
Constructions of Compact G2-Holonomy
Manifolds

Alexei Kovalev

Abstract We explain the constructions for two geometrically different classes of
examples of compact Riemannian 7-manifolds with holonomy G2. One method uses
resolutions of singularities of appropriately chosen 7-dimensional orbifolds, with the
help of asymptotically locally Euclidean spaces. Another method uses the gluing of
two asymptotically cylindrical pieces and requires a certain matching condition for
their cross-sections ‘at infinity’.

1 Introduction

The Lie group G2 occurs as an exceptional case in Berger’s classification of the Rie-
mannian holonomy groups, in dimension 7. Riemannian manifolds with holonomy
G2 are Ricci-flat and admit parallel spinor fields. The purpose of these notes is to
give an introduction to two methods of producing examples of compact Riemannian
7-manifolds with holonomy group G2.

For a detailed introduction to G2-structures on 7-manifolds and the G2 holonomy
group we refer to [25, Chap. 11], [14, Chap. 10] and the article by Karigiannis in
this volume. Here we briefly recall the foundational results that we need.

The Lie group G2 may be defined as the stabilizer, in the action of GL(7,R), of
the 3-form [4, p. 539]

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 ∈ �3(R7)∗, (1)

where xk are the standard coordinates on R
7 and dxklm = dxk ∧ dxl ∧ dxm . Every

linear isomorphism of R
7 preserving ϕ0 also preserves the Euclidean metric
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∑7
i=1(dxi )2 and orientation of R7, thus G2 is a subgroup of SO(7). The GL(7,R)-

orbit of ϕ0 is open in �3(R7)∗.
Let M be a 7-dimensional manifold. Then every G2-structure on M is induced by

a choice of a smooth differential 3-form ϕ such that for each p ∈ M there is a linear
isomorphism ιp : R7 → Tp M with ι∗p(ϕ(p)) = ϕ0. We say a 3-form ϕ is positive
when ϕ satisfies the latter condition and denote by �3+(M) ⊂ �3(M) the subset of
all positive 3-forms on M . Note that for a compact M the subset �3+(M) is open
in the uniform norm topology. We shall sometimes, slightly informally, say that a
differential form ϕ ∈ �3+(M) is a G2-structure on M .

We can see from the above that every G2-structure ϕ ∈ �3+(M) determines on M
a metric g(ϕ) and an orientation, hence also the Hodge star ∗ϕ.

Theorem 1 (cf. [9]) Let M be a 7-manifold endowed with a G2-structure ϕ ∈
�3+(M). Then the following are equivalent.

(a) The holonomy of the metric g(ϕ) is contained in G2.
(b) ∇ϕ = 0, where ∇ is the Levi–Civita connection of g(ϕ).
(c)

dϕ = 0, d∗ϕϕ = 0, (2)

(d) The intrinsic torsion of the G2-structure ϕ vanishes.

Note that the second equation in (2) is non-linear because ∗ϕ depends non-linearly
on ϕ.

We say that (M,ϕ) is a G2-manifold if ϕ is a positive 3-form satisfying (2). If, in
addition, the holonomy of g(ϕ) is all of G2, then we shall call (M,ϕ) an irreducible
G2-manifold.

Proposition 2 ([14, Proposition 10.2.2]) A compact G2-manifold is irreducible if
and only if π1(M) finite.

A key idea in the known methods of constructing irreducible G2-manifolds is that
one first achieves on M a G2-structure ϕ which is, in some sense, an ‘approximate’
solution of (2) with dϕ = 0 and d∗ϕϕ having a small norm, in a suitable Banach
space. In more geometric terms, the G2-structure ϕ then has small torsion. Then one
uses perturbative analysis to obtain a correction term dη, for a 2-form η small in the
C1 norm, so that ϕ + dη is a valid G2-structure and a solution of (2).

We shall explain methods of finding the desired approximate solutions of (2) by
building compact Riemannian manifolds from ‘simpler pieces’. These will be non-
compact or singular G2-manifolds whose metrics are flat or have holonomy SU (2)
or SU (3), which are subgroups of G2. These latter metrics can be obtained by using
the Calabi–Yau analysis or written explicitly. The manifolds are patched together in
a ‘compatible’ way to achieve, on the resulting compact manifolds, G2-structures
with arbitrarily small torsion.

More precisely, one obtains 1-dimensional families of metrics depending on a
certain ‘gluing parameter’ taking values in a semi-closed interval. The limits of these
families may be interpreted as boundary points in a ‘partial compactification’ of the
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G2 moduli space. (It is known that the moduli space of torsion-free G2-structures on
a compact 7-manifold M is a smooth manifold of dimension the third Betti number
b3(M).)

In these notes, we shall explain two ways of implementing the above strategy with
different respective limits in the boundary of the G2 moduli space.

Recently, Joyce and Karigiannis [16] developed a new method of constructing
holonomy G2 manifolds using analysis on families of Eguchi–Hanson spaces. This
construction is not reviewed here. It includes an application of perturbative methods
for G2-structures with small torsion but also requires significant additional methods
to achieve a suitable small torsion.

2 Construction by Resolutions of Singularities

Themethod explained in this sectionwas historically the first construction of compact
7-manifolds with holonomy G2. It is due to Joyce [13, 14].

Joyce’s method produces one-parameter families of holonomy G2 metrics gs ,
0 < s ≤ ε. The limits of these families as s → 0 can be interpreted as boundary
points in the G2-moduli space and are given by flat orbifolds. In particular, the limit
spaces are compact, connected and singular.

More precisely, the construction proceeds via the following steps.

1. (a) Let T 7 = R
7/Z7 be the 7-toruswith a flatG2-structureϕ0 ∈ �3+(T 7) induced

from the standard G2-structure (1) on the Euclidean R
7. Choose a finite group

� of affine transformations of R7 which preserve ϕ0 and descend to diffeo-
morphisms of T 7. The quotient space (T 7/�) is an orbifold with a torsion-free
G2-structure, still denoted by ϕ0, and a flat orbifold metric g0 induced by ϕ0.
(b) For suitable choices of �, all the singularities of T 7/� are locally modeled
onR3 × (C2/G) orR × (C3/G), for G a finite subgroup of respectively SU (2)
or SU (3), and can be resolved using methods of complex algebraic geometry.
Perform the resolutions to obtain a smooth compact 7-manifold M together with
a resolution map π : M → T 7/�.

2. (a) On M , one can ‘explicitly’ define a 1-parameter family of closed positive
3-forms ϕs ∈ �3+(M), with dϕs = 0 for 0 < s ≤ ε, such that the G2-structures
ϕs have small torsion. The forms ϕs converge as s → 0 to π∗ϕ0 (respectively,
the induced metrics g(ϕs) converge to π∗g0). One may also say that the Rieman-
nian manifolds (M, g(ϕs)) converge in the Gromov–Hausdorff sense to the flat
orbifold (T 7/�, g0) as s → 0.
(b) Apply perturbative analysis (more precisely, construct a convergent sequence
of iterations) to show that for every small s > 0, the G2-structure ϕs can be
deformed to a nearby torsion-free G2-structure ϕ̃s . If π1(M) is finite, then
the holonomy of the induced metric g̃s = g(ϕ̃s) is precisely the group G2, i.e.
(M, ϕ̃s) is an irreducible G2-manifold.
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We illustrate thismethodwith an example taken from [14, Sect. 12.2] (cf. also [13])
where some technical details are relatively simple. Consider the group � generated
by

α : (x1, . . . , x7) 	→ ( x1, x2, x3,−x4, −x5, −x6, −x7),

β : (x1, . . . , x7) 	→ ( x1,−x2,−x3, x4, x5,
1
2−x6, −x7),

γ : (x1, . . . , x7) 	→ (−x1, x2,−x3, x4,
1
2−x5, x6,

1
2−x7).

The maps α,β, γ commute and each has order 2, thus � is isomorphic to Z
3
2. The

elements of � descend to T 7 and preserve ϕ0, making the quotient T 7/� into a
G2-orbifold.

One can further check that the only elements of � having fixed points are α,β, γ,
each fixes 16 copies of T 3 and these are all disjoint. The subgroup generated by β, γ
acts freely on the 16 tori fixed by α, so these correspond to 4 copies of T 3 in the
singular locus of T 7/�. Similar properties hold for the tori fixed by β and by γ. Thus
the singular locus S of T 7/� is 12 disjoint copies of T 3. A neighbourhood of each
3-torus component of S is diffeomorphic to T 3 × (C2/{±1}).

The blow-up σ : Y → C
2/{±1} at the origin resolves the singularity with a com-

plex surface Y biholomorphic to T ∗
CP1, with the exceptional divisor E = σ−1(0) ∼=

CP1 corresponding to the zero section of T ∗
CP1. The canonical bundle of Y is triv-

ial and there is a family of Ricci-flat Kähler metrics hs on Y with holonomy equal to
SU (2) depending on a real parameter s > 0. The Kähler form of the metric hs may
be written as ωs = σ∗(i∂∂̄ fs), where

fs =
√

r4 + s4 + 2s2 log r − s2 log(
√

r4 + s4 + s2),

r2 = z1 z̄1 + z2 z̄2 and (z1, z2) ∈ C
2. The radius function r makes sense as a smooth

function on Y \ E and the values of this function near E can be interpreted as the
distance to E in the metric hs . The forms ωs extend smoothly over the exceptional
divisor E ⊂ Y , thus the metrics hs are well-defined on Y . These are the well-known
Eguchi–Hanson metrics [8].

Comparing, for each s > 0, the Kähler potential fs of hs with the Kähler potential
r2 of the Euclidean metric h0 on C

2 we see that

∇k(hs − h0) = O(r−4−k) as r → ∞, for all k = 0, 1, 2, . . . , (3)

which means that hs is an asymptotically locally Euclidean (ALE) metric on Y .
For each λ > 0, the dilation map Y → Y induced by (z1, z2) 	→ λ(z1, z2) pulls

back ωs to λ2ωλs . It follows that s is proportional to the diameter of the exceptional
divisor. One can further check that the injectivity radius of the Eguchi–Hansonmetric
hs is proportional to s and that the uniform norm of the Riemannian curvature is
proportional to s−2.

Every Ricci-flat Kähler metric h on a complex surface is in fact hyper-Kähler: in
addition to the original complex structure I there are (integrable) complex structures
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J and K satisfying quaternionic relations I J = −J I = K . For each p ∈ Y , there
is an R-linear isomorphism R

4 → TpY such that the linear maps I (p), J (p), K (p)

correspond to multiplication by the unit quaternions i, j, k via the standard identi-
fication R

4 ∼= H = 〈1, i, j, k〉 with the algebra of quaternions. Also, the metric h is
Kähler with respect to each I, J, K . We shall denote by κI , κJ , κK the respective
Kähler forms.

For a 3-torus T 3 with coordinates x1, x2, x3, with a flat metric dx2
1 + dx2

2 + dx2
3

and a hyper-Kähler 4-manifold Y as above, the Riemannian product T 3 × Y has
holonomy in SU (2). The product metric is induced by a torsion-free G2 structure on
T 3 × Y , which is

ϕSU (2) = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ κI + dx2 ∧ κJ − dx3 ∧ κK . (4)

We now define, for every small ε > 0, a smooth compact 7-manifold M = Mε by
replacing a neighbourhood T 3 × {r < 2ε} of each 3-torus component in the singular
locus of T 7/� by T 3 × U , where U = σ−1(r < 2ε) ⊂ Y is a neighbourhood of the
exceptional divisor on Y . (Note that the manifolds Mε are diffeomorphic to each
other.)

On each T 3 × U in M , we smoothly interpolate, for ε < r < 2ε, between the flat
G2-structure ϕ0 induced from T 7/� on the complement of the regions T 3 × U and
the product G2-structure arising as in (4) from the appropriately rescaled Eguchi–
Hanson hyper-Kähler hs on σ−1(r < ε) ⊂ U . The ALE property of the Eguchi–
Hanson metric allows to take the product G2-structure on T 3 × Y to be asymptotic
to the flat G2-structure on T 3 × (C2/{±1}). We can obtain, for each sufficiently
small s > 0, a well-defined positive 3-form ϕs on M noting also that �3+(M) is an
open subset of 3-forms in the uniform norm. Furthermore, we can choose these G2

3-forms on M to be closed, dϕs = 0. Thus the G2-structure ϕs is torsion-free away
from the interpolation region {ε < r < 2ε} but ϕs is not co-closed in that region.

The positive 3-forms ϕs are intended as ‘approximate solutions’ of the torsion-
free equations (2), as s → 0. The parameter s may be interpreted geometrically as the
maximal diameter of the pre-image of a singular point in T 7/� under the resolution
map M → T 7/�. We would like to perturb ϕs to actual solutions on M . To this end,
the following two conditions satisfied by ϕs are important, cf. [14, Theorem 11.5.7].

Condition (i) One can construct a smooth 3-form ψs on M such that d∗ϕs = d∗ψs

and
‖ψs‖L2 < A1s4, ‖ψs‖C0 < A1s3 and ‖d∗ψs‖L14 < A1s16/7. (5)

Condition (ii) The injectivity radius δ(gs) and the Riemann curvature R(gs) of the
metric gs = g(ϕs) on M satisfy the estimates

δ(gs) > A2 s, ‖R(gs)‖C0 < A3s−2. (6)

The construction of ψs exploits the asymptotic and scaling properties of the
G2-structure (4) on T 3 × U ‘approximating’ the flat G2-structure on T 3 × C

2/{±1}.
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The estimates (6) follow from the properties of the metric hs around the exceptional
divisor on Y , which give the dominant contributions for small s. In the conditions
(i) and (ii) the norms and the formal adjoint d∗ are taken with respect to the metric
gs = g(ϕs). The constants A1, A2, A3 are independent of s.

We can now state the existence result for torsion-free G2-structures.

Theorem 3 (cf. [14, Theorem 11.6.1]) Let M be a compact 7-dimensional manifold
and ϕs ∈ �3+(M), 0 < s ≤ s0, a family of G2-structures such that dϕs = 0 and the
conditions (i) and (ii) above hold for all s.

Then there is an ε0 > 0 so that for each s with 0 < s ≤ ε0 the manifold M admits
a torsion-free G2 structure ϕ̃s ∈ �3+(M) in the same cohomology class as ϕs and
satisfying ‖ϕ̃s − ϕs‖C0 < K s1/2 with some constant K independent of s.

We next outline the Proof of Theorem 3 following [15, pp. 236–237], dropping
the subscripts s to ease the notation. The desired torsion-free G2-structure ϕ̃ = ϕ̃s

will be obtained in the form ϕ̃ = ϕ + dη, where dη has a small uniform norm, so ϕ̃
is a closed positive 3-form. We then need to satisfy the co-closed condition d∗

ϕ̃ϕ̃ = 0
and this amounts to solving for a 2-form η a non-linear elliptic PDE which may be
written as

d∗dη = −d∗ψ + d∗F(dη) (7)

where F satisfies a quadratic estimate.A solution of (7) is achieved byusing iterations
to construct a sequence {η j }∞j=0 with η0 = 0 and

d∗dη j+1 = −d∗ψ + d∗F(dη j ), d∗η j+1 = 0.

One first argues that the sequence η j converges.
The proof of convergence is based on the following inductive estimates (all the

constants Ci below are independent of s)

‖dη j+1‖L2 ≤ ‖ψ‖L2 + C1‖dη j‖L2‖dη j‖C0 , (8a)

‖∇dη j+1‖L14 ≤ C2(‖d∗ψ‖L14 + ‖∇dη j‖L14‖dη j‖C0 + s−4‖dη j+1‖L2), (8b)

‖dη j‖C0 ≤ C3(s
1/2‖∇dη j‖L14 + s−7/2‖dη j‖L2). (8c)

The estimate (8a) is proved by taking the L2 product of both sides with η j+1 and
integrating by parts, noting also the condition (i) above. The proof of (8b) uses an
elliptic regularity estimate for the operator d + d∗ considered for 3-forms on small
balls on M with radius of order s. The condition (ii) is also required here and in (8c)
which uses the Sobolev embedding of L14

1 inC0 in dimension 7 and is again achieved
by working on small balls with radius of order s.

For every sufficiently small s, we deduce from (8) that if dη j satisfies

‖dη j‖L2 ≤ C4s4, ‖∇dη j‖L14 ≤ C5, ‖dη j‖C0 ≤ K s1/2, (9)
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then these latter estimates hold for dη j+1 and, by induction, for all j . Thus dη j is a
bounded sequence in the L14

1 norm on �3T ∗M and one can further show that dη j

is a Cauchy sequence. Further, we are free to assume that the forms η j are in the
L2-orthogonal complement H⊥ of harmonic forms. As the elliptic operator d + d∗
is bounded below onH⊥ it follows that the sequence η j converges in the L14

2 norm.
In particular, the last inequality of (9) holds for the limit η.

Finally, a careful elliptic regularity argument shows that η is in fact a smooth
solution of (7), thus completing the Proof of Theorem 3.

The metrics on M induced by ϕs have holonomy in G2 and it remains to verify
that the holonomy does not reduce further to a subgroup of G2. In the present case,
the orbifold T 7/� is simply-connected, therefore M is so, by the properties of the
blow-up. Thus (M,ϕs) is an irreducible G2-manifold by Proposition 2.

The discussed example may be considered as a generalization of the Kummer
construction of hyper-Kähler metrics of holonomy SU (2) on K3 surfaces.

It is convenient to obtain the Betti numbers of M ; these are determined by
b2(M) and b3(M). By considering the �-invariant classes in H∗

dR(T 7/�) we obtain
b2(T 7/�) = 0 and b3(T 7/�) = 7. When resolving the singularities, we replaced a
deformation retract of T 3 with T 3 × Y which is homotopy equivalent to T 3 × CP1.
Let S denote the singular locus of T 7/�. Comparing the cohomology long exact
sequence for the pairs (T 7/�, S) and (M,�12

i=1(T
3 × U )), we find that each of the

12 instances of a resolution adds bi (T 3 × Y ) − bi (T 3) to the i th Betti number of M .
Thus b2(M) = 12 · 1 and b3(M) = 7 + 12 · 3 = 43.

Further examples of irreducible G2-manifolds arise by using the above method
with different choices of finite groups � and different choices of resolutions of
singularities of T 7/�. If every component of the singular locus of T 7/� has a
neighbourhood diffeomorphic to T 3 × (C2/G) for a finite subgroup G of SU (2) or
to S1 × (C3/G) for a finite subgroup G of SU (3) acting freely on C

3 \ {0}, then it
is known from complex algebraic geometry that one can find crepant resolutions,
σ2 : Y2 → C

2/G or σ3 : Y3 → C
3/G respectively, with the canonical bundle of Yi

holomorphically trivial.
The Ricci-flat Kähler (thus hyper-Kähler) metrics on the complex surfaces Y2

asymptotic to C
2/G in the sense of (3), for each G, were constructed by Kron-

heimer [21] using hyper-Kähler quotients.
In complex dimension 3, the existence ofALERicci-flat holonomy SU (3)metrics

on Y3 asymptotic to C
3/G follows from the solution of ALE version of the Calabi

conjecture, see [14, Chap. 8] and references therein. The asymptotic rate for the
metrics h is given by

∇k(h − h0) = O(r−6−k) as r → ∞, for all k = 0, 1, 2, . . . ,

where h0 is the pull-back of the Euclidean metric on C
3/G. The Kähler forms of h

and h0 satisfy

ω − ω0 = i∂∂̄u, ∇ku = O(r−4−k) as r → ∞
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(cf. [14, Theorem 8.2.3]). The holonomy being SU (3) means there is a choice
of nowhere vanishing (3, 0)-form � on Y3 (sometimes called a holomorphic vol-
ume form), such that ω3/3! = (i/2)3� ∧ �̄. A torsion-free G2-structure on S1 × Y3

defined by
ϕSU (3) = dx ∧ ω + Re�, (10)

induces a product metric corresponding to (dx)2 and ω, where x is the usual coordi-
nate on S1 = R/Z.

The singularities of T 7/� can be resolved with copies of T 3 × U2 or S1 × U3

(where Ui is a neighbourhood of σ−1
i (0) in Yi ) in a manner similar to the example

above. One obtains compact smooth 7-manifolds M and closed positive 3-forms ϕs

on M satisfying the hypotheses of Theorem 3.More generally, the method extends to
situations when the singularities of T 7/� are only locally modeled onR3 × (C2/G)

or R × (C3/G). In the latter case, G need not act freely on C
3 \ {0} resulting in a

more complicated singular locus of T 7/�.
Joyce found a large number of orbifolds T 7/� with suitable resolutions of sin-

gularities. In particular, 252 examples of topologically distinct compact 7-manifolds
admitting holonomy G2 metrics are worked out in [14, Chap. 12], including some
manifolds with non-trivial fundamental group. The Betti numbers of these examples
are in the range 0 ≤ b2 ≤ 28 and 4 ≤ b3 ≤ 215. There is a evidence that many more
further topological types can be constructed by the same method.

3 Construction by Generalized Connected Sums

The method of constructing compact holonomy G2 manifolds discussed in this
section is sometimes called a ‘twisted connected sum’. The construction was orig-
inally developed by the author in [17] and included an important idea due to Don-
aldson. Generalizations and many new examples appeared in [5, 6, 18, 24].

The connected sum construction produces one-parameter families of holonomy
G2 metrics gT , T0 ≤ T < ∞, on compact manifolds with ‘long necks’. The parame-
ter T here is asymptotic, as T → ∞, to the diameter of themetric gT .Wemay think of
the respective families of torsion-free G2-structures as paths in the G2 moduli space,
going to the boundary as one ‘stretches the neck’, the limit boundary point corre-
sponding to the disjoint union of the initial two asymptotically cylindrical pieces.
So, in this construction, the limit spaces are disconnected, non-compact and smooth.

A twisted connected sum is an instance of generalized connected sum of a pair
of asymptotically cylindrical Riemannian manifolds which, in the present case, are
G2-manifolds. The asymptotically cylindrical G2-manifolds we require are Rieman-
nian products W × S1, where W is a Ricci-flat Kähler manifold with cylindrical end
asymptotic to a Riemannian product D × S1 × [0,∞) with D a K3 surface with a
hyper-Kähler metric. For certain pairs of the K3 surfaces D1, D2 there is a way to
‘join’ the two latter asymptotically cylindrical manifolds at their ends. We obtain a
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compact simply-connected manifold M and a G2-structure with small torsion on M
to which a perturbative analysis can be applied.

We now describe the key steps in the construction in more detail, starting with
the asymptotically cylindrical Calabi–Yau threefolds W .

Theorem 4 ([11, 17, 27]) Let W be a compact Kähler threefold with Kähler form ω
and suppose that a K3 surface D ∈ | − KW | is an anticanonical divisor on W with
holomorphically trivial normal bundle ND/W . Denote by z a complex coordinate

around D vanishing to order one precisely on D. Suppose that W is simply-connected
and the fundamental group of W = W \ D is finite.

Then W admits a complete Ricci-flat Kähler metric, with holonomy SU (3), with
Kähler form ω and a non-vanishing holomorphic (3, 0)-form �. These are asymptotic
to the product cylindrical Ricci-flat Kähler structure on D × S1 × R>0

ω = κI + dt ∧ dθ + dψ,

� = (κJ + i κK ) ∧ (dt + idθ) + d�,

where exp(−t − iθ) = z, for (θ, t) ∈ S1 × R>0 and the forms ψ, � exponentially
decay as t → ∞. Also κI is the Ricci-flat Kähler metric on D in the class [ω|D] and
κJ + iκK is a non-vanishing holomorphic (2, 0)-form on D.

Remark Any threefold W satisfying the hypotheses of Theorem 4 is necessarily
projective and algebraic [18, Proposition 2.2]. The holomorphic coordinate z extends
to a meromorphic function W → CP1 vanishing precisely on D.

Theorem 4 extends to higher dimensions m ≥ 3 with D replaced by a compact
simply-connectedCalabi–Yau (m − 1)-fold. The resultmay be regarded as a solution
of an ‘asymptotically cylindrical version’ of the Calabi conjecture.

It will be convenient to extend the parameter t along the cylindrical end in The-
orem 4 to a smooth function t defined on all of W with t < 0 away from a tubular
neighbourhood of D. We shall also assume that the holomorphic 2-form on a Kähler
K3 surface D is normalized so that κ2

I = κ2
J = κ2

K , with the implied normalization
of a holomorphic 3-form � on W . The Ricci-flat Kähler (hyper-Kähler) structure on
D is in fact determined by the triple κI ,κJ ,κK (cf. [10, p. 91].

The following relation between K3 surfaces is crucial for the connected sum
construction of G2-manifolds.

Definition 1 We say that two Ricci-flat Kähler K3 surfaces (D1,κ
′
I ,κ

′
J + iκ′

K ),
(D2,κ

′′
I ,κ

′′
J + iκ′′

K ) satisfy theDonaldson matching condition if there exists an isom-
etry of lattices h : H 2(D2,Z) → H 2(D1,Z), so that the R-linear extension of h
satisfies

h : [κ′′
I ] 	→ [κ′

J ], [κ′′
J ] 	→ [κ′

I ], [κ′′
K ] 	→ [−κ′

K ]. (11)

It follows, by application of the Torelli theorem for K3 surfaces, that there is a
smooth map

f : D1 → D2, such that h = f ∗.
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Note that f isnot a holomorphicmapbetween D1 and D2 (with complex structures I ),
though f is an isometry of the underlying Riemannian 4-manifolds. In particular, the
pull back f ∗ rotates the 2-forms of the hyper-Kähler triple (not just their cohomology
classes), κ′′

I 	→ κ′
J , κ

′′
J 	→ κ′

I , κ
′′
K 	→ −κ′

K .
Now if (W,ω,�) is an asymptotically cylindrical Calabi–Yau manifold given by

Theorem 4, then W × S1 has a torsion-free G2-structure given by (10)

ϕW = d θ̃ ∧ ω + Re�,

where θ̃ is the standard coordinate on the S1 factor. The form ϕW is asymptotic
to a cylindrical product torsion-free G2-structure ϕ∞ on the cylindrical end D ×
[0,∞) × S1 × S1 ⊂ W × S1,

ϕ∞ = dt ∧ dθ ∧ d θ̃ + d θ̃ ∧ κI + dt ∧ κJ − dθ ∧ κK .

corresponding to the hyper-Kähler structure (κI ,κJ ,κK ) on D (cf. (4)).
For i = 1, 2 and T > 0, let Wi,T be a compact manifold with boundary obtained

by truncating Wi at ti = T + 1 (where ti is the parameter along the cylindrical end
as in Theorem 4). We can smoothly cut off each ϕWi to obtain on Wi,T a closed
G2-structure ϕW,T so that ϕWi ,T equals its cylindrical asymptotic model ϕ∞ on a
collar neighbourhood Di × S1 × S1 × [T, T + 1] of the boundary.

Suppose that D1 and D2 satisfy the Donaldson matching condition. Then we can
define a compact 7-manifold

M = MT = (W1,T +1 × S1) ∪F (W2,T +1 × S1) (12)

by identifying the collar neighbourhoods of the boundaries using a map

F : D1 × S1 × S1 × [T, T + 1] → D2 × S1 × S1 × [T, T + 1],
(y, θ, θ̃, T + t) 	→ ( f (y), θ̃, θ, T + 1 − t).

(13)

The formϕ∞|[T,T +1] is preserved by F , so theG2-structuresϕi,T agree on the overlap
and patch together to a well-defined closed 3-form ϕT on M . It is easy to see that
ϕT is a well-defined G2-structure on M for every large T .

Another important property of the map F is that F identifies the S1 factor in
W1,T +1 × S1 with a circle around the divisor on the other threefold W2 and vice
versa. This eliminates the possibility of an infinite fundamental group of M , in
particular, M will be simply-connected when the threefolds W1 and W2 are so.

TheG2-structure formon M satisfies dϕT = 0, one of the two equations in (2), but
the co-derivative d ∗T ϕT in general will not vanish. The cut-off functions introduce
‘error terms’ which depend on the difference between the SU (3)-structures on the
end of Wi and on its cylindrical asymptotic model, and can be estimated as

‖d ∗T ϕT ‖L p
k

< C p,ke−λT ,
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with λ > 0. Here ∗T denotes the Hodge star of the metric g(ϕT ).
The next result shows that for a sufficiently long neck the G2-structure ϕT on M

can be made torsion-free by adding a small correction term.

Theorem 5 Suppose that each of W 1, D1 and W 2, D2 satisfies the hypotheses
of Theorem 4 and the K3 surfaces D j ∈ | − KW j

| satisfy the Donaldson match-
ing condition. Let M be the compact 7-manifold M defined in (12) with a closed
G2-structure ϕT induced from ϕW1 , ϕW2 .

Then M has finite fundamental group. Furthermore, there exists T0 ∈ R and for
every T ≥ T0 a unique smooth 2-form ηT on M, orthogonal to the closed forms, so
that the following holds.
(a) ‖ηT ‖C1 < A · e−μT , for some constants A,μ > 0 independent of T , where
the norm is defined using the metric g(ϕT ). In particular, ϕT + dηT is a valid
G2-structure on M.
(b) The closed 3-form ϕT + dηT satisfies

d ∗ϕT +dηT (ϕT + dηT ) = 0. (14)

and so ϕT + dηT defines a metric with holonomy G2 on M.

Asdiscussed in the previous section, the perturbative problem (14) canbe rewritten
as a non-linear elliptic PDE for the 2-form η. When η has a small norm this PDE
takes the form a(η) = a0 + Aη + Q(η) = 0, where a0 = d ∗T ϕT , the linear elliptic
operator A = AT is a compact perturbation of the Hodge Laplacian of the form
dd∗ + d∗d + O(e−εT ), ε > 0 and Q(η) satisfies a quadratic estimate in dη.

One can use elliptic theory for manifolds with cylindrical ends and the gluing
analysis for the problem at hand is then simplified, compared to the general situation
of Theorem3. The central idea in the proof of Theorem5may be informally described
as follows. For small η, the map a(η) is approximated by its linearization and so there
would be a unique small solution η to the equation a(η) = 0, for every small a0 in the
range of A. This perturbative approach requires the invertibility of A and a suitable
upper bound on the operator norm ‖A−1

T ‖, as T → ∞. This bound determines what
is meant by ‘small a0’ above.

As we actually need the value of dη rather than η we may consider the equation
for η in the orthogonal complement of harmonic 2-forms on M where the Laplacian
is invertible.We use the technique similar to [20, Sect. 4.1] based on Fredholm theory
for the asymptotically cylindrical manifolds and weighted Sobolev spaces to find an
upper bound ‖A−1

T ‖ < GeδT . Here the constant G is independent of T and δ > 0
can be taken arbitrarily small. So, for large T , the growth of ‖A−1

T ‖ is negligible
compared to the decay of ‖d ∗T ϕT ‖ and the ‘inverse function theorem’ strategy
applies to give the required small solution ηT in a (appropriately chosen) Sobolev
space. Standard elliptic methods show that this ηT is in fact smooth.
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3.1 Some Examples and Further Results

In order to make irreducible G2-manifolds using the connected sum construction, we
require pairs W 1, W 2 of complex algebraic threefolds with matching anticanonical
K3 divisors Di ⊂ W i . We begin with an example based on some classical algebraic
geometry.

Example 1 The intersection of three generically chosen quadric hypersurfaces in
CP6 defines a smooth Kähler threefold X8. It is simply-connected and the charac-
teristic class c1(X8) of its anticanonical bundle is the pull-back to X8 of the positive
generator of the cohomology ring H∗(CP6). This tells us that the anticanonical bun-
dle K −1

X8
is the restriction to X8 of the tautological line bundle O(1) over CP6. It

follows that any anticanonical divisor D on X8 is obtained by taking an intersection
D = X8 ∩ H with a hyperplane H in CP6. A generic such hyperplane section D is
a complex surface, isomorphic to a smooth complete intersection of three quadrics
in CP5. This is a well-known example of a K3 surface.

Conversely, starting from a smooth intersection D of three quadrics in CP5 we
can write down a smooth threefold X8 ⊂ CP6 as above containing the K3 surface
D as an anticanonical divisor.

Consider another anticanonical divisor D′ = X8 ∩ H ′ and let X̃8 → X8 be the
blow-up of the second hyperplane section C = D ∩ D′ = X8 ∩ H ∩ H ′. (It is con-
venient, though not strictly necessary, to choose D′ so that C is a non-singular
connected complex curve.) The pencil defined by D and D′ lifts, via the proper
transform, to a pencil consisting of the fibres of a holomorphic map X̃8 → CP1. In
particular, the K3 divisor D lifts to an isomorphic K3 surface D̃ which is an anti-
canonical divisor on X̃8 and has trivial normal bundle. Moreover, a Kähler metric on
X̃8 may be chosen so that D̃ and D are isometric Kähler K3 surfaces.

It is not difficult to check that X̃8 \ D̃ is simply-connected, noting that D̃ and
X8 are so and considering an exceptional curve in the blow up X̃8. The pair X̃8,
D̃ thus satisfies all the hypotheses of Theorem 4, and so the quasiprojective three-
fold W = X̃8 \ D̃ admits an asymptotically cylindrical Ricci-flat Kähler metric with
holonomy SU (3). Note that the cylindrical asymptotic model for this metric is deter-
mined by the Ricci-flat Kähler structure in the Kähler class of D in X8.

We would like to choose two octic threefolds X (i)
8 , i = 1, 2 and a K3 surface Di

in each, so as to satisfy the Donaldson matching condition. We do this by applying
some general theory of K3 surfaces and their moduli (see [2, Chap. VIII]). The key
point is that one can determine a Ricci-flat Kähler K3 surface D, up to isomorphism,
by a data of the integral second cohomology H 2(D,Z).

Recall that all K3 surfaces are diffeomorphic and the intersection form makes
H 2(D,Z) into a lattice. There is an isomorphism, called amarking, p : H 2(D,Z) →
L to a fixed non-degenerate even unimodular lattice L with signature (3, 19). We
shall refer to L as the K3 lattice; its bilinear form is given by the orthogonal direct
sum L = 3H ⊕ 2(−E8) of 3 copies of the hyperbolic plane lattice H = (

0 1
1 0

)
and 2

copies of the negative definite root lattice−E8 of rank 8. Now if D ⊂ CP5 is an octic
K3 surface, then the image p(κI ) of the Kähler class of D is primitive (non-divisible
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in L by an integer > 1) and p(κI ) · p(κI ) = 8, computed in the bilinear form of L .
The images p(κJ ), p(κK ) span a positive 2-plane P orthogonal to p(κI ) in the real
vector space L ⊗ R. Conversely, the positive 2-planes P arising in this way form
a dense open set in the Grassmannian of positive 2-planes orthogonal to p(κI ) in
L ⊗ R.

It is known that the group of lattice isometries of L acts transitively on the set
of all primitive vectors with a fixed value of v · v in L . We can therefore choose
two octic K3 surfaces with hyper-Kähler structures (in the respective Kähler classes)
(D1;κ′

I ,κ
′
J ,κ

′
K ), (D2;κ′′

I ,κ
′′
J ,κ

′′
K ) and the markings p1, p2 with p1(κ

′
I ) = p2(κ

′′
J ),

p1(κ
′
J ) = p2(κ

′′
I ) in L , and p1(κ

′
K ) = −p2(κ

′′
K ) in L ⊗ R thereby achieving amatch-

ing.
Choosing the ambient octic threefolds X ′

8, X ′′
8 for the latter D1, D2, blowing up

these threefolds to obtain asymptotically cylindrical Ricci-flat threefolds by Theo-
rem 4, and applying Theorem 5 to the respective connected sum, we obtain a simply-
connected compact 7-manifold M with a metric of holonomy G2.

We may consider in a very similar way, in place of one of both X8’s above, a
smooth intersection X6 of a quadric and a cubic in CP5. The respective K3 divisor
then is an intersection of a quadric and a cubic in CP4 and the image of the Kähler
class of this divisor has square 6 in the bilinear form L .

More generally, it was shown in [17, Sect. 6,7] that in place of X8, X6 in the above
examplewe can consider any non-singularFano threefold V , i.e. a projective complex
3-dimensional manifold such that the image of the first Chern class c1(V ) in the de
Rham cohomology can be represented by some Kähler form on V . Equivalently,
the anticanonical bundle K −1

V is ample. Smooth Fano threefolds are completely
classified; up to deformations, there are 105 algebraic types [12, 22].

Every Fano threefold V is simply-connected and a generic anticanonical divisor
D on V is a (smooth) K3 surface [26]. A threefold W is obtained by blowing up a
connected complex curve representing the self-intersection cycle D · D (in the sense
of the Chow ring). Then W and the proper transform of D satisfy the hypotheses of
Theorem 4. Alternatively, if D · D is represented by a finite sequence of curves, then
W may be defined by successively blowing up these curves. We shall refer to any
such threefold W to be of Fano type.

A Kähler K3 surface D and its proper transform in W can be assumed isomorphic
by choosing an appropriate Kähler metric on W . Then the cylindrical asymptotic
model for W is determined by the K3 surface D with the Kähler metric restricted
from V .

For a general Fano V , the class of anticanonical K3 surfaces D arising in the
deformations of V will correspond to an open dense subset of lattice-polarized
K3 surfaces. This latter class is defined by the condition that the Picard lattice
H 1,1(D,R) ∩ H 2(D,Z) contains a sublattice isomorphic to a fixed lattice N and
this sublattice contains a class of some Kähler form. In the case of algebraic K3
surfaces of a fixed degree, as in the example above, N is generated by the Kähler
form κI induced from the embedding of D in the projective space. In general, N
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arises as ι∗ H 2(V,Z) from the embedding ι : D → V . The rank of N is the Betti
number b2(V ) as ι∗ in injective by the Lefschetz hyperplane theorem.

Another source of examples forTheorem4was given byLee and the author in [18].
The construction uses K3 surfaces S with non-symplectic involution, a holomorphic
map ρ : S → S, such that ρ∗ restricts to−1 on H 2,0(S). The K3 surfaces of this type
were completely classified up to deformation by Nikulin [1], who determined the
complete system of invariants and fixed point set of ρ for each deformation family.
We require the fixed point set of ρ to be non-empty; this occurs in all but one of the
75 deformation families.

Let ψ : CP1 → CP1 denote the holomorphic involution ψ(z0 : z1) = z1 : z0 fix-
ing exactly twopoints. Thequotient Z = (S × CP1)/(ρ,ψ) is then anorbifoldwhose
singular locus is a disjoint union of smooth curves. The desired 3-fold W is defined
by the resolution of singularities diagram for Z ,

W̃ −−−−→ W
⏐
⏐
�

⏐
⏐
�

S × CP1 −−−−→ Z ,

where the vertical arrows correspond to blowing up the fixed locus of (ρ,ψ) in
S × CP1 and the singular locus of Z and the horizontal arrows are the quotient
maps.

The anticanonical divisor D on W arises as the (pre-)image of S × {p}, via the
above diagram, where ψ(p) �= p. Such D is clearly isomorphic to the Kähler K3
surface S and has trivial normal bundle in W . It can be checked that W and W =
W \ D are simply-connected (the condition that ρ have fixed points is needed here).
Thus W has an asymptotically cylindrical Ricci-flat Kähler metric by Theorem 4.

The pull-back ι∗ : H 2(W ,Z) → H 3(D,Z) defined by the embedding of D makes
D into a lattice polarized K3 surface with N corresponding to the sublattice of all
classes fixed by ρ∗ in H 2(D,Z). On the other hand, ι∗ has a kernel of dimension
at least 2. A threefold W obtained from K3 surface with non-symplectic involution
is therefore never deformation equivalent to any threefold of Fano type (assuming
D · D in the latter threefold was represented by a single curve).

The matching problem in all the examples becomes entirely a consideration on
the K3 lattice L , as illustrated by the example in the beginning of this subsection.
In general, the argument is more technical and requires results on the lattice embed-
dings [23].

One simple sufficient (though not necessary) condition for the existence of the
Donaldson matching for representatives in the two classes of lattice polarized K3
surfaces is that the rank of each polarizing lattice Ni is ≤5.

All the irreducible G2-manifolds M constructed from threefolds in the above
examples are simply-connected. The cohomology of compact irreducible
G2-manifolds M coming from the connected sum construction may be determined
by application of the Mayer–Vietoris exact sequence and generally depends on the
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choice of matching. However, the sum of the Betti numbers

b2(M) + b3(M) = b3(W 1) + b3(W 2) + 2d1 + 2d2 + 23, (15)

for any matching, depends only on the threefolds W i and the dimensions di of the
kernel of ι∗ : H 2(W i ,R) → H 3(Di ,R). The quantities in (15) can be determined
by standardmethods (adjunction formula, Lefschetz–Bott hyperplane theorem) from
known algebraic invariants of Fano threefolds or, respectively, of non-symplectic
involutions.

In particular, the Fano threefold X8 discussed in Example 1 above has b2(X8) = 1,
b3(X8) = 28 and its blow-up has b2(W ) = 2, b3(W ) = 38. An irreducible compact
G2-manifold M constructed from a pair of X8’s has b2(M) = 0 and then b3(M) = 99
as di vanish in this case. This irreducible G2-manifold is topologically distinct from
the examples given by Joyce via resolution of singularities; the only irreducible
G2-manifold in [14] with b2 = 0 has b3 = 215. The property b2(M) = 0 holds in
many other examples coming from pairs of threefolds of Fano type and these latter
G2-manifolds typically have smaller b2 and larger b3 than the examples given by
Joyce. (Note also that every compact irreducibleG2-manifold M must have b1(M) =
0 by Proposition 2 but b3(M) cannot vanish as the G2 3-form ϕ on M is harmonic.)

Corti, Haskins, Nordström and Pacini [5, 6] generalized the class of threefolds of
Fano type by considering weak Fano threefolds V whose anticanonical bundle K −1

V
is only required to be big and nef. (Every such V may be obtained as a resolution
of an appropriate singular Fano threefold.) They identified a large subclass called
semi-Fano threefolds and generalized for this class the properties required in the
construction of G2-manifolds from threefolds W of Fano type. This generalization
dramatically increased the number of examples of connected sum G2-manifolds.
Some of the examples were shown to be 2-connected which allows to determine
their diffeomorphism type by computing certain standard invariants.

More recently, Braun [3] gave a toric geometry construction, from certain lattice
polytops, of examples of pairs W , D defining asymptotically cylindrical Calabi–Yau
threefolds by Theorem 4. Useful invariants of W e.g. the Hodge numbers can be
computed by combinatorial formulae.

Nordström [24] gave an interesting generalization of the connected sum con-
struction, by replacing (11) with a different ‘hyper-Kähler rotation’ and taking
finite quotients of asymptotically cylindrical Calabi–Yau threefolds W . Applica-
tions of the construction include topologically new examples of compact irreducible
G2-manifolds some of which have a non-trivial finite fundamental group.

In conclusion, we mention two works which contain results concerning relations
between the two types of construction of G2-manifolds discussed in these notes.

Nordström and the author identified in [19] an example of a compact irreducible
G2-manifold given by Joyce [14] where the underlying 7-manifold is diffeomorphic
to one obtainable from the construction in [18]. Further, the two respective families
of G2-metrics on this manifold are connected in the G2-moduli space.
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On the other hand, some of the G2-manifolds given by Joyce cannot possibly
be obtained by the connected sum construction. The result is due to Crowley and
Nordstrom [7] who constructed an invariant of G2-structures which is equal to 24
for each connected sum (12) but is odd for some examples in [14].

Acknowledgements These notes are an expanded version of lectures given in the Minischool on
G2 manifolds at the Fields Institute, Toronto, in August 2017. I would like to thank the organizers
for inviting me.
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