
Calibrated Submanifolds

Jason D. Lotay

Abstract We provide an introduction to the theory of calibrated submanifolds
through the key examples related with special holonomy. We focus on calibrated
geometry inCalabi–Yau,G2 andSpin(7)manifolds, and describe fundamental results
and techniques in the field.

1 Introduction

A key aspect of mathematics is the study of variational problems. These can vary
from the purely analytic to the very geometric. A classic geometric example is the
study of geodesics, which are critical points for the length functional on curves. As
we know, understanding the geodesics of a given Riemannian manifold allows us
to understand some of the ambient geometry, for example the curvature. The higher
dimensional analoguewould be to study critical points for the volume functional, and
we would hope (and it indeed turns out to be the case) that these critical points, called
minimal submanifolds, encode crucial aspects of the geometry of the manifold.

Just like the geodesic equation, we would expect (and it is true) that minimal sub-
manifolds are defined by a (nonlinear) second order partial differential equation. Such
equations are very difficult to solve in general, so a key idea is to find a special class
of minimal submanifolds, called calibrated submanifolds, which are instead defined
by a first order partial differential equation. The definition of calibrated submanifolds
is motivated by the properties of complex submanifolds in Kähler manifolds, and
turns out to be useful in finding minimizers for the volume functional rather than just
critical points. However, finding examples outside the classical complex setting turns
out to be difficult, leading to important methods coming from a variety of sources,
as well as motivating the study of the deformation theory of these objects.
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Calibrated submanifolds naturally arise when the ambient manifold has special
holonomy, including holonomy G2. In this situation, we would hope that the cali-
brated submanifolds encode even more, finer, information about the ambient mani-
fold, potentially leading to the construction of new invariants. In this setting, there is
also a relationship between calibrated submanifolds and gauge theory: specifically,
connections whose curvature satisfies a natural constraint determined by the special
holonomy group (so-called instantons). For these reasons, calibrated submanifolds
form a hot topic in current research, especially in the G2 setting.

Note These notes are primarily based on a lecture course the author gave at the
LMS–CMI Research School “An Invitation to Geometry and Topology via G2” at
Imperial College London in July 2014.

2 Minimal Submanifolds

We start by analysing the submanifolds which are critical points for the volume
functional. Let N be a submanifold (without boundary) of a Riemannian manifold
(M, g) and let F : N × (−ε, ε) → M be a variation of N with compact support;
i.e. F = Id outside a compact subset S of N with S open and F(p, 0) = p for all
p ∈ N . The vector field X = ∂F

∂t |N is called the variation vector field (which will be
zero outside of S). We then have the following definition.

Definition 2.1 N is minimal if d
dt Vol(F(S, t))|t=0 = 0 for all variations F with

compact support S (depending on F).

Remark Notice that we do not ask for N to minimize volume: it is only stationary
for the volume. It could even be a maximum!

Example Aplane inRn isminimal since any small variationwill have larger volume.

Example Geodesics are locally length minimizing, so geodesics are minimal. How-
ever, as an example, the equator in S2 is minimal but not length minimizing since
we can deform it to a shorter line of latitude.

For simplicity let us suppose that N is compact. We wish to calculate
d
dt Vol(F(N , t))|t=0. Given local coordinates xi on N we know that

Vol(F(N , t)) =
∫
N

√
det

(
g

(
∂F

∂xi
,

∂F

∂x j

))
volN .

Let p ∈ N and choose our coordinates xi to be normal coordinates at p: i.e. so that
∂F
∂xi

(p, t) = ei (t) satisfy g(ei (0), e j (0)) = δi j . If gi j (t) = g(ei (t), e j (t)) and (gi j (t))
denotes the inverse of the matrix (gi j (t)) then we know that
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d

dt

√
det(gi j (t))|t=0 = 1

2

∑
i, j g

i j (t)g′
i j (t)√

det(gi j (t))
|t=0 = 1

2

∑
i

g′
i i (0).

Now, if we let ∇ denote the Levi-Civita connection of g, then

1

2

∑
i

g′
i i (0) = 1

2

∑
i

d

dt
g

(
∂F

∂xi
,

∂F

∂xi

)
|t=0

=
∑
i

g(∇Xei , ei )

=
∑
i

g(∇ei X, ei ) = divN (X)

since [X, ei ] = 0 (i.e. the t and xi derivatives commute). Moreover, we see that

divN (X) =
∑
i

g(∇ei X, ei ) = divN (XT) −
∑
i

g(X⊥,∇ei ei )

= divN (XT) − g(X, H)

(since∇ei

(
g(X⊥, ei )

) = 0) where T and ⊥ denote the tangential and normal parts and

H =
∑
i

∇⊥
ei ei

is the mean curvature vector. Overall we have the following.

Theorem 2.2 The first variation formula is

d

dt
Vol(F(N , t))|t=0 =

∫
N
divN (X) volN = −

∫
N

g(X, H) volN .

Remark The divN (XT) term does not appear in the first variation formula because
its integral vanishes by the divergence theorem as N is compact without boundary.
In general, it will still vanish since we assume for our variations that there exists a
compact submanifold of N with boundary which contains the support of XT and so
that XT vanishes on the boundary.

We deduce the following.

Definition 2.3 N is a minimal submanifold if and only if H = 0.

The equation H = 0 is a second order nonlinear PDE. We can see this explicitly
in the following simple case. For a function f : U ⊆ R

n−1 → RwhereU is compact,
we see that if N = Graph( f ) ⊆ R

n then the volume of N is given by

Vol(N ) =
∫
U

√
1 + |∇ f |2 volU .
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Any sufficiently small variation can be written F(N , t) = Graph( f + th) for some
h : U → R, so we can compute

d

dt
Vol(F(N , t))|t=0 = d

dt
|t=0

∫
U

√
1 + |∇ f + t∇h|2 volU

=
∫
U

d

dt
|t=0

√
1 + |∇ f |2 + 2t〈∇ f,∇h〉 + t2|∇h|2 volU

=
∫
U

〈∇ f,∇h〉√
1 + |∇ f |2 volU

= −
∫
U
h div

(
∇ f√

1 + |∇ f |2
)
volU .

We therefore see that N is minimal if and only if this vanishes for all h. Hence,
Graph( f ) is minimal in Rn if and only if

div

(
∇ f√

1 + |∇ f |2
)

= 0.

We see that we can write this equation as � f + Q(∇ f,∇2 f ) = 0 where Q consists
of nonlinear terms (but linear in ∇2 f ). Hence, if we linearise this equation we just
get� f = 0, so f is harmonic. In other words, the minimal submanifold equation is a
nonlinear equation whose linearisation is just Laplace’s equation: this is an example
of a nonlinear elliptic PDE, which we shall discuss further later.

Example A plane inRn is trivially minimal because if X,Y are any vector fields on
the plane then ∇⊥

X Y = 0 as the second fundamental form of a plane is zero.

Example For curves γ, H = 0 is equivalent to the geodesic equation ∇γ̇ γ̇ = 0.

The most studied minimal submanifolds (other than geodesics) are minimal sur-
faces in R

3, since here the equation H = 0 becomes a scalar equation on a surface,
which is the simplest to analyse. In general we would have a system of equations,
which is more difficult to study.

Example The helicoid M = {(t cos s, t sin s, s) ∈ R
3 : s, t ∈ R} is a complete

embedded minimal surface, discovered by Meusnier in 1776.

Example The catenoid M = {(cosh t cos s, cosh t sin s, t) ∈ R
3 : s, t,∈ R} is a

complete embedded minimal surface, discovered by Euler in 1744 and shown to
be minimal by Meusnier in 1776. The catenoid is another explicit example which is
a critical point for volume but not minimizing.

In fact the helicoid and the catenoid are locally isometric, and there is a 1-parameter
family of locally isometric minimal surfaces deforming between the catenoid and
helicoid: see, for example, [18, Theorem 16.5] for details.



Calibrated Submanifolds 73

It took about 70 years to find the next minimal surface, but now we know many
examples of minimal surfaces in R3, as well as in other spaces by studying the non-
linear elliptic PDE given by the minimal surface equation. The amount of literature
in the area is vast, with key results including the proofs of the Lawson [1], Willmore
[63] and Yau [29, 64, 77] Conjectures, and minimal surfaces have applications to
major problems in geometry including the Positive Mass Theorem [75, 76], Penrose
Inequality [24] and Poincaré Conjecture [74].

3 Introduction to Calibrations

As we have seen, minimal submanifolds are extremely important. However there are
two key issues.

• Minimal submanifolds are defined by a second order nonlinear PDE system—
therefore they are hard to analyse.

• Minimal submanifolds are only critical points for the volume functional, but we are
often interested in minima for the volume functional—we need a way to determine
when this occurs.

We can help resolve these issues using the notion of calibration and calibrated
submanifolds, introduced by Harvey–Lawson [20] in 1982.

Definition 3.1 A differential k-form η on a Riemannian manifold (M, g) is a cali-
bration if

• dη = 0 and
• η(e1, . . . , ek) ≤ 1 for all unit tangent vectors e1, . . . , ek on M .

Example Any non-zero form with constant coefficients on R
n can be rescaled so

that it is a calibration with at least one plane where equality holds.

This example shows that there aremany calibrations η, but the interesting question
is: for which oriented planes P = Span{e1, . . . , ek} does η(e1, . . . , ek) = 1? More
importantly, can we find submanifolds N so that this equality holds on each tangent
space? This motivates the next definition.

Definition 3.2 Let η be a calibration k-form on (M, g). An oriented k-dimensional
submanifold N of (M, g) is calibrated by η if η|N = volN , i.e. if for all p ∈ N we
have η(e1, . . . , ek) = 1 for an oriented orthonormal basis e1, . . . , ek for TpN .

Example Any oriented plane in R
n is calibrated. If we change coordinates so that

the plane P is {x ∈ R
n : xk+1 = · · · = xn = 0} (with the obvious orientation) then

η = dx1 ∧ · · · ∧ dxk is a calibration and P is calibrated by η.

Notice that the calibrated condition is now an algebraic condition on the tangent
vectors to N , so being calibrated is a first order nonlinear PDE. We shall motivate
these definitions further later, but for now we make the following observation.



74 J. D. Lotay

Theorem 3.3 Let N be a calibrated submanifold. Then N is minimal and, moreover,
if F is any variation with compact support S then Vol(F(S, t)) ≥ Vol(S); i.e. N is
volume-minimizing. In particular, if N is compact then N is volume-minimizing in
its homology class.

Proof Suppose that N is calibrated byη and suppose for simplicity that N is compact.
We will show that N is homologically volume-minimizing.

Suppose that N ′ is homologous to N . Then there exists a compact K with boundary
−N ∪ N ′ and, since dη = 0, we have by Stokes’ Theorem that

0 =
∫
K
dη =

∫
N ′

η −
∫
N

η.

We deduce that

Vol(N ) =
∫
N

η =
∫
N ′

η ≤ Vol(N ′).

We then have the result by the definition of minimal submanifold. �

We conclude this introduction with the following elementary result.

Proposition 3.4 There are no compact calibrated submanifolds in R
n.

Proof Suppose that η is a calibration and N is compact and calibrated by η. Then
dη = 0 so by the Poincaré Lemma η = dζ, and hence

Vol(N ) =
∫
N

η =
∫
N
dζ = 0

by Stokes’ Theorem. �

Although there are many calibrations, having calibrated submanifolds greatly
restricts the calibrations youwant to consider. The calibrations which have calibrated
submanifolds have special significance and there is a particular connection with
special holonomy, due to the following observations.

Let G be the holonomy group of a Riemannian metric g on an n-manifold M .
Then G acts on the k-forms on R

n , so suppose that η0 is a G-invariant k-form. We
can always rescale η0 so that η0|P ≤ volP for all oriented k-planes P and equality
holds for at least one P . Since η0 is G-invariant, if P is calibrated then so is γ · P for
any γ ∈ G, which usually means we have quite a few calibrated planes. We know by
the holonomy principle (see, for example, [42, Proposition 2.5.2]) that we then get
a parallel k-form η on M which is identified with η0 at every point. Since ∇η = 0,
we have dη = 0 and hence η is a calibration. Moreover, we have a lot of calibrated
tangent planes on M , so we can hope to find calibrated submanifolds.
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4 Complex Submanifolds

We would now like to address the question: where does the calibration condition
come from? The answer is from complex geometry. On R

2n = C
n with coordinates

z j = x j + iy j , we have the complex structure J and the distinguished Kähler 2-form

ω =
n∑
j=1

dx j ∧ dy j = i

2

n∑
j=1

dz j ∧ dz j .

More generally we can work with a Kähler manifold (M, J,ω). Our first key result
is the following.

Theorem 4.1 On a Kähler manifold (M, J,ω), ωk

k! is a calibration whose calibrated
submanifolds are the complex k-dimensional submanifolds: i.e. submanifolds N such
that J (TpN ) = TpN for all p ∈ N.

Since dωk = kdω ∧ ωk−1 = 0, Theorem 4.1 follows immediately from the fol-
lowing result.

Theorem 4.2 (Wirtinger’s inequality) For any unit vectors e1, . . . , e2k ∈ C
n,

ωk

k! (e1, . . . , e2k) ≤ 1

with equality if and only if Span{e1, . . . , e2k} is a complex k-plane in Cn.

Before proving this we make the following observation.

Lemma 4.3 If η is a calibration and ∗η is closed then ∗η is a calibration. Moreover
an oriented tangent plane P is calibrated by η if and only if there is an orientation
on the orthogonal complement P⊥ so that it is calibrated by ∗η.

Proof Suppose that η is a calibration k-form on (M, g) with d∗η = 0. Let p ∈ M .
Take any n − k orthonormal tangent vectors ek+1, . . . , en at p. Then there exist
e1, . . . , ek ∈ TpM so that {e1, . . . , en} is an oriented orthonormal basis for TpM .
Since {e1, . . . , en} is an oriented orthonormal basis, we can use the definition of the
Hodge star to calculate

∗η(ek+1, . . . , en) = η(e1, . . . , ek) ≤ 1.

Hence ∗η is a calibration by Definition 3.1. Moreover, the oriented plane P =
Span{ek+1, . . . , en} is calibrated by ∗η if and only if there is an orientation on
Span{e1, . . . , ek} = P⊥ so that it is calibrated by η, since η(e1, . . . , ek) = ± ∗
η(ek+1, . . . , en) = ±1. �

We can now prove Wirtinger’s inequality.
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Proof of Theorem 4.2 We see that |ωk

k! |2 = n!
k!(n−k)! and volCn = ωn

n! so ∗ωk

k! = ωn−k

(n−k)! .
Hence, by Lemma 4.3, it is enough to study the case where k ≤ n

2 .
Let P be any 2k-plane in C

n with 2k ≤ n. We shall find a canonical form for P .
First consider 〈Ju, v〉 for orthonormal vectors u, v ∈ P . This must have amaximum,
so let cos θ1 = 〈Ju, v〉 be thismaximum realised by some orthonormal vectors u, v ∈
P , where 0 ≤ θ1 ≤ π

2 .
Suppose that w ∈ P is a unit vector orthogonal to Span{u, v}, where cos θ1 =

〈Ju, v〉. The function
fw(θ) = 〈Ju, cos θv + sin θw〉

has a maximum at θ = 0 so f ′
w(0) = 〈Ju, w〉 = 0. Similarly we have that 〈Jv,w〉 =

0, and thus w ∈ Span{u, v, Ju, Jv}⊥.
We then have two cases. If θ1 = 0 then v = Ju so we can set u = e1, v = Je1

and see that P = Span{e1, Je1} × Q where Q is a 2(k − 1)-plane in C
n−1 =

Span{e1, Je1}⊥. If θ1 �= 0 we have that v = cos θ1 Ju + sin θ1w where w is a
unit vector orthogonal to u and Ju, so we can let u = e1, w = e2 and see that
P = Span{e1, cos θ1 Je1 + sin θ1e2} × Q where Q is a 2(k − 1)-plane in C

n−2 =
Span{e1, Je1, e2, Je2}⊥.

Proceeding by induction we see that we have an oriented basis {e1, Je1, . . . ,
en, Jen} for Cn so that

P = Span{e1, cos θ1 Je1 + sin θ1e2, . . . , e2k−1, cos θk Je2k−1 + sin θke2k},

where 0 ≤ θ1 ≤ · · · ≤ θk−1 ≤ π
2 and θk−1 ≤ θk ≤ π − θk−1.

Since we can write ω = ∑n
j=1 e

j ∧ Je j we see that ωk

k! restricts to P to give a
product of cos θ j which is certainly less than or equal to 1. Moreover, equality holds
if and only if all of the θ j = 0 which means that P is complex. �

Putting together Theorems 4.1 and 3.3 yields the following.

Corollary 4.4 Compact complex submanifolds of Kähler manifolds are homologi-
cally volume-minimizing.

We know that complex submanifolds are defined by holomorphic functions;
i.e. solutions to the Cauchy–Riemann equations, which are a first-order PDE system,
as one would expect for calibrated submanifolds.

Example N = {(z, 1
z ) ∈ C

2 : z ∈ C \ {0}} is a complex curve in C
2, and thus is

calibrated.

Example An important non-trivial example of a Kähler manifold isCPn , where the
zero set of a system of polynomial equations defines a (possibly singular) complex
submanifold.
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5 Special Lagrangians

Complex submanifolds are very familiar, but canwe find any other interesting classes
of calibrated submanifolds? The answer is that indeed we can, particularly when the
manifold has special holonomy. We begin with the case of holonomy SU(n)—so-
called Calabi–Yau manifolds. The model example for Calabi–Yau manifolds is Cn

with complex structure J , Kähler form ω and holomorphic volume form

ϒ = dz1 ∧ · · · ∧ dzn,

if z1, . . . , zn are complex coordinates on C
n .

Theorem 5.1 Let M be a Calabi–Yau manifold with holomorphic volume form ϒ .
Then Re(e−iθϒ) is a calibration for any θ ∈ R.

Since dϒ = 0, the result follows immediately from the following.

Theorem 5.2 OnCn, |ϒ(e1, . . . , en)| ≤ 1 for all unit vectors e1, . . . , en with equal-
ity if and only if P = Span{e1, . . . , en} is a Lagrangian plane, i.e. P is an n-plane
such that ω|P ≡ 0.

Proof Let e1, . . . , en be the standard basis for Rn and let P be an n-plane in C
n .

There exists A ∈ GL(n,C) so that f1 = Ae1, . . . , fn = Aen is an orthonormal basis
for P . Then ϒ(Ae1, . . . , Aen) = detC(A) so

|ϒ( f1, . . . , fn)|2 = | detC(A)|2
= | detR(A)|
= | f1 ∧ J f1 ∧ · · · ∧ fn ∧ J fn| ≤ | f1||J f1| · · · | fn||J fn| = 1

with equality if and only if f1, J f1, . . . , fn, J fn are orthonormal. However, this is
exactly equivalent to the Lagrangian condition, sinceω(u, v) = g(Ju, v) soω|P ≡ 0
if and only if J P = P⊥. �

Definition 5.3 A submanifold N of M calibrated by Re(e−iθϒ) is called special
Lagrangian with phase eiθ. If θ = 0 we say that N is simply special Lagrangian. By
Theorem 5.2, we see that N is special Lagrangian if and only if ω|N ≡ 0 (i.e. N is
Lagrangian) and Imϒ |N ≡ 0 (up to a choice of orientation so that Reϒ |N > 0).

Example ConsiderC = R
2 with coordinates z = x + iy, complex structure J given

by Jw = iw, Kähler form ω = dx ∧ dy = i
2dz ∧ dz and holomorphic volume form

ϒ = dz = dx + idy. We want to consider the special Lagrangians in C, which are
1-dimensional submanifolds or curves N in C = R

2.
Since ω is a 2-form, it vanishes on any curve in C. Hence every curve in C is

Lagrangian. For N to be special Lagrangian with phase eiθ we need that

Re(e−iθϒ) = cos θdx + sin θdy
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is the volume form on N , or equivalently that

Im(e−iθϒ) = cos θdy − sin θdx

vanishes on N . This means that cos θ∂x + sin θ∂y is everywhere a unit tangent vector
to N , so N is a straight line given by N = {(t cos θ, t sin θ) ∈ R

2 : t ∈ R} (up to
translation), so it makes an angle θ with the x-axis, hence motivating the term “phase
eiθ”.

Notice that this result is compatible with the fact that special Lagrangians are
minimal, and hence must be geodesics in R2; i.e. straight lines.

Example ConsiderC2 = R
4.Weknow thatω = dx1 ∧ dy1 + dx2 ∧ dy2. Sinceϒ =

dz1 ∧ dz2 = (dx1 + idy1) ∧ (dx2 + idy2), we also know that Reϒ = dx1 ∧ dx2 +
dy2 ∧ dy1, which looks somewhat similar. In fact, if we let J ′ denote the complex
structure given by J ′(∂x1) = ∂x2 and J ′(∂y2) = ∂y1 , then Reϒ = ω′, the Kähler form
corresponding to the complex structure J ′. Hence special Lagrangians in C

2 are
complex curves for a different complex structure.

In fact, we have a hyperkähler triple of complex structures J1, J2, J3, where J1 =
J is the standard one and J3 = J1 J2 = −J2 J1 so that J1 = J2 J3 = −J3 J2 and J2 =
J3 J1 = −J1 J3, and the corresponding Kähler forms are ω = ω1, ω2, ω3 which are
orthogonal and the same length with ϒ = ω2 + iω3.

This shows we should only consider complex dimension 3 and higher to find new
calibrated submanifolds.

Example Let f : Rn → R
n be a smooth function and let N = Graph( f ) ⊆ R

2n =
C

n . We want to see when N is special Lagrangian. We see that tangent vectors to N
are given by

e1 + i∇e1 f, . . . , en + i∇en f.

Hence N is Lagrangian if and only if

ω(e j + i∇e j f, ek + i∇ek f ) = ∇ek f j − ∇e j fk = 0

for all j, k. Since Rn is simply connected, this occurs if and only if there exists F
such that f j = ∇e j F ; i.e. f = ∇F .

Recall that ϒ = dz1 ∧ · · · ∧ dzn . We know that N is special Lagrangian if and
only if N is Lagrangian and Imϒ vanishes on N . Now

ϒ(a1 + ib1, . . . , an + ibn) = detC(A + i B)

where A, B are the matrices with columns ai , b j respectively. Hence

ϒ(e1 + i∇e1∇F, . . . , en + i∇en∇F) = detC(I + iHess F),

where Hess F = ( ∂2F
∂xi∂x j

).
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Therefore N = Graph( f ) is special Lagrangian (up to a choice of orientation) if
and only if f = ∇F and

Im detC(I + i Hess F) = 0.

If n = 2,

I + iHess F =
(
1 + i Fxx i Fxy

i Fyx 1 + i Fyy

)
.

Therefore, the determinant gives

1 − Fxx Fyy + F2
xy + i(Fxx + Fyy),

then the imaginary part is Fxx + Fyy . Therefore, N is special Lagrangian if and only
if �F = 0.

As we know, a graph in C
2 of f = u + iv : C → C is a complex surface if and

only if u + iv is holomorphic, which implies that u, v are harmonic. We know that
special Lagrangians in C2 are complex surfaces for a different complex structure, so
this is expected.

If n = 3,

I + iHess F =
⎛
⎝ 1 + i Fxx i Fxy i Fxz

i Fyx 1 + i Fyy i Fyz

i Fzx i Fzy 1 + i Fzz

⎞
⎠ .

Hence,

Im detC(I + i Hess F) = Fxx + Fyy + Fzz

− Fxx (Fyy Fzz−F2
yz) − Fxy(Fyz Fzx − Fxy Fzz)−Fzx (Fxy Fyz − Fyy Fzx ).

Therefore, N is special Lagrangian if and only if

−�F = Fxx + Fyy + Fzz

= Fxx (Fyy Fzz − F2
yz) − Fxy(Fxy Fzz − Fyz Fzx ) + Fzx (Fxy Fyz − Fyy Fzx )

= det Hess F.

We now wish to describe some very important examples of special Lagrangians,
which are asymptotic to pairs of planes.

Example SU(n) acts transitively on the space of special Lagrangian planes with
isotropy SO(n). So any special Lagrangian plane is given by A · Rn for A ∈ SU(n)

where Rn is the standard real Rn in Cn .
Given θ = (θ1, . . . , θn) we can define a plane

P(θ) = {(eiθ1x1, . . . , eiθn xn) ∈ C
n : (x1, . . . , xn) ∈ R

n}
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(where we can swap orientation). We see that P(θ) is special Lagrangian if and
only if Reϒ |P = ± cos(θ1 + · · · + θn) = 1 so that θ1 + · · · + θn ∈ πZ. Given any
θ1, . . . , θn ∈ (0,π) with θ1 + · · · + θn = π, there exists a special Lagrangian N
(called a Lawlor neck) asymptotic to P(0) ∪ P(θ): see, for example, [42, Example
8.3.15] or Sect. 9 for details. It is diffeomorphic toSn−1 × R. By rotating coordinates
we have a special Lagrangian with phase i asymptotic to P(− θ

2 ) ∪ P( θ
2 ).

The simplest case is when θ1 = · · · = θn = π
n : here N is called the Lagrangian

catenoid. When n = 2, under a coordinate change the Lagrangian catenoid becomes
the complex curve {(z, 1

z ) ∈ C
2 : z ∈ C \ {0}} that we saw before. When n = 3, the

only possibilities for the angles are
∑

i θi = π, 2π, but if
∑

i θi = 2π we can rotate
coordinates and change the order of the planes so that P(0) ∪ P(θ) becomes P(0) ∪
P(θ′) where

∑
i θ

′
i = π. Hence, given any pair of transverse special Lagrangian

planes in C3, there exists a Lawlor neck asymptotic to their union.

Remark Using complex geometry it is easy to classify all of the smooth special
Lagrangians in C

2 asymptotic to a pair of transverse planes, and one sees that the
Lawlor necks in C2 are the unique exact special Lagrangians with this property. It is
now known that the Lawlor necks are the unique smooth exact special Lagrangians
asymptotic to a pair of planes in all dimensions [25].

We can find special Lagrangians in Calabi–Yau manifolds using the following
easy result.

Proposition 5.4 Let (M,ω, ϒ) be a Calabi–Yau manifold and let σ : M → M be
such that σ2 = Id, σ∗(ω) = −ω, σ∗(ϒ) = ϒ . Then Fix(σ) is special Lagrangian, if
it is non-empty.

Example Let X = {[z0, . . . , z4] ∈ CP
4 : z50 + · · · + z54 = 0} (the Fermat quintic)

with its Calabi–Yau structure (which exists by Yau’s solution of the Calabi conjec-
ture since the first Chern class of X vanishes). Let σ be the restriction of complex
conjugation on CP

4 to X . Then the fixed point set of σ, which is the real locus in
X , is a special Lagrangian 3-fold (if it is non-empty). (There is a subtlety here: σ is
certainly an anti-holomorphic isometric involution for the induced metric on X , but
this is not the same as the Calabi–Yau metric on X . Nevertheless, it is the case that
σ satisfies the conditions of Proposition 5.4.)

Example There exists a Calabi–Yaumetric on T ∗Sn (the Stenzel metric [78]) so that
the base Sn is special Lagrangian: When n = 2 this is a hyperkähler metric called
the Eguchi–Hanson metric [11].

6 Constructing Calibrated Submanifolds

It is easy to construct complex submanifolds in Kähler manifolds algebraically. Con-
structing other calibrated submanifolds is much more challenging because one needs
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to solve a nonlinear PDE, even in Euclidean space. There are approaches in Euclidean
space and other simple spaces which have involved reducing the problem to ODEs
or other problems which do not require PDE (for example, algebraic methods). For
example, we have the following methods, which you can find out more about in [42]
or the references provided.

• Symmetries/evolution equations [17, 20, 21, 28, 30, 31, 33, 34, 39–41, 52, 54].
• Use of integrable systems to study calibrated cones [8, 9, 22, 43, 65].
• Calibrated cones and ruled smoothings of these cones [2, 4, 13, 14, 32, 52, 53,
59].

• Vector sub-bundle constructions [27, 45, 46].
• Classification of calibrated submanifolds satisfying pointwise constraints on their
second fundamental form [4, 12, 26, 59, 60].

However, an important direction which has borne fruit in calibrated geometry and
special holonomy recently has been to study the nonlinear PDE head on, especially
by perturbative and gluing methods.

We want to solve nonlinear PDE, so how do we tackle this? The idea is to use the
linear case to help. Suppose we are on a compact manifold N and recall the theory
of linear elliptic operators L of order l on N , including:

• the definition of ellipticity of L via the principal symbol σL (which encodes the
highest order derivatives in the operator) being an isomorphism;

• the use ofHölder spaces Ck,a to give elliptic regularity theory (so-called Schauder
theory), namely that if w ∈ Ck,a and Lv = w then v ∈ Ck+l,a and there is a uni-
versal constant C so that

‖v‖Ck+l,a ≤ C(‖Lv‖Ck,a + ‖v‖C0)

(and we can drop the ‖v‖C0 term if v is orthogonal to Ker L);
• the adjoint operator L∗ and that σL∗ = (−1)lσ∗

L so that L∗ is elliptic if and only if
L is elliptic; and

• the Fredholm theory of L , namely that Ker L (and hence Ker L∗) is finite-
dimensional, and we can solve Lv = w if and only if w ∈ (Ker L∗)⊥.

We shall discuss this in a model example which we shall use throughout this
section.

Example The Laplacian on functions is given by � f = d∗d f which in normal
coordinates at a point is given by f �→ −∑

i
∂2 f
∂x2i

, so it is a linear second order

differential operator. We see that its principal symbol is σ�(x, ξ) f = −|ξ|2 f which
is an isomorphism for ξ ∈ T ∗

x N \ {0}, so � is elliptic. We therefore have that if
h ∈ Ck,a(N ) and � f = h then f ∈ Ck+2,a(N ), and we have an estimate

‖ f ‖Ck+2,a ≤ C(‖� f ‖Ck,a + ‖ f ‖C0).
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We also know that �∗ = � and Ker� is given by the constant functions (since if
f ∈ Ker� then

0 = 〈 f,� f 〉L2 = 〈 f, d∗d f 〉L2 = ‖d f ‖2L2

so d f = 0). Hence, we can solve � f = h if and only if h is orthogonal to the
constants, i.e.

∫
N h volN = 0.

The operator defining the minimal graph equation for a hypersurface is

P( f ) = − div

(
∇ f√

1 + |∇ f |2
)

,

which is a nonlinear second order operator whose linearisation L0P at 0 is�. Thus P
is a nonlinear elliptic operator at 0. If we linearise P at f0 we find amore complicated
expression depending on f0, but it is still a perturbation of the Laplacian.

Suppose we are on a compact manifold N and we want to solve P( f ) = 0 where
P is the minimal graph operator on functions f . Let us consider regularity for f . We
can re-arrange P( f ) = 0 by taking all of the second derivatives to one side as:

R(x,∇ f (x))∇2 f (x) = E(x,∇ f (x))

where x ∈ N . Since L0P = � is elliptic and ellipticity is an open condition we know
that the operator L f (depending on f ) given by

L f (h)(x) = R(x,∇ f (x))∇2h(x)

is a linear elliptic operator whenever ‖∇ f ‖C0 is small, in particular if ‖ f ‖C1,a is
sufficiently small. The operator L f does not have smooth coefficients, but if f ∈ Ck,a

then the coefficients R ∈ Ck−1,a .
Suppose that f ∈ C1,a and ‖ f ‖C1,a is small with P( f ) = 0. Then L f ( f ) = E( f )

and L f is a linear second order elliptic operator with coefficients in C0,a and E( f )
is in C0,a . So by elliptic regularity we can deduce that f ∈ C2,a . We have gained
one degree of regularity, so we can “bootstrap”, i.e. proceed by induction and deduce
that any C1,a solution to P( f ) = 0 is smooth.

Example C1,a-minimal submanifolds (and thus calibrated submanifolds) are
smooth.

Remark More sophisticated techniques can be used to deduce that C1-minimal
submanifolds are real analytic [69]. Notice that elliptic regularity results are not
valid for Ck spaces, so this result is not obvious.

We can also arrange our simple equation P( f ) = 0 as � f + Q(∇ f,∇2 f ) = 0,
where Q is nonlinear but linear in ∇2 f . If we know that

∫
N P( f ) volN = 0, i.e. that

P( f ) is orthogonal to the constants, thenwe can always solve� f0 = −Q(∇ f,∇2 f ).
We do know that

∫
N P( f ) volN = 0 since P has a divergence form. This means we
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are in the setting for implementing the Implicit Function Theorem for Banach spaces
to conclude that we can always solve P( f ) = 0 for some f near 0, and f will be
smooth by our regularity argument above. In general, we will use the following.

Theorem 6.1 (Implicit Function Theorem) Let X,Y be Banach spaces, let U � 0
be open in X, let P : U → Y with P(0) = 0 and L0P : X → Y surjective with
finite-dimensional kernel K .

Then for some U, P−1(0) = {u ∈ U : P(u) = 0} is a manifold of dimension
dim K. Moreover, if we write X = K ⊕ Z, P−1(0) = GraphG for some map G
from an open set in K to Z with G(0) = 0.

This gives us away to describe all perturbations of a given calibrated submanifold,
as we now see in the special Lagrangian case, due to McLean [66].

Theorem 6.2 Let N be a compact special Lagrangian in a Calabi–Yau manifold
M. Then the moduli space of deformations of N is a smooth manifold of dimension
b1(N ).

Remark One should compare this result to the deformation theory for complex
submanifolds in Kähler manifolds. There, one does not get that the moduli space is a
smoothmanifold: in fact, it can be singular, and one has obstructions to deformations.
It is somewhat remarkable that special Lagrangian calibrated geometry enjoys amuch
better deformation theory than this classical calibrated geometry. The deformation
theory of embedded compact complex submanifolds in Calabi–Yau manifolds has
recently been revisited using analytic techniques [67].

Proof The tubular neighbourhood theorem gives us a diffeomorphism exp : S ⊆
ν(N ) → T ⊆ M which maps the zero section to N ; in other words, we can write
any nearby submanifold to N as the graph of a normal vector field on N . We know
that N is Lagrangian, so the complex structure J gives an isomorphism between
ν(N ) and T N and the metric gives an isomorphism between T N and T ∗N : v �→
g(Jv, .) = ω(v, .) = αv . Therefore any deformation of N in T is given as the graph
of a 1-form. In fact, using the Lagrangian neighbourhood theorem, we can arrange
that any N ′ ∈ T is the graph of a 1-form α, so that if fα : N → Nα is the natural
diffeomorphism then

f ∗
α (ω) = dα and − ∗ f ∗

α (Imϒ) = F(α,∇α) = d∗α + Q(α,∇α),

where the second formula follows from a calculation using the special Lagrangian
condition on N and the fact that the ambient structure is Calabi–Yau. Hence, Nα

is special Lagrangian if and only if P(α) = (F(α,∇α), dα) = 0. This means that
infinitesimal special Lagrangian deformations are given by closed and coclosed 1-
forms, which is the kernel of L0P .

Since Imϒ = 0 on N wehave that [Imϒ] = 0 on Nα,whichmeans that f ∗
α (Imϒ)

is exact. Thus F(α,∇α) = − ∗ f ∗
α (Imϒ) is coexact and so

P : C∞(S) → d∗(C∞(T ∗N )) ⊕ d(C∞(T ∗N )) ⊆ C∞(�0T ∗N ⊕ �2T ∗N ).
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If we let X = C1,a(T ∗N ), Y = d∗(C1,a(T ∗N )) ⊕ d(C1,a(T ∗N )) and U = C1,a(S)

we can apply the Implicit Function Theorem if we know that

L0P : α ∈ X �→ (d∗α, dα) ∈ Y

is surjective, i.e. given dβ + d∗γ ∈ Y does there exist α such that dα = dβ and
d∗α = d∗γ? If we let α = β + d f then we need � f = d∗d f = d∗(γ − β). Since

∫
N
d∗(γ − β) volN = ±

∫
N
d ∗ (γ − β) = 0

we can solve the equation for f , and hence L0P is surjective.
Therefore P−1(0) is a manifold of dimension dimKer L0P = b1(N ) by Hodge

theory. Moreover, if P(α) = 0 then Nα is special Lagrangian, hence minimal and
since α ∈ C1,a we deduce that α is in fact smooth. �

Example The special Lagrangian Sn in T ∗Sn has b1 = 0 and so is rigid.

Observe that if we have a special Lagrangian T n in M then b1(T n) = n and, if
the torus is close to flat then its deformations locally foliate M (as there will be n
nowhere vanishing harmonic 1-forms), so we can hope to find special Lagrangian
torus fibrations. This cannot happen in compact manifolds without singular fibres,
but still motivates the SYZ conjecture in Mirror Symmetry. The deformation result
also motivates the following theorem [3].

Theorem 6.3 Every compact oriented real analytic Riemannian 3-manifold can be
isometrically embedded in a Calabi–Yau 3-fold as the fixed point set of an involution.

Remark Theorem 6.2 has also been extended to certain non-compact, singular and
boundary settings, for example in [6, 36, 72].

Another well-known way to get a solution of a linear PDE from two solutions
is simply to add them. However, for a nonlinear PDE P(v) = 0 this will not work.
Intuitively, we can try to add two solutions to give us a solution v0 for which P(v0)

is small. Then we may try to perturb v0 by v to solve P(v + v0) = 0.
Geometrically, this occurs when we have two calibrated submanifolds N1, N2 and

then glue them together to give a submanifold N which is “almost” calibrated, then
we deform N to become calibrated. If the two submanifolds N1, N2 are glued using
a very long neck then one can imagine that N is almost the disjoint union of N1, N2

and so close to being calibrated. If instead one scales N2 by a factor t and then glues
it into a singular point of N1, we can again imagine that as t becomes very small
N resembles N1 and so again is close to being calibrated. These two examples are
in fact related, because if we rescale the shrinking N2 to fixed size, then we get a
long neck between N1 and N2 of length of order − log t . However, although these
pictures are appealing, they also reveal the difficulty in this approach: as t becomes
small, N becomes more “degenerate”, giving rise to analytic difficulties which are
encoded in the geometry of N1, N2 and N .
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These ideas are used extensively in geometry, and particularly successfully in
calibrated geometry e.g. [7, 23, 35, 37, 38, 51, 57, 62, 73]. A particular simple case
is the following, which we will describe to show the basic idea of the gluing method.

Theorem 6.4 Let N be a compact connected 3-manifold and let i : N → M be a
special Lagrangian immersion with transverse self-intersection points in a Calabi–
Yau manifold M. Then there exist embedded special Lagrangians Nt such that Nt →
N as t → 0.

Remark One might ask about the sense of convergence here: for definiteness, we
can say that Nt converges to N in the sense of currents; that is, if we have any
compactly supported 3-form χ on M then

∫
Nt

χ → ∫
N χ as t → 0. However, all

sensible notions of convergence of submanifolds will be true in this setting.

Proof Here we only provide a sketch of the proof: see, for example, [35, Sect. 9] for
a detailed proof.

At each self-intersection point of N the tangent spaces are a pair of transverse 3-
planes, which we can view as a pair of tranverse special Lagrangian 3-planes P1, P2
in C3. Since we are in dimension 3, we know that there exists a (unique up to scale)
special Lagrangian Lawlor neck L asymptotic to P1 ∪ P2. We can then glue t L into
N near each intersection point to get a compact embedded submanifold St = N#t L
(if we glue in a Lawlor neck for every self-intersection point). We can also arrange
that St is Lagrangian, i.e. that it is a Lagrangian connect sum.

Now we want to perturb St to be special Lagrangian. Since St is Lagrangian, by
the deformation theory we canwrite any nearby submanifold as the graph of a 1-form
α, and this graph will be special Lagrangian if and only if (using the same notation
as in our deformation theory discussion)

Pt (α) = (− ∗ f ∗
α (Imϒ), f ∗

α (ω)) = 0.

Since St is Lagrangian but not special Lagrangian we have that

f ∗
α (ω) = dα and − ∗ f ∗

α (Imϒ) = Pt (0) + d∗
t α + Qt (α,∇α)

where Pt (0) = − ∗ Imϒ |St and d∗
t = L0Pt , which is a perturbation of the usual d∗

since we are no longer linearising at a point where Pt (0) = 0. By choosing α = d f ,
we then have to solve

�t f = −Pt (0) − Qt (∇ f,∇2 f )

where �t is a perturbation of the Laplacian.
For simplicity, let us suppose that �t is the Laplacian on St . The idea is to view

our equation as a fixed point problem. We know that if we let Xk = { f ∈ Ck,a(N ) :∫
N f volN = 0} then�t : Xk+2 → Xk is an isomorphism so it has an inverseGt . We

know by our elliptic regularity result that there exists a constant C(�t ) such that
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‖ f ‖Ck+2,a ≤ C(�t )‖�t f ‖Ck,a ⇔ ‖Gth‖Ck+2,a ≤ C(�t )‖h‖Ck,a

for any f ∈ Xk+2, h ∈ Xk .
We thus see that Pt ( f ) = 0 for f ∈ Xk+2 if and only if

f = Gt (−Pt (0) − Qt ( f )) = Ft ( f ).

The idea is now to show that Ft is a contraction sufficiently near 0 for all t small
enough. Then it will have a (unique) fixed point near 0, which will also be smooth
because it satisfies Pt ( f ) = 0 and hence defines a special Lagrangian as the graph
of d f over St .

We know that Ft : Xk+2 → Xk+2 with

‖Ft ( f1) − Ft ( f2)‖Ck+2,a = ‖Gt (Qt ( f1) − Qt ( f2))‖Ck+2,a ≤ C(�t )‖Qt ( f1) − Qt ( f2)‖Ck,a .

Since Qt and its first derivatives vanish at 0 we know that

‖Qt ( f1) − Qt ( f2)‖Ck,a ≤ C(Qt )‖ f1 − f2‖Ck+2,a (‖ f1‖Ck+2,a + ‖ f2‖Ck+2,a ).

We deduce that

‖Ft ( f1) − Ft ( f2)‖Ck+2,a ≤ C(�t )C(Qt )‖ f1 − f2‖Ck+2,a (‖ f1‖Ck+2,a + ‖ f2‖Ck+2,a )

and
‖Ft (0)‖Ck+2,a = ‖Gt (Pt (0))‖Ck+2,a ≤ C(�t )‖Pt (0)‖Ck,a .

Hence, Ft is a contraction on Bεt (0) ⊆ Xk+2 if we can choose εt so that

2C(�t )‖Pt (0)‖Ck,a ≤ εt ≤ 1

4C(�t )C(Qt )
.

(This also proves Theorem 6.2, where we used the Implicit Function Theorem, by
hand since there Pt (0) = P(0) = 0 so we just need to take εt small enough.) In other
words, we need that

• Pt (0) is small, so St is “close” to being calibrated and is a good approximation to
Pt ( f ) = 0;

• C(�t ),C(Qt ), which are determined by the linear PDE and geometry of N , L
and St , are well-controlled as t → 0.

The statement of the theorem is then that there exists t sufficiently small and εt so
that the contraction mapping argument works.

This is a delicate balancing act since as t → 0 parts of the manifold are collaps-
ing, so the constants C(�t ),C(Qt ) above (which depend on t) can and typically do
blow-up as t → 0. To control this, we need to understand the Laplacian on N , L
and St and introduce “weighted” Banach spaces so that t L gets rescaled to constant
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size (independent of t), and St resembles the union of two manifolds with a cylin-
drical neck (as we described earlier). It is also crucial to understand the relationship
between the kernels and cokernels of the Laplacian on the non-compact N (with
the intersection points removed), L and compact St : here is where connectedness is
important so that the kernel and cokernel of the Laplacian is 1-dimensional. �
Remark In more challenging gluing problems it is not possible to show that the
relevant map is a contraction, but rather one can instead appeal to an alternative
theorem (e.g. Schauder fixed point theorem) to show that it still has a fixed point.

7 Associative and Coassociative Submanifolds

We now want to introduce our calibrated geometry associated with G2 holonomy.
The first key result is the following.

Theorem 7.1 Let (M7,ϕ) be a G2 manifold (so ϕ is a closed and coclosed positive
3-form). Then ϕ and ∗ϕ are calibrations.

Proof Let u, v, w be oriented orthonormal vectors in R7. There exists an element A
of G2 so that Au = e1. The subgroup of G2 fixing e1 is isomorphic to SU(3), and we
know from the proof of Wirtinger’s inequality (Theorem 4.2) there exists a (special)
unitary transformation so that v = e2 and w = cos θe3 + sin θv for some θ and v

orthogonal to e1, e2, e3. Since ϕ(e1, e2, .) = dx3 by the formula below, we see that
ϕ(u, v, w) = cos θ. Hence, since ϕ is closed, ϕ is a calibration and the calibrated
planes are given by A.Span{e1, e2, e3} for A ∈ G2.

By Lemma 4.3, ∗ϕ is also a calibration. �
Let us look at the calibrated planes and start with ϕ, which we take to be the

following on R
7:

ϕ = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356,

where we use the short-hand notation dxi j ...k = dxi ∧ dx j ∧ · · · ∧ dxk . Hence, ∗ϕ
on R7 is given by:

∗ϕ = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247.

If u, v, w are unit vectors in R
7 ∼= ImO (the imaginary octonions), then

ϕ(u, v, w) = 〈u × v,w〉 = 1 if and only if w = u × v, so P = Span{u, v, w} is a
copy of ImH in ImO; in other words, Span{1, u, v, w} is an associative subalgebra
of O. Moreover, suppose we define a vector-valued 3-form χ on R

7 by

χ(u, v, w) = [u, v, w] = u(vw) − (uv)w,

known as the associator. Then we observe the following.
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Lemma 7.2 A 3-plane P in R
7 satisfies χ|P ≡ 0 if and only if P admits an orien-

tation so that it is calibrated by ϕ.

Proof Since the associator is clearly invariant under G2 we can put any plane P
in standard position using G2, i.e. as in the proof of Theorem 7.1, we can write
P = Span{e1, e2, cos θe3 + sin θv} for some v orthogonal to e1, e2, e3. We can cal-
culate that [e1, e2, e3] = 0 whereas [e1, e2, v] �= 0 for any v orthogonal to e1, e2, e3.
Moreover, P is calibrated by ϕ if and only if θ = 0. We thus see that P is calibrated
by ϕ (up to a choice a orientation) if and only if χ|P ≡ 0. �

Hence we call the ϕ-calibrated planes associative. In general on a G2 manifold
we can define a 3-form χ with values in T M using the pointwise formula above.

For ∗ϕwe see that ∗ϕ|P = volP for a plane P if and only ifϕ|P⊥ = volP⊥ . Hence
the planes calibrated by ∗ϕ are the orthogonal complements of the associative planes,
so we call them coassociative. We have a similar alternative characterisation for 4-
planes calibrated by ∗ϕ.

Lemma 7.3 A 4-plane P in R
7 satisfies ϕ|P ≡ 0 if and only if P admits an orien-

tation so that it is calibrated by ∗ϕ.

Proof We know that given a 4-plane P we can choose coordinates such that P⊥ =
Span{e1, e2, cos θe3 + sin θ(a4e4 + a5e5 + a6e6 + a7e7)} where ∑

j a
2
j = 1. Then

P = Span{ − sin θe3 + cos θ(a j e j ), a5e4 − a4e5 + a7e6 − a6e7,

a6e4 − a7e5 − a4e6 + a5e7, a7e4 + a6e5 − a5e6 − a4e7}.

We can then see directly that ∗ϕ|P = cos θ. We also have ϕ(ei , e j , ek) = 0 for
i, j, k ∈ {4, 5, 6, 7} and e3�ϕ = −dx47 − dx56, so that ϕ(− sin θe3 + cos θ(a j e j ),
v,w) is a non-zero multiple of sin θ for some v,w ∈ P . Hence ϕ|P = 0 if and only
if θ = 0, which is if and only if P is calibrated by ∗ϕ (again up to a choice of
orientation). �

We thus can define our calibrated submanifolds.

Definition 7.4 Submanifolds in (M7,ϕ) calibrated by ϕ are called associative 3-
folds.Moreover, N is associative if and only ifχ|N ≡ 0 (up to a choice of orientation).

Submanifolds in (M7,ϕ) calibrated by ∗ϕ are called coassociative 4-folds.More-
over, N is coassociative if and only if ϕ|N ≡ 0 (up to a choice of orientation).

It is instructive to see the form that the associative or coassociative condition takes
by studying associative or coassociative graphs in R7: see [20] for details.

A simpleway to get associative and coassociative submanifolds is by using known
geometries.

Proposition 7.5 Let x1, . . . , x7 be coordinates on R
7 and let z j = x2 j + i x2 j+1 be

coordinates on C
3 so that R7 = R × C

3.
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(a) N = R × S ⊆ R × C
3 is associative or coassociative if and only if S is a com-

plex curve or a special Lagrangian 3-fold with phase −i , respectively.
(b) N ⊆ {0} × C

3 is associative or coassociative if and only if N is a special
Lagrangian 3-fold or a complex surface, respectively.

Proof Recall the Kähler form ω and holomorphic volume form ϒ on C
3. We can

write

ϕ = dx1 ∧ ω + Reϒ and ∗ ϕ = 1

2
ω2 − dx1 ∧ Imϒ.

For associatives,we see thatϕ|R×S = dx1 ∧ volS if and only ifω|S = volS andϕ|N =
Reϒ |N for N ⊆ C

3. For coassociatives, we see that ∗ϕ|R×S = dx1 ∧ volS if and only
if − Imϒ |S = volS and ∗ϕ|N = 1

2ω
2|N for N ⊆ C

3. The results quickly follow. �

We can also produce examples in G2 manifolds with an isometric involution.

Proposition 7.6 Let (M,ϕ) be a G2 manifold with an isometric involution σ �= id
such that σ∗ϕ = ϕ or σ∗ϕ = −ϕ. Then Fix(σ) is an associative or coassociative
submanifold in M respectively, if it is non-empty.

We also have explicit examples of associatives and coassociatives.

Example The first explicit examples of associatives in R
7 not arising from other

geometries are given in [52] from symmetry and evolution equation considerations.
The first explicit non-trivial examples of coassociatives in R

7 are given in [20].
There are two dilation families: one which has one end asymptotic to a cone C
on a non-round S3, and one which has two ends asymptotic to C ∪ R

4. The cone
C was discovered earlier by Lawson–Osserman [50] and was a key example of a
volume-minimizing submanifold which is not smooth (it is Lipschitz but not C1).

Example In the Bryant–Salamon holonomy G2 metric on the spinor bundle of S3

[5], the base S3 is associative. In the Bryant–Salamon holonomy G2 metrics on
�2+T ∗S4 and �2+T ∗

CP
2 [5], the bases S4 and CP

2 are coassociative.

We nowwant to understand deformations of associatives and coassociatives, from
which perturbation or gluing results will follow. We begin with associatives.

Notice that if P is an associative plane, u ∈ P and v ∈ P⊥ then u × v ∈ P⊥
since ϕ(w, u, v) = g(w, u × v) = g(v,w × u) = 0 for all w ∈ P since w × u ∈
P . Thus, if N is associative, cross product gives a (Clifford) multiplication m :
C∞(T ∗N ⊗ ν(N )) → C∞(ν(N )) (viewing tangent vectors as cotangent vectors via
the metric). Hence, using the normal connection ∇⊥ : C∞(ν(N )) → C∞(T ∗N ⊗
ν(N )) on ν(N ) we get a linear operator

/D = m ◦ ∇⊥ : C∞(ν(N )) → C∞(ν(N )).

We call /D the Dirac operator. We see that its principal symbol is given by
σ /D(x, ξ)v = iξ × v, so /D is elliptic, and we also have that /D∗ = /D.
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Remark Since a 3-manifold is always spin, we have a spinor bundle S on N , a
connection ∇ : C∞(S) → C∞(T ∗M ⊗ S) (a lift of the Levi-Civita connection) and
we have Clifford multiplication m : C∞(T ∗M ⊗ S) → C∞(S) given by m(ξ, v) =
ξ · v. Hence we have a composition /D = m ◦ ∇ : C∞(S) → C∞(S), which is a first
order linear differential operator called the Dirac operator. Locally it is given by
/Dv = ∑

i ei · ∇ei v, so we have that σ /D(ξ, v) = iξ · v. Hence /D is elliptic. Moreover
/D is self-adjoint.
In fact, it is possible (see e.g. [66]) to see that the complexified normal bundle

ν(N ) ⊗ C = S ⊗ V for a C2-bundle V over N , so that the Dirac operator on ν(N )

is just a “twist” of the usual Dirac operator on S.

Consider a compact associative N . We want to describe the associative deforma-
tions of N , just as in the case of special Lagrangians above. To be consistent with
that previous setting, we will now use P to denote a nonlinear deformation map: we
trust that this will not cause confusion given the context.

We know that expv(N ) = Nv , which is the graph of v, is associative for a normal
vector field v if and only if ∗ exp∗

v(χ) ∈ C∞(T M |N ) is 0. In fact, it turns out that
P(v) = ∗ exp∗

v(χ) ∈ C∞(ν(N )) since N is associative and

L0P(v) = ∗d(v�χ) = /Dv.

Here L0P is not typically surjective so we cannot apply our Implicit Function The-
orem, except when Ker /D = Ker /D∗ = {0}. However, we can still say something
in these circumstances, for which we make a small digression to a more general
situation.

Suppose X,Y are Banach spaces. Let U ⊆ X be an open set with 0 ∈ U and let
P : U → Y be a smooth map with P(0) = 0 such that L0P : X → Y is Fredholm.

Let I = Ker L0P and let O be such that Y = L0P(X) ⊕ O, which exists and is
finite-dimensional by the assumption that L0P is Fredholm.We then let Z = X ⊕ O
and define F : U ⊕ O → Y by F(u, y) = P(u) + y. We see that L0F : X ⊕ O →
Y = L0P(X) ⊕ O is given by L0F(x, y) = L0P(x) + y which is surjective and
L0F(x, y) = 0 if and only if L0P(x) = 0 and y = 0, thus Ker L0F = Ker L0P ×
{0}.

There exists W ⊆ X such that Ker L0P ⊕ W = X . Applying the Implicit Func-
tion Theorem, there exist open setsU1 ⊆ Ker L0P containing 0,U2 ⊆ W containing
0 and U3 ⊆ O containing 0 and smooth maps G2 : U1 → U2, G3 : U1 → U3 such
that

F−1(0) ∩U1 ×U2 ×U3 = {(u,G2(u),G3(u)) : u ∈ U1}.

We also know that P(x) = 0 if and only if F(x, y) = 0 and y = 0. Hence

P−1(0) ∩U1 ×U2 = {(u,G2(u)) : u ∈ G−1
3 (0)}.

Let U = U1 and define π : U → O by π(u) = G3(u). Then P−1(0) ∩U1 ×U2 is a
graph over π−1(0), and hence P−1(0) is locally homeomorphic to π−1(0).
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Sard’s Theorem says that generically π−1(y) is a smooth manifold of dimen-
sion dim I − dimO = dimKer L0P − dim Coker L0P , which is the index of L0P .
Hence, the expected dimension of P−1(0) is the index of L0P .

In the associative setting we have that the linearisation is /D, which is elliptic
and thus Fredholm, and we know that index /D = dimKer /D − dimKer /D∗ = 0. We
deduce the following [66].

Theorem 7.7 The expected dimension of the moduli space of deformations of a
compact associative 3-fold N in a G2 manifold is 0 and infinitesimal deformations
of N are given by the kernel of /D on ν(N ). Moreover, ifKer /D = {0} then N is rigid.

Remark The dimension of the kernel of /D typically depends on the metric on N
rather than just the topology, so it is usually difficult to determine. However, there
are some cases where one can ensure the moduli space is smooth cf. [15].

Example For the associative N = S3 in S(S3), ν(N ) = S(S3) so /D is just the usual
Dirac operator. A theorem of Lichnerowicz states that Ker /D = {0} asS3 has positive
scalar curvature so N is rigid.

Example Corti–Haskins–Nordström–Pacini construct rigid associative S1 × S2s in
compact holonomy G2 twisted connected sums [10].

For coassociatives, the deformation theory is much better behaved, like for special
Lagrangians [66].

Theorem 7.8 Let N be a compact coassociative in a G2 manifold (or just a
7-manifold with closed G2 structure). The moduli space of deformations of N is
a smooth manifold of dimension b2+(N ).

Proof Since N is coassociative the map v �→ v�ϕ = αv defines an isomorphism
from ν(N ) to a rank 3 vector bundle on N , which is �2+T ∗N , the 2-forms on N
which are self-dual (so ∗α = α). We can therefore view nearby submanifolds to N
as graphs of self-dual 2-forms.

We know that Nv = expv(N ) is coassociative if and only if exp∗
v(ϕ) = 0. We see

that
d

dt
exp∗

tv(ϕ)|t=0 = Lvϕ = d(v�ϕ) = dαv.

Hence nearby coassociatives N ′ to N are given by the zeros of P(α) =
dα + Q(α,∇α). Moreover, since ϕ = 0 on N , [ϕ] = 0 on N ′ and hence P :
C∞(�2+T ∗N ) → d(C∞(�2T ∗N )).

Here P is not elliptic, but L0P = d has finite-dimensional kernel, the closed
self-dual 2-forms, since dα = 0 implies that d∗α = − ∗ d ∗ α = 0 so α is har-
monic. Moreover, L0P has injective symbol so it is overdetermined elliptic, which
means that elliptic regularity still holds. Another way to deal with this is to consider
F(α,β) = P(α) + d∗β for β a 4-form. Now F−1(0) is the disjoint union of P−1(0)
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and multiples of the volume form, as exact and coexact forms are orthogonal. More-
over, L0F(α,β) = dα + d∗β is now elliptic. Overall, we can apply our standard
Implicit Function Theorem if we know that

d(Ck+1,a(�2
+T

∗N )) = d(Ck+1,a(�2T ∗N )).

This is true because by Hodge theory if α is a 2-form, we can write α = d∗β + γ for
a 3-form β and a closed form γ, so dα = dd∗β = d(d∗β + ∗d∗β) and d∗β + ∗d∗β
is self-dual. �

Example The S4 and CP
2 in the Bryant–Salamon metrics on �2+T ∗S4 and

�2+T ∗
CP

2 have b2+ = 0 and so are rigid.

For a K3 surface and T 4 we have b2+ = 3 and �2+ is trivial, so we can hope
to find coassociative K3 and T 4 fibrations of compact G2 manifolds. There is a
programme [47] for constructing a coassociative K3 fibration (with singular fibres).
Towards completing this programme, the first examples of compact coassociative
4-folds with conical singularities in compact holonomy G2 twisted connected sums
were constructed in [61].

Again, we have a similar isometric embedding result for coassociative 4-folds,
motivated by the deformation theory result [3].

Theorem 7.9 Any compact oriented real analytic Riemannian 4-manifold whose
bundle of self-dual 2-forms is trivial can be isometrically embedded in aG2 manifold
as the fixed points of an isometric involution.

Remark The deformation theory results for compact associative and coassociative
submanifolds have been extended to certain non-compact, singular and boundary
settings, for example in [16, 44, 48, 55, 56, 58].

8 Cayley Submanifolds

We now discuss our final class of calibrated submanifolds.

Theorem 8.1 On a Spin(7) manifold (M8,�) (so � is a closed admissible form),
� is a calibration.

Proof Let P be a plane in R
8 ∼= C

4. Since SU(4) ⊆ Spin(7), by the proof of
Wirtinger’s inequality (Theorem 4.2), we can choose A ∈ Spin(7) so that A(P)

is spanned by
{e1, cos θ1e2 + sin θ1e3, e5, cos θ2e6 + sin θ2e7}.

We take the standard Spin(7) form � on R
8 to be:
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� = dx1234 + dx1256 + dx1278 + dx1357 − dx1367 − dx1458 − dx1467
+ dx5678 + dx3478 + dx3456 + dx2468 − dx2457 − dx2367 − dx2358,

again using the notation dxi j ...k = dxi ∧ dx j ∧ · · · ∧ dxk . Then �|P =
(cos θ1 cos θ2 + sin θ1 sin θ2) volP = cos(θ1 − θ2) volP . Hence � is a calibration as
it is closed. �

We can thus define our calibrated submanifolds in Spin(7) manifolds.

Definition 8.2 Submanifolds in (M8,�) calibrated by � are called Cayley 4-folds.

Remark The name Cayley submanifolds is because of the relation between the
submanifolds and the octonions or Cayley numbers O.

We can relate Cayley submanifolds to all of the other calibrated geometries we
have seen.

Proposition 8.3 (a) Complex surfaces and special Lagrangian 4-folds in C
4 are

Cayley in R8 = C
4.

(b) Write R8 = R × R
7. Then R × S is Cayley if and only if S is associative in R

7

and N ⊆ R
7 is Cayley in R8 if and only if N is coassociative in R7.

Proof Recall the Kähler form ω and holomorphic volume form ϒ on C4 and the G2

3-form ϕ on R
7.

Part (a) is immediate from the formula� = 1
2ω

2 + Reϒ , since complex surfaces
are calibrated by 1

2ω
2, special Lagrangians are calibrated by Reϒ , ϒ vanishes on

complex surfaces and ω vanishes on special Lagrangians.
Part (b) follows immediately from the formula � = dx1 ∧ ϕ + ∗ϕ. �

We can also use an isometric involution to construct Cayley submanifolds as in
our previous calibrated geometries.

Proposition 8.4 Let (M,�) be a Spin(7) manifold and let σ �= id be an isometric
involution with σ∗� = �. Then Fix(σ) is Cayley submanifold, if it is non-empty.

Example The first interesting explicit examples of Cayleys in R
8 not arising from

other geometries were given in [53] and are asymptotic to cones.

Example The base S4 in the Bryant–Salamon holonomy Spin(7) metric on S+(S4)

[5] is Cayley.

We now discuss deformations of a compact Cayley N , for which we need some
discussion of algebra related to Spin(7). Since�2(R8)∗ is 28-dimensional and the 21-
dimensional Lie algebra of Spin(7) sits inside the space of 2-forms, we must have a
distinguished 7-dimensional subspace�2

7 of 2-forms onR8. Sowhat is this subspace?
Let u, v ∈ R

8. Then we can construct a 2-form u ∧ v, viewing u, v as cotangent
vectors. We can also construct a 2-form from u, v by considering �(u, v, ., .). It is
then true that
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�2
7 = {u ∧ v + �(u, v, ., .) : u, v ∈ R

8}.

When P is a Cayley plane and u, v ∈ P are orthogonal we see that �(u, v, ., .) =
∗P(u ∧ v) so that u ∧ v + �(u, v, ., .) is self-dual on P . Since �2+P∗ is 3-
dimensional, we see that there must be a 4-dimensional space E of 2-forms on
P such that �2

7|P = �2+P∗ ⊕ E . Moreover, if u ∈ P and v ∈ P⊥ then m(u, v) =
u ∧ v + �(u, v, ., .) ∈ E and the map m : P × P⊥ → E is surjective.

Now let us move to a Cayley submanifold N in a Spin(7)manifold (M,�). On M
we have a rank 7 bundle �2

7 of 2-forms and we have that �2
7|N = �2+T ∗N ⊕ E for

some rank 4 bundle E over N . The map m above defines a (Clifford) multiplication
m : C∞(T ∗N ⊗ ν(N )) → C∞(E) (viewing tangent vectors as cotangent vectors via
the metric), and thus using the normal connection ∇⊥ : C∞(ν(N )) → C∞(T ∗N ⊗
ν(N )) we get a linear first order differential operator

/D+ = m ◦ ∇⊥ : C∞(ν(N )) → C∞(E).

Again this is an elliptic operator called the positive Dirac operator, but it is not
self-adjoint: its adjoint is the negative Dirac operator from E to ν(N ).

Remark If N is spin, the spinor bundleS splits asS+ ⊕ S−, and theDirac operator /D
splits into /D± from S± to S∓ so that /D(v+, v−) = ( /D−v−, /D+v+). Hence /D∗ = /D
says that /D∗

± = /D∓.
It turns out (see, for example, [66]) that there exists a C2-bundle V on N so that

ν(N ) ⊗ C = S+ ⊗ V , E ⊗ C = S− ⊗ V and /D+ on ν(N ) is a “twist” of the usual
positive Dirac operator. However, not every 4-manifold is spin, so we cannot always
make this identification.

On O there exists a 4-fold cross product, whose real part gives � and whose
imaginary part we call τ . Perhaps unsurprisingly, we have the following result, which
we will leave as an exercise for the reader.

Lemma 8.5 A4-plane P inR8 satisfies τ |P ≡ 0 if and only if it admits an orientation
so that it is calibrated by �.

We can extend τ to a Spin(7)manifold, except that we need a rank 7 vector bundle
on M in which τ takes values: we have one, namely �2

7. So we have the following
alternative characterisation of Cayley 4-folds.

Lemma 8.6 A submanifold N in a Spin(7) manifold is Cayley (up to a choice of
orientation) if and only if τ ∈ C∞(�4T ∗M;�2

7) vanishes on N.

Now suppose that N is a compact Cayley 4-fold. Then the zeros of the equation
F(v) = ∗ exp∗

v(τ ) for v ∈ C∞(ν(N )) define Cayley deformations (as the graph of
v). We know that F takes values in �2

7|N = �2+T ∗N ⊕ E and it turns out that

L0F(v) = ∗d(v�τ ) = /D+v
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since N is Cayley. So, we potentially have a problem because F does not necessarily
take values only in E (and in general it will not just take values in E). However, the
Cayley condition on N means that F(v) = 0 if and only P(v) = πE F(v) = 0, where
πE is the projection onto E (again,we are using P to denote the nonlinear deformation
map as in our previous discussion, andwe expect it will not cause confusion given the
context). Then the operator P : C∞(ν(N )) → C∞(E) and L0P = /D+ is elliptic.

Again, we cannot say that L0P is surjective, so we have the following using the
same argument as in the lead up to Theorem 7.7, cf. [66].

Theorem 8.7 The expected dimension of themoduli space of deformations of a com-
pact Cayley 4-fold N in a Spin(7)manifold is ind /D+ = dimKer /D+ − dimKer /D∗

+
with infinitesimal deformations given by Ker /D+ on ν(N ). Moreover,

ind /D+ = 1

2
σ(N ) + 1

2
χ(N ) − [N ].[N ], (1)

where σ(N ) = b2+(N ) − b2−(N ) (the signature of N), χ(N ) = 2b0(N ) − 2b1(N ) +
b2(N ) (the Euler characteristic of N) and [N ].[N ] is the self-intersection of N ,
which is the Euler number of ν(N ).

Example For the Cayley N = S4 in S+(S4), ν(N ) = S+(S4) and /D+ is the usual
positive Dirac operator. Again, since N has positive scalar curvature, we see that
Ker /D± = {0} so N is rigid.

Remark Theorem 8.7 has been extended to various other non-compact, singular
and boundary settings, for example in [68, 70, 71].

9 The Angle Theorem

To conclude these notes, we now discuss a very natural and elementary problem in
Euclidean geometry where calibrations play a major, and perhaps unexpected, role.

If one takes two lines in R
2 intersecting transversely, then their union is never

length-minimizing. A natural question to ask is: does this persist in higher dimen-
sions? In other words, when is the union of two transversely intersecting n-planes in
R

2n volume-minimizing? Two such planes are determined by the n angles between
them as follows.

Lemma 9.1 Let P, Q be oriented n-planes in R
2n. There exists an orthonormal

basis e1, . . . , e2n for R2n such that P = Span{e1, . . . , en} and

Q = Span{cos θ1e1 + sin θ1en+1, . . . , cos θnen + sin θne2n}

where 0 ≤ θ1 ≤ · · · ≤ θn−1 ≤ π
2 and θn−1 ≤ θn ≤ π − θn−1. These angles are called

the characterising angles of P, Q.
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Proof The proof is very similar to the argument in the proof of Wirtinger’s inequal-
ity (Theorem 4.2). Choose unit e1 ∈ P and maximise 〈e1, u1〉 for u1 ∈ Q, and let
en+1 ∈ P⊥ be defined by u1 = cos θ1e1 + sin θ1en+1. Now choose e2 ∈ P ∩ e⊥

1 and
maximise 〈e2, u2〉 for u2 ∈ Q ∩ u⊥

1 , then proceed by induction. �
If the characterising angles of P, Q are θ1, . . . , θn , then the characterising angles

of P,−Q are ψ1, . . . ,ψn where ψ j = θ j for j = 1, . . . , n − 1 and ψn = π − θn .
The idea of the following theorem is that the union of P ∪ Q is area-minimizing

if P,−Q are not too close together [49].

Theorem 9.2 (Angle Theorem) Let P, Q be oriented transverse n-planes in R
2n

and let ψ1, . . . ,ψn be the characterising angles between P,−Q. Then P ∪ Q is
volume-minimizing if and only if ψ1 + · · · + ψn ≥ π.

Notice that this criteria is impossible to fulfill in 1 dimension.

Proof We will sketch the proof which involves calibrations in a fundamental way in
both directions. For details, we recommend looking at [19].

First if P ∪ Q does not satisfy the angle condition, we can choose coordinates
by Lemma 9.1 so that P = P(−ψ

2 ) and −Q = P(
ψ
2 ) where ψ = (ψ1, . . . ,ψn) and

P(ψ) = {(eiψ1,x1, . . . , eiψn xn) : (x1, . . . , xn) ∈ R
n} as given earlier. We know that

we have a special Lagrangian Lawlor neck N asymptotic to P(−ψ′
2 ) ∪ P(

ψ′
2 ) for any

ψ′ where
∑n

i=1 ψ′
i = π. The claim is then that since

∑
ψi < π we can find ψ′ so that∑

ψ′
i = π and N ∩ P(±ψ′

2 ) is non-empty (in fact, an ellipsoid). This is actually a
way to characterise N . Hence since N is calibrated by Imϒ and Imϒ |P∪Q < volP∪Q

by the condition on the characterising angles, P ∪ Q cannot be volume-minimizing
by the usual Stokes’ Theorem argument for calibrated submanifolds.

We now provide a few extra details, for which we need to describe N . For maps
z1, . . . , zn : R → C define

N = {(t1z1(s), . . . , tnzn(s)) ∈ C
n : s ∈ R, t1, . . . , tn ∈ R,

n∑
j=1

t2j = 1}.

It is not difficult to calculate that N is special Lagrangian with phase i (so calibrated
by Imϒ) if and only if

z j
dz j
ds

= i f j z1 . . . zn

for positive real functions f j .
Suppose that f j = 1 for all j .Write z j = r j eiθ j , let θ = ∑n

j=1 θ j and suppose that
z j (0) = c j > 0. From the differential equation, one quickly sees that r2j = c2j + u
for some function u with u(0) = 0 and r1 . . . rn cos θ = c1 . . . cn .

If we now suppose that u = t2, we see that

θ j (t) =
∫ t

0

a jdt

(1 + a j t2)
√

1
t2

(
(1 + a1t2) . . . (1 + ant2) − 1

)
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where a j = c−2
j . We observe that θ → ±π

2 as t → ±∞ and hence N , which is a
Lawlor neck, is asymptotic to a pair of planes where the sum of the angles is ±π

2 .
Now fix t > 0 and define

f : X = {(a1, . . . , an) ∈ R
n : a j ≥ 0}

→ Y = {(θ1, . . . , θn) ∈ R
n : θ j ≥ 0,

n∑
j=1

θ j <
π

2
}

by f (a1, . . . , an) = (θ1, . . . , θn) where

θ j =
∫ t

0

a jdt

(1 + a j t2)
√

1
t2

(
(1 + a1t2) . . . (1 + ant2) − 1

) .

It is clear that ifn = 1, f : X → Y is surjective.Wewant to show it is surjective for all
n. For θ ∈ (0, π

2 ) define Hθ = {(θ1, . . . , θn) ∈ Y : ∑n
j=1 θ j = θ}. By our discussion

above we see that

f −1(Hθ) ⊆ Sθ = {(a1, . . . , an) ∈ X : (1 + a1t
2) . . . (1 + ant

2) = cos−2 t}.

Notice that if the degree of f : ∂Sθ → ∂Hθ is 1 then the degree of f : Sθ → Hθ is
1. Thus, by induction on n, we see that f : Sθ → Hθ is surjective.

Now, given any plane {(eiθ1x1, . . . eiθn xn) : (x1, . . . , xn) ∈ R
n} where (θ1, . . . ,

θn) ∈ Y , θ j �= 0 for all j , we see that we can choose a Lawlor neck N which
intersects the plane in a hypersurface as claimed.

We now move to the other direction in the statement of the Angle Theorem.
If P ∪ Q does satisfy the angle condition, then (by choosing coordinates so that
P = R

n and Q is in standard position) we claim that it is calibrated by a so-called
Nance calibration:

η(u1, . . . , un) = Re
(
(dx1 + u1dy1) ∧ · · · ∧ (dxn + undyn)

)

where u1, . . . , un ∈ S2 ⊆ ImH. If um = i for allm then η = Reϒ , so it is believable
that it is a calibration in general, but we now show that it is indeed true.

Let x1, y1, . . . , xn, yn be coordinates on R2n . We call an n-form η on R2n a torus
form if η lies in the span of forms of type

dxi1 ∧ · · · ∧ dxik ∧ dy j1 ∧ · · · ∧ dy jl

where {i1, . . . , ik} ∩ { j1, . . . , jl} = ∅ and {i1, . . . , ik} ∪ { j1, . . . , jl} = {1, . . . , n}.
We now claim that a torus form η is a calibration if and only if

η(cos θ1e1 + sin θ1en+1, . . . , cos θnen + sin θne2n) ≤ 1
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for all θ1, . . . , θn ∈ R.
For n = 1, η = dx1 ∧ dy1 which is a calibration. Suppose that the result holds

for n = k. Let η be a torus form on R
2(k+1) and rescale η so that the maximum of

η is 1 and is attained at some plane. The idea is to show using the argument in the
proof of Wirtinger’s inequality to put planes in standard position that we can write
η = e1 ∧ η1 + e2 ∧ η2 where e1, e2 are orthonormal and span an R

2 and η1, η2 are
torus forms on R

2k . The claim then follows by induction on n.
Hence, the Nance calibration η above is a calibration andmoreover we know P(θ)

is calibrated by η(u) if and only if

n∏
j=1

(cos θ j + sin θ j u j ) = 1.

We then just need to find the u j determined by θ j . Notice that the condition that
ψ1 + · · · + ψn ≥ π holds if and only if θn ≤ θ1 + · · · + θn−1. If we write cos θ j +
sin θ j u j = w jw j+1 where wn+1 = w1 and w j are unit imaginary quaternions, then
the product condition is satisfied and we just need 〈w j , w j+1〉 = cos θ j , which is
equivalent to finding n points on the unit 2-sphere so that d(w j , w j+1) = θ j , where
θn ≤ θ1 + · · · + θn−1. This is indeed possible, by considering an n-sided spherical
polygon. �
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