
Geometric Flows of G2 Structures

Jason D. Lotay

Abstract Geometric flows have proved to be a powerful geometric analysis tool,
perhaps most notably in the study of 3-manifold topology, the differentiable sphere
theorem, Hermitian–Yang–Mills connections and canonical Kähler metrics. In the
context of G2 geometry, there are several geometric flows which arise. Each flow
provides a potential means to study the geometry and topology associated with a
given class of G2 structures. We will introduce these flows, and describe some of the
key known results and open problems in the field.

1 Introduction

Our understanding of G2 structures, and particularly the question of when a G2

structure can be deformed to become torsion-free, is very limited. It is therefore useful
to look to new tools to tackle open problems in the area.Anobvious avenue of attack is
to use geometric flows, given their success in other geometric contexts: for example
in analysing Hermitian connections (via Yang–Mills flow), convex hypersurfaces
(via mean curvature flow) and perhaps most notably 3-manifolds and 1

4 -pinched
Riemannian manifolds (via Ricci flow).

The goal of these notes is to explain some of the basics behind the geometric flow
approach to studying G2 structures and give a brief overview of what is known. It is
important to note that several different flows ofG2 structures have been studied, based
on various well-founded motivations. We shall attempt to give a brief description of
each of these flows, the reasons behind them and some of the pros and cons in their
study.

As well as giving this brief survey of the landscape in geometric flows of G2

structures, we will provide some indication of some key open questions that we
believe are worthy of further exploration.

Note These notes are based primarily on a lecture given at a Minischool on “G2

Manifolds and Related Topics” at the Fields Institute, Toronto in August 2017.
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2 Geometric Flows

What is a geometric flow? Informally, it is amechanism for “simplifying” or “decom-
posing” a given geometric structure into one or several “canonical” or “special”
pieces. Thus, the primary goals of geometric flows are to show the existence of spe-
cial geometric objects and to determine which geometric objects can be deformed
to special ones. By answering these questions, one can then hope to understand
large classes of geometric structures by understanding the much smaller class of
canonical ones.

2.1 Heat Flow

Functions. The motivation for geometric flows comes from the heat flow for func-
tions f on a Riemannian manifold:

(
∂

∂t
+ �

)
f = 0. (2.1)

(Here, and throughout, we will use the geometer’s convention that the Laplacian �

is a non-negative operator, so � = d∗d on functions.) The heat flow is parabolic,
which means that if we consider (2.1) on a compact manifold M , then a short time
solution to (2.1) is guaranteed to exist and the equation is “regularizing” (a notion
we shall clarify in a moment).

We now make an elementary but fundamental observation.

Proposition 2.1 The heat flow is the negative gradient flow for the Dirichlet energy:

1

2

∫
M

|d f |2 volM ≥ 0. (2.2)

Proof We see that for any t-dependent family of functions we have

∂

∂t

1

2

∫
M

|d f |2 volM = 〈 ∂

∂t
d f, d f 〉L2 = 〈d ∂

∂t
f, d f 〉L2 = 〈∂ f

∂t
,� f 〉L2 . (2.3)

�

Thus (2.2) will decrease fastest along the heat flow (2.1), and the critical points for
the Dirichlet energy (which are exactly the stationary points for (2.1)) are given by
the constant functions (i.e. d f = 0) which are the absoluteminimizers for the energy.

From the gradient flow point of view we should expect that given any smooth
function, by following the heat flow we should be able to deform it into a critical
point for (2.2), i.e. a constant function. We now show that this is the case.
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Theorem 2.2 Suppose that f = f (x, t) solves the heat equation (2.1) on a compact
manifold M and f (x, 0) is smooth. Then f (x, t) exists for all t > 0 and f (x, t) →
c ∈ R smoothly as t → ∞, where

c = 1

Vol(M)

∫
M

f (x, 0) volM .

Proof If we suppose that f is smooth at t = 0, then it is smooth for all t > 0 as well
and the eigenfunctions of � span L2(M), so at each time t we can write

f (x, t) =
∑

λ

cλ(t) fλ(x) (2.4)

for functions cλ of time t and functions fλ on M , where� fλ = λ fλ for λ ≥ 0 and the
fλ form a complete orthonormal system for L2(M). It quickly follows from inserting
(2.4) in (2.1) that

cλ(t) = cλ(0)e
−λt , (2.5)

and so the solution of (2.1) actually exists for all time t > 0. Moreover, the solution
converges as t → ∞ to

c0 f0 = 1

Vol(M)

∫
M

f (x, 0) volM , (2.6)

the “average value” of f at time 0. �

Thus, the heat flow “regularizes” the function f in that it simplifies it as much
as possible (it turns it into a constant) and we see that the higher the frequency
(i.e. eigenvalue) of the eigenfunction of � in the expansion (2.4), the faster that
component of f decays under the flow by (2.5). The fλ for high λ correspond to
higher “oscillations” of f , and so these “wiggles” in f get smoothed out by (2.1),
eventually giving a constant. In terms of the Dirichlet energy functional (2.2), it
shows that every function can be deformed to a minimizer (so the space of smooth
functions retracts onto the constant functions, which are the critical points of the
functional), and the minimizer we find is determined by the average value of f .

Notice that our analysis in the proof of Theorem2.2 implies the following.

Lemma 2.3 The integral of f is constant along (2.1).

We are therefore free to modify (2.1) and consider

(
∂

∂t
+ � − λ1

)
f = 0, (2.7)

for functions f with
∫
M f = 0, where λ1 is the first positive eigenvalue of � on

M . It is easy to see that (2.7) is still parabolic and that if
∫
M f = 0 initially then it

stays zero for all t under (2.7). However, under (2.7), we see that the flow no longer
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converges to a constant, but instead to the projection of f to the λ1-eigenspace of �

(which may now have several components if λ1 is not a simple eigenvalue). Again,
this flow “regularizes” f , throwing away all of the higher eigenmodes of � in the
limit.

Forms. We can also consider the heat flow on differential k-forms α on a compact
manifold M : (

∂

∂t
+ �

)
α = 0, (2.8)

where � is the Hodge Laplacian

� = dd∗ + d∗d. (2.9)

The flow (2.8) is now the gradient flow for the Dirichlet energy

1

2

∫
M

|dα|2 + |d∗α| volM ≥ 0 (2.10)

by a similar argument as before. Again decomposing α(t) at each time t using
eigenforms for �, we have the following.

Theorem 2.4 The heat equation (2.8) for α(t) on a compact manifold starting at a
smooth form α(0) exists for all time and converges smoothly to the projection of α(0)
to the 0-eigenforms for �, i.e. the harmonic k-forms

dα = d∗α = 0. (2.11)

The harmonic forms are precisely the critical points of (2.10) and are clearly absolute
minimizers as they are zeros for the energy functional.

Now, the harmonic forms are only a finite-dimensional space in the space of k-
forms, so given any initial k-form it could well be that the heat flow will just send
it to zero, which is clearly a legitimate critical point for the flow (though not an
interesting one!). For example if α(0) is exact or coexact (or the sum of forms of this
type), the heat flow will just go to 0.

To ensure that we find a non-trivial critical point, we could restrict attention to
closed k-forms:

dα = 0. (2.12)

Notice that this is preserved by (2.8) since in this case we have

∂

∂t
α = −�α = −(dd∗ + d∗d)α = −dd∗α, (2.13)

so in fact we have that α(t) lies in the fixed cohomology class [α(0)] for all time as
the right-hand side of (2.13) is exact. Therefore, if we have that [α(0)] 	= 0 is a non-
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trivial cohomology class, we know that (2.13) will exist for all time and converge
to the non-zero harmonic representative of that class (which we know exists and is
unique by Hodge theory).

We could also equally well have restricted to coclosed k-forms

d∗α = 0, (2.14)

since this is also preserved by a similar argument. This time ∗α(t)will lie in the fixed
cohomology class [∗α(0)] for all time and the flow will converge to the Hodge dual
of the harmonic representative of [∗α(0)].

We summarize these findings.

Proposition 2.5 Suppose that α(t) is a family of k-forms on a compact n-manifold
M solving (2.8).

(a) If dα(0) = 0,α(t) exists for all t > 0 satisfying dα(t) = 0 for all t and converges
smoothly to the unique harmonic k-form in [α(0)] ∈ Hk(M).

(b) If d∗α(0) = 0, α(t) exists for all t > 0 satisfying d∗α(t) = 0 for all t and con-
verges smoothly to the Hodge dual of the unique harmonic (n − k)-form in
[∗α(0)] ∈ Hn−k(M).

We might hope, at least naively, that we could have similar good behaviour in
geometric flows as for the heat flow, and thus obtain ways to canonically repre-
sent classes of geometric structures, just as harmonic forms uniquely represent all
cohomology classes.

2.2 Ricci Flow and Mean Curvature Flow

Geometric flows aim to act on the same principle as the heat flow, two canonical
examples being Ricci flow on metrics g and mean curvature flow on immersions F
into a Riemannian manifold:

∂

∂t
g = −2Ric(g) and

∂

∂t
F = H, (2.15)

where Ric(g) denotes the Ricci curvature tensor of g and H denotes the mean cur-
vature vector of the immersion F . (Two other key examples of geometric flows of
significant interest wheremany results have been obtained are the harmonicmap heat
flow and Yang–Mills flow, but we do not discuss them here.) Under suitable choices
of coordinates, (2.15) can be seen as “heat flows”, however this time the Laplacian
depends on the metric or immersion respectively, and so the flows are nonlinear.

Parabolicity. The flows (2.15) are not parabolic due to geometric invariance in the
problem: in Ricci flow this is diffeomorphism invariance, and in mean curvature flow
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this is invariance under reparametrisation. However, once one kills this geometric
invariance, one obtains a parabolic equation.

For example, in Ricci flow, one can apply the so-called DeTurck’s trick:

∂

∂t
h = −2Ric(h) + LX (h)h, (2.16)

where X (h) is a suitably chosen vector field (depending on the metric h) which
ensures that (2.16) is parabolic and so has a short time solution which is regularizing.
We can get a solution to Ricci flow from a solution to (2.16) by considering g = �∗h,
where � are diffeomorphisms defined by

∂

∂t
� = −X (h) and �(0) = id . (2.17)

Proposition 2.6 Suppose that h are metrics satisfying (2.16) and � are diffeomor-
phisms satisfying (2.17). Then g = �∗h satisfies the Ricci flow in (2.15).

Proof By (2.16) and (2.17),

∂

∂t
g = ∂

∂t
�∗h = �∗ ∂

∂t
h − �∗LX (h)h = −2�∗ Ric(h) = −2Ric(g). (2.18)

�

This result is great but, it is natural to ask: what is a good choice of X (h)? The
idea is, given h, for any symmetric 2-tensor k to consider the “gravitational tensor”

G(k) = k − 1

2
(tr k)h, (2.19)

whose divergence is given by the 1-form:

divG(k) = div(k) + 1

2
d(tr k). (2.20)

(Here, by the divergence we mean the formal adjoint of the map X � 
→ 1
2LXh, so

that div(k) is the negative of the trace on the first two indices of ∇k; i.e. div(k) j =
−∇i ki j . The musical isomorphisms, ∇ and trace are all defined by h.) If k is a fixed
Riemannian metric then, using h, we can view k as an invertible map on 1-forms
and so

X (h) = (k−1 divG(k))�, (2.21)

where the musical isomorphism is again given by h, is a well-defined vector field.

Theorem 2.7 If we choose the vector field X (h) as in (2.21), the Ricci–DeTurck
flow (2.16) is parabolic.
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Proof It is straightforward to compute that, with the choice of X (h) in (2.21), the
linearisation of (2.16) is simply

∂

∂t
h = −�h, (2.22)

the heat equation on h. �

Moreover, (2.17) is harmonic map flow, which is parabolic, so we can solve (2.16)
and (2.17) uniquely for short time by parabolic theory, and hence obtain a unique
short time solution to the Ricci flow by Proposition2.6.

Now, by analogy with the heat flow, in Ricci flow the “eigenmodes” we need to
consider are solutions to

Ric(g) = λg; (2.23)

in other words, Einstein metrics. Here the “eigenvalues” λ have no distinguished sign
and so, by analogy with the heat flow analysis above, we cannot say what will happen
along the flow in general. However, if the flow exists for all time and converges, then
it must tend to a Ricci-flat metric—the “zero mode” in the expansion of g in Einstein
metrics, if you will. Similarly, for mean curvature flow, if the flow exists for all
time and converges, we would obtain a minimal immersion (and the “expansion” of
the immersion should be into constant mean curvature immersions). We see in both
cases that we are breaking up our geometric object into pieces of significant interest.
Moreover, the long-time existence and convergence of the flow allows us both to find
the special object (a Ricci-flat metric or minimal immersion) and, at the same time,
show that our initial geometric object can be deformed smoothly into the special one,
which again is an important and challenging problem to solve.

Compact surfaces. To see the power of geometric flows it is instructive to look at
Ricci flow in dimension 2. Here, Ricci curvature is just the Gauss curvature of the
surface (up to a multiple) and there are three possibilities on a compact orientable
surface.

• The flow exists for all time and converges. This means that the surface has a flat
metric, and so must have genus 1 (by Gauss–Bonnet).

• The flow exists for all time but does not converge. In this case, just as when we
perturbed the heat flow in (2.7), we can modify the Ricci flow and show that this
modified flow exists for all time and converges to a hyperbolic metric. Thus the
surface must have genus at least 2.

• The flow exists for only a finite time. This does not have a direct heat flow analogue,
but one can again modify the Ricci flow as in the previous case (now by adding
a term with the opposite sign), and show that this converges now to a constant
positive curvature metric, which means that the surface must be a sphere. This is
the difficult case in the analysis of the Ricci flow and this is typical of geometric
flows: the case corresponding to “negative eigenvalues” (which do not happen for
the Laplacian in the heat flow) is the most challenging to understand.
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Thus, the Ricci flow in dimension 2 gives an alternative means to prove the
uniformization theorem. In particular, that constant curvature metrics exist on any
compact orientable surface, and the topology of the surface uniquely determines the
sign of the constant curvature.

Gradient flow. Finally, one can also interpret (2.15) as gradient flows: in the case
of mean curvature flow this is nothing but the negative gradient flow of the volume
functional on immersions, but for Ricci flow the gradient flow interpretation is more
subtle and involved so we shall not describe it here.

Needless to say, the fact that they are gradient flows is very helpful, since then
one has some expectation of what one might hope to happen along the flow, as one
has a monotone quantity (the analogue of the Dirichlet energy) along the flow which
is trying to reach a critical value for the functional.

However, even with the gradient flow point-of-view, the nonlinearity of the prob-
lem and the potential complexity of the topology of the space of geometric objects
we are considering means that we cannot always hope for the analysis of our flow
to be straightforward and to go as expected. For example, the Ricci flow and mean
curvature flow have special features (both good and bad) due to nonlinearity which
simply cannot possibly occur in the standard heat flow.

2.3 Singularities

A singularity in a geometric flow is a point where the flow cannot be continued,
because some quantity blows up to infinity. We already saw this in the Ricci flow
in dimension 2, where there is always a singularity in finite time if we work on a
sphere. Singularities may sound bad, and they definitely can be, but they can also
be very helpful because they may tell you that you need to break up your geometric
object into several pieces to get canonical objects. This happens for example in 3-
dimensional Ricci flow, where singularities can be used to decide how to break up
the 3-manifold according to Thurston’s Geometrization Conjecture (now a theorem
by Perelman’s work).

The question is: what happens at a singularity geometrically? In good situations
the singularity will be modelled on a special solution to the flow called a soliton. By
“modelled on” we mean that by appropriately rescaling the flow around the singular
point, both in space and time, in the limit we should see a soliton.

Definition 2.8 Asoliton is a solution to theflowwhich is “self-similar”,meaning that
it moves very simply under the flow, just under rigid motions and diffeomorphisms
or reparametrisations (or whatever notion of invariance is present in the problem).

Solitons which just move under diffeomorphisms are called steady, those which
rescale getting smaller are called shrinking, and those which rescale getting larger
are called expanding.

That is usually all of them (like in Ricci flow), but in mean curvature flow a soliton
can also just translate, which is, rather unimaginatively, called a translating soliton.
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Simple examples of solitons in Ricci flow are given by constant curvature metrics:
flat metrics are steady (in fact critical points), constant positive curvature metrics are
shrinking (like standard round spheres) and constant negative curvature metrics are
expanding (like hyperbolic space).

From this point of view we see that shrinking solitons are the ones we should be
most concerned with, since they will become singular in finite time, shrinking away.
However, steady and expanding solitons also play an important role.

Steady solitons are potentially where the flow can get “stuck” going round and
round under diffeomorphisms and never converging. Non-stationary compact exam-
ples of steady solitons are ruled out if you have a standard gradient flow interpretation
of the flow, since the corresponding functional would be constant for steady solitons,
which is a contradiction unless they are stationary. This shows one of the benefits of
knowing that your geometric flow is the gradient flow of some functional.

On the other hand, expanding solitons give a potential mechanism to escape from
a singularity, since they expand away from a singular geometric object.

It is therefore clear that understanding singularities and solitons is an important
part of the study of any geometric flow.

3 G2 Structures

Given this discussion of geometric flows, we are now motivated to ask the question:
are there (useful) geometric flows of G2 structures on a (compact) 7-manifold M
and what do they want to achieve? We should perhaps not expect there to be just one
useful flow to consider: for immersions, both mean curvature flow and inverse mean
curvature flow have important geometric uses, for example. We therefore need to
think about what are the important classes of G2 structures that we want to analyse
and what we expect to be “canonical” representatives for these classes. (For details
about G2 structures, which are equivalent to positive 3-forms, see for example [21].)

3.1 Torsion-Free and Torsion Forms

Clearly the most important class of G2 structures are the torsion-free ones, given by
positive 3-forms ϕ on M satisfying

∇ϕϕ = 0 ⇔ dϕ = d∗
ϕϕ = 0 ⇔ Hol(gϕ) ⊆ G2 . (3.1)

(We are being slightly sloppy in the last equivalence, since given a metric there are
infinitely many G2 structures inducing that metric, so we mean that the holonomy
Hol(gϕ) of gϕ is contained in G2 if and only if there is some G2 structure ϕ inducing
gϕ which is closed and coclosed.) We also know that we may equivalently define G2

structures on oriented, spin, Riemannian 7-manifolds using unit spinors σ , and the
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condition for the G2 structure to be torsion-free is that σ is parallel with respect to
the spin connection :

∇σ = 0. (3.2)

(We can recall the relationship between unit spinors and positive 3-forms:

4σ ⊗ σ = 1 + ϕ + ∗ϕϕ + volϕ, (3.3)

up to appropriate normalizations and sign conventions.)

Closed and coclosed G2 structures. However, there are other obvious (potentially)
important classes of G2 structures, for example closed G2 structures

dϕ = 0, (3.4)

or coclosed G2 structures
d∗

ϕϕ = 0. (3.5)

It is worth noting that, on the face of it, (3.4) is much stronger than (3.5): the first is a
condition on a 4-form in 7-dimensions (so 35 equations at each point), whereas the
second is a condition on a 5-form in 7-dimensions (so 21 equations at each point).

Both conditions (3.4) and (3.5) can be satisfied independently on any open 7-
manifold admitting a G2 structure by a straightforward h-principle argument; thus
one can say (in some sense) that these conditions are only truly meaningful on
compact 7-manifolds. In fact, (3.5) can always be satisfied on a compact 7-manifold
admitting a G2 structure also by an h-principle [7], but it is currently unknown
whether the same is true for condition (3.4) or not: this again reflects the fact that
(3.4) is a stronger condition than (3.5).

Theorem 3.1 Let ϕ be a G2 structure on M.

(a) If M is open, then there exists a G2 structure ϕ̃ C0-close to ϕ satisfying (3.4).
(b) If M is either open or compact, then there exists a G2 structure ϕ̃ C0-close to ϕ

satisfying (3.5).

One can interpret the h-principle result for coclosed G2 structures as both positive
and negative. On the one hand, it is good becausewe can always assume the condition
(3.5) holds for ϕ if we want, though we have very little control on the ϕ produced
by the h-principle: we can assume it is C0-close to our original G2 structure but the
method only produces ϕ which will be very far away in the C1-topology. On the
other hand, it says that the condition (3.5) is, in a sense, meaningless and that talking
about coclosed G2 structures is the same as talking about all G2 structures, which
becomes a topological rather than a geometric question.

Torsion forms. One could also conceivably look at other special torsion classes by
setting various combinations of the intrinsic torsion forms to vanish, recalling that
these are given by
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dϕ = τ0 ∗ ϕ + 3τ1 ∧ ϕ + ∗ϕτ3 and d ∗ϕ ϕ = 4τ1 ∧ ∗ϕϕ + τ2 ∧ ϕ, (3.6)

where τ0 ∈ C∞(M), τ1 ∈ �1(M), τ2 ∈ �2
14(M), τ3 ∈ �3

27(M), with the standard
notation referring to the type decomposition of forms determined by ϕ (see, for
example, [5]). Recall that β ∈ �2

14(M) if and only if

β ∧ ϕ = − ∗ϕ β ⇔ β ∧ ∗ϕϕ = 0, (3.7)

and that γ ∈ �3
27(M) if and only if

γ ∧ ϕ = γ ∧ ∗ϕϕ = 0. (3.8)

Moreover, recall thatwehave an isomorphism iϕ : S2T ∗M = Span{gϕ} ⊕ S20T
∗M →

�3
1 ⊕ �3

27 given on decomposable elements α ◦ β by

iϕ(α ◦ β) = α ∧ ∗ϕ(β ∧ ∗ϕϕ) + β ∧ ∗ϕ(α ∧ ∗ϕϕ).

We also have an explicit way to invert iϕ using jϕ : �3T ∗M → S2T ∗M given by

jϕ(γ )(u, v) = ∗ϕ(u�ϕ ∧ v�ϕ ∧ γ ).

Notice that iϕ(gϕ) = 6ϕ, jϕ(ϕ) = 6gϕ and Ker jϕ = �3
7.

Other classes. A particular class of G2 structures one could consider are the nearly
parallel G2 structures

dϕ = τ0 ∗ϕ ϕ (3.9)

for a constant τ0. These structures define Einstein metrics with non-negative scalar
curvature, and so there is a potential relation between these structures and our dis-
cussion of the Ricci flow above.

One could also view matters in terms of spinors, and study geometric flows of
unit spinors. One can then try studying parallel spinors or, more generally, Killing
spinors, as well as other special types of spinors (e.g. twistor spinors).

3.2 General Flows

Based on this discussion, it is clear that there are many possible geometric flows one
could write down, and each one could potentially tackle different open problems in
G2 geometry.

That said, one can describe how various key quantities vary under a general flow
of G2 structures (see [5, 22]). By the type decomposition of 3-forms, any geometric
flow of G2 structures can be written
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∂

∂t
ϕ = 3 f0ϕ + ∗ϕ( f1 ∧ ϕ) + f3 = iϕ(h) + X� ∗ϕ ϕ (3.10)

where f0 ∈ C∞(M), f1 ∈ �1(M) and f3 ∈ �3
27(M), h ∈ C∞(S2T ∗M) and X ∈

C∞(T M) at each time t . From this one can see that the metric and 4-form evolve as
follows.

Proposition 3.2 Along (3.10) we have

∂

∂t
gϕ = 2 f0g + 1

2
jϕ( f3) = 2h (3.11)

and
∂

∂t
∗ϕϕ = 4 f0 ∗ ϕ + f1 ∧ ϕ − ∗ϕ f3. (3.12)

In particular, along any flow (3.10), the evolution of the metric is independent of
the vector field X , and the volume form evolves as follows.

Proposition 3.3 Along (3.10) we have

∂

∂t
volϕ = 7 f0 volϕ = 1

3

∂

∂t
ϕ ∧ ∗ϕϕ. (3.13)

This formula is useful to study Hitchin’s volume functional [17] on a compact
manifold M . (Note that the published version [18] of [17] omits the material on G2

structures.)

Proposition 3.4 Along (3.10), the volume functional

Vol(ϕ) = 1

7

∫
M

ϕ ∧ ∗ϕ =
∫
M
volϕ = Vol(M, gϕ). (3.14)

satisfies (by (3.13))

∂

∂t
Vol(ϕ) = 7

∫
M

f0 volϕ = 1

3
〈 ∂

∂t
ϕ, ϕ〉L2 . (3.15)

This shows in particular that Vol(ϕ) will be monotone along any flow for which
f0 has a sign, and the critical points of the functional will be characterised by the G2

structures for which f0 = 0. It also shows that the obvious gradient flow for Vol(ϕ)

is
∂

∂t
ϕ = λϕ (3.16)

for some λ > 0 (or λ < 0 for the negative gradient flow). This is clearly useless
since all it does is rescale ϕ! Therefore, if one wants to think about making use of
the volume functional for a gradient flow, we should consider restricting the class of
G2 structures we work with.
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4 Laplacian Flow

The geometric flow of G2 structures that has received the most attention is the Lapla-
cian flow due to Bryant [5].

Definition 4.1 The Laplacian flow is given by

∂

∂t
ϕ = �ϕϕ, (4.1)

where
�ϕ = dd∗

ϕ + d∗
ϕd (4.2)

is the Hodge Laplacian.

On a compact manifold, we see that

�ϕϕ = 0 ⇔ dϕ = d∗
ϕϕ = 0 (4.3)

by integration by parts, and so torsion-free G2 structures will be the critical points
of (4.1).

4.1 Closed G2 Structures

Bryant’s suggestion is to restrict (4.1) to closed G2 structures ϕ as in (3.4). A key
motivation is the usual one in G2 geometry: namely that the torsion-free condition
naturally splits into a linear condition (3.4) and a nonlinear condition (3.5). Thus,
it is useful to assume the linear condition is satisfied then try to solve the nonlinear
one. This strategy is the only one that has proved to be successful, by the work of
Joyce [21, Chap. 11]. Hence, it clearly makes sense to follow the same approach in
a geometric flow.

It will turn out that when (4.1) exists the closed condition is preserved. In that
case

∂

∂t
ϕ = dd∗

ϕϕ, (4.4)

so in fact (4.1) stays within a fixed cohomology class [ϕ(0)].
Proposition 4.2 If ϕ(t) satisfies (4.1) on M and dϕ(t) = 0 then ϕ(t) ∈ [ϕ(0)] ∈
H 3(M) for all t for which the flow exists.

This is perhaps reminiscent of the Kähler–Ricci flow on a manifold with c1 = 0,
which starts with a Kähler form and stays within the Kähler class, but it is not clear
at all whether such an analogy is pertinent or a red herring.

When we restrict to closed G2 structures we can decompose
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�ϕϕ = 1

7
|τ2|2ϕ + f3. (4.5)

We can see this because
d∗ϕϕ = τ2 ∧ ϕ = − ∗ϕ τ2 (4.6)

by (3.6) and (3.7), and therefore

�ϕϕ = dd∗
ϕϕ = dτ2 (4.7)

and differentiating (4.6) gives

0 = dτ2 ∧ ϕ = �ϕϕ ∧ ϕ = 0. (4.8)

This means that f1 = 0 in (3.10). Moreover, (4.6) and (3.7) imply that

dτ2 ∧ ∗ϕϕ = d(τ2 ∧ ∗ϕϕ) − τ2 ∧ d ∗ϕ ϕ = −τ2 ∧ τ2 ∧ ϕ = |τ2|2 volϕ . (4.9)

Hence, for closed G2 structures, (4.5) implies the following.

Lemma 4.3 For a closed G2 structure ϕ, we have

�ϕϕ = 0 ⇔ d∗
ϕϕ = 0. (4.10)

Therefore, the critical points of (4.1) on closed G2 structures are precisely the
torsion-free G2 structures, without assuming compactness. This might seem like a
minor point (since we will mainly only care about the Laplacian flow on compact
manifolds) but it appears to hint at the special character of the Laplacian flow because
it is restricted to closed G2 structures.

Moreover, we can show that

�ϕϕ = iϕ
(

− Ric(gϕ) + 4

21
|τ2|2gϕ + 1

8
jϕ

( ∗ϕ (τ2 ∧ τ2)
))

(4.11)

so that by (3.11) we have the following.

Proposition 4.4 Along (4.1) we have

∂

∂t
gϕ = −2Ric(gϕ) + 8

21
|τ2|2gϕ + 1

4
jϕ

( ∗ϕ (τ2 ∧ τ2)
)
. (4.12)

4.2 Volume Functional

Lemma 4.5 Along (4.1) for closed G2 structures, the volume functional Vol(ϕ) is
monotonically increasing.
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Proof We can already see from (4.5) that, in terms of (3.10),

f0 = 1

7
|τ2|2 ≥ 0. (4.13)

Hence, by (3.15), the volume functional Vol(ϕ) is monotonically increasing along
the Laplacian flow. �

This allows us to give a very quick alternative proof of the main result of [27].

Proposition 4.6 Let ϕ(t) be a steady or shrinking soliton to the Laplacian flow (4.1)
for closed G2 structures on a compact manifold. Then ϕ(t) is stationary, i.e. ϕ(t) =
ϕ(0) is torsion-free for all t .

Proof If ϕ(t) is steady or shrinking then

∂

∂t
Vol(ϕ(t)) ≤ 0. (4.14)

Therefore, by Lemma4.5, Vol(ϕ(t)) is constant. Hence, by (3.15) and (4.13), we
must have that

f0 = 1

7
|τ2|2 = 0, (4.15)

which means τ2 = 0, as required. �

It is important to note that this result fails in the non-compact setting: Lauret [26]
has constructed examples of non-compact shrinking and steady solitons which are
not stationary. The proof of Proposition4.6 is not valid here since the volume is not
well-defined for these non-compact examples.

We now show that the Laplacian flow for closed G2 structures is actually the
gradient flow forVol(ϕ)where, from now on, we only consider the volume functional
restricted to a given cohomology class.

Proposition 4.7 The Laplacian flow (4.1) for closed G2 structures ϕ is the gradient
flow for the volume functional Vol(ϕ) in (3.14) restricted to [ϕ].
Proof We know that the flow stays within a given cohomology class, so we can write

ϕ(t) = ϕ(0) + dη(t) (4.16)

for some 2-forms η and the Laplacian flow is really, in some sense, a flow on 2-forms.
(Again, this is reminiscent of Kähler–Ricci flow with c1 = 0 as the flow becomes
a flow on Kähler potentials, but this analogy is made with the usual caveats.) Then
(3.15) gives us that

∂

∂t
Vol(ϕ) = 1

3
〈 ∂

∂t
ϕ, ϕ〉L2 = 1

3
〈d ∂

∂t
η, ϕ〉L2 = 1

3
〈 ∂

∂t
η, d∗

ϕϕ〉L2 . (4.17)
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Hence, the gradient flow for Vol(ϕ) is

∂

∂t
η = d∗

ϕϕ ⇒ ∂

∂t
ϕ = d

∂

∂t
η = dd∗

ϕϕ = �ϕϕ, (4.18)

the Laplacian flow. (We have ignored the factor 1
3 which amounts to rescaling time

t .) �
Proposition4.7 immediately yields the following.

Proposition 4.8 A closed G2 structure on a compact manifold is a critical point of
Vol(ϕ) within a fixed cohomology class if and only if ϕ is torsion-free.

Wecan even saymore about the critical points of the volume functional. If we look
at the second derivative at a critical point ϕ(0), then by (3.15) along any variation
ϕ(s) = ϕ(0) + dη(s) in the cohomology class

∂2

∂s2
Vol(ϕ)|s=0 = 1

3

∫
M

∂

∂s
ϕ ∧ ∂

∂s
∗ϕϕ|s=0, (4.19)

since

1

3

∫
M

∂2

∂s2
ϕ ∧ ∗ϕϕ|s=0 = 1

3
〈d ∂2

∂s2
η, ∗ϕϕ〉L2 |s=0 = 1

3
〈 ∂2

∂s2
η, d∗

ϕϕ〉L2 |s=0 = 0

(4.20)
as d∗

ϕϕ = 0 at s = 0 by assumption. Now if we write the variation of ϕ(s) at s = 0
as in formula (3.10) then ∗ϕϕ(s) varies by (3.12) and so we see that

∫
M

∂

∂s
ϕ ∧ ∂

∂s
∗ϕϕ|s=0 = c0‖ f0‖2L2 + c1‖ f1‖2L2 − ‖ f3‖2L2 (4.21)

for some positive constants c0, c1. If the variation ϕ(s) is orthogonal to the action
by diffeomorphisms (meaning that ∂ϕ

∂s |s=0 and the tangent directions to the diffeo-
morphism orbit through ϕ(0) are orthogonal), then a slice theorem argument forces
f0 = f1 = 0 (see [17]). In other words, the slice condition

d∗
ϕdη ∈ �2

14(M) ⇒ dη ∈ �3
27(M), (4.22)

so f3 = dη(0). Putting this observation together with (4.19) and (4.21), we see that,
orthogonal to the action by diffeomorphisms, we have

∂2

∂s2
Vol(ϕ)|s=0 = −‖dη(0)‖2L2 ≤ 0. (4.23)

Thus, we have the following.

Theorem 4.9 Critical points of Vol(ϕ) on [ϕ] are strict local maxima (modulo the
action of diffeomorphisms).
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This suggests that the gradient flow of the volume functional (i.e. (4.1)) could be
well-behaved since its only critical points are maxima.

4.3 Short-Time Existence

A key issue we have avoided in our discussion thus far is the question of whether the
Laplacian flow exists or not. Certainly, if we look at (4.1) and compare it to (2.1) we
would seem to have the wrong sign! In general, (4.1) does not seem to be parabolic
in any sense, which is very bad news analytically.

However, again the fact that we are restricting to closedG2 structures comes to our
rescue. In this case, we have already seen in (4.12) that the metric evolves by Ricci
flow plus lower order terms and so its flow is parabolic modulo diffeomorphisms.

If we do DeTurck’s trick for the Laplacian flow, using dϕ = 0:

∂

∂t
ϕ = �ϕϕ + LX (ϕ)ϕ = �ϕϕ + d(X (ϕ)�ϕ), (4.24)

(as in the Ricci flow case, and with the same vector field X given in (2.21), in fact)
then we might hope that we end up with a genuine parabolic equation in (4.24).
However, this is not the case!

In fact, (4.24) is only parabolic in the direction of closed forms, so one has to
consider the restricted flow in order to prove short-time existence. This is a little bit
tricky but was done by Bryant–Xu [6]. Their paper, which definitely gives a correct
result that is fundamental to the subject, has never been published, so we give an
account of the proof here, which is essentially the same as in [6].

Theorem 4.10 Let ϕ0 be a smooth closed G2 structure on a compact manifold M.
There exists ε > 0 so that a unique solution ϕ(t) to the Laplacian flow (4.1) with
ϕ(0) = ϕ0 and dϕ(t) = 0 exists for all t ∈ [0, ε], where ε depends on ϕ0.

Proof We know that if (4.1) exists then it will stay in the cohomology class [ϕ0] by
Proposition4.2. Therefore, we could write

ϕ(t) = ϕ0 + dη(t) (4.25)

for a family of exact 3-forms dη(t), and (4.1) with the initial condition ϕ(t) = ϕ0 is
equivalent to

∂

∂t
dη = �ϕ0+dηdη and dη(0) = 0. (4.26)

Let X (ϕ) be the vector field given by X (gϕ) in (2.21), where we can choose the
fixed background metric k = gϕ0 for example. Suppose we can solve

∂

∂t
dη(t) = �ϕ0+dηdη + d(X (ϕ0 + dη)�dη) and dη(0) = 0 (4.27)
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uniquely for short time. Then we can find a unique family of diffeomorphisms �

solving (2.17) (since this is the harmonic map heat flow). Therefore, just as in Propo-
sition2.6, it follows that ϕ = �∗(ϕ0 + dη) satisfies (4.1) with ϕ(0) = ϕ0, dϕ(t) = 0
for short time, and the solution is unique. (We have used here that the condition for a
3-form to be positive is open, so for t sufficiently small, ϕ0 + dη(t)will be a positive
3-form.) We are therefore left to show that (4.27) has a unique short-time solution.

We know from (4.11) and [28, Lemma 9.3] that

�ϕϕ + LX (ϕ)ϕ = 1

2
iϕ

( − 2Ric(gϕ) + LX (gϕ)gϕ + 2

21
|τ2|2gϕ + 1

4
jϕ(∗ϕ(τ2 ∧ τ2))

)

+ 1

2

(
d∗(X (ϕ)�ϕ)

)�� ∗ϕϕ. (4.28)

Given that the terms with τ2 in them in (4.28) are lower order, and the Ricci–DeTurck
flow (2.16) is parabolic, it would seem likely that the linearisation of (4.28) is
parabolic when restricted to closed forms, and hence that (4.27) is parabolic. In
fact, one may explicitly compute as in [6] that the linearisation of (4.27) in the
direction of exact forms is

∂

∂t
dζ = −�ϕ0+dηdζ + d

(
Qϕ0+dη(dζ )

)
, (4.29)

where Qϕ0+dη(dζ ) is order zero in dζ (meaning it depends on just dζ and not its
derivatives). Somewhat surprisingly, the sign has switched and (4.29) is manifestly
parabolic.

However, we have only shown that (4.27) is parabolic in the direction of exact
forms, so we cannot apply standard parabolic theory. Instead we will invoke the
Nash–Moser Inverse Function Theorem (see [16] for a detailed discussion of this
theorem).

We start by setting up the notation. We let

X = d
(
C∞([0, ε] × M,�2T ∗M)

)
and Y = d�2(M), (4.30)

and
U = {dη ∈ X : ϕ0 + dη(t) is a G2 structure for all t}, (4.31)

which is an open set in X containing 0. We define F : U → X × Y by

F(dη) =
(

∂

∂t
dη(t) − �ϕ0+dηdη − d(X (ϕ0 + dη)�dη), dη(0)

)
, (4.32)

so that F(dη) = (0, 0) if and only if dη solves (4.27). If we can show that F is
locally invertible near 0, we have that (4.27) has a unique short-time solution and so
the proof is complete.
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By (4.29), the linearisation of F at dη ∈ U is given by

dF |dη(dζ ) =
(

∂

∂t
dζ + �ϕ0+dηdζ − d

(
Qϕ0+dη(dζ )

)
, dζ(0)

)
. (4.33)

Since (4.29) is parabolic, we see that if dF |dη(dζ ) = (0, 0) then dζ = 0 as this is
the unique solution to the linear parabolic equation (4.29) with zero initial condition.
Further, given (dξ, dξ0) ∈ X × Y , we see that dF |dη(dζ ) = (dξ, dξ0) if and only if

∂

∂t
dζ = −�ϕ0+dηdζ + d

(
Qϕ0+dη(dζ )

) + dξ and dζ(0) = dξ0, (4.34)

which can be solved by linear parabolic theory.
We therefore have that dF |dη : X → X × Y is invertible for all dη ∈ U . However,

this is not yet enough to show that F is locally invertible. Notice that the family of
inverses provides a map G : U × X × Y → X given by

G(dη, dξ, dξ0) = dF |−1
dη (dξ, dξ0). (4.35)

To deduce thatF is locally invertible, as we said, we want to invoke the Nash–Moser
Inverse Function Theorem which means that we need the following:

• X and Y are tame Fréchet spaces and F is a smooth tame map;
• dF |dη is invertible for all dη ∈ U and G is a smooth tame map.

The fact that C∞([0, ε] × M,�2T ∗M) and �2(M) are naturally tame Fréchet
spaces is standard, and it therefore quickly follows (from Hodge theory) that X and
Y are also tame Fréchet spaces. Smooth partial differential operators are smooth
tame maps, so F is a smooth tame map.

The last thing we need to show is that G is a smooth tame map, but this follows
immediately from a general result about the family of inverses given by solutions of
a smooth family of parabolic partial differential equations, due to Hamilton [15].

Thus, the Nash–Moser Inverse Function Theorem applies toF and so it is locally
invertible as desired. �

Actually, before DeTurck’s trick the same method of Bryant–Xu was used by
Hamilton [15] to prove short-time existence of the Ricci flow. The reason is that the
Ricci flow is not a flow amongst all symmetric 2-tensors really, since the Ricci tensor
always satisfies the contracted Bianchi identity. Therefore, one could consider the
flow restricted to those which satisfy this identity. To prove rigorously that one can do
this, one must employ the Nash–Moser Inverse Function Theorem, as Hamilton did.
This is not needed as we have said for the Ricci flow, since DeTurck’s trick already
removes the issue caused by the Bianchi identity there, but it is needed currently for
the Laplacian flow.



132 J. D. Lotay

4.4 Results and Questions

Results. There are several important areas in the Laplacian flow for closed G2 struc-
tures where progress has been made.

• Long-time existence criteria based on curvature and torsion estimates along the
flow, uniqueness and compactness theory, and real analyticity of the flow [28, 30].

• Stability of the critical points [29].
• Non-collapsing under assumption of bounded torsion [8].
• Explicit study of the flow in homogeneous situations and other symmetric cases
such as nilmanifolds and warped products with a circle [9, 11, 25, 26, 31, 33].

• Examples and non-existence results for solitons [25–28].
• Eternal solutions for the flow arising from extremally Ricci pinched G2 structures
[12].

• Reduction of the flow to 4 dimensions, with improved long-time existence criteria
[10] and analysis of the 4-torus case [19].

• Reduction of the flow to 3 dimensions, with striking long-time existence and
convergence results [24].

It is worth remarking that the scalar curvature here is given by

R(gϕ) = −1

2
|τ2|2, (4.36)

so having a bound on torsion is equivalent to a bound on scalar curvature.

Questions. There are many open problems in the area.

• Does the flow exist as long as the torsion is bounded?
• Can a volume bound be used to control the flow?
• Are there any compact examples which develop a singularity in finite time?
• Is there a relationship between the flow and calibrated submanifolds, specifically
coassociative submanifolds?

For the last two points, there is an example due to Bryant [5] which shows that
singularities can happen at infinite time (i.e. the flow exists for all time but does not
converge), and that the singularity is related to coassociative geometry.

We can also ask whether the Laplacian flow is potentially useful to study other
classes of G2 structures. For example, naively if we assume ϕ is coclosed and the
flow exists then it should stay coclosed since then

�ϕϕ = d∗
ϕdϕ. (4.37)

So, an obvious question is: does this flow exist? Gavin Ball has informed the author
that, in general, the Laplacian flow will not preserve the coclosed condition, so the
answer would appear to be negative.
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5 Laplacian Coflow

Another approach to studying G2 structures was introduced in [23].

Definition 5.1 The Laplacian coflow for G2 structures is given by:

∂

∂t
∗ϕϕ = �∗ϕϕ∗ϕϕ, (5.1)

where �∗ϕϕ is the Hodge Laplacian of the metric determined by ∗ϕϕ. (Actually, in
[23], they introduced (5.1) with a minus sign on the right-hand side by analogy with
the heat equation (2.1), but as we shall see below the “correct” sign in the equation
is that given, just as in (4.1).)

Here one has to be a little careful since the 4-form ∗ϕϕ is not quite equivalent to
the 3-form ϕ. In particular, the 4-form does not determine the orientation, but we can
assume we have an initial orientation which stays fixed along the flow.

Again by integration by parts it is easy to see that on a compact manifold

�∗ϕϕ∗ϕϕ = 0 ⇔ dϕ = d∗
ϕϕ = 0, (5.2)

so the critical points are again the torsion-free G2 structures.

5.1 Coclosed G2 Structures

The proposal in [23] is to restrict (5.1) to closed 4-forms (so coclosed G2 structures).
If the flow exists, meaning it preserves closed forms as in the Laplacian flow setting,
we would have that:

∂

∂t
∗ϕϕ = dd∗

ϕ∗ϕϕ. (5.3)

Thus, again, the flow will stay in the given cohomology class [∗ϕϕ(0)] as long as it
exists. Therefore, the Laplacian coflow can be seen as a possible means to deform
∗ϕϕ in its cohomology class so that it becomes torsion-free.

Proposition 5.2 If∗ϕϕ(t) satisfies (5.1)on M andd∗ϕ ϕ(t) = 0 then∗ϕϕ ∈ [∗ϕϕ(0)]
∈ H 4(M) for all t for which the flow exists.

We can easily modify our discussion of the volume functional Vol(ϕ), given
in (3.14), and the Laplacian flow in Proposition4.7 and Theorem4.9 to show the
following.

Theorem 5.3 The flow (5.1) for coclosed G2 structures ∗ϕϕ is the gradient flow of
the volume functional in (3.14) restricted to [∗ϕϕ] and the critical points are strict
local maxima for the volume functional (modulo diffeomorphisms).
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At this point, things are looking quite good in the study of the Laplacian coflow.
However, it is now worth going back to the earlier discussion of the coclosed con-

dition (3.5). Taking a positive interpretation of the h-principle result (Theorem3.1),
we can always assume that ourG2 structure is coclosed and therefore (5.1) potentially
allows us to study the space of all G2 structureswhilst restricting to the coclosed ones.
A more negative outlook is to say that studying the Laplacian coflow means that we
are effectively studying all G2 structures, which only has topological rather than geo-
metric content, and so perhaps it is unrealistic to expect the flow to be well-behaved
in such generality.

5.2 Short-Time Existence: A Modification

Given this discussion it is worth confronting the key issue of whether the flow (5.1)
even exists. To tackle this, we would employ the DeTurck‘s trick and hope to show
that (5.1) is parabolic, possibly only in the direction of closed forms, just as in the
case of (4.1) as in Theorem4.10. Unfortunately, this does not work! Therefore, we
cannot currently say (regardless of which sign we choose in (5.1)) that the Laplacian
coflow even exists. Nonetheless, one can find solutions to it in special cases [23],
so we can continue to ask the question: does (5.1) exist restricted to coclosed G2

structures?
An approach taken in [13] is to modify (5.1) to get a family of flows depending

on an arbitrary constant c.

Definition 5.4 The modified Laplacian coflow(s) (recalling the torsion forms in
(3.6)) for c ∈ R is defined by

∂

∂t
∗ϕϕ = �∗ϕϕ∗ϕϕ + d

((
c − 7

2
τ0

)
ϕ

)
, (5.4)

again restricted to coclosed G2 structures.

This again moves in the cohomology class and has the added benefit of defining a
flow which is parabolic in the direction of closed forms (modulo diffeomorphisms),
and therefore (5.4) is guaranteed to exist on a compact 7-manifold by essentially the
same proof as Theorem4.10.

Theorem 5.5 Let ϕ0 be a smooth coclosed G2 structure on a compact manifold M.
There exists ε > 0 so that a unique solution ∗ϕϕ(t) to the modified Laplacian coflow
(5.4) with ∗ϕϕ(0) = ∗ϕ0ϕ0 and d ∗ϕ ϕ(t) = 0 exists for all t ∈ [0, ε].
Critical points. The short-time existence is of course important, but (5.4) is no
longer obviously a gradient flow and there is also no reason why the critical points
of the flow are torsion-free G2 structures. It is clear that if ϕ is torsion-free then the
right-hand side of (5.4) vanishes (since τ0 = 0 and dϕ = 0). However, suppose we
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choose a nearly parallel G2 structure ϕ as in (3.9), recalling that τ0 is constant in that
case. Then we see that

�∗ϕϕ∗ϕϕ = dd∗
ϕ∗ϕϕ = d∗ϕdϕ = d∗ϕ τ0∗ϕϕ = τ0dϕ = τ 2

0 ∗ϕϕ (5.5)

and

d

((
c − 7

2
τ0

)
ϕ

)
= τ0

(
c − 7

2
τ0

)
∗ϕϕ. (5.6)

Hence,

�∗ϕϕ∗ϕϕ + d

((
c − 7

2
τ0

)
ϕ

)
= τ0

(
c − 5

2
τ0

)
∗ϕϕ, (5.7)

which vanishes if c = 5
2τ0. Therefore, we will also get certain nearly parallel G2

structures as critical points. Notice here that we can change τ0 by rescaling our
nearly parallel G2 structure, so the flow will distinguish a certain scale for the nearly
parallel G2 structures. For example, the 7-sphere has a canonical nearly parallel G2

structure, and only the 7-sphere of a certain size (depending on a choice of positive
c) will be a critical point whereas others will not.

Altogether, this is a rather strange situation, which shows that the modified Lapla-
cian coflow, though parabolic, has some potentially undesirable properties.

5.3 Results and Questions

The Laplacian coflow (5.1) and its modification (5.4) have so far received rather little
attention, but the key results in the area include the following.

• Soliton solutions arising from warped products and symmetries [14, 23].
• Explicit study of the flow for symmetric situations [3, 4, 31].
• Long-time existence criteria based on curvature and torsion estimates along the
modified Laplacian coflow, and non-collapsing for (5.4) under assumption of
bounded scalar curvature [8].

There are also many open problems.

• Does the Laplacian coflow exist (possibly under some further assumptions)?
• What are the critical points of the modified Laplacian coflow?
• What do dimensional reductions of the Laplacian coflow or its modification look
like?
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6 Dirichlet Energies and Spinorial Flows

The final set of flows we will discuss are explicitly constructed as gradient flows. We
have already seen gradient flows of the volume functional (3.14) for G2 structures
(when restricted to closed or coclosed G2 structures) but these are actually atypical
examples of gradient flows. The reason is that Vol(ϕ) is of order 0 in ϕ. Typically,
gradient flows are with respect to functionals which are first order in the geometric
quantity in question. For example, mean curvature flow is the gradient flow for the
volume functional which is first order in the immersion.

6.1 Dirichlet Energies

In light of (3.1), there are two clear choices for possible functionals on a compact
7-manifold to consider.

Definition 6.1 We let

C(ϕ) = 1

2

∫
M

|∇ϕϕ|2gϕ
volϕ ≥ 0 and D(ϕ) = 1

2

∫
M

|dϕ|2gϕ
+ |d∗

ϕϕ|2gϕ
volϕ ≥ 0.

(6.1)
Observe that D and C differ by the total scalar curvature functional (see [37]):

D(ϕ) − C(ϕ) =
∫
M
R(gϕ) volϕ . (6.2)

The functionals C and D are both what one might call “Dirichlet energies”, by
analogy with (2.2). Therefore, one could potentially call the gradient flows of these
quantities “heat flows”. There is also the possibility to generalise slightly and consider
(in the notation of (3.6)):

Dν(ϕ) =
∑
i

νi

2

∫
M

|τi |2gϕ
volϕ ≥ 0 (6.3)

for positive constants νi : this encompasses C and D for appropriate choices of νi .
All of these functionals are considered in [36, 37] where the authors show the

following.

Theorem 6.2 The critical points of theDirichlet energiesDν in (6.3) are the torsion-
free G2 structures, which are the absolute minimizers for the functionals (since they
are precisely zero at these points).

They have also shown short-time existence of the gradient flows of the functionalsDν ,
since they are parabolic (modulo diffeomorphisms) and so the standard DeTurck’s
trick approach can be used.
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The key main results are the following (again in [36, 37]).

• Stability of the critical points.
• Some simple examples of solitons.

In [37] the following observation is made.

Proposition 6.3 The volume functional Vol(ϕ) in (3.14) is monotone decreasing
along the gradient flow of C in (6.1). In fact, it is a convex function along the flow.

This is contrary to our earlier results for the Laplacian flow and coflowwhich viewed
Vol(ϕ) as having strictmaxima (modulo diffeomorphisms). In our view, this indicates
a key drawback in this Dirichlet energy approach which we shall return to later.

6.2 Spinorial Flow

Up to a constant multiplicative factor, the functional C can also be written in terms
of unit spinors σ on a 7-manifold as

E(σ ) = 1

2

∫
M

|∇gσ |2g volσ ≥ 0. (6.4)

This formulation of the Dirichlet energy is something which can clearly be extended
beyond G2 geometry.

Definition 6.4 Define the following functional on pairs of metrics and unit spinors
on a compact oriented spin manifold M :

E(g, σ ) = 1

2

∫
M

|∇gσ |2g volg ≥ 0. (6.5)

The gradient flow of E is called the spinorial or spinor flow.

Here, unlike the G2 case, one can vary the metric and spinor independently, with the
caveat that the spinor must remain a g-spinor and be unit length.

In [1] the authors show that the critical points of E(g, σ ), when the dimension of
the manifold M is at least 3, are given by parallel unit spinors σ and so the metric g is
Ricci-flat of special holonomy. They also show that the associated gradient flow (the
spinorial flow) is parabolicmodulo diffeomorphisms and so has short-time existence.
This time the analysis is more involved because the space of unit spinors varies as the
metric varies, but despite these complications the final result is as one would expect.

• All of the ingredients enable one to prove that the critical points of (6.5) are stable
under its gradient flow, as shown in [34].

• The special case of the spinorial flow on Berger spheres is studied in detail in [38].
• The full analysis of the 2-dimensional case, which has special features not covered
in [1], is part of work in progress at the time of writing.
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6.3 Questions

Morse functionals. The motivation for studying gradient flows of functionals is that
one would hope (at least formally) that the functional is Morse (or Morse–Bott) on
the space of geometric objects in question. Therefore, the critical points would be
encoded by the topology of the space of geometric objects. Very often making this
formal picture rigorous is very challenging, but still motivational. For example, in the
study of surfaces in 3-manifolds (or, more generally, hypersurfaces in n-manifolds),
since the topology of the space of such surfaces is infinite and the volume functional is
(in some sense) formally aMorse function on this space, one might hope to construct
infinitely many minimal surfaces in any 3-manifold: this is a conjecture due to Yau
from 1982, which has been proved when the Ricci curvature of the 3-manifold is
positive or generic [20, 32], and recently claimed (at the time of writing) for all
metrics on 3-manifolds in [35].

Here, the Dirichlet functionals are defined on the space of G2 structures (modulo
diffeomorphism). However, unlike the case of the volume functional on hypersur-
faces, the only critical points of the functionals are absolute minimizers. Therefore,
if the functional is a Morse function then the best we can hope for is that the space
of G2 structures on our given manifold could be contractible onto the torsion-free
G2 structures.

Scaling. More than that, just as we saw with the volume functional in (3.14), the best
way to reduce the Dirichlet energy is to send the 3-form to zero by scaling, which
is clearly useless. The same thing of course happens when studying hypersurfaces
undermean curvature flow, but we can stop the hypersurface from being contracted to
a point by simply choosing a nontrivial homology class for our initial hypersurface,
which then obviously cannot contain the “zero” hypersurface. The same happens in
the Laplacian flow and coflow: the cohomology class is fixed so that one kills the
action of rescaling.

Unfortunately, when studying the Dirichlet energies, the class of G2 structure is
not preserved and so all one can do is look at the homotopy class of the initial G2

structure ϕ: this class is always homotopic to 0 in the space of G2 structures just by
rescaling (although 0 is, of course, not a G2 structure). Therefore, one might expect
for generic initial conditions that the Dirichlet energy gradient flows just send the
3-form to 0, which is certainly an absolute minimizer of the energy, but does not
appear to provide any meaningful content.

This discussion leads to the following question: is there a way tomodify or restrict
the gradient flows of (6.1) to ensure that the 3-form does not go to 0?

7 Conclusions

The study of geometric flows of G2 structures has seen some important progress, but
it is fair to say that at the time of writing the subject is still in its relative infancy.
The flows we have described have both pros and cons, and seek to tackle different
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problems, so it is potentially interesting to further investigate all of them to see what
we can learn about G2 structures. There are also potentially further flows of G2

structures that could be useful, such as the flow of isometric G2 structures introduced
in [2]. The field is clearly vibrant and wide open for discovery and progress.

In particular, it we would be very exciting if by studying geometric flows we can
uncover a new criteria (geometric or topological) for the existence or otherwise of
torsion-free G2 structures. Whilst this is an ambitious goal, by seeking to solve it we
may well acquire a much better understanding of the space of G2 structures.
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