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Kim Moore

Abstract This is an expository article based on a talk given by the author at the Fields
Institute in August 2017 for the Workshop on G2 manifolds and related topics. The
aim of the article is to review some recent results of the author [11] investigating the
relationship between calibrated and complex geometry.

1 Introduction

Let M be a four-dimensional Calabi–Yau manifold with Ricci-flat Kähler form ω
and holomorphic volume form �. Since Hol(ω) ⊆ SU (4) ⊆ Spin(7), we can think
of M as a Spin(7)-manifold. In this case, the Spin(7)-form or Cayley calibration is
given by

� = 1

2
ω ∧ ω + Re �.

In particular, we can see from the above expression that (M ,�) has two special
types of Cayley submanifold: two-dimensional complex submanifolds (calibrated
by 1

2ω ∧ ω) and special Lagrangian submanifolds (calibrated by Re �).
Of course,M may admit Cayley submanifolds that are neither complex nor special

Lagrangian. One might ask whether such submanifolds can or must be built out of
complex and special Lagrangian submanifolds. In this expository article, we will
consider the following problem.

Given a compact complex submanifold N of a Calabi–Yau four-fold M , can one
deform N as a Cayley submanifold into a Cayley submanifold N ′ that is not complex?

Of course, it is straightforward to see that the answer to this question is no by the
following result of Harvey and Lawson.

Proposition 1.1 ([3, II.4Thm4.2])Let X be a Riemannian manifold with calibration
α and let Y be a compact α-calibrated submanifold of X . Let Y ′ be any other compact
submanifold of X homologous to Y . Then
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vol(Y ) ≤ vol(Y ′),

with equality if, and only if, Y ′ is also α-calibrated.

Therefore, if N is a two-dimensional compact complex submanifold of a Calabi–
Yau four-fold M , given N ′ a Cayley deformation of N we have that both

vol(N ) ≤ vol(N ′),

applying Proposition1.1 to N and N ′ with calibration 1
2ω ∧ ω, and

vol(N ′) ≤ vol(N ),

applying Proposition1.1 to N ′ and N with the Cayley calibration �. But then we
must have vol(N ) = vol(N ′) and so Proposition1.1 with calibration 1

2ω ∧ ω tells us
that N and N ′ must both be complex submanifolds.

In this article,we explore the geometric reasons for this result, and the implications
for complex submanifold theory. The material in this article is based on the author’s
PhD thesis [12] and paper [11].

2 Deformation Theory of Calibrated Submanifolds

Given amanifoldwith a calibration, onewould like to be able to describe its calibrated
submanifolds. One way of doing this is to study the moduli space of a certain type of
calibrated submanifold. The first study of a moduli space of calibrated submanifolds
may be attributed to Kodaira [6], who studied the moduli space of compact complex
submanifolds of a complex manifold, which we describe in Sect. 2.1 below, although
this result predates the definition of calibration by some twenty years! Later, moti-
vated byCalibrated geometries,McLean [10] sought to prove analogues ofKodaira’s
result for calibrated submanifolds inside manifolds with special holonomy. We will
review McLean’s results on compact Cayley submanifolds in Sect. 2.2.

2.1 Kodaira’s Deformation Theory of Compact Complex
Submanifolds

Kodaira’s approach to the deformation theory of complex submanifolds uses tech-
niques from algebraic geometry. His approach is completely different from the later
method of McLean, but it will be interesting to quote and interpret Kodaira’s result
here in order to compare to our work later.

Let M be a complex manifold with compact complex submanifold N . Denote
by H k(N , ν1,0

M (N )) the kth sheaf cohomology group of the sheaf of holomorphic
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sections of the holomorphic normal bundle of N in M . Define the moduli space M
of complex deformations of N in M to be the set of complex submanifolds N ′ of M
so that there exists a diffeomorphism N → N ′ isotopic to the identity.

Theorem 2.1 ([6, Main Thm]) Let M be a complex manifold with compact complex
submanifold N . If H 1(N , ν1,0

M (N )) = 0, then M is a smooth manifold of dimension
dimRH 0(N , ν1,0

M (N )).

Remark We call H 0(N , ν1,0
M (N )) the infinitesimal complex deformations of N , and

H 1(N , ν1,0
M (N )) the obstruction space. Note that the vanishing of the obstruction

space is sufficient, but not necessary.

We can apply Dolbeault’s theorem [2, pg 45] and the Hodge decomposition the-
orem [4, Thm 4.1.13, Cor 4.1.14] to rephrase Kodaira’s theorem in terms of a differ-
ential operator.

Corollary 2.2 Let M be a complex manifold with compact complex submanifold
N . Then the space of infinitesimal complex deformations of N is isomorphic to the
kernel of

∂̄ : C∞(ν1,0
M (N )) → C∞(�0,1N ⊗ ν1,0

M (N )).

Moreover, the obstruction space is isomorphic to the kernel of

∂̄ + ∂̄∗ : C∞(�0,1N ⊗ ν1,0
M (N )) → C∞(�0,2N ⊗ ν1,0

M (N ) ⊕ ν1,0
M (N )).

2.2 McLean’s Deformation Theory of Compact Cayley
Submanifolds

McLean’s goal in his 1998 paper [10] was to prove analogous results to Kodaira’s
Theorem2.1 for compact calibrated submanifolds of manifolds with special holon-
omy. In particular,McLean proved the following result on themoduli space of Cayley
deformations of a compact Cayley submanifold that admits a spin structure.

Theorem 2.3 ([10, Thm 6-3]) Let Y be a compact Cayley submanifold of a Spin(7)-
manifold X , and suppose that Y admits a spin structure. Then there exists a rank
two complex vector bundle A over Y so that the Zariski tangent space to the moduli
space of Cayley deformations of Y in X is given by the kernel of the twisted Dirac
operator

/D : C∞(S+ ⊗ A) → C∞(S− ⊗ A),

where S+ and S− are respectively the bundles of positive and negative spinors on Y .

Here, elements of the kernel of /D are called infinitesimal deformations, while the
cokernel of /D is called the obstruction space. This is because if the obstruction space
is trivial, then the moduli space of Cayley deformations is a smooth manifold.
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Sketch proof By the work of Harvey and Lawson [3, IV.1.C Cor 1.29] there exists a
bundle-valued differential form τ ∈ �4(�2

7) onX , where�2
7 is the seven dimensional

representation of Spin(7) acting on two-forms on X , satisfying for any oriented four-
dimensional submanifold W of X ,

τ |W ≡ 0,

if, and only if, W is a Cayley submanifold (up to a choice of orientation on W ). This
bundle-valued four-form can be described succinctly by the following expression.
For orthogonal tangent vectors x, y, z, w define

τ (x, y, z, w) = π7(�( · , y, z, w) ∧ x�), (2.1)

where π7 : �2X → �2
7 is the projection map given by

π7(u
� ∧ v�) = 1

2
(u� ∧ v� + �(u, v, · , · ))

and � : TX → T ∗X denotes the musical isomorphism. Recall that if Y is a Cayley
submanifold, then we can view [10, pg 741] �2+Y as a subbundle of �2

7|Y via the
map α → π7(α). We will denote by E the orthogonal complement to �2+Y in �2

7|Y ,
so that

�2
7|Y ∼= �2

+Y ⊕ E.

The tubular neighbourhood theorem [8, IV Thm 5.1] allows us to identify small
normal vector fields on Y with small deformations of Y . If v is a normal vector
field on Y , write expv := exp ◦v : Y → X , with Yv := expv(Y ), the deformation
corresponding to v. Then we can identify the moduli space of Cayley deformations
of Y in X with the zero set of the following partial differential operator:

F : C∞(νX (Y )) → C∞(E),

v → πE(∗ exp∗
v(τ |Yv

)), (2.2)

where ∗ denotes the Hodge star of Y and πE : �2
7|Y → E denotes the projection map.

The linear part of the operator at zero is

dF |0(v) = d

dt

∣
∣
∣
∣
t=0

F(tv) = πE(∗Lvτ |Y ).

This can be computed explicitly as the following operator (see for example [13,
Prop 2.3]). Let {e1, e2, e3, e4} be an orthonormal frame for TX , with dual coframe
{e1, e2, e3, e4}. Define



Complex and Calibrated Geometry 353

D : C∞(νX (Y )) → C∞(E),

v →
4

∑

i=1

π7(e
i ∧ ∇⊥

ei
v), (2.3)

where ∇⊥ is the connection on the normal bundle of Y in X induced by the Levi-
Civita connection of X . To deduce McLean’s result, first observe that [10, pg 741]
there exists a rank two complex vector bundle A so that

νX (Y ) ⊗ C ∼= S+ ⊗ A

E ⊗ C ∼= S− ⊗ A.

Then McLean’s result may be deduced by showing that the following diagram
commutes

C∞(S+ ⊗ A) C∞(S− ⊗ A)

C∞(νM (N ) ⊗ C) C∞(E ⊗ C)

/D

D

��
To study the kernel of the operator defined in (2.2), we can extend the map F to

some Banach spaces and try to apply the Banach space implicit function theorem
[7, Ch 6 Thm 2.1]. To do this, we first need the linear part of F , which is the map
D defined in (2.3), to be Fredholm, which it is since D is elliptic and Y is compact.
Moreover we need D to surject, which unfortunately is not true in general. The
cokernel of D describes the subspace of C∞(E) that D does not reach, and hence
obstructions to elements of the kernel of D, infinitesimal Cayley deformations of Y ,
to be extended to true Cayley deformations of Y . However, if the obstruction space
vanishes, then we may apply the implicit function theorem and deduce that every
infinitesimal Cayley deformation of Y extends to a true Cayley deformation of Y .

3 Cayley Deformations of Compact Complex Submanifolds

Wenow focus onCayley deformations of a compact complex surface inside aCalabi–
Yau four-fold. We saw in the introduction that it is very easy to see from the work
of Harvey and Lawson that there are no Cayley deformations of a compact complex
surface in a Calabi–Yau four-fold that are not complex deformations. This method is
highly efficient, clean and compact, but doesn’t leave us with any geometric intuition
for why one cannot deform a compact complex submanifold into a Cayley submani-
fold that isn’t complex. In particular, it is known that without the assumption that the
submanifold is complex, we may deform such a submanifold into not only a Cayley
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submanifold that is not complex, but a special Lagrangian submanifold, as we will
see in the following example.

Example ([9, Ex 5.8]) Consider R8 with the standard Spin(7)-structure (�0, g0).
Writing any nonzero point of R8 as (r, p), where r ∈ (0,∞) and p ∈ S7 we define a
G2-structure (ϕ, h) on S7 by

�0|(r,p) = r3dr ∧ ϕ|p + r4 ∗h ϕ|p,

with h the usual roundmetric. Notice that since�0 is closed, dϕ = 4 ∗ ϕ, so this G2-
structure is not torsion-free. Then it is easy to check that a cone C = (0,∞) × L is
a Cayley submanifold of (R8,�0, g0) if, and only if, L is an associative submanifold
of (S7,ϕ, h). Homogeneous associative submanifolds of S7 were classified by Lotay
[9], including the following family, diffeomorphic to SU (2)/Z3. The deformation
theory of homogeneous associative submanifolds of S7 was studied by Kawai [5],
while a comparative study of deformations of Cayley cones can be found in a paper
of the author [13, Sect. 5].

Consider the following action of SU (2) on C
4

⎛

⎜
⎜
⎝

z1
z2
z3
z4

⎞

⎟
⎟
⎠

→

⎛

⎜
⎜
⎝

a3z1 + √
3a2bz2 + √

3ab2z3 + b3z4
−√

3a2b̄z1 + a(|a|2 − 2|b|2)z2 + b(2|a|2 − |b|2)z3 + √
3āb2z4√

3ab̄2z1 − b̄(2|a|2 − |b|2)z2 + ā(|a|2 − 2|b|2)z3 + √
3ā2bz4

−b̄3z1 + √
3āb̄2z2 − √

3ā2b̄z3 + ā3z4

⎞

⎟
⎟
⎠

,

where a, b ∈ C satisfy |a|2 + |b|2 = 1. We define L(θ) to be the orbit of the point
(cos θ, 0, 0, sin θ)T under the above action, that is,

L(θ) :=

⎛

⎜
⎜
⎝

a3 cos θ + b3 sin θ

−√
3a2b̄ cos θ + √

3āb2 sin θ√
3ab̄2 cos θ + √

3ā2b sin θ

−b̄3 cos θ + ā3 sin θ

⎞

⎟
⎟
⎠

,

where a, b ∈ C satisfy |a|2 + |b|2 = 1. Then for

Z3 :=
{(

ζ 0
0 ζ̄

)

∈ SU (2) | ζ3 = 1

}

,

L(θ) is invariant under the action of Z3 for all θ, therefore L(θ) ∼= SU (2)/Z3.
We have that L(θ) is associative for θ ∈ [0, π

4 ]. It is easy to check that L(0) = L
is the real link of a complex cone, whereas L( π

4 ) is the link of a special Lagrangian
cone. Therefore C(θ) := (0,∞) × L(θ) defines a family of Cayley cones in C

4. In
particular, this example shows that we can deform a complex cone into a special
Lagrangian cone through Cayley cones. Notice that Harvey and Lawson’s result,
Proposition1.1, doesn’t apply in this situation because the cone is not compact.
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3.1 The Cayley Operator on a Complex Submanifold

Let (M , J ,ω,�) be a four-dimensional Calabi–Yau manifold and let N be a two-
dimensional compact complex submanifold of M . We want to compare complex and
Cayley deformations of N , but we already have some clues to help us. By Kodaira’s
Theorem2.1 in combination with Dolbeault’s theorem we know that infinitesimal
complex deformations of N in M are given by the kernel of

∂̄ : C∞(ν1,0
M (N )) → C∞(�0,1N ⊗ ν1,0

M (N )). (3.1)

Meanwhile, the work of McLean tells us that infinitesimal Cayley deformations of
(a spin manifold) N in M are given by the kernel of the twisted Dirac operator

/D : C∞(S+ ⊗ A) → C∞(S− ⊗ A). (3.2)

At first glance, comparing the kernels of these two operators seems like a fruitless
task. However, since N is Kähler, its spin structure and Dirac operator take a special
form [1, pg 82]. Given a two-dimensional Kählermanifoldwith a fixed spin structure,
we can identify

S+ ∼= (

�0,0N ⊕ �0,2N
) ⊗ Sk ,

S− ∼= �0,1N ⊗ Sk ,

where Sk is a holomorphic line bundle satisfying Sk ⊗ Sk = �2,0N . Under these
identifications, the Dirac operator is

√
2

(

∂̄ + ∂̄∗) : C∞(Sk ⊕ �0,2N ⊗ Sk) → C∞(�0,1N ⊗ Sk). (3.3)

We have already seen that McLean proved that νM (N ) ⊗ C ∼= S+ ⊗ A and E ⊗ C ∼=
S− ⊗ A, for some rank two complex vector bundle A. Comparing the three operators
(3.1), (3.2) and (3.3) it is not unreasonable to hope that we can identify

νM (N ) ⊗ C ∼= ν1,0
M (N ) ⊕ �0,2N ⊗ ν1,0

M (N ),

E ⊗ C ∼= �0,1N ⊗ ν1,0
M (N ),

and for us to be able to show that under these identifications infinitesimal Cayley
deformations of N are given by the kernel of the operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N ) ⊕ �0,2N ⊗ ν1,0

M (N )) → C∞(�0,1N ⊗ ν1,0
M (N )).

This turns out to be true—and despite the heuristic comparison above, in fact N
is not required to be spin for the following result, taken from [11, Prop 3.5 and Thm
3.9], to hold.
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Theorem 3.1 Let N be a compact complex surface inside a Calabi–Yau four-fold
M . Then infinitesimal Cayley deformations of N in M are given by the kernel of the
operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N ) ⊕ �0,2N ⊗ ν1,0

M (N )) → C∞(�0,1N ⊗ ν1,0
M (N )).

Moreover, the expected dimension of the moduli space of Cayley deformations of N
in M is given by the index of this operator

ind
(

∂̄ + ∂̄∗) = 1

2
σ(N ) + 1

2
χ(N ) − [N ] · [N ],

where σ(N ) is the signature of N , χ(N ) is the Euler characteristic of N and [N ] · [N ]
is the self-intersection number of N .

Sketch proof We have that the complex structure on M induces a natural splitting of
the complexified normal bundle of N in M into holomorphic and anti-holomorphic
parts

νM (N ) ⊗ C ∼= ν1,0
M (N ) ⊕ ν0,1

M (N ).

We would like to show that

ν0,1
M (N ) ∼= �0,2N ⊗ ν1,0

M (N ).

To understand why this might be true, we consider the holomorphic volume form �

of M , which is a nowhere-vanishing, parallel section of the canonical bundle of M ,
denoted by KM := �4,0M . Recall that the adjunction formula [4, Prop 2.2.17] says
that

KM |N ∼= �2,0N ⊗ �2ν∗1,0
M (N ). (3.4)

In particular, �|N is a well-defined nowhere-vanishing section of �0,2N ⊗
�2ν∗0,1

M (N ). So given any section of ν0,1
M (N ) is is easy to check that

�(v, · , · , · )|N , (3.5)

is a well-defined section of �0,2N ⊗ ν∗0,1
M (N ). Finally, the Riemannian metric on M

defines a musical isomorphism � : ν∗0,1
M (N ) → ν1,0

M (N ). It is easy to verify that these
objects provide the desired isomorphism.

It is simple to check using local coordinates that E ∼= �0,1N ⊗ ν1,0
M (N ), again

with the help of the musical isomorphism, and moreover that the following diagram
commutes:

C∞(ν1,0
M (N ) ⊕ �0,2N ⊗ ν1,0

M (N )) C∞(�0,1N ⊗ ν1,0
M (N ))

C∞(νM (N ) ⊗ C) C∞(E ⊗ C)

∂̄+∂̄∗

D
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where D was defined in (2.3).
The index formula follows from the Hirzebruch–Riemann–Roch Theorem [4, Cor

5.1.4]. ��
Example Let

M := {[z0 : · · · : z5] ∈ CP5 | z60 + · · · + z65 = 0},

and take
N = {z ∈ M | f1(z) = f2(z) = 0},

where fi are irreducible homogeneous polynomials of degree di such that the Jacobian
of g = (f1, f2) has rank two at each point of N . Then we can compute that

[N ] · [N ] = 6d2
1 d2

2 ,

χ(N ) = 90d1d2 + 6d3
1 d2 + 6d2

2 d1 + 6d2
1 d2

2 ,

σ(N ) = −60d1d2 − 2d3
1 d2 − 2d3

2 d1,

so that
ind(∂̄ + ∂̄∗) = d1d2(15 + 2d2

1 + 2d2
2 − 3d1d2).

Examining this expression, we see that the expected dimension of themoduli space of
Cayley deformations of N in M will be strictly positive and even for any d1, d2 ∈ N.

4 Complex Deformations of a Compact Complex Surface

We would like to compare complex and Cayley deformations of a compact complex
surface N in a Calabi–Yau four-fold (M , J ,ω,�). So far we have seen, by Kodaira’s
Theorem2.1, that infinitesimal complex deformations ofN are given by holomorphic
normal vector fields in the kernel of

∂̄ : C∞(ν1,0
M (N )) → C∞(�0,1N ⊗ ν1,0

M (N )), (4.1)

with the dimension of the space of infinitesimal complex deformations of N given
by the real dimension of the kernel of (4.1).

We saw in Sect. 3 that the infinitesimal Cayley deformations of N are given by
forms in the kernel of the operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N ) ⊕ �0,2N ⊗ ν1,0

M (N )) → C∞(�0,1N ⊗ ν1,0
M (N )), (4.2)
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with the dimension of the space of infinitesimal Cayley deformations of N given
by the complex dimension of the kernel of (4.2) (since we complexified the normal
bundle of N in M to find this operator).

At first glance, comparing the above operators this seems to be a mistake, but it
turns out that there is an isomorphism between the kernel of (4.1) and the kernel of

∂̄∗ : C∞(�0,2N ⊗ ν1,0
M (N )) → C∞(�0,1N ⊗ ν1,0

M (N )). (4.3)

The following result is taken from [11, Lem 4.6].

Lemma 4.1 Let N be a complex surface in a Calabi–Yau four-fold (M , J ,ω,�).
Then the kernels of (4.1) and (4.3) are isomorphic.

Proof (Sketch) Similar to the proof of Theorem3.1 where we constructed an iso-
morphism ν0,1

M (N ) → �0,2N ⊗ ν1,0
M (N ), we take the map

ν1,0
M (N ) → �0,2N ⊗ ν1,0

M (N ),

v → (

v̄��
)�

,

where � : ν∗0,1
M (N ) → ν1,0

M (N ) is the standard musical isomorphism. That this map
sends Ker ∂̄ to Ker ∂̄∗ is essentially a consequence of � being parallel. ��

What we have seen so far suggests therefore that an infinitesimal Cayley defor-
mation of N that is not an infinitesimal complex deformation of N looks like
v ⊕ w ∈ C∞(ν1,0

M (N ) ⊕ �0,2N ⊗ ν1,0
M (N )) with

∂̄v = −∂̄∗w �= 0.

We know by Hodge theory that this cannot happen when N is compact—so this
would explain why we cannot deform a compact complex surface into a Cayley
submanifold that is not complex.

To make these ideas more formal, we will argue in the style of McLean to char-
acterise complex deformations of a compact complex surface. We will first look for
a differential form that vanishes exactly when restricted to a complex surface.

Firstly, let us take a Cayley submanifold N ′ of a Calabi–Yau four-fold
(M , J ,ω,�). We have that

τ |N ′ ≡ 0,

and

�|N ′ = Re �|N ′ + 1

2
ω ∧ ω|N ′ = volN ′ .

So to further ensure that N ′ is complex, we must ask that

Re �|N ′ ≡ 0.
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So we see that v ∈ C∞(νM (N ) ⊗ C) defines a complex deformation of N if, and
only if

G(v) = (exp∗
v τ |Nv

, exp∗
v Re �|Nv

) = (0, 0).

We ask how the linearisation of G at zero differs from the linearisation of F defined
in (2.2) at zero. Finding the linear part of exp∗

v Re �|Nv
, we see that

d

dt

∣
∣
∣
∣
t=0

exptv Re �|Ntv = LvRe � = 1

2
d(v�� + v��).

Writing v = v1 ⊕ v2, where v1 ∈ C∞(ν1,0
M (N )) and v2 ∈ C∞(ν0,1

M (N )), we see that

1

2
d(v�� + v��) = 1

2
d(v1�� + v2��) = 1

2
∂̄(v1��) + 1

2
∂(v2��),

since v1�� ∈ C∞(�2,0N ⊗ ν∗1,0
M (N )) and v2�� ∈ C∞(�0,2N ⊗ ν∗0,1

M (N )). There-
fore a normal vector field v = v1 ⊕ v2 is an infinitesimal complex deformation of
N if, and only if, the linearisation of the first component of G vanishes, which by
Theorem3.1 is

∂̄v1 + ∂̄∗(v2��) = 0,

where we recall the isomorphism of ν0,1
M (N ) and�0,2N ⊗ ν1,0

M (N ) given in Eq. (3.5),
and the linearisation of the second component of G vanishes, which as we’ve just
seen is

∂̄(v1��) = 0 = ∂(v2��),

since ∂̄(v1��) and ∂(v2��) take values in different vector bundles. Similarly to
Lemma4.1, we can show that this is equivalent to

∂̄v1 = 0 = ∂̄∗(v2��),

which moreover by definition of the isomorphism ν0,1
M (N ) → �0,2N ⊗ ν1,0

M (N ) in
the proof of Theorem3.1 is equivalent to the set of v ⊕ w ∈ C∞(ν1,0

M (N ) ⊕ �0,2N ⊗
ν1,0

M (N )) such that
∂̄v = 0 = ∂̄∗w.

This informal argument shows that our assertion that infinitesimal Cayley deforma-
tions of N expressed in the form v ⊕ w ∈ C∞(ν1,0

M (N ) ⊕ �0,2N ⊗ ν1,0
M (N )) that are

not infinitesimal complex deformations must satisfy

∂̄v = −∂̄∗w,

is correct.
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It turns out thatwe can study the complex deformations ofN inM without thinking
about Cayley deformations at all.

Let us think about the holomorphic volume form. The adjunction formula tells
us that, for N , a complex surface inside a four-dimensional Calabi–Yau manifold M
with holomorphic volume form �, we have

�|N ∈ KM |N ∼= KN ⊗ �2ν∗1,0
M (N ).

So this tells us that given any three tangent vector fields v1, v2 and v3 on N we must
have that

�(v1, v2, v3, · ) = 0.

It is natural to wonder whether conversely, if given any three tangent vector fields
v1, v2 and v3 to a real oriented four manifold W in a Calabi–Yau four-fold M we
have

�(v1, v2, v3, · ) = 0,

then W must a complex submanifold of M . This is not quite right, but a similar result
turns out to be true, as we show in [11, Prop 4.2].

Proposition 4.2 An oriented four-dimensional real submanifold X of a four-
dimensional Calabi–Yau manifold (M , J ,ω,�) is a complex submanifold if, and
only if,

σ|X ≡ 0,

where σ ∈ C∞(�3M ⊗ T ∗M |X ) is defined by

σ(v1, v2, v3) = Re �(v1, v2, v3, · ),

for any v1, v2, v3 ∈ C∞(TX ).

This result is purely an exercise in linear algebra. It suffices to check that the
proposition holds for a linear subspace of C4.

Example Let ω and � be the standard Kähler form and holomorphic volume form
on C3. Then we can define a G2-structure on R

7 by

ϕ = dx ∧ ω + Re �,

∗ϕ = 1

2
ω ∧ ω − dx ∧ Im �,

where x is the coordinate onR inR7 = R × C
3. Introducing another factor ofRwith

coordinate t, we can take the following Calabi–Yau structure on C4

ω̃ = dt ∧ dx + ω,

�̃ = (dt + idx) ∧ �.
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Let N be a four-dimensional real submanifold of C3 ⊆ C
4. By Proposition4.2, N is

complex in C4 if, and only if,

Re �̃ = dt ∧ Re � − dx ∧ Im � = 0,

as a three-form on N . So in particular, we must have that

Re �|N = 0 = Im �|N .

This in combination with the fact that N ⊆ C
3 shows that

ϕ|N = 0,

and so N is a coassociative submanifold of R7, and moreover

volN = ∗ϕ|N = 1

2
ω ∧ ω|N − dx ∧ Im �|N = 1

2
ω ∧ ω|N ,

so if N is a complex submanifold of C4 and is contained in C
3 then it is also a

complex submanifold of C3.

It turns out that we can generalise this idea to study any complex submanifold of a
Calabi–Yau manifold.

Proposition 4.3 Let (M , J ,ω,�) be an m-dimensional Calabi–Yau manifold and
let p ∈ N be such that p < m − 1. Then an oriented 2p-dimensional real submanifold
X of M is a complex submanifold of M if, and only if,

σ|X = 0,

where σ ∈ C∞(�p+1M ⊗ �m−p−1M ) is given by

σ(v1, . . . vp+1) = Re �(v1, . . . , vp+1, · , . . . , · ),

for any v1, . . . vp+1 ∈ C∞(TX ). If p + 1 = m, then we must have that

Re �|X = 0 = Im �|X .

Example Applying Proposition4.3 to the previous example, a complex surface N
in C3 must satisfy

Re �|N = 0 = Im �|N ,

so considering N as a submanifold of C4 this implies that as a three-form

Re �̃|N = (dx ∧ Re �)|N − (dx ∧ Im �)|N = 0,
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so N is also a complex submanifold of C4 as one would expect.

Given Proposition4.3, we can study complex deformations of complex submani-
folds of Calabi–Yau manifolds in a similar style to McLean’s Theorem2.3. We focus
on the special case of compact complex surfaces inside Calabi–Yau four-folds here,
but the result below holds for any compact complex submanifold of a Calabi–Yau
manifold, see [11, Prop 4.4, Prop 4.5]. Notice that this recovers a special case of
Kodaira’s theorem [6, Main Thm] using a completely different method.

Theorem 4.4 Let N be a two-dimensional compact complex submanifold of a four-
dimensional Calabi–Yau manifold M . Then the moduli space of complex deforma-
tions of N in M is locally homeomorphic to the zero set of a partial differential
operator

G : C∞(ν1,0
M (N ) ⊕ ν0,1

M (N )) → C∞(�0,1N ⊗ ν1,0
M (N ) ⊕ �1,0N ⊗ ν0,1

M (N )),

with linearisation at zero given by

dG|0(v1 ⊕ v2) = ∂̄v1 ⊕ ∂v2. (4.4)

Remark Notice that the kernels of ∂̄ and ∂ acting on holomorphic and anti-
holomorphic vector fields are naturally isomorphic by complex conjugation.

Sketch proof It is clear by Proposition4.2 that given a complexified normal vector
field v, the corresponding deformation Nv is a complex submanifold of M if, and
only if,

exp∗
v(σ|Nv

) = 0.

This is a three-form on N that takes values in T ∗M |N ⊗ C. A local argument, [11,
Prop 4.4] shows that is suffices to check only the parts of this form that take values
in the space �2,1N ⊗ ν∗1,0

M (N ) ⊕ �1,2N ⊗ ν∗0,1
M (N ). Denote the projection onto this

vector bundle by π. Then Nv is a complex submanifold if, and only if,

π(exp∗
v(σ|Nv

)) = 0.

Finally, we have that the maps

�0,1N ⊗ ν1,0
M (N ) → �2,1N ⊗ ν∗1,0

M (N ),

�1,0N ⊗ ν0,1
M (N ) → �1,2N ⊗ ν∗0,1

M (N ),

given respectively by

α ⊗ v → α ∧ (v��)|N ,

α̃ ⊗ ṽ → α̃ ∧ (ṽ��)|N ,
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define vector bundle isomorphisms [11, Lem 4.3]. Denoting these isomorphisms by
�, we finally define the partial differential operator whose kernel can be identified
with the moduli space of complex deformations of N in M to be

G : C∞(ν1,0
M (N ) ⊕ ν0,1

M (N )) → C∞(�0,1N ⊗ ν1,0
M (N ) ⊕ �1,0N ⊗ ν0,1

M (N )),

v → �−1 ◦ π(exp∗
v(σ|Nv

)).

A short computation [11, Prop 4.5] shows that the linearisation of G at zero is the
operator (4.4) as claimed. ��

5 Further and Future Work

5.1 Can We Describe the Moduli Space of Complex
Submanifolds in Any Ambient Complex Manifold
Using These Techniques?

As long as the ambient manifold is Kähler, its complex manifolds are calibrated sub-
manifolds. In the work described here the existence of a parallel, nowhere vanishing
(m, 0)-form on the ambient (complex m-dimensional) manifold is essential. If the
ambient manifold were Kähler with a nowhere vanishing (m, 0)-form that was not
parallel, one could repeat the above argument, with the linearised operator having
additional zero-order terms.

5.2 Can These Results Be Extended to Noncompact Complex
Submanifolds?

As was mentioned in Sect. 3, we expect a noncompact complex submanifold of
a Calabi–Yau four-fold will admit Cayley deformations that are not complex, as
evidenced by the given example. The author has studied conically singular Cayley
and complex submanifolds [13], andhas shown that infinitesimalCayley and complex
deformations of a conically singular complex surface in a Calabi–Yau four-fold are
still of the same type. Note that Harvey and Lawson’s result stated in Proposition1.1
continues to hold for currents with compact support and therefore will apply in the
setting of conically singular calibrated submanifolds.

The analytic techniques available for studying deformations of a conically singular
submanifold only allow one to consider somewhat rigid classes of deformations. For
example, it is not possible to deform a conically singular calibrated submanifold
into a non-singular calibrated submanifold using current techniques. An interesting
problem would be to produce new techniques to study wider classes of deformations
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of singular calibrated submanifolds, perhaps inspired by techniques from algebraic
geometry.
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