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Abstract The study of degenerations of metrics with special holonomy is an
important theme unifying the study of convergence of Einstein metrics, the study
of complete non-compact manifolds with special holonomy and the construction of
spaces with special holonomy by singular perturbation methods. We survey three
constructions of degenerating sequences of hyperkähler metrics on the (smooth
4-manifold underlying a complex) K3 surface—the classical Kummer construction,
Gross–Wilson’s work on collapse along the fibres of an elliptic fibration, and the
author’s construction of sequences collapsing to a 3-dimensional limit—describing
how they fit into the general theory and highlighting the role played in each construc-
tion by gravitational instantons, i.e. complete non-compact hyperkähler 4-manifolds
with decaying curvature at infinity.

1 Hyperkähler Metrics in Dimension 4

Hyperkähler 4-manifolds are the lowest dimensional non-flat examples of manifolds
with special holonomy.

Definition 1.1 A Riemannian 4-manifold (M4, g) is hyperkähler if the holonomy
Hol(g) is contained in SU(2).

Despite its integro-differential definition in terms of parallel transport, the holonomy
reduction to SU(2) can be recast in terms of a PDE for a triple of 2-forms satisfying
special algebraic properties at each point [18]. Recall that the space of 2-forms on an
oriented 4-dimensional vector space carries a natural non-degenerate bilinear form
of signature (3, 3).

Definition 1.2 Let (M4,μ0) be an oriented 4-manifold with volume form μ0. A
definite triple is a triple ω = (ω1,ω2,ω3) of 2-forms on M such that span(ω) =
span(ω1,ω2,ω3) is a 3-dimensional positive definite subspace of �2T ∗

x M at every
point x ∈ M .
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Given a triple ω of 2-forms on (M,μ0) we consider the matrix Q ∈ �
(
M,

Sym2(R3)
)
defined by

1
2 ωi ∧ ω j = Qi j μ0. (1)

ω is a definite triple if and only if Q is a positive definite matrix. To every definite
triple ω we associate a volume form μω by

μω = (det Q)
1
3 μ0 (2)

and the new matrix Qω = (det Q)−
1
3 Q which satisfies (1) with μω in place of μ0.

Note that the volume form μω and the matrix Qω are independent of the choice of
volume form μ0.

Now, let (M4,μ0) be an oriented 4-dimensional manifold. The choice of a
3-dimensional positive definite subspace of�2T ∗

x M for all x ∈ M is equivalent to the
choice of a conformal class on M , see for example [20, Sect. 1.1.5]. Thus every def-
inite triple defines a Riemannian metric gω by requiring that span(ω)|x = �+T ∗

x M
for all x ∈ M and dvgω

= μω .

Definition 1.5 A definite triple ω is said to be

(i) closed if dωi = 0 for i = 1, 2, 3;
(ii) an SU(2)-structure if Qω ≡ id;
(iii) hyperkähler if it is both closed and an SU(2)-structure.

A closed definite triple is also called a hypersymplectic triple. The metric gω associ-
ated to a hyperkähler triple is hyperkähler in the sense of Definition 1.1.

Let (M,ω) be a hyperkähler 4-manifold. We now make a choice of direction in
R

3. Up to rotations we can assume that the chosen direction is e1. We write ω = ω1,
ωc = ω2 + iω3 and ωc = ω2 − iω3. The complex 2-form ωc defines an almost com-
plex structure J = J1 on M by declaring a complex 1-form α of type (1, 0) if and
only if α ∧ ωc = 0. Since dωc = 0 the differential ideal generated by the (1, 0)–
forms is closed and therefore the almost complex structure J is integrable by the
Newlander–Nirenberg Theorem. Moreover, ωc and ω are, respectively, a holomor-
phic (2, 0)–form and a real (1, 1)–form with respect to J . Since ω is closed and non-
degenerate (M,ω, J ) is a Kähler surface, with g the induced Kähler metric. More-
over, by the expression for the Ricci curvature in Kähler geometry, cf. for example
[32, Sect. 4.6], ω2 = 1

2ωc ∧ ωc implies that g is Ricci-flat. Since the choice of direc-
tion inR3 was arbitrary, we see that hyperkähler metrics are Kähler with respect to a
2-sphere of compatible integrable complex structures—this might be the definition
of hyperkähler manifolds the reader is already familiar with.
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1.1 The K3 Surface

Beside the 4-torus endowed with a flat metric, the only other compact 4-manifold
carrying hyperkähler metrics is the K3 surface. In this note the K3 surface is the
smooth4-manifold M underlying any simply connected complex surface (M, J )with
trivial canonical bundle. The fact that all such complex surfaces are diffeomorphic
to each other was proved by Kodaira [34, Theorem 13]. We say that (M, J ) is a
complex K3 surface if wemake a choice of complex structure. As above, every simply
connected hyperkähler 4-manifold is in particular a complex surface (M, J ) with
trivial canonical bundle (trivialised by ωc). Conversely, every complex K3 surface is
Kähler [47] and therefore admits a Kähler Ricci-flat metric by Yau’s Theorem [52].
Since M is simply connected any Kähler Ricci-flat metric has holonomy contained
in SU(2) and therefore is hyperkähler. Examples of complex K3 surfaces (M, J ) are
smooth quartics in CP

3, complete intersections of a cubic and quadric in CP
4 and

the double cover of CP2 branched along a sextic.
Note also that every Einstein metric on the K3 surface must be hyperkähler [30,

Theorem 1]. Indeed, given any metric g the Chern–Gauss–Bonnet and Signature
Formulas are

8π2χ(M) =
∫

M

1
24Scal

2 + |W |2 − 1
2 |

◦
Ric |2, 12π2τ (M) =

∫

M
|W+|2 − |W−|2,

(3)

where Scal is the scalar curvature,
◦

Ric the traceless Ricci tensor and W = W+ + W−
is the Weyl tensor of g, decomposed into its self-dual and anti-self-dual parts. We
deduce that every Einstein metric g on the K3 surface M must be Ricci-flat and
anti-self-dual since

1

2π2

∫

M

1
48Scal

2 + |W+|2 = 2χ(M) + 3τ (M) = 0.

Indeed the Betti numbers of the K3 surface are b0 = 1, b1 = 0, b+ = 3 and b− = 19.
Furthermore, the Weitzenböck formula on �+ is

��+ = ∇∗∇ − 2W+ + 1
3Scal = ∇∗∇.

Since b+ = 3, we deduce that (M, g) carries a 3-dimensional space of parallel self-
dual 2-forms and therefore the holonomy of g reduces to SU(2).

Let M be the moduli space of Ricci-flat metrics of volume 1 on the K3 surface
M . The deformation theory of Einstein metrics is governed by an index zero elliptic
problem and therefore moduli spaces of Einstein metrics are in general singular. In
contrast, metrics with special holonomy often form smooth moduli spaces. This is
the case for hyperkähler metrics and thus M is a smooth manifold. In fact we also
know what this manifold is. Let Gr+(3, 19) = SO(3, 19)/SO(3) × SO(19) be the
Grassmannian of positive 3-planes inR3,19 	 H 2(M;R) and� be the automorphism
of the lattice H 2(M;Z) endowed with the intersection form (equivalently � is the
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quotient of the group of diffeomorphisms of M by the subgroup of diffeomorphisms
acting trivially on cohomology). The period map

P : M → Gr+(3, 19)/� (4)

associates to each metric the positive definite subspace span[ω] = span([ω1],
[ω2], [ω3]) ⊂ H 2(M,R). The Local Torelli Theorem [34, Theorem 17] implies that
P is a local diffeomorphism.

The period mapP in (4) is not surjective: smooth hyperkähler metrics correspond
to triples [ω] ∈ H 2(M,R) such that

[ω](�) �= 0 ∈ R
3 for all � ∈ H2(M,Z) such that � · � = −2, (5)

cf. [32, Theorem 7.3.16]. Thus the image of P is the complement of codimension-3
“holes” in Gr+(3, 19)/�. In the next section we describe hyperkähler metrics
approaching this excluded codimension-3 locus and explain the significance of (5).

2 Non-collapsed Limits

2.1 The Kummer Construction

We begin with a prototypical example. Soon after Yau’s proof of the Calabi Con-
jecture [52] implied that the K3 surface carries hyperkähler metrics, physicists and
mathematicians alike have been interested in finding a more explicit description of
these Ricci-flat metrics. Gibbons and Pope [23] suggested the construction of explicit
approximately Ricci-flat metrics on Kummer surfaces.

Let � 	 Z
4 be a lattice in R4 and consider the flat 4-torus T 4 = R

4/�. Consider
the Z2–action on T 4 induced by the involution x 
→ −x of R4. Then T 4/Z2 is a flat
4-orbifold which is singular at the 16 points of the half-lattice 1

2�. Each singular
point is modelled on R4/Z2. If we identify R4 with C2 then T 4 becomes a complex
manifold and by blow-upwe can resolve T 4/Z2 to a complex surface (M, J )which is
simply connected and satisfies c1(M, J ) = 0 and therefore is a complex K3 surface.
The blow-up replaces each singularity with a holomorphicCP1 with self-intersection
−2. Thus a tubular neighbourhood of each CP

1 	 S2 in M is identified with a disc
bundle in the R2–bundle T ∗S2 over S2 with Euler class −2.

Gibbons and Pope suggested that Ricci-flat metrics can be brought into this res-
olution picture. The missing ingredient is a model Ricci-flat metric on T ∗S2 that is
asymptotic at infinity to the flat metric on R

4/Z2. Such a metric is explicit and is
called the Eguchi–Hanson metric [21].

Note that T ∗S2 can be identified with the total space of the holomorphic line
bundle O(−2) over CP1. This identification endows T ∗S2 with a complex structure
J . In fact, the blow-down of the zero-section π : O(−2) → C

2/Z2 exhibits O(−2)
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as a crepant resolution of C2/Z2: the standard holomorphic (2, 0)–form dz1 ∧ dz2
on C

2 descends to C
2/Z2 by Z2–invariance and its pull-back to O(−2) extends

to a nowhere-vanishing holomorphic (2, 0)–form ωeh
c on O(−2). We now define a

hyperkähler triple ωeh on T ∗S2 by ωeh
2 = Reωeh

c , ωeh
3 = Im ωeh

c and ωeh
1 the Kähler

form defined outside the zero-section by

ωeh
1 = i

2∂∂ϕeh, ϕeh =
√
1 + r4 + 2 log r − log

(
1 +

√
1 + r4

)
. (6)

Here we identify the complement of the zero-section in T ∗S2 with the complement
of the origin in C

2/Z2 via π and set r = √|z1|2 + |z2|2. One can check that ωeh
1

extends to a smooth Kähler form on the whole of T ∗S2. Note that as r → ∞, ωeh
1

approaches the flat metric i
2∂∂ϕ0, ϕ0 = r2, up to terms that decay as r−4.

Now, Gibbons and Pope suggested to remove neighbourhoods of the 16 singular
points of T 4/Z2 and replace them with 16 copies of a disc bundle in T ∗S2 → S2.
This cut-and-paste construction of the smooth 4-manifold M can be promoted to the
construction of a hypersymplectic triple on M by patching together the flat hyper-
kähler triple ω̂ on T 4/Z2 with 16 copies of the rescaled Eguchi–Hanson hyperkähler
triple. We now provide more details of this construction.

We first need to “prepare” the Eguchi–Hanson metric to be “grafted” into T 4/Z2.
Following [8, Sect. 1.1], fix t > 0 and consider a cut-off function χ = χt such that
χ(r) = 1 for r ≤ 1√

t
and χ(r) = 0 for r ≥ 2√

t
. Define a new triple ωeh,t by ωeh,t

i =
ωeh

i for i = 2, 3 and ωeh,t
1 = i

2∂∂ϕ̃eh
t , where

ϕ̃eh
t (r) = t2ϕ̃eh (

t−1r
)
, ϕ̃eh = χ ϕeh + (1 − χ)ϕ0.

The triple ωeh,t coincides with t2ωeh for r ≤ √
t and with the flat hyperkähler triple

ω0 on C
2/Z2 for r ≥ 2

√
t . In the annulus

√
t ≤ r ≤ 2

√
t , ωeh,t differs from ω0 by

terms of order O(t2). If t is sufficiently small ωeh,t is a closed definite triple which
is approximately hyperkähler in the sense that Qωeh,t − id = O(t2).

Let p1, . . . , p16 denote the singular points of T 4/Z2. We construct a smooth
4-manifold M by replacing (disjoint) balls B3

√
t (pi ) in T 4/Z2 with copies of the

region {r ≤ 3
√

t} ⊂ T ∗S2. Since ωeh,t coincides with the flat triple ω0 for r ≥ 2
√

t ,
M comes equipped with a natural hypersymplectic tripleωt obtained by gluingωeh,t

with the flat hyperkähler triple ω̂ of T 4/Z2. Then ωt is an approximate hyperkähler
triple in the sense that Qωt − id = O(t2).

The question now is to deform the approximate hyperkähler triple ωt into an
exact solution. A first rigorous proof of such a perturbation was given by LeBrun–
Singer [38] (following an earlier attempt by Topiwala [51]); it uses twistor theory
and we will not say anything about it. A different approach exploits the fact that a
complex structure J on M with c1(M, J ) = 0 can be readily constructed by blow-up
π : M → T 4/Z2 of the complex orbifold T 4/Z2: π∗ω̂c, where ω̂c = ω̂2 + i ω̂3 is the
holomorphic (2, 0)–form on T 4/Z2, extends to a nowhere vanishing holomorphic
(2, 0)–form on M . Indeed, we can arrange our gluing so thatωt

c = ωt
2 + iωt

3 is closed
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and satisfies ωt
c ∧ ωt

c = 0 and ωt
c ∧ ωt

c �= 0. Then the problem of perturbing ωt to an
exact hyperkähler triple reduces to solving the complex Monge–Ampère equation

(
ωt
1 + i∂∂u

)2 = 1
2ω

t
c ∧ ωt

c. (7)

Since (t, u) = (0, 0) is a solution one can hope to solve this equation for small
t > 0 by the Implicit Function Theorem. The main issue is that (0, 0) correspond
to a singular solution to the equation and therefore care is needed in applying the
Implicit Function Theorem. This was done by Donaldson [19] exploiting the confor-
mal equivalence between the cone metric dr2 + r2gRP3 (the model for the singulari-
ties of T 4/Z2 and for the geometry at infinity of the Eguchi–Hanson metric) and the
cylindrical metric dt2 + gRP3 . This conformal rescaling allows one to control con-
stants in the application of the Implicit Function Theorem since the cylindrical metric
has bounded geometry. Alternatively, one could work with weighted Banach spaces
as in analogous constructions of complete non-compact hyperkähler 4-manifolds by
Biquard–Minerbe [8].

The result is a family of Kähler Ricci-flat metrics on the K3 surface that develop
16 orbifold singularities modelled on R

4/Z2 in the limit t → 0. Each singularity
is associated with a 2-sphere of self-intersection −2 which shrinks to zero size as
t → 0. Furthermore, appropriate rescalings of the family close to each singular point
converge to the Eguchi–Hanson metric.

We can also introduce further parameters in the construction to recover a full
58-dimensional family of hyperkähler metrics on the K3 surface close to the singu-
lar limit T 4/Z2. Indeed, when gluing the scaled Eguchi–Hanson metric to the flat
metric in a neighbourhood of the point pi we have the choice of an isometric iden-
tification between the tangent cone at a singularity of T 4/Z2 and R

4/Z2. Since the
Eguchi–Hanson metric is U(2)–invariant, this choice lives in SO(4)/U(2) 	 S2. In
other words, at each singular point we can choose a direction in span(ω̂1, ω̂2, ω̂3)

to be identified with the direction of ωeh,t
1 in span(ωeh,t

1 ,ωeh,t
2 ,ωeh,t

3 ). In the previous
situation, where we define a complex structure J on M by blow-up, we make the
same choice of direction at each singular point p1, . . . , p16. If different choices are
made at different points then M does not come equipped with an integrable complex
structure and instead of solving a complexMonge–Ampère equation we need to glue
hyperkähler triples directly. This can be done as follows.

Let ωt be the closed definite triple on M obtained by gluing 16 copies of ωeh,t

with the flat orbifold triple ω̂. We know that ‖Qωt − id‖C0 = O(t2). We look for a
triple of closed 2-forms η = (η1, η2, η3) on M such that

1
2

(
ωt

i + ηi
) ∧ (

ωt
j + η j

) = δi j μωt . (8)

Decompose η into self-dual and anti-self dual parts η = η+ + η− with respect to
gωt . The self-dual part can be written in terms of a M3×3(R)–valued function A by
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η+
i =

3∑

j=1

Ai j ω j .

Denote by η− ∗ η− the symmetric (3 × 3)–matrix with entries ( 12 η−
i ∧ η−

j )/μωt .
Then we can rewrite (8) as

Qωt + Qωt AT + A Qωt + A Qωt AT + η− ∗ η− = id. (9)

Now, consider the map

M3×3(R) −→ Sym2(R3); A 
−→ Qωt AT + A Qωt + A Qωt AT

and its differential A 
→ Qωt AT + A Qωt . Since Qωt is arbitrarily close to the iden-
tity as t → 0, this linear map induces an isomorphism Sym2(R3) → Sym2(R3) for
t sufficiently small. We can therefore define a smooth function F : Sym2(R3) →
Sym2(R3) such that Qωt AT + A Qωt + A Qωt AT = S if and only if A = F(S).
Hence we reformulate (9) as

η+ = F (
(id − Qωt ) − η− ∗ η−)

. (10)

Now, letH+
ωt be the 3-dimensional space of self-dual harmonic 2-forms with respect

to gωt . Since ωt
1,ω

t
2,ω

t
3 are closed and self-dual (therefore harmonic) and linearly

independent (since ωt is a definite triple) we deduce that H+
ωt consist of constant

linear combinations of ω1,ω2,ω3. By Hodge theory with respect to gωt we can
finally rewrite (10) as the elliptic equation

d+a + ζ = F (
(id − Qωt ) − η− ∗ η−)

, d∗a = 0, (11)

for a triple a of 1-forms on M and a triple ζ ∈ H+
ωt ⊗ R

3. Here 2 d+a = da + ∗da
is the self-dual part of da.

Instead of the Monge–Ampère equation (7), one must now solve (11) applying
the Implicit Function Theorem close to the singular limit t → 0 to deform ωt into
an exact hyperkähler triple. Assuming this can be done, if we now count parameters
in the construction we find

(i) 10 moduli of the flat metric on T 4;
(ii) the choice of scale t of the Eguchi–Hanson metric and gauge ψ ∈

SO(4)/U(2) 	 S2 for each singular point.

Thus we have 10 + 3 × 16 = 58 parameters in total, exactly the dimension of the
moduli space of Ricci-flat metrics (without any normalisation for the volume) on the
K3 surface.
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2.2 Orbifold Singularities

From a broader perspective the Kummer construction furnishes the prototypical
example of the appearance of orbifold singularities in non-collapsing sequences of
Einstein 4-manifolds. Bywork of Anderson [1, TheoremC], Nakajima [43, Theorem
1.3] and Bando–Kasue–Nakajima [7, Theorem 5.1], we know that a sequence of Ein-
stein 4-manifolds (Mi , gi ) with a uniform lower bound on volume and upper bounds
on diameter and Euler characteristic converges (after passing to a subsequence) to an
Einstein 4-orbifold M∞ with finitely many singular points. The formation of orbifold
singularities ismodelled on complete Ricci-flat ALE spaceswhich appear as rescaled
limits, or “bubbles”, of the sequence (Mi , gi ) around points that approach one of the
singularities of the orbifold M∞. We now provide a more detailed description of
these results.

Theorem 2.7 Fix �, C, V, D > 0 and let (M4
i , gi ) be a sequence of Einstein

4-manifolds satisfying

(i) |Ric(gi )| ≤ �;
(ii) χ(Mi ) ≤ C;

(iii) Vol(Mi , gi ) ≥ V ;
(iv) diam(Mi , gi ) ≤ D.

Then a subsequence converges to an Einstein orbifold (M∞, g∞) with finitely
many isolated singular points {x1, . . . , xn} with n ≤ n(�, C, V, D). More pre-
cisely, (Mi , gi ) converges to (M∞, g∞) in the Gromov–Hausdorff sense and there
are smooth embeddings fi : M∞ \ {x1, . . . , xn} → Mi such that f ∗

i gi converges
to the smooth Einstein metric g∞|M∞\{x1,...,xn} in C∞ over compact sets of M∞ \
{x1, . . . , xn}.

Here are some ingredients in the proof of the theorem.First of all, there exists a sub-
sequence that converges to a compact metric space (M∞, d∞) in Gromov–Hausdorff
topology and one has to understand the structure of M∞. The Bishop–Gromov vol-
ume comparison and hypotheses (iii) and (iv) imply the non-collapsing condition
Vol (B1(p)) ≥ v for all p ∈ Mi and all i and some uniform v > 0. Moreover, the
hypotheses of the Theorem guarantee that we have uniform control on the Sobolev
constant of (Mi , gi ). Since the Einstein equation implies the differential inequal-
ity �|Rmgi | + c |Rmgi |2 ≥ 0, Moser iteration now yields the following ε–regularity
result: there exists ε > 0, C > 0, r0 > 0 such that for all 0 < r < r0

∫

B2r (p)

|Rmgi |2 dvgi < ε =⇒ sup
Br (p)

|Rmgi | ≤ Cr−2

(∫

B2r (p)

|Rmgi |2 dvgi

) 1
2

. (12)

Given (i), the bound (ii) is equivalent to a global bound ‖Rmgi ‖L2 ≤ C ′ by the
Gauss–Chern–Bonnet Formula (3). Then (12) fails only for a definite number of
balls. Together with a bootstrap argument using the Einstein equation, we conclude
that (M∞, g∞) is a smooth Einstein manifold away from a definite number of points
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x1, . . . , xn . A first step in analysing the structure of these singular points is to study
their tangent cone. Fix a = 1, . . . , n. Consider a sequence ri → 0 and consider the
sequence of pointed manifolds (M∞, r−2

i g∞, xa). The pointed Gromov–Hausdorff
limit (Ya, o∗) of a subsequence ik → ∞ is called a tangent cone to M∞ at xa . A priori
it depends on the sequence of rescaling ri . Now, since ‖Rmg∞‖L2 is bounded by the
lower continuity of the energy, we have

∫
B2r (xa)\Br (xa)

|Rmgi |2 dvgi → 0 as r → 0.
Then using (12) one can show that the annulus B2(o∗) \ B1(o∗) in Ya is flat. In fact
Ya is a flat cone Ya = C(S3/�a) which is smooth outside of its vertex o∗.

Not only does the available theory characterise the singularities of non-collapsed
limits of Einstein 4-manifolds; it also explains how these singularities arise. The key
notion is the one of ALE (asymptotically locally Euclidean) manifolds.

Definition 2.9 A complete Riemannian 4-manifold (W 4, h) is ALE of rate ν < 0
if there exists a finite group � ⊂ SO(4) acting freely on R

4 \ {0}, a compact set
K ⊂ W , R > 0 and a diffeomorphism f : (

R
4 \ BR(0)

)
/� → W \ K such that

|∇k( f ∗h − hR4/�)| = O(rν−k).

Here the norm and covariant derivative are computed using the flat metric hR4/� .

Theorem 2.10 In the same notation and in addition to the statements of Theorem
2.7, for each a = 1, . . . , n there exist xa,i ∈ Mi and ri → ∞ such that, up to subse-
quences,

(i) B(xa,i , δ) ⊂ Mi converges to B(xa, δ) ⊂ M∞ for all δ > 0 sufficiently small;
(ii) (Mi , r2i gi , xa,i ) converges to a Ricci-flat ALE 4-manifold (Wa, ga, xa,∞) of

rate −4 in the following sense: for each R > 0 there exists maps fa,i :
B(xa,∞, R) → Mi such that f ∗

a,i (r
2
i gi ) converges in C∞ to ha on B(xa,∞, R) ⊂

Wa.

The points xa,i and scales ri are chosen so that |Rmgi |(xa,i ) = r2i is essentially
the maximum of |Rmgi | in a small ball that is converging to a neighbourhood of
xa in the Gromov–Hausdorff topology. The existence of a limit (Wa, ha) which is
a complete Ricci-flat manifold with finite energy and maximal volume growth, i.e.
‖Rmha ‖L2 < ∞ and limr→∞ r−4Vol(Br (xa,∞)) > 0, follows by arguments based on
(12) as before. The fact that any such manifold is ALE of rate ν = −4 follows from
[7, Theorem 1.5].

In fact, the tangent cone at infinity of Wa might not match the tangent cone at
the orbifold singularity xa ∈ M∞ and a series of blow-ups at different scales might
be necessary to capture the full picture of the degeneration of Mi to M∞. Such
bubbling-off of a “bubble-tree” of ALE Ricci-flat orbifolds was made precise by
Bando [6] and Anderson–Cheeger [3]. We will see later some explicit examples of
this phenomenon, cf. Remark 3.3.
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2.3 ALE Gravitational Instantons

Theorem 2.10 provides the motivation for the study and ideally the classification
of all Ricci-flat ALE 4-manifolds. It is here that the hyperkähler case differs dra-
matically from the more general Ricci-flat case: ALE hyperkähler 4-manifolds were
constructed and classified by Kronheimer [35, 36] following earlier work of Eguchi–
Hanson, Gibbons–Hawking and Hitchin (the classification was extended to non-
simply connected Kähler Ricci-flat ALE 4-manifolds by Suvaina [48]); in contrast,
not a single example of an ALE Ricci-flat 4-manifold with generic holonomy SO(4)
is currently known and the question of whether Ricci-flat ALE 4-manifolds must
have special holonomy is wide open.

A gravitational instanton is a complete non-compact hyperkähler 4-manifoldwith
finite energy ‖Rm‖L2 . We will see later that often stronger assumptions of curvature
decay have to be imposed to obtain better control of the asymptotic geometry at
infinity. Note that since every hyperkähler manifold is in particular Ricci-flat, gravi-
tational instantons have constrained volume growth: the volume of a geodesic ball of
radius r grows at most as r4 and at least linearly in r . By the result of Bando–Kasue–
Nakajima [7, Theorem 1.5] mentioned above, gravitational instantons of maximal
volume growth are ALE hyperkähler 4-manifolds in the sense of Definition 2.9.

We now state Kronheimer’s results. Let � be a finite subgroup of SU(2) that acts
freely on C2 \ {0}. Such groups are classified by simply-laced Dynkin diagrams, i.e.
theDynkindiagramsof type ADE . TheKleinian (orDuVal) singularityC2/� admits
a (unique) minimal resolution π : X� → C

2/�: X� is a smooth complex surface,
π is an isomorphism outside of π−1(0) and X� does not contain any rational curve
with self-intersection −1 (which could be blown-down to produce another smooth
resolution). The exceptional locus π−1(0) is a configuration of rational curves with
self-intersection−2 that intersects according to theDynkin diagram of�. Finally, X�

has trivial canonical bundle, i.e. it admits a nowhere vanishing holomorphic (2, 0)-
form ωc that outside of π−1(0) restricts to the pull-back of the standard complex
volume form dz1 ∧ dz2 on C

2/�. In the following theorem we forget the complex
structure and regard X� as a smooth 4-manifold.

Theorem 2.11 Let � be a finite subgroup of SU(2) that acts freely on C
2 \ {0} and

X� be the smooth 4-manifold underlying the minimal resolution of C2/�.

(i) Let α ∈ H 2(X�,R) ⊗ R
3 satisfy

α(�) �= 0 ∈ R
3 for all � ∈ H2(X�,Z) such that � · � = −2. (13)

Then there exists an ALE hyperkähler structure ω on X� with [ω] = α.
(ii) If (X,ω) is an ALE hyperkähler 4-manifold asymptotic to C

2/� then X is
diffeomorphic to X� and [ω] satisfies (13). Moreover, if (X,ω) and (X ′,ω′)
are two such manifolds and there exists a diffeomorphism f : X → X ′ such that
[ f ∗ω′] = [ω] then (X,ω) and (X ′,ω′) are isomorphic hyperkähler manifolds.
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The hyperkähler structures in (i) are obtained by the so-called hyperkähler quo-
tient construction. For example, the Eguchi–Hanson metric can be described as
the hyperkähler quotient of H2 by U(1) acting by eiθ · (q1, q2) = (eiθq1, e−iθq2).
The hyperkähler moment map for this U(1)–action is μ(q1, q2) = q1iq1 − q2iq2 ∈
ImH 	 R

3. Given ζ ∈ R
3, the hyperkähler quotient construction guarantees that,

when smooth,μ−1(ζ)/U(1) is a hyperkähler manifold. When ζ = 0we have the flat
metric onC2/Z2 and when ζ �= 0we have the Eguchi–Hanson hyperkähler structure
on T ∗S2 scaled and rotated so that [ω](S2) = ζ.

For the classification result in (ii) Kronheimer exploits twistor theory and the
natural “1-point” conformal compactification of an ALE gravitational instanton to
an anti-self-dual 4-orbifold. More recently, Conlon–Hein [17, Corollary D] have
obtained a different proof of this result that does not use twistor theory: with respect
to any complex structure, an ALE gravitational instanton asymptotic to C

2/� must
be the crepant resolution of a member of the versal C∗–deformation of the Kleinian
singularity C

2/�; every such deformation has a unique crepant resolution and the
latter admit a unique ALE Kähler Ricci-flat metric in each Kähler class.

3 Codimension One Collapse

If we include hyperkähler orbifolds with finitely many isolated singularities, the
period map (4) can be extended as a map from the completion of the moduli
space M of Einstein metrics on the K3 surface with unit volume in the Gromov–
Hausdorff topology onto Gr+(3, 19)/� [2, Theorem IV]. However Gr+(3, 19)/� is
non-compact so we must still consider sequences of hyperkähler metrics that do not
converge in Gromov–Hausdorff topology. This amounts to understanding collapsing
sequences of hyperkähler metrics on the K3 surface.

Let (M, gi ) be a sequence of unit-volume hyperkähler metrics with
diam(M, gi ) → ∞. Then Volgi (B1(p)) → 0 as i → ∞ for all p ∈ M , since other-
wise we would bound the diameter of (M, gi ) in terms of the total volume [46, Theo-
rem I.4.1]. Under these assumptions, Anderson [2, Theorem II] showed that (M, gi )

collapses in the sense of Cheeger–Gromov outside finitely many points x1, . . . , xn ,
where the number n is controlled by the Euler characteristic χ(M). This means that
for x ∈ M \ {x1, . . . , xn} the injectivity radius injgi

(x) converges to zero and that
we control the curvature after rescaling the metric so that the injectivity radius stays
bounded: injgi

(x)2|Rmgi |gi (x) ≤ ε0, for a universal constant ε0 > 0. In fact, Cheeger
and Tian [10, Theorems 0.1 and 0.8] have proven the much stronger result that the
collapse occurs with bounded curvature away from a definite number of points.

Cheeger–Tian’s result implies that Cheeger–Fukaya–Gromov’s theory of collapse
with bounded curvature [9] can be applied outside of finitely many points. The most
important feature of this theory in our discussion is that the limitinggeometry acquires
continuous symmetries. Here we describe these symmetries only at the level of the
local geometry around each point in the region that collapseswith bounded curvature,
referring to [9] for the globalisation of this local picture. Let (Mn

i , gi ) be a sequence of
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manifoldswith sectional curvature bounded by a uniform constant K > 0. If pi ∈ Mi

and 3r ∈ (0, 1√
K

) then we can consider the sequence of Riemannian metrics ĝi =
exp∗

pi
gi on the ball B3r (0) ⊂ R

n 	 Tpi Mi . For each i there exists a pseudo-group
�i of local isometries of (Br (0), ĝi ) whose action induces the equivalence relation
x ∼�i y if and only if exppi

(x) = exppi
(y) ∈ Mi . Up to passing to a subsequence,

(Br (0), ĝi ) converges in C1,α to (Br (0), ĝ∞) (the limit and the convergence are
smooth if we control higher order derivatives of the curvature, as in the Einstein
case) and the pseudogroups �i converge to a pseudogroup �∞ of isometries of
(Br (0), ĝ∞). TheGromov–Hausdorff limit of (Br (pi ), gi ) is (Br (0), ĝ∞)/�∞. Since
�i acts in an increasingly dense fashion,�∞ contains continuous isometries: in fact, a
neighbourhood of the identity in�∞ is isomorphic to a neighbourhood of the identity
in a nilpotent Lie group.

Now, this general theory of Riemannian collapse with bounded curvature moti-
vates us to study hyperkähler metrics in dimension 4 with a triholomorphic Killing
field, i.e. a Killing field that preserves the hyperkähler triple as well as the met-
ric, as models for regions that collapse with bounded curvature. Thought experi-
ments based on the Kummer construction suggest that we should study gravitational
instantons with non-maximal volume growth as models for regions that collapse
with unbounded curvature. Indeed, consider the Kummer construction of Ricci-flat
metrics on the K3 surface along a family of split tori T 4 = T 4−k × T k

ε with a T k–
factor of volume εk → 0. We can then think of the 2-spheres arising in the resolution
of the 16 singularities of T 4/Z2 as coming in 2k–tuples aligned along the collaps-
ing k-torus over each of the 24−k singular points of T 4−k/Z2. If we now rescale
the sequence of Kähler Ricci-flat metrics on the K3 surface by ε−2 around one of
these 2k–tuples, in the limit ε → 0 we should obtain a complete hyperkähler metric
asymptotic to (R4−k × T k)/Z2. In the case k = 1, the appearance of gravitational
instantons asymptotic to (R3 × S1)/Z2 as rescaled limits was suggested by Page
[45]. Hyperkähler metrics asymptotic to (R4−k × T k)/Z2 for k = 1, 2, 3 have been
constructed by Biquard–Minerbe [8] using a non-compact version of the Kummer
construction (earlier Hitchin [31] used twistor methods in the case k = 1).

3.1 The Gibbons–Hawking Ansatz

The Gibbons–Hawking ansatz [24] describes 4-dimensional hyperkähler metrics
with a triholomorphic S1–action (or more generally metrics with a triholomorphic
Killing field).

Let U be an open set of R3 and π : P → U be a principal U(1)–bundle. Suppose
that there exists a positive harmonic function h on U such that ∗dh is the curvature
dθ of a connection θ on P . Then the metric

ggh = h π∗gR3 + h−1θ2 (14a)
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on P is hyperkähler. Indeed, we can exhibit an explicit hyperkähler triple ωgh that
induces the metric ggh. Fix coordinates (x1, x2, x3) on U ⊂ R

3 and define

ω
gh
i = dxi ∧ θ + h dx j ∧ dxk, (14b)

where (i jk) is a cyclic permutation of (123). One can check that ωgh is an SU(2)–
structure inducing the Riemannian metric ggh . Moreover, the requirement that ωgh

is also closed is equivalent to the abelian monopole equation

∗ dh = dθ. (15)

The fibre-wise circle action on P preserves ωgh and π is nothing but a hyperkähler
moment map for this action. Conversely, every 4-dimensional hyperkähler metric
with a triholomorphic circle action is locally described by (14).

The basic example of the Gibbons–Hawking construction is given in terms of
so-called Dirac monopoles on R

3. Fix a set of distinct points p1, . . . , pn in R
3 and

consider the harmonic function

h = m +
n∑

j=1

k j

2|x − p j | ,

where m ≥ 0 and k1, . . . , kn are constants. Since R3 \ {p1, . . . , pn} has non-trivial
second homology, we must require k j ∈ Z for all j in order to be able to solve (15).
If these integrality constraints are satisfied then ∗dh defines the curvature dθ of a
connection θ (unique up to gauge transformations) on a principal U(1)–bundle P
over R3 \ {p1, . . . , pn} which restricts to the principal U(1)–bundle associated with
the line bundle O(k j ) → S2 on a small punctured neighbourhood of p j . The pair
(h, θ) is a solution of (15) which we call a Dirac monopole with singularities at
p1, . . . , pn .

The Gibbons–Hawking ansatz (14) associates a hyperkähler metric ggh to every
Dirac monopole on the open set where h > 0. When k j > 0 then ggh is certainly
defined on the restriction of P to a small punctured neighbourhood of p j . By a
change of variables one can check that ggh can be extended to a smooth orbifold
metric modelled on C2/Zk j by adding a single point.

Remark 3.3 By considering clusters of points p1, . . . , pn coalescing together at
different rates one can easily construct sequences of (non-compact) hyperkähler
metrics developing orbifold singularities modelled on bubble-trees of ALE spaces.

In particular ggh is a complete metric whenever m ≥ 0 and k j = 1 for all j =
1, . . . , n. When m = 0 one can check that ggh is an ALE metric in the sense of
Definition 2.9. When m > 0 (by scaling we can then assume that m = 1) ggh has a
drastically different asymptotic geometry called ALF (asymptotically locally flat).

Definition 3.4 A gravitational instanton (M, g) is called ALF if there exists a com-
pact set K ⊂ M such that the following holds. The (unique) end M \ K is the total
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space of a circle fibration π : M \ K → (R3 \ BR)/�, where R > 0 and � is a finite
subgroup of O(3) acting freely on S2. Passing to a �–cover we can always assume
that π is a principal circle bundle. Define a model metric g∞ on M \ K by choosing
a connection θ on (the �–cover of) π and setting g∞ = π∗gR3 + θ2. Then we have

|∇k
g∞(g − g∞)|g∞ = O(rν−k) (16)

for some ν < 0 and all k ≥ 0.
There are only two possibilities for �: if � = id we say that M is an ALF grav-

itational instanton of cyclic type; if � = Z2 we say that M is an ALF gravitational
instanton of dihedral type.

Recall that gravitational instantons have constrained volume growth: Vol
(
Br (p)

)

grows at least linearly in r and at most as r4. Under the assumption of faster than
quadratic curvature decay, i.e. |Rm| = O(r−2−ε) for some ε > 0 (or a slightlyweaker
finite weighted energy assumption), Minerbe [40, Theorem 0.1] has shown that if
we assume a uniformly submaximal volume growth, Vol

(
Br (p)

) ≤ Cra for some
3 ≤ a < 4 and all p, say, then the volume growth is at most cubic, a ≤ 3. Minerbe
also described the asymptotic geometry of gravitational instantons of cubic volume
growth and faster than quadratic curvature decay: they are all ALF spaces as in
Definition 3.4.

3.2 ALF Gravitational Instantons

Now we describe the classification of ALF gravitational instantons obtained by
Minerbe [41] and Chen–Chen [12] in the cyclic and dihedral case respectively.

Let H k be the total space of the principal U(1)–bundle associated with the line
bundle O(k) over S2 radially extended to R

3 \ BR for any R > 0. Let θk denote
the (unique up to gauge transformation) SO(3)–invariant connection on H k . The
Gibbons–Hawking ansatz (14) yields a hyperkähler metric

gk =
(
1 + k

2r

)
(dr2 + r2gS2) +

(
1 + k

2r

)−1

θ2k (17)

on H k for all k ∈ Z. Here r is a radial function on R
3. Finally, on H 2k we consider

the Z2–action which is generated by the simultaneous involutions on the base R
3

and the fibre: onR3 we act by the standard involution x 
→ −x and the involution on
the fibre S1 = R/2πZ is the one induced by the standard involution on the universal
cover R. We refer to this involution of H 2k as its standard involution.

Definition 3.7 Let (M4, g) be an ALF gravitational instanton.

(i) We say that M is of type Ak for some k ≥ −1 if there exists a compact set
K ⊂ M , R > 0 and a diffeomorphism φ : H k+1 → M \ K such that
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|∇l
gk+1

(gk+1 − φ∗g)|gk+1 = O(r−3−l)

for every l ≥ 0.
(ii) We say that M is of type Dm for some m ≥ 0 if there exists a compact set

K ⊂ M , R > 0 and a double cover φ : H 2m−4 → M \ K such that the group
Z2 of deck transformations is generated by the standard involution on H 2m−4

and
|∇l

g2m−4
(g2m−4 − φ∗g)|g2m−4 = O(r−3−l)

for every l ≥ 0.

Chen–Chen [12, Theorem 1.1] have shown that every ALF gravitational instanton
is either of type Ak for some k ≥ −1 or Dm for some m ≥ 0. The constraints k ≥ −1
and m ≥ 0 were derived earlier by Minerbe [39, Theorem 0.1] in the cyclic case and
by Biquard–Minerbe [8, Corollary 3.2] in the dihedral case.

3.2.1 ALF Spaces of Cyclic Type

We saw that gravitational instantons of type Ak can be constructed from Dirac
monopoles on R

3 with k + 1 singularities via the Gibbons–Hawking ansatz. These
are usually called multi-Taub–NUT metrics. The case k = 0 is the Taub–NUTmetric
on R

4 and k = −1 is R3 × S
1 with its flat metric. Minerbe [41, Theorem 0.2] has

shown that every ALF space of cyclic type must be isometric to a multi-Taub–NUT
metric.

3.2.2 ALF Spaces of Dihedral Type

ALF metrics of dihedral type are not globally given by the Gibbons–Hawking con-
struction and in most cases are not explicit. A number of different constructions have
appeared over the past decades, but only recently Chen–Chen [12, Theorem 1.2]
have shown that all these constructions yield equivalent families of ALF metrics.

m = 0: The D0 ALF manifold is the moduli space of centred charge 2 monopoles
on R

3 with its natural L2–metric, known as the Atiyah–Hitchin manifold.
The metric admits a cohomogeneity one isometric action of SO(3) and is
explicitly given in terms of elliptic integrals [4, Chap. 11]. The D0 ALF
metric is rigid modulo scaling.

m = 1: The Atiyah–Hitchin manifold is diffeomorphic to the complement of a
Veronese RP

2 in S4 and therefore it retracts to RP
2 and is not simply

connected. The double cover of the Atiyah–Hitchin manifold is a D1 ALF
space. As a smooth manifold it is diffeomorphic to the complement of
RP

2 in CP
2, or equivalently to the total space of O(−4) over S2. This

rotationally invariant D1 ALFmetric admits a 3-dimensional family of D1

ALF deformations, sometimes referred to as the Dancer metrics.
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m = 2: D2 ALF metrics were constructed by Hitchin [31, Sect. 7] using twistor
methods and by Biquard–Minerbe [8, Theorem 2.4] using a non-compact
version of theKummer construction: one considers the quotient ofR3 × S

1

by an involution and resolves the two singularities gluing in copies of the
Eguchi–Hanson metric.

m ≥ 3: Dm ALFmetrics (for allm ≥ 1) appeared in thework of Cherkis–Kapustin
[16] on moduli spaces of singular monopoles on R

3 and were rigor-
ously constructed by Cherkis–Hitchin [15] using twistor methods and
the generalised Legendre transform. In the case m ≥ 3 a more transpar-
ent construction due to Biquard–Minerbe [8, Theorem 2.5] yields Dm

ALF metrics by desingularising the quotient of the Taub–NUT metric
by the binary dihedral group Dm of order 4(m − 2) using ALE dihe-
dral spaces. Using complexMonge–Ampère methods Auvray [5] has then
constructed 3m–dimensional families of Dm ALF metrics on the smooth
4-manifold underlying the minimal resolution of C2/Dm .

3.3 ALF Gravitational Instantons and Collapsing Ricci-flat
Metrics on the K3 Surface

Despite this rich theory ofALF gravitational instantons, until recently it has remained
unclear how they can appear asmodels for the formation of singularities in collapsing
sequences of hyperkähler metrics on the K3 surface. In [22] the author exploited
singular perturbation methods to construct examples of Ricci-flat metrics on the K3
surface collapsing to a 3-dimensional limit and exhibit ALF gravitational instantons
as the “bubbles” appearing in the process.

Theorem 3.8 Let T 3 = R
3/� be a 3-torus for some lattice � 	 Z

3. Endow T 3

with a flat metric gT 3 . Let τ : T 3 → T 3 be the standard involution x 
→ −x and
denote by q1, . . . , q8 its fixed points. Fix a τ–symmetric configuration of fur-
ther 2n distinct points p1, τ (p1), . . . , pn, τ (pn). Denote by T ∗ the complement of
{q1, . . . , q8, p1, . . . , τ (pn)} in T 3.

Let m1, . . . , m8 ∈ Z≥0 and k1, . . . , kn ∈ Z≥1 satisfy

8∑

j=1

m j +
n∑

i=1

ki = 16. (18)

For each j = 1, . . . , 8 fix a Dm j ALF space M j and for each i = 1, . . . , n an Aki −1

ALF space Ni .
Then there exists a 1-parameter family of hyperkähler metrics {gε}ε∈(0,ε0) on the

K3 surface with the following properties. We can decompose the K3 surface into the
union of open sets K ε ∪ ⋃8

j=1 M ε
j ∪ ⋃n

i=1 N ε
i such that as ε → 0:
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(i) (K ε, gε) collapses to the flat orbifold T ∗/Z2 with bounded curvature away from
the punctures;

(ii) for each j = 1, . . . , 8 and k ≥ 0, (M ε
j , ε

−2gε) converges in Ck,α
loc to the Dm j

ALF space M j ;
(iii) for each i = 1, . . . , n and k ≥ 0, (N ε

i , ε
−2gε) converges in Ck,α

loc to the Aki −1

ALF space Ni .

The metric gε is constructed by gluing methods: we first construct an approximate
hyperkähler metric by patching together knownmodels and then perturb it to an exact
solution. The construction of the approximate hyperkähler metric proceeds as fol-
lows. The ALF gravitational instantons provide models for the collapsing geometry
near points of curvature concentration.We aim to construct amodel for the collapsing
sequence of hyperkähler metrics on regions where the curvature remains bounded
using the Gibbons–Hawking ansatz over the punctured 3-torus T ∗. We look for a
Dirac monopole (h, θ) on T ∗ with the following singular behaviour: h is a harmonic
function on T ∗ with prescribed singularities at the punctures

h ∼ 2m j − 4

2r j
as r j → 0, h ∼ ki

2ri
as ri → 0.

Here r j and ri denote the distance functions from the points q j and pi , τ (pi ) with
respect to the flat metric gT 3 . The balancing condition (18) guarantees the existence
of the harmonic function h. Since the weights m j and ki are integers and the config-
uration of punctures is τ–invariant, one can also show the existence of a connection
θ with curvature ∗dh on a principal circle bundle over T ∗.

Fix a (small) positive number ε > 0. The Gibbons–Hawking ansatz (14) yields a
hyperkähler metric

gghε = (1 + εh)π∗gT 3 + ε2(1 + εh)−1 θ2

over the region where 1 + εh > 0. Unless h is constant (which corresponds to Page’s
suggestion of considering theKummer construction startingwith T 3 × S1

ε for a circle
factor of length 2πε → 0) there must exists some j with m j = 0, 1 and therefore the
harmonic function 1 + εh must become negative somewhere. The key observation is
that by taking ε sufficiently small (which geometrically corresponds to making the
circle fibres have small length) it is possible to construct highly collapsed hyperkähler
metrics g

gh
ε outside of an arbitrarily small neighbourhood of the punctures. More

precisely, one can prove that there exists ε0 > 0 such that for every ε < ε0 we have
1 + εh > 1

2 on the complement of
⋃k

j=1 B8ε(q j ).
Now, as we know from Definition 3.7 the asymptotic model of any ALF metric

(up to a double cover in the dihedral case) can be written in Gibbons–Hawking
coordinates. The configuration of punctures and weights on T 3 was chosen so that,
after taking a Z2–quotient, we are able to glue in copies of ALF spaces to extend the
Gibbons–Hawking metric g

gh
ε to an approximately hyperkähler tripleωε: close to the

fixed point q j of theZ2–action on T 3 we glue in the Dm j ALF space M j (this explains



190 L. Foscolo

why we need 8 of them in the theorem); close to the image of pi , τ (pi ) in T 3/Z2 we
glue in the Aki −1 ALF space Ni . In this way one obtains a closed definite triple ωε

which is approximately hyperkähler in the sense that |Qωε
− id| → 0 as ε → 0. The

approximate hyperkähler triple is then deformed into an exact solution by solving
an equation like (11) using the Implicit Function Theorem in appropriately chosen
weighted Hölder spaces.

4 Collapse and Elliptic Fibrations

In this final section we describe an influential work of Gross–Wilson [27] on the
behaviour of hyperkähler metrics on the K3 surface collapsing to a 2-dimensional
limit along the fibres of an elliptic fibration. We will also discuss more recent work
of Hein [29] and related work by Chen–Chen [11–13] on gravitational instantons
with non-maximal volume growth, in which elliptic fibrations also play a key role.

4.1 The Gross–Wilson’s Construction

A complex surface (i.e. a complex manifold of complex dimension 2) (M, J ) is said
to be elliptic if it admits a holomorphic map π : M → C onto a smooth complex
curve C such that the generic fibre is a smooth curve of genus 1. If π : M → C has
a holomorphic section σ, then the generic fibre becomes a smooth elliptic curve. We
say that M is a minimal elliptic surface if there are no (−1)–curves contained in the
fibres.

If (M, J ) is an elliptic complex K3 surface not all fibres can be smooth elliptic
curves because χ (M) = 24. The possible singular fibres of elliptic surfaces have
been classified by Kodaira. They are distinguished by the monodromy. Work locally
with a minimal elliptic surface π : M → � over a disc with a section σ and assume
that all fibres except possibly the one over the origin are smooth elliptic curves. Using
σ, one can describe the restriction M |�∗ of M to the punctured disc as π : (�∗ ×
C)/� → �∗, for a family of lattices � ⊂ C defined by (possibly multi-valued)
holomorphic functions τ1, τ2 on �∗. The monodromy is the representation of the
fundamental group of �∗ on the mapping class group of the smooth fibre. We can
think of it as the conjugacy class of the matrix A ∈ SL(2,Z) generating the action
of π1(�∗) on the oriented pair (τ1, τ2). We refer to [42, Tables I.4.1 and I.4.2] for
Kodaira’s list and limit ourself to the example of a singular fibre of type I1. In this
case M |�∗ is isomorphic to (�∗ × C)/(τ1Z + τ2Z)with τ1 = 1, τ2 = 1

2πi log z. Since
τ2(eiθz) = τ2(z) + θ

2π , the monodromy around an I1 fibre is

(
1 1
0 1

)
. (19)
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The singular fibre π−1(0) is a pinched torus, i.e. a 2-sphere with south and north
poles identified.

Generically a complex K3 surface that admits an elliptic fibration (necessarily
over CP1) has exactly 24 singular fibres, all of type I1. Let π : M → CP

1 be such
such an elliptic K3 surface with 24 singular I1 fibres. Up to changing the complex
structure of M preserving the fibration π : M → CP

1 we can always reduce to the
case that π has a holomorphic section. Gross–Wilson studied the behaviour of Kähler
Ricci-flat metrics on M as we fix this complex structure and deform the Kähler class
so that the elliptic fibres of π shrink to zero size. In other words, they considered
a sequence of Kähler classes converging to the class [π∗ωFS] at the boundary of
the Kähler cone of M and described the behaviour of the Kähler Ricci-flat metric
given by Yau’s Theorem along this sequence. Here ωFS is the Fubini–Study metric
on CP

1. Gross–Wilson’s description of the collapsing Ricci-flat metrics is achieved
by a gluing construction.

4.1.1 The Semi-flat Metric

The model for the collapsing Ricci-flat metrics away from the singular fibres is
provided by a certain semi-flat metric [27, Sect. 2], i.e. a metric that restricts to a flat
metric on each elliptic fibre.

Let π : M → CP
1 be an elliptic K3 surface with a section and restrict the

fibration to a small disc � ⊂ CP
1. Fix a holomorphic coordinate z on �. We

assume that π : M |� → � is a minimal elliptic fibration with a section such that
all fibres are smooth. Using the given holomorphic section, we can identify M |�
with (� × Cw)/(τ1Z + τ2Z) as before. Without loss of generality we assume that
Im(τ1τ2) > 0. Fix a holomorphic symplectic form ωc on M . In coordinates z, w we
can assume that ωc = dz ∧ dw. Given ε > 0, we construct a semi-flat metric ωs f,ε

using the following ingredients.

(i) For each z ∈ � define a flat Kähler metric ωz,ε on π−1(z) by choosing a dual
basis ξ1(z), ξ2(z) to τ1(z), τ2(z) and setting ωz,ε = ε ξ1(z) ∧ ξ2(z). Changing
basis to dw, dw yields ωz,ε = i

2W dw ∧ dw, with W = ε
Im(τ1τ2)

.

(ii) Define ω�,ε as the unique Kähler metric on � such that the pairing T 1,0� ×
(� × C) → C induced by ωc is isometric with respect to the Hermitian metrics
induced by ωz,ε and ω�,ε. Explicitly, ω�,ε = i

2W −1dz ∧ dz.
(iii) The family of lattices τ1Z + τ2Z defines a flat connection on the trivial bundle

� × C by declaring τ1 and τ2 to be flat sections. The associated connection
1-form is

� dz = 1

Im(τ1τ2)

(
Im(τ1w)dτ2 − Im(τ2w)dτ1

)
.

The semi-flat metric is then

ωs f,ε = i
2W −1dz ∧ dz + i

2W (dw − �dz) ∧ (dw − �dz). (20)
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Note that the triple (ωs f,ε,Re ωc, Im ωc) is hyperkähler and that ωs f,ε|π−1(z) is the
flat metric with volume ε.

The construction of the semi-flat metric can be extended to the situation where
M |� has a singular fibre over the origin z = 0. We simply replace � with the punc-
tured disc �∗ and use Kodaira’s normal form for M |�∗ . For example, if π−1(0) is
a fibre of type I1 then M |�∗ is isomorphic to (�∗ × C)/(τ1Z + τ2Z) with τ1 = 1,
τ2 = 1

2πi log z. Note that the assumption Im(τ 1τ2) > 0 forces � to be strictly con-
tained in the unit disc inC. The semi-flat metric (20) on the complement of a singular
fibre of type I1 admits a tri-holomorphic S1–action and, following [27],we can rewrite
it in Gibbons–Hawking coordinates.

First of all, since W Im (�dz) = − Im(w) dW , the imaginary part of W (dw −
� dz) is closed. Hence there exists a function t : �∗ × C → R, unique up to the addi-
tion of a constant, such that−W −1dt = Im(dw − � dz). Thenπ : (�∗ × C)/τ1Z →
�∗ × Rt is a principal U(1)–bundle. Explicitly, t = − 2πεIm(w)

log |z| . Taking the quotient
by τ2Z we obtain a principal U(1)–bundle (�∗ × C)/(τ1Z + τ2Z) → �∗ × R/εZ.
Its Euler class evaluated on |z| = const is ±1, depending on the orientation. Now set
h = W −1, dw − � dz = θ − ih dt and use polar coordinates reiψ = z. The semi-flat
metric (20) can then be written in Gibbons–Hawking coordinates (14)

gs f,ε = − log r

2πε

(
dr2 + r2dψ2 + dt2

) + 2πε

− log r
θ2. (21)

4.1.2 The Ooguri–Vafa Metric

The second building block inGross–Wilson’s construction is theOoguri–Vafametric,
an explicit (incomplete) hyperkähler metric defined in a neighbourhood of a singular
fibre of type I1. This metric was first constructed in [44]. A more thorough analysis
is given in [27, Sect. 3]. The Ooguri–Vafa metric is a periodic version of the Taub–
NUT metric, in the sense that it can be constructed by the Gibbons–Hawking ansatz
on R

2 × S1 with a harmonic function h with a Green’s function singularity at a
point. Since the Green’s function of R2 × S1 changes sign (we say that R2 × S1 is
parabolic), the Ooguri–Vafametric is only defined on a small enough neighbourhood
of the Green’s function singularity.

Fix ε > 0 sufficiently small so that 2ε < 1. Let � be the unit disc in C with
coordinate z = reiψ . Let t be a periodic coordinate of period ε and consider the
product � × S1

t , where S1
t = R/εZ. By abuse of notation we denote by 0 the point

with coordinates z = 0 and t = 0 (mod εZ). Consider the power series

h(z, t) = 1

2

∑

m∈Z

(
1

√
r2 + 4π2(t − mε)2

− a|m|

)

, (22)

where
a|m| = 1

2|m|πε
if m �= 0 and a0 = log 4πε−2γ

πε
.



Gravitational Instantons and Degenerations of Ricci-flat Metrics on the K3 Surface 193

Here γ is the Euler constant, γ = limn→∞
∑n

k=1 k−1 − log n. The series converges
uniformly on compact subsets of (� × S1

t ) \ {0} to the Green’s function of R2 × S1
t

with singularity at 0. Whenever z �= 0, h can be expressed as

h(z, t) = − 1

2πε
log r + 1

2πε

∑

m∈Z∗
K0

( |m|r
ε

)
e

2πmi
ε t ,

where K0 is the secondmodified Bessel function. In particular, due to the exponential
decay of the Bessel function, for all k ≥ 0 there exists a constant Ck > 0 such that

∣∣∣
∣∇k

(
h(z, t) + 1

2πε
log r

)∣∣∣
∣ ≤ Ck

ε
e− r

ε (23)

for all r ≥ 2ε.
One can now use the harmonic function h defined in (22) in theGibbons–Hawking

ansatz (14) to produce a hyperkähler metric—the Ooguri–Vafa metric—on a circle
bundle X over � × S1

t . As in the case of the multi-Taub–NUT metrics, a change of
coordinates shows that the Gibbons–Hawking metric on X extends smoothly over a
point corresponding to the singular points 0 of h.

By (23) the Ooguri–Vafa metric approaches the semi-flat metric (21) up to terms
that decay exponentially fast as ε → 0. It remains to check that the Ooguri–Vafa
metric is defined on an elliptic fibration over a disc with a singular fibre of type
I1 over the origin. Choose the complex structure such that dz and θ − ihdt span
the space of (1, 0)–forms. In this complex structure the projection π : X → � is an
elliptic fibration and π−1(0) is the only singular fibre. One can identify the periods
and therefore the monodromy of this elliptic fibration by integrating the (1, 0)–form
θ − ihdt over a basis {γ1, γ2} of the first homology of a fibre π−1(z). If one chooses
γ1 to be an orbit for the S1–action on the circle bundle X → � × S1

t and γ2 to be
the circle parametrised by t in the base then one finds easily that the monodromy
coincides with (19). Alternatively, one can identify π−1(0) with a pinched torus,
since the restriction of the circle fibration X over {z = 0} × S1

t degenerating at the
point 0 is a 2-sphere with the two poles identified.

4.1.3 Behaviour of Ricci-flat Metrics

For ε > 0 sufficiently small, Gross–Wilson now patch together the semi-flat metric
(20) with 24 copies of the Ooguri–Vafa metric to obtain an approximate Ricci-flat
metric ωε on the elliptic K3 surface M . The error (measured in terms of appropriate
Hölder norms of the Ricci-potential of ωε) is of order e−C/ε. This exponential decay
is crucial for the perturbation argument to work. Indeed, by Yau’s proof of the Calabi
Conjecture there exists a unique function uε on M such that

(ωε + i∂∂uε)
2 = 1

4ωc ∧ ωc,

∫

M
uε ω2

ε = 0. (24)
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Gross–Wilson run through Yau’s proof of the existence of uε keeping careful track of
all the constants involved (e.g. the Sobolev constant in the Moser iteration argument
to prove the C0–estimate). All these constants do blow-up as ε → 0, but only poly-
nomially in ε−1. Since the error is exponentially small the Implicit Function Theorem
can still be applied to obtain the following theorem [27, Theorems 5.6 and 6.4].

Theorem 4.7 Let π : (M,ωc) → CP
1 be an elliptic K3 surface with a holomorphic

section and 24 singular I1 fibres. For ε > 0 sufficiently small let ωε be the Kähler
metric on X constructed by gluing the semi-flat metric (20) to 24 copies of the
Ooguri–Vafa metric. Let uε be the unique solution to (24).

(i) For every k ≥ 2, α ∈ (0, 1) and every simply connected open subset U ⊂ CP
1

with closure contained in the complement of the 24 points p1, . . . , p24 corre-
sponding to singular fibres there exist constants C, c > 0 such that ‖uε‖Ck,α(U ) ≤
Ce−c/ε.

(ii) (X,ωε) converges in the Gromov–Hausdorff sense to CP
1 endowed with the

distance induced by the (singular) metric ω0 limit of the semi-flat metric (20)
away from the 24 singular points. Away from p1, . . . , p24, ω0 satisfies Ric(ω0) =
ωW P , where ωW P is the pull-back to CP

1 \ {p1, . . . , p24} of the Weil–Peterson
metric on the moduli space of elliptic curves.

Similar results—convergence after rescaling to the semi-flat metric on the locus
of smooth fibres and global Gromov–Hausdorff convergence toCP1 as in (ii)—have
been obtained more recently for arbitrary elliptic K3 surfaces without a detailed pic-
ture of the collapsing hyperkähler metrics in a neighbourhood of the singular fibres,
cf. [25, 26]. A complete detailed picture as in [26] for arbitrary configurations of
singular fibre was recently given by Chen-Viaclovsky-Zhang [14] exploiting gluing
definite triples instead of complex Monge-Ampère methods.

4.2 ALG and ALH Gravitational Instantons

In [29] Hein constructs families of gravitational instantons with quadratic and
lower-than-quadratic volume growth. The metrics are constructed by applying Tian–
Yau’s method to a rational elliptic surface, i.e. a complex surface (X, J ) which
is birationally equivalent to CP

2 and which admits a minimal elliptic fibration
with a section. All rational elliptic surfaces can be constructed in the following
way. Let C1 be a smooth plane cubic and C2 a second distinct cubic. The pencil
{λ1C1 + λ2C2 | [λ1 : λ2] ∈ CP

1} has C1 · C2 = 9 base points (counted with multi-
plicities). After blowing them up we obtain a rational elliptic surface π : X → CP

1;
X is a minimal elliptic surface because we blew-up just enough to resolve all the
tangencies of the pencil and X has at least a section given by the (−1)–curve obtained
in the last blow-up. As for the K3 surface, if X is a rational elliptic surface not all

fibres can be smooth elliptic curves because χ(X) = χ
(
CP

2#9CP
2
)

= 12.
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The crucial point now is that the class of an elliptic fibre in a rational elliptic
surface is an anti-canonical divisor: there exists a holomorphic symplectic form
ωc on M = X \ π−1(∞) with simple poles along π−1(∞). (Here we choose an
affine coordinate on the base of the fibration CP

1 so that the chosen elliptic fibre is
the fibre over ∞.) Assuming the existence of an appropriate complete background
metric ω0 on M , Tian and Yau’s method [49, 50] can be applied to construct a
Ricci-flat Kähler metric on M by solving the complex Monge–Ampère equation(
ω0 + i∂∂u

)2 = 1
2ωc ∧ ωc on the complement of π−1(∞). In order to be able to

solve this Monge–Ampère equation it is necessary to assume that ω0 is already an
approximate solution at infinity, in the sense that the Ricci potential of ω0 decays
with a certain rate. Note that the choice of the background ω0 is not obvious nor
unique: the flat and Taub–NUT metrics on C

2 = CP
2 \ CP1 are different complete

hyperkähler metrics with the same holomorphic symplectic form [37]. In the case
of rational elliptic surfaces, Hein exploits the elliptic fibration to construct a good
background Kähler metric ω0 which is approximately Ricci-flat at infinity. The type
of fibre π−1(∞) removed dictates the asymptotics of the metric ω0 using Kodaira’s
normal form for a neighbourhood of π−1(∞) and a semi-flat metric as in Gross–
Wilson’s construction.

The simplest examples of Hein’s construction are those obtained by removing a
smooth elliptic fibre (a fibre of type I0 in Kodaira’s classification): in this case the
metric is ALH.

Definition 4.8 A gravitational instanton (M, g) is called ALH if there exists a com-
pact subset K ⊂ M and a diffeomorphism f : R+ × T 3 → M \ K such that

|∇k
gflat

( f ∗g − gflat)|gflat = O
(
e−δt

)

for all k ≥ 0 and some δ > 0. Here gflat = dt2 + gT 3 for a flat metric gT 3 on T 3.

Examples of ALH metrics have also been obtained by Biquard–Minerbe [8] by
desingularising the flat orbifold (R × T 3)/Z2 by gluing in 8 copies of the Eguchi–
Hanson metric. More recently, Chen–Chen [13, Theorem 1.5] have given a complete
classification of ALH gravitational instantons.

Theorem 4.9 Let M be the smooth 4-manifold underlying the minimal resolution
of (R × T 3)/Z2, where T 3 = R

3/(Zv1 + Zv2 + Zv3). For each i = 1, 2, 3 let Fi

be the element of H2(T 3,Z) corresponding to span(v j , vk), where εi jk = 1. Then
H2(M,Z) is spanned by F1, F2, F3 and the classes of the 8 (−2)–curves introduced
by the resolution M → (R × T 3)/Z2.

(i) Let α ∈ H 2(M,R) ⊗ R
3 satisfy

α(�) �= 0 ∈ R
3 for all � ∈ H2(M,Z) such that � · � = −2,

the matrix with rows α(Fi ), i = 1, 2, 3, is positive definite.
(25)
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Then there exists an ALH hyperkähler structure ω on M with [ω] = α, unique
up to triholomorphic isometries acting trivially on H 2(M,R).

(ii) If (X,ω) is an ALH gravitational instanton then X is diffeomorphic to M and
[ω] satisfies (25).

ALH gravitational instantons can be used to produce hyperkähler metrics on
the K3 surface that develop a long neck. Indeed, if (M,ω) and (M,ω′) are two
ALH gravitational instantons asymptotic to the same flat cylinder dt2 + gT 3 , then
one can cut off their cylindrical ends for t � 1 and glue the resulting manifolds
with boundary to produce a sequence of approximately Ricci-flat metrics on the
K3 surface that develop a very long neck. Alternatively, by rescaling the metrics
in the sequence so that the diameter stays bounded, one produces in this way a
sequence of approximately Ricci-flat metrics that collapse to a closed interval with
curvature concentration at the two end points. Chen–Chen [13, Sect. 5] show that
these approximate solutions can be perturbed into exact hyperkähler metrics with
the same collapsing behaviour.

Hein’s examples of gravitational instantons defined on the complement of a
singular fibre of type I ∗

0 , I I, I I I, I V in Kodaira’s classification are also easily
understood, in particular those examples that arise from isotrivial elliptic fibra-
tions. Let E be a smooth elliptic curve admitting a Zr–subgroup of automorphisms
for r = 2, 3, 4 or 6. Thus E is any elliptic curve if r = 2; a Weierstrass equation
for E is y2 = x3 + x if r = 4, with Z4–action generated by (x, y) 
→ (−x, iy);
if r = 3 or 6 then E : y2 = x3 + 1 and the Z3 and Z6–actions are generated by
(x, y) 
→ (e2πi/3x, y) and (x, y) 
→ (e2πi/3x,−y) respectively. Now consider the
orbifold (CP1 × E)/Zr , where the cyclic group Zr acts diagonally on CP

1 and E .
Resolve the singularities and blow down all (−1)–curves in the fibres to obtain a
rational elliptic surface with only two singular fibres over 0 and ∞ and such that
all smooth fibres are isomorphic. Corresponding to r = 2, 3, 4, 6 this construction
yields four pairs of singular fibres—(I ∗

0 , I ∗
0 ), (I I, I I ∗), (I I I, I I I ∗) and (I V, I V ∗)

in Kodaira’s notation. Unless r = 2, the two fibres in each pair are different because
theZr–action onCP1 has different weights at 0 and∞. By removing the fibre of non–
∗–type in each pair, one obtains a crepant resolution of T ∗E/Zr and the resulting
semi-flat metric coincides with the flat metric on T ∗E/Zr . In fact, in this case some
of Hein’s Ricci-flat metrics can also be obtained from the Kummer-type construction
of Biquard–Minerbe [8], gluing rescaled ALE spaces to resolve the singularities of
the flat orbifold. When we remove the fibre of ∗–type in each pair, Hein’s Ricci-
flat metric is asymptotic to the twisted product of a flat metric on E and of a flat
2-dimensional cone which is not a quotient of C [29, Theorem 1.5 (ii)].

All these examples have faster than quadratic curvature decay and their asymptotic
geometry is called ALG. The recent classification result of Chen–Chen [13, Theorem
1.4] states that all ALG gravitational instantons arise from (a slight improvement of)
Hein’s construction on the complement of a fibre of type I ∗

0 , I I, I I ∗, I I I, I I I ∗, I V
or I V ∗. Furthermore, we note that constructions of sequences of Ricci-flat metrics
on the K3 surface obtained by desingularising orbifolds (E1 × E2)/Zr for a product
of Zr–invariant elliptic curves with Vol(E2) → 0 could provide examples of col-
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lapsing sequences of hyperkähler metrics with ALG spaces of type I ∗
0 , I I, I I I, I V

as rescaled limits.
By removing a singular fibrewith infinitemonodromy,Hein is also able to produce

examples with more exotic asymptotic geometry, often referred to as gravitational
instantons of type ALG∗ and ALH∗. The examples of type ALG∗ (ALH∗) have
quadratic volume growth (volume growth r

4
3 ) and are obtained by removing a fibre

of Kodaira type I ∗
b , b = 1, . . . , 4, (Ib, b = 1, . . . , 9) from a rational elliptic surface.

These examples do not have faster than quadratic curvature decay and do not fit into
Chen–Chen’s classification.

The asymptotic geometry of the ALG∗ and ALH∗ examples can be constructed
using the Gibbons–Hawking ansatz on (the Z2–quotient of) R2 × S1 and R × T 2,
respectively, with a finite number of punctures. Since R

2 × S1 and R × T 2 are
parabolic, the sumofGreen’s functions used as the harmonic function in theGibbons–
Hawking construction is only positive at infinity and the construction provides only
good asymptotic models. We expect that a gluing construction as in Theorem 3.8
using Atiyah–Hitchin spaces as building blocks together with the Gibbons–Hawking
construction onR2 × S1 andR × T 2 will yield families of ALG∗ and ALH∗ gravita-
tional instantons close to a collapsed limit (R2 × S1)/Z2 and (R × T 2)/Z2, respec-
tively.We also expect that extensions of Theorem 3.8 where one considers sequences
of flat metrics on T 3 collapsing to T 2 and S1 should provide examples of collapsing
Ricci-flat metrics with ALG∗ and ALH∗ gravitational instantons as rescaled lim-
its. More generally, it is expected that ALG, ALH, ALG∗ and ALH∗ gravitational
instantons will play an important role in understanding relations between collapsing
sequences of Ricci-flat metrics on the K3 surface and degenerations of a compatible
complex structure, cf. for example [33]. Very recently Hein–Sun–Viaclovsky–Zhang
[28] gave a general construction of families of Ricci-flat metrics on the K3 surface
that collapse to a closed bounded interval with curvature concentrating at a finite
number of points (always including the two endpoints). The building blocks for this
gluing construction are a pair ALH∗ metrics bubbling off at the endpoints of the inter-
val and an incomplete “neck” joining the two obtained from the Gibbons–Hawking
ansatz on R × T 3.
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