tone. These expectations
exactly match what was found; the target-mask
similarity mattered only at short SOAs in the M3
condition, but it mattered at all SOAs in the M2
condition. This finding supports the distinction
between preperceptual auditory storage and syn-
thesized auditory memory.

Generated Abstract Memory
The integrated representations in synthesized
auditory memory can be further processed to
form abstract representations in generated abstract
memory (Massaro 1975). The abstract representa-
tions are considered to be domain general, mean-
ing that they do not carry information about
specific sensory details. Thus, abstract represen-
tations generated from each sensory domain
(hearing, vision, touch, and so on) are all stored
together in the generated abstract memory.

In more recent literature, generated abstract
memory is often referred to as “the focus of atten-
tion” and is reported to have a core capacity of
three to five items when various memory strate-
gies are controlled (Cowan 2001). It is thought
that information must be saved in generated
abstract memory before high-level thinking
about it can occur.

How Auditory Memory Is Used
Although auditory memory is usually partitioned
into three phases, all three phases can be used in
parallel to process auditory information. Suppose
that you are sitting in a noisy airport reading and a
stranger asks you what time it is. Even though you
did not catch the words immediately, you can still
extract the raw auditory information from the
preperceptual auditory storage, except for the
very last sounds that were masked by someone
else nearby talking immediately afterward. The
extracted information is then integrated into syn-
thesized auditory memory, which can save the
auditory information long enough for you to turn
your attention away from the reading and toward
the sounds. When your attention is focused on the
sounds, you can analyze the sounds based on their
memory, using your existing language knowl-
edge. You form a generated abstract memory of
what the stranger meant, and you can then respond
with the correct time if you have it. This is a
typical scenario in which all three phases of audi-
tory memory work together to serve the auditory
processing involved in social interactions.
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Definition

The process of extracting acoustic features from
sound waves and partitioning them into meaning-
ful groups.
Detailed Description

Introduction
Traveling pressure waves (i.e., sounds) are pro-
duced by the movements or actions of objects. So
sounds primarily convey information about what
is happening in the environment. In addition,
some information about the structure of the envi-
ronment and the surface features of objects can be
extracted by determining how the original (self-
generated or exogenous) sounds are filtered or
distorted by the environment (e.g., the notion of
“acoustic daylight,” Fay 2009). In this entry we
consider how the auditory systems process sound
signals to extract information about the environ-
ment and the objects within it.
The auditory system faces a number of specific
challenges which need to be considered in any
account of perceptual organization: (1) sounds
unfold in time; we can’t (normally) go back to
reexamine them. Therefore, information must be
extracted and perceptual decisions made in a
timely manner. (2) The information contained
within sounds generally requires processing over
many timescales in order to extract their meaning
(Nelken 2008). For example, a brief impulsive
sound may tell the listener that two objects have
been in collision, but a series of such sounds is
needed in order for the listener to know that some-
one is clapping rather than walking. (3) Many
objects of interest generate sounds intermittently.
Therefore, some means for associating temporally
discontiguous events are required. (4) Sound pres-
sure waves are additive; what the ear receives is a
combination of all concurrently active sound
sources and their reflections off any hard surfaces.
Many animals and birds communicate acousti-
cally in large social groups, making the problem
of source separation particularly tricky (Bee
2012). Despite these challenges, if the auditory
system is to provide meaningful information
about individual objects in the environment (e.g.,
potential mates or aggressors), it needs to partition
the acoustic features into meaningful groups, a
process known as auditory perceptual organiza-
tion or auditory scene analysis (Bregman 1990).
Grouping Principles

Auditory Events
Natural environments typically contain many
concurrent sound sources, and even isolated
sounds can be rather complex, e.g., animal vocal-
izations contain many different frequency compo-
nents, and both the frequencies of the components
and their amplitudes can vary within a single
sound. The problem for the auditory system is to
find some way of correctly associating the fea-
tures which originate from the same sound source.
The classical view of this process is that the
cochlea decomposes the incoming composite
sound waveform into its spectral components,
generating a topographically organized array of
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signals which sets up the cochleotopic
(or tonotopic) organization found throughout
most of the auditory system, up to and including
the primary auditory cortex (Zwicker and Fastl
1999). Other low-level features such as onsets,
amplitude and frequency modulations, and binau-
ral differences are extracted subcortically and
largely independently within each frequency
channel (Oertel et al. 2002). These acoustic fea-
tures are bound together to form auditory events
(Bertrand and Tallon-Baudry 2000; Zhuo and Yu
2011) or tokens (Shamma et al. 2011), i.e., dis-
crete sounds that are localized in time and per-
ceived as originating from a single sound source
(Ciocca 2008). Events are subsequently grouped
sequentially into patterns, streams, or perceptual
objects.

Gestalt Grouping Principles
Perceptual decisions regarding the causes of the
signals received by the sensors must in general be
made with incomplete information (Brunswik
1955). Therefore, potential solutions need to be
constrained in some way, e.g., by knowledge
about likely sound sources (Bar 2007) or by
expectations arising from the recent context
(Winkler et al. 2012). In his seminal book,
Bregman (1990) pointed out that many such con-
straints had already been identified by the Gestalt
school of psychology (Köhler 1947) early in the
twentieth century. The core observation of Gestalt
psychology was that individual features form
larger perceptual units, which have properties
not present in the separate components (von
Ehrenfels 1890), and, conversely, that the percep-
tion of the components is influenced by the overall
perceptual structure (Wertheimer 1912). Focusing
primarily on visual stimuli, the Gestalt psycholo-
gists described the following grouping principles
(laws of perception), here discussed in terms of
auditory grouping.

(a) Good continuation: Smooth continuous
changes in perceptual attributes favor group-
ing, while abrupt discontinuities are perceived
as the start of something new. This principle
can operate both within and between individ-
ual events.
(b) Similarity: Similarity between the percep-
tual attributes of successive events (e.g.,
pitch, timbre, location) promotes group-
ing (Bregman 1990; Moore and Gockel
2002, 2012). Similar to the perception of
visual motion (Weiss et al. 2002), it
appears that it is not so much the raw
difference that is important, but rather
the rate of change; the slower the rate
of change between successive sounds,
the more similar they are judged
(Winkler et al. 2012). In other words, in
the auditory modality, similarity and good
continuation may be equivalent.

(c) Common fate: Correlated changes in features
promote grouping, recently formalized as
temporal coherence, i.e., feature correlations
within time windows that span periods longer
than individual events (Elhilali et al. 2009;
Shamma et al. 2011).

(d) Disjoint allocation (or belongingness):
Refers to the principle that each element of
the sensory input is only assigned to one per-
ceptual object, e.g., exclusive border assign-
ment in Rubin’s face-vase illusion. However,
although generally true, this principle is
sometimes violated in auditory perception,
e.g., in duplex perception, the same sound
component can contribute to the perception
of a complex sound as well as being heard
separately (Rand 1974; Fowler and
Rosenblum 1990).

(e) Closure: Objects tend to be perceived as
whole even if they are not complete, e.g., a
glide continuing through a masking noise if
the glide offset is masked (Miller and
Licklider 1950; Riecke et al. 2008). This
applies more generally to the perception of
global patterns (or “Gestalts”), e.g., individual
notes are subsumed into a melodic pattern
(McDermott and Oxenham 2008) and predict-
able individual speech sounds are perceived
as present even if they are masked or missing
(Warren et al. 1988). The auditory system is
extraordinarily sensitive to repeating patterns
and appears to readily use this cue to parse
complex scenes (Winkler 2007; McDermott
et al. 2011).
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An important concept that emerges from the
idea of a “Gestalt” as a pattern is that of predict-
ability. In the case of auditory perception, this
refers to expectancies about sound events that
have not yet occurred. By detecting patterns
(or feature regularities) in the acoustic input, the
brain can construct representations that allow it to
anticipate or “explain away” (Pearl 1988) future
events. In this way Gestalt theory connects to the
ideas of unconscious inference (Helmholtz 1885)
and perception as hypothesis formation (Gregory
1980).

Auditory Objects
While visual objects are widely accepted as fun-
damental representational units, the notion of an
auditory object is less well established, and there
is as yet no universal agreement on how they
should be defined, e.g., see Kubovy and Van
Valkenburg (2001), Griffiths and Warren (2004),
Winkler et al. (2006), Shinn-Cunningham (2008).
Based on the Gestalt principles and ideas of per-
ceptual inference, outlined above, Winkler et al.
(2009) proposed a definition of an auditory per-
ceptual object as a predictive representation,
constructed from feature regularities extracted
from the incoming sounds. These object represen-
tations are temporally persistent and encode dis-
tributions over featural and temporal patterns,
determined by the current context. The consoli-
dated object representation therefore refers to pat-
terns of sound events; individual sound events are
processed within the context of the whole to
which they belong. This definition of an auditory
perceptual object is compatible with the definition
of an auditory stream, as a coherent sequence of
sounds separable from other concurrent or inter-
mittent sounds (Bregman 1990). However,
whereas the term “auditory stream” refers to a
phenomenological unit of sound organization,
with separability as its primary property, the def-
inition proposed by Winkler et al. (2009) empha-
sizes the extraction and representation of the unit
as a pattern with predictable components (Winkler
et al. 2012). While the usage of the term object is
not universally accepted within the auditory
domain, we will use it in this entry as defined by
Winkler et al. (2009).
Auditory Scene Analysis

In order to determine the perceptual qualities of
individual sound events, the brain must first bind
their component features even though the number
of concurrent auditory objects and which features
belong to each is unknown a priori; this must be
inferred incrementally from the ongoing sensory
input. Therefore, it is clear that the auditory sys-
tem needs to use (top-down) contextual informa-
tion to guide its grouping decisions and some
means for evaluating these decisions and revising
them in the event that they prove to be incorrect.
In the currently most widely accepted framework
describing perceptual sound organization, audi-
tory scene analysis, Bregman (1990) proposes
two separable processing stages. The first stage
is suggested to be concerned with partitioning
sound events into potential groups based primar-
ily on featural similarities and differences. The
second stage, within which prior knowledge and
task demands exert their influence, is a competi-
tive process between candidate organizations that
determines which one is perceived. Within this
framework there are two types of grouping: simul-
taneous grouping based on concurrent cues and
sequential grouping based on contextual temporal
cues. For the reasons outlined above, these two are
not really distinct (simultaneous cues are
influenced by prior sequential grouping, e.g., Dar-
win et al. (1995) and Bendixen et al. (2010b), just
as sequential grouping is influenced by the per-
ceptual qualities of individual events
(simultaneous grouping) (Bregman 1990); never-
theless, they provide a useful starting point for
models of auditory scene analysis.

Simultaneous Grouping
In the absence of sequential grouping cues, there
are some features which automatically trigger the
formation of individual sound events; for reviews
see Darwin and Carlyon (1995) and Ciocca
(2008). Common onsets and offsets form clear
temporal boundaries, and the strategy adopted by
the auditory system is to match onsets to offsets
(including similarities between features and tem-
poral proximity) in order to segregate perceptual
events (Nakajima et al. 2000). Harmonicity
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(i.e., the presence of frequency components which
are integer multiples of a common fundamental
frequency) is another important grouping cue
(Darwin and Carlyon 1995). For example, when
one component of a complex harmonic tone is
mistuned, listeners perceive two concurrent
sounds, a complex tone consisting of the harmon-
ically related components and a pure tone,
corresponding to the mistuned component
(Moore et al. 1986). However, not all acoustic
features trigger concurrent grouping, e.g., a loca-
tion cue (common interaural time differences)
between a subset of frequency components within
a single sound event does not generate a similar
segregation of component subsets within individ-
ual sound events (Culling and Summerfield
1995).

Another important strategy for segregating
sound events is template matching. If people
have prior knowledge of events, then it is possible
to hear them out. This effect was exploited in the
many double-vowel experiments used to test the
influence of different acoustic features, e.g.,
Assmann and Summerfield (1990) and
Summerfield and Assmann (1991), and even in
the absence of featural differences, it was shown
that known vowel sounds can be identified well
above chance (Assmann and Summerfield 1989).
This template-matching phenomenon appears to
be rather general and applies to any sound that is
repeated. The auditory system is very sensitive to
repetition (Teki et al. 2011). If a previously
unheard sound is repeated against a different
background, then it can be segregated and identi-
fied significantly above chance, even with only a
single repetition, and even if many of usual group-
ing cues are absent (McDermott et al. 2011). Sim-
ilarly, arbitrary repeated noise segments can be
rapidly learnt within a few trials (Agus
et al. 2010).

Models of Event Formation
Many models have been developed to investigate
simultaneous grouping and the segregation of
perceptual events, e.g., see models described in
Wang and Brown (2006). A model of auditory
saliency which used low-level cues of spectral
and temporal contrast to highlight salient events
in continuous noisy soundscapes predicted human
event detection very well (Kayser et al. 2005).
Temporal contrasts effectively highlight onsets
and offsets, while spectral peaks carry information
about the resonances of sound sources and to
some extent their identity (von Kriegstein et al.
2007). The segregation of overlapping events
using pitch cues has been widely explored
(c.f. Pitch Perception, Models), e.g., for
explaining enhanced double-vowel segregation
(de Cheveigne et al. 1995). The segregation of
events using repetition was shown to be possible
in principle by using a combination of cross-
correlation and averaging to incrementally build
a representation of the repeated target
(McDermott et al. 2011). Because of the impor-
tance of longer-term context on grouping, none of
these models provide general solutions to the
problem of auditory scene analysis; nevertheless,
they provide important building blocks in this
process.

Sequential Grouping
Sequential grouping generally conforms to the
Gestalt principles of similarity/good continuation
and common fate. In contrast to concurrent group-
ing, sequential grouping is necessarily based on
some representation of the preceding sounds; for
reviews, see (Moore and Gockel 2002; Carlyon
2004; Haykin and Chen 2005; Snyder and Alain
2007; Ciocca 2008; Shamma and Micheyl 2010;
Shamma et al. 2011; Moore and Gockel 2012).
Most studies of this class of grouping have used
sequences of discrete sound events to investigate
the influences of acoustic features and temporal
structure. In the most widely used experimental
approach (termed the auditory streaming para-
digm), sequences of alternating sound events dif-
fering in some feature(s) are presented to listeners
(van Noorden 1975). When the feature separation
is small and/or they are delivered at a slow pace,
listeners predominantly hear a single integrated
stream containing all the sounds. With large fea-
ture separation and/or fast presentation rates, lis-
teners report hearing the sequence separate out
into two segregated streams. In this there is a
cue trade-off: smaller feature differences can be
compensated with higher presentation rates and
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vice versa (van Noorden 1975). Differences in
various auditory features, including frequency,
pitch, loudness, location, timbre, and amplitude
modulation, have been shown to support auditory
stream segregation (Vliegen and Oxenham 1999;
Grimault et al. 2002; Roberts et al. 2002). Thus it
appears that sequential grouping is based on per-
ceptual similarity, rather than on specific low-
level auditory features (Moore and Gockel 2002,
2012). Temporal structure has also been suggested
as a key factor in segregating streams either by
guiding attentive grouping processes (Jones 1976;
Jones et al. 1981; Large and Jones 1999) or
through temporal coherence that binds correlated
component features in the auditory input (Elhilali
et al. 2009; Shamma and Micheyl 2010; Shamma
et al. 2011, 2013).

Models of Auditory Streaming
Early models of auditory streaming, e.g.,
Beauvois and Meddis (1991), focused on the rela-
tionship between frequency differences and event
rate and the proposal that streaming could be
explained almost exclusively by peripheral
channeling mechanisms (Hartmann and Johnson
1991) or the degree of overlap between neural
responses to each of the alternating tones, e.g.,
McCabe and Denham (1997). In these models
the perceptual decision was represented by levels
of activation across a spatial array of neurons; see
also Micheyl et al. (2005) for a similar interpreta-
tion of neural activity in primary auditory cortex.
A different approach in which grouping is sig-
naled by temporal correlations within network
responses was proposed by Wang, Brown, and
colleagues (Brown and Wang 2006; Wang and
Chang 2008). For example, the model proposed
by Wang and Chang (2008) consists of a
2-dimensional array of oscillators with one
dimension representing frequency and the other
external time. Units are connected by local excit-
atory connections and by global inhibition. Char-
acteristic results of classical auditory streaming
experiments (van Noorden 1975) are simulated
by including strong local excitatory connections
(encouraging synchronization) and weaker
long-range connections (which are easily over-
come by inhibition and therefore encourage
desynchronization). Sensitivity to event rate is
modeled by dynamic weight adjustments. How-
ever, while the representation of grouping is dif-
ferent from the models previously outlined, this
model also depends on peripheral channeling and
the degree of overlap in the incoming activity
patterns to determine its grouping decision.

A similar focus on temporal coherence (in this
case the average correlation within a sliding win-
dow 50–500 ms in duration) is seen in the model
of streaming proposed by Elhilali and colleagues,
e.g., Elhilali and Shamma (2008) and Shamma
et al. (2011) (Note, Figs. 6 and 9 in this entry
have incorrect colour scale labels (0% and
100%, interchanged; Shamma and Elhilali
(2013)). The computational model developed by
Elhilali and Shamma (2008) extracts multiple fea-
tures from the incoming acoustic input including
frequency, pitch, direction, and spectral shape and
assigns the resulting activity patterns to one of two
clusters which come to represent the properties of
the events in each stream. The temporal coherence
measure is used to determine which components
should be grouped. The clusters compete to incor-
porate each event, and the winning cluster uses the
event features (as determined by the grouping
process) to refine its representation. These
correlation-based models overcome a problem
faced by the population separation account of
streaming (Micheyl et al. 2005) that predicted
widely separated components would be segre-
gated even if they overlapped in time, which is
not the case (Elhilali et al. 2009). They also pro-
vide a means for binding the component features
of an event, not considered in the earlier models.
Later refinements to the temporal coherence
account of streaming (Shamma et al. 2011,
2013), included the strong claims that (a) feature
binding occurs only with attention, i.e., attention
is responsible for grouping features that belong to
the foreground object, c.f. (Treisman 1998), and
(b) all other features remain ungrouped in an
undifferentiated background. However, the pro-
posed role of attention in feature binding has
long been debated in the visual domain, e.g.,
Duncan and Humphreys (1989), and it is not
consistent with the results of experiments testing
feature binding in the absence of attention by
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recording auditory event-related potentials
(AERP) in response to rare feature combinations
(Takegata et al. 2005; Winkler et al. 2005a).

Competition and Selection
The models described above all conform to the
assumptions that in response to alternating two-
tone sequences, (a) auditory perception always
starts from the integrated organization and
(b) that eventually a stable final perceptual deci-
sion is reached (Bregman 1990). However, it has
been found, when listeners report their percepts
continuously while listening to such sequences for
long periods, that perception fluctuates between
different perceptual organizations (Winkler et al.
2005b; Pressnitzer and Hupe 2006). Perceptual
switching occurs in all listeners and for all com-
binations of stimulus parameters tested (Anstis
and Saida 1985; Roberts et al. 2002; Denham
and Winkler 2006; Pressnitzer and Hupe 2006;
Schadwinkel and Gutschalk 2011; Denham et al.
2012), even combinations very far from the
ambiguous region identified by van Noorden
(1975). Furthermore, for stimuli with parameters
that strongly promote segregation, participants
often report hearing segregation first (Deike
et al. 2012; Denham et al. 2012). It has also been
found that perceptual organizations other than the
classic integrated and segregated categories may
be reported (Bendixen et al. 2010a, 2012; Bőhm
et al. 2012; Denham et al. 2012; Szalárdy et al.
2012), showing that auditory perceptual organiza-
tion in response to alternating two-tone sequences
is multistable (Schwartz et al. 2012).

The notion of perceptual multistability is chal-
lenged by everyday subjective experience of a
world perceived as stable and continuous and by
experimental results obtained by averaging over
the reports of different listeners, which generally
show that within the initial 5–15 s of two-tone
sequence, the probability of reporting segregation
monotonically increases (termed the buildup of
auditory streaming) (but see Deike et al. (2012)).
For these reasons it has been suggested that per-
ceptual multistability observed in the auditory
streaming paradigmmay be simply a consequence
of the artificial stimulation protocol used. How-
ever, there is a growing body of experimental data
supporting the existence of multistability and just
as visual multistability has provided new insights
into visual processing, e.g., Kovacs et al. (1996);
it seems likely that understanding spontaneous
changes in the perception of unchanging sound
sequences will help throw new light on auditory
perception.

ModelingMultistability in Auditory Streaming
Multistability of auditory perceptual organization
cannot be explained by any of the theories or
models outlined above, which all have essentially
one fixed attractor. Models of visual multistability
have a longer history, e.g., Laing and Chow
(2002); Shpiro et al. (2009); van Ee (2009).
These models typically contain three essential
components (Leopold and Logothetis 1999):
(a) mutual inhibition between competing stimuli
to ensure exclusivity (i.e., perceptual awareness
generally switches between the different alterna-
tives rather than fusing them), (b) adaptation to
ensure the observed inevitability of perceptual
switching (the dominant percept cannot remain
dominant forever), and (c) noise to account for
the observed stochasticity of perceptual switching
(successive phase durations are largely
uncorrelated, and the distribution of phase dura-
tions resembles a gamma or log-normal distribu-
tion) (Levelt 1968). The questions for auditory
multistability are what are the competing entities,
and what form does this competition take in order
to explain dynamic nature of perceptual aware-
ness reported by listeners.

The computational model of auditory multi-
stability proposed by Mill et al. (2013) is based
on the idea that auditory perceptual organization
rests on the discovery of recurring patterns
embedded within the stimulus, constructed by
forming associations (links) between incoming
sound events and recognizing when a previously
discovered sequence recurs and can thus be used
to predict future events. These predictive repre-
sentations, or proto-objects (Rensink 2000;
Winkler et al. 2012), compete for dominance
with any other proto-objects which predict the
same event (a form of local competition) and are
the candidate set of representations that have the
potential to become the perceptual objects of
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conscious awareness. This model accounts for the
emergence of, and switching between, alternative
organizations; the influence of stimulus parame-
ters on perceptual dominance, switching rate, and
perceptual phase durations; and the buildup of
auditory streaming. In a new sound scene, the
proto-object that is the easiest to discover deter-
mines the initial percept. Since the time needed for
discovering a proto-object depends largely on the
stimulus parameters (i.e., to what extent succes-
sive sound events satisfy/violate the similarity/
good continuation principle), the first percept
strongly depends on stimulus parameters. How-
ever, the duration of the first perceptual phase is
independent of the percept (Hupe and Pressnitzer
2012), since it depends on how long it takes for
other proto-objects to be discovered (Winkler
et al. 2012). The model also accounts for the
different influences of similarity and closure on
perception; the rate of perceptual change
(similarity/good continuation) determines how
easy it is to form the links between the events
that make up a proto-object, while predictability
(closure) does not affect the discovery of proto-
objects, but can increase the competitiveness
(salience) of a proto-object once it has been dis-
covered (Bendixen et al. 2010a).
Neural Correlates of Perceptual
Organization

Neural responses to individual sounds are pro-
foundly influenced by the context in which they
appear (Bar-Yosef et al. 2002). The question is to
what extent the contextual influences on neural
responses reflect the current state of perceptual
organization. This question has been addressed
by a number of studies ranging in focus from the
single neuron level (c.f. stimulus-specific adapta-
tion) to large-scale brain responses (c.f. auditory
evoked potentials), and the results provide impor-
tant clues about the processing strategies adopted
by the auditory system.

Studies investigating single neuron responses
to alternating tone sequences, e.g., Fishman et al.
(2004), Bee and Klump (2005), Micheyl et al.
(2005)), and Micheyl et al. (2007), have shown
an effect called differential suppression, i.e., at the
start of the sequence, the neuron responds to both
tones, but with time the response to one of the
tones (typically corresponding to the best fre-
quency of the cell) remains relatively strong,
while the response to the other tone diminishes.
Since neuronal sensitivity to frequency difference
and presentation rate was found to be consistent
with the classical van Noorden (1975) parameter
space, it was claimed that differential suppression
was a neural correlate of perceptual segregation
(Fishman et al. 2004). This was supported by the
finding that spike counts from neurons in primary
auditory cortex predict an initial integration/seg-
regation decision closely matching human per-
ception (Micheyl et al. 2005; Bee et al. 2010).
However, differential suppression does not
account for perceptual multistability or for the
perception of overlapping tone sequences
(Elhilali et al. 2009); therefore, while differential
suppression may be a necessary component of the
auditory streaming process, it does not provide a
complete explanation.

Auditory event-related brain potentials
(AERPs) represent the synchronized activity of
large neuronal populations, time locked to some
auditory event. Because they can be recorded
noninvasively from the human scalp, they have
been widely used to study the brain responses
accompanying auditory stream segregation;
c.f. auditory event-related potentials, especially
long-latency AERP responses. Three AERP com-
ponents are of particularly relevance in this
regard: (a) the “object-related negativity” (ORN)
which signals the automatic segregation of con-
current auditory objects (Alain et al. 2002), (b) the
amplitude of the auditory P1 and N1 which varies
depending on whether the same sounds are per-
ceived as part of an integrated or segregated orga-
nization (Gutschalk et al. 2005; Szalárdy et al.
2013), and c) the mismatch negativity (MMN;
Näätänen et al. 1978) which has been used as an
indirect index of auditory stream segregation, e.g.,
Sussman et al. (1999); Nager et al. (2003);
Winkler et al. (2003a); Gutschalk et al. (2005).

The detection and representation of regularities
by the brain, as indexed by the MMN, provided
the basis for the definition of an auditory object
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proposed byWinkler et al. (2009). Using evidence
from a series of MMN studies, they defined an
auditory object as a perceptual representation of a
possible sound source, derived from regularities
in the sensory input (Winkler 2007, 2010) that has
temporal persistence (Winkler and Cowan 2005)
and can link events separated in time (Näätänen
and Winkler 1999). This representation forms a
separable unit (Winkler et al. 2006) that general-
izes across natural variations in the sounds
(Winkler et al. 2003b) and generates expectations
of parts of the object not yet available (Bendixen
et al. 2009).

It should be pointed out that while traditional
psychological accounts of auditory perceptual
organization implicitly or explicitly refer to rep-
resentations of objects, there are models of audi-
tory perception which are not concerned with
positing a representation directly corresponding
auditory objects. The hierarchical predictive cod-
ing model of perception, e.g., Friston and Kiebel
(2009), includes predictive memory representa-
tions, which are in many ways compatible with
the notion of auditory object representations
(Winkler and Czigler 2012), but no explicit con-
nection with object representations is made.
Shamma and colleagues’ temporal coherence
model of auditory stream segregation (Elhilali
and Shamma 2008; Elhilali et al. 2009; Shamma
et al. 2011, 2013) provides another way to avoid
the assumption that object representations are nec-
essary for determining sound organization;
instead it is proposed that objects are essentially
whatever occupies the perceptual foreground and
exist only insofar as they do occupy the fore-
ground. In summary, there is currently little con-
sensus on the role of auditory object
representations in perceptual organization, and
the importance placed on object representations
by the various models and theories differs
markedly.

fMRI studies of auditory streaming have found
neural correlates in a number of brain regions. In
one of the earliest studies, Cusack (2005) failed to
find differential activity in auditory cortex
corresponding to perceptual organization into
one or two streams, but he did find such activity
in the intraparietal sulcus, an area associated with
cross-modal processing and object numerosity.
Shortly afterwards Wilson et al. (2007) showed
that auditory cortical activity increased with
increasing frequency difference and that as the
frequency difference increased, the cortical
response changed from being rather phasic
(i.e., far stronger at the onset of the sequence)
towards a more sustained response throughout
the stimulus sequence. Taking a closer look at
the dynamics of cortical activity associated with
perceptual switching, Kondo and Kashino (2009)
showed that both auditory cortex and thalamus are
involved, with an increase in thalamic activity
preceding that in cortex associated with a switch
from the nondominant to the dominant percept
and, conversely, an increase in cortical activity
preceding that in thalamus associated with a
switch from the dominant to the nondominant
percept. They also found differential activation
in posterior insular cortex and in the cerebellum.
Interestingly, activations in the cerebellum and
thalamus are negatively correlated in auditory
streaming, with the left cerebellar activation
level increasing with the rate of perceptual
switching and thalamus (medial geniculate)
decreasing (Kashino and Kondo 2012). Consis-
tent with these findings, Schadwinkel and
Gutschalk (2011), using a different stimulus par-
adigm which allowed them to influence the timing
of perceptual switching, found transient auditory
cortical activation associated with perceptual
switching and a further transient activation in
inferior colliculus, although whether the inferior
colliculus is responsible for triggering switching
or simply reflects the transient switching activa-
tion in cortex is not clear. In summary, neural
correlates of auditory streaming have been found
in many areas within the auditory system and
beyond, suggesting that creating and switching
between alternative perceptual organizations
involve a broadly distributed network within the
brain.
Conclusions and Open Questions

The Gestalt principles and their application to
auditory perception instantiated in Bregman’s



Auditory Perceptual Organization 285

A

(1990) two-stage auditory scene analysis frame-
work provided the initial basis for understanding
auditory perceptual organization, and recent pro-
posals have extended this framework in interest-
ing ways. Nevertheless, there remain many
unanswered questions and there have been few,
if any, attempts to build neuro-computational
models capable of dealing with the complexity
of real auditory scenes in which grouping and
categorization cues are not immediately avail-
able; however, see (Yildiz and Kiebel 2011).
Feedback connections are pervasive within the
auditory system, including all stages of the sub-
cortical system, yet to our knowledge no models
include such connections. Although fMRI results
are useful for identifying regional involvement,
detailed understanding of the neural circuitry
involved in auditory perceptual organization is
sketchy, and the neural representations of audi-
tory objects and perceptual organization are
unknown. Even the role of primary auditory cor-
tex remains something of a mystery, e.g., see
Nelken et al. (2003) and Griffiths et al. (2004);
perhaps studying the switching of perceptual
awareness between different representations in
awake behaving animals will help to elucidate
the representations and processing strategies
adopted by cortex.
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Auditory Precedence Effect
Barbara Shinn-Cunningham
Center for Computational Neuroscience and
Neural Technology, Boston University, Boston,
MA, USA
Synonyms

Law of the first wavefront
Definition

The precedence effect is a well-studied phenome-
non in spatial hearing that is related to how we
localize sounds accurately in everyday settings.
Specifically, when two sound sources reach
a listener close together in time, listeners often
hear a single “fused” image whose perceived
direction is near the location of the first-arriving
sound.
Detailed Description

The Effects of Room Acoustics on Auditory
Spatial Cues
The signals reaching the listener’s ears directly
from a sound source convey information about
the source’s location (Blauert 1997;
Schnupp et al. 2010). However, in ordinary
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settings, soon after the direct sound reaches the
listener, reflected sound arrives from random
directions, coming off of walls, floors, and other
reflective surfaces. This reflected sound energy
adds acoustically to the direct sound before enter-
ing each ear, changing the total signal reaching the
ear (e.g., see Allen and Berkley 1979). The con-
tent of this reflected sound energy depends on the
geometry of the listening space, the positions of
objects in the space, and the location and orienta-
tion of the listener. Moreover, the reflected sound
energy differs at the left and right ears. As a result,
this late-arriving sound distorts the spatial infor-
mation conveyed by the direct sound, degrading
the spatial cues in the total signal. As a result, the
acoustic location information in the signals
a listener hears in everyday settings is less reliable
after an initial “clean glimpse” of the direct sound
that happens at sound onset, before the reflected
energy arrives.

The Precedence Effect
Perceptually, judgments of the direction of
a sound source depend strongly on spatial infor-
mation in the onset of sound and relatively weakly
on spatial information in later-arriving portions of
sound (e.g., see Brown and Stecker 2010). This
phenomenon is known as the precedence effect
(Wallach et al. 1949; Zurek 1987; Litovsky et al.
1999). Given that in ordinary listening spaces the
onset of the sound has the most reliable informa-
tion about source direction, the precedence effect
is thought to be one of the reasons why listeners
are relatively good at judging source location even
when listening in rooms.

The precedence effect has been studied exten-
sively with pairs of clicks (one leading and one
lagging); for such brief stimuli, the precedence
effect is strongest when the leading click precedes
the lagging click by 1–5 ms and then rapidly
becomes weaker (so that listeners start to hear
the second click as a separate event and then
begin to localize it with increasing accuracy; see
Blauert 1997). For more “natural” sounds, like
speech or music, the precedence effect persists
for tens of ms. Many researchers argue that the
precedence effect has a longer time course for
ongoing signals because they can be thought of
as containing multiple “onsets” due to local
energy fluctuations, each of which can add to the
precedence effect (e.g., see Zurek 1980).

Mechanisms of the Precedence Effect
Although the precedence effect is often
discussed as a single psychophysical phenome-
non, many different mechanisms likely contrib-
ute to the dominance of early spatial
information on later-arriving information. For
instance, the most peripheral portion of the
auditory system, the auditory nerve, responds
more vigorously at the onset of a sound than to
later-arriving portions of a sound. This periph-
eral adaptation helps explain why a lagging
sound that arrives within a few milliseconds of
a leading sound does not convey strong spatial
cues (Hartung and Trahiotis 2001). However,
there are numerous studies that show that the
perceptual dominance of the leading sound
extends beyond very brief lead-lag delays that
can be fully explained by peripheral adaptation.
It is likely that microcircuitry in the brainstem
contributes to the precedence effect at longer
lead-lag delays through some type of inhibition
triggered by the leading sound (Xia and Shinn-
Cunningham 2011).
Cross-References

▶ Sound Localization and Experience-Dependent
Plasticity

▶ Sound Localization in Mammals and Models
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Auditory Processing in Insects
R. Matthias Hennig and Bernhard Ronacher
Department of Biology, Humboldt-Universität zu
Berlin, Berlin, Germany
Synonyms

Auditory pathway; Hearing
Definition

Auditory processing in insects serves to extract
relevant information from acoustic signals about
identity and location of acoustic objects, usually
in the context of mate attraction and predator
avoidance. For this goal, insects process spectral
information from the carrier frequency of a signal
and obtain temporal information from the sound’s
amplitude modulation pattern (the envelope).
Auditory processing in insects is constrained by
size in several aspects: first, the signal often con-
tains ultrasonic frequencies due to small sender
size; second, for localization, insects have only
poor directional cues because of the small dis-
tance between their ears; and third, due to their
small brains, the auditory processing capacity is
limited to a small number of neurons.
Detailed Description

Overview and Background

Large Diversity of Hearing Insects and their Ears
The sense of hearing has evolved in vertebrates
and arthropods, and hearing organs are known
from several orders of insects. Ears have evolved
in rather different locations of their body, not
only on the head but also on the thorax, abdo-
men, and even wings and legs (Fig. 1a, Fullard
and Yack 1993). Consequently, numerous neuro-
nal substrates for the processing of acoustic
information are known that evolved from a
mechanosensory modality employed in a differ-
ent context (proprioception by chordotonal
organs: Meier and Reichert 1990; van Staaden
and Römer 1998). In insects, two types of ears
are known that are sensitive to two different
physical attributes of sound, that is, the move-
ment of particles in an elastic medium: tympanal
ears that are specialized to sense changes in
sound pressure and antennae or filiform hairs
that are sensitive to particle velocity (Fig. 1b–d,
Michelsen 1979).

Goals of Hearing and Auditory Processing
The ability to hear sound and to extract relevant
information from an acoustic signal has evolved
in three functional contexts. Notably, the produc-
tion of sound alone is not a sufficient indicator of
hearing ability as many insects produce defensive
sounds when threatened (e.g., Bura et al. 2011).
Conversely, numerous insects can hear sound but
are themselves mute (Riede 1987; Riede
et al. 1990).

Acoustic Communication
In many species the perception of acoustic signals
occurs in the context of acoustic communication
for mate recognition and mate localization. The
most prominent examples stem from grasshop-
pers, crickets, and bushcrickets (orthoptera), but
cicadas and moths have also evolved elaborate
acoustic signals. A major goal of intersexual
acoustic communication is to discriminate con-
specific from heterospecific signals which helps
to avoid fitness losses (Fig. 2). Sexual selection by
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Auditory Processing in
Insects, Fig. 1 Insect ears
and sound transduction. (a)
Evolution of insect ears in
different body locations (b–
d). Types of ears: (b) sound
pressure receiver (mammals
and humans); (c) pressure
difference receiver
(insects); (d) sound velocity
receiver (filiform hair of
insects); S sensory cells,
p sound pressure, pd sound
pressure difference, and
v particle velocity. (e)
Sensory transduction at a
tympanic ear: 1, sound
wave; 2, vibration of
membrane and movement
of mechanosensitive ion
channels due to sound
pressure; and 3–4,
membrane potential and
elicited action potential in
sensory cell. (f, g) Intensity-
response curves of an
auditory neuron in crickets
for different background
intensities and different
carrier frequencies (f,
3 kHz; g, 16 kHz). At
increasing background
intensities as indicated by
the top symbols in (f, g), the
response curves shift to
higher intensities. ((a)
Modified from Fullard and
Yack 1993, with
permission; see also there
for explanation of numbers.
(b–d) From Penzlin 2005,
with permission. (e) From
Gollisch and Herz 2005,
with permission. (f, g) From
Hildebrandt et al. 2011,
with permission)
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female choice for song signals of particularly
attractive mating partners is also well known
(von Helversen and von Helversen 1994;
Andersson and Simmons 2006). Insects employ
very stereotyped signals for acoustic communica-
tion, the production and recognition of which has
a strict innate basis (Bentley and Hoy 1972, von
Helversen and von Helversen 1975a, b, 1987).
For this reason, the acoustic communication of
grasshoppers, crickets, and bushcrickets has
served as a model system to study the mechanisms
of neuronal processing within the auditory path-
way by carefully designed behavioral experi-
ments and recordings of neuronal activity of
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single cells (Schildberger and Elsner 1994; Huber
et al. 1989; Gerhardt and Huber 2002).

Since the nervous system of insects is small, all
computations must be performed by relatively
few neurons. This likely imposes a strong pres-
sure for an efficient and sparse representation of
the external world. A big advantage of investigat-
ing nervous system processes via the study of
communication signals is that an animal’s “exter-
nal world” can be reduced to a manageable set of
relevant stimuli, the stimulus space. This rather
small set of highly relevant stimuli allows one to
characterize how the stimuli are represented
Auditory Processing in Insects, Fig. 2 Acoustic com-
munication in grasshoppers and crickets. (a, f) A sender,
the male, produces a specific sound signal that is transmit-
ted and perceived by a receiver, the female. (a) In some
grasshoppers, the female responds to the male with her
own song (upper trace). Songs of males and females
have different pulse shapes (lower traces). (b, c) The
power spectra differ between males (b) and females (c) in
relative content of low (L)- and high (H)- frequency com-
ponents. (d, e) Females and males respond selectively to
the relative content of low- and high-frequency compo-
nents in a signal. (d) Females prefer the combination of low
and high components as they occur in the male song (as in
within the nervous system and how these repre-
sentations are transformed at different stages of
processing.

To allow for successful communication, signal
properties must be matched to the sensory char-
acteristics of receivers. A straightforward exam-
ple is the frequency tuning of a cricket female’s
ears to the narrowband signals of the males (see
Fig. 2g, h). However, since in many species the
temporal pattern of communication signals con-
veys the species-specific information, sender and
receiver should be matched not only for carrier
frequency but also for temporal characteristics.
b). (e) Males prefer signals with only low-frequency com-
ponents as they are typical for a female song (as in c). (g)
The spectral content of a song of a cricket as in (f) is
narrowly tuned to a peak frequency (5.0 kHz). (h) Auditory
tuning for the specific carrier frequency of a conspecific
song for different species of crickets (frequency axis
was normalized to the respective best frequency;
P.p. Paroecanthus podagrosus, G.b. Gryllus bimaculatus,
G.c. G. campestris). Note the differences in the sharpness
of tuning ((a–e) From von Helversen and von Helversen
1997; (f) modified from Huber 1992; (g) modified from
Montealegre-Z et al. 2011; and (h) from Schmidt et al.
2011, with permission)
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Here, a new problem arises: temperature. Since
the function of neurons and muscles is strongly
temperature-dependent (Janssen 1992; Robertson
and Money 2012) and in general insects’ body
temperatures vary directly with ambient tempera-
ture, a signal’s temporal pattern will vary with
ambient temperature. This creates a recognition
problem for the receiver’s auditory system, in
particular, if sender and receiver differ in their
body temperatures (von Helversen and von
Helversen 1987; Gerhardt and Huber 2002;
Ronacher et al. 2004).

Detection and Avoidance of Predators
Although hearing in insects evolved more than
200 million years ago (MYA), the appearance of
bats about 60MYA sparked an explosion of insect
species with ears (Fig. 1a, Fullard and Yack 1993;
Hoy et al. 1998; Stumpner and von Helversen
2001). While some species modified already-
existing ears for the detection of ultrasound,
numerous other insects that had previously lacked
hearing evolved ultrasonic ears at this time (Miller
and Surlykke 2001). For moths this acquired sen-
sory ability may even have served as a starting
point for the evolution of intraspecific acoustic
communication. Within their auditory pathways,
insects employ different neuronal substrates for
the processing of intraspecific signals and sounds
from predators (see below: categorical perception
in crickets and parallel processing of informa-
tion). Some species perform stream segregation
within individual neurons by spectral and tempo-
ral cues (Schul and Sheridan 2006). Numerous
species of grasshoppers have ears and hearing
abilities, but produce no sound during mate attrac-
tion. For these species, hearing likely serves for
predator detection only, and predation was the
selection pressure under which ears evolved or
were conserved (Riede 1987; Riede et al. 1990;
Lehmann et al. 2007).

Host Finding
Hearing has evolved independently at least twice
in parasitic flies in the context of finding hosts for
their eggs. The performance of flies in localizing
their host by its sound signal is most impressive,
in view of their tiny ears located underneath the
head (Robert et al. 1996; Lakes-Harlan et al.
1999). With these tympanal ears flies can detect
and localize not only the broadband sounds of
bushcrickets and cicadas but also the pure tone
signals emitted by crickets. For that goal flies
possess sharply tuned hearing, as is evident from
the sensitivity of their sensory receptors and audi-
tory interneurons (Stumpner and Lakes-Harlan
1996; Robert and Hoy 1998; Robert and Göpfert
2002). Another example of host finding via audi-
tory cues is a bloodsucking corethrellid fly that is
attracted by frog calls (Bernal et al. 2006).

Two Types of Ears in Insects and their Constraints
by Size and Signals
Generally, two principal types of ears are known:
particle velocity receivers and sound pressure
receivers (Fig. 1b–d, Michelsen 1979; Faure
et al. 2009). (1) Particle velocity receivers exploit
the vector component of sound particles close to
the sound source. The antennae (arista) of flies,
especially of Drosophila and mosquitoes, are a
well-investigated model system for sound percep-
tion, auditory transduction, and active sensing
(Robert and Göpfert 2002). Many insects, as
well as arthropods in general, employ filiform
hairs (located on the abdomen, cerci, legs, or
other parts of the body, Fig. 1d) of different length
to detect sounds of predators and prey (Barth
2002). A general property of particle velocity
receivers is their limitation to lower frequency
ranges (<500 Hz). Low frequency signals from
small senders commonly have low amplitude and
thus small range (e.g., wing movements by Dro-
sophila), and the perception of particle velocity is
then usually limited to the near field of the sender
(a distance of a fewwavelengths). Since the vector
component of sound is perceived, these ears also
provide directional information (Michelsen 1979;
Faure et al. 2009). Their sensitivity matches or
even surpasses that of tympanal ears (Robert and
Göpfert 2002). (2) The perception of sound pres-
sure is mediated by tympanal ears and follows the
same principles as in vertebrates including
humans (Fig. 1b, c, Montealegre et al. 2012).
Tympanal ears in insects arose from the cuticular
surface of their exoskeleton under which large air
sacs derived from tracheal tubes, the respiratory
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system of insects, were located. Since insects pos-
sess an abundance of mechanosensory pro-
prioreceptors for monitoring the strain and
movement of their cuticle, auditory organs were
prone to evolve from chordotonal organs in
almost any part of the body (e.g., the legs, thorax,
abdomen, and wings, Fig. 1a, Fullard and Yack
1993; van Staaden and Römer 1998). Tympana
are usually small, and the sensitivity of the ears
often extends into the ultrasonic frequency range.
Sound localization via tympanal ears in larger
vertebrates (Fig. 1b) requires the computation of
interaural intensity and time differences as pres-
sure receivers do not respond to the vector com-
ponent of sound (Brown 1994; Yost 2000). Due to
the small size of insects, intensity differences and
in particular interaural time differences are too
small to be exploited directly. Insects circumvent
this problem by using tympanic pressure differ-
ence receivers, in which an internal connection by
tracheal tubes exists between both ears (Fig. 1c).
Small frogs, lizards, and birds face similar prob-
lems and also have developed pressure difference
receivers. In these ears, the vibration amplitude of
the tympanum is determined not only by the
sound pressure at the outer side but also by the
sound traveling through the body to the inside of
the tympanum (Autrum 1942). The resulting pres-
sure difference between the inside and outside will
then determine the tympanal vibration. The ampli-
tude of these vibrations depends on sound direc-
tion, because the phase angle of a given sound
frequency at both sides of the tympanum is also
dependent on the direction of the incident sound
wave (Michelsen et al. 1994).

Themes of Auditory Processing in Insects
A major challenge in summarizing the capacities
for auditory processing of insects results from the
overwhelming diversity of hearing species, of
functional ears, and of the different designs of
auditory pathways. The subchapters below there-
fore give only a brief overview of the computa-
tional capabilities of insects for different tasks and
under different constraints.

For auditory processing, insects exploit numer-
ous general principles of sensory processing that
are well known from other modalities and from
vertebrates, including mammals. Among these are
the capacity for sound frequency analysis by a
traveling wave, tonotopic representations and for-
mation of internal neuronal maps, parallel pro-
cessing of information, the timing and balance of
excitation and inhibition for feature extraction,
lateral and contralateral inhibition for contrast
enhancement, transformation of coding from a
temporal code to a place code, burst coding, res-
onant properties of neurons, selective attention,
and even stream segregation.

However, insects face constraints on the com-
putational power provided by their small brains.
The concept of identified neurons, in which indi-
vidual neurons could be identified by their mor-
phology and physiology, arose from
neurobiological research in insects and other
arthropods (Huber and Markl 1983). Computa-
tions performed by thousands of neurons in mam-
mals may find their counterpart in a single
identifiable neuron of an insect, which illustrates
an impressive compression of function (e.g., con-
tralateral inhibition for directional hearing is
mediated by the lateral superior olive in mammals
and by a single local interneuron, ON1, in crickets
and bushcrickets (Grothe 2000; Selverston et al.
1985; Römer and Krusch 2000).

Notably, the processing and coding capacity
of insect nervous systems is restricted to relevant
tasks. Peripheral filters and computations for
instance aid in reducing the required processing
power. Therefore, the ears of insects and their
auditory pathways are by no means all-purpose
devices, and processing is rather specific to func-
tion. Examples include crickets that distinguish
only 2 categories of sound (mate signals and
predators, Hoy 1989) and the tympanic ear of a
moth that is equipped with only 2 sensory cells
for bat detection (Boyan and Fullard 1988). Gen-
erally, insects also employ simple algorithms for
processing at the cost of acuity, for example, by
computing acoustic hemispheres rather than
localizing the angle of a sound source (von
Helversen 1997; Römer and Krusch 2000). Nev-
ertheless, insects are by no means imprecise. At
least in some species their performance for tem-
poral resolution in a gap detection task has a
precision in the millisecond range, rivaling that
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of humans (von Helversen 1972; Prinz and
Ronacher 2002).
A

Basic Steps of Auditory Processing:
Transduction and Information Coding
by Sensory Neurons

In both tympanal ears and particle velocity
receivers, sound induces the vibration of a struc-
ture (a thin membrane or a lever on a flexible
pivot, Michelsen 1979; Robert and Göpfert
2002). The mechanical oscillation distorts the
dendrite of a scolopidial cell, which is attached
to the lever, the tympanum, or a tracheal tube
(Fig. 1e1, e2). This distortion opens
mechanosensitive ion channels, which are not
yet fully characterized, and the resulting current
transduces the movement into a change of the
cell’s membrane potential (Fig. 1e3; Gollisch
and Herz 2005). Evidently, the membrane poten-
tial of sensory neurons cannot follow the fast
vibrations of the tympanal membrane in the kilo-
Hertz range; rather, the membrane potential
depends on the instantaneous sound pressure
level. Similar to vertebrates, frequency discrimi-
nation occurs according to a frequency-place
transformation (Montealegre et al. 2012). Either
in the sensory neuron itself or in a downstream
neuron, the membrane depolarization is then
translated into a series of action potentials, a
spike train, which encodes the sound envelope
by modulations of the spike rate (Fig. 1e4).
Spike rates of auditory afferents can be high, up
to 400 Hz or more (Römer 1976).

Although insect and vertebrate ears obviously
evolved independently, and the insect mechano-
receptors (scolopidia) differ from auditory hair
cells of vertebrates, in the last decade many unex-
pected commonalities were detected. Recently,
active processes were found in insect ears that
serve to attain and adjust their formidable sensi-
tivity, similar to the function of outer hair cells in
the mammalian cochlea (Robert and Göpfert
2002; Nadrowski et al. 2011). In both locusts
and bushcrickets, traveling waves were observed
to play an essential role in frequency discrimina-
tion. As in the mammalian cochlea, traveling
waves exhibit peaks at different locations,
depending on sound frequency (Windmill et al.
2005; Hummel et al. 2011; Montealegre et al.
2012). In addition, in central projections of audi-
tory afferents, there is a tonotopic representation
of frequencies (Römer 1983; Römer et al. 1988;
Stumpner 1996; Stölting and Stumpner 1998).
Finally, the development of the auditory organ of
Drosophila depends on similar genes, e.g., of the
atonal family, as the vertebrate ear (Senthilan
et al. 2012).

Although the temporal resolution of insect ears
can match that of vertebrates in some respects (see
below), the frequency resolution of insects is gen-
erally inferior to that of vertebrates. In crickets we
find a kind of “categorical response,” by which the
frequency scale is segmented into two parts:
sound pulses with carrier frequencies above
15–20 kHz (up to 100 kHz) evoke an avoidance
response, whereas sound pulses with frequencies
between 3 and 10 kHz are attractive and evoke a
positive steering response when flying (Moiseff
et al. 1978; Hoy 1989). Remarkably, however, in
an interneuron of a bushcricket, a sharpening of
the broader frequency tuning of auditory receptors
by frequency-dependent “lateral” inhibition simi-
lar to vertebrates has been observed (Stumpner
1997). The sharpness of frequency tuning of audi-
tory neurons is commonly described by the Q10dB

score. This gives the ratio between the character-
istic frequency (i.e., the frequency of the neuron’s
lowest threshold) and the width of the tuning
curve 10 dB above the lowest threshold. Typical
values for insects are between 0.5 and 2.5 and
only rarely extend to 3.5 (Hennig et al. 2004),
whereas in vertebrates, we find much higher
values, between 1 and 25 (and up to 400 in the
acoustic foveae of bats, Suga et al. 1997).

The dependency of spike rate on sound intensity
is commonly depicted by the f-I curve (firing rate
vs. intensity, also rate-intensity curve; Fig. 1f, g).
The dynamic range between threshold and satura-
tion indicates the region of discriminable sound
intensities. The steepness of the f-I curve deter-
mines how well small sound pressure differences
can be discriminated – which is important for
directional hearing and when fine modulation
details of a signal have to be assessed (compare
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Fig. 1f, g). A steep f-I curve, however, has the
disadvantage that it covers only a small part of
the relevant sound intensity range which may
extend to 100–120 dB SPL (Fig. 1f). (Note that
the dB SPL scale is a logarithmic scale that
expresses sound pressure relative to 20 mPa; a
100 dB sound has a 105 larger sound pressure
compared to the human hearing threshold at
1 kHz.) As in other sensory systems, the intensity
range problem may be solved by adaptation, by
which the f-I curve can be adjusted to the average
ambient sound pressure levels (Benda and Herz
2003; Benda and Hennig 2008). Spike frequency
adaptation as early as the level of sensory neurons
helps to attain a certain degree of intensity invari-
ance that is important for object identification and
behavioral decisions (Benda and Hennig 2008).
However, in different neuron types we may find
different biophysical realizations, ranging from
cell-intrinsic spike-triggered adaptation currents to
inhibitory inputs and presynaptic adaptation mech-
anisms (Gollisch and Herz 2004; Hildebrandt et al.
2009). A complementary way to cope with the
large range of encountered sound intensities may
be a kind of “range fractionation.” In locusts and
bushcrickets, for example, we find auditory recep-
tors with a rather limited dynamic range of
20–30 dB. Since different receptors exhibit a sim-
ilarly broad frequency tuning but very different
thresholds, intensity discrimination is possible
over a broad range (Römer 1976; Römer
et al. 1998).

Obviously, the spike trains of sensory neurons
are the only information any central nervous sys-
tem has about events in the external world. In
other words, the brain has to infer the structure
of the outer world from the spike trains arriving
from various sense organs. The very successful
stimulus reconstruction methods seek to under-
stand signal processing from the viewpoint of
the central nervous system and to infer informa-
tion about an external stimulus from the spike
trains of sensory neurons (Rieke et al. 1997).
The basic idea is to reconstruct the stimulus enve-
lope from spike trains that have been recorded in
response to that stimulus. By this procedure we
can estimate how much information the CNS can
obtain about a sensory stimulus and what aspects
of the stimulus are lost. For example, from the
spike trains of the locusts’ auditory afferents,
stimuli with large modulation amplitudes can be
reconstructed more accurately than stimuli with
small modulation depths (Machens et al. 2001).
Remarkably, grasshopper songs seem to be
matched to this feature of the receiver’s auditory
periphery. This investigation has further shown
that in the very periphery of the auditory pathway,
a single sensory neuron transmits a high amount
of information, up to 180 bits/s (Machens
et al. 2001).
Processing of Signal Envelopes within
the Auditory Pathway

Temporal Resolution and Temporal
Integration
The communication signals of many species con-
tain fast amplitude modulations that are evalu-
ated by females to assess the attractiveness of
potential mates. Hence, we must ask whether
there are neuronal constraints that determine the
behavioral limits of temporal resolution. Two
widely used paradigms to investigate these limits
are modulation transfer functions (MTF) and gap
detection (for reviews see Green 1985; de Boer
1985; Michelsen 1985; Viemeister and Plack
1993; Joris et al. 2004). In the MTF paradigm
either randommodulations in a certain frequency
band or sine wave modulations are used. The
latter paradigm can be applied in neurophysio-
logical as well as in behavioral experiments.
Stimuli with appropriate carrier frequencies are
presented that exhibit sinusoidal amplitude mod-
ulations of different frequencies and reveal what
range of modulation frequencies the system is
able to represent, and if there are specific modu-
lation frequencies to which a system responds
particularly well, see Fig. 3a for an example.
The black dots in this diagram show the attrac-
tion of cricket females to a 4.5 kHz tone that was
amplitude modulated at frequencies between
1 and 50 Hz; two regions of enhanced attractive-
ness around 3 and 30 Hz are obvious (Wendler
1989; Hennig 2009). In spike train recordings
one can determine the average spike count



Auditory Processing in Insects, Fig. 3 Temporal reso-
lution of amplitude modulations in grasshoppers and
crickets. (a) Behavioral modulation transfer function of
crickets (filled symbols, stimuli as in 1 and 2 at right).
Best responses are obtained if lower and higher modulation
frequencies for pulse and chirp (i.e., groups of pulses) are
combined in one stimulus as in patterns 3 and 4 at right
(open symbols). (b) Gap detection in a grasshopper mea-
sured in behavioral experiments (black curve) and neuro-
nal response (red curve, AN4). (c) Response of the AN4
neuron to uninterrupted and gap containing sound

syllables. This neuron responds to sound onset first with
a deep inhibition, an IPSP (arrows), followed by excitation
and spikes (upper traces). In the interrupted stimuli, each
onset after a gap triggers the IPSP anew which leads to an
effective suppression of spiking (lower traces, adapted
from Ronacher & Stumpner 1988). (d) Gap detection in
crickets (behavioral data) ((a) From Hennig 2009; (b)
modified from von Helversen 1972 and Franz and
Ronacher 2002; (c) modified from Ronacher and Stumpner
1988; and (d) from Schneider and Hennig 2012, with
permission)
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(rate, r-MTF) or evaluate how well the spikes are
locked to a period of the stimulus envelope
(temporal, t-MTF). r-MTF reveals a neuron’s
filter properties, e.g., high-pass, low-pass, band-
pass, or band-reject features for sound pulse
rates. The t-MTF, in contrast, indicates how
well fast modulations can be resolved by a neu-
ron. One should be aware, though, that the con-
struction principle of MTFs is based on a large
amount of averaging, and therefore, the informa-
tion provided by single spike trains may be lower
than that suggested by aMTF (Wohlgemuth et al.
2011).

The second paradigm, gap detection, has been
applied in behavioral experiments to grasshoppers
and crickets (von Helversen 1972; von Helversen
and von Helversen 1997; Schneider and Hennig
2012). Grasshoppers detect gaps of 2–3 ms dura-
tion and in this respect are not inferior to verte-
brates (Fig. 3b, Prinz and Ronacher 2002). This
high resolution of gaps seems to be mediated by
the specific interactions between inhibition and
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excitation in one identified interneuron (Fig. 3c;
Ronacher and Stumpner 1988). The temporal res-
olution of cricket ears is lower compared to grass-
hoppers; minimal detectable gap widths are
between 6 and 8 ms (Fig. 3d, Schneider and
Hennig 2012). One reason for this may stem
from the males’ sound production system: cricket
songs are produced by a resonant mechanism
which precludes very fast amplitude changes
(Bennet-Clark 1998). Hence, on the receiver’s
side there is no need to push the temporal resolu-
tion to extremes. In addition, compared to broad-
band signals, which are typical in many
grasshoppers and bushcrickets, pure tone signals,
such as those produced by many crickets, tend to
be more strongly affected by random amplitude
fluctuations when traveling through the habitat,
which also sets limits for temporal resolution
(Römer and Lewald 1992).

Temporal integration refers to the time-
intensity trading paradigm. In these experiments
the minimal audible threshold was found to
depend on the duration of the stimuli used. To
detect very short stimuli, e.g., of 5 ms duration,
higher sound intensities are necessary than for
longer, e.g., 100 ms, stimuli. The product of
sound intensity and stimulus duration determines
the threshold up to durations around 200–300 ms,
whereas for longer stimuli, the threshold stays
constant (Green 1985). Hence, we are confronted
with an apparent discrepancy, the temporal
integration-resolution paradox (de Boer 1985):
gap detection and MTF paradigms yield time con-
stants in the order of 1–6 ms, whereas from the
time-intensity trading paradigm, we are left with
time constants in the range of 150–300 ms (for a
discussion of this paradox and possible solutions,
see de Boer 1985; Viemeister and Wakefield
1991; Tougaard 1998; Pohl et al. 2013).

Transformation of Coding Along the Auditory
Pathway
In insects and other arthropods, many neurons can
be uniquely identified on the basis of their char-
acteristic morphology. The peripheral stage of a
grasshopper’s auditory pathway comprises sen-
sory neurons (afferents), local neurons whose pro-
cesses are confined to the thoracic ganglia, and
ascending neurons, whose axons reach the brain.
Present knowledge indicates that this corresponds
to a feedforward network (Fig. 4a, Vogel et al.
2005; Vogel and Ronacher 2007).

Auditory afferents exhibit high firing rates, up
to several hundred Hertz (Fig. 4c). Their tonic
spike responses represent the amplitude modula-
tion patterns of auditory stimuli by a modulation
of the firing rate. The variability of their responses
is rather low (see Fig. 4d, e). The precise
responses of sensory neurons allow for a good
discrimination and classification of auditory stim-
ulus ensembles (Machens et al. 2003;
Wohlgemuth and Ronacher 2007).

Along the auditory pathway the maximal spike
rates decrease, whereas the spike train variability
increases (both spike count and inter-spike-
interval variability, Fig. 4c–e). In accordance
with the larger variability of higher-order neurons,
the temporal resolution and the classification suc-
cess for similar stimuli decrease markedly among
the ascending neurons. At the level of afferents
and among primary-like local neurons, we find a
high classification success that depends almost
exclusively on the timing of spikes. In contrast,
among ascending neurons the classification suc-
cess based on a single neuron’s responses
decreases, and spike count differences between
stimuli become more important (Wohlgemuth
and Ronacher 2007). Among ascending neurons,
the information appears to be distributed among
several neurons and to be represented as a labeled-
line population code (Clemens et al. 2011, 2012).
A similar reduction in spike rates from ascending
to brain neurons is observed within the auditory
pathways of crickets (Schildberger 1984;
Kostarakos and Hedwig 2012).

Central Processing in the Frequency or Time
Domain?
With Fourier analysis, a signal’s temporal struc-
ture can be broken down into sine waves, each
having a particular amplitude and phase (see, e.g.,
Yost 2000). If both the resulting spectra for ampli-
tude and phase are known, the original signal can
be fully reconstructed. Therefore, there are two
principal means of processing a periodic signal:
an analysis in the frequency domain, i.e., of the



Auditory Processing in Insects, Fig. 4 Transformation
of coding along the auditory pathway. (a) Scheme of a
grasshopper’s auditory pathway (AFF auditory afferents,
LN local neurons, AN neurons whose axons ascend to the
brain). Numbers indicate approximate numbers of neurons
at the respective levels. (b) Response (numbers of action
potentials at right) of an ascending neuron (AN1) to five
presentations of an identical stimulus. (c) Maximal spike

rates at different processing levels. (d) Variability of
interspike intervals (CV variation coefficient). (e) Variabil-
ity of spike count (expressed as Fano factor FF). Axis in
(c–e) AFF afferents, LN local neurons, and AN ascending
neurons; numbers indicate sample size ((a) From Ronacher
2013; (b–e) modified from Vogel et al. 2005, with
permission)
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amplitude spectrum without phase and thus with-
out temporal information, and an analysis in the
time domain by the computation of temporal
parameters such as durations and periods of
events. For instance, the processing of the sound
carrier by a traveling wave is equivalent to the
computation of an amplitude spectrum for a fre-
quency analysis.

The envelopes of the communication signals of
many insect species have a highly regular and
repetitive structure and consist of a series of
stereotyped subunits. Remarkably, several exper-
iments have shown that crickets and grasshoppers
accept song signals with randomized or shuffled
patterns as conspecific (Fig. 5, Pollack and Hoy
1979; von Helversen and von Helversen 1998;
Schmidt et al. 2008). This suggested that central
processing may be restricted to the frequency
domain and serve to compute an amplitude spec-
trum of the song envelope. A crucial experiment
to determine whether a signal is processed in the
frequency or time domain is to present reversed or
inverted versions of an attractive signal (see
Fig. 5e, f). Inverted variants exhibit the same
amplitude spectrum as the original but differ in
their phase components and thus temporal quali-
ties. If such modified song models show the same
attractiveness as the original, a spectral analysis of
the signal envelope is very likely as opposed to
temporal processing. However, evidence from
experiments as shown in Fig. 5e, f and others
revealed large differences in attractiveness which
suggests that insects process the amplitude mod-
ulations of sound stimuli in the time domain (von
Helversen and von Helversen 1998; Schmidt et al.
2008; Hennig 2009).

Global Algorithms of Coding
Which global algorithms of coding are
implemented in the auditory pathways of insects



Auditory Processing in Insects, Fig. 5 Regular song
patterns and the importance of temporal order for recogni-
tion. (a) Regular calling song of the cricket Teleogryllus
oceanicus. (b–d) Song models (top) for tests of preference
of females and relative frequency of different pulse inter-
vals (bottom). Note the differences in the interval distribu-
tions between (b, c, and d). (b) Song model of
T. oceanicus. (c) Shuffled song model with the same rela-
tive frequency of pulse intervals as in (a). (d) Song model
of T. commodus. Song models of (b) and (c) are attractive
for females of T. oceanicus, although the temporal order in

c is randomized. The song pattern in (d) from the sibling
species is not attractive. Although this experiment
suggested central processing of the signal envelope in the
frequency domain, the bulk of experimental evidence dem-
onstrates processing in the time domain by crickets and
other Insects. (e, f) Envelopes of reversed song models for
behavioral tests with grasshoppers. The pattern in (e) is
very attractive, but the reversed version in (f) is rejected
(von Helversen and von Helversen 1998) ((a–d) From
Pollack and Hoy 1979 with permission; (e, f) from von
Helversen and von Helversen 1998, with permission)
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to achieve the goals of hearing (see Overview and
Background)? In the context of acoustic commu-
nication as well as predator avoidance, insects
have to recognize specific sound signals for
which they possess an innate, internal representa-
tion. Presently there is no evidence for a maplike
neural representation of specific features in the
auditory pathways of insects, except for the
tonotopic frequency maps in the periphery
(Hildebrandt 2014). For predator avoidance ultra-
sonic cues and the detection of strong onsets as a
typical effect of intense bat calls appear to be most
important. Burst coding in the auditory pathways
of crickets and grasshoppers shows how onsets
are detected (see below, Marsat and Pollack 2006;
Creutzig et al. 2009; see also Krahe and Gabbiani
2004). For the recognition of conspecific signals,
several global schemes were proposed:
autocorrelation, cross-correlation with a template,
or combinations of high-, low-, and band-pass
filters. All these schemes are derived from Fourier
transformation and represent mathematical and
technical solutions, for which evidence from sev-
eral investigations exists (Schildberger 1994;
Weber and Thorson 1989; Hennig 2003). How-
ever, only a few studies have been able to repro-
duce the preferences exhibited by female insects
over a wider range of signals (see Fig. 6a–c for
response profiles from several species of crickets,
bushcrickets, and grasshoppers upon presentation
of stereotyped sound patterns composed of sub-
units built by regular pulses and pauses (von
Helversen and von Helversen 1994)). In a recent
alternative approach, the recognition of sound
signals was examined using linear-nonlinear
(LN) models adapted from computational



Auditory Processing in Insects, Fig. 6 Preference pro-
files of female insects for song signals and LN models. (a–
c) Preference profiles for song signals in the time domain
by crickets, bush crickets, and grasshoppers (A: oce
oceanicus, com commodus; B: cau caudata, can cantans,
vir viridissima; C: br brunneus, big biguttulus, mo mollis).
(d–e): LN models account for preference functions of the
cricket Gryllus bimaculatus. (d) Two LN models (red,
green) that predict the preferences for pulse patterns by
female crickets (G. bimaculatus): linear filters (left panels)

and the respective nonlinearities (central panel) that pre-
dict behavioral responses of female crickets (right panel).
Note that the duration of the linear filters is only 64 ms. The
red dot in the right panel of (d) refers to the pattern in (e).
(e) Output of the LN models (d) in response to a song
model (upper trace). Response of the linear filters to the
song model before (left panels) and after passing through
the nonlinearity (right panels). The upper filter (red in
d and e) responds like an onset detector; the lower filter
resembles a Gabor-function and selectively responds to
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neuroscience (Clemens and Hennig 2013; Clem-
ens and Ronacher 2013). For crickets as well as
grasshoppers, Gabor functions emerged as filters
that responded best to particular subunit shapes
common to the conspecific song signal
(combinations of pulse and pause or pairs of
pulses, Fig. 6d, e). Gabor functions (a sine wave
multiplied with a Gaussian function) are well
known from sensory pathways in vertebrates
(visual, Daugman 1984; Simoncelli and
Olshausen 2001; Priebe and Ferster 2012; audi-
tory, Smith and Lewicki 2006). However, the
most notable property of the proposed LN model
was the independence of the computation from the
exact timing of occurrence of the template within
a larger time window. Therefore, this LN-model
approach offers an elegant solution to the attrac-
tiveness of shuffled and irregular song signals (see
Fig. 5 and subchapter: processing in the frequency
or time domain). Small modifications of Gabor
functions are capable of reproducing response
profiles known from several species of insects
(Fig. 6a–c, Clemens and Hennig 2013). Although
these filters by default describe the output of the
whole recognition system, present evidence sug-
gests that certain identified neurons in crickets
may represent a neuronal correlate of specific
LN features (compare Fig. 6e–g, Zorović and
Hedwig 2011; Kostarakos and Hedwig 2012;
Clemens and Hennig 2013).

Local Mechanisms of Coding
For insects there exist several prominent examples
of how global algorithms of coding are at least in
part implemented by identified neurons. For
instance, the detection of bat predators by crickets
is mediated by a specific auditory neuron (AN2),
whose bursting is crucial for a behavioral
response (Fig. 7, Nolen and Hoy 1984; Marsat
and Pollack 2006). Similarly, the AN12 in
��

Auditory Processing in Insects, Fig. 6 (continued)
pairs of pulses (green in d and e). (f–g) The response
pattern of an auditory interneuron in the cricket brain
resembles the output of the onset detector (red in d, e).
The neuronal discharges in (g) illustrate onset responses to
grasshoppers codes for a specific song feature by
bursts (Creutzig et al. 2009). Specific combina-
tions of excitation and inhibition account for fea-
ture extraction in grasshoppers (gap detection by
AN4; Ronacher and Stumpner 1988 – see tempo-
ral resolution) and serve as a basis for pulse rate
detection by the identified neuron B-LI4 in
crickets (Kostarakos and Hedwig 2012). Simi-
larly, resonant properties within the auditory path-
way of bushcrickets mediate the detection of
specific pulse rates and can be modeled as a prop-
erty of single neurons (Bush and Schul 2006;
Webb et al. 2007). Short time constants of single
identified neurons allow them to act as feature
detectors for ultrasonic pulses in the auditory
pathway of moths (Boyan and Fullard 1988).

Processing under the Constraints of Noise:
A Twofold Problem
Noise poses unavoidable problems for all sensory
systems. There are two classes of noise, external
and internal. Various types of external noise influ-
ence sound waves on their way from sender to
receiver. Hence, as a rule, receivers have to cope
with signals that are masked and degraded in their
temporal structure (e.g., Michelsen and Larsen
1983; Römer et al. 1989; Römer 2001; Schmidt
et al. 2011; see also Brumm and Slabbekoorn
2005; Wiley 2006).

Crickets with their pure tone songs have found
a solution to reduce the impact of external noise.
The females’ hearing system is tuned to the carrier
frequency of male songs and becomes increas-
ingly less sensitive to frequencies farther from
the carrier frequency (Fig. 2g, h). The sharpness
of the tuning curve may depend on ecological
conditions (Schmidt et al. 2011). A cricket species
(Paroecanthus podagrosus) living in very noisy
tropical rainforests exhibits an exceptionally nar-
row tuning (Q10dB ~ 4) that allows for an efficient
sound patterns with different pulse rates ((a–c) From
Hennig et al. 2004; (d, e) modified from Clemens and
Hennig 2013; and (f, g) from Zorović and Hedwig 2011,
with permission)



Auditory Processing in Insects, Fig. 7 Burst coding by
an identified interneuron (AN2) and avoidance behavior in
crickets to bat like stimuli. (a) Bursts in AN2 in response to
amplitude-modulated stimuli (carrier frequency: 30 kHz);
burst spikes are marked as black dots in raster plot. (b)
Response of AN2 to a sound stimulus (as in a) and

behavioral response (bottom trace: abdominal movements
away from the sound source). (c) Amplitude of abdominal
movements after isolated action potentials (gray) or bursts
(black). Positive values indicate abdomen flexion away
from the sound source (From Marsat and Pollack 2006,
with permission)

Auditory Processing in Insects, Fig. 8 Processing
under the constraints of noise: a twofold problem. (a)
Song of a tropical cricket Paroecanthus podagrosus
(upper trace). Lower traces. 1: Song envelope. 2: Song
envelope under ambient noise levels as recorded in the
habitat. 3: Song plus noise less efficiently filtered with
the broader tuning curve of a European cricket (Gryllus
bimaculatus). 4: Song plus noise filtered with the narrow
tuning curve of P. podagrosus, compare Fig. 2h (Adapted
from Schmidt et al. 2011). (b) Effects of intrinsic noise and
external signal degradation on spike train dissimilarities of

three representative neurons, assessed with the van
Rossum metric and corrected for spike rate differences.
The black arrow at “orig” indicates the average spike
train distance found for repeated presentation of the orig-
inal song pattern, i.e., the result of trial-to-trial variability.
The open arrow indicates the additional distance caused by
the most strongly degraded signal. AFF sensory neuron,
TN1, and SN1 two primary-like local neurons. ((a) Mod-
ified from Schmidt et al. 2011. (b) Modified fromNeuhofer
et al. 2011 and Ronacher 2013, with permission)
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suppression of ambient noise (Figs. 2h, 8a). Thus,
in this species we find a narrow peripheral filter
that is perfectly matched to the carrier frequency
of conspecific signals and dismisses signals from
other species, at the expense of reducing the range
of perceivable sounds (Fig. 8a). Many
bushcrickets use broadband communication sig-
nals which yield a twofold advantage. First,
broadband signals are less likely to be degraded
in the biotope compared to narrowband signals
(Michelsen and Larsen 1983; Römer and Lewald
1992). In addition, the receiver’s nervous system
can compare the neuronal signals from differently
tuned auditory receptors and thereby reduce
intrinsic neuronal noise (see below). Note that
the hearing systems of vertebrates (mammals,
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owls) also use broadband signals to reduce noise
or to resolve localization ambiguities (Konishi
1990).

In addition to external noise, auditory sys-
tems face a second noise problem. Neuronal
signals are inherently noisy due to the stochastic
opening and closing of ion channels. This intrin-
sic noise becomes evident as trial-to-trial vari-
ability of spike trains in response to repeated
presentations of an identical stimulus (see
Fig. 4b). Animals with a large nervous system
may alleviate this problem by averaging
responses from many neurons with similar prop-
erties. However, due to size constraints insects
probably cannot afford this solution. Under
some conditions noise may play a beneficial
role and improve neural computations, for
example, by stochastic resonance (for review
see McDonnell and Ward 2011).

To quantify the trial-to-trial variability or to
compare neuronal responses to different stimuli,
one can apply a spike train metric (see, e.g., van
Rossum 2001). This metric describes the simi-
larity of two spike trains by a single number,
which is in line with our intuition of distance:
small values indicate high similarity. The metric
uses an adjustable parameter to take into account
both differences in the spike count as well as in
the timing of spikes. This metric approach was
used to determine the relative impacts of exter-
nal and intrinsic noise on the encoding of
envelope-degraded stimuli by auditory neurons
of grasshoppers (Neuhofer et al. 2011). Unex-
pectedly, the contribution of external signal deg-
radation to the overall spike train distances was
low: even for the highest degradation level, its
amount did not exceed that of intrinsic noise
(Fig. 8b).

As long as rather different signals have to be
analyzed, neuronal noise may not be a very seri-
ous problem. However, with communication sig-
nals that serve to attract mates, it will be
necessary to discriminate between similar sig-
nals and to detect small deviations from a
species-specific pattern. This is especially the
case if quality cues from the sound signals of
potential partners are to be extracted. Remark-
ably enough, the spike trains of even a single
auditory afferent allow for an almost perfect dis-
crimination of songs of different males of one
species (Machens et al. 2003). At higher stages in
the auditory pathway, however, the discrimina-
tion deteriorates and intrinsic noise cannot be
neglected as a limiting factor. Grasshoppers
appear to have circumvented this intrinsic noise
problem by changing the coding scheme at a
rather peripheral stage of processing (see
Fig. 4a): among the ascending neurons informa-
tion is distributed according to a labeled-line
code (Clemens et al. 2011, 2012; see also Clem-
ens and Ronacher 2013).

Directional Hearing
The biophysical qualities of the pressure differ-
ence receivers equip the ears of insects with a
directional dependence of the vibrational ampli-
tudes of their tympana (Michelsen 1998). Sen-
sory neurons reflect this dependence in spike
numbers, and for some species, this difference
in response strength is also translated into timing
differences (enhanced by ramps Krahe and
Ronacher 1993; Ronacher and Krahe 2000).
The contrast in response magnitude of sensory
neurons for left and right differences is enlarged
by contralateral inhibition from local interneu-
rons (ON neurons in crickets, Selverston et al.
1985; bushcrickets, Römer and Krusch 2000; LN
in grasshoppers, Marquart 1985). The represen-
tation of sound from one side is therefore
enhanced, because the responses to sound from
the opposite side are suppressed, and this takes
place already at early levels of auditory pro-
cessing of sound direction, usually at the first
synapse after sensory receptors. This mechanism
of contralateral inhibition in auditory pathways
transforms the acoustic environment of insects
into acoustic hemispheres. These hemispheres
enable a rather accurate distinction of left and
right sound signals at the cost of accuracy in
determining the angle of the sound source
(lateralization in grasshoppers, von Helversen
and Rheinlaender 1988). A corollary of the com-
putation of acoustic hemispheres is that sound
signals are selectively represented on one side of
the insect or the other. This computation resem-
bles the phenomenon of selective attention
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spheres and selective representation of sound patterns in
bush crickets. (a, b) Left and right specimens of the local
interneuron ON1 were recorded simultaneously, while dif-
ferent sound signals (pattern 1 and 2) were presented from

either side. (c) Both interneurons selectively represent only
the sound pattern from one side (inset: experimental
arrangement, correlation coefficient of the spike train
with the sound pattern as a measure for copying fidelity)
(From Römer and Krusch 2000, with permission)
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(Pollack 1988) and allows insects to discriminate
sound sources in much the same way as the
cocktail party effect well known from humans
(Fig. 9, Römer and Krusch 2000). Notably, con-
tralateral inhibition and acoustic hemispheres
can exert a considerable influence on mate choice
as females of bushcrickets prefer males that take
a leader role among singing males, since the
representation of the song signal of a follower
is suppressed in their auditory pathway
(Hartbauer et al. 2005; Siegert et al. 2011).
These local computations for enhanced direc-
tional responses can also affect the singing
behavior of males and promote synchronization
and thus chorusing among males (Greenfield and
Roizen 1993; Greenfield 1994; Hartbauer et al.
2005). Due to the computational conflict
between representation of sound pattern and
sound source, grasshoppers split the sensory
pathways for processing of cues for pattern and
direction by parallel processing (von Helversen
1984; Ronacher et al. 1986). However, in the
evolutionarily older communication systems of
crickets and bushcrickets, serial processing of
pattern and direction appears to prevail
(Wendler 1989; Stabel et al. 1989; von Helversen
and von Helversen 1995; Schul et al. 1998).
Conclusions

Auditory processing in insects is constrained by
small body size and a relatively small number of
neurons. Thus, the hearing capacities are focused on
highly relevant tasks, such as predator detection,
mate attraction, and, in some cases, eavesdropping
on prey or host signals. Insect ears evolved from
cuticular mechanosensory proprioreceptors and
may respond to different aspects of sound waves –
particle velocity or sound pressure; ears can be
found in almost any part of the body, and as a
consequence, different neural structures are
involved in auditory processing. In the auditory
pathways, we find similar computational principles
and transformations of sensory representations as in
vertebrates, however, with an important difference:
complex computations are often performed by sin-
gle neurons or very small populations of identifiable
neurons. This size constraint and the focus on a few
relevant tasks facilitate experimental approaches.
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ENT Department, Leiden University Medical
Center, Leiden, The Netherlands
Synonyms

Bionic ear; Cochlear implant; Inner ear prosthesis
Definition

An auditory prosthesis is an implantable device
used to (partially) restore the auditory function in
people with a severe to profound hearing loss by
electrically stimulating the auditory neural path-
way. The cochlear implant, stimulating the audi-
tory nerve from within the cochlea, is widely
accepted as the standard rehabilitation device for
this population. An auditory brain stem implant
uses the same technology to stimulate the neurons
of the cochlear nucleus in the brain stem and is
used when the cochlea is not accessible (e.g., due
to ossification after meningitis or severe hypopla-
sia) or the cause of deafness is found in the inter-
nal auditory canal (bilateral acoustic neuroma,
aplasia of the auditory nerve).
Detailed Description

Background
Due to their reduced oral communication skills,
severe to profoundly deaf people are restricted in
their social functioning. Since the pioneering
work of Djourno and Eyries (1957) and House
in the 1970s of the last century (House and Urban
1973), it has become possible to restore some of
the hearing functions through direct electrical
stimulation of the auditory nerve. Currently used
cochlear implants utilize electrode arrays with
12–22 contacts on a Silastic carrier that are most
commonly inserted into the scala tympani through
either the round window membrane or a drilled
cochleostomy in its vicinity. This allows taking
advantage of the tonotopic organization of the
cochlea and the auditory nerve, where the high
frequencies are encoded at the basal end, while the
low frequencies are encoded more to the apical
end (Ruggero 2009). In this way, each electrode
contact of a multichannel implant aims to stimu-
late a different neural population, which physio-
logically encodes a certain pitch as determined by
its intracochlear position. With current devices,
however, the wish to encode all spectral informa-
tion relevant for speech understanding leads to a
mismatch between their tonotopic map and the
physiological one.

In 1984, the first cochlear implant obtained
FDA approval for implantation in adults. This
was followed by an NIH consensus in 1995 stat-
ing that cochlear implantation is a proven and
effective rehabilitation method for deaf children
and deaf adults. Today, over 188,000 people have
received a cochlear implant (http://report.nih.gov/
nihfactsheets/ViewFactSheet.aspx?csid¼83). Ini-
tially, the implants provided a signal function and
an aid in lipreading. Nowadays, driven by
improved electronics and speech coding strate-
gies, better electrodes and changes in inclusion
criteria, the majority of the recipients achieves
open set speech understanding and is able to use
the telephone, although this still requires an inten-
sive rehabilitation process (see Fig. 1).
Components and Signal Processing of
Multichannel Implants

A cochlear implant consists of an external part and
an internal part, as shown in Fig. 2.

An otolaryngologist surgically implants the
internal part (the so-called receiver-stimulator
package with the electrode array) under general

https://doi.org/10.1007/978-1-0716-1006-0_300070
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anesthesia; the externally worn speech processor
(body worn or behind the ear) is connected after
several weeks of wound healing. The speech
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Auditory Prosthesis, Fig. 1 Performance over the first
year of cochlear implant use of 70 consecutive patients
implanted with a HiRes90K implant with a HiFocus 1 J
electrode array (Advanced Bionics, Valencia, CA). The
bars represent the percentage of correctly understood
Dutch monosyllabic (CVC) words, presented from CD
(65 dB SPL, free-field in quiet). The preoperative data
were obtained with the best-fitted hearing aid

Auditory Prosthesis,
Fig. 2 The components of
a cochlear implant with a
behind-the-ear speech
processor. (Courtesy of
Advanced Bionics)
processor captures the incoming sound and, after
preprocessing (typically noise cancellation and
amplitude compression), encodes it into
frequency-specific electrical information to be
sent to the individual electrode contacts in the
cochlea.

The speech coding strategies used in all current
implants are extensions of the continuous inter-
leaved sampling (CIS) strategy (Wilson et al.
1991). This strategy tries to avoid electrical inter-
action between neighboring electrode contacts by
stimulating all contacts in a sequential mode
rather than simultaneously. A digital filter bank
is used to process the signal into separate fre-
quency bands. Next, the envelope of each band,
determined by rectification and low-pass filtering
of the signal, is used to set the amplitude of a
sequence of nonsimultaneous pulses on the
implanted electrode contacts. The rate of stimula-
tion is determined by the device brand and by the
patient’s performance, but typically ranges
between 400 pulses/s and 4000 pulses/s per
channel.
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Both the encoded stimulation pattern and the
energy are transmitted to the implanted receiver-
stimulator package through an RF-link. The exter-
nal and internal coils for this RF-link are kept
aligned with magnets in the center of both coils.
The signal is picked up by the electronics in the
receiver-stimulator package, which in turn
delivers electrical pulses to the auditory nerve
fibers via electrode contacts in the electrode array.

Modern cochlear implants also have back
telemetry, allowing to record electrically evoked
compound action potentials (eCAPs) of the audi-
tory nerve via the implanted electrode array.
Computational Modeling

To provide more insight in the fundamentals of
functional electrical stimulation of the auditory
nerve, computational models have been devel-
oped. This involves stimulating not only the
response of a nerve fiber to an externally applied
potential field but also the calculation of this
potential distribution from the currents on the
stimulating electrodes. This is especially intricate
in the case of cochlear implants due to the com-
plex geometry of the inner ear.

Electrical Volume Conduction in the Cochlea
An analytic solution of such a 3D volume con-
duction problem is restricted to geometries that
are much simpler than the cochlea, and many
theoretical models on the (actually three-
dimensional) potential pattern set up in the
cochlea by the stimulating current sources
assumed an exponential decay of current from its
source to the nerve fibers along the cochlea,
modeled in one dimension (O’Leary et al. 1985),
while other analytical approaches assume a sim-
plified unrolled anatomy (Goldwyn et al. 2010).
Suessermann and Spelman (1993) used an electri-
cal network as a practical representation of the
electro-anatomy of the cochlea.

Numerical methods nowadays, however, allow
to incorporate much more detailed (electro-)
anatomical information (including the shape and
position of the electrode array) and sometimes
even allow for patient-specific modeling on the
basis of CT-scans (Carlyon et al. 2010). The numer-
ical methods that have been used include the finite
differencemethod (Whiten 2007), the finite element
method (Rattay et al. 2001; Hanekom 2001), and
the boundary element method, also known as the
integral equation method (Frijns et al. 2001).

Simulating the Auditory Nerve Fiber
Responses
Colombo and Parkins (1987) were the first to
develop a cable model of the mammalian auditory
nerve neuron based on the classical work on
amphibian nerve fibers of Frankenhæuser and
Huxley (1964). In order to fine tune the model to
represent physiological data obtained from single
auditory nerve fiber experiments in squirrel mon-
keys, they had to adapt the modeled nerve fiber’s
anatomy significantly. Motz and Rattay (1986)
used a single-node model with the Hodgkin and
Huxley model of unmyelinated squid giant axon
membrane (▶ “Hodgkin-Huxley Model”) to
investigate the time structure of the response of
the (myelinated!) auditory nerve to electrical stim-
uli. The gSEF model (Frijns et al. 1995) is a
nonlinear cable model, which represents essential
mammalian nerve fiber properties, including
spike duration and conduction velocity, refractory
behavior, and repetitive firing, better than previ-
ous models and can deal with arbitrary stimulus
wave forms. It is based upon voltage clamp mea-
surements in rat and cat motor nerve fibers at
mammalian body temperature performed by
Schwarz and Eikhof (1987). The gSEF model
and its variants have, in conjunction with electri-
cal volume conduction models, been used not
only to predict which (intact or degenerated)
fibers are excited by specific patterns of electrical
stimulation (Smit et al. 2010; Frijns et al. 2009a,
2011) or to explain the results obtained with psy-
chophysical experiments (Carlyon et al. 2010;
Snel-Bongers et al. 2013) but also to calculate
the eCAP produced on the basis of predicted
single fiber action potentials (Briaire and Frijns
2005; Westen et al. 2011).

https://doi.org/10.1007/978-1-0716-1006-0_127


Auditory Prosthesis, Fig. 3 (a) The structure of a 3D
volume conduction model of the implanted human cochlea
(as developed at the Leiden University Medical Center),
including the auditory nerve (in yellow) and a realistic

representation of the electrode array in the scala tympani.
(b) The potential distribution in the neural compartment
due to monopolar stimulation

Auditory Prosthesis 313

A

The abovementioned neural models have in
common that they are deterministic in the way
they treat the neural membrane responses. If the
focus of research is more on the effect of high
stimulation rates or on repetitive near-threshold
stimulation, stochastic models come into play.
Most models of this type are single-node thresh-
old models (Bruce et al. 1999), while cable
models (Rubinstein et al. 1999; Imennov and
Rubinstein 2009), although computationally
very intensive and requiring supercomputers,
can give insight in more complex stimulation
patterns.

Integrated Use of Volume Conduction and
Neural Models: State of the Art
While in the early days of cochlear implantation all
insights in the mechanisms underlying their func-
tion had to come either from clinical practice and
associated psychophysics or from animal experi-
ments, nowadays sophisticated computational
models exist, which integrate a model of electrical
volume conduction in the cochlea with active neu-
ral models. Such models can not only be used to
explain effects of current and future electrode
designs and stimulation schemes but are also able
to predict the of anatomical variations (Frijns et al.
2009b), species differences (Frijns et al. 2001), and
the effects of neural degeneration (Briaire and
Frijns 2006; Snel-Bongers et al. 2013) (Fig. 3).
Cross-References
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Definition

Auditory thalamocortical transformations arise
from the ascending neural processing of sponta-
neous activity as well as external sound-evoked
activity from the auditory thalamus, the medial
geniculate body, to the thalamorecipient layers
of the auditory cortex in mammals.
Detailed Description

Thalamic and Cortical Organization

The Thalamus
The thalamus is the obligate neural station con-
veying ascending sensory information to the cor-
tex (Sherman and Guillery 2006; Jones 2007).
Each sensory modality, except for olfaction, is
represented in defined nuclei of the thalamus
through which sensory information must first be
processed before eventually being transmitted to
the respective sensory areas of the neocortex
(Sherman and Guillery 2006; Jones 2007). In the
auditory system, the medial geniculate body is the
main auditory thalamic nucleus (Winer 1984;
Jones 2007). Classically, the medial geniculate
body has been divided into three main subdivi-
sions, i.e., the ventral division, the dorsal division,
and the medial division (Winer 1984; Imig and
Morel 1985). Each of these thalamic nuclei can be
identified on the basis of their cytoarchitecture,
physiological properties, and connections (Huang
and Winer 2000; de la Mothe et al. 2006; Lee and
Winer 2008a). The thalamocortical transforma-
tion is constrained by the neuroanatomical orga-
nization of projections from each of these
thalamic nuclei to each of the several areas of
the auditory cortex (Winer et al. 2005; Winer
and Lee 2007; Lee and Winer 2011b).

The Ventral Division of theMedial Geniculate Body
The ventral division of the medial geniculate body
is the principal thalamic nucleus conveying
ascending auditory information to the primary
auditory cortex (Huang and Winer 2000; Smith
et al. 2012). A subregion within the ventral divi-
sion, the pars ovoidalis, is located in the medial
part of the nucleus, bordering the dorsal division
and medial division (Winer 1984; Jones 2007).
Neurons in the ventral division are sharply tuned
to sound frequencies (Imig and Morel 1985).
These neurons are arranged in laminar
rostrocaudal sheets, with their dendritic fields
aligned in parallel along the sheet. The neurons
in each sheet respond to similarly tuned frequen-
cies (Imig and Morel 1985). These sheets are
organized lateromedially in most species studied,
with neurons in the lateral regions responding to
lower frequencies of sound, while neurons in the
medial regions respond to higher frequencies of
sound (Imig and Morel 1985). Other physiologi-
cal properties, such as bandwidth tuning and
aurality, are found interdigitated among neurons
across these isofrequency laminae (Ehret 1997).
The main ascending projection to the ventral divi-
sion originates from the central nucleus of the
inferior colliculus (Calford 1983; Wenstrup
2005). These projections preserve the topographic
organization connecting similarly tuned regions in
the inferior colliculus to matched regions in the
ventral division of the medial geniculate body
(Wenstrup 2005). The main output of the ventral
division is to the primary auditory cortex. These
projections terminate primarily in layer 4 of the

https://doi.org/10.1007/978-1-0716-1006-0_427
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primary auditory cortex but also have branched
projections to layer 6 (Huang and Winer 2000;
Smith et al. 2012). Similar to the projection from
the inferior colliculus, these projections are also
topographically organized, such that the low-
frequency regions of the ventral division project
to the lower-frequency regions of the primary
auditory cortex (Morel and Imig 1987; Morel
et al. 1993). The ventral division also connects
with other tonotopically organized auditory corti-
cal areas, which vary in number in different spe-
cies, e.g., five in the cat (Reale and Imig 1980) and
three in the monkey (Kaas and Hackett 2000).
These areas also receive topographically orga-
nized projections from the ventral division but
mainly from nonoverlapping sectors (Morel and
Imig 1987). Very few neurons in the ventral divi-
sion send branched projections to multiple audi-
tory areas, i.e., low-frequency neurons in the
ventral division do not connect with multiple
low-frequency regions in different tonotopically
organized areas (Lee et al. 2004, 2011).

The Dorsal Division of the Medial Geniculate Body
The dorsal division of the medial geniculate body
is the part of the auditory thalamus that connects
to non-tonotopically organized areas of the audi-
tory cortex (de la Mothe et al. 2006; Lee and
Winer 2008a). This nucleus is composed of vari-
ous subnuclei, including the dorsal superficial,
deep dorsal, dorsocaudal, and ventrolateral nuclei
(Winer et al. 2005; Lee and Winer 2008a). Neu-
rons in the dorsal division are broadly tuned to
frequencies, many with multi-peaked and com-
plex receptive fields (Morel and Imig 1987;
Winer et al. 2005). In contrast to the organization
of the ventral division of the medial geniculate
body, neurons in the dorsal division do not exhibit
an oriented laminar pattern of organization (Winer
1984). The dendritic arborizations of neurons in
the dorsal division are more isotropically orga-
nized. The subdivision of this nucleus is based
primarily on cytoarchitectonic densities and con-
nections with several non-tonotopic auditory
areas (Lee 2013). Projections to the dorsal divi-
sion originate primarily from the non-tonotopic
area of the inferior colliculus, i.e., the dorsal cor-
tex (Wenstrup 2005). The dorsal division nuclei
project broadly to the non-tonotopic areas of the
auditory cortex, which also include multimodal
and limbic-related areas, whose relation to audi-
tory processing in part is derived from the direct
inputs received from thalamocortical sources (Lee
and Winer 2008a, 2011a). Although a functional
metric, such as tonotopy, appears to be absent in
the nuclei of the dorsal division, their projections
to the non-tonotopic areas of the auditory cortex
are highly topographic, similar in extent to the
topography of projections from the ventral divi-
sion to the tonotopic regions of the auditory cortex
(Lee andWiner 2005; Schreiner andWiner 2007).
The termination pattern of the dorsal division pro-
jections to the non-tonotopic cortical areas, in
particular, the secondary auditory cortical region,
is similar to that of the ventral division projection
to the primary auditory cortex, i.e., terminations
primarily in layers 4 and 6 (Huang and Winer
2000). However, the synaptic terminals of the
dorsal division projection to the secondary audi-
tory cortex are slightly larger on average than the
projections from the ventral division to the pri-
mary auditory cortex (Smith et al. 2012). Again,
although the dorsal division projects broadly to
several non-tonotopic auditory areas, very few
neurons within the dorsal division send branched
projections to multiple areas (Kishan et al. 2008;
Lee and Winer 2008a; Lee et al. 2011).

The Medial Division of the Medial Geniculate Body
The medial division of the medial geniculate body
projects widely across all auditory cortical areas,
with a pattern of axonal termination that contrasts
with the projections from the ventral division and
the dorsal division of the medial geniculate body
(Huang and Winer 2000; Jones 2007). Neurons in
the medial division exhibit highly complex recep-
tive fields, which often extend beyond purely
auditory responses, with many neurons
responding to stimuli from several modalities,
i.e., visual and somatosensory (Bordi and LeDoux
1994). Neurons in the medial division differ from
those in the ventral division and dorsal division, in
that they display a wide range of sizes and den-
dritic arborization patterns (Bartlett and Smith
1999; Smith et al. 2007). The medial division
contains the magnocellular neurons, which are
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the largest neurons in the medial geniculate body
(Winer 1984). Like the dorsal division, the neu-
rons in the medial division do not appear to be
organized isotropically along any particular ana-
tomical domain and are loosely packed compared
with the other divisions (Winer 1984). The medial
division receives its primary input from both the
dorsal cortex and external cortex regions of the
inferior colliculus, which also contain non-
tonotopic and multimodal responsive neurons
(Wenstrup 2005). Every area of the auditory cor-
tex receives a projection from the medial division
(Lee and Winer 2008a), but unlike the ventral
division and the dorsal division, the laminar ter-
minations of axons in these areas are primarily
concentrated in layer 1 (Huang and Winer 2000).
While axonal divergence from the medial genicu-
late body is low in general, the highest proportion
of neurons projecting to multiple auditory cortical
areas is found in the medial division; however,
these comprise on average less than 2% of neu-
rons in the medial division of the medial genicu-
late body (Kishan et al. 2008, 2011; Lee
et al. 2011).

Inhibitory Circuits in the Thalamus
The thalamic reticular nucleus, although not a
specific constituent of the medial geniculate
body, is intimately intertwined with the operations
of both the thalamus and cortex and thus is an
essential structural component of the
thalamocortical transformation (Winer and Larue
1996; Crabtree et al. 1998; Pinault 2004; Sherman
and Guillery 2006). The thalamic reticular
nucleus is composed of inhibitory GABAergic
neurons that form a shell surrounding the thala-
mus, roughly located along the lateral border of
the thalamus and extending rostrocaudally along
nearly its entire length (Pinault 2004; Lam and
Sherman 2005, 2007, 2010). In general, each
nucleus of the thalamus innervates a specific sec-
tor of the thalamic reticular nucleus and receives
reciprocal topographic inhibitory feedback pro-
jections from that region of the thalamic reticular
nucleus (Lam and Sherman 2005). In addition,
feedback projections from layer 6 of the neocortex
en route to the thalamus branch to innervate the
thalamic reticular nucleus (Lam and Sherman
2010), which establishes an extended thalamocor-
ticothalamic inhibitory feedback loop (Pinault
2004). The thalamic reticular nucleus and the
inferior colliculus are the main sources of inhibi-
tion in the medial geniculate body of rodents,
which contain very few local inhibitory neurons
(Winer and Larue 1996). In humans, local inhib-
itory neurons in the medial geniculate body com-
prise ~20% of the total number of neurons, which
is accompanied by a proportional reduction in
inhibitory projections from the thalamic reticular
nucleus, compared with rodents and other species,
which have fewer than 1% of local inhibitory
neurons in the medial geniculate body (Winer
and Larue 1996).

The Cerebral Cortex
The cerebral cortex is phylogenetically the newest
structure in the mammalian brain, responsible for
the higher-order processing of sensory, motor, and
limbic information (Kaas 2008). Broadly, the
cerebral cortex is composed of regions of “gray”
matter and “white” matter, the former residing
near the outer cortical surface and containing all
of the neuronal cell bodies and the latter residing
beneath the gray matter and composed of the
axonal fiber tracts of afferent and efferent projec-
tions (Nieuwenhuys 2013). Although regional
variations exist, the gray matter of the cerebral
cortex has a laminar organization divided into
cytoarchitectonically distinguishable layers, such
that neuronal cell bodies are situated in structural
and functional groups relative to their location
along the pial to white matter axis (Mountcastle
1997). These layers of neuronal cell bodies have
specific afferent and efferent connections with
other cortical regions and with subcortical struc-
tures, in particular the thalamus (Sherman and
Guillery 2006). In total, there are six classically
defined layers of the cortex (Mountcastle 1997).
Of these, layer 4 of the cerebral cortex is the main
recipient layer for sensory information ascending
from the primary sensory thalamic nuclei
(Sherman and Guillery 2006). In addition, layer
6 receives branched projection from these primary
sensory thalamic nuclei (Huang and Winer 2000;
Smith et al. 2012; Lee and Imaizumi 2013), and
layer 1 is the recipient of thalamocortical inputs
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from nonspecific thalamic nuclei, e.g., the medial
division of the medial geniculate body (Huang
and Winer 2000; Jones 2007). In addition, layer
6 is the source of neurons that send feedback pro-
jections to the thalamic nucleus that provides its
main thalamocortical input in layers 4 and 6,
which establishes a thalamocorticothalamic feed-
back loop (Sherman and Guillery 2006). Cortical
layer 5 is the source of feedforward nonreciprocal
thalamocortical projections, which serve as a con-
duit for communication between cortical areas via
a corticothalamocortical route (Sherman and
Guillery 2006).

The surface of the cerebral cortex is regionally
specified into distinct functional areas that are
involved in processing sensory and motor infor-
mation (Kaas 2008). The boundaries of these cor-
tical areas, including those involved with
audition, are broadly defined based on their
cytoarchitectural organization, connections with
other structures, and physiological responses of
constituent neurons, although precise borders and
definitions for many cortical areas in different
organisms still remain elusive (Kaas and Hackett
2000; Hackett 2011). Although all mammals have
cortical regions devoted to the processing of audi-
tory information, the number of auditory cortical
areas varies widely among different species (Lee
and Winer 2008b, 2011b). Despite this heteroge-
neity, all mammals studied thus far have an iden-
tifiable auditory cortical region that receives direct
input from the ventral division of the medial
geniculate body (Lee and Winer 2011b). This
primary auditory cortical area is also defined on
the basis of a clearly identifiable tonotopic map,
which reflects the frequency segregation
established in the cochlea and propagated along
the auditory pathway (Ehret 1997).

Although the primary auditory cortical area is
the most conserved across species, constellations
of other cortical regions devoted to the processing
of sound exist among the cortices of different
mammalian species (Kaas 2008). However, their
physiological and anatomical organization is gen-
erally less well understood relative to that of the
primary auditory cortex. Nevertheless, these other
areas can be broadly grouped into distinct catego-
ries: tonotopic, non-tonotopic, multimodal, and
limbic related (Lee and Winer 2011a). The
tonotopic regions, like the primary auditory cor-
tex, contain identifiable maps of frequency across
their surface, generally with frequency reversals at
their borders, and receive strong projections from
the ventral division of the medial geniculate body
(Reale and Imig 1980; Hackett et al. 1998;
Hackett et al. 2011). The non-tonotopic areas con-
tain disordered representation of frequency and
generally receive more prominent inputs from
the dorsal division of the medial geniculate body
(Schreiner and Cynader 1984; Smith et al. 2012).
Multimodal and limbic areas reside at the limits of
the classical auditory areas and receive inputs
from multimodal and limbic thalamic nuclei and
areas and have complex responses reflective of
these convergent inputs (Bowman and Olson
1988; Clarey and Irvine 1990; Clascá et al.
1997; de la Mothe et al. 2006). As discussed
above, features of the thalamocortical inputs to
these other areas resemble those to the primary
auditory cortex (Huang and Winer 2000; Smith
et al. 2012), which could serve as an anatomical
basis for common thalamocortical transforma-
tions across the expanse of auditory cortical
areas (Lee and Sherman 2008, 2011).
Receptive Fields and the
Thalamocortical Transformation

Spectral Receptive Field
An important physiological parameter in the audi-
tory thalamocortical transformation is the spectral
receptive field. The spectral receptive field is, in
general, measured based on a frequency-threshold
tuning curve (response to sound level as a func-
tion of sound frequency). A common measure is
the Q factor by which characteristic frequency is
divided by a linear measure of bandwidth at a
given sound level above threshold (e.g., Q10;
Q value at 10 dB above threshold) (Imaizumi
et al. 2004). Because the Q value is a normalized
measure, the larger the Q value, the more sharply
tuned are the neurons. Another measure is the
square root transformation:
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where F2 and F1 are the highest and lowest edges
of bandwidth at a given sound level (Rouiller et al.
1981; Calford 1983). Unlike the Q value, the
smaller the square root transformation value, the
more sharply tuned are the neurons.

The auditory thalamocortical transformation is
mediated by the excitatory neurotransmitter, gluta-
mate, from the medial geniculate body to the audi-
tory cortex. Therefore, only the excitatory receptive
field is transformed in thalamocortical projections.
A problem describing spectral receptive fields in
the thalamocortical transformation is the availabil-
ity of data utilizing the same recording method
(e.g., local field potentials, single- or multiunit
extracellular recording, whole-cell recording, etc.)
under similar recording conditions (e.g., anesthe-
sia: isoflurane, ketamine, or pentobarbital; depth of
anesthesia; awake states; restricted or freely mov-
ing) in the same animal species. This creates some
controversy and readers should use caution for the
following section.

Functional organization of the spectral recep-
tive field has been well appreciated in the auditory
cortices of several species. The most well-known
example is the primary auditory cortex of the
mustached bat. A large area, called the DSCF
(Doppler-shifted constant frequency) area, of the
primary auditory cortex is devoted to a particular
frequency range (60.6–62.3 kHz) for their prey-
hunting behavior (Suga 1994). Neurons in the
DSCF area are extremely sharply tuned to char-
acteristic frequency (Q50 values range from ~10
to 500 or higher) (Suga and Manabe 1982; Suga
et al. 1997). Neurons in the anterior and posterior
parts of the DSCF area are more broadly tuned.
Similarly organized clusters of sharply or broadly
tuned neurons are also found in the auditory cor-
tex of carnivores and primates (Recanzone et al.
1999; Cheung et al. 2001; Read et al. 2001;
Imaizumi et al. 2004; Philibert et al. 2005;
Imaizumi and Schreiner 2007). In particular, the
cat primary auditory cortex has an interesting
functional organization of spectral receptive
fields. Sharply or broadly tuned neurons are clus-
tered alternatively along the dorsoventral axis
only in the mid-frequency range (5–20 kHz)
(Imaizumi and Schreiner 2007). Unlike those ani-
mal species, functional organization of spectral
receptive fields in the rodent auditory cortex is
not clear (Polley et al. 2007). Whereas rich infor-
mation of functional organization of spectral
receptive fields is available in the auditory cortex,
only limited information is available in the medial
geniculate body. Neurons in the ventral division
are, in general, more sharply tuned than in the
dorsal division (Rouiller et al. 1981; Calford
1983; Edeline et al. 1999). However, no clear
spatial organization is available due to the deep
location in the brain.

In general, it is believed that spectral receptive
fields become broader through the
thalamocortical transformation (Kaur et al.
2004, 2005). However, more recent studies
using in vivo whole-cell recordings combined
with pharmacological manipulation (blocking
cortical input by muscimol and SCH50911)
have revealed that thalamocortical input is not
as sharp as was thought (Liu et al. 2007). These
examples above are based on studies in rodents.
Spectral receptive fields, however, vary widely
across species. In the human auditory cortex,
neurons are extremely sharply tuned (Bitterman
et al. 2008), which suggests that spectral recep-
tive fields may become sharper through the
thalamocortical transformation. How does this
opposite trend occur in thalamocortical transfor-
mation? Clear evidence is available in the awake
mustached bat. Based on Q10, Q30, and Q50
values, DSCF neurons in the primary auditory
cortex are more sharply tuned than those in the
medial geniculate body (Suga et al. 1997). Sim-
ilar evidence is also available in the awake mar-
moset (Bartlett et al. 2011). Thus, the sharpening
of spectral receptive fields through the
thalamocortical transformation may relate to
behavioral and/or ethological functions.

For thalamocortical transformation of spectral
receptive fields, limited experimental cases are
available using in vivo single-unit recordings in
awake guinea pigs (Creutzfeldt et al. 1980) and
anesthetized cats (Miller et al. 2001, 2002). For
secure functional transformation, medial genicu-
late body and auditory cortex neurons require an
alignment of less than 1/3 octave difference in
best frequency (sound frequency evoked the best
response in a neuron at a given sound level)
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(Miller et al. 2001). To fully activate a neuron in
the auditory cortex, synaptic convergence from
20 to 25 neurons in the medial geniculate body
is required (Miller et al. 2001). Using a ripple
noise stimulus and computational analytical
approach of reverse correlation technique, Miller
et al. (2002) estimated spectral modulation rates
through thalamocortical transformation. Both tha-
lamic and cortical neurons show lower spectral
modulation rates. Whereas cortical neurons have
significantly lower spectral modulation rates than
thalamic neurons based on the best spectral mod-
ulation rates, the overall spectral filter properties
between thalamic and cortical neurons are similar.

Overall, spectral receptive (modulation) fields
in the thalamocortical transformation are not sim-
ple. Depending on animals and the behavioral
significance of sound frequency, spectral recep-
tive fields become broader or sharper through the
thalamocortical transformation.

Temporal Receptive Field
An important function of the central auditory
system is to decode species-specific communi-
cations and human speech sounds. Periodic
modulations are ubiquitous temporal features
of species-specific communications and
human speech sounds (Rosen 1992; Joris et al.
2004). Measuring repetition-rate transfer func-
tions or modulation transfer functions captures
response characterization to assess information
for a temporal range that corresponds to peri-
odicities in communication sounds (Eggermont
2001; Joris et al. 2004). Two commonly used
measures to characterize repetition-rate transfer
functions are firing rate and vector strength
(VS). Firing rate estimates overall response
magnitude in a particular time window. Vector
strength estimates spike-timing precision to a
particular phase of repetition or modulation
stimulus:

VS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

cos yð Þ2 þ P
sin yð Þ2

q
n

y ¼ 2p
t
T

where n is the total number of spikes, t is time of
spike occurrence, and T is the interstimulus inter-
val (Goldberg and Brown 1969). Significance of
synchronization to the stimulus is examined by a
Rayleigh test, >13.8 ( p < 0.001) (Mardia 1972).
Because vector strength does not incorporate
response strength, it may give rise to high vector
strength values when the response strength is low.
To overcome a shortcoming of the VS measure,
phase-projected vector strength (VSpp) is used
(Yin et al. 2011; Niwa et al. 2012). VSpp compares
the mean phase angle for each trial with the mean
phase angle of all trials and penalizes single-trial
vector strength values if they are not in phase with
the global response. VSpp is computed on a trial-
by-trial basis as follows:

VSpp ¼ VSt cos ft � fcð Þ

where VSpp is the phase-projected vector strength
per trial, VSt is the vector strength per trial, and ft

and fc are the trial-by-trial and mean phase angle
in radians, calculated for each stimulus
condition, and.

f ¼ arctan 2

Pn
i¼1 sin yiPn
i¼1 cos yi

where n is the number of spikes per trial (for ft) or
across all trials (for fc) and arctan2 is a modified
version of the arctangent that determines the cor-
rect quadrant of the output based on the signs of
the sine and cosine inputs. Whereas vector
strength value ranges from 1 (all spikes occur at
the same stimulus phase) to 0 (spikes occur ran-
domly), phase-projected vector strength value
ranges from 1 (all spikes in phase with population
mean phase) to �1 (all spikes 180� out of phase
with populationmean phase)with 0 corresponding
to randomly occurring spikes (Yin et al. 2011;
Niwa et al. 2012). Another way to overcome a
shortcoming of vector strength is the product of
two measures (vector strength and firing rate), i.e.,
phase-locked rate or synchronized rate
(Eggermont 1998b; Joris et al. 2004; Imaizumi
et al. 2011). The synchronized rate measure incor-
porates both timing and response strength
measures.
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Two coding schemes for temporal receptive
fields have been proposed: precise spike timing
estimated by vector strength codes slow repetition
rates (or modulation frequencies), while firing rate
codes faster repetition rates (De Ribaupierre et al.
1972; Bieser and Muller-Preuss 1996; Schulze
and Langner 1997; Lu and Wang 2000; Lu et al.
2001; Joris et al. 2004). However, more recent
studies have proposed different coding schemes,
as will be described later.

A problem describing temporal receptive fields
in the thalamocortical transformation is also the
availability of data utilizing the same stimulus
(e.g., nature of stimulus: click or white noise;
modulation carrier: pure tone or noise; modula-
tion depth; and modulation shape: rectangular or
sinusoidal), stimulus presentation method (free
field or sealed earphones), and recording method
(single- or multiunit extracellular recording)
under similar recording conditions (e.g., anesthe-
sia: isoflurane, ketamine, or pentobarbital; depth
of anesthesia; awake states: restricted, freely mov-
ing, or engaged behavior) in the same animal
species. In many cases, the analytical criteria are
also different. These create difficulty for direct
comparisons and some discrepancy. Thus, the
readers should treat the following section with
caution.

The vast majority of studies regarding tem-
poral receptive fields have focused on the pri-
mary auditory cortex. However, functional
magnetic resonance imaging or positron emis-
sion tomography in humans and macaques
suggested that the superior temporal plane is
specific to human speech or macaque species-
specific calls over nonspecific calls or other
sounds (Belin et al. 2000; Poremba et al. 2004;
Petkov et al. 2008). These fields are located
anterior to the primary core fields and may cor-
respond to the rostral field in primates. Revers-
ible lesion experiments in cats also show that the
anterior auditory field is specific to temporal
pattern discrimination (Lomber and Malhotra
2008). Thus, the rostral field in primates and
the anterior auditory field in carnivores (and
rodents) may be more important for temporal
pattern processing.
Rodent Auditory Cortex and Thalamus
Under anesthesia of pentobarbital, neurons in the
rat primary auditory cortex, in general, show a
low-pass filter property of repetition-rate transfer
functions by rate coding (firing rate) or band-pass
filter property by temporal coding (vector
strength) (Kilgard and Merzenich 1999; Chang
et al. 2005). Ter-Mikaelian et al. (2007) examined
the effects of anesthesia (a combination of pento-
barbital and ketamine) and awake (head-fixed)
states in the gerbil primary auditory cortex.
While anesthesia certainly affects modulation
transfer functions in individual neurons, overall,
the population response seems to be similar
between anesthesia and awake states
(Ter-Mikaelian et al. 2007). Clear evidence of an
effect of anesthesia is available in the rat primary
auditory cortex (Rennaker et al. 2007). Ketamine
anesthesia significantly decreased cutoff repeti-
tion rates (higher border of repetition-rate transfer
function) to <20 Hz from 80 to 90 Hz in the
awake state. A more recent study using awake
state (head-fixed) rats examined repetition-rate
transfer function using click trains in the primary
auditory cortex and the anterior auditory field
(Ma et al. 2013). Both core fields show high best
repetition rates (up to 32–64 Hz) and cutoff repe-
tition rates (up to 256 Hz), although neurons in the
anterior auditory field prefer significantly higher
repetition rates than those in the primary auditory
cortex. These best and cutoff repetition rates in the
awake rat auditory cortex are, in general, higher
than those in the anesthetized rat (Kilgard and
Merzenich 1999; Chang et al. 2005). Attention
or engaged behaviors also alter temporal receptive
fields. By presenting at 15 Hz repetition rate (with
various carrier frequencies) paired with electrical
stimulation of the nucleus basalis for 20–25 days,
neurons in the rat primary auditory cortex are
capable of following higher repetition rates by
rate coding than those in control (Kilgard and
Merzenich 1998). Training in a sound maze in
which rats use sound source location for food
rewards based on auditory cues (noise repetition
rates increased with decreasing distance between
the rat and target location) also enhanced temporal
receptive fields (Bao et al. 2004). Compared to
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studies in the rodent auditory cortex, a small num-
ber of studies are available in rodent thalamus. In
awake guinea pigs, thalamic neurons show more
robust responses to higher modulation frequen-
cies than cortical neurons (Creutzfeldt et al. 1980).

Cat Auditory Cortex and Thalamus
The cat auditory cortex has been a focus of studies
of temporal pattern processing. In particular, the
primary auditory cortex and the anterior auditory
field are readily identifiable based on their loca-
tion relative to sulcal patterns (Knight 1977;
Imaizumi et al. 2004; Lee et al. 2004) and are
often compared in temporal pattern processing
(Schreiner and Urbas 1988; Eggermont 2000;
Joris et al. 2004). Under anesthesia, neurons in
the anterior auditory field prefer higher modula-
tion frequencies (and repetition rates) than those
in the primary auditory cortex (Schreiner and
Urbas 1988; Eggermont 1998b). Anesthesia also
reduces temporal receptive fields by half in neu-
rons of the cat primary auditory cortex (Goldstein
et al. 1959). In the cat anterior auditory field under
ketamine anesthesia, Imaizumi et al. (2010) pro-
posed different coding schemes using a combina-
tion of an in vivo high-resolution cortical mapping
technique with information theory. Because this
study was made using multiunit recordings, they
computed discriminability of six different low
repetition rates (1–30 Hz) (Imaizumi et al.
2010). Unlike the traditional coding scheme
(precise spike timing codes low repetition rates),
inter-spike intervals can carry much more infor-
mation than timing and rate codes: some multi-
units carried an information value >2 bits that is
close to a maximum of ~2.58 bits (¼log2(6)).
Furthermore, spatial distribution of normalized
firing rate to six different repetition rates differs
across the stimuli, which provides a potential cod-
ing scheme in the view of an ideal observer. These
results suggest concurrent coding schemes of tem-
poral pattern processing by inter-spike intervals,
firing rate, and a map (Imaizumi et al. 2010).
Using behaviorally trained cats, Dong et al.
(2011) compared neurometric (neural responses
to six repetition rates from 12.5 to 200 Hz by
in vivo single-unit recordings) with psychometric
(Go/No-Go behavioral responses to the same six
repetition rates) functions. Their recordings were
focused on the relatively low-frequency locations
<16 kHz of the primary auditory cortex. Preva-
lence is found of more synchronized units in the
behaviorally engaged primary auditory cortex
than in an anesthetized one (Lu and Wang 2000;
Dong et al. 2011). However, rate coding by non-
synchronized units correlates well with psycho-
metric functions.

Compared to the studies in the cat auditory
cortex, a small number of studies are available in
the cat thalamus. In nitrous oxide-anesthetized
cats, approximately half of the thalamic units
showed precisely time-locked responses to click
trains (Rouiller et al. 1981). Half of these units had
cutoff repetition rates (higher border of repetition-
rate transfer function) up to 100 Hz. Local field
potentials in the auditory cortex record subthresh-
old responses potentially from thalamocortical
fibers (and corticocortical fibers), thus indicating
thalamic responses. Both best modulation fre-
quencies and cutoff modulation frequencies are
generally higher in local field potentials than unit
recordings in the primary auditory cortex and
anterior auditory field (Eggermont 1998b).
Under ketamine anesthesia in the primary audi-
tory cortex and the ventral division of the medial
geniculate body of cats, Miller et al. (2002)
conducted in vivo simultaneous single-unit
recordings from thalamus and cortical neurons.
They found that temporal modulation transfer
functions are significantly deteriorated through
thalamocortical projections.

Primate Auditory Cortex and Thalamus
A majority of studies of temporal receptive fields
in primates are conducted in the awake state. In
the awake squirrel monkey, neurons in the pri-
mary auditory cortex and the rostral field show
both temporal and rate codes to amplitude modu-
lation frequencies up to 64 or 128 Hz (Bieser and
Muller-Preuss 1996). Neurons in the primary
auditory cortex showed higher best modulation
frequencies than those in the rostral field. In the
awake macaque, neurons in the primary auditory
cortex have higher best modulation frequencies
by both temporal (means are 13 and 4.8 Hz) and
rate (means are 45 and 19 Hz) codes and higher
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vector strength than those in the rostral field
(Malone et al. 2010; Scott et al. 2011). These
examples from the awake squirrel monkey and
macaque have suggested the opposite trend of
temporal receptive fields in the core auditory
fields to rodents and cats (Schreiner and Urbas
1988; Eggermont 1998b; Joris et al. 2004) despite
the similar cortical locations (relative to the pri-
mary auditory cortex) of the anterior auditory field
in rodents and cats and the rostral field in the
primates. In the awake primate auditory cortex,
neurons may carry both temporal and rate codes
for lower and higher repetition rates
(or modulation frequencies) (Bieser and Muller-
Preuss 1996; Lu et al. 2001; Liang et al. 2002;
Malone et al. 2007; Yin et al. 2011). However, a
proportion of synchronized (using vector strength
or similar measures) and non-synchronized (using
firing rate) neurons are different among the stud-
ies. These discrepancies may be caused by the
stimulus, the range of repetition rates, and/or ana-
lytical criterion (Yin et al. 2011). There is an
interesting proposal of low to mid range of repe-
tition rates (10–45 Hz) corresponding to flutter
perception by two different populations of neu-
rons in the awake marmoset auditory cortex. One
population of neurons increases firing rate with
increasing repetition rates, while the other popu-
lation decreases firing rate with increasing repeti-
tion rates (Bendor and Wang 2007). All examples
reviewed above are based on studies of primates
passively listening to stimuli in awake state.
However, active engagement of behaviors
(discriminating modulated sounds, 2.5–500 Hz,
from unmodulated sounds) improves both tempo-
ral and rate codes in single neurons of the
macaque primary auditory cortex (Niwa
et al. 2012).

Compared to the studies in primate auditory
cortex, a small number of studies are available in
primate thalamus. In the awake squirrel monkey,
neurons in the thalamus show a similar tendency
of temporal and rate coding to best modulation
frequencies up to 128 Hz (Preuss and Muller-
Preuss 1990). In the awake marmoset, neurons
in the ventral and the anterodorsal divisions of
the medial geniculate body show a mixture of
temporal and rate coding, while neurons in the
posterodorsal division show a dominant tendency
of rate coding (Bartlett and Wang 2011). These
examples suggest that separation of temporal and
rate coding for low and high repetition rates may
be created within the auditory cortex (Bartlett and
Wang 2007). However, other data suggest that
separation from temporal to rate coding for low
to high repetition rates may be completed through
thalamocortical transformation (Malone et al.
2007; Yin et al. 2011). Thalamic neurons are
capable of following higher repetition rates by
both temporal and rate coding than cortical neu-
rons in the awake marmoset (Bartlett and Wang
2007).

Overall, temporal receptive fields change
through the thalamocortical transformation. In
general, thalamic neurons are more capable of
following higher repetition rates (modulation fre-
quencies) than cortical neurons. However, neu-
rons in the auditory cortex may employ different
coding schemes to follow different ranges of rep-
etition rates (this is not restricted only to high
repetition rates but also low to mid repetition
rates) either through the thalamocortical transfor-
mation or at the cortical level.

Latency
First-spike latency (hereafter latency) is another
important physiological parameter (Eggermont
2001). However, because only the experimenter
knows the stimulus onset (the brain and neurons
do not know it), relative latencies might be a good
candidate for neural coding of temporal patterns
(Eggermont 1998b; Schreiner and Raggio 1996;
Lu and Wang 2000; Liang et al. 2002; Ter-
Mikaelian et al. 2007; Imaizumi et al. 2011),
vocalizations (Wang et al. 1995; Nagarajan et al.
2002), sound localization (Eggermont 1998a;
Furukawa et al. 2000), and auditory scene (Dear
et al. 1993). Latency, in general, decreases with
increasing sound level (Heil 1997). However,
neurons in the primary auditory cortex of the little
brown bat show shorter latencies to lower sound
level than higher sound level (Sullivan 1982b).
Furthermore, when the two sounds (higher and
lower sound levels) are presented by a behavior-
ally relevant delay between pulse and echo, laten-
cies are facilitated and become shorter for the
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echolocating behavior (Sullivan 1982a). In gen-
eral, neurons in the anterior auditory field have
shorter latencies than those in the primary audi-
tory cortex across many different species
(Schreiner and Urbas 1986, 1988; Linden et al.
2003; Rutkowski et al. 2003; Imaizumi et al.
2004; Bizley et al. 2005). However, neurons in
the primate primary auditory cortex show shorter
latencies than those in the rostral field (Scott et al.
2011), which is related to the fact that neurons in
the primate primary auditory cortex follow higher
repetition rates than those in the rostral field
(Bieser and Muller-Preuss 1996; Malone
et al. 2010).

Neurons in the ventral division of the medial
geniculate body show shorter latencies than those
in other divisions (Rouiller et al. 1981; Calford
1983; Edeline et al. 1999). However, more recent
studies in the mouse and guinea pig thalamus
show that neurons in the medial division have
shorter latencies than those in the ventral division
of the medial geniculate body (Anderson et al.
2006; Anderson and Linden 2011). This evidence
strongly supports the shorter latencies in neurons
of the anterior auditory field than those in the
primary auditory cortex (Schreiner and Urbas
1986, 1988; Linden et al. 2003; Rutkowski et al.
2003; Imaizumi et al. 2004; Bizley et al. 2005)
because the anterior auditory field receives input
not only from the ventral division but also from
the medial division. Latency through
thalamocortical transformation can be estimated
by in vivo simultaneous single-unit recordings
and cross-correlation analysis. A maximum peak
in the correlogram is shifted to the expected travel
and synaptic delay (e.g., a few milliseconds)
(Miller et al. 2001). Thus, it is generally believed
that latency in thalamocortical transformation is
inherited from the thalamus to cortex. However, a
recent study using in vivo whole-cell recordings
combined with a pharmacological application
(to silence cortical activity by a mixture of
muscimol and SCH50911) in the rat primary audi-
tory cortex unfolds a different story: difference in
latency between the thalamus and cortex is gen-
erated by synaptic integration time by excitation
and inhibition through corticocortical interactions
(Zhou et al. 2012).
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Auditory-Nerve Response,
Afferent Signals
Peter Heil
Systems Physiology of Learning, Leibniz Institute
for Neurobiology, Magdeburg, Germany
Definition

Sequences of action potentials (spikes) of individ-
ual auditory-nerve fibers (ANFs), the primary
auditory afferents, in response to sounds imping-
ing upon the ears.
Detailed Description

Anatomical Foundations
Acoustic information relayed from the inner ear
to the central nervous system is encoded in the
sequences of spikes produced by (type I) ANFs.
In mammals, each ANF contacts only one recep-
tor cell (an inner hair cell, IHC) and is excited
by transmitter release events from a single ribbon
synapse (Ashmore 2010; Matthews and Fuchs
2010; Chapochnikov et al. 2014). Each IHC has
5–30 ribbons, depending upon species and
cochlear location (e.g., Meyer et al. 2009; Zhang
et al. 2018). The ANFs innervating a given IHC
therefore share some, although not all, functional
response properties.

Spontaneous Activity
ANFs produce spikes in the absence of external
sound (spontaneous activity). The mean sponta-
neous rate varies between ANFs, in mammals
from near zero up to more than 100 spikes per
second (e.g., Liberman 1978; Temchin et al.
2008), even between ANFs innervating the same
IHC (Wu et al. 2016). The timing of the spikes of
a given ANF during spontaneous activity is highly
variable. The spike-count statistics and the distri-
bution and serial correlation of inter-spike inter-
vals in an ANF spontaneous spike train can be
understood as the result of excitatory transmitter
release events produced by the random depletion
and random replenishment of a small number of
identical but independent presynaptic release sites
at each ribbon, in combination with the ANF’s
refractory properties (Peterson and Heil 2018).

Driven Activity
Sounds impinging on the ipsilateral ear, when of
appropriate spectral composition and amplitude,
affect the spiking behavior of ANFs, most often
increasing the spike rate. A threshold sound level
may be defined at which the driven rate of a given
ANF exceeds its spontaneous rate by some crite-
rion. The compound action potential (CAP), a
gross stimulus-evoked potential which reflects
a weighted sum of ANF responses (Bourien
et al. 2014), can be recorded in or near the cochlea,
such as at the round window.

Frequency Tuning
Each ANF is tuned to sound frequency and is
most sensitive, i.e., threshold is lowest, at a par-
ticular frequency (the characteristic frequency,
CF) which is determined by the position along
the cochlear partition of the IHC which it contacts
(cochleotopy). Threshold versus frequency curves
(tuning curves) are approximately V-shaped but
have a plateau region above CF with very high
thresholds (Huang and Olson 2011), and curves
for high-CF ANFs exhibit low-frequency tails.
The sharpness of tuning is often quantified by
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the Q-value, defined as the CF divided by the
bandwidth of the tuning curve at some level
(e.g., 10 dB) above threshold at CF. Q10-values
increase with increasing CF (in cats from about
1 to 10 for CFs from 0.2 to 10 kHz; Pickles 2012)
but can reach exceptionally high values (>200)
in behaviorally relevant frequency ranges in spe-
cies such as echo-locating bats.

Sound Level Dependence
With increasing sound level, the mean spike rate
of a given ANF increases before saturating
at several hundred spikes per second at higher
sound levels. The range of sound levels over
which the spike rate increases (the dynamic
range, DR) varies between ANFs. DR is inversely
related to the spontaneous rate of an ANF which
in turn covaries with the ANF’s sensitivity (e.g.,
Winter et al. 1990). For a given ANF, DR varies
with sound frequency and is largest at CF
due to compressive growth of mechanical
responses in the inner ear with sound level.
For frequencies below CF, where the mechanical
responses are linear, the increase of the spike
rate can be described by a Hill equation with a
Hill coefficient of 3 and with the independent
parameter being the sum of the sound amplitude
and a baseline (Heil et al. 2011). DR and
maximum spike rate also adapt to stimulus statis-
tics (Wen et al. 2009).

Adaptation
Adaptation is also manifest as a decrease in spike
rate over time in response to sounds of constant
amplitude. Within a few milliseconds, the spike
rate drops rapidly and then more gradually.
The decrease can be modeled as the sum of mul-
tiple exponential decays with different time con-
stants and a fractional power law (Zilany et al.
2009; Bruce et al. 2018). Upon cessation of the
sound, the spike rate temporarily decreases below
the spontaneous rate before recovering over tens
to hundreds of milliseconds.

Phase Locking
In response to low-frequency sounds or broad-
band sounds containing low frequencies, ANFs
exhibit phase locking, i.e., spikes are
nonrandomly distributed across the period of a
low-frequency component (van der Heijden and
Joris 2006; Heil and Peterson 2017). Phase
locking is often quantified by the measures of
vector strength and of the phase angle of the
mean vector. For a given ANF, vector strength
(a measure of the degree of phase locking) and
phase angle of the mean vector vary with fre-
quency and sound level. Across ANFs, maximum
vector strength decreases with increasing fre-
quency in a low-pass fashion, with cutoffs of a
few kilohertz, depending on species. Phase
locking is also seen in the responses of low-CF
ANFs to acoustic clicks, elicited by multiple
mechanical responses caused by these brief
broadband sounds (Guinan 2012). ANFs also
phase lock to the modulation envelope of sinusoi-
dal amplitude-modulated tones and noise (e.g.,
Michelet et al. 2012).

For more detailed reviews of auditory-nerve
responses, see Pickles (2012) and Heil and
Peterson (2015, 2017). Several of these properties
can be altered by sensorineural hearing loss
(for reviews, see Young 2012, Henry and Heinz
2013). Loss of ANFs or of their synapses with
IHCs can lead to overt and hidden hearing losses
(e.g., Kujawa and Liberman 2009). Cochlear
implants function by evoking spiking activity
in ANFs.
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Models
Automated Parameter Search
in Small Network Central
Pattern Generators
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Sciences, Delaware State University, Dover,
DE, USA
Definition

Automated parameter search in small network
central pattern generators (CPGs) involves the
use of any methods other than manual
(i.e., hand-tuning) to generate or tune sets of
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parameters that result in physiologically realistic
neuronal models of the CPGs. Such methods
include “brute-force” explorations of predefined
parameter spaces, as well as various heuristics
(e.g., multi-objective evolutionary algorithms)
used to arrive at a single or more of viable model
parameter combinations.
Detailed Description

Central pattern generators (CPGs) are neural net-
works that produce rhythmically patterned out-
puts, without relying on any sensory feedback
(Hooper 2001). CPGs drive such critical rhythmic
activity as breathing, chewing, swimming, walk-
ing, heartbeat control, etc. CPGs have been shown
to produce rhythmic outputs akin to normal rhyth-
mic activity patterns, even in isolation from other
parts of the nervous system, which makes them
popular physiological models. Furthermore, due
to their relative simplicity, especially in such
model organisms as lobsters, crabs, or leeches,
CPGs have also become quite widespread in com-
putational modeling studies of cellular and synap-
tic properties of individual neurons and small
neural networks.

While hand-tuning has been traditionally used
in the process of creating CPG neuronal models
(e.g., Soto-Treviño et al. 2005), in light of recent
advances in the computational capabilities of
modern computing systems, which now facilitate
the use of more complex neuronal models (i.e., in
terms of the number of compartments or free
parameters), and allow for the exploration of
unprecedentedly large parameter search spaces,
this approach has become virtually obsolete.
Therefore, automated methods for model param-
eter search have been lately gaining much
attention.

There are basically two approaches to the prob-
lem of searching for optimal (i.e., physiologically
realistic) sets of parameter values for models of
small network central pattern generators:
(1) “brute-force” explorations of predefined
parameter spaces and (2) explorations utilizing
heuristic optimization approaches, such as multi-
objective evolutionary algorithms (MOEAs).
“Brute-Force” Explorations of
Predefined Parameter Spaces

In the case of “brute-force” explorations of pre-
defined parameter spaces, the study usually starts
with a hand-tuned model of the CPG, which
serves as the “center” for the parameter search
space that is created around it. Then, physiologi-
cally realistic ranges for the model parameters
(e.g., maximal conductances of membrane and
synaptic currents) are chosen, along with the gran-
ularity for each of the parameters. The granularity
determines how many possible values each of the
parameters can assume and does not have to be the
same for all the parameters, as some of them will
exhibit different sensitivities to changes in their
values. In some cases, the first step may be omit-
ted and only the parameters, along with their
ranges and granularities, are determined.

After such a grid-based parameter search space
has been constructed, all of the possible combina-
tions of the parameter values are simulated and
tested for their physiological adequacy (possibly
under multiple simulation scenarios, such as spon-
taneous activity, response to current injections,
removal of neuromodulation, etc.). Only those
models that match the behavior of the biological
CPG, which is determined by means of one or
more quantitative or qualitative measures of the
CPG’s characteristics (e.g., spike height, inter-
spiking interval, burst duration, period, preserva-
tion of the phase of the rhythm, etc.), are retained
for further analyses. However, the rejected models
are also sometimes subjected to examination in
order to determine what makes “bad” models
unacceptable.
Explorations Utilizing Heuristic
Optimization Approaches

In the case of explorations utilizing various heu-
ristic approaches, such as multi-objective evolu-
tionary algorithms, the study usually starts with
the determination of the model parameters, along
with their ranges and granularities, similarly to the
“brute-force” approach, but often on a much
larger scale. In other words, while the range in
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the “brute-force” approach may reflect a 3- to
four-fold variation in the parameter values, and
the granularity may allow for five to ten possible
values, incorporating up to 20-fold variation with
hundreds of possible values for each parameter is
not unheard of in a heuristic approach. Since this
approach is not tasked with simulation and analy-
sis of all of the possible combinations of values in
such created parameter search space, it remains
computationally feasible.

Another critical step in this approach is the
definition of one or more measures of the given
CPG’s characteristics that will be used to deter-
mine physiological adequacy of the models.
While such measures can be virtually identical to
the ones used in the “brute-force” approach, the
difference lies in the fact that they are being used
during the process of model generation itself,
rather than at the end to filter out the unwanted
models. These measures, in essence, become the
fitness functions utilized in the process of opti-
mizing model parameter values to drive it toward
generating as many as possible “good” models
which match the biological system, while limiting
the number of “bad” solutions.

After the model parameters and the
corresponding ranges and granularities have
been determined, and the appropriate fitness func-
tions (possibly multiple, even conflicting) have
been defined, the iterative process of optimization
of the model parameter values begins and ulti-
mately yields a collection of physiologically real-
istic CPG models.
Applications

Most of the hitherto applications of the automated
parameter searches in small network central pattern
generators have been performed in relatively simple
invertebrate CPGs. For example, Doloc-Mihu and
Calabrese (2011) utilized the “brute-force”
approach to construct a large (on the order of
terabytes) database of conductance-based models
of the half-center oscillator from the leech heartbeat
central pattern generator to determine how neuronal
parameters influence the network activity. Using the
same approach, Günay and Prinz (2010) utilized a
large (20,250,000) database of models of the lobster
pyloric network to study calcium sensors for net-
work homeostasis. Smolinski, Prinz et al., used
both the “brute-force” approach andmulti-objective
evolutionary algorithms to study the cellular and
synaptic properties of the AB/PD (anterior burster/
pyloric dilator) pacemaker kernel in the lobster
pyloric network (2006, 2009), as well as the con-
ductance correlations involved in the recovery of
bursting after neuromodulator deprivation (Shim
et al. 2012; Malik et al. 2013).
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Definition

Computational modeling of axons is used to deter-
mine the action potential initiation and propaga-
tion properties along these long and highly
branched structures. Issues under investigation
include the site and threshold of action potential
initiation, propagation speed in unmyelinated and
myelinated axons, and safety factors of propaga-
tion through branch points and other geometrical
inhomogeneities, such as presynaptic boutons.
Modeling allows exploration of the interaction
between axonal morphology (diameters and
branching structure) and passive and active mem-
brane properties in determining the speed and
reliability of action potential propagation. This
can include the effects of ion channel noise.
Modeling is also used to explore axonal develop-
ment, including growth cone guidance and
branching.
Detailed Description

The axon is the principle communication pathway
from one neuron to another. Brief voltage pulses
called action potentials (AP) are initiated near the
cell body and travel along the axon to reach the
many presynaptic boutons. The AP causes neuro-
transmitter release in a bouton in a stochastic
manner, resulting in an electrical response in a
target neuron. The reality is more complex than
this: AP propagation is not always reliable due to
geometrical and electrical constraints in the axon;
timing of AP arrival at boutons may vary, having
implications for information processing in target
nuclei; and AP shape in boutons will influence
transmitter release. The experimental data show-
ing these effects is nicely summarized in Debanne
(2004). How theoretical results and computational
models have been used to aid our understanding
of these processes is described in Segev and
Schneidman (1999), a paper that is still highly
relevant to the field.

Computational modeling is also making a sig-
nificant contribution to our understanding of how
axons develop, from their differentiation from
dendrites at initiation to their guidance to target
structures and formation of functional connec-
tions. This work is documented by van Ooyen in
a recent review (van Ooyen 2011) and in an edited
volume (van Ooyen 2003).
Hodgkin-Huxley Model of the Action
Potential

Computational modeling of the action potential in
axons begins with the work of Hodgkin and Hux-
ley in determining a model based on experimental
data of the action potential in the squid giant axon
(Hodgkin and Huxley 1952). Their model forms
the basis of most subsequent models of action
potentials and also of models of current flow
through membrane-bound ion channels in general
in the nervous system. Based on their experimen-
tal data, they formulated models of the electrical
currents generated by the flow of sodium (Na) and
potassium (K) ions across the membrane. Impor-
tantly, these currents are voltage sensitive, so that
a membrane depolarization results in an increase
in the sodium current, which in turn leads to
further depolarization and an increase in the
sodium current through a positive feedback mech-
anism. This activation of the sodium conductance
is curtailed by a rapid inactivation. The potassium
current also increases with depolarization, but
more slowly than the sodium current. Eventually,
the potassium current grows large enough that it,
along with the inactivation of the sodium current,
leads to a repolarization of the membrane. This
entire process takes place within a few millisec-
onds, forming a sharp voltage wave of around

https://doi.org/10.1007/978-1-0716-1006-0_213


Axon, Modeling, Fig. 1 Action potential (AP) in a long,
uniform axon. (a) AP over time at 25% along the axon. (b)
AP over space after 20 ms. Simulation performed using the
NEURON simulator
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100 mV, which is the action potential (Fig. 1a).
The basic model describes changes in the trans-
membrane voltage (Vm) in an isopotential patch of
neuronal membrane as a function of membrane
capacitance (Cm), sodium (INa) and potassium (IK)
ionic currents, a nonspecific “leak” current (IL),
and experimentally injected electrode current (Ie;
to initiate the action potential). The equations of
this model are as follows:

Membrane Voltage

Cm
dVm

dt
¼ �gL Vm � ELð Þ � gNam

3h Vm � ENað Þ
� gKn

4 Vm � EKð Þ þ Ie

Sodium Current

INa ¼ gNam
3h V � ENað Þ dm

dt

¼ am 1� mð Þ � bmm

dh
dt

¼ ah 1� hð Þ � bhh

am ¼ 0:1
V þ 40

1� exp � V þ 40ð Þ=10ð Þ bm
¼ 4 exp � V þ 65ð Þ=18ð Þ
ah ¼ 0:07 exp � V þ 65ð Þ=20ð Þ bh
¼ 1

exp � V þ 35ð Þ=10ð Þ þ 1

Potassium Current

IK ¼ gKn
4 V � EKð Þ dn

dt
¼ an 1� nð Þ � bnn

an ¼ 0:01
V þ 55

1� exp � V þ 55ð Þ=10ð bn

¼ 0:125 exp � V þ 65ð Þ=80ð Þ

Action Potential Propagation

This model can be extended to include action
potential propagation along the axon using these
membrane active properties (sodium and potas-
sium currents) in a compartmental model of an
elongated axon (Fig. 1b). The compartmental
model arises as a spatial discretization of the par-
tial differential equation describing spatially
extensive current flow along an axon:

Cm
@Vm

@t
¼ d

4Ra

@2V
@x2

� gL Vm � ELð Þ

� gNam
3h Vm � ENað Þ

� gKn
4 Vm � EKð Þ

For the simulation shown in Fig. 1, the axon is
a cylinder 300 mm long, with a uniform diameter
of 476 mm. It is divided into 500 equal-length
computational compartments to obtain the numer-
ical solution. The simulation was performed using
the NEURON simulator (Carnevale and Hines
2006) with code derived from that used in
Chap. 3 of Principles of Computational Model-
ling in Neuroscience (Sterratt et al. 2011).
Speed and Reliability of Propagation

Axons are rarely simply long, uniform cylinders.
Many axons become highly branched as they near
their target structures. Diameters can change along



Axon, Modeling 335

A

the length of the axon, with a general tapering to
thinner diameters toward terminals but with large
increases in diameter at presynaptic boutons. Branch
points may impose a change in electrical load,
depending on the diameters of the daughter
branches. The work of Rall and colleagues (see
collected papers in Segev et al. 1995) established
the important concept of the geometrical ratio
(GR) between the diameters of two daughter
branches (d1 and d2) to that of the parent branch
(dp; section of axon or dendrite closer to the cell
body), defined as.

GR ¼ d
3=2
1 þ d

3=2
2

d3=2p

Given uniformmembrane properties, if GR¼ 1,
the branch point imposes no change in electrical
impedance, and the branching can be collapsed to
an equivalent uniform cylinder. However, if
GR> 1, the branch point imposes an extra electrical
load that slows the AP, reduces its height, and can
potentially lead to a failure of AP propagation. In
contrast, if GR< 1, AP velocity and its height both
increase as the branch point is approached, and
propagation is reliable. Goldstein and Rall (1974)
provided the first comprehensive computational
investigation of AP propagation through specified
geometrical inhomogeneities. An example is shown
in Fig. 2. Here there is a single bifurcation in a long
axon. The parent axon (at the left) has a diameter of
Axon, Modeling, Fig. 2 Action potential (AP) in a branched
time shown at right. Solid lines: GR ¼ 8. Dashed lines: GR ¼
1 mm. The two daughter branches have an equal
diameter of 2.52 mm, giving GR ¼ 8. The action
potential (AP) traces are from the parent axon,
branch point, and one daughter branch, as illus-
trated in the figure. In this configuration (solid
lines in time plots), the AP is significantly slowed
and reduced in amplitude at the branch point
(second trace from left), before quickly recovering
and increasing in velocity. If the daughter diameters
are reduced to 0.63 mm, then GR ¼ 1, and the
configuration is equivalent to a single, uniform
axon of 1 mm diameter. In this case, the AP propa-
gates with uniform amplitude and velocity (dashed
lines). Note that though theAP at the branch point is
significantly delayed when GR ¼ 8, compared to
GR¼ 1, the larger daughter branch diameter results
in a higher velocity for the AP once it is through the
branch point, and it quickly overtakes the AP trav-
eling in the uniform axon (right-hand solid and dash
plots, respectively). Goldstein and Rall (1974)
showed that for axons with the same membrane
(Rm) and axial (Ra) resistivity, AP speed is constant
in units of length constant per unit time, irrespective
of diameter (d). The passive length constant (l) is.

l ¼
ffiffiffiffiffiffiffiffi
dRm

4Ra

r

This equates to an increase in speed in units of
physical length per unit time with an increase in
diameter.
axon. Recording sites illustrated at left. Traces of APs over
1. Simulations performed using the NEURON simulator



Axon, Modeling, Fig. 3 Myelinated axon. Structural
details around a node of Ranvier
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Manor et al. (1991) considered AP propagation
in realistic axonal branching structures, with a par-
ticular emphasis on the delays imposed by geomet-
rical irregularities. This study shows that though
delays in AP propagation at individual branch
points are at most small (a few tenths of a millisec-
ond), accumulated delays in a complex, branching
axon can result in arrival times at boutons differing
by a few milliseconds. Delays or speedups from
successive, nearby branch points do not sum line-
arly. In particular, successive summed delays may
be supralinear compared to the delays at the indi-
vidual, isolated branch points.

Differential branch point failure, in which the
AP fails to propagate along one daughter branch,
while successfully propagating along the other,
which has been seen experimentally (Debanne
2004), cannot arise due to the branch point geom-
etry alone (Segev and Schneidman 1999).
Changes in the active membrane properties are
also required and may arise due to differences in
ion channel distributions between branches or
differential extracellular ion accumulation during
successive AP propagations leading to alterations
in ion current reversal potentials (particularly EK;
see the Hodgkin-Huxley model current equations)
and hence current magnitudes.

In summary, computational modeling has been
fundamental to improving our understanding of
the characteristics of and constraints to AP prop-
agation along branched and irregular axons.
Myelinated Axon

Propagation speeds along axons containing a con-
tinuous distribution of ion channels along their
length (so-called unmyelinated axons) are rather
modest, on the order of <1 m/s. Most long axons
in the nervous system are myelinated, with glial
cells providing a high-resistance membrane
sheath around the axons for much of their length.
Ion channels are largely restricted to the sites of
regular breaks in this sheath, known as nodes of
Ranvier. Action potential propagation speeds are
much greater along these axons than along unmy-
elinated fibers, on the order of 10–100 m/s.

Computational modeling contributes to our
understanding of AP propagation along
myelinated axons, particularly the implications
of the very specific locality of sodium and potas-
sium ion channels at and around the nodes of
Ranvier (Fig. 3). Sodium channels are located at
the node, with potassium channels largely
restricted to the paranodal region.

In a simplistic approach, myelination may be
modeled as an increased passive resistance and a
decreased capacitance of the internodal
(myelinated) axonal membrane, along with non-
uniform distribution of active sodium and potas-
sium channels. However, the narrow extracellular
(periaxonal) space afforded by the myelination,
plus the spatial separation of sodium and potas-
sium channels, may require the modeling of ion
concentrations and the electro-diffusion of ions
intra- and extracellularly, to fully capture the
action potential propagation properties of the
myelinated axon (Nygren and Halter 1999).

Models show that excessive accumulation of
potassium in the periaxonal space following high-
frequency repetitive activity can lead to action
potential failure (Parnas and Segev 1979). Models
are also used to explore the impact of loss of
myelin, as occurs in diseases such a multiple
sclerosis (Coggan et al. 2010). Loss of myelin
leads to a slowing of action potential propagation
or even action potential failure altogether.
Ion Channel Noise

Noise in the nervous system comes in many dif-
ferent forms (Faisal et al. 2008), with a major
source being the stochastic opening and closing
of ion channels in neuronal membrane. The thin-
ness of axons makes them vulnerable to this form



Axon, Modeling, Fig. 4 Spontaneous generation of
action potentials in a stochastic Markov model of a
100 mm2 patch of membrane containing 6000 sodium and
1800 potassium channels. Simulation performed using the
MATLAB code of Goldwyn and Shea-Brown (2011) as
available in ModelDB (accession number 138950)
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of noise. Computational models in which the
deterministic ion channel models of Hodgkin
and Huxley are replaced by equivalent stochastic
models are used to investigate the impact of ion
channel “noise” on action potentials (Goldwyn
and Shea-Brown 2011).

The standard approach to turning a determin-
istic model of the action potential, such as the
Hodgkin-Huxley model, into an equivalent sto-
chastic model is to treat the ionic conductance in a
patch of membrane of a particular ionic species as
being a function of the number of open ion chan-
nels for that species. Firstly, the dynamics of con-
ductance change in the deterministic model can be
rewritten in the form of a kinetic scheme, which is
interpreted as the concentration of ion channels in
different states, one of which is an “open” state
and provides the conductance. An example of
such a scheme for the potassium conductance in
the Hodgkin-Huxley model is.

n0½ � Ð
4an,bn

n1½ � Ð
3an, 2bn

n2½ � Ð
2an, 3bn

n3½ � Ð
an, 4bn

n4½ �

Now the total conductance for potassium in a
patch of membrane is.

gK v, tð Þ ¼ gK n4½ �

where γK is the conductance of a single open
potassium channel.

This becomes a stochastic model if the patch of
membrane is assumed to contain N ion channels
and the rates of the kinetic schemes become tran-
sition probabilities between states for individual
channels, resulting in continuous-time Markov
chain. The stochastic model approaches the deter-
ministic model as N goes to infinity. However, for
finite numbers of all ion channels, N, the stochas-
tic model can exhibit significantly different
behavior from the deterministic model.

Ion channel numbers in a patch of axon may be
such that the variation in membrane potential
from the opening and closing of individual ion
channels may be apparent, particularly near the
threshold of action potential initiation where the
number of open ion channels is small
(Schneidman et al. 1998). This can lead to
stochasticity in the generation of action potentials,
as illustrated in Fig. 4.
Fluctuations in ion channel opening can
advance or retard action potential initiation and
even lead to failures in propagation, though prop-
agation is more reliable than initiation (Faisal and
Laughlin 2007). Multiple trials of a stochastic
model of axon stimulation by a fluctuating current
are shown in Fig. 5.

Simulating the Markov model for all ionic
species is computationally demanding. Other
ways of incorporating membrane noise, which
involve some stochastic description of the noise
contribution of channel fluctuations, have been
tried and can provide a good approximation to
the full Markov description (Goldwyn and Shea-
Brown 2011).
Axon Development

A completely different class of model is used to
explore the development of axons. A major issue
here is how an axon reaches its target nucleus and
forms synapses therein. Models of axon guidance
make explicit the interaction between extracellu-
lar attractive and repulsive cues and intracellular
growth mechanisms in the growth cone and
trailing axon. This requires modeling some form
of extracellular environment that contains physi-
cal barriers to axon growth and diffusible or
membrane-bound molecules acting as attractive
and repulsive cues (Fig. 6). Krottje and van



Axon, Modeling, Fig. 5 Action potential initiation and
propagation due to fluctuating current stimulation in a
stochastic membrane model of a squid-type axon with
0.2 mm diameter. The topmost row shows the stimulus
current. Below, each row contains spike raster plots of

60 repeated trials recorded at equally spaced axonal posi-
tions. Data is extracted from 10-s trials (Fig. 1 from Faisal
and Laughlin (2007), reproduced with permission
according to the Creative Commons Attribution License)

Axon, Modeling,
Fig. 6 Neurite outgrowth
in an external environment
containing three sources of
a diffusible attractive
chemical. (Reproduction of
Fig. 10.10 from Sterratt
et al. (2011), with
permission of the authors)
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Ooyen (2007) provide a suitable mathematical
description of such an environment in the form
of partial differential equations (PDEs) and
quasi-steady-state approximations solved across
a spatial grid. Axons themselves may not play a
space-filling role in the environment.
Models concerned with the details of axon
growth and branching, on the other hand, need
to include the mechanisms of intracellular sig-
naling, the viscoelastic properties of the axon,
and the spatial extent of growth cones
(Fig. 7).



Axon, Modeling, Fig. 7 Axonal pathfinding. Detection
of chemoattractants in the external environment by
filopodia produces tension on the growth cone in particular
directions. The growth cone will turn toward and grow
along the dominant direction. If similar forces are exerted

on opposite sides of the cone, the tension may be enough to
split the cone into two, leading to the formation of daughter
branches (Reproduction of Fig. 3 from Graham and van
Ooyen (2006), with permission according to the Creative
Commons Attribution License)
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Computational simulation environments,
including CX3D (Zubler and Douglas 2009) and
NETMORPH (Koene et al. 2009), provide facili-
ties for modeling aspects of axonal and dendritic
development and the subsequent formation of neu-
ral networks. A review of modeling and computer
simulation techniques for neuronal development is
provided by Graham and van Ooyen (2006).
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