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Abstract Wereviewamethod to constructG2-instantons over compactG2-manifolds
arising as the twisted connected sum of a matching pair of Calabi-Yau 3-folds with
cylindrical end, based on the series of articles [16, 24, 32, 33] by the author and oth-
ers. The construction is based on gluing G2-instantons obtained from holomorphic
bundles over such building blocks, subject to natural compatibility and transversality
conditions. Explicit examples are obtained frommatching pairs of semi-Fano 3-folds
by an algorithmic procedure based on the Hartshorne-Serre correspondence.

1 Introduction

This text addresses the existence problem of G2-instantons over twisted connected
sums, as formulated by the author andWalpuski in [32], and the production of the first
examples to date of solutions obtained by a nontrivially transversal gluing process
[24]. It is aimed at graduate students and researchers in nearby areas who might be
interested in a condensed exposition of the main results spread over my articles [16,
24, 32, 33] with Walpuski, Menet et al. and Menet-Nordström. By no means should
this survey convey the impression that the subject is somehow closed or even in its
best notational setup; indeed there is much ongoing work on this topic. A number
of important questions remain open and the most impressive expected results in this
theory are surely still ahead of us.

Recall that a G2-manifold (X, gφ) is a Riemannian 7-manifold together with a
torsion-free G2-structure, that is, a non-degenerate closed 3-form φ satisfying a
certain non-linear partial differential equation; in particular, φ induces a Riemannian
metric gφ with Hol(gφ) ⊂ G2 [18, Part I]. A G2-instanton is a connection A on some
G-bundle E → X such that FA ∧ ∗φ = 0. Such solutions have a well-understood
elliptic deformation theory of index0 [30], and some formof ‘instanton count’ of their
moduli space is expected to yield new invariants of 7-manifolds, much in the same
vein as the Casson invariant and instanton Floer homology from flat connections
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on 3-manifolds [10, 12]. While some important analytical groundwork has been
established towards that goal [35], major compactification issues remain and this
suggests that a thorough understanding of the general theory might currently have to
be postponed in favour of exploring a good number of functioning examples. This
article proposes a method to construct such examples.

Readers interested in amore detailed account of instanton theory onG2-manifolds
are kindly referred to the introductory sections of [32, 33] and works cited therein.

An importantmethod toproduce examples of compactG2-manifoldswithHol(g) =
G2 is the twisted connected sum construction, suggested by Donaldson, pioneered
by Kovalev [21] and later extended and improved by Kovalev–Lee [20] and Corti–
Haskins–Pacini-Nordström [6]. Here is a brief summary of this construction: A
building block consists of a projective 3-fold Z and a smooth anti-canonical K3
surface � ⊂ Z with trivial normal bundle (cf. Definition 2.10). Given a choice of
hyperkähler structure (ωI ,ωJ ,ωK ) on � such that [ωI ] is the restriction of a Käh-
ler class on Z , one can make V := Z \ � into an asymptotically cylindrical (ACyl)
Calabi–Yau 3-fold, that is, a non-compact Calabi–Yau 3-fold with a tubular endmod-
elled onR+ × S

1 × �, see Haskins–Hein–Nordström [13]. Then Y := S
1 × V is an

ACylG2-manifold with a tubular end modelled on R+ × T 2 × �.
When a pair (Z±, �±) of building blocks matches ‘at infinity’, in a suitable sense,

one can glue Y± by interchanging the S
1-factors. This yields a simply-connected

compact 7-manifold Y together with a family of torsion-free G2-structures (φT )T ≥T0 ,
see Kovalev [21, Sect. 4]. From the Riemannian viewpoint (Y,φT ) contains a “long
neck” modelled on [−T, T ] × T 2 × �+; one can think of the twisted connected sum
as reversing the degeneration of the family of G2-manifolds that occurs as the neck
becomes infinitely long. In [5, 6, 21], building blocks Z are produced by blowing
up Fano or semi-Fano 3-folds along the base curve C of an anticanonical pencil
(cf. Proposition 4.6). By understanding the deformation theory of pairs (X, �) of
semi-Fanos X and anticanonical K3 divisors � ⊂ X , one can produce hundreds of
thousands of pairs with the required matching (see Sect. 4.3).

This construction raises a natural programme in gauge theory, aimed at construct-
ing G2-instantons over compact manifolds obtained as a TCS, originally outlined in
[30]. If (Z , �) is a building block and E → Z holomorphic bundle such that E |� is
stable, then E |� carries a unique ASD instanton compatible with the holomorphic
structure [9]. In this situation E |V can be given a Hermitian–Yang–Mills (HYM)
connection asymptotic to the ASD instanton on E |� [33, Theorem 58], whose pull-
back over V to S

1 × V is a G2-instanton, i.e., a connection A on a G-bundle over a
G2-manifold such that FA ∧ ψ = 0 withψ := ∗φ. It is possible to glue a hypothetical
pair of such solutions into a G2-instanton over the compact twisted connected sum,
provided a number of technical conditions are met (cf. Theorem 3.1).

However, the hypotheses of our G2-instanton gluing theorem are rather restrictive
and it is not immediate to obtain suitable holomorphic bundles E± → Z± over the
matching blocks. In particular, a transversality condition over the K3 surface �± ‘at
infinity’ requires some more thorough understanding of the deformation theory of
data (Z±, �±, E±). Assuming the so-called rigid case in which the instantons that
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are glued are isolated points in their moduli spaces,Walpuski [39] was able to exhibit
one such example, by a different systematic approach.

Finally, in [24], we use the Hartshorne-Serre construction (cf. Theorem 4.1) to
obtain families of bundles over the building blocks. Our method allows one to gen-
erate a large number of examples for which the gluing is nontrivially transversal
(see Sect. 4.4.1). These are particularly relevant, because they open the possibility
of obtaining a conjectural instanton number on the G2-manifold X as a genuine
Lagrangian intersection within the moduli space MS+ over the K3 cross-section
along the neck, which can be addressed by enumerative methods in the future.

2 Background on G2-Geometry

Let us recall some G2-trivia, following the exposition in [31, 33]; of course the
immortal introductory references for the topic are [3, 17, 29]. Recall that a G2-
structure on an oriented smooth 7-manifold Y is a smooth 3-form φ ∈ �3 (Y ) such
that, at every point p ∈ Y , one has φp = r∗

p (φ0) for some frame rp : TpY → R
7 and

(with the sign conventions of [29])

φ0 = e567 + ω1 ∧ e5 + ω2 ∧ e6 + ω3 ∧ e7 (2.1)

with
ω1 = e12 − e34, ω2 = e13 − e42, and ω3 = e14 − e23.

Moreover, φ determines a Riemannian metric g(φ) induced by the pointwise inner-
product

〈u, v〉 e1...7 := −1

6
(u�φ0) ∧ (v�φ0) ∧ φ0. (2.2)

under which ∗φφ is given pointwise by

∗ φ0 = e1234 − ω1 ∧ e67 − ω2 ∧ e75 − ω3 ∧ e56. (2.3)

Such a pair (Y,φ) is a G2-manifold if dφ = 0 and d ∗φ φ = 0. Notice that the co-
closed condition is nonlinear in φ, since the Hodge star depends on the metric and
hence on φ itself.

2.1 Gauge Theory on G2-Manifolds

The G2-structure allows for a 7-dimensional analogue of conventional Yang-Mills
theory, yielding a notion analogous to (anti-)self-duality for 2-forms. Working in R7

under the usual identification between 2-forms and matrices, we have g2 ⊂ so (7) 

�2, so we define �2

14 := g2 and �2
7 its orthogonal complement in �2:
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�2 = �2
7 ⊕ �2

14. (2.4)

It is easy to check that �2
7 = 〈e1�φ0, . . . , e7�φ0〉, hence the orthogonal projection

onto �2
7 in (2.4) is given by

L∗φ0 : �2 → �6

η �→ η ∧ ∗φ0

in the sense that [3, p. 541]

L∗φ0 |�2
7
: �2

7 →̃ �6 and L∗φ0 |�2
14

= 0. (2.5)

Furthermore, since (2.4) splits �2 into irreducible representations of G2, a little
inspection on generators reveals that

(
�2

)
7
14
is respectively the −2

+1−eigenspace of the
G2-equivariant linear map

Tφ0 : �2 → �2

η �→ Tφ0η := ∗ (η ∧ φ0) .

2.1.1 Yang-Mills Formalism on G2-Manifolds

Consider now a G-bundle E → Y over a compact G2-manifold (Y,φ); the curvature
F := FA of some connection A decomposes according to the splitting (2.4):

FA = F7 ⊕ F14, Fi ∈ �2
i (Y, gE ), i = 7, 14,

where gE denotes the adjoint bundle associated to E . The L2-norm of FA is the
Yang-Mills functional, which therefore has two corresponding components:

Y (A) := ‖FA‖2 = ‖F7‖2 + ‖F14‖2. (2.6)

It is well-known that the values of Y (A) can be related to a certain characteristic
class of the bundle E , given (up to choice of orientation) by

κ (E) := −
∫

Y
tr

(
F2

A

) ∧ φ.

Using the property dφ = 0, a standard argument of Chern–Weil theory [26] shows
that the de Rham class

[
tr

(
F2

A

) ∧ φ
]
is independent of A, thus the integral is indeed

a topological invariant. The eigenspace decomposition of Tφ implies (up to a sign)

κ (E) = −2 ‖F7‖2 + ‖F14‖2 ,
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and combining with (2.6) we get

Y (A) = −1

2
κ (E) + 3

2
‖F14‖2 = κ(E) + 3 ‖F7‖2 .

HenceY (A) attains its absoluteminimumat a connectionwhose curvature lies either
in �2

7(Y, gE ) or in �2
14(Y, gE ). Moreover, since Y ≥ 0, the sign of κ(E) obstructs

the existence of one type or the other, so we fix κ(E) ≥ 0 and define G2-instantons as
connections with F ∈ �2

14(Y, gE ), i.e., such thatY (A) = κ(E). These are precisely
the solutions of the G2-instanton equation:

FA ∧ ∗φ = 0 (2.7a)

or, equivalently,
FA − ∗ (FA ∧ φ) = 0. (2.7b)

If instead κ(E) ≤ 0, we may still reverse orientation and consider F ∈ �2
14(Y, gE ),

but then the above eigenvalues and energy bounds must be adjusted accordingly,
which amounts to a change of the (−) sign in (2.7b).

2.1.2 The Chern–Simons Functional ϑ

It was pointed out by Simon Donaldson and Richard Thomas in their seminal article
on gauge theory in higher dimensions [12] that, formally, G2-instantons are rather
similar to flat connections over 3-manifolds; in particular, they are critical points
of a Chern–Simons functional and there is hope that counting them could lead to
a enumerative invariant for G2-manifolds not unlike the Casson invariant for 3-
manifolds, see [11, Sect. 6] and [38, Chap.6]. Although this interpretation has no
immediate bearing on the remainder of this material, let us briefly review the basic
formalism, from a purely motivational perspective.

Given a bundle over a compact 3-manifold, with space of connections A and
gauge group G , the Chern–Simons functional is a multi-valued real function on the
quotientB = A /G , with integer periods, whose critical points are precisely the flat
connections [8, Sect. 2.5]. Similar theories can be formulated in higher dimensions
in the presence of a suitable closed differential form [12, 34]; e.g. on a G2-manifold
(Y,φ), the coassociative 4−form ψ := ∗φ allows for the definition of a functional of
Chern–Simons type.1 Its ‘gradient’, the Chern–Simons 1-form, vanishes precisely at
the G2-instantons, hence it detects the solutions to the Yang-Mills equation [8]. The
explicit case of G2-manifolds, which we now describe, was examined in some detail
in [30, 31].

1In fact only the condition dψ = 0 is required, so the discussion extends to cases in which the
G2-structure is not necessarily torsion-free.
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The space A of connections on E → Y is an affine space modelled on �1 (gE )

so, fixing a reference connection A0 ∈ A ,

A = A0 + �1 (Y, gE )

and, accordingly, vectors at A ∈ A are 1-forms a, b, · · · ∈ TAA 
 �1 (Y, gE ) and
vector fields are maps α,β, · · · : A → �1 (Y, gE ). In this notation we define the
Chern–Simons functional by

ϑ (A) := 1
2

∫

Y
tr

(
dA0a ∧ a + 2

3
a ∧ a ∧ a

)
∧ ∗φ,

fixing ϑ (A0) = 0. This function is obtained by integration of the Chern–Simons
1−form

ρ (β)A :=
∫

Y
tr (FA ∧ βA) ∧ ∗φ. (2.8)

It is straightforward to check that the co-closedness condition d ∗ φ = 0 implies
that the 1−form (2.8) is closed, so the procedure doesn’t depend on the path A (t).
SinceA is contractible, by the Poincaré Lemma ρ is the derivative of some function
ϑ, and by Stokes’ theorem ρ vanishes along G−orbits im dA 
 TA {G.A}. Thus ρ
descends to the quotientB and so does ϑ, at least locally. Since ∗φ is not, in general,
an integral class, the set of periods of ϑ is actually dense; however, as long as our
interest remains in the study of the moduli space M = Crit(ρ) of G2-instantons,
there is no worry, for the gradient ρ = dϑ is unambiguously defined onB.

2.2 Analysis on Manifolds with Tubular Ends

In order to get some more depth into the instanton gluing process of Theorem 3.1,
we will need some general results from linear analysis on asymptotically cylindrical
manifolds (cf. Definition 2.3).

Definition 2.1 Amanifold with tubular end (M, X,π) is given by a smoothmanifold
M with a distinguished compact submanifold-with-boundary M0 ⊂ M , a Rieman-
nian manifold X , and a diffeomorphism

π : M∞ := M \ M0 → R+ × X.

The complement M∞ := M \ M0 is called the tubular end, π is the tubular model
and X is the asymptotic cross-section. 2

2The reader interested in analysis on tubular manifolds will find a thorough and very useful toolbox
in [27].
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Of course one could in principle consider, analogously,manifoldswith anynumber
of tubular ends but, in the context of G2-manifolds, the Ricci-flat geometry constrains
that number to one:

Theorem 2.2 ([28, Theorem 1]) If a connected and orientable manifold M with k
tubular ends admits a Ricci-flat metric, then k ≤ 2. Moreover k = 2 if, and only if,
M is a cylinder.

2.2.1 Geometric Structures on Manifolds with Cylindrical End

On a manifold with tubular end (M, X,π), we have the following natural maps on
differential forms (which clearly extend to any tensor fields):

�•(M)
res

�•(M∞)

π∗

�•(R+ × X)

By slight abuse of notation, given σ∞ ∈ �•(X), we will also denote by σ∞ its

pullback to the product under R+ × X
p2−→ X . Denoting by t the coordinate function

on R, we adopt the following notation for asymptotic behaviour:

• σ
δ� σ∞, if |∇k(π∗σ − σ∞)| ≤ O(e−δt ), t ∈ R+, ∀k ≥ 0, for a given δ > 0.

• σ � σ∞, if ∃δ > 0 such that σ
δ� σ∞.

Whenever σ � σ∞, σ is said to be asymptotically translation-invariant and σ∞ is
its asymptotic limit.

Definition 2.3 A manifold with tubular end (M, X,π) is said to be asymptotically
cylindrical (ACyl) if M is also aRiemannianmanifold and itsmetric gM is asymptotic
to the natural cylindrical metric on the tubular model: gM � gX + dt2. In this case,
we will call the map π : M∞ → R+ × X the cylindrical model.

Let E∞ → X be a Riemannian vector bundle. By slight abuse of notation we also
denote by E∞ its pullback to R+ × X . For k ∈ N0, α ∈ (0, 1) and δ ∈ R we define

‖ · ‖Ck,α
δ

:= ‖e−δt · ‖Ck,α ,

denoting by Ck,α
δ (X, E∞) the respective closure of C∞

0 (X, E∞). We set C∞
δ :=⋂

k Ck,α
δ .

Similarly, a Riemannian vector bundle E → M over an ACyl manifold (M, X,π)

is said to be asymptotic to E∞ → X if there is a bundle isomorphism π̄ : E |M∞ →
E∞ covering π such that the push-forward of the metric on E is asymptotic to
the metric on E∞ in the C∞

δ tubular norm above (for some δ > 0). Denote by
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t : M → [1,∞) a smooth positive functionwhich agreeswith t ◦ π onπ−1([1,∞) ×
X), and define

‖ · ‖Ck,α
δ

:= ‖e−δt · ‖Ck,α , δ ∈ R,

denoting by Ck,α
δ (M, E) the respective closure of C∞

0 (M, E).
Finally, a connection A ∈ A (E) is said to be asymptotic to A∞ ∈ A (E∞) if

(A − π̄∗ A∞) � 0 (the difference of two connections being a 1-form).We also denote
by A∞ its pullback to E∞ → R+ × X .

2.2.2 Asymptotically Translation-Invariant Operators on ACyl
Manifolds

Let us briefly review some spectral theory for elliptic operators on sections of vec-
tor bundles over an ACyl manifold M with asymptotic cross-section X . The pri-
mary references for the material in this section are Maz’ya–Plamenevskiı̆ [25] and
Lockhart–McOwen [22].

Let F → X be aRiemannian vector bundle, and let D : C∞(X, F) → C∞(X, F)

be a linear self-adjoint elliptic operator of first order. The operator

L∞ := ∂t − D

extends to a bounded linear operator L∞,δ : Ck+1,α
δ (X, F) → Ck,α

δ (X, F).

Theorem 2.4 ([25, Theorem 5.1]) L∞,δ is invertible if and only if δ /∈ spec(D).

Indeed, elements a ∈ ker L∞ can be expanded in terms of the δ-eigensections of
D, see [8, Sect. 3.1]:

a =
∑

δ∈specD

eδt aδ. (2.9)

Now let E → M be a (Riemannian) vector bundle asymptotic to F and consider
an elliptic operator

L : C∞
0 (M, E) → C∞

0 (M, E)

asymptotic to L∞, that is, such that the coefficients of L are asymptotic to the coeffi-
cients of L∞. The operator L extends to a bounded linear operator Lδ : Ck+1,α

δ (M, E)

→ Ck,α
δ (M, E).

Proposition 2.5 ([13, Proposition 2.4]) If δ /∈ spec(D), then Lδ is Fredholm.

Elements in the kernel of L still have an asymptotic expansion analogous to (2.9).
We need the following result which extracts the constant term of this expansion.
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Proposition 2.6 ([32, Prop. 3.5]) There is a constant δ0 > 0 such that, for all
δ ∈ [0, δ0], one has ker Lδ = ker L0 and there is a linear map ι : ker L0 → ker D
such that

a
δ0� ι(a).

In particular,
ker ι = ker L−δ0 .

2.3 Twisted Connected Sums

An important method to produce examples of compact 7-manifolds with holonomy
exactly G2 is the twisted connected sum (TCS) construction [5, 6, 21]. It consists
of gluing a pair of asymptotically cylindrical (ACyl) Calabi–Yau 3-folds obtained
from certain smooth projective 3-folds called building blocks (see Definition 2.7).
Combining results of Kovalev and Haskins–Hein–Nordström, each matching pair of
building blocks yields a one-parameter family of closed G2-manifolds.

A building block (Z , �) is given by a projective morphism ζ : Z → P
1 such

that � := ζ−1(∞) is a smooth anticanonical K3 surface, under some mild topolog-
ical assumptions (see Definition 2.10); in particular, � has trivial normal bundle.
Choosing a convenient Kähler structure on Z , one can make V := Z \ � into an
ACyl Calabi–Yau 3-fold (cf. Definition 2.9), that is, a non-compact Calabi–Yau
manifold with a tubular end modelled on R+ × S

1 × � [6, Theorem 3.4]. Then
S
1 × V is an ACyl G2-manifold (cf. Definition 2.15) with a tubular end modelled on

R+ × T
2 × �.

Definition 2.7 (cf. [6,Definition 3.9]) Let Z± be complex 3-folds,�± ⊂ Z± smooth
anticanonical K3 divisors and k± ∈ H 2(Z±) Kähler classes. We call a matching of
(Z+, �+,k+) and (Z−, �−,k−) a diffeomorphism r : �+ → �− such that r∗k− ∈
H 2(�+) and (r−1)∗k+ ∈ H 2(�−) have type (2, 0) + (0, 2).

Given a pair of building blocks (Z±, �±), a set of matching data is a collection
m = {(ωI,±,ωJ,±,ωK ,±

)
, r} consisting of a choice of hyper-Kähler structures on�±

such that [ωI,±] = k±|�± is the restriction of a Kähler class on Z± and a matching
r : �+ → �− such that

r∗ωI,− = ωJ,+, r∗ωJ,− = ωI,+ and r∗ωK ,− = −ωK ,+.

In this case (Z±, �±) are said to match via m and r is called a hyper-Kähler rotation
(see Remark 2.12 below).

Identifying a matching pair (Z±, �±) of building blocks by the hyper-Kähler
rotation between the K3 surfaces ‘at infinity’, the corresponding pair S1 × V± of
ACyl G2-manifolds is truncated at a large ‘neck length’ T and, intertwining the
circle components in the tori T2± along the tubular end, glued to form a compact
7-manifold (Fig. 1)
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×
S
1

V+

YT,+

[T,T+1]

×
S
1

V−

YT,−

Σ+
×
S
1

Σ−
×
S
1

r

Fig. 1 The twisted connected sum of a matching pair of building blocks

Y = Z+#rZ− := (
S
1 × V+

) ∪r

(
S
1 × V−

)
.

For large enough T0, this twisted connected sum Y carries a family of G2-structures
{φT }T ≥T0 with Hol(φT ) = G2 [6, Theorem 3.12]. The construction is summarised in
the following statement.

Theorem 2.8 ([6,Corollary 6.4]) Given a matching pair of building blocks (Z±, �±)

with Kähler classes k± ∈ H 1,1(Z±) such that (k+|�+)2 = (k−|�−)2, there exists
a family of torsion-free G2-structures {φT : T � 1} on the closed 7-manifold
Y = Z+#rZ−.

2.3.1 ACyl Calabi–Yau 3-folds from Building Blocks

The twisted connected sum in Theorem 2.8 is based on gluing ACyl G2-manifolds,
which arise as the product of an ACyl Calabi-Yau 3-fold with S1. Let us review how
to produce these from building blocks.

Definition 2.9 Let (V,ω,�) be a Calabi–Yau 3-fold with tubular end and asymp-
totic cross-section � × S

1 given by a hyper-Kähler surface (�,ωI ,ωJ ,ωK ). Then
V is called an asymptotically cylindrical Calabi-Yau 3-fold (ACylCY3) if

ω � dt ∧ dα + ωI ,

� � (dα − idt) ∧ (ωJ + iωK ),

where t and α denote the respective coordinates on R+ and S
1.

Numerous examples of ACylCY3 can be obtained from the following ingredients:

Definition 2.10 (Corti–Haskins–Nordström–Pacini [5, Definition 5.1]) A build-
ing block is a smooth projective 3-fold Z together with a projective morphism
ζ : Z → P

1 such that the following hold:

• The anticanonical class −K Z ∈ H 2(Z) is primitive.
• � := ζ−1(∞) is a smooth K3 surface and � ∼ −K Z .
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• Identifying H 2(�,Z) with the K3 lattice (i.e. choosing a marking for �), the
following embedding is primitive:

N := im(H 2(Z ,Z) → H 2(�,Z)) ↪→ H 2(�)

• The groups H 3(Z ,Z) and H 4(Z ,Z) are torsion-free.

In particular, building blocks are simply-connected [5, Sect. 5.1].

Remark 2.11 The existence of the fibration ζ : Z → P
1 is equivalent to � having

trivial normal bundle. This is crucial because it means that Z \ � has a cylindrical
end, given by an exponential radial coordinate in a tubular neighbourhood of �. The
last two conditions in the definition of a building block are not essential; they are
meant to facilitate the computation of certain topological invariants.

Remark 2.12 Given a matching r between a pair of building blocks (Z±, �±,k±),
one can make the choices in the definition of the ACyl Calabi-Yau structure so that
r becomes a hyper-Kähler rotation (cf. Definition 2.7) of the induced hyper-Kähler
structures [6, Theorem 3.4 & Proposition 6.2].

In his original work, Kovalev [21] used building blocks arising from Fano 3-folds
by blowing-up the base-locus of a generic anti-canonical pencil. This method was
extended to the much larger class of semi Fano 3-folds (a class of weak Fano 3-
folds) by Corti–Haskins–Nordström–Pacini (see Proposition 4.6 below). Kovalev–
Lee [20] construct building blocks starting from K3 surfaces with non-symplectic
involutions, by taking the productwithP1, dividingbyZ2 andblowingup the resulting
singularities. In every instance, one obtains an ACylCY3 by the following theorem:

Theorem 2.13 ([13, Theorem D]) Let (Z , �) be a building block and let (ωI ,ωJ ,

ωK ) be a hyper-Kähler structure on �. If [ωI ] ∈ H 1,1(�) is the restriction of a
Kähler class on Z, then there is an asymptotically cylindrical Calabi–Yau structure
(ω,�) on V := Z \ � with asymptotic cross section (�,ωI ,ωJ ,ωK ).

Remark 2.14 This result was first claimed by Kovalev in [21, Theorem 2.4]; see
the discussion in [13, Sect. 4.1].

2.3.2 Gluing ACyl G2-Manifolds

We may now describe the gluing of matching pairs of ACylG2-manifolds, obtained
from ACylCY3 given by Theorem 2.13.

Definition 2.15 Let (Y,φ) be a G2-manifold with tubular end and asymptotic cross-
section given by a compact Calabi–Yau 3-fold (W,ω,�). Then Y is called asymp-
totically cylindrical (ACyl) if

φ � dt ∧ ω + Re�,

where t denotes the coordinate on R+.
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Taking the product of an ACylCY3 (V,ω,�) with S
1, with coordinate β, yields

an ACylG2-manifold

(Y := S
1 × V,φ := dβ ∧ ω + Re�)

with asymptotic cross section

(W := T
2 × �,ω := dα ∧ dβ + ωK ,� := (dα − idβ) ∧ (ωJ + iωI )).

Let V± be a matching pair of ACylCY3 with asymptotic cross section �± and
suppose that r : �+ → �− is a hyper-Kähler rotation. A pair of ACylG2-manifolds
(Y±,φ±) with asymptotic cross sections (W±,ω±,�±) as above is said to match if
there exists a diffeomorphism

q : T
2 × �+ −→ T

2 × �−
f (α,β, x) := (β,α, r(x)).

such that
q∗ω− = −ω+ and q∗ Re�− = Re�+.

Remark 2.16 If q did not interchange the S
1-factors, then Y would have infinite

fundamental group and, hence, could not carry a metric with holonomy equal to G2

[17, Proposition 10.2.2].

Let (Y±,φ±) be a matching pair of ACylG2-manifolds. For fixed T ≥ 1, define

Q : [T, T + 1] × Z+ −→ [T, T + 1] × Z−
Q(t, z) := (2T + 1 − t, q(z))

and denote by YT the compact 7-manifold obtained by gluing Y± together at neck
length T via Q:

YT,± := (Y0)± ∪Q π−1
± ((0, T + 1] × Z±) .

Fix a non-decreasing smooth cut-off function χ : R → [0, 1] with χ(t) = 0 for
t ≤ 0 and χ(t) = 1 for t ≥ 1. Define a 3-form φ̃T on YT by

φ̃T = φ± − d[(χ(t − T + 1)(ω± − π∗
±ω∞,±))]

on YT,±. If T � 1, then φ̃T defines a closed G2-structure on YT . Clearly, all the YT

for different values of T are diffeomorphic; hence, we often drop the T from the
notation. The G2-structure φ̃T is not torsion-free yet, but can be made so by a small
perturbation:

Theorem 2.17 ([21, Theorem 5.34]) In the above situation there exist a constant
T0 ≥ 1 and, for each T ≥ T0, a 2-form ηT on YT such that φT := φ̃T + dηT defines
a torsion-free G2-structure and for some δ > 0
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‖dηT ‖C0,α = O(e−δT ). (2.10)

In summary, the TCS Theorem 2.8 is established by the following procedure. For
any building block (Z , �), the noncompact 3-fold V := Z \ � admits ACyl Ricci-
flat Kähler metrics (Theorem 2.13) hence an ACylCY3 structure whose asymptotic
limit defines a hyper-Kähler structure on�. Given amatching pair of suchCalabi-Yau
manifolds V±, one can apply Theorem 2.17 to glue S1 × V± into a closed manifold
Y with a 1-parameter family of torsion-free G2-structures [6, Theorem 3.12].

3 The G2-Instanton Gluing Theorem

Let A be an ASD instanton on a PU (n)-bundle F over a Kähler surface �. The
linearisation of the instanton moduli spaceM� near A is modelled on the kernel of
the deformation operator

DA := d∗
A ⊕ d+

A : �1(�, gF ) → (�0 ⊕ �+)(�, gF ).

Let F be the corresponding holomorphic vector bundle (cf. Donaldson–Kronheimer
[10]), and denote by f the Hitchin–Kobayashi isomorphism:

f : H 1(�,E nd0(F))
∼−→ H 1

A := kerDA. (3.1)

Theorem 3.1 ([32, Theorem 1.2]) Let Z± ,�±, k±, r, X and φT be as in Theorem
2.8. Let E± → Z± be a pair of holomorphic vector bundles such that the following
hold:

Asymptotic stability E±|�± is μ-stable with respect to k±|�± . Denote the corre-
sponding ASD instanton by A∞,±.

Compatibility There exists a bundle isomorphism r : E+|�+ → E−|�− covering the
hyper-Kähler rotation r such that r∗ A∞,− = A∞,+.

Inelasticity There are no infinitesimal deformations of E± fixing the restriction to
�±:

H 1(Z±,E nd0(E±)(−�±)) = 0. (3.2)

Transversality If λ± := f± ◦ res± : H 1(Z±,E nd0(E±)) → H 1
A∞,± denotes the

composition of restrictions to �± with the isomorphism (3.1), then the image
of λ+ and r∗ ◦ λ− intersect trivially in the linear space H 1

A∞,+ :

im(λ+) ∩ im(r∗ ◦ λ−) = {0} . (3.3)
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Then there exists a U (r)-bundle E over Y and a family of connections {AT : T � 1}
on the associated PU (r)-bundle, such that each AT is an irreducible unobstructed
G2-instanton over (Y,φT ).

The asymptotic stability assumption guarantees finite energy of Hermitian bun-
dle metrics on E±|V± (see [33, Sect. 2.2]), which are equivalent to asymptotically
translation-invariant HYM connections A± � A∞,±, under the Chern correspon-
dence (cf. Theorem 3.15). The maps λ+ and r∗ ◦ λ− can be seen geometrically as
linearisations of the natural inclusions of the moduli of asymptotically stable bundles
MZ± into the moduli of ASD instantonsM�+ over the K3 surface ‘at infinity’, and
we think of H 1

A∞,+ as a tangent model of M�+ near the ASD instanton A∞,+. Then
the transversality condition asks that the actual inclusions intersect transversally
at A∞,+ ∈ M�+ . That the intersection points are isolated reflects that the result-
ing G2-instanton is rigid, since it is unobstructed and the deformation problem has
index 0.

Remark 3.2 If H 1(�+, End0(E+|�+)) = {0}, then (3.3) is vacuous. If, moreover,
the topological bundles underlying E± are isomorphic, then the existence of r̄ is
guaranteed by [15, Theorem 6.1.6].

Furthermore, condition (3.2) yields a short exact sequence, which is self-dual
under Serre duality:

0 → H1(Z±, End0(E±)) → H1(�±, End0(E±|�± )) → H2(Z±, End0(E±)(−�±)) → 0.

This implies [36, p. 176 ff.] that each

im λ± ⊂ H 1
A∞,±

is a complex Lagrangian subspace with respect to the complex symplectic structure
induced by�± := ωJ,± + iωK ,± or, equivalently,Mukai’s complex symplectic struc-
ture on H 1(Z±, End0(E±)). Under the assumptions of Theorem 3.1 the moduli space
M�+ of holomorphic bundles over �+ is smooth near [E+|�+] and so are the moduli
spacesMZ± of holomorphic bundles over Z± near [E±]. Locally,MZ± embeds as a
complex Lagrangian submanifold intoM�± . Since r

∗ωK ,− = −ωK ,+, bothMZ+ and
MZ− can be viewed as Lagrangian submanifolds of M�+ with respect to the sym-
plectic form induced byωK ,+. Equation (3.3) asks for these Lagrangian submanifolds
to intersect transversely at the point [E+|�+]. If one thinks of G2-manifolds arising
via the twisted connected sum construction as analogues of 3-manifolds with a fixed
Heegaard splitting, then this is much like the geometric picture behind Atiyah–Floer
conjecture in dimension three [2].

In Sect. 4, we will review a constructive method to obtain explicit examples of
such instanton gluing in many interesting cases.
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3.1 Hermitian Yang-Mills Connections on ACyl CY 3-Folds

Suppose (W,ω,�) is Calabi–Yau 3-fold and (Y := R × W,φ := dt ∧ ω + Re�)

is the corresponding cylindrical G2-manifold. In this section we relate translation-
invariant G2-instantons over Y with Hermitian–Yang–Mills connections over W .

Definition 3.3 Let (W,ω) be a Kähler manifold and let E be a PU(n)-bundle over
W . A connection A ∈ A (E) on E is Hermitian–Yang–Mills (HYM) connection if

F0,2
A = 0 and �FA = 0. (3.4)

Here � is the dual of the Lefschetz operator L := ω ∧ ·.
Remark 3.4 Instead of working with PU(n)-bundles, one can also work with U(n)-
bundles and instead of the second part of (3.4) require that�FA be equal to a constant.
These view points are essentially equivalent.

Remark 3.5 By the first part of (3.4) a HYM connection induces a holomorphic
structure on E . If W is compact, then there is a one-to-one correspondence between
gauge equivalence classes of HYM connections on E and isomorphism classes of
polystable holomorphic bundles E whose underlying topological bundle is E , see
Donaldson [9] and Uhlenbeck–Yau [37].

On a Calabi–Yau 3-fold, (3.4) is equivalent to

FA ∧ Im� = 0 and FA ∧ ω ∧ ω = 0;

hence, using ∗(dt ∧ ω + Re�) = 1
2ω ∧ ω − dt ∧ Im� one easily derives:

Proposition 3.6 ([33, Proposition 8]) Denote by πW : Y → W the canonical pro-
jection. A is a HYM connection if and only if π∗

W A is a G2-instanton.

In general, if A is a G2-instanton on a G-bundle E over a G2-manifold (Y,φ),
then the moduli space M of G2-instantons near [A], i.e., the space of gauge equiv-
alence classes of G2-instantons near [A] is the space of small solutions (ξ, a) ∈(
�0 ⊕ �1

)
(Y, gE ) of the system of equations

d∗
Aa = 0 and dA+aξ − ∗(FA+a ∧ ψ) = 0

modulo the action of �A ⊂ G , the stabiliser of A, assuming either that Y is compact
or appropriate control over the growth of ξ and a. The infinitesimal deformation
theory of [A] is governed by that equation’s linearisation operator

L A :=
(

d∗
A

dA − ∗ (ψ ∧ dA)

)
: (

�0 ⊕ �1
)
(Y, gE ) → (

�0 ⊕ �1
)
(Y, gE ). (3.5)

Definition 3.7 A is called irreducible and unobstructed if L A is surjective.
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If A is irreducible and unobstructed, then M is smooth at [A]. If Y is compact,
then L A has index zero; hence, is surjective if, and only if, it is invertible; therefore,
irreducible and unobstructed G2-instantons form isolated points in M. If Y is non-
compact, the precise meaning of M and L A depends on the growth assumptions
made on ξ and a and M may very well be positive-dimensional.

Proposition 3.8 If A is HYM connection on a bundle E over a G2-manifold Y :=
R × W as in Proposition 3.6, then the operator Lπ∗

W A defined in (3.5) can be written
as

Lπ∗
W A = Ĩ∂t + DA

where

Ĩ :=
⎛

⎝
−1

1
I

⎞

⎠

and DA : (
�0 ⊕ �0 ⊕ �1

)
(W, gE ) → (

�0 ⊕ �0 ⊕ �1
)
(W, gE ) is defined by

DA :=
⎛

⎝
d∗

A
�dA

dA −IdA − ∗ (Im� ∧ dA)

⎞

⎠ . (3.6)

Definition 3.9 Let A be a HYM connection on a PU(n)-bundle E over a Kähler
manifold (W,ω). Set

Hi
A := ker

(
∂̄A ⊕ ∂̄∗

A : �0,i (W, End0(E)) → (
�0,i+1 ⊕ �0,i−1

)
(W, End0(E))

)
.

H0
A is called the space of infinitesimal automorphisms of A and H1

A is called the
space of infinitesimal deformations of A.

Remark 3.10 If W is compact, then Hi
A

∼= Hi (W, End0(E)) where E is the holo-
morphic bundle induced by A.

Proposition 3.11 If (W,ω,�) is a compact Calabi–Yau 3-fold and A is a HYM
connection on a G-bundle E → W , then

ker DA
∼= H0

A ⊕ H1
A

where DA is as in (3.6).

3.2 Gluing G2-Instantons over ACyl G2-Manifolds

Definition 3.12 Let (Y,φ) be an ACylG2-manifold and let A be a G2-instanton on
a G-bundle over (Y,φ) asymptotic to A∞. For δ ∈ R we set
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TA,δ := ker L A,δ =
{

a ∈ ker L A : a
δ� 0

}
.

where a = (ξ, a) ∈ (
�0 ⊕ �1

)
(Y, gE ). Set TA := TA,0.

Proposition 3.13 ([32, Propositions 3.22, 3.23]) Let (Y,φ) be anACylG2-manifold
and let A be a G2-instanton asymptotic to A∞. Then there is a constant δ0 > 0 such
that for all δ ∈ [0, δ0], TA,δ = TA and there is a linear map ι : TA → H0

A∞ ⊕ H1
A∞

such that
a

δ0� ι(a).

In particular, ker ι = TA,−δ0 .

Furthermore,

dim im ι = 1

2
dim

(
H0

A∞ ⊕ H1
A∞

)

and, if H0
A∞ = 0, then im ι ⊂ H1

A∞ is Lagrangian with respect to the symplectic
structure on H1

A∞ induced by ω.

Assume we are in the situation of Proposition 3.13; if moreover ker ι = 0 and
H0

A∞ = 0, then one can show that the moduli space MY of G2-instantons near [A]
which are asymptotic to some HYM connection is smooth. Although the moduli
space MW of HYM connections near [A∞] is not necessarily smooth, formally, it
still makes sense to talk about its symplectic structure and viewMY as a Lagrangian
submanifold. The following theorem shows that transverse intersections of a pair of
such Lagrangians give rise to G2-instantons.

Theorem 3.14 ([32, Theorem 3.24]) Let (Y±,φ±) be a pair of ACylG2-manifolds
that match via f : W+ → W−. Denote by (YT ,φT )T ≥T0 the resulting family of com-
pact G2-manifolds arising from the construction in Sect. 2.3.2. Let A± be a pair of
G2-instantons on E± over (Y±,φ±) asymptotic to A∞,±. Suppose the following hold:

• There is a bundle isomorphism f̄ : E∞,+ → E∞,− covering f such that f̄ ∗ A∞,−=
A∞,+,

• The maps ι± : TA± → ker DA∞,± constructed in Proposition 3.13 are injective and
their images intersect trivially

im (ι+) ∩ im
(

f̄ ∗ ◦ ι−
) = {0} ⊂ H0

A∞,+ ⊕ H1
A∞,+ . (3.7)

Then there exists T1 ≥ T0 and for each T ≥ T1 there exists an irreducible and unob-
structed G2-instanton AT on a G-bundle ET over (YT ,φT ).

Sketch of Proof One proceeds in three steps. We first produce an approximate G2-
instanton ÃT by an explicit cut-and-paste procedure. This reduces the problem to
solving the non-linear partial differential equation

d∗
Ãt

a = 0 and d ÃT +aξ + ∗T (FÃT +a ∧ ψT ) = 0. (3.8)
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for a ∈ �1(YT , gET ) and ξ ∈ �0(YT , gET ) where ψT := ∗φT . Under the hypotheses
of Theorem 3.14 one can solve the linearisation of (3.8) in a uniform fashion. The
existence of a solution of (3.8) then follows from a simple application of Banach’s
fixed-point theorem. �

3.3 From Holomorphic Bundles over Building Blocks to
G2-Instantons over ACyl G2-Manifolds

We now briefly explain how one may deduce Theorem 3.1 from Theorem 3.14.
Let (V,ω,�) be an ACylCY3 with asymptotic cross-section (�,ωI ,ωJ ,ωK ).

The following theorem can be used to produce examples of HYM connections A on
a PU(n)-bundle E → V asymptotic to an ASD instanton A∞ on a PU(n)-bundle
E∞ → � (here, by a slight additional abuse, we denote by E∞ and A∞ their respec-
tive pullbacks to R+ × S

1 × �). Hence, by taking the product with S
1, it yields

examples of G2-instantons π∗
V A asymptotic to π∗

� A∞ over the ACylG2-manifold
S
1 × V . Denote the canonical projections in this context by

πV : S
1 × V → V and π� : T

2 × � → �.

Theorem 3.15 ([33, Theorem 59] & [19, Theorem 1.1]) Let Z and � be as in
Theorem 2.13 and let (V := Z \ �,ω,�) be the resulting ACylCY3. Let E be a
holomorphic vector bundle over Z and let A∞ be an ASD instanton onE |� compatible
with the holomorphic structure. Then there exists a HYM connection A on E |V which
is compatible with the holomorphic structure on E |V and asymptotic to A∞.

Remark 3.16 The last assertion of the exponential decay A � A∞ is claimed in
[33, Theorem 59] but its proof in that reference is not satisfactory. That part of the
theorem is essentially superseded by [19, Theorem 1.1], which additionally extends
this existence result to singular G2-instantons, obtained from asymptotically stable
reflexive sheaves, following in spirit the argument in the compact case, by [4].

This together with Theorem 3.14 and the following result immediately implies
Theorem 3.1.

Proposition 3.17 ([32, Proposition 4.3]) In the situation of Theorem 3.15, suppose
H 0(�, End0(E |�)) = 0. Then

H1
π∗

� A∞ = H 1
A∞ (3.9)

and, for some small δ > 0, there exist injective linear maps κ− and κ such that the
following diagram commutes:
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Tπ∗
V A,−δ Tπ∗

V A H1
π∗

� A∞

H 1(Z , End0(E)(−�)) H 1(Z , End0(E)) H 1(�, End0(E |�)).

κ−

ι

κ ∼= (3.10)

Sketch of Proof Equation (3.9) is a direct consequence ofH0
A∞ = 0. If A is a HYM

connection asymptotic to A∞ over an ACylCY3 then there exists a δ0 > 0 such that,
for all δ ≤ δ0,

Tπ∗
V A,δ =

{
a ∈ ker DA : a

δ� 0
}

(3.11)

with DA as in (3.6). Furthermore, there exists δ1 > 0 such that, for all δ ≤ δ1, one
has H0

A,δ = 0 and
Tπ∗

V A,δ
∼= H1

A,δ

where Hi
A,δ :=

{
α ∈ Hi

A : α
δ� 0

}
. �

4 Transversal Examples via the Hartshorne-Serre
Correspondence

In [5, 6, 21], building blocks Z are produced by blowing up Fano or semi-Fano
3-folds along the base curve C of an anticanonical pencil (see Proposition 4.6). By
understanding the deformation theory of pairs (X, �) of semi-Fanos X and anti-
canonical K3 divisors � ⊂ X , one can produce hundreds of thousands of pairs with
the required matching (see Sect. 4.3). In order to apply Theorem 3.1 to produce
G2-instantons over the resulting twisted connected sums, one first requires some
supply of asymptotically stable, inelastic vector bundles E → X . Moreover, to sat-
isfy the hypotheses of compatibility and transversality, one would in general need
some understanding of the deformation theory of triples (X, �, E). In this Sect. I
outline our approach in [24] to the problem of production of ingredients, in the form
of gluable pairs of holomorphic bundles over building blocks.

The Hartshorne-Serre construction generalises the correspondence between divi-
sors and line bundles, under certain conditions, in the sense that bundles of higher
rank are associated to subschemes of higher codimension. We recall the rank 2 ver-
sion, as an instance of Arrondo’s formulation3 [1, Theorem 1]:

Theorem 4.1 Let S ⊂ Z be a local complete intersection subscheme of codimen-
sion 2 in a smooth algebraic variety. If there exists a line bundle L → Z such that

• H 2(Z ,L∗) = 0,

3For a thorough justification of this choice of reference for the correspondence, see the Introduction
section of Arrondo’s notes.



338 H. Sá Earp

• ∧2NS /Z = L|S , where NS /Z denotes the normal bundle of S in Z.

then there exists a rank 2 holomorphic vector bundle F → Z such that

1. ∧2F = L,
2. F has one global section whose vanishing locus is S .

We will refer to such F as the Hartshorne-Serre bundle obtained fromS (and L).

Using the Hartshorne-Serre construction, we can systematically produce families
of bundles over the building blocks, which, in favourable cases, are parametrised
by the building block’s blow-up curve C itself. This perspective lets us understand
the deformation theory of the bundles very explicitly, and it also separates the latter
from the deformation theory of the pair (X, �). We can therefore first findmatchings
between two semi-Fano families using the techniques from [6], and then exploit the
high degree of freedom in the choice of the blow-up curve C (see Lemma 4.7) to
satisfy the compatibility and transversality hypotheses.

4.1 A Detailed Example

As a proof of concept, we will henceforth walk through the process of construction
of examples, with the particular pair adopted in [24]:

Example 4.2 The product X+ = P
1 × P

2 is a Fano 3-fold. Let |�0, �∞| ⊂ ∣∣−K X+
∣∣

be a generic pencil with (smooth) base locusC+ and�+ ∈ |�0, �∞| generic. Denote
by r+ : Z+ → X+ the blow-up of X+ in C+, by C̃+ the exceptional divisor and by
�+ a fibre of p1 : C̃+ → C+. The proper transform of �+ in Z+ is also denoted by
�+, and (Z+, S+) is a building block by Proposition 4.6. For future reference, we
fix classes

H+ := r∗
+(

[
P
1 × P

1
]
) and G+ = r∗

+(
[{x} × P

2
]
) ∈ H 2(Z+).

NB.: Clearly −K X+ is very ample, thus also −K X+|�+ , so X+ lends itself to appli-
cation of Lemma 4.7.

Example 4.3 A double cover π : X−
2:1−→ P

1 × P
2 branched over a smooth (2, 2)

divisor D is a Fano 3-fold. Let |�0, �∞| ⊂ ∣
∣−K X−

∣
∣ be a generic pencil with (smooth)

base locus C− and �− ∈ |�0, �∞| generic. Denote by r− : Z− → X− the blow-up
of X− inC−, and by C̃− the exceptional divisor. The proper transform of�− in Z− is
also denoted by �−, and (Z−, S−) is a building block by Proposition 4.6. For future
reference, we fix classes

H− := (r− ◦ π)∗(
[
P
1 × P

1
]
) and G− = (r− ◦ π)∗(

[{x} × P
2
]
) ∈ H 2(Z−)

and



Current Progress on G2-Instantons over Twisted Connected Sums 339

h− := 1

2
(r− ◦ π)∗(

[{x} × P
1
]
) ∈ H 4(Z−),

where x is a point.

In that context, the existence of solutions satisfying the hypotheses of the TCS
G2-instanton gluing theorem takes the following form:

Theorem 4.4 ([24, Theorem 1.3]) There exists a matching pair of building blocks
(Z±, �±), obtained as Z± = BlC± X± for X+ = P

1 × P
2 and the double cover

X−
2:1−→ P

1 × P
2 branched over a (2, 2) divisor, with rank 2 holomorphic bundles

E± → Z± satisfying the hypotheses of Theorem 3.1.

Here’s a sketch of the procedure leading to Theorem 4.4:

• We construct holomorphic bundles on building blocks from certain complete inter-
section subschemes, via the Hartshorne-Serre correspondence (Theorem 4.1), as
well as two families of bundles {F± → X±}, over the particular blocks of Theorem
4.4, that are conducive to application of Theorem 3.1.

• Then, in Sect. 4.5, we focus on the moduli space M s
�+,A+(v�+) of stable bundles

on �+, where the problems of compatibility and transversality therefore “take
place”. Here X+ = P

1 × P
2, �+ ⊂ X+ is the anti-canonical K3 divisor and, for a

smooth curveC+ ∈ |−K X+|�+|, the block Z+ := BlC+ X+ is in the family obtained
from Example 4.2.
It can be shown thatM s

�+,A+(v�+) is isomorphic to �+ itself, and that the restric-
tions of the family of bundles F+ correspond precisely to the blow-up curve C .
Now, given a rank 2 bundleF+ → Z+ such that G := F+|�+ ∈ M s

�+,A+(v�+), the
restriction map

res : H 1 (Z+,E nd0(F+)) → H 1(�+,E nd0(G)) (4.1)

corresponds to the derivative at F+ of the map between instanton moduli spaces.
Combining with Lemma 4.7, which guarantees the freedom to choose C+ when
constructing the block Z+ from �+, one has:

Theorem 4.5 ([24, Theorem 1.4]) For every G ∈ M s
�+,A+(v�+) and every line

V ⊂ H 1(�+,E nd0(G)), there is a smooth base locus curve C ∈ |−K X+|�+| and an
exceptional fibre � ⊂ C̃ corresponding by Hartshorne-Serre to an inelastic vector
bundle F+ → Z+, such that F+|�+ = G and the restriction map (4.1) has image V .

• Let r : �+ → �− be a matching between X+ = P
1 × P

2 and X−
2:1−→ P

1 × P
2.

Then for anyF− → Z− as abovewe can (up to a twist by holomorphic line bundles
R± → Z±) choose the smooth curve C+ ∈ |−K X+|�+| in the construction of Z+
so that there is a Hartshorne-Serre bundleF+ → Z+ that matchesF− transversely.
Then the bundles E± := F± ⊗ R± satisfy the gluing hypotheses of Theorem 3.1.
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4.2 Building Blocks from Semi-Fano 3-Folds and Twisted
Connected Sums

For all but 2 of the 105 families of Fano 3-folds, the base locus of a generic anti-
canonical pencil is smooth. This also holds for most families in the wider class of
‘semi-Fano 3-folds’ in the terminology of [5], i.e. smooth projective 3-folds where
−K X defines a morphism that does not contract any divisors. We can then obtain
building blocks using [6, Proposition 3.15]:

Proposition 4.6 Let X be a semi-Fano 3-fold with H 3(X,Z) torsion-free, |�0,

�∞| ⊂ | − K X | a generic pencil with (smooth) base locusC , � ∈ |�0, �∞| generic,
and Z the blow-up of X at C . Then � is a smooth K3 surface, its proper transform
in Z is isomorphic to �, and (Z , �) is a building block. Furthermore

1. the image N of H 2(Z ,Z) → H 2(�,Z) equals that of H 2(X,Z) → H 2(�,Z);
2. H 2(X,Z) → H 2(�,Z) is injective and the image N is primitive in H 2(�,Z).

Let us notice for later use that, whenever −K X |� is very ample, it is possible
to ‘wiggle’ a blow-up curve C so as to realise any prescribed incidence condition
(x, V ) ∈ T �. This fact will play an important role in the transversality argument in
Sect. 4.5.

Lemma 4.7 ([24, Lemma 2.5]) Let X be a semi-Fano, � ∈ |−K X | a smooth K3
divisor, and suppose that the restriction of −K X to � is very ample. Then given any
point x ∈ � and any (complex) line V ⊂ Tx�, there exists an anticanonical pencil
containing � whose base locus C is smooth, contains x, and TxC = V .

Finally, note that if X± is a pair of semi-Fanos and r : �+ → �− is a matching
in the sense of Definition 2.7, then r also defines a matching of building blocks
constructed from X± using Proposition 4.6. Thus given a pair of matching semi-
Fanos we can apply Theorem 2.8 to construct closed G2-manifolds, but this still
involves choosing the blow-up curves C±.

4.3 The Matching Problem

We now explain in more detail the argument of [6, Sect. 6] for finding matching
building blocks (Z±, �±). The blocks will be obtained by applying Proposition 4.6
to a pair of semi-Fanos X±, from some given pair of deformation types X±.

A key deformation invariant of a semi-Fano X is its Picard lattice Pic(X) ∼=
H 2(X;Z). For any anticanonical K3 divisor � ⊂ X , the injection Pic(X) ↪→
H 2(�;Z) is primitive. The intersection form on H 2(�;Z) of any K3 surface is iso-
metric to L K3 := 3U ⊕ 2E8, the unique even unimodular lattice of signature (3, 19).
We can therefore identify Pic(X) with a primitive sublattice N ⊂ L K3 of the K3 lat-
tice, uniquely up to the action of the isometry group O(L K3) (this is usually uniquely
determined by the isometry class of N as an abstract lattice).
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Given a matching r : �+ → �− between anticanonical divisors in a pair of semi-
Fanos, we can choose the isomorphisms H 2(�±;Z) ∼= L K3 compatible with r∗,
hence identify Pic(X+) and Pic(X−) with a pair of primitive sublattices N+, N− ⊂
L K3. While the O(L K3) class of N± individually depends only on X±, the O(L K3)

class of the pair (N+, N−) depends on r, and we call (N+, N−) the configuration of
r. Many important properties of the resulting twisted connected sum only depend on
the hyper-Kähler rotation in terms of the configuration.

Given a configuration N+, N− ⊂ L K3, let

N0 := N+ ∩ N−, and R± := N± ∩ N⊥
∓ .

We say that the configuration is orthogonal if N± are rationally spanned by N0 and
R± (geometrically, this means that the reflections in N+ and N− commute). Given
a pair X± of deformation types of semi-Fanos, then there are sufficient conditions
for a given orthogonal configuration to be realised by some matching [6, Proposition
6.17],

Proposition 4.8 i.e., so that there exist X± ∈ X±, �± ∈ |−K X±|, and a matching
r : �+ → �− with the given configuration.

Now consider the problem of findingmatching bundles E± → Z± in order to con-
struct G2-instantons by application of Theorem 3.1. For the compatibility hypothesis
it is obviously necessary that Chern classes match:

c1(E+|�+) = r∗c1(E−|�−) ∈ H 2(�+).

Identifying H 2(�+;Z) ∼= L K3
∼= H 2(�−;Z) compatibly with r∗, this means we

need
c1(E+|�+) = c1(E−|�−) ∈ N+ ∩ N− = N0.

Hence, if N0 is trivial, both c1(E±|�±) must also be trivial, which is a very restrictive
condition on our bundles. To allow more possibilities, we want matchings r whose
configuration N+, N− ⊂ L K3 has non-trivial intersection N0.

Table4 of [7] lists all 19 possible suchmatchings with Picard rank 2, amongwhich
we can find the pair of building blocks of Examples 4.2 and 4.3, coming from the

Fano 3-folds X+ = P
1 × P

2 and the double cover X−
2:1−→ P

1 × P
2 branched over

a (2, 2) divisor. Several other choices would be possible to produce examples of
G2-instantons.
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4.4 Hartshorne-Serre Bundles over Building Blocks

4.4.1 The General Construction Algorithm

Let X be a semi-Fano 3-fold and (Z , �) be the block constructed as a blow-up of
X along the base locus C of a generic anti-canonical pencil (Proposition 4.6). In
[24, Sect. 3.1] a general approach is provided for making the choices of L andS in
Theorem 4.1, in order to construct a Hartshorne-Serre bundle F → Z which, up to
a twist, yields the bundle E meeting the requirements of Theorem 3.1. The approach
may be summarised as follows:

Summary 4.9 Let (Z±, �±) be the building blocks constructed by blowing-up N±-
polarised semi-Fano 3-folds X± along the base locus C± of a generic anti-canonical
pencil (cf. Proposition 4.6). Let N0 ⊂ N± be the sub-lattice of orthogonal matching,
as in Sect.4.3. Let A± be the restriction of an ample class of X± to �± which
is orthogonal to N0. We look for the Hartshorne-Serre parameters S± and L± of
Theorem 4.1, where S+ = � is an exceptional fibre in Z+, S− is a genus 0 curve in
Z− and L± → Z± are line bundles such that:

1. c1(L±) ∈ N0 mod 2Pic(�±);
2. c1(L±|�±) · A± > 0;
3. χ(L∗±) ≤ 0;
4. c1(L+) · S+ = −1 and (S− − c1(L−)) · S− = 2;
5. c1(L+|�+)2 = −4 and �− · S− − 1

4c1(L−|�−)2 = 2;

Finally, among candidate data satisfying these constraints, inelasticity must be
arranged “by hand’.

The reader who would like to construct other examples might follow this 4-step
programme:

Step 1. Find two matching N±-polarized semi-Fano 3-folds X± such that:

(i) there exists x ∈ N+ such x2 = −4 (or more generally x2 = 2k − 6, for a moduli
space M s

�,A(v) of dimension 2k).
(ii) there exists a primitive element y ∈ N0 such that y2 ≤ −8 and 4 divides y2.

Step 2. FindL± andS− which verify the conditions of Summary 4.9 (perhaps with
a computer).

Step 3. The following must be checked by ad-hoc methods:

1. H 2(L∗±) = 0, for the Hartshorne-Serre construction (Theorem 4.1);
2. divisors with small slope do not containS , for asymptotic stability ([16, Propo-

sition 10]);
3. h1(L∗) = h1(F) = 0 and the dimensional constraint (4.2) for your choice of

dimM s
�,A(v), corresponding to inelasticity (Proposition 4.15).

Step 4. Conclude with similar arguments to Sect. 4.5.
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4.4.2 Construction of F+ over X+ = P
1 × P

2 and F− over

X−
2:1−→ P

1 × P
2

In view of the constraints in Summary 4.9, we apply Theorem 4.1 to Z+ = BlC X+
as above, obtained by blowing up X+ = P

1 × P
2 from Example 4.2, with parameters

S = � and L = OZ+(−�+ − G+ + H+).

Proposition 4.10 ([24, Propositions 3.5, 4.4, 5.7]) Let (Z+, �+) be a building block
as in Example 4.2,C a pencil base locus and � ⊂ Z+ an exceptional fibre of C̃ → C .
There exists a rank 2 asymptotically stable and inelastic Hartshorne-Serre bundle
F+ → Z+ obtained from � such that

1. c1(F+) = −�+ − G+ + H+, and
2. F+ has a global section whose vanishing locus is a fibre � of p1 : C̃ → C .

Similarly, one applies Theorem 4.1 to the building block Z− obtained by blowing

up X−
2:1−→ P

1 × P
2, from Example 4.3, with

[S ] = h− and L = OZ−(G−).

Proposition 4.11 ([24, Propositions 3.9, 4.5, 5.8]) Let (Z−, �−) be a building block
provided in Example 4.3 and S a line of class h−. There exists a rank 2 Hartshorne-
Serre bundle F− → Z− obtained from S such that:

1. c1(F−) = G−, and
2. F− has a global section whose vanishing locus is S , where [S ] = h−.

Remark 4.12 In order to check the stability of Hartshorne-Serre bundles over �±,
we use a tailor-made instance [16, Proposition 10] of a more general Hoppe-type
stability criterion for holomorphic bundles over so-called polycyclic varieties, whose
Picard group is free Abelian [16, Corollary 4].

In the context above, the moduli spaces of the stable bundles F±|�± have the
‘minimal’ positive dimension, for transversal intersection to occur:

Proposition 4.13 Let (Z±, �±) be the building block provided in Examples 4.2 and
4.3, and let F± → Z± be the asymptotically stable bundles constructed in Proposi-
tions 4.10 and 4.11. Let M s

�±,A±(v±) be the moduli space of A±-stable bundles on
�± with Mukai vector v± = v(F±|�±). We have:

dimM s
�±,A±(v±) = 2.
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Recall that (see eg. [14]) that the Mukai vector of a vector bundle F → � on a
K3 surface is defined as

v(F) := (rkF , c1(F), χ(F) − rkF) ∈ (
H 0 ⊕ H 2 ⊕ H 4

)
(�,Z),

with χ(F) = c1(F)2

2 + 2 rkF − c2(F).

4.4.3 Inelasticity of Asymptotically Stable Hartshorne-Serre Bundles

These results hold for general building blocks and may be of independent interest.
Recall that a bundle F over a building block (Z , �) is inelastic if

H 1(Z ,E nd0(F)(−�)) = 0.

This condition means that there are no global deformations of the bundle F which
maintain F|� fixed at infinity. The following characterisation of inelasticity, in the
case of asymptotically stable bundles, relates the freedom to extendF and the dimen-
sion of the moduli spaceM s

�,A(vF ). The proof uses Serre duality and Maruyama’s
characterisation of the moduli space of stable bundles over a polarised K3 surface
[23, Proposition 6.9].

Proposition 4.14 Let (Z , �) be a building block and F an asymptotically stable
bundle on Z. Let M s

�,A(v) be the moduli space of A-μ-stable bundles on � with
Mukai vector v = v(F|�). Then F is inelastic if and only if

dim Ext1(F ,F) = 1

2
dimM s

�,A(v).

For Hartshorne-Serre bundles of rank 2 satisfying certain topological hypotheses,
we may express the half-dimension of the moduli space in terms of the construction
data:

Proposition 4.15 Let (Z , �) be a building block, and let F → Z be an asymp-
totically stable Hartshorne–Serre bundle obtained from a genus 0 curve S ⊂ Z
and a line bundle L → Z as in Theorem 4.1. Let M s

�,A(v) be the moduli space of
A-μ-stable bundles on � with Mukai vector v = v(F|�). We assume:

1. H 1(L∗) = 0,
2. H 1(F) = 0.

Then F is inelastic if and only if

1

2
dimM s

�,A(v) = dim H 0(N ∗
S /Z ⊗ L|S ) − dim H 0(F) + 1. (4.2)
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4.5 Proof of Theorem 4.5

Let X+ = P
1 × P

2 as in Example 4.2, and�+ ⊂ X+ be a smooth anti-canonical K3
divisor. For suitable choices of polarisationA+ on�+ andMukai vectorv�+ , the asso-
ciated moduli space M s

�+,A+(v�+) of (rank 2) A+-stable bundles is 2-dimensional.
For a smooth curve C ∈ |−K X+|�+|, let Z+ := BlC X+ be the building block result-
ing from Proposition 4.6. Then, for each exceptional fibre � ⊂ C̃ , the Mukai vector

vZ+ := (2,−�+ − G+ + H+, �) ∈ (
H 0 ⊕ H 2 ⊕ H 4

)
(Z+,Z)

has the property that, given a bundle F+ → Z+ as in Proposition 4.10 with
(rkF+, c1(F+), c2(F+)) = vZ+ , the restriction to �+ has Mukai vector v�+ , so
G := F+|�+ ∈ M s

�+,A+(v�+). Thus the Hartshorne-Serre construction yields a fam-
ily of asymptotically stable vector bundles {(F+)p → Z+ | p ∈ C } with

(rkF+, c1(F+), c2(F+)) = vZ+ (4.3)

parametrised by C itself.
One crucial feature of the building block obtained from X+ = P

1 × P
2 is the fact

that the moduli space of bundles over the anti-canonical K3 divisor �+ is actually
isomorphic to �+ itself:

Proposition 4.16 ([24, Lemma 4.7 & Proposition 4.8]) For each p ∈ �+, there
exists an A+-μ-stable and rank 2 Hartshorne-Serre bundle Gp → �+ obtained from
p. The induced map

g : �+ −→ M s
�+,A+(v�+)

p �−→ Gp

is an isomorphism of K3 surfaces.

Now let G ∈ M s
�+,A+(v�+) and V ⊂ H 1(�+,E nd0(G)). From Proposition 4.16,

there is p ∈ �+ such that G = Gp and let V ′ = (dg)−1
p (V ). Since −K X+|�+ is very

ample (see Example 4.2), Lemma 4.7 allows the choice of a smooth base locus curve
C ∈ |−K X+|�+| such that p ∈ C and TpC = V ′. By Proposition 4.10, we can find
a family {(F+)q → Z | q ∈ C } of holomorphic bundles parametrised by C , with
prescribed topology (4.3) and (F+|�)q = Gq . Such a bundleF+ has therefore all the
properties claimed in Theorem 4.5.

Corollary 4.17 ([24, Cor. 6.1]) In the context of Example 4.2, for every bundle G ∈
M s

�+,A+(v�+) and every complex line V ⊂ H 1(�+,E nd0(G)), there are a smooth
curve C+ ∈ |−K X+|�+| and an asymptotically stable and inelastic vector bundle
E+ → Z+ such that E+|�+ = G and res : H 1(Z+,E nd0(E+)) → H 1(�+,E nd0(G))

has image V .

Let
E− := F− ⊗ OZ−(−H− + 2G−).
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Corollary 4.18 ([24, Cor. 6.2]) In the context of Example 4.3, there exists a family
of asymptotically stable and inelastic vector bundles {E− → Z−}, parametrised by
the set of the lines in X− of class h−, such that E−|�− ∈ M s

�−,A−(v�−).

We fix a representative E− → Z− in the family of holomorphic bundles from
Corollary 4.18, to be matched by a bundle E+ → Z+ given by Corollary 4.17, so
that asymptotic stability and inelasticity hold from the outset.

It remains to address compatibility and transversality. Since the chosen con-
figuration for r ensures that r∗ identifies the Mukai vectors of E±|�± , it induces a
map r̄∗ : M s

�−,A−(v′
�−) → M s

�+,A+(v′
�+). In particular, the target moduli space is

2-dimensional, by Proposition 4.13, and r∗(im res−) is 1-dimensional, since the bun-
dles {E−} are parametrised by lines of fixed class h−. So indeed we apply Corollary
4.17 with G = r̄∗(E−|�−) and any choice of a direct complement subspace V such
that

V ⊕ r̄∗(im res−) = H 1 (
�+,E nd0

(
r̄∗(E−|�−)

))
.

Denoting by M�±(v) the moduli space of ASD instantons over �± with Mukai
vector v, the maps f± (cf. (3.1)) in Theorem 3.1 are the linearisations of the Hitchin-
Kobayashi isomorphisms

M s
�±,A±(v′

�±) 
 M�±(v′
�±).

Therefore, our bundles E± indeed satisfy A∞,+ = r̄∗ A∞,− for the corresponding
instanton connections. Moreover, by linearity, λ+(H 1(Z+,E nd0(E+))) is transverse
inTA∞,+M�+(v′

�+) to the imageof the real 2-dimensional subspaceλ−(H 1(Z−,E nd0

(E−))) ⊂ TA∞,−M�−(v′
�−) under the linearisation of r̄∗.
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